1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTX CPT driver
3  *
4  * Copyright (C) 2019 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include "otx_cptvf.h"
12 #include "otx_cptvf_algs.h"
13 
14 /* Completion code size and initial value */
15 #define COMPLETION_CODE_SIZE	8
16 #define COMPLETION_CODE_INIT	0
17 
18 /* SG list header size in bytes */
19 #define SG_LIST_HDR_SIZE	8
20 
21 /* Default timeout when waiting for free pending entry in us */
22 #define CPT_PENTRY_TIMEOUT	1000
23 #define CPT_PENTRY_STEP		50
24 
25 /* Default threshold for stopping and resuming sender requests */
26 #define CPT_IQ_STOP_MARGIN	128
27 #define CPT_IQ_RESUME_MARGIN	512
28 
29 #define CPT_DMA_ALIGN		128
30 
31 void otx_cpt_dump_sg_list(struct pci_dev *pdev, struct otx_cpt_req_info *req)
32 {
33 	int i;
34 
35 	pr_debug("Gather list size %d\n", req->incnt);
36 	for (i = 0; i < req->incnt; i++) {
37 		pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i,
38 			 req->in[i].size, req->in[i].vptr,
39 			 (void *) req->in[i].dma_addr);
40 		pr_debug("Buffer hexdump (%d bytes)\n",
41 			 req->in[i].size);
42 		print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1,
43 				     req->in[i].vptr, req->in[i].size, false);
44 	}
45 
46 	pr_debug("Scatter list size %d\n", req->outcnt);
47 	for (i = 0; i < req->outcnt; i++) {
48 		pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i,
49 			 req->out[i].size, req->out[i].vptr,
50 			 (void *) req->out[i].dma_addr);
51 		pr_debug("Buffer hexdump (%d bytes)\n", req->out[i].size);
52 		print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1,
53 				     req->out[i].vptr, req->out[i].size, false);
54 	}
55 }
56 
57 static inline struct otx_cpt_pending_entry *get_free_pending_entry(
58 						struct otx_cpt_pending_queue *q,
59 						int qlen)
60 {
61 	struct otx_cpt_pending_entry *ent = NULL;
62 
63 	ent = &q->head[q->rear];
64 	if (unlikely(ent->busy))
65 		return NULL;
66 
67 	q->rear++;
68 	if (unlikely(q->rear == qlen))
69 		q->rear = 0;
70 
71 	return ent;
72 }
73 
74 static inline u32 modulo_inc(u32 index, u32 length, u32 inc)
75 {
76 	if (WARN_ON(inc > length))
77 		inc = length;
78 
79 	index += inc;
80 	if (unlikely(index >= length))
81 		index -= length;
82 
83 	return index;
84 }
85 
86 static inline void free_pentry(struct otx_cpt_pending_entry *pentry)
87 {
88 	pentry->completion_addr = NULL;
89 	pentry->info = NULL;
90 	pentry->callback = NULL;
91 	pentry->areq = NULL;
92 	pentry->resume_sender = false;
93 	pentry->busy = false;
94 }
95 
96 static inline int setup_sgio_components(struct pci_dev *pdev,
97 					struct otx_cpt_buf_ptr *list,
98 					int buf_count, u8 *buffer)
99 {
100 	struct otx_cpt_sglist_component *sg_ptr = NULL;
101 	int ret = 0, i, j;
102 	int components;
103 
104 	if (unlikely(!list)) {
105 		dev_err(&pdev->dev, "Input list pointer is NULL\n");
106 		return -EFAULT;
107 	}
108 
109 	for (i = 0; i < buf_count; i++) {
110 		if (likely(list[i].vptr)) {
111 			list[i].dma_addr = dma_map_single(&pdev->dev,
112 							  list[i].vptr,
113 							  list[i].size,
114 							  DMA_BIDIRECTIONAL);
