xref: /openbmc/linux/drivers/crypto/marvell/octeontx/otx_cptvf_algs.c (revision cd1e565a5b7fa60c349ca8a16db1e61715fe8230)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTX CPT driver
3  *
4  * Copyright (C) 2019 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <crypto/aes.h>
12 #include <crypto/authenc.h>
13 #include <crypto/cryptd.h>
14 #include <crypto/des.h>
15 #include <crypto/internal/aead.h>
16 #include <crypto/sha1.h>
17 #include <crypto/sha2.h>
18 #include <crypto/xts.h>
19 #include <crypto/scatterwalk.h>
20 #include <linux/sort.h>
21 #include <linux/module.h>
22 #include "otx_cptvf.h"
23 #include "otx_cptvf_algs.h"
24 #include "otx_cptvf_reqmgr.h"
25 
26 #define CPT_MAX_VF_NUM	64
27 /* Size of salt in AES GCM mode */
28 #define AES_GCM_SALT_SIZE	4
29 /* Size of IV in AES GCM mode */
30 #define AES_GCM_IV_SIZE		8
31 /* Size of ICV (Integrity Check Value) in AES GCM mode */
32 #define AES_GCM_ICV_SIZE	16
33 /* Offset of IV in AES GCM mode */
34 #define AES_GCM_IV_OFFSET	8
35 #define CONTROL_WORD_LEN	8
36 #define KEY2_OFFSET		48
37 #define DMA_MODE_FLAG(dma_mode) \
38 	(((dma_mode) == OTX_CPT_DMA_GATHER_SCATTER) ? (1 << 7) : 0)
39 
40 /* Truncated SHA digest size */
41 #define SHA1_TRUNC_DIGEST_SIZE		12
42 #define SHA256_TRUNC_DIGEST_SIZE	16
43 #define SHA384_TRUNC_DIGEST_SIZE	24
44 #define SHA512_TRUNC_DIGEST_SIZE	32
45 
46 static DEFINE_MUTEX(mutex);
47 static int is_crypto_registered;
48 
49 struct cpt_device_desc {
50 	enum otx_cptpf_type pf_type;
51 	struct pci_dev *dev;
52 	int num_queues;
53 };
54 
55 struct cpt_device_table {
56 	atomic_t count;
57 	struct cpt_device_desc desc[CPT_MAX_VF_NUM];
58 };
59 
60 static struct cpt_device_table se_devices = {
61 	.count = ATOMIC_INIT(0)
62 };
63 
64 static struct cpt_device_table ae_devices = {
65 	.count = ATOMIC_INIT(0)
66 };
67 
68 static struct otx_cpt_sdesc *alloc_sdesc(struct crypto_shash *alg);
69 
70 static inline int get_se_device(struct pci_dev **pdev, int *cpu_num)
71 {
72 	int count, ret = 0;
73 
74 	count = atomic_read(&se_devices.count);
75 	if (count < 1)
76 		return -ENODEV;
77 
78 	*cpu_num = get_cpu();
79 
80 	if (se_devices.desc[0].pf_type == OTX_CPT_SE) {
81 		/*
82 		 * On OcteonTX platform there is one CPT instruction queue bound
83 		 * to each VF. We get maximum performance if one CPT queue
84 		 * is available for each cpu otherwise CPT queues need to be
85 		 * shared between cpus.
86 		 */
87 		if (*cpu_num >= count)
88 			*cpu_num %= count;
89 		*pdev = se_devices.desc[*cpu_num].dev;
90 	} else {
91 		pr_err("Unknown PF type %d\n", se_devices.desc[0].pf_type);
92 		ret = -EINVAL;
93 	}
94 	put_cpu();
95 
96 	return ret;
97 }
98 
99 static inline int validate_hmac_cipher_null(struct otx_cpt_req_info *cpt_req)
100 {
101 	struct otx_cpt_req_ctx *rctx;
102 	struct aead_request *req;
103 	struct crypto_aead *tfm;
104 
105 	req = container_of(cpt_req->areq, struct aead_request, base);
106 	tfm = crypto_aead_reqtfm(req);
107 	rctx = aead_request_ctx_dma(req);
108 	if (memcmp(rctx->fctx.hmac.s.hmac_calc,
109 		   rctx->fctx.hmac.s.hmac_recv,
110 		   crypto_aead_authsize(tfm)) != 0)
111 		return -EBADMSG;
112 
113 	return 0;
114 }
115 
116 static void otx_cpt_aead_callback(int status, void *arg1, void *arg2)
117 {
118 	struct otx_cpt_info_buffer *cpt_info = arg2;
119 	struct crypto_async_request *areq = arg1;
120 	struct otx_cpt_req_info *cpt_req;
121 	struct pci_dev *pdev;
122 
123 	if (!cpt_info)
124 		goto complete;
125 
126 	cpt_req = cpt_info->req;
127 	if (!status) {
128 		/*
129 		 * When selected cipher is NULL we need to manually
130 		 * verify whether calculated hmac value matches
131 		 * received hmac value
132 		 */
133 		if (cpt_req->req_type == OTX_CPT_AEAD_ENC_DEC_NULL_REQ &&
134 		    !cpt_req->is_enc)
135 			status = validate_hmac_cipher_null(cpt_req);
136 	}
137 	pdev = cpt_info->pdev;
138 	do_request_cleanup(pdev, cpt_info);
139 
140 complete:
141 	if (areq)
142 		crypto_request_complete(areq, status);
143 }
144 
145 static void output_iv_copyback(struct crypto_async_request *areq)
146 {
147 	struct otx_cpt_req_info *req_info;
148 	struct skcipher_request *sreq;
149 	struct crypto_skcipher *stfm;
150 	struct otx_cpt_req_ctx *rctx;
151 	struct otx_cpt_enc_ctx *ctx;
152 	u32 start, ivsize;
153 
154 	sreq = container_of(areq, struct skcipher_request, base);
155 	stfm = crypto_skcipher_reqtfm(sreq);
156 	ctx = crypto_skcipher_ctx(stfm);
157 	if (ctx->cipher_type == OTX_CPT_AES_CBC ||
158 	    ctx->cipher_type == OTX_CPT_DES3_CBC) {
159 		rctx = skcipher_request_ctx_dma(sreq);
160 		req_info = &rctx->cpt_req;
161 		ivsize = crypto_skcipher_ivsize(stfm);
162 		start = sreq->cryptlen - ivsize;
163 
164 		if (req_info->is_enc) {
165 			scatterwalk_map_and_copy(sreq->iv, sreq->dst, start,
166 						 ivsize, 0);
167 		} else {
168 			if (sreq->src != sreq->dst) {
169 				scatterwalk_map_and_copy(sreq->iv, sreq->src,
170 							 start, ivsize, 0);
171 			} else {
172 				memcpy(sreq->iv, req_info->iv_out, ivsize);
173 				kfree(req_info->iv_out);
174 			}
175 		}
176 	}
177 }
178 
179 static void otx_cpt_skcipher_callback(int status, void *arg1, void *arg2)
180 {
181 	struct otx_cpt_info_buffer *cpt_info = arg2;
182 	struct crypto_async_request *areq = arg1;
183 	struct pci_dev *pdev;
184 
185 	if (areq) {
186 		if (!status)
187 			output_iv_copyback(areq);
188 		if (cpt_info) {
189 			pdev = cpt_info->pdev;
190 			do_request_cleanup(pdev, cpt_info);
191 		}
192 		crypto_request_complete(areq, status);
193 	}
194 }
195 
196 static inline void update_input_data(struct otx_cpt_req_info *req_info,
197 				     struct scatterlist *inp_sg,
198 				     u32 nbytes, u32 *argcnt)
199 {
200 	req_info->req.dlen += nbytes;
201 
202 	while (nbytes) {
203 		u32 len = min(nbytes, inp_sg->length);
204 		u8 *ptr = sg_virt(inp_sg);
205 
206 		req_info->in[*argcnt].vptr = (void *)ptr;
207 		req_info->in[*argcnt].size = len;
208 		nbytes -= len;
209 		++(*argcnt);
210 		inp_sg = sg_next(inp_sg);
211 	}
212 }
213 
214 static inline void update_output_data(struct otx_cpt_req_info *req_info,
215 				      struct scatterlist *outp_sg,
216 				      u32 offset, u32 nbytes, u32 *argcnt)
217 {
218 	req_info->rlen += nbytes;
219 
220 	while (nbytes) {
221 		u32 len = min(nbytes, outp_sg->length - offset);
222 		u8 *ptr = sg_virt(outp_sg);
223 
224 		req_info->out[*argcnt].vptr = (void *) (ptr + offset);
