1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Freescale i.MX23/i.MX28 Data Co-Processor driver 4 * 5 * Copyright (C) 2013 Marek Vasut <marex@denx.de> 6 */ 7 8 #include <linux/dma-mapping.h> 9 #include <linux/interrupt.h> 10 #include <linux/io.h> 11 #include <linux/kernel.h> 12 #include <linux/kthread.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/platform_device.h> 16 #include <linux/stmp_device.h> 17 #include <linux/clk.h> 18 19 #include <crypto/aes.h> 20 #include <crypto/sha1.h> 21 #include <crypto/sha2.h> 22 #include <crypto/internal/hash.h> 23 #include <crypto/internal/skcipher.h> 24 #include <crypto/scatterwalk.h> 25 26 #define DCP_MAX_CHANS 4 27 #define DCP_BUF_SZ PAGE_SIZE 28 #define DCP_SHA_PAY_SZ 64 29 30 #define DCP_ALIGNMENT 64 31 32 /* 33 * Null hashes to align with hw behavior on imx6sl and ull 34 * these are flipped for consistency with hw output 35 */ 36 static const uint8_t sha1_null_hash[] = 37 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf" 38 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda"; 39 40 static const uint8_t sha256_null_hash[] = 41 "\x55\xb8\x52\x78\x1b\x99\x95\xa4" 42 "\x4c\x93\x9b\x64\xe4\x41\xae\x27" 43 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a" 44 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3"; 45 46 /* DCP DMA descriptor. */ 47 struct dcp_dma_desc { 48 uint32_t next_cmd_addr; 49 uint32_t control0; 50 uint32_t control1; 51 uint32_t source; 52 uint32_t destination; 53 uint32_t size; 54 uint32_t payload; 55 uint32_t status; 56 }; 57 58 /* Coherent aligned block for bounce buffering. */ 59 struct dcp_coherent_block { 60 uint8_t aes_in_buf[DCP_BUF_SZ]; 61 uint8_t aes_out_buf[DCP_BUF_SZ]; 62 uint8_t sha_in_buf[DCP_BUF_SZ]; 63 uint8_t sha_out_buf[DCP_SHA_PAY_SZ]; 64 65 uint8_t aes_key[2 * AES_KEYSIZE_128]; 66 67 struct dcp_dma_desc desc[DCP_MAX_CHANS]; 68 }; 69 70 struct dcp { 71 struct device *dev; 72 void __iomem *base; 73 74 uint32_t caps; 75 76 struct dcp_coherent_block *coh; 77 78 struct completion completion[DCP_MAX_CHANS]; 79 spinlock_t lock[DCP_MAX_CHANS]; 80 struct task_struct *thread[DCP_MAX_CHANS]; 81 struct crypto_queue queue[DCP_MAX_CHANS]; 82 struct clk *dcp_clk; 83 }; 84 85 enum dcp_chan { 86 DCP_CHAN_HASH_SHA = 0, 87 DCP_CHAN_CRYPTO = 2, 88 }; 89 90 struct dcp_async_ctx { 91 /* Common context */ 92 enum dcp_chan chan; 93 uint32_t fill; 94 95 /* SHA Hash-specific context */ 96 struct mutex mutex; 97 uint32_t alg; 98 unsigned int hot:1; 99 100 /* Crypto-specific context */ 101 struct crypto_skcipher *fallback; 102 unsigned int key_len; 103 uint8_t key[AES_KEYSIZE_128]; 104 }; 105 106 struct dcp_aes_req_ctx { 107 unsigned int enc:1; 108 unsigned int ecb:1; 109 struct skcipher_request fallback_req; // keep at the end 110 }; 111 112 struct dcp_sha_req_ctx { 113 unsigned int init:1; 114 unsigned int fini:1; 115 }; 116 117 struct dcp_export_state { 118 struct dcp_sha_req_ctx req_ctx; 119 struct dcp_async_ctx async_ctx; 120 }; 121 122 /* 123 * There can even be only one instance of the MXS DCP due to the 124 * design of Linux Crypto API. 125 */ 126 static struct dcp *global_sdcp; 127 128 /* DCP register layout. */ 129 #define MXS_DCP_CTRL 0x00 130 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23) 131 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22) 132 133 #define MXS_DCP_STAT 0x10 134 #define MXS_DCP_STAT_CLR 0x18 135 #define MXS_DCP_STAT_IRQ_MASK 0xf 136 137 #define MXS_DCP_CHANNELCTRL 0x20 138 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff 139 140 #define MXS_DCP_CAPABILITY1 0x40 141 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16) 142 #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16) 143 #define MXS_DCP_CAPABILITY1_AES128 (1 << 0) 144 145 #define MXS_DCP_CONTEXT 0x50 146 147 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40)) 148 149 #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40)) 150 151 #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40)) 152 #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40)) 153 154 /* DMA descriptor bits. */ 155 #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13) 156 #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12) 157 #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11) 158 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8) 159 #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9) 160 #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6) 161 #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5) 162 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1) 163 #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0) 164 165 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16) 166 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16) 167 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4) 168 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4) 169 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0) 170 171 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx) 172 { 173 int dma_err; 174 struct dcp *sdcp = global_sdcp; 175 const int chan = actx->chan; 176 uint32_t stat; 177 unsigned long ret; 178 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan]; 179 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc), 180 DMA_TO_DEVICE); 181 182 dma_err = dma_mapping_error(sdcp->dev, desc_phys); 183 if (dma_err) 184 return dma_err; 185 186 reinit_completion(&sdcp->completion[chan]); 187 188 /* Clear status register. */ 189 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan)); 190 191 /* Load the DMA descriptor. */ 192 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan)); 193 194 /* Increment the semaphore to start the DMA transfer. */ 195 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan)); 196 197 ret = wait_for_completion_timeout(&sdcp->completion[chan], 198 msecs_to_jiffies(1000)); 199 if (!ret) { 200 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n", 201 chan, readl(sdcp->base + MXS_DCP_STAT)); 202 return -ETIMEDOUT; 203 } 204 205 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan)); 206 if (stat & 0xff) { 207 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n", 208 chan, stat); 209 return -EINVAL; 210 } 211 212 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE); 213 214 return 0; 215 } 216 217 /* 218 * Encryption (AES128) 219 */ 220 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx, 221 struct skcipher_request *req, int init) 222 { 223 dma_addr_t key_phys, src_phys, dst_phys; 224 struct dcp *sdcp = global_sdcp; 225 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan]; 226 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req); 227 int ret; 228 229 key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key, 230 2 * AES_KEYSIZE_128, DMA_TO_DEVICE); 231 ret = dma_mapping_error(sdcp->dev, key_phys); 232 if (ret) 233 return ret; 234 235 src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf, 236 DCP_BUF_SZ, DMA_TO_DEVICE); 237 ret = dma_mapping_error(sdcp->dev, src_phys); 238 if (ret) 239 goto err_src; 240 241 dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf, 242 DCP_BUF_SZ, DMA_FROM_DEVICE); 243 ret = dma_mapping_error(sdcp->dev, dst_phys); 244 if (ret) 245 goto err_dst; 246 247 if (actx->fill % AES_BLOCK_SIZE) { 248 dev_err(sdcp->dev, "Invalid block size!\n"); 249 ret = -EINVAL; 250 goto aes_done_run; 251 } 252 253 /* Fill in the DMA descriptor. */ 254 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE | 255 MXS_DCP_CONTROL0_INTERRUPT | 256 MXS_DCP_CONTROL0_ENABLE_CIPHER; 257 258 /* Payload contains the key. */ 259 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY; 260 261 if (rctx->enc) 262 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT; 263 if (init) 264 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT; 265 266 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128; 267 268 if (rctx->ecb) 269 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB; 270 else 271 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC; 272 273 desc->next_cmd_addr = 0; 274 desc->source = src_phys; 275 desc->destination = dst_phys; 276 desc->size = actx->fill; 277 desc->payload = key_phys; 278 desc->status = 0; 279 280 ret = mxs_dcp_start_dma(actx); 281 282 aes_done_run: 283 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE); 