xref: /openbmc/linux/drivers/crypto/marvell/octeontx2/otx2_cptvf_algs.c (revision 72ed5d5624af384eaf74d84915810d54486a75e2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2020 Marvell. */
3 
4 #include <crypto/aes.h>
5 #include <crypto/authenc.h>
6 #include <crypto/cryptd.h>
7 #include <crypto/des.h>
8 #include <crypto/internal/aead.h>
9 #include <crypto/sha1.h>
10 #include <crypto/sha2.h>
11 #include <crypto/xts.h>
12 #include <crypto/gcm.h>
13 #include <crypto/scatterwalk.h>
14 #include <linux/rtnetlink.h>
15 #include <linux/sort.h>
16 #include <linux/module.h>
17 #include "otx2_cptvf.h"
18 #include "otx2_cptvf_algs.h"
19 #include "otx2_cpt_reqmgr.h"
20 
21 /* Size of salt in AES GCM mode */
22 #define AES_GCM_SALT_SIZE 4
23 /* Size of IV in AES GCM mode */
24 #define AES_GCM_IV_SIZE 8
25 /* Size of ICV (Integrity Check Value) in AES GCM mode */
26 #define AES_GCM_ICV_SIZE 16
27 /* Offset of IV in AES GCM mode */
28 #define AES_GCM_IV_OFFSET 8
29 #define CONTROL_WORD_LEN 8
30 #define KEY2_OFFSET 48
31 #define DMA_MODE_FLAG(dma_mode) \
32 	(((dma_mode) == OTX2_CPT_DMA_MODE_SG) ? (1 << 7) : 0)
33 
34 /* Truncated SHA digest size */
35 #define SHA1_TRUNC_DIGEST_SIZE 12
36 #define SHA256_TRUNC_DIGEST_SIZE 16
37 #define SHA384_TRUNC_DIGEST_SIZE 24
38 #define SHA512_TRUNC_DIGEST_SIZE 32
39 
40 static DEFINE_MUTEX(mutex);
41 static int is_crypto_registered;
42 
43 struct cpt_device_desc {
44 	struct pci_dev *dev;
45 	int num_queues;
46 };
47 
48 struct cpt_device_table {
49 	atomic_t count;
50 	struct cpt_device_desc desc[OTX2_CPT_MAX_LFS_NUM];
51 };
52 
53 static struct cpt_device_table se_devices = {
54 	.count = ATOMIC_INIT(0)
55 };
56 
57 static inline int get_se_device(struct pci_dev **pdev, int *cpu_num)
58 {
59 	int count;
60 
61 	count = atomic_read(&se_devices.count);
62 	if (count < 1)
63 		return -ENODEV;
64 
65 	*cpu_num = get_cpu();
66 	/*
67 	 * On OcteonTX2 platform CPT instruction queue is bound to each
68 	 * local function LF, in turn LFs can be attached to PF
69 	 * or VF therefore we always use first device. We get maximum
70 	 * performance if one CPT queue is available for each cpu
71 	 * otherwise CPT queues need to be shared between cpus.
72 	 */
73 	if (*cpu_num >= se_devices.desc[0].num_queues)
74 		*cpu_num %= se_devices.desc[0].num_queues;
75 	*pdev = se_devices.desc[0].dev;
76 
77 	put_cpu();
78 
79 	return 0;
80 }
81 
82 static inline int validate_hmac_cipher_null(struct otx2_cpt_req_info *cpt_req)
83 {
84 	struct otx2_cpt_req_ctx *rctx;
85 	struct aead_request *req;
86 	struct crypto_aead *tfm;
87 
88 	req = container_of(cpt_req->areq, struct aead_request, base);
89 	tfm = crypto_aead_reqtfm(req);
90 	rctx = aead_request_ctx_dma(req);
91 	if (memcmp(rctx->fctx.hmac.s.hmac_calc,
92 		   rctx->fctx.hmac.s.hmac_recv,
93 		   crypto_aead_authsize(tfm)) != 0)
94 		return -EBADMSG;
95 
96 	return 0;
97 }
98 
99 static void otx2_cpt_aead_callback(int status, void *arg1, void *arg2)
100 {
101 	struct otx2_cpt_inst_info *inst_info = arg2;
102 	struct crypto_async_request *areq = arg1;
103 	struct otx2_cpt_req_info *cpt_req;
104 	struct pci_dev *pdev;
105 
106 	if (inst_info) {
107 		cpt_req = inst_info->req;
108 		if (!status) {
109 			/*
110 			 * When selected cipher is NULL we need to manually
111 			 * verify whether calculated hmac value matches
112 			 * received hmac value
113 			 */
114 			if (cpt_req->req_type ==
115 			    OTX2_CPT_AEAD_ENC_DEC_NULL_REQ &&
116 			    !cpt_req->is_enc)
117 				status = validate_hmac_cipher_null(cpt_req);
118 		}
119 		pdev = inst_info->pdev;
120 		otx2_cpt_info_destroy(pdev, inst_info);
121 	}
122 	if (areq)
123 		areq->complete(areq, status);
124 }
125 
126 static void output_iv_copyback(struct crypto_async_request *areq)
127 {
128 	struct otx2_cpt_req_info *req_info;
129 	struct otx2_cpt_req_ctx *rctx;
130 	struct skcipher_request *sreq;
131 	struct crypto_skcipher *stfm;
132 	struct otx2_cpt_enc_ctx *ctx;
133 	u32 start, ivsize;
134 
135 	sreq = container_of(areq, struct skcipher_request, base);
136 	stfm = crypto_skcipher_reqtfm(sreq);
137 	ctx = crypto_skcipher_ctx(stfm);
138 	if (ctx->cipher_type == OTX2_CPT_AES_CBC ||
139 	    ctx->cipher_type == OTX2_CPT_DES3_CBC) {
140 		rctx = skcipher_request_ctx_dma(sreq);
141 		req_info = &rctx->cpt_req;
142 		ivsize = crypto_skcipher_ivsize(stfm);
143 		start = sreq->cryptlen - ivsize;
144 
145 		if (req_info->is_enc) {
146 			scatterwalk_map_and_copy(sreq->iv, sreq->dst, start,
147 						 ivsize, 0);
148 		} else {
149 			if (sreq->src != sreq->dst) {
150 				scatterwalk_map_and_copy(sreq->iv, sreq->src,
151 							 start, ivsize, 0);
152 			} else {
153 				memcpy(sreq->iv, req_info->iv_out, ivsize);
154 				kfree(req_info->iv_out);
155 			}
156 		}
157 	}
158 }
159 
160 static void otx2_cpt_skcipher_callback(int status, void *arg1, void *arg2)
161 {
162 	struct otx2_cpt_inst_info *inst_info = arg2;
163 	struct crypto_async_request *areq = arg1;
164 	struct pci_dev *pdev;
165 
166 	if (areq) {
167 		if (!status)
168 			output_iv_copyback(areq);
169 		if (inst_info) {
170 			pdev = inst_info->pdev;
171 			otx2_cpt_info_destroy(pdev, inst_info);
172 		}
173 		areq->complete(areq, status);
174 	}
175 }
176 
177 static inline void update_input_data(struct otx2_cpt_req_info *req_info,
178 				     struct scatterlist *inp_sg,
179 				     u32 nbytes, u32 *argcnt)
180 {
181 	req_info->req.dlen += nbytes;
182 
183 	while (nbytes) {
184 		u32 len = (nbytes < inp_sg->length) ? nbytes : inp_sg->length;
185 		u8 *ptr = sg_virt(inp_sg);
186 
187 		req_info->in[*argcnt].vptr = (void *)ptr;
188 		req_info->in[*argcnt].size = len;
189 		nbytes -= len;
190 		++(*argcnt);
191 		inp_sg = sg_next(inp_sg);
192 	}
193 }
194 
195 static inline void update_output_data(struct otx2_cpt_req_info *req_info,
196 				      struct scatterlist *outp_sg,
197 				      u32 offset, u32 nbytes, u32 *argcnt)
198 {
199 	u32 len, sg_len;
200 	u8 *ptr;
201 
202 	req_info->rlen += nbytes;
203 
204 	while (nbytes) {
205 		sg_len = outp_sg->length - offset;
206 		len = (nbytes < sg_len) ? nbytes : sg_len;
207 		ptr = sg_virt(outp_sg);
208 
209 		req_info->out[*argcnt].vptr = (void *) (ptr + offset);
210 		req_info->out[*argcnt].size = len;
211 		nbytes -= len;
212 		++(*argcnt);
213 		offset = 0;
214 		outp_sg = sg_next(outp_sg);
215 	}
216 }
217 
218 static inline int create_ctx_hdr(struct skcipher_request *req, u32 enc,
219 				 u32 *argcnt)
220 {
221 	struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
222 	struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
223 	struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(stfm);
224 	struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
225 	struct otx2_cpt_fc_ctx *fctx = &rctx->fctx;
226 	int ivsize = crypto_skcipher_ivsize(stfm);
227 	u32 start = req->cryptlen - ivsize;
228 	gfp_t flags;
229 
230 	flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
231 			GFP_KERNEL : GFP_ATOMIC;
232 	req_info->ctrl.s.dma_mode = OTX2_CPT_DMA_MODE_SG;
233 	req_info->ctrl.s.se_req = 1;
234 
235 	req_info->req.opcode.s.major = OTX2_CPT_MAJOR_OP_FC |
236 				DMA_MODE_FLAG(OTX2_CPT_DMA_MODE_SG);
237 	if (enc) {
238 		req_info->req.opcode.s.minor = 2;