225 		req_info->out[*argcnt].size = len;
226 		nbytes -= len;
227 		++(*argcnt);
228 		offset = 0;
229 		outp_sg = sg_next(outp_sg);
230 	}
231 }
232 
233 static inline u32 create_ctx_hdr(struct skcipher_request *req, u32 enc,
234 				 u32 *argcnt)
235 {
236 	struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
237 	struct otx_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
238 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
239 	struct crypto_tfm *tfm = crypto_skcipher_tfm(stfm);
240 	struct otx_cpt_enc_ctx *ctx = crypto_tfm_ctx(tfm);
241 	struct otx_cpt_fc_ctx *fctx = &rctx->fctx;
242 	int ivsize = crypto_skcipher_ivsize(stfm);
243 	u32 start = req->cryptlen - ivsize;
244 	gfp_t flags;
245 
246 	flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
247 			GFP_KERNEL : GFP_ATOMIC;
248 	req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER;
249 	req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ;
250 
251 	req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_FC |
252 				DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER);
253 	if (enc) {
254 		req_info->req.opcode.s.minor = 2;
255 	} else {
256 		req_info->req.opcode.s.minor = 3;
257 		if ((ctx->cipher_type == OTX_CPT_AES_CBC ||
258 		    ctx->cipher_type == OTX_CPT_DES3_CBC) &&
259 		    req->src == req->dst) {
260 			req_info->iv_out = kmalloc(ivsize, flags);
261 			if (!req_info->iv_out)
262 				return -ENOMEM;
263 
264 			scatterwalk_map_and_copy(req_info->iv_out, req->src,
265 						 start, ivsize, 0);
266 		}
267 	}
268 	/* Encryption data length */
269 	req_info->req.param1 = req->cryptlen;
270 	/* Authentication data length */
271 	req_info->req.param2 = 0;
272 
273 	fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type;
274 	fctx->enc.enc_ctrl.e.aes_key = ctx->key_type;
275 	fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_CPTR;
276 
277 	if (ctx->cipher_type == OTX_CPT_AES_XTS)
278 		memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len * 2);
279 	else
280 		memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len);
281 
282 	memcpy(fctx->enc.encr_iv, req->iv, crypto_skcipher_ivsize(stfm));
283 
284 	fctx->enc.enc_ctrl.flags = cpu_to_be64(fctx->enc.enc_ctrl.cflags);
285 
286 	/*
287 	 * Storing  Packet Data Information in offset
288 	 * Control Word First 8 bytes
289 	 */
290 	req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word;
291 	req_info->in[*argcnt].size = CONTROL_WORD_LEN;
292 	req_info->req.dlen += CONTROL_WORD_LEN;
293 	++(*argcnt);
294 
295 	req_info->in[*argcnt].vptr = (u8 *)fctx;
296 	req_info->in[*argcnt].size = sizeof(struct otx_cpt_fc_ctx);
297 	req_info->req.dlen += sizeof(struct otx_cpt_fc_ctx);
298 
299 	++(*argcnt);
300 
301 	return 0;
302 }
303 
304 static inline u32 create_input_list(struct skcipher_request *req, u32 enc,
305 				    u32 enc_iv_len)
306 {
307 	struct otx_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
308 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
309 	u32 argcnt =  0;
310 	int ret;
311 
312 	ret = create_ctx_hdr(req, enc, &argcnt);
313 	if (ret)
314 		return ret;
315 
316 	update_input_data(req_info, req->src, req->cryptlen, &argcnt);
317 	req_info->incnt = argcnt;
318 
319 	return 0;
320 }
321 
322 static inline void create_output_list(struct skcipher_request *req,
323 				      u32 enc_iv_len)
324 {
325 	struct otx_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
326 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
327 	u32 argcnt = 0;
328 
329 	/*
330 	 * OUTPUT Buffer Processing
331 	 * AES encryption/decryption output would be
332 	 * received in the following format
333 	 *
334 	 * ------IV--------|------ENCRYPTED/DECRYPTED DATA-----|
335 	 * [ 16 Bytes/     [   Request Enc/Dec/ DATA Len AES CBC ]
336 	 */
337 	update_output_data(req_info, req->dst, 0, req->cryptlen, &argcnt);
338 	req_info->outcnt = argcnt;
339 }
340 
341 static inline int cpt_enc_dec(struct skcipher_request *req, u32 enc)
342 {
343 	struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
344 	struct otx_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
345 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
346 	u32 enc_iv_len = crypto_skcipher_ivsize(stfm);
347 	struct pci_dev *pdev;
348 	int status, cpu_num;
349 
350 	/* Validate that request doesn't exceed maximum CPT supported size */
351 	if (req->cryptlen > OTX_CPT_MAX_REQ_SIZE)
352 		return -E2BIG;
353 
354 	/* Clear control words */
355 	rctx->ctrl_word.flags = 0;
356 	rctx->fctx.enc.enc_ctrl.flags = 0;
357 
358 	status = create_input_list(req, enc, enc_iv_len);
359 	if (status)
360 		return status;
361 	create_output_list(req, enc_iv_len);
362 
363 	status = get_se_device(&pdev, &cpu_num);
364 	if (status)
365 		return status;
366 
367 	req_info->callback = (void *)otx_cpt_skcipher_callback;
368 	req_info->areq = &req->base;
369 	req_info->req_type = OTX_CPT_ENC_DEC_REQ;
370 	req_info->is_enc = enc;
371 	req_info->is_trunc_hmac = false;
372 	req_info->ctrl.s.grp = 0;
373 
374 	/*
375 	 * We perform an asynchronous send and once
376 	 * the request is completed the driver would
377 	 * intimate through registered call back functions
378 	 */
379 	status = otx_cpt_do_request(pdev, req_info, cpu_num);
380 
381 	return status;
382 }
383 
384 static int otx_cpt_skcipher_encrypt(struct skcipher_request *req)
385 {
386 	return cpt_enc_dec(req, true);
387 }
388 
389 static int otx_cpt_skcipher_decrypt(struct skcipher_request *req)
390 {
391 	return cpt_enc_dec(req, false);
392 }
393 
394 static int otx_cpt_skcipher_xts_setkey(struct crypto_skcipher *tfm,
395 				       const u8 *key, u32 keylen)
396 {
397 	struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
398 	const u8 *key2 = key + (keylen / 2);
399 	const u8 *key1 = key;
400 	int ret;
401 
402 	ret = xts_verify_key(tfm, key, keylen);
403 	if (ret)
404 		return ret;
405 	ctx->key_len = keylen;
406 	memcpy(ctx->enc_key, key1, keylen / 2);
407 	memcpy(ctx->enc_key + KEY2_OFFSET, key2, keylen / 2);
408 	ctx->cipher_type = OTX_CPT_AES_XTS;
409 	switch (ctx->key_len) {
410 	case 2 * AES_KEYSIZE_128:
411 		ctx->key_type = OTX_CPT_AES_128_BIT;
412 		break;
413 	case 2 * AES_KEYSIZE_256:
414 		ctx->key_type = OTX_CPT_AES_256_BIT;
415 		break;
416 	default:
417 		return -EINVAL;
418 	}
419 
420 	return 0;
421 }
422 