284 err_dst: 285 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE); 286 err_src: 287 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128, 288 DMA_TO_DEVICE); 289 290 return ret; 291 } 292 293 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq) 294 { 295 struct dcp *sdcp = global_sdcp; 296 297 struct skcipher_request *req = skcipher_request_cast(arq); 298 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm); 299 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req); 300 301 struct scatterlist *dst = req->dst; 302 struct scatterlist *src = req->src; 303 int dst_nents = sg_nents(dst); 304 305 const int out_off = DCP_BUF_SZ; 306 uint8_t *in_buf = sdcp->coh->aes_in_buf; 307 uint8_t *out_buf = sdcp->coh->aes_out_buf; 308 309 uint32_t dst_off = 0; 310 uint8_t *src_buf = NULL; 311 uint32_t last_out_len = 0; 312 313 uint8_t *key = sdcp->coh->aes_key; 314 315 int ret = 0; 316 unsigned int i, len, clen, tlen = 0; 317 int init = 0; 318 bool limit_hit = false; 319 320 actx->fill = 0; 321 322 /* Copy the key from the temporary location. */ 323 memcpy(key, actx->key, actx->key_len); 324 325 if (!rctx->ecb) { 326 /* Copy the CBC IV just past the key. */ 327 memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128); 328 /* CBC needs the INIT set. */ 329 init = 1; 330 } else { 331 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128); 332 } 333 334 for_each_sg(req->src, src, sg_nents(req->src), i) { 335 src_buf = sg_virt(src); 336 len = sg_dma_len(src); 337 tlen += len; 338 limit_hit = tlen > req->cryptlen; 339 340 if (limit_hit) 341 len = req->cryptlen - (tlen - len); 342 343 do { 344 if (actx->fill + len > out_off) 345 clen = out_off - actx->fill; 346 else 347 clen = len; 348 349 memcpy(in_buf + actx->fill, src_buf, clen); 350 len -= clen; 351 src_buf += clen; 352 actx->fill += clen; 353 354 /* 355 * If we filled the buffer or this is the last SG, 356 * submit the buffer. 357 */ 358 if (actx->fill == out_off || sg_is_last(src) || 359 limit_hit) { 360 ret = mxs_dcp_run_aes(actx, req, init); 361 if (ret) 362 return ret; 363 init = 0; 364 365 sg_pcopy_from_buffer(dst, dst_nents, out_buf, 366 actx->fill, dst_off); 367 dst_off += actx->fill; 368 last_out_len = actx->fill; 369 actx->fill = 0; 370 } 371 } while (len); 372 373 if (limit_hit) 374 break; 375 } 376 377 /* Copy the IV for CBC for chaining */ 378 if (!rctx->ecb) { 379 if (rctx->enc) 380 memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE), 381 AES_BLOCK_SIZE); 382 else 383 memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE), 384 AES_BLOCK_SIZE); 385 } 386 387 return ret; 388 } 389 390 static int dcp_chan_thread_aes(void *data) 391 { 392 struct dcp *sdcp = global_sdcp; 393 const int chan = DCP_CHAN_CRYPTO; 394 395 struct crypto_async_request *backlog; 396 struct crypto_async_request *arq; 397 398 int ret; 399 400 while (!kthread_should_stop()) { 401 set_current_state(TASK_INTERRUPTIBLE); 402 403 spin_lock(&sdcp->lock[chan]); 404 backlog = crypto_get_backlog(&sdcp->queue[chan]); 405 arq = crypto_dequeue_request(&sdcp->queue[chan]); 406 spin_unlock(&sdcp->lock[chan]); 407 408 if (!backlog && !arq) { 409 schedule(); 410 continue; 411 } 412 413 set_current_state(TASK_RUNNING); 414 415 if (backlog) 416 crypto_request_complete(backlog, -EINPROGRESS); 417 418 if (arq) { 419 ret = mxs_dcp_aes_block_crypt(arq); 420 crypto_request_complete(arq, ret); 421 } 422 } 423 424 return 0; 425 } 426 427 static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc) 428 { 429 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 430 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req); 431 struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm); 432 int ret; 433 434 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback); 435 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags, 436 req->base.complete, req->base.data); 437 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst, 438 req->cryptlen, req->iv); 439 440 if (enc) 441 ret = crypto_skcipher_encrypt(&rctx->fallback_req); 442 else 443 ret = crypto_skcipher_decrypt(&rctx->fallback_req); 444 445 return ret; 446 } 447 448 