115 			if (unlikely(dma_mapping_error(&pdev->dev,
116 						       list[i].dma_addr))) {
117 				dev_err(&pdev->dev, "Dma mapping failed\n");
118 				ret = -EIO;
119 				goto sg_cleanup;
120 			}
121 		}
122 	}
123 
124 	components = buf_count / 4;
125 	sg_ptr = (struct otx_cpt_sglist_component *)buffer;
126 	for (i = 0; i < components; i++) {
127 		sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
128 		sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
129 		sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
130 		sg_ptr->u.s.len3 = cpu_to_be16(list[i * 4 + 3].size);
131 		sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
132 		sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
133 		sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
134 		sg_ptr->ptr3 = cpu_to_be64(list[i * 4 + 3].dma_addr);
135 		sg_ptr++;
136 	}
137 	components = buf_count % 4;
138 
139 	switch (components) {
140 	case 3:
141 		sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
142 		sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
143 		/* Fall through */
144 	case 2:
145 		sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
146 		sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
147 		/* Fall through */
148 	case 1:
149 		sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
150 		sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
151 		break;
152 	default:
153 		break;
154 	}
155 	return ret;
156 
157 sg_cleanup:
158 	for (j = 0; j < i; j++) {
159 		if (list[j].dma_addr) {
160 			dma_unmap_single(&pdev->dev, list[i].dma_addr,
161 					 list[i].size, DMA_BIDIRECTIONAL);
162 		}
163 
164 		list[j].dma_addr = 0;
165 	}
166 	return ret;
167 }
168 
169 static inline int setup_sgio_list(struct pci_dev *pdev,
170 				  struct otx_cpt_info_buffer **pinfo,
171 				  struct otx_cpt_req_info *req, gfp_t gfp)
172 {
173 	u32 dlen, align_dlen, info_len, rlen;
174 	struct otx_cpt_info_buffer *info;
175 	u16 g_sz_bytes, s_sz_bytes;
176 	int align = CPT_DMA_ALIGN;
177 	u32 total_mem_len;
178 
179 	if (unlikely(req->incnt > OTX_CPT_MAX_SG_IN_CNT ||
180 		     req->outcnt > OTX_CPT_MAX_SG_OUT_CNT)) {
181 		dev_err(&pdev->dev, "Error too many sg components\n");
182 		return -EINVAL;
183 	}
184 
185 	g_sz_bytes = ((req->incnt + 3) / 4) *
186 		      sizeof(struct otx_cpt_sglist_component);
187 	s_sz_bytes = ((req->outcnt + 3) / 4) *
188 		      sizeof(struct otx_cpt_sglist_component);
189 
190 	dlen = g_sz_bytes + s_sz_bytes + SG_LIST_HDR_SIZE;
191 	align_dlen = ALIGN(dlen, align);
192 	info_len = ALIGN(sizeof(*info), align);
193 	rlen = ALIGN(sizeof(union otx_cpt_res_s), align);
194 	total_mem_len = align_dlen + info_len + rlen + COMPLETION_CODE_SIZE;
195 
196 	info = kzalloc(total_mem_len, gfp);
197 	if (unlikely(!info)) {
198 		dev_err(&pdev->dev, "Memory allocation failed\n");
199 		return -ENOMEM;
200 	}
201 	*pinfo = info;
202 	info->dlen = dlen;
203 	info->in_buffer = (u8 *)info + info_len;
204 
205 	((u16 *)info->in_buffer)[0] = req->outcnt;
206 	((u16 *)info->in_buffer)[1] = req->incnt;
207 	((u16 *)info->in_buffer)[2] = 0;
208 	((u16 *)info->in_buffer)[3] = 0;