423 static int cpt_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
424 			  u32 keylen, u8 cipher_type)
425 {
426 	struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
427 
428 	if (keylen != DES3_EDE_KEY_SIZE)
429 		return -EINVAL;
430 
431 	ctx->key_len = keylen;
432 	ctx->cipher_type = cipher_type;
433 
434 	memcpy(ctx->enc_key, key, keylen);
435 
436 	return 0;
437 }
438 
439 static int cpt_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
440 			  u32 keylen, u8 cipher_type)
441 {
442 	struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
443 
444 	switch (keylen) {
445 	case AES_KEYSIZE_128:
446 		ctx->key_type = OTX_CPT_AES_128_BIT;
447 		break;
448 	case AES_KEYSIZE_192:
449 		ctx->key_type = OTX_CPT_AES_192_BIT;
450 		break;
451 	case AES_KEYSIZE_256:
452 		ctx->key_type = OTX_CPT_AES_256_BIT;
453 		break;
454 	default:
455 		return -EINVAL;
456 	}
457 	ctx->key_len = keylen;
458 	ctx->cipher_type = cipher_type;
459 
460 	memcpy(ctx->enc_key, key, keylen);
461 
462 	return 0;
463 }
464 
465 static int otx_cpt_skcipher_cbc_aes_setkey(struct crypto_skcipher *tfm,
466 					   const u8 *key, u32 keylen)
467 {
468 	return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_CBC);
469 }
470 
471 static int otx_cpt_skcipher_ecb_aes_setkey(struct crypto_skcipher *tfm,
472 					   const u8 *key, u32 keylen)
473 {
474 	return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_ECB);
475 }
476 
477 static int otx_cpt_skcipher_cfb_aes_setkey(struct crypto_skcipher *tfm,
478 					   const u8 *key, u32 keylen)
479 {
480 	return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_CFB);
481 }
482 
483 static int otx_cpt_skcipher_cbc_des3_setkey(struct crypto_skcipher *tfm,
484 					    const u8 *key, u32 keylen)
485 {
486 	return cpt_des_setkey(tfm, key, keylen, OTX_CPT_DES3_CBC);
487 }
488 
489 static int otx_cpt_skcipher_ecb_des3_setkey(struct crypto_skcipher *tfm,
490 					    const u8 *key, u32 keylen)
491 {
492 	return cpt_des_setkey(tfm, key, keylen, OTX_CPT_DES3_ECB);
493 }
494 
495 static int otx_cpt_enc_dec_init(struct crypto_skcipher *tfm)
496 {
497 	struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
498 
499 	memset(ctx, 0, sizeof(*ctx));
500 	/*
501 	 * Additional memory for skcipher_request is
502 	 * allocated since the cryptd daemon uses
503 	 * this memory for request_ctx information
504 	 */
505 	crypto_skcipher_set_reqsize_dma(
506 		tfm, sizeof(struct otx_cpt_req_ctx) +
507 		     sizeof(struct skcipher_request));
508 
509 	return 0;
510 }
511 
512 static int cpt_aead_init(struct crypto_aead *tfm, u8 cipher_type, u8 mac_type)
513 {
514 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
515 
516 	ctx->cipher_type = cipher_type;
517 	ctx->mac_type = mac_type;
518 
519 	switch (ctx->mac_type) {
520 	case OTX_CPT_SHA1:
521 		ctx->hashalg = crypto_alloc_shash("sha1", 0, 0);
522 		break;
523 
524 	case OTX_CPT_SHA256:
525 		ctx->hashalg = crypto_alloc_shash("sha256", 0, 0);
526 		break;
527 
528 	case OTX_CPT_SHA384:
529 		ctx->hashalg = crypto_alloc_shash("sha384", 0, 0);
530 		break;
531 
532 	case OTX_CPT_SHA512:
533 		ctx->hashalg = crypto_alloc_shash("sha512", 0, 0);
534 		break;
535 	}
536 
537 	if (IS_ERR(ctx->hashalg))
538 		return PTR_ERR(ctx->hashalg);
539 
540 	crypto_aead_set_reqsize_dma(tfm, sizeof(struct otx_cpt_req_ctx));
541 
542 	if (!ctx->hashalg)
543 		return 0;
544 
545 	/*
546 	 * When selected cipher is NULL we use HMAC opcode instead of
547 	 * FLEXICRYPTO opcode therefore we don't need to use HASH algorithms
548 	 * for calculating ipad and opad
549 	 */
550 	if (ctx->cipher_type != OTX_CPT_CIPHER_NULL) {
551 		int ss = crypto_shash_statesize(ctx->hashalg);
552 
553 		ctx->ipad = kzalloc(ss, GFP_KERNEL);
554 		if (!ctx->ipad) {
555 			crypto_free_shash(ctx->hashalg);
556 			return -ENOMEM;
557 		}
558 
559 		ctx->opad = kzalloc(ss, GFP_KERNEL);
560 		if (!ctx->opad) {
561 			kfree(ctx->ipad);
562 			crypto_free_shash(ctx->hashalg);
563 			return -ENOMEM;
564 		}
565 	}
566 
567 	ctx->sdesc = alloc_sdesc(ctx->hashalg);
568 	if (!ctx->sdesc) {
569 		kfree(ctx->opad);
570 		kfree(ctx->ipad);
571 		crypto_free_shash(ctx->hashalg);
572 		return -ENOMEM;
573 	}
574 
575 	return 0;
576 }
577 
578 static int otx_cpt_aead_cbc_aes_sha1_init(struct crypto_aead *tfm)
579 {
580 	return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA1);
581 }
582 
583 static int otx_cpt_aead_cbc_aes_sha256_init(struct crypto_aead *tfm)
584 {
585 	return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA256);
586 }
587 
588 static int otx_cpt_aead_cbc_aes_sha384_init(struct crypto_aead *tfm)
589 {
590 	return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA384);
591 }
592 
593 static int otx_cpt_aead_cbc_aes_sha512_init(struct crypto_aead *tfm)
594 {
595 	return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA512);
596 }
597 
598 static int otx_cpt_aead_ecb_null_sha1_init(struct crypto_aead *tfm)
599 {
600 	return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA1);
601 }
602 
603 static int otx_cpt_aead_ecb_null_sha256_init(struct crypto_aead *tfm)
604 {
605 	return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA256);
606 }
607 
608 static int otx_cpt_aead_ecb_null_sha384_init(struct crypto_aead *tfm)
609 {
610 	return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA384);
611 }
612 
613 static int otx_cpt_aead_ecb_null_sha512_init(struct crypto_aead *tfm)
614 {
615 	return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA512);
616 }
617 
618 static int otx_cpt_aead_gcm_aes_init(struct crypto_aead *tfm)
619 {
620 	return cpt_aead_init(tfm, OTX_CPT_AES_GCM, OTX_CPT_MAC_NULL);
621 }
622 
623 static void otx_cpt_aead_exit(struct crypto_aead *tfm)
624 {
625 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
626 
627 	kfree(ctx->ipad);
628 	kfree(ctx->opad);
629 	crypto_free_shash(ctx->hashalg);
630 	kfree(ctx->sdesc);
631 }
632 
633 /*
634  * This is the Integrity Check Value validation (aka the authentication tag
635  * length)
636  */
637 static int otx_cpt_aead_set_authsize(struct crypto_aead *tfm,
638 				     unsigned int authsize)
639 {
640 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
641 
642 	switch (ctx->mac_type) {
643 	case OTX_CPT_SHA1:
644 		if (authsize != SHA1_DIGEST_SIZE &&
645 		    authsize != SHA1_TRUNC_DIGEST_SIZE)
646 			return -EINVAL;
647 
648 		if (authsize == SHA1_TRUNC_DIGEST_SIZE)