239 	} else {
240 		req_info->req.opcode.s.minor = 3;
241 		if ((ctx->cipher_type == OTX2_CPT_AES_CBC ||
242 		    ctx->cipher_type == OTX2_CPT_DES3_CBC) &&
243 		    req->src == req->dst) {
244 			req_info->iv_out = kmalloc(ivsize, flags);
245 			if (!req_info->iv_out)
246 				return -ENOMEM;
247 
248 			scatterwalk_map_and_copy(req_info->iv_out, req->src,
249 						 start, ivsize, 0);
250 		}
251 	}
252 	/* Encryption data length */
253 	req_info->req.param1 = req->cryptlen;
254 	/* Authentication data length */
255 	req_info->req.param2 = 0;
256 
257 	fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type;
258 	fctx->enc.enc_ctrl.e.aes_key = ctx->key_type;
259 	fctx->enc.enc_ctrl.e.iv_source = OTX2_CPT_FROM_CPTR;
260 
261 	if (ctx->cipher_type == OTX2_CPT_AES_XTS)
262 		memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len * 2);
263 	else
264 		memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len);
265 
266 	memcpy(fctx->enc.encr_iv, req->iv, crypto_skcipher_ivsize(stfm));
267 
268 	cpu_to_be64s(&fctx->enc.enc_ctrl.u);
269 
270 	/*
271 	 * Storing  Packet Data Information in offset
272 	 * Control Word First 8 bytes
273 	 */
274 	req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word;
275 	req_info->in[*argcnt].size = CONTROL_WORD_LEN;
276 	req_info->req.dlen += CONTROL_WORD_LEN;
277 	++(*argcnt);
278 
279 	req_info->in[*argcnt].vptr = (u8 *)fctx;
280 	req_info->in[*argcnt].size = sizeof(struct otx2_cpt_fc_ctx);
281 	req_info->req.dlen += sizeof(struct otx2_cpt_fc_ctx);
282 
283 	++(*argcnt);
284 
285 	return 0;
286 }
287 
288 static inline int create_input_list(struct skcipher_request *req, u32 enc,
289 				    u32 enc_iv_len)
290 {
291 	struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
292 	struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
293 	u32 argcnt =  0;
294 	int ret;
295 
296 	ret = create_ctx_hdr(req, enc, &argcnt);
297 	if (ret)
298 		return ret;
299 
300 	update_input_data(req_info, req->src, req->cryptlen, &argcnt);
301 	req_info->in_cnt = argcnt;
302 
303 	return 0;
304 }
305 
306 static inline void create_output_list(struct skcipher_request *req,
307 				      u32 enc_iv_len)
308 {
309 	struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
310 	struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
311 	u32 argcnt = 0;
312 
313 	/*
314 	 * OUTPUT Buffer Processing
315 	 * AES encryption/decryption output would be
316 	 * received in the following format
317 	 *
318 	 * ------IV--------|------ENCRYPTED/DECRYPTED DATA-----|
319 	 * [ 16 Bytes/     [   Request Enc/Dec/ DATA Len AES CBC ]
320 	 */
321 	update_output_data(req_info, req->dst, 0, req->cryptlen, &argcnt);
322 	req_info->out_cnt = argcnt;
323 }
324 
325 static int skcipher_do_fallback(struct skcipher_request *req, bool is_enc)
326 {
327 	struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
328 	struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
329 	struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(stfm);
330 	int ret;
331 
332 	if (ctx->fbk_cipher) {
333 		skcipher_request_set_tfm(&rctx->sk_fbk_req, ctx->fbk_cipher);
334 		skcipher_request_set_callback(&rctx->sk_fbk_req,
335 					      req->base.flags,
336 					      req->base.complete,
337 					      req->base.data);
338 		skcipher_request_set_crypt(&rctx->sk_fbk_req, req->src,
339 					   req->dst, req->cryptlen, req->iv);
340 		ret = is_enc ? crypto_skcipher_encrypt(&rctx->sk_fbk_req) :
341 			       crypto_skcipher_decrypt(&rctx->sk_fbk_req);
342 	} else {
343 		ret = -EINVAL;
344 	}
345 	return ret;
346 }
347 
348 static inline int cpt_enc_dec(struct skcipher_request *req, u32 enc)
349 {
350 	struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
351 	struct otx2_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
352 	struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(stfm);
353 	struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
354 	u32 enc_iv_len = crypto_skcipher_ivsize(stfm);
355 	struct pci_dev *pdev;
356 	int status, cpu_num;
357 
358 	if (req->cryptlen == 0)
359 		return 0;
360 
361 	if (!IS_ALIGNED(req->cryptlen, ctx->enc_align_len))
362 		return -EINVAL;
363 
364 	if (req->cryptlen > OTX2_CPT_MAX_REQ_SIZE)
365 		return skcipher_do_fallback(req, enc);
366 
367 	/* Clear control words */
368 	rctx->ctrl_word.flags = 0;
369 	rctx->fctx.enc.enc_ctrl.u = 0;
370 
371 	status = create_input_list(req, enc, enc_iv_len);
372 	if (status)
373 		return status;
374 	create_output_list(req, enc_iv_len);
375 
376 	status = get_se_device(&pdev, &cpu_num);
377 	if (status)
378 		return status;
379 
380 	req_info->callback = otx2_cpt_skcipher_callback;
381 	req_info->areq = &req->base;
382 	req_info->req_type = OTX2_CPT_ENC_DEC_REQ;
383 	req_info->is_enc = enc;
384 	req_info->is_trunc_hmac = false;
385 	req_info->ctrl.s.grp = otx2_cpt_get_kcrypto_eng_grp_num(pdev);
386 
387 	/*
388 	 * We perform an asynchronous send and once
389 	 * the request is completed the driver would
390 	 * intimate through registered call back functions
391 	 */
392 	status = otx2_cpt_do_request(pdev, req_info, cpu_num);
393 
394 	return status;
395 }
396 
397 static int otx2_cpt_skcipher_encrypt(struct skcipher_request *req)
398 {
399 	return cpt_enc_dec(req, true);
400 }
401 
402 static int otx2_cpt_skcipher_decrypt(struct skcipher_request *req)
403 {
404 	return cpt_enc_dec(req, false);
405 }
406 
407 static int otx2_cpt_skcipher_xts_setkey(struct crypto_skcipher *tfm,
408 				       const u8 *key, u32 keylen)
409 {
410 	struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
411 	const u8 *key2 = key + (keylen / 2);
412 	const u8 *key1 = key;
413 	int ret;
414 
415 	ret = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
416 	if (ret)
417 		return ret;
418 	ctx->key_len = keylen;
419 	ctx->enc_align_len = 1;
420 	memcpy(ctx->enc_key, key1, keylen / 2);
421 	memcpy(ctx->enc_key + KEY2_OFFSET, key2, keylen / 2);
422 	ctx->cipher_type = OTX2_CPT_AES_XTS;
423 	switch (ctx->key_len) {
424 	case 2 * AES_KEYSIZE_128:
425 		ctx->key_type = OTX2_CPT_AES_128_BIT;
426 		break;
427 	case 2 * AES_KEYSIZE_192:
428 		ctx->key_type = OTX2_CPT_AES_192_BIT;
429 		break;
430 	case 2 * AES_KEYSIZE_256:
431 		ctx->key_type = OTX2_CPT_AES_256_BIT;
432 		break;
433 	default:
434 		return -EINVAL;
435 	}
436 	return crypto_skcipher_setkey(ctx->fbk_cipher, key, keylen);
437 }
438 
439 static int cpt_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
440 			  u32 keylen, u8 cipher_type)
441 {
442 	struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
443 
444 	if (keylen != DES3_EDE_KEY_SIZE)
445 		return -EINVAL;
446 
447 	ctx->key_len = keylen;
448 	ctx->cipher_type = cipher_type;
449 	ctx->enc_align_len = 8;
450 
451 	memcpy(ctx->enc_key, key, keylen);
452 
453 	return crypto_skcipher_setkey(ctx->fbk_cipher, key, keylen);
454 }
455 
456 static int cpt_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
457 			  u32 keylen, u8 cipher_type)
458 {
459 	struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
460 
461 	switch (keylen) {
462 	case AES_KEYSIZE_128:
463 		ctx->key_type = OTX2_CPT_AES_128_BIT;
464 		break;
465 	case AES_KEYSIZE_192:
466 		ctx->key_type = OTX2_CPT_AES_192_BIT;
467 		break;