static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb) 449 { 450 struct dcp *sdcp = global_sdcp; 451 struct crypto_async_request *arq = &req->base; 452 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm); 453 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req); 454 int ret; 455 456 if (unlikely(actx->key_len != AES_KEYSIZE_128)) 457 return mxs_dcp_block_fallback(req, enc); 458 459 rctx->enc = enc; 460 rctx->ecb = ecb; 461 actx->chan = DCP_CHAN_CRYPTO; 462 463 spin_lock(&sdcp->lock[actx->chan]); 464 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base); 465 spin_unlock(&sdcp->lock[actx->chan]); 466 467 wake_up_process(sdcp->thread[actx->chan]); 468 469 return ret; 470 } 471 472 static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req) 473 { 474 return mxs_dcp_aes_enqueue(req, 0, 1); 475 } 476 477 static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req) 478 { 479 return mxs_dcp_aes_enqueue(req, 1, 1); 480 } 481 482 static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req) 483 { 484 return mxs_dcp_aes_enqueue(req, 0, 0); 485 } 486 487 static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req) 488 { 489 return mxs_dcp_aes_enqueue(req, 1, 0); 490 } 491 492 static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key, 493 unsigned int len) 494 { 495 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm); 496 497 /* 498 * AES 128 is supposed by the hardware, store key into temporary 499 * buffer and exit. We must use the temporary buffer here, since 500 * there can still be an operation in progress. 501 */ 502 actx->key_len = len; 503 if (len == AES_KEYSIZE_128) { 504 memcpy(actx->key, key, len); 505 return 0; 506 } 507 508 /* 509 * If the requested AES key size is not supported by the hardware, 510 * but is supported by in-kernel software implementation, we use 511 * software fallback. 512 */ 513 crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK); 514 crypto_skcipher_set_flags(actx->fallback, 515 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK); 516 return crypto_skcipher_setkey(actx->fallback, key, len); 517 } 518 519 static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm) 520 { 521 const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm)); 522 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm); 523 struct crypto_skcipher *blk; 524 525 blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK); 526 if (IS_ERR(blk)) 527 return PTR_ERR(blk); 528 529 actx->fallback = blk; 530 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) + 531 crypto_skcipher_reqsize(blk)); 532 return 0; 533 } 534 535 static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm) 536 { 537 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm); 538 539 crypto_free_skcipher(actx->fallback); 540 } 541 542 /* 543 * Hashing (SHA1/SHA256) 544 */ 545 static int mxs_dcp_run_sha(struct ahash_request *req) 546 { 547 struct dcp *sdcp = global_sdcp; 548 int ret; 549 550 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 551 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); 552 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); 553 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan]; 554 555 dma_addr_t digest_phys = 0; 556 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf, 557 DCP_BUF_SZ, DMA_TO_DEVICE); 558 559 ret = dma_mapping_error(sdcp->dev, buf_phys); 560 if (ret) 561 return ret; 562 563 /* Fill in the DMA descriptor. */ 564 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE | 565 MXS_DCP_CONTROL0_INTERRUPT | 566 MXS_DCP_CONTROL0_ENABLE_HASH; 567 if (rctx->init) 568 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT; 569 570 desc->control1 = actx->alg; 571 desc->next_cmd_addr = 0; 572 desc->source = buf_phys; 573 desc->destination = 0; 574 desc->size = actx->fill; 575 desc->payload = 0; 576 desc->status = 0; 577 578 /* 579 * Align driver with hw behavior when generating null hashes 580 */ 581 if (rctx->init && rctx->fini && desc->size == 0) { 582 struct hash_alg_common *halg = crypto_hash_alg_common(tfm); 583 const uint8_t *sha_buf = 584 (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ? 