649 			ctx->is_trunc_hmac = true;
650 		break;
651 
652 	case OTX_CPT_SHA256:
653 		if (authsize != SHA256_DIGEST_SIZE &&
654 		    authsize != SHA256_TRUNC_DIGEST_SIZE)
655 			return -EINVAL;
656 
657 		if (authsize == SHA256_TRUNC_DIGEST_SIZE)
658 			ctx->is_trunc_hmac = true;
659 		break;
660 
661 	case OTX_CPT_SHA384:
662 		if (authsize != SHA384_DIGEST_SIZE &&
663 		    authsize != SHA384_TRUNC_DIGEST_SIZE)
664 			return -EINVAL;
665 
666 		if (authsize == SHA384_TRUNC_DIGEST_SIZE)
667 			ctx->is_trunc_hmac = true;
668 		break;
669 
670 	case OTX_CPT_SHA512:
671 		if (authsize != SHA512_DIGEST_SIZE &&
672 		    authsize != SHA512_TRUNC_DIGEST_SIZE)
673 			return -EINVAL;
674 
675 		if (authsize == SHA512_TRUNC_DIGEST_SIZE)
676 			ctx->is_trunc_hmac = true;
677 		break;
678 
679 	case OTX_CPT_MAC_NULL:
680 		if (ctx->cipher_type == OTX_CPT_AES_GCM) {
681 			if (authsize != AES_GCM_ICV_SIZE)
682 				return -EINVAL;
683 		} else
684 			return -EINVAL;
685 		break;
686 
687 	default:
688 		return -EINVAL;
689 	}
690 
691 	tfm->authsize = authsize;
692 	return 0;
693 }
694 
695 static struct otx_cpt_sdesc *alloc_sdesc(struct crypto_shash *alg)
696 {
697 	struct otx_cpt_sdesc *sdesc;
698 	int size;
699 
700 	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
701 	sdesc = kmalloc(size, GFP_KERNEL);
702 	if (!sdesc)
703 		return NULL;
704 
705 	sdesc->shash.tfm = alg;
706 
707 	return sdesc;
708 }
709 
710 static inline void swap_data32(void *buf, u32 len)
711 {
712 	cpu_to_be32_array(buf, buf, len / 4);
713 }
714 
715 static inline void swap_data64(void *buf, u32 len)
716 {
717 	__be64 *dst = buf;
718 	u64 *src = buf;
719 	int i = 0;
720 
721 	for (i = 0 ; i < len / 8; i++, src++, dst++)
722 		*dst = cpu_to_be64p(src);
723 }
724 
725 static int swap_pad(u8 mac_type, u8 *pad)
726 {
727 	struct sha512_state *sha512;
728 	struct sha256_state *sha256;
729 	struct sha1_state *sha1;
730 
731 	switch (mac_type) {
732 	case OTX_CPT_SHA1:
733 		sha1 = (struct sha1_state *)pad;
734 		swap_data32(sha1->state, SHA1_DIGEST_SIZE);
735 		break;
736 
737 	case OTX_CPT_SHA256:
738 		sha256 = (struct sha256_state *)pad;
739 		swap_data32(sha256->state, SHA256_DIGEST_SIZE);
740 		break;
741 
742 	case OTX_CPT_SHA384:
743 	case OTX_CPT_SHA512:
744 		sha512 = (struct sha512_state *)pad;
745 		swap_data64(sha512->state, SHA512_DIGEST_SIZE);
746 		break;
747 
748 	default:
749 		return -EINVAL;
750 	}
751 
752 	return 0;
753 }
754 
755 static int aead_hmac_init(struct crypto_aead *cipher,
756 			  struct crypto_authenc_keys *keys)
757 {
758 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
759 	int ds = crypto_shash_digestsize(ctx->hashalg);
760 	int bs = crypto_shash_blocksize(ctx->hashalg);
761 	int authkeylen = keys->authkeylen;
762 	u8 *ipad = NULL, *opad = NULL;
763 	int icount = 0;
764 	int ret;
765 
766 	if (authkeylen > bs) {
767 		ret = crypto_shash_digest(&ctx->sdesc->shash, keys->authkey,
768 					  authkeylen, ctx->key);
769 		if (ret)
770 			return ret;
771 		authkeylen = ds;
772 	} else
773 		memcpy(ctx->key, keys->authkey, authkeylen);
774 
775 	ctx->enc_key_len = keys->enckeylen;
776 	ctx->auth_key_len = authkeylen;
777 
778 	if (ctx->cipher_type == OTX_CPT_CIPHER_NULL)
779 		return keys->enckeylen ? -EINVAL : 0;
780 
781 	switch (keys->enckeylen) {
782 	case AES_KEYSIZE_128:
783 		ctx->key_type = OTX_CPT_AES_128_BIT;
784 		break;
785 	case AES_KEYSIZE_192:
786 		ctx->key_type = OTX_CPT_AES_192_BIT;
787 		break;
788 	case AES_KEYSIZE_256:
789 		ctx->key_type = OTX_CPT_AES_256_BIT;
790 		break;
791 	default:
792 		/* Invalid key length */
793 		return -EINVAL;
794 	}
795 
796 	memcpy(ctx->key + authkeylen, keys->enckey, keys->enckeylen);
797 
798 	ipad = ctx->ipad;
799 	opad = ctx->opad;
800 
801 	memcpy(ipad, ctx->key, authkeylen);
802 	memset(ipad + authkeylen, 0, bs - authkeylen);
803 	memcpy(opad, ipad, bs);
804 
805 	for (icount = 0; icount < bs; icount++) {
806 		ipad[icount] ^= 0x36;
807 		opad[icount] ^= 0x5c;
808 	}
809 
810 	/*
811 	 * Partial Hash calculated from the software
812 	 * algorithm is retrieved for IPAD & OPAD
813 	 */
814 
815 	/* IPAD Calculation */
816 	crypto_shash_init(&ctx->sdesc->shash);
817 	crypto_shash_update(&ctx->sdesc->shash, ipad, bs);
818 	crypto_shash_export(&ctx->sdesc->shash, ipad);
819 	ret = swap_pad(ctx->mac_type, ipad);
820 	if (ret)
821 		goto calc_fail;
822 
823 	/* OPAD Calculation */
824 	crypto_shash_init(&ctx->sdesc->shash);
825 	crypto_shash_update(&ctx->sdesc->shash, opad, bs);
826 	crypto_shash_export(&ctx->sdesc->shash, opad);
827 	ret = swap_pad(ctx->mac_type, opad);
828 
829 calc_fail:
830 	return ret;
831 }
832 
833 static int otx_cpt_aead_cbc_aes_sha_setkey(struct crypto_aead *cipher,
834 					   const unsigned char *key,
835 					   unsigned int keylen)
836 {
837 	struct crypto_authenc_keys authenc_keys;
838 	int status;
839 
840 	status = crypto_authenc_extractkeys(&authenc_keys, key, keylen);
841 	if (status)
842 		goto badkey;
843 
844 	status = aead_hmac_init(cipher, &authenc_keys);
845 
846 badkey:
847 	return status;
848 }
849 
850 static int otx_cpt_aead_ecb_null_sha_setkey(struct crypto_aead *cipher,
851 					    const unsigned char *key,
852 					    unsigned int keylen)
853 {
854 	return otx_cpt_aead_cbc_aes_sha_setkey(cipher, key, keylen);
855 }
856 
857 static int otx_cpt_aead_gcm_aes_setkey(struct crypto_aead *cipher,
858 				       const unsigned char *key,
859 				       unsigned int keylen)
860 {
861 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
862 
863 	/*
864 	 * For aes gcm we expect to get encryption key (16, 24, 32 bytes)
865 	 * and salt (4 bytes)
866 	 */
867 	switch (keylen) {
868 	case AES_KEYSIZE_128 + AES_GCM_SALT_SIZE:
869 		ctx->key_type = OTX_CPT_AES_128_BIT;
870 		ctx->enc_key_len = AES_KEYSIZE_128;
871 		break;
872 	case AES_KEYSIZE_192 + AES_GCM_SALT_SIZE:
873 		ctx->key_type = OTX_CPT_AES_192_BIT;
874 		ctx->enc_key_len = AES_KEYSIZE_192;
875 		break;
876 	case AES_KEYSIZE_256 + AES_GCM_SALT_SIZE:
877 		ctx->key_type = OTX_CPT_AES_256_BIT;
878 		ctx->enc_key_len = AES_KEYSIZE_256;
879 		break;
880 	default:
881 		/* Invalid key and salt length */
882 		return -EINVAL;
883 	}
884 
885 	/* Store encryption key and salt */
886 	memcpy(ctx->key, key, keylen);
887 
888 	return 0;
889 }
890 
891 static inline u32 create_aead_ctx_hdr(struct aead_request *req, u32 enc,