468 	case AES_KEYSIZE_256:
469 		ctx->key_type = OTX2_CPT_AES_256_BIT;
470 		break;
471 	default:
472 		return -EINVAL;
473 	}
474 	if (cipher_type == OTX2_CPT_AES_CBC || cipher_type == OTX2_CPT_AES_ECB)
475 		ctx->enc_align_len = 16;
476 	else
477 		ctx->enc_align_len = 1;
478 
479 	ctx->key_len = keylen;
480 	ctx->cipher_type = cipher_type;
481 
482 	memcpy(ctx->enc_key, key, keylen);
483 
484 	return crypto_skcipher_setkey(ctx->fbk_cipher, key, keylen);
485 }
486 
487 static int otx2_cpt_skcipher_cbc_aes_setkey(struct crypto_skcipher *tfm,
488 					    const u8 *key, u32 keylen)
489 {
490 	return cpt_aes_setkey(tfm, key, keylen, OTX2_CPT_AES_CBC);
491 }
492 
493 static int otx2_cpt_skcipher_ecb_aes_setkey(struct crypto_skcipher *tfm,
494 					    const u8 *key, u32 keylen)
495 {
496 	return cpt_aes_setkey(tfm, key, keylen, OTX2_CPT_AES_ECB);
497 }
498 
499 static int otx2_cpt_skcipher_cbc_des3_setkey(struct crypto_skcipher *tfm,
500 					     const u8 *key, u32 keylen)
501 {
502 	return cpt_des_setkey(tfm, key, keylen, OTX2_CPT_DES3_CBC);
503 }
504 
505 static int otx2_cpt_skcipher_ecb_des3_setkey(struct crypto_skcipher *tfm,
506 					     const u8 *key, u32 keylen)
507 {
508 	return cpt_des_setkey(tfm, key, keylen, OTX2_CPT_DES3_ECB);
509 }
510 
511 static int cpt_skcipher_fallback_init(struct otx2_cpt_enc_ctx *ctx,
512 				      struct crypto_alg *alg)
513 {
514 	if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
515 		ctx->fbk_cipher =
516 				crypto_alloc_skcipher(alg->cra_name, 0,
517 						      CRYPTO_ALG_ASYNC |
518 						      CRYPTO_ALG_NEED_FALLBACK);
519 		if (IS_ERR(ctx->fbk_cipher)) {
520 			pr_err("%s() failed to allocate fallback for %s\n",
521 				__func__, alg->cra_name);
522 			return PTR_ERR(ctx->fbk_cipher);
523 		}
524 	}
525 	return 0;
526 }
527 
528 static int otx2_cpt_enc_dec_init(struct crypto_skcipher *stfm)
529 {
530 	struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(stfm);
531 	struct crypto_tfm *tfm = crypto_skcipher_tfm(stfm);
532 	struct crypto_alg *alg = tfm->__crt_alg;
533 
534 	memset(ctx, 0, sizeof(*ctx));
535 	/*
536 	 * Additional memory for skcipher_request is
537 	 * allocated since the cryptd daemon uses
538 	 * this memory for request_ctx information
539 	 */
540 	crypto_skcipher_set_reqsize_dma(
541 		stfm, sizeof(struct otx2_cpt_req_ctx) +
542 		      sizeof(struct skcipher_request));
543 
544 	return cpt_skcipher_fallback_init(ctx, alg);
545 }
546 
547 static void otx2_cpt_skcipher_exit(struct crypto_skcipher *tfm)
548 {
549 	struct otx2_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
550 
551 	if (ctx->fbk_cipher) {
552 		crypto_free_skcipher(ctx->fbk_cipher);
553 		ctx->fbk_cipher = NULL;
554 	}
555 }
556 
557 static int cpt_aead_fallback_init(struct otx2_cpt_aead_ctx *ctx,
558 				  struct crypto_alg *alg)
559 {
560 	if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
561 		ctx->fbk_cipher =
562 			    crypto_alloc_aead(alg->cra_name, 0,
563 					      CRYPTO_ALG_ASYNC |
564 					      CRYPTO_ALG_NEED_FALLBACK);
565 		if (IS_ERR(ctx->fbk_cipher)) {
566 			pr_err("%s() failed to allocate fallback for %s\n",
567 				__func__, alg->cra_name);
568 			return PTR_ERR(ctx->fbk_cipher);
569 		}
570 	}
571 	return 0;
572 }
573 
574 static int cpt_aead_init(struct crypto_aead *atfm, u8 cipher_type, u8 mac_type)
575 {
576 	struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(atfm);
577 	struct crypto_tfm *tfm = crypto_aead_tfm(atfm);
578 	struct crypto_alg *alg = tfm->__crt_alg;
579 
580 	ctx->cipher_type = cipher_type;
581 	ctx->mac_type = mac_type;
582 
583 	/*
584 	 * When selected cipher is NULL we use HMAC opcode instead of
585 	 * FLEXICRYPTO opcode therefore we don't need to use HASH algorithms
586 	 * for calculating ipad and opad
587 	 */
588 	if (ctx->cipher_type != OTX2_CPT_CIPHER_NULL) {
589 		switch (ctx->mac_type) {
590 		case OTX2_CPT_SHA1:
591 			ctx->hashalg = crypto_alloc_shash("sha1", 0,
592 							  CRYPTO_ALG_ASYNC);
593 			if (IS_ERR(ctx->hashalg))
594 				return PTR_ERR(ctx->hashalg);
595 			break;
596 
597 		case OTX2_CPT_SHA256:
598 			ctx->hashalg = crypto_alloc_shash("sha256", 0,
599 							  CRYPTO_ALG_ASYNC);
600 			if (IS_ERR(ctx->hashalg))
601 				return PTR_ERR(ctx->hashalg);
602 			break;
603 
604 		case OTX2_CPT_SHA384:
605 			ctx->hashalg = crypto_alloc_shash("sha384", 0,
606 							  CRYPTO_ALG_ASYNC);
607 			if (IS_ERR(ctx->hashalg))
608 				return PTR_ERR(ctx->hashalg);
609 			break;
610 
611 		case OTX2_CPT_SHA512:
612 			ctx->hashalg = crypto_alloc_shash("sha512", 0,
613 							  CRYPTO_ALG_ASYNC);
614 			if (IS_ERR(ctx->hashalg))
615 				return PTR_ERR(ctx->hashalg);
616 			break;
617 		}
618 	}
619 	switch (ctx->cipher_type) {
620 	case OTX2_CPT_AES_CBC:
621 	case OTX2_CPT_AES_ECB:
622 		ctx->enc_align_len = 16;
623 		break;
624 	case OTX2_CPT_DES3_CBC:
625 	case OTX2_CPT_DES3_ECB:
626 		ctx->enc_align_len = 8;
627 		break;
628 	case OTX2_CPT_AES_GCM:
629 	case OTX2_CPT_CIPHER_NULL:
630 		ctx->enc_align_len = 1;
631 		break;
632 	}
633 	crypto_aead_set_reqsize_dma(atfm, sizeof(struct otx2_cpt_req_ctx));
634 
635 	return cpt_aead_fallback_init(ctx, alg);
636 }
637 
638 static int otx2_cpt_aead_cbc_aes_sha1_init(struct crypto_aead *tfm)
639 {
640 	return cpt_aead_init(tfm, OTX2_CPT_AES_CBC, OTX2_CPT_SHA1);
641 }
642 
643 static int otx2_cpt_aead_cbc_aes_sha256_init(struct crypto_aead *tfm)
644 {
645 	return cpt_aead_init(tfm, OTX2_CPT_AES_CBC, OTX2_CPT_SHA256);
646 }
647 
648 static int otx2_cpt_aead_cbc_aes_sha384_init(struct crypto_aead *tfm)
649 {
650 	return cpt_aead_init(tfm, OTX2_CPT_AES_CBC, OTX2_CPT_SHA384);
651 }
652 
653 static int otx2_cpt_aead_cbc_aes_sha512_init(struct crypto_aead *tfm)
654 {
655 	return cpt_aead_init(tfm, OTX2_CPT_AES_CBC, OTX2_CPT_SHA512);
656 }
657 
658 static int otx2_cpt_aead_ecb_null_sha1_init(struct crypto_aead *tfm)
659 {
660 	return cpt_aead_init(tfm, OTX2_CPT_CIPHER_NULL, OTX2_CPT_SHA1);
661 }
662 
663 static int otx2_cpt_aead_ecb_null_sha256_init(struct crypto_aead *tfm)
664 {
665 	return cpt_aead_init(tfm, OTX2_CPT_CIPHER_NULL, OTX2_CPT_SHA256);
666 }
667 
668 static int otx2_cpt_aead_ecb_null_sha384_init(struct crypto_aead *tfm)
669 {
670 	return cpt_aead_init(tfm, OTX2_CPT_CIPHER_NULL, OTX2_CPT_SHA384);
671 }
672 
673 static int otx2_cpt_aead_ecb_null_sha512_init(struct crypto_aead *tfm)
674 {
675 	return cpt_aead_init(tfm, OTX2_CPT_CIPHER_NULL, OTX2_CPT_SHA512);
676 }
677 
678 static int otx2_cpt_aead_gcm_aes_init(struct crypto_aead *tfm)
679 {
680 	return cpt_aead_init(tfm, OTX2_CPT_AES_GCM, OTX2_CPT_MAC_NULL);
681 }
682 
683 static void otx2_cpt_aead_exit(struct crypto_aead *tfm)
684 {
685 	struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
686 
687 	kfree(ctx->ipad);
688 	kfree(ctx->opad);
689 	if (ctx->hashalg)
690 		crypto_free_shash(ctx->hashalg);
691 	kfree(ctx->sdesc);
692 
693 	if (ctx->fbk_cipher) {
694 		crypto_free_aead(ctx->fbk_cipher);
695 		ctx->fbk_cipher = NULL;
696 	}
697 }
698 
699 static int otx2_cpt_aead_gcm_set_authsize(struct crypto_aead *tfm,
700 					  unsigned int authsize)
701 {
702 	struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
703 
704 	if (crypto_rfc4106_check_authsize(authsize))