585 sha1_null_hash : sha256_null_hash; 586 memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize); 587 ret = 0; 588 goto done_run; 589 } 590 591 /* Set HASH_TERM bit for last transfer block. */ 592 if (rctx->fini) { 593 digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf, 594 DCP_SHA_PAY_SZ, DMA_FROM_DEVICE); 595 ret = dma_mapping_error(sdcp->dev, digest_phys); 596 if (ret) 597 goto done_run; 598 599 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM; 600 desc->payload = digest_phys; 601 } 602 603 ret = mxs_dcp_start_dma(actx); 604 605 if (rctx->fini) 606 dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ, 607 DMA_FROM_DEVICE); 608 609 done_run: 610 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE); 611 612 return ret; 613 } 614 615 static int dcp_sha_req_to_buf(struct crypto_async_request *arq) 616 { 617 struct dcp *sdcp = global_sdcp; 618 619 struct ahash_request *req = ahash_request_cast(arq); 620 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 621 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); 622 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); 623 struct hash_alg_common *halg = crypto_hash_alg_common(tfm); 624 625 uint8_t *in_buf = sdcp->coh->sha_in_buf; 626 uint8_t *out_buf = sdcp->coh->sha_out_buf; 627 628 struct scatterlist *src; 629 630 unsigned int i, len, clen, oft = 0; 631 int ret; 632 633 int fin = rctx->fini; 634 if (fin) 635 rctx->fini = 0; 636 637 src = req->src; 638 len = req->nbytes; 639 640 while (len) { 641 if (actx->fill + len > DCP_BUF_SZ) 642 clen = DCP_BUF_SZ - actx->fill; 643 else 644 clen = len; 645 646 scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen, 647 0); 648 649 len -= clen; 650 oft += clen; 651 actx->fill += clen; 652 653 /* 654 * If we filled the buffer and still have some 655 * more data, submit the buffer. 656 */ 657 if (len && actx->fill == DCP_BUF_SZ) { 658 ret = mxs_dcp_run_sha(req); 659 if (ret) 660 return ret; 661 actx->fill = 0; 662 rctx->init = 0; 663 } 664 } 665 666 if (fin) { 667 rctx->fini = 1; 668 669 /* Submit whatever is left. */ 670 if (!req->result) 671 return -EINVAL; 672 673 ret = mxs_dcp_run_sha(req); 674 if (ret) 675 return ret; 676 677 actx->fill = 0; 678 679 /* For some reason the result is flipped */ 680 for (i = 0; i < halg->digestsize; i++) 681 req->result[i] = out_buf[halg->digestsize - i - 1]; 682 } 683 684 return 0; 685 } 686 687 static int dcp_chan_thread_sha(void *data) 688 { 689 struct dcp *sdcp = global_sdcp; 690 const int chan = DCP_CHAN_HASH_SHA; 691 692 struct crypto_async_request *backlog; 693 struct crypto_async_request *arq; 694 int ret; 695 696 while (!kthread_should_stop()) { 697 set_current_state(TASK_INTERRUPTIBLE); 698 699 spin_lock(&sdcp->lock[chan]); 700 backlog = crypto_get_backlog(&sdcp->queue[chan]); 701 arq = crypto_dequeue_request(&sdcp->queue[chan]); 702 spin_unlock(&sdcp->lock[chan]); 703 704 if (!backlog && !arq) { 705 schedule(); 706 continue; 707 } 708 709 set_current_state(TASK_RUNNING); 710 711 if (backlog) 712 crypto_request_complete(backlog, -EINPROGRESS); 713 714 if (arq) { 715 ret = dcp_sha_req_to_buf(arq); 716 crypto_request_complete(arq, ret); 717 } 718 } 719 720 return 0; 721 } 722 723 static int dcp_sha_init(struct ahash_request *req) 724 { 725 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 726 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); 727 728 struct hash_alg_common *halg = crypto_hash_alg_common(tfm); 729 730 /* 731 * Start hashing session. The code below only inits the 732 * hashing session context, nothing more. 733 */ 734 memset(actx, 0, sizeof(*actx)); 735 736 if (strcmp(halg->base.cra_name, "sha1") == 0) 737 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1; 738 else 739 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256; 740 741 actx->fill = 0; 742 actx->hot = 0; 743 actx->chan = DCP_CHAN_HASH_SHA; 744 745 mutex_init(&actx->mutex); 746 747 return 0; 748 } 749 750 static int dcp_sha_update_fx(struct ahash_request *req, int fini) 751 { 752 struct dcp *sdcp = global_sdcp; 753 754 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); 755 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 756 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); 757 758 int ret; 759 760 /* 761 * Ignore requests that have no data in them and are not 762 * the trailing requests in the stream of requests. 