1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTX CPT driver
3  *
4  * Copyright (C) 2019 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <crypto/aes.h>
12 #include <crypto/authenc.h>
13 #include <crypto/cryptd.h>
14 #include <crypto/des.h>
15 #include <crypto/internal/aead.h>
16 #include <crypto/sha.h>
17 #include <crypto/xts.h>
18 #include <crypto/scatterwalk.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/sort.h>
21 #include <linux/module.h>
22 #include "otx_cptvf.h"
23 #include "otx_cptvf_algs.h"
24 #include "otx_cptvf_reqmgr.h"
25 
26 #define CPT_MAX_VF_NUM	64
27 /* Size of salt in AES GCM mode */
28 #define AES_GCM_SALT_SIZE	4
29 /* Size of IV in AES GCM mode */
30 #define AES_GCM_IV_SIZE		8
31 /* Size of ICV (Integrity Check Value) in AES GCM mode */
32 #define AES_GCM_ICV_SIZE	16
33 /* Offset of IV in AES GCM mode */
34 #define AES_GCM_IV_OFFSET	8
35 #define CONTROL_WORD_LEN	8
36 #define KEY2_OFFSET		48
37 #define DMA_MODE_FLAG(dma_mode) \
38 	(((dma_mode) == OTX_CPT_DMA_GATHER_SCATTER) ? (1 << 7) : 0)
39 
40 /* Truncated SHA digest size */
41 #define SHA1_TRUNC_DIGEST_SIZE		12
42 #define SHA256_TRUNC_DIGEST_SIZE	16
43 #define SHA384_TRUNC_DIGEST_SIZE	24
44 #define SHA512_TRUNC_DIGEST_SIZE	32
45 
46 static DEFINE_MUTEX(mutex);
47 static int is_crypto_registered;
48 
49 struct cpt_device_desc {
50 	enum otx_cptpf_type pf_type;
51 	struct pci_dev *dev;
52 	int num_queues;
53 };
54 
55 struct cpt_device_table {
56 	atomic_t count;
57 	struct cpt_device_desc desc[CPT_MAX_VF_NUM];
58 };
59 
60 static struct cpt_device_table se_devices = {
61 	.count = ATOMIC_INIT(0)
62 };
63 
64 static struct cpt_device_table ae_devices = {
65 	.count = ATOMIC_INIT(0)
66 };
67 
68 static inline int get_se_device(struct pci_dev **pdev, int *cpu_num)
69 {
70 	int count, ret = 0;
71 
72 	count = atomic_read(&se_devices.count);
73 	if (count < 1)
74 		return -ENODEV;
75 
76 	*cpu_num = get_cpu();
77 
78 	if (se_devices.desc[0].pf_type == OTX_CPT_SE) {
79 		/*
80 		 * On OcteonTX platform there is one CPT instruction queue bound
81 		 * to each VF. We get maximum performance if one CPT queue
82 		 * is available for each cpu otherwise CPT queues need to be
83 		 * shared between cpus.
84 		 */
85 		if (*cpu_num >= count)
86 			*cpu_num %= count;
87 		*pdev = se_devices.desc[*cpu_num].dev;
88 	} else {
89 		pr_err("Unknown PF type %d\n", se_devices.desc[0].pf_type);
90 		ret = -EINVAL;
91 	}
92 	put_cpu();
93 
94 	return ret;
95 }
96 
97 static inline int validate_hmac_cipher_null(struct otx_cpt_req_info *cpt_req)
98 {
99 	struct otx_cpt_req_ctx *rctx;
100 	struct aead_request *req;
101 	struct crypto_aead *tfm;
102 
103 	req = container_of(cpt_req->areq, struct aead_request, base);
104 	tfm = crypto_aead_reqtfm(req);
105 	rctx = aead_request_ctx(req);
106 	if (memcmp(rctx->fctx.hmac.s.hmac_calc,
107 		   rctx->fctx.hmac.s.hmac_recv,
108 		   crypto_aead_authsize(tfm)) != 0)
109 		return -EBADMSG;
110 
111 	return 0;
112 }
113 
114 static void otx_cpt_aead_callback(int status, void *arg1, void *arg2)
115 {
116 	struct otx_cpt_info_buffer *cpt_info = arg2;
117 	struct crypto_async_request *areq = arg1;
118 	struct otx_cpt_req_info *cpt_req;
119 	struct pci_dev *pdev;
120 
121 	if (!cpt_info)
122 		goto complete;
123 
124 	cpt_req = cpt_info->req;
125 	if (!status) {
126 		/*