705 		return -EINVAL;
706 
707 	tfm->authsize = authsize;
708 	/* Set authsize for fallback case */
709 	if (ctx->fbk_cipher)
710 		ctx->fbk_cipher->authsize = authsize;
711 
712 	return 0;
713 }
714 
715 static int otx2_cpt_aead_set_authsize(struct crypto_aead *tfm,
716 				      unsigned int authsize)
717 {
718 	tfm->authsize = authsize;
719 
720 	return 0;
721 }
722 
723 static int otx2_cpt_aead_null_set_authsize(struct crypto_aead *tfm,
724 					   unsigned int authsize)
725 {
726 	struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
727 
728 	ctx->is_trunc_hmac = true;
729 	tfm->authsize = authsize;
730 
731 	return 0;
732 }
733 
734 static struct otx2_cpt_sdesc *alloc_sdesc(struct crypto_shash *alg)
735 {
736 	struct otx2_cpt_sdesc *sdesc;
737 	int size;
738 
739 	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
740 	sdesc = kmalloc(size, GFP_KERNEL);
741 	if (!sdesc)
742 		return NULL;
743 
744 	sdesc->shash.tfm = alg;
745 
746 	return sdesc;
747 }
748 
749 static inline void swap_data32(void *buf, u32 len)
750 {
751 	cpu_to_be32_array(buf, buf, len / 4);
752 }
753 
754 static inline void swap_data64(void *buf, u32 len)
755 {
756 	u64 *src = buf;
757 	int i = 0;
758 
759 	for (i = 0 ; i < len / 8; i++, src++)
760 		cpu_to_be64s(src);
761 }
762 
763 static int copy_pad(u8 mac_type, u8 *out_pad, u8 *in_pad)
764 {
765 	struct sha512_state *sha512;
766 	struct sha256_state *sha256;
767 	struct sha1_state *sha1;
768 
769 	switch (mac_type) {
770 	case OTX2_CPT_SHA1:
771 		sha1 = (struct sha1_state *) in_pad;
772 		swap_data32(sha1->state, SHA1_DIGEST_SIZE);
773 		memcpy(out_pad, &sha1->state, SHA1_DIGEST_SIZE);
774 		break;
775 
776 	case OTX2_CPT_SHA256:
777 		sha256 = (struct sha256_state *) in_pad;
778 		swap_data32(sha256->state, SHA256_DIGEST_SIZE);
779 		memcpy(out_pad, &sha256->state, SHA256_DIGEST_SIZE);
780 		break;
781 
782 	case OTX2_CPT_SHA384:
783 	case OTX2_CPT_SHA512:
784 		sha512 = (struct sha512_state *) in_pad;
785 		swap_data64(sha512->state, SHA512_DIGEST_SIZE);
786 		memcpy(out_pad, &sha512->state, SHA512_DIGEST_SIZE);
787 		break;
788 
789 	default:
790 		return -EINVAL;
791 	}
792 
793 	return 0;
794 }
795 
796 static int aead_hmac_init(struct crypto_aead *cipher)
797 {
798 	struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
799 	int state_size = crypto_shash_statesize(ctx->hashalg);
800 	int ds = crypto_shash_digestsize(ctx->hashalg);
801 	int bs = crypto_shash_blocksize(ctx->hashalg);
802 	int authkeylen = ctx->auth_key_len;
803 	u8 *ipad = NULL, *opad = NULL;
804 	int ret = 0, icount = 0;
805 
806 	ctx->sdesc = alloc_sdesc(ctx->hashalg);
807 	if (!ctx->sdesc)
808 		return -ENOMEM;
809 
810 	ctx->ipad = kzalloc(bs, GFP_KERNEL);
811 	if (!ctx->ipad) {
812 		ret = -ENOMEM;
813 		goto calc_fail;
814 	}
815 
816 	ctx->opad = kzalloc(bs, GFP_KERNEL);
817 	if (!ctx->opad) {
818 		ret = -ENOMEM;
819 		goto calc_fail;
820 	}
821 
822 	ipad = kzalloc(state_size, GFP_KERNEL);
823 	if (!ipad) {
824 		ret = -ENOMEM;
825 		goto calc_fail;
826 	}
827 
828 	opad = kzalloc(state_size, GFP_KERNEL);
829 	if (!opad) {
830 		ret = -ENOMEM;
831 		goto calc_fail;
832 	}
833 
834 	if (authkeylen > bs) {
835 		ret = crypto_shash_digest(&ctx->sdesc->shash, ctx->key,
836 					  authkeylen, ipad);
837 		if (ret)
838 			goto calc_fail;
839 
840 		authkeylen = ds;
841 	} else {
842 		memcpy(ipad, ctx->key, authkeylen);
843 	}
844 
845 	memset(ipad + authkeylen, 0, bs - authkeylen);
846 	memcpy(opad, ipad, bs);
847 
848 	for (icount = 0; icount < bs; icount++) {
849 		ipad[icount] ^= 0x36;
850 		opad[icount] ^= 0x5c;
851 	}
852 
853 	/*
854 	 * Partial Hash calculated from the software
855 	 * algorithm is retrieved for IPAD & OPAD
856 	 */
857 
858 	/* IPAD Calculation */
859 	crypto_shash_init(&ctx->sdesc->shash);
860 	crypto_shash_update(&ctx->sdesc->shash, ipad, bs);
861 	crypto_shash_export(&ctx->sdesc->shash, ipad);
862 	ret = copy_pad(ctx->mac_type, ctx->ipad, ipad);
863 	if (ret)
864 		goto calc_fail;
865 
866 	/* OPAD Calculation */
867 	crypto_shash_init(&ctx->sdesc->shash);
868 	crypto_shash_update(&ctx->sdesc->shash, opad, bs);
869 	crypto_shash_export(&ctx->sdesc->shash, opad);
870 	ret = copy_pad(ctx->mac_type, ctx->opad, opad);
871 	if (ret)
872 		goto calc_fail;
873 
874 	kfree(ipad);
875 	kfree(opad);
876 
877 	return 0;
878 
879 calc_fail:
880 	kfree(ctx->ipad);
881 	ctx->ipad = NULL;
882 	kfree(ctx->opad);
883 	ctx->opad = NULL;
884 	kfree(ipad);
885 	kfree(opad);
886 	kfree(ctx->sdesc);
887 	ctx->sdesc = NULL;
888 
889 	return ret;
890 }
891 
892 static int otx2_cpt_aead_cbc_aes_sha_setkey(struct crypto_aead *cipher,
893 					    const unsigned char *key,
894 					    unsigned int keylen)
895 {
896 	struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
897 	struct crypto_authenc_key_param *param;
898 	int enckeylen = 0, authkeylen = 0;
899 	struct rtattr *rta = (void *)key;
900 
901 	if (!RTA_OK(rta, keylen))
902 		return -EINVAL;
903 
904 	if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
905 		return -EINVAL;
906 
907 	if (RTA_PAYLOAD(rta) < sizeof(*param))
908 		return -EINVAL;
909 
910 	param = RTA_DATA(rta);
911 	enckeylen = be32_to_cpu(param->enckeylen);
912 	key += RTA_ALIGN(rta->rta_len);
913 	keylen -= RTA_ALIGN(rta->rta_len);
914 	if (keylen < enckeylen)
915 		return -EINVAL;
916 
917 	if (keylen > OTX2_CPT_MAX_KEY_SIZE)
918 		return -EINVAL;
919 
920 	authkeylen = keylen - enckeylen;
921 	memcpy(ctx->key, key, keylen);
922 
923 	switch (enckeylen) {
924 	case AES_KEYSIZE_128:
925 		ctx->key_type = OTX2_CPT_AES_128_BIT;
926 		break;
927 	case AES_KEYSIZE_192:
928 		ctx->key_type = OTX2_CPT_AES_192_BIT;
929 		break;
930 	case AES_KEYSIZE_256:
931 		ctx->key_type = OTX2_CPT_AES_256_BIT;
932 		break;
933 	default:
934 		/* Invalid key length */
935 		return -EINVAL;
936 	}
937 
938 	ctx->enc_key_len = enckeylen;
939 	ctx->auth_key_len = authkeylen;
940 
941 	return aead_hmac_init(cipher);
942 }
943 
944 static int otx2_cpt_aead_ecb_null_sha_setkey(struct crypto_aead *cipher,
945 					     const unsigned char *key,
946 					     unsigned int keylen)
947 {
948 	struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
949 	struct crypto_authenc_key_param *param;
950 	struct rtattr *rta = (void *)key;
951 	int enckeylen = 0;
952 
953 	if (!RTA_OK(rta, keylen))
954 		return -EINVAL;
955 
956 	if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
957 		return -EINVAL;
958 
959 	if (RTA_PAYLOAD(rta) < sizeof(*param))
960 		return -EINVAL;
961 
962 	param = RTA_DATA(rta);
963 	enckeylen = be32_to_cpu(param->enckeylen);
964 	key += RTA_ALIGN(rta->rta_len);
965 	keylen -= RTA_ALIGN(rta->rta_len);
966 	if (enckeylen != 0)
967 		return -EINVAL;
968 
969 	if (keylen > OTX2_CPT_MAX_KEY_SIZE)
970 		return -EINVAL;
971 
972 	memcpy(ctx->key, key, keylen);
973 	ctx->enc_key_len = enckeylen;
974 	ctx->auth_key_len = keylen;
975 
976 	return 0;
977 }
978 
979 static int otx2_cpt_aead_gcm_aes_setkey(struct crypto_aead *cipher,
980 					const unsigned char *key,
981 					unsigned int keylen)
982 {
983 	struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
984 
985 	/*
986 	 * For aes gcm we expect to get encryption key (16, 24, 32 bytes)