763 */ 764 if (!req->nbytes && !fini) 765 return 0; 766 767 mutex_lock(&actx->mutex); 768 769 rctx->fini = fini; 770 771 if (!actx->hot) { 772 actx->hot = 1; 773 rctx->init = 1; 774 } 775 776 spin_lock(&sdcp->lock[actx->chan]); 777 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base); 778 spin_unlock(&sdcp->lock[actx->chan]); 779 780 wake_up_process(sdcp->thread[actx->chan]); 781 mutex_unlock(&actx->mutex); 782 783 return ret; 784 } 785 786 static int dcp_sha_update(struct ahash_request *req) 787 { 788 return dcp_sha_update_fx(req, 0); 789 } 790 791 static int dcp_sha_final(struct ahash_request *req) 792 { 793 ahash_request_set_crypt(req, NULL, req->result, 0); 794 req->nbytes = 0; 795 return dcp_sha_update_fx(req, 1); 796 } 797 798 static int dcp_sha_finup(struct ahash_request *req) 799 { 800 return dcp_sha_update_fx(req, 1); 801 } 802 803 static int dcp_sha_digest(struct ahash_request *req) 804 { 805 int ret; 806 807 ret = dcp_sha_init(req); 808 if (ret) 809 return ret; 810 811 return dcp_sha_finup(req); 812 } 813 814 static int dcp_sha_import(struct ahash_request *req, const void *in) 815 { 816 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); 817 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 818 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); 819 const struct dcp_export_state *export = in; 820 821 memset(rctx, 0, sizeof(struct dcp_sha_req_ctx)); 822 memset(actx, 0, sizeof(struct dcp_async_ctx)); 823 memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx)); 824 memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx)); 825 826 return 0; 827 } 828 829 static int dcp_sha_export(struct ahash_request *req, void *out) 830 { 831 struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req); 832 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 833 struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm); 834 struct dcp_export_state *export = out; 835 836 memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx)); 837 memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx)); 838 839 return 0; 840 } 841 842 static int dcp_sha_cra_init(struct crypto_tfm *tfm) 843 { 844 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 845 sizeof(struct dcp_sha_req_ctx)); 846 return 0; 847 } 848 849 static void dcp_sha_cra_exit(struct crypto_tfm *tfm) 850 { 851 } 852 853 /* AES 128 ECB and AES 128 CBC */ 854 static struct skcipher_alg dcp_aes_algs[] = { 855 { 856 .base.cra_name = "ecb(aes)", 857 .base.cra_driver_name = "ecb-aes-dcp", 858 .base.cra_priority = 400, 859 .base.cra_alignmask = 15, 860 .base.cra_flags = CRYPTO_ALG_ASYNC | 861 CRYPTO_ALG_NEED_FALLBACK, 862 .base.cra_blocksize = AES_BLOCK_SIZE, 863 .base.cra_ctxsize = sizeof(struct dcp_async_ctx), 864 .base.cra_module = THIS_MODULE, 865 866 .min_keysize = AES_MIN_KEY_SIZE, 867 .max_keysize = AES_MAX_KEY_SIZE, 868 .setkey = mxs_dcp_aes_setkey, 869 .encrypt = mxs_dcp_aes_ecb_encrypt, 870 .decrypt = mxs_dcp_aes_ecb_decrypt, 871 .init = mxs_dcp_aes_fallback_init_tfm, 872 .exit = mxs_dcp_aes_fallback_exit_tfm, 873 }, { 874 .base.cra_name = "cbc(aes)", 875 .base.cra_driver_name = "cbc-aes-dcp", 876 .base.cra_priority = 400, 877 .base.cra_alignmask = 15, 878 .base.cra_flags = CRYPTO_ALG_ASYNC | 879 CRYPTO_ALG_NEED_FALLBACK, 880 .base.cra_blocksize = AES_BLOCK_SIZE, 881 .base.cra_ctxsize = sizeof(struct dcp_async_ctx), 882 .base.cra_module = THIS_MODULE, 883 884 .min_keysize = AES_MIN_KEY_SIZE, 885 .max_keysize = AES_MAX_KEY_SIZE, 886 .setkey = mxs_dcp_aes_setkey, 887 .encrypt = mxs_dcp_aes_cbc_encrypt, 888 .decrypt = mxs_dcp_aes_cbc_decrypt, 889 .ivsize = AES_BLOCK_SIZE, 890 .init = mxs_dcp_aes_fallback_init_tfm, 891 .exit = mxs_dcp_aes_fallback_exit_tfm, 892 }, 893 }; 894 895 /* SHA1 */ 896 static struct ahash_alg dcp_sha1_alg = { 897 .init = dcp_sha_init, 898 .update = dcp_sha_update, 899 .final = dcp_sha_final, 900 .finup = dcp_sha_finup, 901 .digest = dcp_sha_digest, 