892 				      u32 *argcnt)
893 {
894 	struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
895 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
896 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
897 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
898 	struct otx_cpt_fc_ctx *fctx = &rctx->fctx;
899 	int mac_len = crypto_aead_authsize(tfm);
900 	int ds;
901 
902 	rctx->ctrl_word.e.enc_data_offset = req->assoclen;
903 
904 	switch (ctx->cipher_type) {
905 	case OTX_CPT_AES_CBC:
906 		fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_CPTR;
907 		/* Copy encryption key to context */
908 		memcpy(fctx->enc.encr_key, ctx->key + ctx->auth_key_len,
909 		       ctx->enc_key_len);
910 		/* Copy IV to context */
911 		memcpy(fctx->enc.encr_iv, req->iv, crypto_aead_ivsize(tfm));
912 
913 		ds = crypto_shash_digestsize(ctx->hashalg);
914 		if (ctx->mac_type == OTX_CPT_SHA384)
915 			ds = SHA512_DIGEST_SIZE;
916 		if (ctx->ipad)
917 			memcpy(fctx->hmac.e.ipad, ctx->ipad, ds);
918 		if (ctx->opad)
919 			memcpy(fctx->hmac.e.opad, ctx->opad, ds);
920 		break;
921 
922 	case OTX_CPT_AES_GCM:
923 		fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_DPTR;
924 		/* Copy encryption key to context */
925 		memcpy(fctx->enc.encr_key, ctx->key, ctx->enc_key_len);
926 		/* Copy salt to context */
927 		memcpy(fctx->enc.encr_iv, ctx->key + ctx->enc_key_len,
928 		       AES_GCM_SALT_SIZE);
929 
930 		rctx->ctrl_word.e.iv_offset = req->assoclen - AES_GCM_IV_OFFSET;
931 		break;
932 
933 	default:
934 		/* Unknown cipher type */
935 		return -EINVAL;
936 	}
937 	rctx->ctrl_word.flags = cpu_to_be64(rctx->ctrl_word.cflags);
938 
939 	req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER;
940 	req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ;
941 	req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_FC |
942 				 DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER);
943 	if (enc) {
944 		req_info->req.opcode.s.minor = 2;
945 		req_info->req.param1 = req->cryptlen;
946 		req_info->req.param2 = req->cryptlen + req->assoclen;
947 	} else {
948 		req_info->req.opcode.s.minor = 3;
949 		req_info->req.param1 = req->cryptlen - mac_len;
950 		req_info->req.param2 = req->cryptlen + req->assoclen - mac_len;
951 	}
952 
953 	fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type;
954 	fctx->enc.enc_ctrl.e.aes_key = ctx->key_type;
955 	fctx->enc.enc_ctrl.e.mac_type = ctx->mac_type;
956 	fctx->enc.enc_ctrl.e.mac_len = mac_len;
957 	fctx->enc.enc_ctrl.flags = cpu_to_be64(fctx->enc.enc_ctrl.cflags);
958 
959 	/*
960 	 * Storing Packet Data Information in offset
961 	 * Control Word First 8 bytes
962 	 */
963 	req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word;
964 	req_info->in[*argcnt].size = CONTROL_WORD_LEN;
965 	req_info->req.dlen += CONTROL_WORD_LEN;
966 	++(*argcnt);
967 
968 	req_info->in[*argcnt].vptr = (u8 *)fctx;
969 	req_info->in[*argcnt].size = sizeof(struct otx_cpt_fc_ctx);
970 	req_info->req.dlen += sizeof(struct otx_cpt_fc_ctx);
971 	++(*argcnt);
972 
973 	return 0;
974 }
975 
976 static inline u32 create_hmac_ctx_hdr(struct aead_request *req, u32 *argcnt,
977 				      u32 enc)
978 {
979 	struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
980 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
981 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
982 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
983 
984 	req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER;
985 	req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ;
986 	req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_HMAC |
987 				 DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER);
988 	req_info->is_trunc_hmac = ctx->is_trunc_hmac;
989 
990 	req_info->req.opcode.s.minor = 0;
991 	req_info->req.param1 = ctx->auth_key_len;
992 	req_info->req.param2 = ctx->mac_type << 8;
993 
994 	/* Add authentication key */
995 	req_info->in[*argcnt].vptr = ctx->key;
996 	req_info->in[*argcnt].size = round_up(ctx->auth_key_len, 8);
997 	req_info->req.dlen += round_up(ctx->auth_key_len, 8);
998 	++(*argcnt);
999 
1000 	return 0;
1001 }
1002 
1003 static inline u32 create_aead_input_list(struct aead_request *req, u32 enc)
1004 {
1005 	struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1006 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1007 	u32 inputlen =  req->cryptlen + req->assoclen;
1008 	u32 status, argcnt = 0;
1009 
1010 	status = create_aead_ctx_hdr(req, enc, &argcnt);
1011 	if (status)
1012 		return status;
1013 	update_input_data(req_info, req->src, inputlen, &argcnt);
1014 	req_info->incnt = argcnt;
1015 
1016 	return 0;
1017 }
1018 
1019 static inline u32 create_aead_output_list(struct aead_request *req, u32 enc,
1020 					  u32 mac_len)
1021 {
1022 	struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1023 	struct otx_cpt_req_info *req_info =  &rctx->cpt_req;
1024 	u32 argcnt = 0, outputlen = 0;
1025 
1026 	if (enc)
1027 		outputlen = req->cryptlen +  req->assoclen + mac_len;
1028 	else
1029 		outputlen = req->cryptlen + req->assoclen - mac_len;
1030 
1031 	update_output_data(req_info, req->dst, 0, outputlen, &argcnt);
1032 	req_info->outcnt = argcnt;
1033 
1034 	return 0;
1035 }
1036 
1037 static inline u32 create_aead_null_input_list(struct aead_request *req,
1038 					      u32 enc, u32 mac_len)
1039 {
1040 	struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1041 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1042 	u32 inputlen, argcnt = 0;
1043 
1044 	if (enc)
1045 		inputlen =  req->cryptlen + req->assoclen;
1046 	else
1047 		inputlen =  req->cryptlen + req->assoclen - mac_len;
1048 
1049 	create_hmac_ctx_hdr(req, &argcnt, enc);
1050 	update_input_data(req_info, req->src, inputlen, &argcnt);
1051 	req_info->incnt = argcnt;
1052 
1053 	return 0;
1054 }
1055 
1056 static inline u32 create_aead_null_output_list(struct aead_request *req,
1057 					       u32 enc, u32 mac_len)
1058 {
1059 	struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1060 	struct otx_cpt_req_info *req_info =  &rctx->cpt_req;
1061 	struct scatterlist *dst;
1062 	u8 *ptr = NULL;
1063 	int argcnt = 0, status, offset;
1064 	u32 inputlen;
1065 
1066 	if (enc)
1067 		inputlen =  req->cryptlen + req->assoclen;
1068 	else
1069 		inputlen =  req->cryptlen + req->assoclen - mac_len;