987 	 * and salt (4 bytes)
988 	 */
989 	switch (keylen) {
990 	case AES_KEYSIZE_128 + AES_GCM_SALT_SIZE:
991 		ctx->key_type = OTX2_CPT_AES_128_BIT;
992 		ctx->enc_key_len = AES_KEYSIZE_128;
993 		break;
994 	case AES_KEYSIZE_192 + AES_GCM_SALT_SIZE:
995 		ctx->key_type = OTX2_CPT_AES_192_BIT;
996 		ctx->enc_key_len = AES_KEYSIZE_192;
997 		break;
998 	case AES_KEYSIZE_256 + AES_GCM_SALT_SIZE:
999 		ctx->key_type = OTX2_CPT_AES_256_BIT;
1000 		ctx->enc_key_len = AES_KEYSIZE_256;
1001 		break;
1002 	default:
1003 		/* Invalid key and salt length */
1004 		return -EINVAL;
1005 	}
1006 
1007 	/* Store encryption key and salt */
1008 	memcpy(ctx->key, key, keylen);
1009 
1010 	return crypto_aead_setkey(ctx->fbk_cipher, key, keylen);
1011 }
1012 
1013 static inline int create_aead_ctx_hdr(struct aead_request *req, u32 enc,
1014 				      u32 *argcnt)
1015 {
1016 	struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1017 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1018 	struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
1019 	struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
1020 	struct otx2_cpt_fc_ctx *fctx = &rctx->fctx;
1021 	int mac_len = crypto_aead_authsize(tfm);
1022 	int ds;
1023 
1024 	rctx->ctrl_word.e.enc_data_offset = req->assoclen;
1025 
1026 	switch (ctx->cipher_type) {
1027 	case OTX2_CPT_AES_CBC:
1028 		if (req->assoclen > 248 || !IS_ALIGNED(req->assoclen, 8))
1029 			return -EINVAL;
1030 
1031 		fctx->enc.enc_ctrl.e.iv_source = OTX2_CPT_FROM_CPTR;
1032 		/* Copy encryption key to context */
1033 		memcpy(fctx->enc.encr_key, ctx->key + ctx->auth_key_len,
1034 		       ctx->enc_key_len);
1035 		/* Copy IV to context */
1036 		memcpy(fctx->enc.encr_iv, req->iv, crypto_aead_ivsize(tfm));
1037 
1038 		ds = crypto_shash_digestsize(ctx->hashalg);
1039 		if (ctx->mac_type == OTX2_CPT_SHA384)
1040 			ds = SHA512_DIGEST_SIZE;
1041 		if (ctx->ipad)
1042 			memcpy(fctx->hmac.e.ipad, ctx->ipad, ds);
1043 		if (ctx->opad)
1044 			memcpy(fctx->hmac.e.opad, ctx->opad, ds);
1045 		break;
1046 
1047 	case OTX2_CPT_AES_GCM:
1048 		if (crypto_ipsec_check_assoclen(req->assoclen))
1049 			return -EINVAL;
1050 
1051 		fctx->enc.enc_ctrl.e.iv_source = OTX2_CPT_FROM_DPTR;
1052 		/* Copy encryption key to context */
1053 		memcpy(fctx->enc.encr_key, ctx->key, ctx->enc_key_len);
1054 		/* Copy salt to context */
1055 		memcpy(fctx->enc.encr_iv, ctx->key + ctx->enc_key_len,
1056 		       AES_GCM_SALT_SIZE);
1057 
1058 		rctx->ctrl_word.e.iv_offset = req->assoclen - AES_GCM_IV_OFFSET;
1059 		break;
1060 
1061 	default:
1062 		/* Unknown cipher type */
1063 		return -EINVAL;
1064 	}
1065 	cpu_to_be64s(&rctx->ctrl_word.flags);
1066 
1067 	req_info->ctrl.s.dma_mode = OTX2_CPT_DMA_MODE_SG;
1068 	req_info->ctrl.s.se_req = 1;
1069 	req_info->req.opcode.s.major = OTX2_CPT_MAJOR_OP_FC |
1070 				 DMA_MODE_FLAG(OTX2_CPT_DMA_MODE_SG);
1071 	if (enc) {
1072 		req_info->req.opcode.s.minor = 2;
1073 		req_info->req.param1 = req->cryptlen;
1074 		req_info->req.param2 = req->cryptlen + req->assoclen;
1075 	} else {
1076 		req_info->req.opcode.s.minor = 3;
1077 		req_info->req.param1 = req->cryptlen - mac_len;
1078 		req_info->req.param2 = req->cryptlen + req->assoclen - mac_len;
1079 	}
1080 
1081 	fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type;
1082 	fctx->enc.enc_ctrl.e.aes_key = ctx->key_type;
1083 	fctx->enc.enc_ctrl.e.mac_type = ctx->mac_type;
1084 	fctx->enc.enc_ctrl.e.mac_len = mac_len;
1085 	cpu_to_be64s(&fctx->enc.enc_ctrl.u);
1086 
1087 	/*
1088 	 * Storing Packet Data Information in offset
1089 	 * Control Word First 8 bytes
1090 	 */
1091 	req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word;
1092 	req_info->in[*argcnt].size = CONTROL_WORD_LEN;
1093 	req_info->req.dlen += CONTROL_WORD_LEN;
1094 	++(*argcnt);
1095 
1096 	req_info->in[*argcnt].vptr = (u8 *)fctx;
1097 	req_info->in[*argcnt].size = sizeof(struct otx2_cpt_fc_ctx);
1098 	req_info->req.dlen += sizeof(struct otx2_cpt_fc_ctx);
1099 	++(*argcnt);
1100 
1101 	return 0;
1102 }
1103 
1104 static inline void create_hmac_ctx_hdr(struct aead_request *req, u32 *argcnt,
1105 				      u32 enc)
1106 {
1107 	struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1108 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1109 	struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
1110 	struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
1111 
1112 	req_info->ctrl.s.dma_mode = OTX2_CPT_DMA_MODE_SG;
1113 	req_info->ctrl.s.se_req = 1;
1114 	req_info->req.opcode.s.major = OTX2_CPT_MAJOR_OP_HMAC |
1115 				 DMA_MODE_FLAG(OTX2_CPT_DMA_MODE_SG);
1116 	req_info->is_trunc_hmac = ctx->is_trunc_hmac;
1117 
1118 	req_info->req.opcode.s.minor = 0;
1119 	req_info->req.param1 = ctx->auth_key_len;
1120 	req_info->req.param2 = ctx->mac_type << 8;
1121 
1122 	/* Add authentication key */
1123 	req_info->in[*argcnt].vptr = ctx->key;
1124 	req_info->in[*argcnt].size = round_up(ctx->auth_key_len, 8);
1125 	req_info->req.dlen += round_up(ctx->auth_key_len, 8);
1126 	++(*argcnt);
1127 }
1128 
1129 static inline int create_aead_input_list(struct aead_request *req, u32 enc)
1130 {
1131 	struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1132 	struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
1133 	u32 inputlen =  req->cryptlen + req->assoclen;
1134 	u32 status, argcnt = 0;
1135 
1136 	status = create_aead_ctx_hdr(req, enc, &argcnt);
1137 	if (status)
1138 		return status;
1139 	update_input_data(req_info, req->src, inputlen, &argcnt);
1140 	req_info->in_cnt = argcnt;
1141 
1142 	return 0;
1143 }
1144 
1145 static inline void create_aead_output_list(struct aead_request *req, u32 enc,
1146 					   u32 mac_len)
1147 {
1148 	struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1149 	struct otx2_cpt_req_info *req_info =  &rctx->cpt_req;
1150 	u32 argcnt = 0, outputlen = 0;
1151 
1152 	if (enc)
1153 		outputlen = req->cryptlen +  req->assoclen + mac_len;
1154 	else
1155 		outputlen = req->cryptlen + req->assoclen - mac_len;
1156 
1157 	update_output_data(req_info, req->dst, 0, outputlen, &argcnt);
1158 	req_info->out_cnt = argcnt;
1159 }
1160 
1161 static inline void create_aead_null_input_list(struct aead_request *req,
1162 					       u32 enc, u32 mac_len)
1163 {
1164 	struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1165 	struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
1166 	u32 inputlen, argcnt = 0;
1167 
1168 	if (enc)
1169 		inputlen =  req->cryptlen + req->assoclen;
1170 	else
1171 		inputlen =  req->cryptlen + req->assoclen - mac_len;
1172 
1173 	create_hmac_ctx_hdr(req, &argcnt, enc);
1174 	update_input_data(req_info, req->src, inputlen, &argcnt);
1175 	req_info->in_cnt = argcnt;
1176 }
1177 
1178 static inline int create_aead_null_output_list(struct aead_request *req,
1179 					       u32 enc, u32 mac_len)
1180 {
1181 	struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1182 	struct otx2_cpt_req_info *req_info =  &rctx->cpt_req;
1183 	struct scatterlist *dst;
1184 	u8 *ptr = NULL;
1185 	int argcnt = 0, status, offset;
1186 	u32 inputlen;
1187 
1188 	if (enc)
1189 		inputlen =  req->cryptlen + req->assoclen;
1190 	else
1191 		inputlen =  req->cryptlen + req->assoclen - mac_len;