902 .import = dcp_sha_import, 903 .export = dcp_sha_export, 904 .halg = { 905 .digestsize = SHA1_DIGEST_SIZE, 906 .statesize = sizeof(struct dcp_export_state), 907 .base = { 908 .cra_name = "sha1", 909 .cra_driver_name = "sha1-dcp", 910 .cra_priority = 400, 911 .cra_alignmask = 63, 912 .cra_flags = CRYPTO_ALG_ASYNC, 913 .cra_blocksize = SHA1_BLOCK_SIZE, 914 .cra_ctxsize = sizeof(struct dcp_async_ctx), 915 .cra_module = THIS_MODULE, 916 .cra_init = dcp_sha_cra_init, 917 .cra_exit = dcp_sha_cra_exit, 918 }, 919 }, 920 }; 921 922 /* SHA256 */ 923 static struct ahash_alg dcp_sha256_alg = { 924 .init = dcp_sha_init, 925 .update = dcp_sha_update, 926 .final = dcp_sha_final, 927 .finup = dcp_sha_finup, 928 .digest = dcp_sha_digest, 929 .import = dcp_sha_import, 930 .export = dcp_sha_export, 931 .halg = { 932 .digestsize = SHA256_DIGEST_SIZE, 933 .statesize = sizeof(struct dcp_export_state), 934 .base = { 935 .cra_name = "sha256", 936 .cra_driver_name = "sha256-dcp", 937 .cra_priority = 400, 938 .cra_alignmask = 63, 939 .cra_flags = CRYPTO_ALG_ASYNC, 940 .cra_blocksize = SHA256_BLOCK_SIZE, 941 .cra_ctxsize = sizeof(struct dcp_async_ctx), 942 .cra_module = THIS_MODULE, 943 .cra_init = dcp_sha_cra_init, 944 .cra_exit = dcp_sha_cra_exit, 945 }, 946 }, 947 }; 948 949 static irqreturn_t mxs_dcp_irq(int irq, void *context) 950 { 951 struct dcp *sdcp = context; 952 uint32_t stat; 953 int i; 954 955 stat = readl(sdcp->base + MXS_DCP_STAT); 956 stat &= MXS_DCP_STAT_IRQ_MASK; 957 if (!stat) 958 return IRQ_NONE; 959 960 /* Clear the interrupts. */ 961 writel(stat, sdcp->base + MXS_DCP_STAT_CLR); 962 963 /* Complete the DMA requests that finished. */ 964 for (i = 0; i < DCP_MAX_CHANS; i++) 965 if (stat & (1 << i)) 966 complete(&sdcp->completion[i]); 967 968 return IRQ_HANDLED; 969 } 970 971 static int mxs_dcp_probe(struct platform_device *pdev) 972 { 973 struct device *dev = &pdev->dev; 974 struct dcp *sdcp = NULL; 975 int i, ret; 976 int dcp_vmi_irq, dcp_irq; 977 978 if (global_sdcp) { 979 dev_err(dev, "Only one DCP instance allowed!\n"); 980 return -ENODEV; 981 } 982 983 dcp_vmi_irq = platform_get_irq(pdev, 0); 984 if (dcp_vmi_irq < 0) 985 return dcp_vmi_irq; 986 987 dcp_irq = platform_get_irq(pdev, 1); 988 if (dcp_irq < 0) 989 return dcp_irq; 990 991 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL); 992 if (!sdcp) 993 return -ENOMEM; 994 995 sdcp->dev = dev; 996 sdcp->base = devm_platform_ioremap_resource(pdev, 0); 997 if (IS_ERR(sdcp->base)) 998 return PTR_ERR(sdcp->base); 999 1000 1001 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0, 1002 "dcp-vmi-irq", sdcp); 1003 if (ret) { 1004 dev_err(dev, "Failed to claim DCP VMI IRQ!\n"); 1005 return ret; 1006 } 1007 1008 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0, 1009 "dcp-irq", sdcp); 1010 if (ret) { 1011 dev_err(dev, "Failed to claim DCP IRQ!\n"); 1012 return ret; 1013 } 1014 1015 /* Allocate coherent helper block. */ 1016 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT, 1017 GFP_KERNEL); 1018 if (!sdcp->coh) 1019 return -ENOMEM; 1020 1021 /* Re-align the structure so it fits the DCP constraints. */ 1022 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT); 1023 1024 /* DCP clock is optional, only used on some SOCs */ 1025 sdcp->dcp_clk = devm_clk_get_optional_enabled(dev, "dcp"); 1026 if (IS_ERR(sdcp->dcp_clk)) 1027 return PTR_ERR(sdcp->dcp_clk); 1028 1029 /* Restart the DCP block. */ 1030 ret = stmp_reset_block(sdcp->base); 1031 if (ret) { 1032 dev_err(dev, "Failed reset\n"); 1033 return ret; 1034 } 1035 1036 /* Initialize control register. */ 1037 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES | 1038 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf, 1039 sdcp->base + MXS_DCP_CTRL); 1040 1041 /* Enable all DCP DMA channels. */ 1042 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK, 1043 sdcp->base + MXS_DCP_CHANNELCTRL); 1044 1045 /* 1046 * We do not enable context switching. Give the context buffer a 1047 * pointer to an illegal address so if context switching is 1048 * inadvertantly enabled, the DCP will return an error instead of 1049 * trashing good memory. The DCP DMA