1070 
1071 	/*
1072 	 * If source and destination are different
1073 	 * then copy payload to destination
1074 	 */
1075 	if (req->src != req->dst) {
1076 
1077 		ptr = kmalloc(inputlen, (req_info->areq->flags &
1078 					 CRYPTO_TFM_REQ_MAY_SLEEP) ?
1079 					 GFP_KERNEL : GFP_ATOMIC);
1080 		if (!ptr) {
1081 			status = -ENOMEM;
1082 			goto error;
1083 		}
1084 
1085 		status = sg_copy_to_buffer(req->src, sg_nents(req->src), ptr,
1086 					   inputlen);
1087 		if (status != inputlen) {
1088 			status = -EINVAL;
1089 			goto error_free;
1090 		}
1091 		status = sg_copy_from_buffer(req->dst, sg_nents(req->dst), ptr,
1092 					     inputlen);
1093 		if (status != inputlen) {
1094 			status = -EINVAL;
1095 			goto error_free;
1096 		}
1097 		kfree(ptr);
1098 	}
1099 
1100 	if (enc) {
1101 		/*
1102 		 * In an encryption scenario hmac needs
1103 		 * to be appended after payload
1104 		 */
1105 		dst = req->dst;
1106 		offset = inputlen;
1107 		while (offset >= dst->length) {
1108 			offset -= dst->length;
1109 			dst = sg_next(dst);
1110 			if (!dst) {
1111 				status = -ENOENT;
1112 				goto error;
1113 			}
1114 		}
1115 
1116 		update_output_data(req_info, dst, offset, mac_len, &argcnt);
1117 	} else {
1118 		/*
1119 		 * In a decryption scenario calculated hmac for received
1120 		 * payload needs to be compare with hmac received
1121 		 */
1122 		status = sg_copy_buffer(req->src, sg_nents(req->src),
1123 					rctx->fctx.hmac.s.hmac_recv, mac_len,
1124 					inputlen, true);
1125 		if (status != mac_len) {
1126 			status = -EINVAL;
1127 			goto error;
1128 		}
1129 
1130 		req_info->out[argcnt].vptr = rctx->fctx.hmac.s.hmac_calc;
1131 		req_info->out[argcnt].size = mac_len;
1132 		argcnt++;
1133 	}
1134 
1135 	req_info->outcnt = argcnt;
1136 	return 0;
1137 
1138 error_free:
1139 	kfree(ptr);
1140 error:
1141 	return status;
1142 }
1143 
1144 static u32 cpt_aead_enc_dec(struct aead_request *req, u8 reg_type, u8 enc)
1145 {
1146 	struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1147 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1148 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1149 	struct pci_dev *pdev;
1150 	u32 status, cpu_num;
1151 
1152 	/* Clear control words */
1153 	rctx->ctrl_word.flags = 0;
1154 	rctx->fctx.enc.enc_ctrl.flags = 0;
1155 
1156 	req_info->callback = otx_cpt_aead_callback;
1157 	req_info->areq = &req->base;
1158 	req_info->req_type = reg_type;
1159 	req_info->is_enc = enc;
1160 	req_info->is_trunc_hmac = false;
1161 
1162 	switch (reg_type) {
1163 	case OTX_CPT_AEAD_ENC_DEC_REQ:
1164 		status = create_aead_input_list(req, enc);
1165 		if (status)
1166 			return status;
1167 		status = create_aead_output_list(req, enc,
1168 						 crypto_aead_authsize(tfm));
1169 		if (status)
1170 			return status;
1171 		break;
1172 
1173 	case OTX_CPT_AEAD_ENC_DEC_NULL_REQ:
1174 		status = create_aead_null_input_list(req, enc,
1175 						     crypto_aead_authsize(tfm));
1176 		if (status)
1177 			return status;
1178 		status = create_aead_null_output_list(req, enc,
1179 						crypto_aead_authsize(tfm));
1180 		if (status)
1181 			return status;
1182 		break;
1183 
1184 	default:
1185 		return -EINVAL;
1186 	}
1187 
1188 	/* Validate that request doesn't exceed maximum CPT supported size */
1189 	if (req_info->req.param1 > OTX_CPT_MAX_REQ_SIZE ||
1190 	    req_info->req.param2 > OTX_CPT_MAX_REQ_SIZE)
1191 		return -E2BIG;
1192 
1193 	status = get_se_device(&pdev, &cpu_num);
1194 	if (status)
1195 		return status;
1196 
1197 	req_info->ctrl.s.grp = 0;
1198 
1199 	status = otx_cpt_do_request(pdev, req_info, cpu_num);
1200 	/*
1201 	 * We perform an asynchronous send and once
1202 	 * the request is completed the driver would
1203 	 * intimate through registered call back functions
1204 	 */
1205 	return status;
1206 }
1207 
1208 static int otx_cpt_aead_encrypt(struct aead_request *req)
1209 {
1210 	return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_REQ, true);
1211 }
1212 
1213 static int otx_cpt_aead_decrypt(struct aead_request *req)
1214 {
1215 	return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_REQ, false);
1216 }
1217 
1218 static int otx_cpt_aead_null_encrypt(struct aead_request *req)
1219 {
1220 	return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_NULL_REQ, true);
1221 }
1222 
1223 static int otx_cpt_aead_null_decrypt(struct aead_request *req)
1224 {
1225 	return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_NULL_REQ, false);
1226 }
1227 
1228 static struct skcipher_alg otx_cpt_skciphers[] = { {
1229 	.base.cra_name = "xts(aes)",
1230 	.base.cra_driver_name = "cpt_xts_aes",
1231 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1232 	.base.cra_blocksize = AES_BLOCK_SIZE,
1233 	.base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
1234 	.base.cra_alignmask = 7,
1235 	.base.cra_priority = 4001,
1236 	.base.cra_module = THIS_MODULE,
1237 
1238 	.init = otx_cpt_enc_dec_init,
1239 	.ivsize = AES_BLOCK_SIZE,
1240 	.min_keysize = 2 * AES_MIN_KEY_SIZE,
1241 	.max_keysize = 2 * AES_MAX_KEY_SIZE,
1242 	.setkey = otx_cpt_skcipher_xts_setkey,
1243 	.encrypt = otx_cpt_skcipher_encrypt,
1244 	.decrypt = otx_cpt_skcipher_decrypt,
1245 }, {
1246 	.base.cra_name = "cbc(aes)",
1247 	.base.cra_driver_name = "cpt_cbc_aes",
1248 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1249 	.base.cra_blocksize = AES_BLOCK_SIZE,
1250 	.base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
1251 	.base.cra_alignmask = 7,
1252 	.base.cra_priority = 4001,
1253 	.base.cra_module = THIS_MODULE,
1254 
1255 	.init = otx_cpt_enc_dec_init,
1256 	.ivsize = AES_BLOCK_SIZE,
1257 	.min_keysize = AES_MIN_KEY_SIZE,
1258 	.max_keysize = AES_MAX_KEY_SIZE,
1259 	.setkey = otx_cpt_skcipher_cbc_aes_setkey,
1260 	.encrypt = otx_cpt_skcipher_encrypt,
1261 	.decrypt = otx_cpt_skcipher_decrypt,
1262 }, {
1263 	.base.cra_name = "ecb(aes)",
1264 	.base.cra_driver_name = "cpt_ecb_aes",
1265 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1266 	.base.cra_blocksize = AES_BLOCK_SIZE,
1267 	.base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
1268 	.base.cra_alignmask = 7,
1269 	.base.cra_priority = 4001,
1270 	.base.cra_module = THIS_MODULE,
1271 
1272 	.init = otx_cpt_enc_dec_init,
1273 	.ivsize = 0,
1274 	.min_keysize = AES_MIN_KEY_SIZE,
1275 	.max_keysize = AES_MAX_KEY_SIZE,
1276 	.setkey = otx_cpt_skcipher_ecb_aes_setkey,
1277 	.encrypt = otx_cpt_skcipher_encrypt,
1278 	.decrypt = otx_cpt_skcipher_decrypt,
1279 }, {
1280 	.base.cra_name = "cfb(aes)",
1281 	.base.cra_driver_name = "cpt_cfb_aes",
1282 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1283 	.base.cra_blocksize = AES_BLOCK_SIZE,