1192 
1193 	/*
1194 	 * If source and destination are different
1195 	 * then copy payload to destination
1196 	 */
1197 	if (req->src != req->dst) {
1198 
1199 		ptr = kmalloc(inputlen, (req_info->areq->flags &
1200 					 CRYPTO_TFM_REQ_MAY_SLEEP) ?
1201 					 GFP_KERNEL : GFP_ATOMIC);
1202 		if (!ptr)
1203 			return -ENOMEM;
1204 
1205 		status = sg_copy_to_buffer(req->src, sg_nents(req->src), ptr,
1206 					   inputlen);
1207 		if (status != inputlen) {
1208 			status = -EINVAL;
1209 			goto error_free;
1210 		}
1211 		status = sg_copy_from_buffer(req->dst, sg_nents(req->dst), ptr,
1212 					     inputlen);
1213 		if (status != inputlen) {
1214 			status = -EINVAL;
1215 			goto error_free;
1216 		}
1217 		kfree(ptr);
1218 	}
1219 
1220 	if (enc) {
1221 		/*
1222 		 * In an encryption scenario hmac needs
1223 		 * to be appended after payload
1224 		 */
1225 		dst = req->dst;
1226 		offset = inputlen;
1227 		while (offset >= dst->length) {
1228 			offset -= dst->length;
1229 			dst = sg_next(dst);
1230 			if (!dst)
1231 				return -ENOENT;
1232 		}
1233 
1234 		update_output_data(req_info, dst, offset, mac_len, &argcnt);
1235 	} else {
1236 		/*
1237 		 * In a decryption scenario calculated hmac for received
1238 		 * payload needs to be compare with hmac received
1239 		 */
1240 		status = sg_copy_buffer(req->src, sg_nents(req->src),
1241 					rctx->fctx.hmac.s.hmac_recv, mac_len,
1242 					inputlen, true);
1243 		if (status != mac_len)
1244 			return -EINVAL;
1245 
1246 		req_info->out[argcnt].vptr = rctx->fctx.hmac.s.hmac_calc;
1247 		req_info->out[argcnt].size = mac_len;
1248 		argcnt++;
1249 	}
1250 
1251 	req_info->out_cnt = argcnt;
1252 	return 0;
1253 
1254 error_free:
1255 	kfree(ptr);
1256 	return status;
1257 }
1258 
1259 static int aead_do_fallback(struct aead_request *req, bool is_enc)
1260 {
1261 	struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1262 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
1263 	struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(aead);
1264 	int ret;
1265 
1266 	if (ctx->fbk_cipher) {
1267 		/* Store the cipher tfm and then use the fallback tfm */
1268 		aead_request_set_tfm(&rctx->fbk_req, ctx->fbk_cipher);
1269 		aead_request_set_callback(&rctx->fbk_req, req->base.flags,
1270 					  req->base.complete, req->base.data);
1271 		aead_request_set_crypt(&rctx->fbk_req, req->src,
1272 				       req->dst, req->cryptlen, req->iv);
1273 		aead_request_set_ad(&rctx->fbk_req, req->assoclen);
1274 		ret = is_enc ? crypto_aead_encrypt(&rctx->fbk_req) :
1275 			       crypto_aead_decrypt(&rctx->fbk_req);
1276 	} else {
1277 		ret = -EINVAL;
1278 	}
1279 
1280 	return ret;
1281 }
1282 
1283 static int cpt_aead_enc_dec(struct aead_request *req, u8 reg_type, u8 enc)
1284 {
1285 	struct otx2_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1286 	struct otx2_cpt_req_info *req_info = &rctx->cpt_req;
1287 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1288 	struct otx2_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
1289 	struct pci_dev *pdev;
1290 	int status, cpu_num;
1291 
1292 	/* Clear control words */
1293 	rctx->ctrl_word.flags = 0;
1294 	rctx->fctx.enc.enc_ctrl.u = 0;
1295 
1296 	req_info->callback = otx2_cpt_aead_callback;
1297 	req_info->areq = &req->base;
1298 	req_info->req_type = reg_type;
1299 	req_info->is_enc = enc;
1300 	req_info->is_trunc_hmac = false;
1301 
1302 	switch (reg_type) {
1303 	case OTX2_CPT_AEAD_ENC_DEC_REQ:
1304 		status = create_aead_input_list(req, enc);
1305 		if (status)
1306 			return status;
1307 		create_aead_output_list(req, enc, crypto_aead_authsize(tfm));
1308 		break;
1309 
1310 	case OTX2_CPT_AEAD_ENC_DEC_NULL_REQ:
1311 		create_aead_null_input_list(req, enc,
1312 					    crypto_aead_authsize(tfm));
1313 		status = create_aead_null_output_list(req, enc,
1314 						crypto_aead_authsize(tfm));
1315 		if (status)
1316 			return status;
1317 		break;
1318 
1319 	default:
1320 		return -EINVAL;
1321 	}
1322 	if (!IS_ALIGNED(req_info->req.param1, ctx->enc_align_len))
1323 		return -EINVAL;
1324 
1325 	if (!req_info->req.param2 ||
1326 	    (req_info->req.param1 > OTX2_CPT_MAX_REQ_SIZE) ||
1327 	    (req_info->req.param2 > OTX2_CPT_MAX_REQ_SIZE))
1328 		return aead_do_fallback(req, enc);
1329 
1330 	status = get_se_device(&pdev, &cpu_num);
1331 	if (status)
1332 		return status;
1333 
1334 	req_info->ctrl.s.grp = otx2_cpt_get_kcrypto_eng_grp_num(pdev);
1335 
1336 	/*
1337 	 * We perform an asynchronous send and once
1338 	 * the request is completed the driver would
1339 	 * intimate through registered call back functions
1340 	 */
1341 	return otx2_cpt_do_request(pdev, req_info, cpu_num);
1342 }
1343 
1344 static int otx2_cpt_aead_encrypt(struct aead_request *req)
1345 {
1346 	return cpt_aead_enc_dec(req, OTX2_CPT_AEAD_ENC_DEC_REQ, true);
1347 }
1348 
1349 static int otx2_cpt_aead_decrypt(struct aead_request *req)
1350 {
1351 	return cpt_aead_enc_dec(req, OTX2_CPT_AEAD_ENC_DEC_REQ, false);
1352 }
1353 
1354 static int otx2_cpt_aead_null_encrypt(struct aead_request *req)
1355 {
1356 	return cpt_aead_enc_dec(req, OTX2_CPT_AEAD_ENC_DEC_NULL_REQ, true);
1357 }
1358 
1359 static int otx2_cpt_aead_null_decrypt(struct aead_request *req)
1360 {
1361 	return cpt_aead_enc_dec(req, OTX2_CPT_AEAD_ENC_DEC_NULL_REQ, false);
1362 }
1363 
1364 static struct skcipher_alg otx2_cpt_skciphers[] = { {
1365 	.base.cra_name = "xts(aes)",
1366 	.base.cra_driver_name = "cpt_xts_aes",
1367 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1368 	.base.cra_blocksize = AES_BLOCK_SIZE,
1369 	.base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx),
1370 	.base.cra_alignmask = 7,
1371 	.base.cra_priority = 4001,
1372 	.base.cra_module = THIS_MODULE,
1373 
1374 	.init = otx2_cpt_enc_dec_init,
1375 	.exit = otx2_cpt_skcipher_exit,
1376 	.ivsize = AES_BLOCK_SIZE,
1377 	.min_keysize = 2 * AES_MIN_KEY_SIZE,
1378 	.max_keysize = 2 * AES_MAX_KEY_SIZE,
1379 	.setkey = otx2_cpt_skcipher_xts_setkey,
1380 	.encrypt = otx2_cpt_skcipher_encrypt,
1381 	.decrypt = otx2_cpt_skcipher_decrypt,
1382 }, {
1383 	.base.cra_name = "cbc(aes)",
1384 	.base.cra_driver_name = "cpt_cbc_aes",
1385 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1386 	.base.cra_blocksize = AES_BLOCK_SIZE,