209 	*(u64 *)info->in_buffer = cpu_to_be64p((u64 *)info->in_buffer);
210 
211 	/* Setup gather (input) components */
212 	if (setup_sgio_components(pdev, req->in, req->incnt,
213 				  &info->in_buffer[8])) {
214 		dev_err(&pdev->dev, "Failed to setup gather list\n");
215 		return -EFAULT;
216 	}
217 
218 	if (setup_sgio_components(pdev, req->out, req->outcnt,
219 				  &info->in_buffer[8 + g_sz_bytes])) {
220 		dev_err(&pdev->dev, "Failed to setup scatter list\n");
221 		return -EFAULT;
222 	}
223 
224 	info->dma_len = total_mem_len - info_len;
225 	info->dptr_baddr = dma_map_single(&pdev->dev, (void *)info->in_buffer,
226 					  info->dma_len, DMA_BIDIRECTIONAL);
227 	if (unlikely(dma_mapping_error(&pdev->dev, info->dptr_baddr))) {
228 		dev_err(&pdev->dev, "DMA Mapping failed for cpt req\n");
229 		return -EIO;
230 	}
231 	/*
232 	 * Get buffer for union otx_cpt_res_s response
233 	 * structure and its physical address
234 	 */
235 	info->completion_addr = (u64 *)(info->in_buffer + align_dlen);
236 	info->comp_baddr = info->dptr_baddr + align_dlen;
237 
238 	/* Create and initialize RPTR */
239 	info->out_buffer = (u8 *)info->completion_addr + rlen;
240 	info->rptr_baddr = info->comp_baddr + rlen;
241 
242 	*((u64 *) info->out_buffer) = ~((u64) COMPLETION_CODE_INIT);
243 
244 	return 0;
245 }
246 
247 
248 static void cpt_fill_inst(union otx_cpt_inst_s *inst,
249 			  struct otx_cpt_info_buffer *info,
250 			  struct otx_cpt_iq_cmd *cmd)
251 {
252 	inst->u[0] = 0x0;
253 	inst->s.doneint = true;
254 	inst->s.res_addr = (u64)info->comp_baddr;
255 	inst->u[2] = 0x0;
256 	inst->s.wq_ptr = 0;
257 	inst->s.ei0 = cmd->cmd.u64;
258 	inst->s.ei1 = cmd->dptr;
259 	inst->s.ei2 = cmd->rptr;
260 	inst->s.ei3 = cmd->cptr.u64;
261 }
262 
263 /*
264  * On OcteonTX platform the parameter db_count is used as a count for ringing
265  * door bell. The valid values for db_count are:
266  * 0 - 1 CPT instruction will be enqueued however CPT will not be informed
267  * 1 - 1 CPT instruction will be enqueued and CPT will be informed
268  */
269 static void cpt_send_cmd(union otx_cpt_inst_s *cptinst, struct otx_cptvf *cptvf)
270 {
271 	struct otx_cpt_cmd_qinfo *qinfo = &cptvf->cqinfo;
272 	struct otx_cpt_cmd_queue *queue;
273 	struct otx_cpt_cmd_chunk *curr;
274 	u8 *ent;
275 
276 	queue = &qinfo->queue[0];
277 	/*
278 	 * cpt_send_cmd is currently called only from critical section
279 	 * therefore no locking is required for accessing instruction queue
280 	 */
281 	ent = &queue->qhead->head[queue->idx * OTX_CPT_INST_SIZE];
282 	memcpy(ent, (void *) cptinst, OTX_CPT_INST_SIZE);
283 
284 	if (++queue->idx >= queue->qhead->size / 64) {
285 		curr = queue->qhead;
286 
287 		if (list_is_last(&curr->nextchunk, &queue->chead))
288 			queue->qhead = queue->base;
289 		else
290 			queue->qhead = list_next_entry(queue->qhead, nextchunk);
291 		queue->idx = 0;
292 	}
293 	/* make sure all memory stores are done before ringing doorbell */
294 	smp_wmb();
295 	otx_cptvf_write_vq_doorbell(cptvf, 1);
296 }
297 
298 static int process_request(struct pci_dev *pdev, struct otx_cpt_req_info *req,