127 		 * When selected cipher is NULL we need to manually
128 		 * verify whether calculated hmac value matches
129 		 * received hmac value
130 		 */
131 		if (cpt_req->req_type == OTX_CPT_AEAD_ENC_DEC_NULL_REQ &&
132 		    !cpt_req->is_enc)
133 			status = validate_hmac_cipher_null(cpt_req);
134 	}
135 	pdev = cpt_info->pdev;
136 	do_request_cleanup(pdev, cpt_info);
137 
138 complete:
139 	if (areq)
140 		areq->complete(areq, status);
141 }
142 
143 static void output_iv_copyback(struct crypto_async_request *areq)
144 {
145 	struct otx_cpt_req_info *req_info;
146 	struct skcipher_request *sreq;
147 	struct crypto_skcipher *stfm;
148 	struct otx_cpt_req_ctx *rctx;
149 	struct otx_cpt_enc_ctx *ctx;
150 	u32 start, ivsize;
151 
152 	sreq = container_of(areq, struct skcipher_request, base);
153 	stfm = crypto_skcipher_reqtfm(sreq);
154 	ctx = crypto_skcipher_ctx(stfm);
155 	if (ctx->cipher_type == OTX_CPT_AES_CBC ||
156 	    ctx->cipher_type == OTX_CPT_DES3_CBC) {
157 		rctx = skcipher_request_ctx(sreq);
158 		req_info = &rctx->cpt_req;
159 		ivsize = crypto_skcipher_ivsize(stfm);
160 		start = sreq->cryptlen - ivsize;
161 
162 		if (req_info->is_enc) {
163 			scatterwalk_map_and_copy(sreq->iv, sreq->dst, start,
164 						 ivsize, 0);
165 		} else {
166 			if (sreq->src != sreq->dst) {
167 				scatterwalk_map_and_copy(sreq->iv, sreq->src,
168 							 start, ivsize, 0);
169 			} else {
170 				memcpy(sreq->iv, req_info->iv_out, ivsize);
171 				kfree(req_info->iv_out);
172 			}
173 		}
174 	}
175 }
176 
177 static void otx_cpt_skcipher_callback(int status, void *arg1, void *arg2)
178 {
179 	struct otx_cpt_info_buffer *cpt_info = arg2;
180 	struct crypto_async_request *areq = arg1;
181 	struct pci_dev *pdev;
182 
183 	if (areq) {
184 		if (!status)
185 			output_iv_copyback(areq);
186 		if (cpt_info) {
187 			pdev = cpt_info->pdev;
188 			do_request_cleanup(pdev, cpt_info);
189 		}
190 		areq->complete(areq, status);
191 	}
192 }
193 
194 static inline void update_input_data(struct otx_cpt_req_info *req_info,
195 				     struct scatterlist *inp_sg,
196 				     u32 nbytes, u32 *argcnt)
197 {
198 	req_info->req.dlen += nbytes;
199 
200 	while (nbytes) {
201 		u32 len = min(nbytes, inp_sg->length);
202 		u8 *ptr = sg_virt(inp_sg);
203 
204 		req_info->in[*argcnt].vptr = (void *)ptr;
205 		req_info->in[*argcnt].size = len;
206 		nbytes -= len;
207 		++(*argcnt);
208 		inp_sg = sg_next(inp_sg);
209 	}
210 }
211 
212 static inline void update_output_data(struct otx_cpt_req_info *req_info,
213 				      struct scatterlist *outp_sg,
214 				      u32 offset, u32 nbytes, u32 *argcnt)
215 {
216 	req_info->rlen += nbytes;
217 
218 	while (nbytes) {
219 		u32 len = min(nbytes, outp_sg->length - offset);
220 		u8 *ptr = sg_virt(outp_sg);
221 
222 		req_info->out[*argcnt].vptr = (void *) (ptr + offset);
223 		req_info->out[*argcnt].size = len;
224 		nbytes -= len;
225 		++(*argcnt);
226 		offset = 0;
227 		outp_sg = sg_next(outp_sg);
228 	}
229 }
230 
231 static inline u32 create_ctx_hdr(struct skcipher_request *req, u32 enc,
232 				 u32 *argcnt)
233 {
234 	struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
235 	struct otx_cpt_req_ctx *rctx = skcipher_request_ctx(req);
236 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
237 	struct crypto_tfm *tfm = crypto_skcipher_tfm(stfm);