1387 	.base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx),
1388 	.base.cra_alignmask = 7,
1389 	.base.cra_priority = 4001,
1390 	.base.cra_module = THIS_MODULE,
1391 
1392 	.init = otx2_cpt_enc_dec_init,
1393 	.exit = otx2_cpt_skcipher_exit,
1394 	.ivsize = AES_BLOCK_SIZE,
1395 	.min_keysize = AES_MIN_KEY_SIZE,
1396 	.max_keysize = AES_MAX_KEY_SIZE,
1397 	.setkey = otx2_cpt_skcipher_cbc_aes_setkey,
1398 	.encrypt = otx2_cpt_skcipher_encrypt,
1399 	.decrypt = otx2_cpt_skcipher_decrypt,
1400 }, {
1401 	.base.cra_name = "ecb(aes)",
1402 	.base.cra_driver_name = "cpt_ecb_aes",
1403 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1404 	.base.cra_blocksize = AES_BLOCK_SIZE,
1405 	.base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx),
1406 	.base.cra_alignmask = 7,
1407 	.base.cra_priority = 4001,
1408 	.base.cra_module = THIS_MODULE,
1409 
1410 	.init = otx2_cpt_enc_dec_init,
1411 	.exit = otx2_cpt_skcipher_exit,
1412 	.ivsize = 0,
1413 	.min_keysize = AES_MIN_KEY_SIZE,
1414 	.max_keysize = AES_MAX_KEY_SIZE,
1415 	.setkey = otx2_cpt_skcipher_ecb_aes_setkey,
1416 	.encrypt = otx2_cpt_skcipher_encrypt,
1417 	.decrypt = otx2_cpt_skcipher_decrypt,
1418 }, {
1419 	.base.cra_name = "cbc(des3_ede)",
1420 	.base.cra_driver_name = "cpt_cbc_des3_ede",
1421 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1422 	.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1423 	.base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx),
1424 	.base.cra_alignmask = 7,
1425 	.base.cra_priority = 4001,
1426 	.base.cra_module = THIS_MODULE,
1427 
1428 	.init = otx2_cpt_enc_dec_init,
1429 	.exit = otx2_cpt_skcipher_exit,
1430 	.min_keysize = DES3_EDE_KEY_SIZE,
1431 	.max_keysize = DES3_EDE_KEY_SIZE,
1432 	.ivsize = DES_BLOCK_SIZE,
1433 	.setkey = otx2_cpt_skcipher_cbc_des3_setkey,
1434 	.encrypt = otx2_cpt_skcipher_encrypt,
1435 	.decrypt = otx2_cpt_skcipher_decrypt,
1436 }, {
1437 	.base.cra_name = "ecb(des3_ede)",
1438 	.base.cra_driver_name = "cpt_ecb_des3_ede",
1439 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1440 	.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1441 	.base.cra_ctxsize = sizeof(struct otx2_cpt_enc_ctx),
1442 	.base.cra_alignmask = 7,
1443 	.base.cra_priority = 4001,
1444 	.base.cra_module = THIS_MODULE,
1445 
1446 	.init = otx2_cpt_enc_dec_init,
1447 	.exit = otx2_cpt_skcipher_exit,
1448 	.min_keysize = DES3_EDE_KEY_SIZE,
1449 	.max_keysize = DES3_EDE_KEY_SIZE,
1450 	.ivsize = 0,
1451 	.setkey = otx2_cpt_skcipher_ecb_des3_setkey,
1452 	.encrypt = otx2_cpt_skcipher_encrypt,
1453 	.decrypt = otx2_cpt_skcipher_decrypt,
1454 } };
1455 
1456 static struct aead_alg otx2_cpt_aeads[] = { {
1457 	.base = {
1458 		.cra_name = "authenc(hmac(sha1),cbc(aes))",
1459 		.cra_driver_name = "cpt_hmac_sha1_cbc_aes",
1460 		.cra_blocksize = AES_BLOCK_SIZE,
1461 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1462 		.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1463 		.cra_priority = 4001,
1464 		.cra_alignmask = 0,
1465 		.cra_module = THIS_MODULE,
1466 	},
1467 	.init = otx2_cpt_aead_cbc_aes_sha1_init,
1468 	.exit = otx2_cpt_aead_exit,
1469 	.setkey = otx2_cpt_aead_cbc_aes_sha_setkey,
1470 	.setauthsize = otx2_cpt_aead_set_authsize,
1471 	.encrypt = otx2_cpt_aead_encrypt,
1472 	.decrypt = otx2_cpt_aead_decrypt,
1473 	.ivsize = AES_BLOCK_SIZE,
1474 	.maxauthsize = SHA1_DIGEST_SIZE,
1475 }, {
1476 	.base = {
1477 		.cra_name = "authenc(hmac(sha256),cbc(aes))",
1478 		.cra_driver_name = "cpt_hmac_sha256_cbc_aes",
1479 		.cra_blocksize = AES_BLOCK_SIZE,
1480 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1481 		.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1482 		.cra_priority = 4001,
1483 		.cra_alignmask = 0,
1484 		.cra_module = THIS_MODULE,
1485 	},
1486 	.init = otx2_cpt_aead_cbc_aes_sha256_init,
1487 	.exit = otx2_cpt_aead_exit,
1488 	.setkey = otx2_cpt_aead_cbc_aes_sha_setkey,
1489 	.setauthsize = otx2_cpt_aead_set_authsize,
1490 	.encrypt = otx2_cpt_aead_encrypt,
1491 	.decrypt = otx2_cpt_aead_decrypt,
1492 	.ivsize = AES_BLOCK_SIZE,
1493 	.maxauthsize = SHA256_DIGEST_SIZE,
1494 }, {
1495 	.base = {
1496 		.cra_name = "authenc(hmac(sha384),cbc(aes))",
1497 		.cra_driver_name = "cpt_hmac_sha384_cbc_aes",
1498 		.cra_blocksize = AES_BLOCK_SIZE,
1499 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1500 		.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1501 		.cra_priority = 4001,
1502 		.cra_alignmask = 0,
1503 		.cra_module = THIS_MODULE,
1504 	},
1505 	.init = otx2_cpt_aead_cbc_aes_sha384_init,
1506 	.exit = otx2_cpt_aead_exit,
1507 	.setkey = otx2_cpt_aead_cbc_aes_sha_setkey,
1508 	.setauthsize = otx2_cpt_aead_set_authsize,
1509 	.encrypt = otx2_cpt_aead_encrypt,
1510 	.decrypt = otx2_cpt_aead_decrypt,
1511 	.ivsize = AES_BLOCK_SIZE,
1512 	.maxauthsize = SHA384_DIGEST_SIZE,
1513 }, {
1514 	.base = {
1515 		.cra_name = "authenc(hmac(sha512),cbc(aes))",
1516 		.cra_driver_name = "cpt_hmac_sha512_cbc_aes",
1517 		.cra_blocksize = AES_BLOCK_SIZE,
1518 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1519 		.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1520 		.cra_priority = 4001,
1521 		.cra_alignmask = 0,
1522 		.cra_module = THIS_MODULE,
1523 	},
1524 	.init = otx2_cpt_aead_cbc_aes_sha512_init,
1525 	.exit = otx2_cpt_aead_exit,
1526 	.setkey = otx2_cpt_aead_cbc_aes_sha_setkey,
1527 	.setauthsize = otx2_cpt_aead_set_authsize,
1528 	.encrypt = otx2_cpt_aead_encrypt,
1529 	.decrypt = otx2_cpt_aead_decrypt,
1530 	.ivsize = AES_BLOCK_SIZE,
1531 	.maxauthsize = SHA512_DIGEST_SIZE,
1532 }, {
1533 	.base = {
1534 		.cra_name = "authenc(hmac(sha1),ecb(cipher_null))",
1535 		.cra_driver_name = "cpt_hmac_sha1_ecb_null",
1536 		.cra_blocksize = 1,
1537 		.cra_flags = CRYPTO_ALG_ASYNC,
1538 		.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1539 		.cra_priority = 4001,
1540 		.cra_alignmask = 0,
1541 		.cra_module = THIS_MODULE,
1542 	},
1543 	.init = otx2_cpt_aead_ecb_null_sha1_init,
1544 	.exit = otx2_cpt_aead_exit,
1545 	.setkey = otx2_cpt_aead_ecb_null_sha_setkey,
1546 	.setauthsize = otx2_cpt_aead_null_set_authsize,
1547 	.encrypt = otx2_cpt_aead_null_encrypt,
1548 	.decrypt = otx2_cpt_aead_null_decrypt,
1549 	.ivsize = 0,
1550 	.maxauthsize = SHA1_DIGEST_SIZE,
1551 }, {
1552 	.base = {