299 			   struct otx_cpt_pending_queue *pqueue,
300 			   struct otx_cptvf *cptvf)
301 {
302 	struct otx_cptvf_request *cpt_req = &req->req;
303 	struct otx_cpt_pending_entry *pentry = NULL;
304 	union otx_cpt_ctrl_info *ctrl = &req->ctrl;
305 	struct otx_cpt_info_buffer *info = NULL;
306 	union otx_cpt_res_s *result = NULL;
307 	struct otx_cpt_iq_cmd iq_cmd;
308 	union otx_cpt_inst_s cptinst;
309 	int retry, ret = 0;
310 	u8 resume_sender;
311 	gfp_t gfp;
312 
313 	gfp = (req->areq->flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
314 							      GFP_ATOMIC;
315 	ret = setup_sgio_list(pdev, &info, req, gfp);
316 	if (unlikely(ret)) {
317 		dev_err(&pdev->dev, "Setting up SG list failed\n");
318 		goto request_cleanup;
319 	}
320 	cpt_req->dlen = info->dlen;
321 
322 	result = (union otx_cpt_res_s *) info->completion_addr;
323 	result->s.compcode = COMPLETION_CODE_INIT;
324 
325 	spin_lock_bh(&pqueue->lock);
326 	pentry = get_free_pending_entry(pqueue, pqueue->qlen);
327 	retry = CPT_PENTRY_TIMEOUT / CPT_PENTRY_STEP;
328 	while (unlikely(!pentry) && retry--) {
329 		spin_unlock_bh(&pqueue->lock);
330 		udelay(CPT_PENTRY_STEP);
331 		spin_lock_bh(&pqueue->lock);
332 		pentry = get_free_pending_entry(pqueue, pqueue->qlen);
333 	}
334 
335 	if (unlikely(!pentry)) {
336 		ret = -ENOSPC;
337 		spin_unlock_bh(&pqueue->lock);
338 		goto request_cleanup;
339 	}
340 
341 	/*
342 	 * Check if we are close to filling in entire pending queue,
343 	 * if so then tell the sender to stop/sleep by returning -EBUSY
344 	 * We do it only for context which can sleep (GFP_KERNEL)
345 	 */
346 	if (gfp == GFP_KERNEL &&
347 	    pqueue->pending_count > (pqueue->qlen - CPT_IQ_STOP_MARGIN)) {
348 		pentry->resume_sender = true;
349 	} else
350 		pentry->resume_sender = false;
351 	resume_sender = pentry->resume_sender;
352 	pqueue->pending_count++;
353 
354 	pentry->completion_addr = info->completion_addr;
355 	pentry->info = info;
356 	pentry->callback = req->callback;
357 	pentry->areq = req->areq;
358 	pentry->busy = true;
359 	info->pentry = pentry;
360 	info->time_in = jiffies;
361 	info->req = req;
362 
363 	/* Fill in the command */
364 	iq_cmd.cmd.u64 = 0;
365 	iq_cmd.cmd.s.opcode = cpu_to_be16(cpt_req->opcode.flags);
366 	iq_cmd.cmd.s.param1 = cpu_to_be16(cpt_req->param1);
367 	iq_cmd.cmd.s.param2 = cpu_to_be16(cpt_req->param2);
368 	iq_cmd.cmd.s.dlen   = cpu_to_be16(cpt_req->dlen);
369 
370 	/* 64-bit swap for microcode data reads, not needed for addresses*/
371 	iq_cmd.cmd.u64 = cpu_to_be64(iq_cmd.cmd.u64);
372 	iq_cmd.dptr = info->dptr_baddr;
373 	iq_cmd.rptr = info->rptr_baddr;
374 	iq_cmd.cptr.u64 = 0;
375 	iq_cmd.cptr.s.grp = ctrl->s.grp;
376 
377 	/* Fill in the CPT_INST_S type command for HW interpretation */
378 	cpt_fill_inst(&cptinst, info, &iq_cmd);
379 
380 	/* Print debug info if enabled */
381 	otx_cpt_dump_sg_list(pdev, req);
382 	pr_debug("Cpt_inst_s hexdump (%d bytes)\n", OTX_CPT_INST_SIZE);
383 	print_hex_dump_debug("", 0, 16, 1, &cptinst, OTX_CPT_INST_SIZE, false);
384 	pr_debug("Dptr hexdump (%d bytes)\n", cpt_req->dlen);