1284 	.base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
1285 	.base.cra_alignmask = 7,
1286 	.base.cra_priority = 4001,
1287 	.base.cra_module = THIS_MODULE,
1288 
1289 	.init = otx_cpt_enc_dec_init,
1290 	.ivsize = AES_BLOCK_SIZE,
1291 	.min_keysize = AES_MIN_KEY_SIZE,
1292 	.max_keysize = AES_MAX_KEY_SIZE,
1293 	.setkey = otx_cpt_skcipher_cfb_aes_setkey,
1294 	.encrypt = otx_cpt_skcipher_encrypt,
1295 	.decrypt = otx_cpt_skcipher_decrypt,
1296 }, {
1297 	.base.cra_name = "cbc(des3_ede)",
1298 	.base.cra_driver_name = "cpt_cbc_des3_ede",
1299 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1300 	.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1301 	.base.cra_ctxsize = sizeof(struct otx_cpt_des3_ctx),
1302 	.base.cra_alignmask = 7,
1303 	.base.cra_priority = 4001,
1304 	.base.cra_module = THIS_MODULE,
1305 
1306 	.init = otx_cpt_enc_dec_init,
1307 	.min_keysize = DES3_EDE_KEY_SIZE,
1308 	.max_keysize = DES3_EDE_KEY_SIZE,
1309 	.ivsize = DES_BLOCK_SIZE,
1310 	.setkey = otx_cpt_skcipher_cbc_des3_setkey,
1311 	.encrypt = otx_cpt_skcipher_encrypt,
1312 	.decrypt = otx_cpt_skcipher_decrypt,
1313 }, {
1314 	.base.cra_name = "ecb(des3_ede)",
1315 	.base.cra_driver_name = "cpt_ecb_des3_ede",
1316 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1317 	.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1318 	.base.cra_ctxsize = sizeof(struct otx_cpt_des3_ctx),
1319 	.base.cra_alignmask = 7,
1320 	.base.cra_priority = 4001,
1321 	.base.cra_module = THIS_MODULE,
1322 
1323 	.init = otx_cpt_enc_dec_init,
1324 	.min_keysize = DES3_EDE_KEY_SIZE,
1325 	.max_keysize = DES3_EDE_KEY_SIZE,
1326 	.ivsize = 0,
1327 	.setkey = otx_cpt_skcipher_ecb_des3_setkey,
1328 	.encrypt = otx_cpt_skcipher_encrypt,
1329 	.decrypt = otx_cpt_skcipher_decrypt,
1330 } };
1331 
1332 static struct aead_alg otx_cpt_aeads[] = { {
1333 	.base = {
1334 		.cra_name = "authenc(hmac(sha1),cbc(aes))",
1335 		.cra_driver_name = "cpt_hmac_sha1_cbc_aes",
1336 		.cra_blocksize = AES_BLOCK_SIZE,
1337 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1338 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1339 		.cra_priority = 4001,
1340 		.cra_alignmask = 0,
1341 		.cra_module = THIS_MODULE,
1342 	},
1343 	.init = otx_cpt_aead_cbc_aes_sha1_init,
1344 	.exit = otx_cpt_aead_exit,
1345 	.setkey = otx_cpt_aead_cbc_aes_sha_setkey,
1346 	.setauthsize = otx_cpt_aead_set_authsize,
1347 	.encrypt = otx_cpt_aead_encrypt,
1348 	.decrypt = otx_cpt_aead_decrypt,
1349 	.ivsize = AES_BLOCK_SIZE,
1350 	.maxauthsize = SHA1_DIGEST_SIZE,
1351 }, {
1352 	.base = {
1353 		.cra_name = "authenc(hmac(sha256),cbc(aes))",
1354 		.cra_driver_name = "cpt_hmac_sha256_cbc_aes",
1355 		.cra_blocksize = AES_BLOCK_SIZE,
1356 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1357 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1358 		.cra_priority = 4001,
1359 		.cra_alignmask = 0,
1360 		.cra_module = THIS_MODULE,
1361 	},
1362 	.init = otx_cpt_aead_cbc_aes_sha256_init,
1363 	.exit = otx_cpt_aead_exit,
1364 	.setkey = otx_cpt_aead_cbc_aes_sha_setkey,
1365 	.setauthsize = otx_cpt_aead_set_authsize,
1366 	.encrypt = otx_cpt_aead_encrypt,
1367 	.decrypt = otx_cpt_aead_decrypt,
1368 	.ivsize = AES_BLOCK_SIZE,
1369 	.maxauthsize = SHA256_DIGEST_SIZE,
1370 }, {
1371 	.base = {
1372 		.cra_name = "authenc(hmac(sha384),cbc(aes))",
1373 		.cra_driver_name = "cpt_hmac_sha384_cbc_aes",
1374 		.cra_blocksize = AES_BLOCK_SIZE,
1375 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1376 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1377 		.cra_priority = 4001,
1378 		.cra_alignmask = 0,
1379 		.cra_module = THIS_MODULE,
1380 	},
1381 	.init = otx_cpt_aead_cbc_aes_sha384_init,
1382 	.exit = otx_cpt_aead_exit,
1383 	.setkey = otx_cpt_aead_cbc_aes_sha_setkey,
1384 	.setauthsize = otx_cpt_aead_set_authsize,
1385 	.encrypt = otx_cpt_aead_encrypt,
1386 	.decrypt = otx_cpt_aead_decrypt,
1387 	.ivsize = AES_BLOCK_SIZE,
1388 	.maxauthsize = SHA384_DIGEST_SIZE,
1389 }, {
1390 	.base = {
1391 		.cra_name = "authenc(hmac(sha512),cbc(aes))",
1392 		.cra_driver_name = "cpt_hmac_sha512_cbc_aes",
1393 		.cra_blocksize = AES_BLOCK_SIZE,
1394 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1395 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1396 		.cra_priority = 4001,
1397 		.cra_alignmask = 0,
1398 		.cra_module = THIS_MODULE,
1399 	},
1400 	.init = otx_cpt_aead_cbc_aes_sha512_init,
1401 	.exit = otx_cpt_aead_exit,
1402 	.setkey = otx_cpt_aead_cbc_aes_sha_setkey,
1403 	.setauthsize = otx_cpt_aead_set_authsize,
1404 	.encrypt = otx_cpt_aead_encrypt,
1405 	.decrypt = otx_cpt_aead_decrypt,
1406 	.ivsize = AES_BLOCK_SIZE,
1407 	.maxauthsize = SHA512_DIGEST_SIZE,
1408 }, {
1409 	.base = {
1410 		.cra_name = "authenc(hmac(sha1),ecb(cipher_null))",
1411 		.cra_driver_name = "cpt_hmac_sha1_ecb_null",
1412 		.cra_blocksize = 1,
1413 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1414 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1415 		.cra_priority = 4001,
1416 		.cra_alignmask = 0,
1417 		.cra_module = THIS_MODULE,
1418 	},
1419 	.init = otx_cpt_aead_ecb_null_sha1_init,
1420 	.exit = otx_cpt_aead_exit,
1421 	.setkey = otx_cpt_aead_ecb_null_sha_setkey,
1422 	.setauthsize = otx_cpt_aead_set_authsize,
1423 	.encrypt = otx_cpt_aead_null_encrypt,
1424 	.decrypt = otx_cpt_aead_null_decrypt,
1425 	.ivsize = 0,
1426 	.maxauthsize = SHA1_DIGEST_SIZE,
1427 }, {
1428 	.base = {
1429 		.cra_name = "authenc(hmac(sha256),ecb(cipher_null))",
1430 		.cra_driver_name = "cpt_hmac_sha256_ecb_null",
1431 		.cra_blocksize = 1,
1432 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1433 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1434 		.cra_priority = 4001,
1435 		.cra_alignmask = 0,
1436 		.cra_module = THIS_MODULE,
1437 	},
1438 	.init = otx_cpt_aead_ecb_null_sha256_init,
1439 	.exit = otx_cpt_aead_exit,
1440 	.setkey = otx_cpt_aead_ecb_null_sha_setkey,
1441 	.setauthsize = otx_cpt_aead_set_authsize,
1442 	.encrypt = otx_cpt_aead_null_encrypt,
1443 	.decrypt = otx_cpt_aead_null_decrypt,
1444 	.ivsize = 0,
1445 	.maxauthsize = SHA256_DIGEST_SIZE,
1446 }, {
1447 	.base = {
1448 		.cra_name = "authenc(hmac(sha384),ecb(cipher_null))",
1449 		.cra_driver_name = "cpt_hmac_sha384_ecb_null",
1450 		.cra_blocksize = 1,
1451 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1452 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1453 		.cra_priority = 4001,
1454 		.cra_alignmask = 0,
1455 		.cra_module = THIS_MODULE,
1456 	},
1457 	.init = otx_cpt_aead_ecb_null_sha384_init,
1458 	.exit = otx_cpt_aead_exit,
1459 	.setkey = otx_cpt_aead_ecb_null_sha_setkey,