1553 		.cra_name = "authenc(hmac(sha256),ecb(cipher_null))",
1554 		.cra_driver_name = "cpt_hmac_sha256_ecb_null",
1555 		.cra_blocksize = 1,
1556 		.cra_flags = CRYPTO_ALG_ASYNC,
1557 		.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1558 		.cra_priority = 4001,
1559 		.cra_alignmask = 0,
1560 		.cra_module = THIS_MODULE,
1561 	},
1562 	.init = otx2_cpt_aead_ecb_null_sha256_init,
1563 	.exit = otx2_cpt_aead_exit,
1564 	.setkey = otx2_cpt_aead_ecb_null_sha_setkey,
1565 	.setauthsize = otx2_cpt_aead_null_set_authsize,
1566 	.encrypt = otx2_cpt_aead_null_encrypt,
1567 	.decrypt = otx2_cpt_aead_null_decrypt,
1568 	.ivsize = 0,
1569 	.maxauthsize = SHA256_DIGEST_SIZE,
1570 }, {
1571 	.base = {
1572 		.cra_name = "authenc(hmac(sha384),ecb(cipher_null))",
1573 		.cra_driver_name = "cpt_hmac_sha384_ecb_null",
1574 		.cra_blocksize = 1,
1575 		.cra_flags = CRYPTO_ALG_ASYNC,
1576 		.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1577 		.cra_priority = 4001,
1578 		.cra_alignmask = 0,
1579 		.cra_module = THIS_MODULE,
1580 	},
1581 	.init = otx2_cpt_aead_ecb_null_sha384_init,
1582 	.exit = otx2_cpt_aead_exit,
1583 	.setkey = otx2_cpt_aead_ecb_null_sha_setkey,
1584 	.setauthsize = otx2_cpt_aead_null_set_authsize,
1585 	.encrypt = otx2_cpt_aead_null_encrypt,
1586 	.decrypt = otx2_cpt_aead_null_decrypt,
1587 	.ivsize = 0,
1588 	.maxauthsize = SHA384_DIGEST_SIZE,
1589 }, {
1590 	.base = {
1591 		.cra_name = "authenc(hmac(sha512),ecb(cipher_null))",
1592 		.cra_driver_name = "cpt_hmac_sha512_ecb_null",
1593 		.cra_blocksize = 1,
1594 		.cra_flags = CRYPTO_ALG_ASYNC,
1595 		.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1596 		.cra_priority = 4001,
1597 		.cra_alignmask = 0,
1598 		.cra_module = THIS_MODULE,
1599 	},
1600 	.init = otx2_cpt_aead_ecb_null_sha512_init,
1601 	.exit = otx2_cpt_aead_exit,
1602 	.setkey = otx2_cpt_aead_ecb_null_sha_setkey,
1603 	.setauthsize = otx2_cpt_aead_null_set_authsize,
1604 	.encrypt = otx2_cpt_aead_null_encrypt,
1605 	.decrypt = otx2_cpt_aead_null_decrypt,
1606 	.ivsize = 0,
1607 	.maxauthsize = SHA512_DIGEST_SIZE,
1608 }, {
1609 	.base = {
1610 		.cra_name = "rfc4106(gcm(aes))",
1611 		.cra_driver_name = "cpt_rfc4106_gcm_aes",
1612 		.cra_blocksize = 1,
1613 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1614 		.cra_ctxsize = sizeof(struct otx2_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1615 		.cra_priority = 4001,
1616 		.cra_alignmask = 0,
1617 		.cra_module = THIS_MODULE,
1618 	},
1619 	.init = otx2_cpt_aead_gcm_aes_init,
1620 	.exit = otx2_cpt_aead_exit,
1621 	.setkey = otx2_cpt_aead_gcm_aes_setkey,
1622 	.setauthsize = otx2_cpt_aead_gcm_set_authsize,
1623 	.encrypt = otx2_cpt_aead_encrypt,
1624 	.decrypt = otx2_cpt_aead_decrypt,
1625 	.ivsize = AES_GCM_IV_SIZE,
1626 	.maxauthsize = AES_GCM_ICV_SIZE,
1627 } };
1628 
1629 static inline int cpt_register_algs(void)
1630 {
1631 	int i, err = 0;
1632 
1633 	for (i = 0; i < ARRAY_SIZE(otx2_cpt_skciphers); i++)
1634 		otx2_cpt_skciphers[i].base.cra_flags &= ~CRYPTO_ALG_DEAD;
1635 
1636 	err = crypto_register_skciphers(otx2_cpt_skciphers,
1637 					ARRAY_SIZE(otx2_cpt_skciphers));
1638 	if (err)
1639 		return err;
1640 
1641 	for (i = 0; i < ARRAY_SIZE(otx2_cpt_aeads); i++)
1642 		otx2_cpt_aeads[i].base.cra_flags &= ~CRYPTO_ALG_DEAD;
1643 
1644 	err = crypto_register_aeads(otx2_cpt_aeads,
1645 				    ARRAY_SIZE(otx2_cpt_aeads));
1646 	if (err) {
1647 		crypto_unregister_skciphers(otx2_cpt_skciphers,
1648 					    ARRAY_SIZE(otx2_cpt_skciphers));
1649 		return err;
1650 	}
1651 
1652 	return 0;
1653 }
1654 
1655 static inline void cpt_unregister_algs(void)
1656 {
1657 	crypto_unregister_skciphers(otx2_cpt_skciphers,
1658 				    ARRAY_SIZE(otx2_cpt_skciphers));
1659 	crypto_unregister_aeads(otx2_cpt_aeads, ARRAY_SIZE(otx2_cpt_aeads));
1660 }
1661 
1662 static int compare_func(const void *lptr, const void *rptr)
1663 {
1664 	const struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr;
1665 	const struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr;
1666 
1667 	if (ldesc->dev->devfn < rdesc->dev->devfn)
1668 		return -1;
1669 	if (ldesc->dev->devfn > rdesc->dev->devfn)
1670 		return 1;
1671 	return 0;
1672 }
1673 
1674 static void swap_func(void *lptr, void *rptr, int size)
1675 {
1676 	struct cpt_device_desc *ldesc = lptr;
1677 	struct cpt_device_desc *rdesc = rptr;
1678 
1679 	swap(*ldesc, *rdesc);
1680 }
1681 
1682 int otx2_cpt_crypto_init(struct pci_dev *pdev, struct module *mod,
1683 			 int num_queues, int num_devices)
1684 {
1685 	int ret = 0;
1686 	int count;
1687 
1688 	mutex_lock(&mutex);
1689 	count = atomic_read(&se_devices.count);
1690 	if (count >= OTX2_CPT_MAX_LFS_NUM) {
1691 		dev_err(&pdev->dev, "No space to add a new device\n");
1692 		ret = -ENOSPC;
1693 		goto unlock;
1694 	}
1695 	se_devices.desc[count].num_queues = num_queues;
1696 	se_devices.desc[count++].dev = pdev;
1697 	atomic_inc(&se_devices.count);
1698 
1699 	if (atomic_read(&se_devices.count) == num_devices &&
1700 	    is_crypto_registered == false) {
1701 		if (cpt_register_algs()) {
1702 			dev_err(&pdev->dev,
1703 				"Error in registering crypto algorithms\n");
1704 			ret =  -EINVAL;
1705 			goto unlock;
1706 		}
1707 		try_module_get(mod);
1708 		is_crypto_registered = true;
1709 	}
1710 	sort(se_devices.desc, count, sizeof(struct cpt_device_desc),
1711 	     compare_func, swap_func);
1712 
1713 unlock:
1714 	mutex_unlock(&mutex);
1715 	return ret;
1716 }
1717 
1718 void otx2_cpt_crypto_exit(struct pci_dev *pdev, struct module *mod)
1719 {
1720 	struct cpt_device_table *dev_tbl;
1721 	bool dev_found = false;
1722 	int i, j, count;
1723 
1724 	mutex_lock(&mutex);
1725 
1726 	dev_tbl = &se_devices;
1727 	count = atomic_read(&dev_tbl->count);
1728 	for (i = 0; i < count; i++) {
1729 		if (pdev == dev_tbl->desc[i].dev) {
1730 			for (j = i; j < count-1; j++)
1731 				dev_tbl->desc[j] = dev_tbl->desc[j+1];
1732 			dev_found = true;
1733 			break;
1734 		}
1735 	}
1736 
1737 	if (!dev_found) {
1738 		dev_err(&pdev->dev, "%s device not found\n", __func__);
1739 		goto unlock;
1740 	}
1741 	if (atomic_dec_and_test(&se_devices.count)) {
1742 		cpt_unregister_algs();
1743 		module_put(mod);
1744 		is_crypto_registered = false;
1745 	}
1746 
1747 unlock:
1748 	mutex_unlock(&mutex);
1749 }
1750