cannot access ROM, so any ROM 1050 * address will do. 1051 */ 1052 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT); 1053 for (i = 0; i < DCP_MAX_CHANS; i++) 1054 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i)); 1055 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR); 1056 1057 global_sdcp = sdcp; 1058 1059 platform_set_drvdata(pdev, sdcp); 1060 1061 for (i = 0; i < DCP_MAX_CHANS; i++) { 1062 spin_lock_init(&sdcp->lock[i]); 1063 init_completion(&sdcp->completion[i]); 1064 crypto_init_queue(&sdcp->queue[i], 50); 1065 } 1066 1067 /* Create the SHA and AES handler threads. */ 1068 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha, 1069 NULL, "mxs_dcp_chan/sha"); 1070 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) { 1071 dev_err(dev, "Error starting SHA thread!\n"); 1072 ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]); 1073 return ret; 1074 } 1075 1076 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes, 1077 NULL, "mxs_dcp_chan/aes"); 1078 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) { 1079 dev_err(dev, "Error starting SHA thread!\n"); 1080 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]); 1081 goto err_destroy_sha_thread; 1082 } 1083 1084 /* Register the various crypto algorithms. */ 1085 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1); 1086 1087 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) { 1088 ret = crypto_register_skciphers(dcp_aes_algs, 1089 ARRAY_SIZE(dcp_aes_algs)); 1090 if (ret) { 1091 /* Failed to register algorithm. */ 1092 dev_err(dev, "Failed to register AES crypto!\n"); 1093 goto err_destroy_aes_thread; 1094 } 1095 } 1096 1097 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) { 1098 ret = crypto_register_ahash(&dcp_sha1_alg); 1099 if (ret) { 1100 dev_err(dev, "Failed to register %s hash!\n", 1101 dcp_sha1_alg.halg.base.cra_name); 1102 goto err_unregister_aes; 1103 } 1104 } 1105 1106 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) { 1107 ret = crypto_register_ahash(&dcp_sha256_alg); 1108 if (ret) { 1109 dev_err(dev, "Failed to register %s hash!\n", 1110 dcp_sha256_alg.halg.base.cra_name); 1111 goto err_unregister_sha1; 1112 } 1113 } 1114 1115 return 0; 1116 1117 err_unregister_sha1: 1118 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) 1119 crypto_unregister_ahash(&dcp_sha1_alg); 1120 1121 err_unregister_aes: 1122 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) 1123 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs)); 1124 1125 err_destroy_aes_thread: 1126 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]); 1127 1128 err_destroy_sha_thread: 1129 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]); 1130 1131 return ret; 1132 } 1133 1134 static int mxs_dcp_remove(struct platform_device *pdev) 1135 { 1136 struct dcp *sdcp = platform_get_drvdata(pdev); 1137 1138 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) 1139 crypto_unregister_ahash(&dcp_sha256_alg); 1140 1141 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) 1142 crypto_unregister_ahash(&dcp_sha1_alg); 1143 1144 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) 1145 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs)); 1146 1147 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]); 1148 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]); 1149 1150 platform_set_drvdata(pdev, NULL); 1151 1152 global_sdcp = NULL; 1153 1154 return 0; 1155 } 1156 1157 static const struct of_device_id mxs_dcp_dt_ids[] = { 1158 { .compatible = "fsl,imx23-dcp", .data = NULL, }, 1159 { .compatible = "fsl,imx28-dcp", .data = NULL, }, 1160 { /* sentinel */ } 1161 }; 1162 1163 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids); 1164 1165 static struct platform_driver mxs_dcp_driver = { 1166 .probe = mxs_dcp_probe, 1167 .remove = mxs_dcp_remove, 1168 .driver = { 1169 .name = "mxs-dcp", 1170 .of_match_table = mxs_dcp_dt_ids, 1171 }, 1172 }; 1173 1174 module_platform_driver(mxs_dcp_driver); 1175 1176 MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); 1177 MODULE_DESCRIPTION("Freescale MXS DCP Driver"); 1178 MODULE_LICENSE("GPL"); 1179 MODULE_ALIAS("platform:mxs-dcp"); 1180