385 	print_hex_dump_debug("", 0, 16, 1, info->in_buffer,
386 			     cpt_req->dlen, false);
387 
388 	/* Send CPT command */
389 	cpt_send_cmd(&cptinst, cptvf);
390 
391 	/*
392 	 * We allocate and prepare pending queue entry in critical section
393 	 * together with submitting CPT instruction to CPT instruction queue
394 	 * to make sure that order of CPT requests is the same in both
395 	 * pending and instruction queues
396 	 */
397 	spin_unlock_bh(&pqueue->lock);
398 
399 	ret = resume_sender ? -EBUSY : -EINPROGRESS;
400 	return ret;
401 
402 request_cleanup:
403 	do_request_cleanup(pdev, info);
404 	return ret;
405 }
406 
407 int otx_cpt_do_request(struct pci_dev *pdev, struct otx_cpt_req_info *req,
408 		       int cpu_num)
409 {
410 	struct otx_cptvf *cptvf = pci_get_drvdata(pdev);
411 
412 	if (!otx_cpt_device_ready(cptvf)) {
413 		dev_err(&pdev->dev, "CPT Device is not ready\n");
414 		return -ENODEV;
415 	}
416 
417 	if ((cptvf->vftype == OTX_CPT_SE_TYPES) && (!req->ctrl.s.se_req)) {
418 		dev_err(&pdev->dev, "CPTVF-%d of SE TYPE got AE request\n",
419 			cptvf->vfid);
420 		return -EINVAL;
421 	} else if ((cptvf->vftype == OTX_CPT_AE_TYPES) &&
422 		   (req->ctrl.s.se_req)) {
423 		dev_err(&pdev->dev, "CPTVF-%d of AE TYPE got SE request\n",
424 			cptvf->vfid);
425 		return -EINVAL;
426 	}
427 
428 	return process_request(pdev, req, &cptvf->pqinfo.queue[0], cptvf);
429 }
430 
431 static int cpt_process_ccode(struct pci_dev *pdev,
432 			     union otx_cpt_res_s *cpt_status,
433 			     struct otx_cpt_info_buffer *cpt_info,
434 			     struct otx_cpt_req_info *req, u32 *res_code)
435 {
436 	u8 ccode = cpt_status->s.compcode;
437 	union otx_cpt_error_code ecode;
438 
439 	ecode.u = be64_to_cpu(*((u64 *) cpt_info->out_buffer));
440 	switch (ccode) {
441 	case CPT_COMP_E_FAULT:
442 		dev_err(&pdev->dev,
443 			"Request failed with DMA fault\n");
444 		otx_cpt_dump_sg_list(pdev, req);
445 		break;
446 
447 	case CPT_COMP_E_SWERR:
448 		dev_err(&pdev->dev,
449 			"Request failed with software error code %d\n",
450 			ecode.s.ccode);
451 		otx_cpt_dump_sg_list(pdev, req);
452 		break;
453 
454 	case CPT_COMP_E_HWERR:
455 		dev_err(&pdev->dev,
456 			"Request failed with hardware error\n");
457 		otx_cpt_dump_sg_list(pdev, req);
458 		break;
459 
460 	case COMPLETION_CODE_INIT:
461 		/* check for timeout */
462 		if (time_after_eq(jiffies, cpt_info->time_in +
463 				  OTX_CPT_COMMAND_TIMEOUT * HZ))
464 			dev_warn(&pdev->dev, "Request timed out 0x%p\n", req);
465 		else if (cpt_info->extra_time < OTX_CPT_TIME_IN_RESET_COUNT) {
466 			cpt_info->time_in = jiffies;
467 			cpt_info->extra_time++;
468 		}
469 		return 1;
470 
471 	case CPT_COMP_E_GOOD:
472 		/* Check microcode completion code */
473 		if (ecode.s.ccode) {
474 			/*
475 			 * If requested hmac is truncated and ucode returns
476 			 * s/g write length error then we report success
477 			 * because ucode writes as many bytes of calculated
478 			 * hmac as available in gather buffer and reports
479 			 * s/g write length error if number of bytes in gather
480 			 * buffer is less than full hmac size.