1460 	.setauthsize = otx_cpt_aead_set_authsize,
1461 	.encrypt = otx_cpt_aead_null_encrypt,
1462 	.decrypt = otx_cpt_aead_null_decrypt,
1463 	.ivsize = 0,
1464 	.maxauthsize = SHA384_DIGEST_SIZE,
1465 }, {
1466 	.base = {
1467 		.cra_name = "authenc(hmac(sha512),ecb(cipher_null))",
1468 		.cra_driver_name = "cpt_hmac_sha512_ecb_null",
1469 		.cra_blocksize = 1,
1470 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1471 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1472 		.cra_priority = 4001,
1473 		.cra_alignmask = 0,
1474 		.cra_module = THIS_MODULE,
1475 	},
1476 	.init = otx_cpt_aead_ecb_null_sha512_init,
1477 	.exit = otx_cpt_aead_exit,
1478 	.setkey = otx_cpt_aead_ecb_null_sha_setkey,
1479 	.setauthsize = otx_cpt_aead_set_authsize,
1480 	.encrypt = otx_cpt_aead_null_encrypt,
1481 	.decrypt = otx_cpt_aead_null_decrypt,
1482 	.ivsize = 0,
1483 	.maxauthsize = SHA512_DIGEST_SIZE,
1484 }, {
1485 	.base = {
1486 		.cra_name = "rfc4106(gcm(aes))",
1487 		.cra_driver_name = "cpt_rfc4106_gcm_aes",
1488 		.cra_blocksize = 1,
1489 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1490 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1491 		.cra_priority = 4001,
1492 		.cra_alignmask = 0,
1493 		.cra_module = THIS_MODULE,
1494 	},
1495 	.init = otx_cpt_aead_gcm_aes_init,
1496 	.exit = otx_cpt_aead_exit,
1497 	.setkey = otx_cpt_aead_gcm_aes_setkey,
1498 	.setauthsize = otx_cpt_aead_set_authsize,
1499 	.encrypt = otx_cpt_aead_encrypt,
1500 	.decrypt = otx_cpt_aead_decrypt,
1501 	.ivsize = AES_GCM_IV_SIZE,
1502 	.maxauthsize = AES_GCM_ICV_SIZE,
1503 } };
1504 
1505 static inline int is_any_alg_used(void)
1506 {
1507 	int i;
1508 
1509 	for (i = 0; i < ARRAY_SIZE(otx_cpt_skciphers); i++)
1510 		if (refcount_read(&otx_cpt_skciphers[i].base.cra_refcnt) != 1)
1511 			return true;
1512 	for (i = 0; i < ARRAY_SIZE(otx_cpt_aeads); i++)
1513 		if (refcount_read(&otx_cpt_aeads[i].base.cra_refcnt) != 1)
1514 			return true;
1515 	return false;
1516 }
1517 
1518 static inline int cpt_register_algs(void)
1519 {
1520 	int i, err = 0;
1521 
1522 	if (!IS_ENABLED(CONFIG_DM_CRYPT)) {
1523 		for (i = 0; i < ARRAY_SIZE(otx_cpt_skciphers); i++)
1524 			otx_cpt_skciphers[i].base.cra_flags &= ~CRYPTO_ALG_DEAD;
1525 
1526 		err = crypto_register_skciphers(otx_cpt_skciphers,
1527 						ARRAY_SIZE(otx_cpt_skciphers));
1528 		if (err)
1529 			return err;
1530 	}
1531 
1532 	for (i = 0; i < ARRAY_SIZE(otx_cpt_aeads); i++)
1533 		otx_cpt_aeads[i].base.cra_flags &= ~CRYPTO_ALG_DEAD;
1534 
1535 	err = crypto_register_aeads(otx_cpt_aeads, ARRAY_SIZE(otx_cpt_aeads));
1536 	if (err) {
1537 		crypto_unregister_skciphers(otx_cpt_skciphers,
1538 					    ARRAY_SIZE(otx_cpt_skciphers));
1539 		return err;
1540 	}
1541 
1542 	return 0;
1543 }
1544 
1545 static inline void cpt_unregister_algs(void)
1546 {
1547 	crypto_unregister_skciphers(otx_cpt_skciphers,
1548 				    ARRAY_SIZE(otx_cpt_skciphers));
1549 	crypto_unregister_aeads(otx_cpt_aeads, ARRAY_SIZE(otx_cpt_aeads));
1550 }
1551 
1552 static int compare_func(const void *lptr, const void *rptr)
1553 {
1554 	struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr;
1555 	struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr;
1556 
1557 	if (ldesc->dev->devfn < rdesc->dev->devfn)
1558 		return -1;
1559 	if (ldesc->dev->devfn > rdesc->dev->devfn)
1560 		return 1;
1561 	return 0;
1562 }
1563 
1564 static void swap_func(void *lptr, void *rptr, int size)
1565 {
1566 	struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr;
1567 	struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr;
1568 
1569 	swap(*ldesc, *rdesc);
1570 }
1571 
1572 int otx_cpt_crypto_init(struct pci_dev *pdev, struct module *mod,
1573 			enum otx_cptpf_type pf_type,
1574 			enum otx_cptvf_type engine_type,
1575 			int num_queues, int num_devices)
1576 {
1577 	int ret = 0;
1578 	int count;
1579 
1580 	mutex_lock(&mutex);
1581 	switch (engine_type) {
1582 	case OTX_CPT_SE_TYPES:
1583 		count = atomic_read(&se_devices.count);
1584 		if (count >= CPT_MAX_VF_NUM) {
1585 			dev_err(&pdev->dev, "No space to add a new device\n");
1586 			ret = -ENOSPC;
1587 			goto err;
1588 		}
1589 		se_devices.desc[count].pf_type = pf_type;
1590 		se_devices.desc[count].num_queues = num_queues;
1591 		se_devices.desc[count++].dev = pdev;
1592 		atomic_inc(&se_devices.count);
1593 
1594 		if (atomic_read(&se_devices.count) == num_devices &&
1595 		    is_crypto_registered == false) {
1596 			if (cpt_register_algs()) {
1597 				dev_err(&pdev->dev,
1598 				   "Error in registering crypto algorithms\n");
1599 				ret =  -EINVAL;
1600 				goto err;
1601 			}
1602 			try_module_get(mod);
1603 			is_crypto_registered = true;
1604 		}
1605 		sort(se_devices.desc, count, sizeof(struct cpt_device_desc),
1606 		     compare_func, swap_func);
1607 		break;
1608 
1609 	case OTX_CPT_AE_TYPES:
1610 		count = atomic_read(&ae_devices.count);
1611 		if (count >= CPT_MAX_VF_NUM) {
1612 			dev_err(&pdev->dev, "No space to a add new device\n");
1613 			ret = -ENOSPC;
1614 			goto err;
1615 		}
1616 		ae_devices.desc[count].pf_type = pf_type;
1617 		ae_devices.desc[count].num_queues = num_queues;
1618 		ae_devices.desc[count++].dev = pdev;
1619 		atomic_inc(&ae_devices.count);
1620 		sort(ae_devices.desc, count, sizeof(struct cpt_device_desc),
1621 		     compare_func, swap_func);
1622 		break;
1623 
1624 	default:
1625 		dev_err(&pdev->dev, "Unknown VF type %d\n", engine_type);
1626 		ret = BAD_OTX_CPTVF_TYPE;
1627 	}
1628 err:
1629 	mutex_unlock(&mutex);
1630 	return ret;
1631 }
1632 
1633 void otx_cpt_crypto_exit(struct pci_dev *pdev, struct module *mod,
1634 			 enum otx_cptvf_type engine_type)
1635 {
1636 	struct cpt_device_table *dev_tbl;
1637 	bool dev_found = false;
1638 	int i, j, count;
1639 
1640 	mutex_lock(&mutex);
1641 
1642 	dev_tbl = (engine_type == OTX_CPT_AE_TYPES) ? &ae_devices : &se_devices;
1643 	count = atomic_read(&dev_tbl->count);
1644 	for (i = 0; i < count; i++)
1645 		if (pdev == dev_tbl->desc[i].dev) {
1646 			for (j = i; j < count-1; j++)
1647 				dev_tbl->desc[j] = dev_tbl->desc[j+1];
1648 			dev_found = true;
1649 			break;
1650 		}
1651 
1652 	if (!dev_found) {
1653 		dev_err(&pdev->dev, "%s device not found\n", __func__);
1654 		goto exit;
1655 	}
1656 
1657 	if (engine_type != OTX_CPT_AE_TYPES) {
1658 		if (atomic_dec_and_test(&se_devices.count) &&
1659 		    !is_any_alg_used()) {
1660 			cpt_unregister_algs();
1661 			module_put(mod);
1662 			is_crypto_registered = false;
1663 		}
1664 	} else
1665 		atomic_dec(&ae_devices.count);
1666 exit:
1667 	mutex_unlock(&mutex);
1668 }
1669