481 			 */
482 			if (req->is_trunc_hmac &&
483 			    ecode.s.ccode == ERR_SCATTER_GATHER_WRITE_LENGTH) {
484 				*res_code = 0;
485 				break;
486 			}
487 
488 			dev_err(&pdev->dev,
489 				"Request failed with software error code 0x%x\n",
490 				ecode.s.ccode);
491 			otx_cpt_dump_sg_list(pdev, req);
492 			break;
493 		}
494 
495 		/* Request has been processed with success */
496 		*res_code = 0;
497 		break;
498 
499 	default:
500 		dev_err(&pdev->dev, "Request returned invalid status\n");
501 		break;
502 	}
503 
504 	return 0;
505 }
506 
507 static inline void process_pending_queue(struct pci_dev *pdev,
508 					 struct otx_cpt_pending_queue *pqueue)
509 {
510 	void (*callback)(int status, void *arg1, void *arg2);
511 	struct otx_cpt_pending_entry *resume_pentry = NULL;
512 	struct otx_cpt_pending_entry *pentry = NULL;
513 	struct otx_cpt_info_buffer *cpt_info = NULL;
514 	union otx_cpt_res_s *cpt_status = NULL;
515 	struct otx_cpt_req_info *req = NULL;
516 	struct crypto_async_request *areq;
517 	u32 res_code, resume_index;
518 
519 	while (1) {
520 		spin_lock_bh(&pqueue->lock);
521 		pentry = &pqueue->head[pqueue->front];
522 
523 		if (WARN_ON(!pentry)) {
524 			spin_unlock_bh(&pqueue->lock);
525 			break;
526 		}
527 
528 		res_code = -EINVAL;
529 		if (unlikely(!pentry->busy)) {
530 			spin_unlock_bh(&pqueue->lock);
531 			break;
532 		}
533 
534 		if (unlikely(!pentry->callback)) {
535 			dev_err(&pdev->dev, "Callback NULL\n");
536 			goto process_pentry;
537 		}
538 
539 		cpt_info = pentry->info;
540 		if (unlikely(!cpt_info)) {
541 			dev_err(&pdev->dev, "Pending entry post arg NULL\n");
542 			goto process_pentry;
543 		}
544 
545 		req = cpt_info->req;
546 		if (unlikely(!req)) {
547 			dev_err(&pdev->dev, "Request NULL\n");
548 			goto process_pentry;
549 		}
550 
551 		cpt_status = (union otx_cpt_res_s *) pentry->completion_addr;
552 		if (unlikely(!cpt_status)) {
553 			dev_err(&pdev->dev, "Completion address NULL\n");
554 			goto process_pentry;
555 		}
556 
557 		if (cpt_process_ccode(pdev, cpt_status, cpt_info, req,
558 				      &res_code)) {
559 			spin_unlock_bh(&pqueue->lock);
560 			return;
561 		}
562 		cpt_info->pdev = pdev;
563 
564 process_pentry:
565 		/*
566 		 * Check if we should inform sending side to resume
567 		 * We do it CPT_IQ_RESUME_MARGIN elements in advance before
568 		 * pending queue becomes empty
569 		 */
570 		resume_index = modulo_inc(pqueue->front, pqueue->qlen,
571 					  CPT_IQ_RESUME_MARGIN);
572 		resume_pentry = &pqueue->head[resume_index];
573 		if (resume_pentry &&
574 		    resume_pentry->resume_sender) {
575 			resume_pentry->resume_sender = false;
576 			callback = resume_pentry->callback;
577 			areq = resume_pentry->areq;
578 
579 			if (callback) {
580 				spin_unlock_bh(&pqueue->lock);
581 
582 				/*
583 				 * EINPROGRESS is an indication for sending
584 				 * side that it can resume sending requests
585 				 */
586 				callback(-EINPROGRESS, areq, cpt_info);
587 				spin_lock_bh(&pqueue->lock);
588 			}
589 		}
590 
591 		callback = pentry->callback;
592 		areq = pentry->areq;
593 		free_pentry(pentry);
594 
595 		pqueue->pending_count--;
596 		pqueue->front = modulo_inc(pqueue->front, pqueue->qlen, 1);
597 		spin_unlock_bh(&pqueue->lock);
598 
599 		/*
600 		 * Call callback after current pending entry has been
601 		 * processed, we don't do it if the callback pointer is
602 		 * invalid.
603 		 */
604 		if (callback)
605 			callback(res_code, areq, cpt_info);
606 	}
607 }
608 
609 void otx_cpt_post_process(struct otx_cptvf_wqe *wqe)
610 {
611 	process_pending_queue(wqe->cptvf->pdev, &wqe->cptvf->pqinfo.queue[0]);
612 }
613