238 	struct otx_cpt_enc_ctx *ctx = crypto_tfm_ctx(tfm);
239 	struct otx_cpt_fc_ctx *fctx = &rctx->fctx;
240 	int ivsize = crypto_skcipher_ivsize(stfm);
241 	u32 start = req->cryptlen - ivsize;
242 	u64 *ctrl_flags = NULL;
243 	gfp_t flags;
244 
245 	flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
246 			GFP_KERNEL : GFP_ATOMIC;
247 	req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER;
248 	req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ;
249 
250 	req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_FC |
251 				DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER);
252 	if (enc) {
253 		req_info->req.opcode.s.minor = 2;
254 	} else {
255 		req_info->req.opcode.s.minor = 3;
256 		if ((ctx->cipher_type == OTX_CPT_AES_CBC ||
257 		    ctx->cipher_type == OTX_CPT_DES3_CBC) &&
258 		    req->src == req->dst) {
259 			req_info->iv_out = kmalloc(ivsize, flags);
260 			if (!req_info->iv_out)
261 				return -ENOMEM;
262 
263 			scatterwalk_map_and_copy(req_info->iv_out, req->src,
264 						 start, ivsize, 0);
265 		}
266 	}
267 	/* Encryption data length */
268 	req_info->req.param1 = req->cryptlen;
269 	/* Authentication data length */
270 	req_info->req.param2 = 0;
271 
272 	fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type;
273 	fctx->enc.enc_ctrl.e.aes_key = ctx->key_type;
274 	fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_CPTR;
275 
276 	if (ctx->cipher_type == OTX_CPT_AES_XTS)
277 		memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len * 2);
278 	else
279 		memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len);
280 
281 	memcpy(fctx->enc.encr_iv, req->iv, crypto_skcipher_ivsize(stfm));
282 
283 	ctrl_flags = (u64 *)&fctx->enc.enc_ctrl.flags;
284 	*ctrl_flags = cpu_to_be64(*ctrl_flags);
285 
286 	/*
287 	 * Storing  Packet Data Information in offset
288 	 * Control Word First 8 bytes
289 	 */
290 	req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word;
291 	req_info->in[*argcnt].size = CONTROL_WORD_LEN;
292 	req_info->req.dlen += CONTROL_WORD_LEN;
293 	++(*argcnt);
294 
295 	req_info->in[*argcnt].vptr = (u8 *)fctx;
296 	req_info->in[*argcnt].size = sizeof(struct otx_cpt_fc_ctx);
297 	req_info->req.dlen += sizeof(struct otx_cpt_fc_ctx);
298 
299 	++(*argcnt);
300 
301 	return 0;
302 }
303 
304 static inline u32 create_input_list(struct skcipher_request *req, u32 enc,
305 				    u32 enc_iv_len)
306 {
307 	struct otx_cpt_req_ctx *rctx = skcipher_request_ctx(req);
308 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
309 	u32 argcnt =  0;
310 	int ret;
311 
312 	ret = create_ctx_hdr(req, enc, &argcnt);
313 	if (ret)
314 		return ret;
315 
316 	update_input_data(req_info, req->src, req->cryptlen, &argcnt);
317 	req_info->incnt = argcnt;
318 
319 	return 0;
320 }
321 
322 static inline void create_output_list(struct skcipher_request *req,
323 				      u32 enc_iv_len)
324 {
325 	struct otx_cpt_req_ctx *rctx = skcipher_request_ctx(req);
326 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
327 	u32 argcnt = 0;
328 
329 	/*
330 	 * OUTPUT Buffer Processing
331 	 * AES encryption/decryption output would be
332 	 * received in the following format
333 	 *
334 	 * ------IV--------|------ENCRYPTED/DECRYPTED DATA-----|
335 	 * [ 16 Bytes/     [   Request Enc/Dec/ DATA Len AES CBC ]
336 	 */
337 	update_output_data(req_info, req->dst, 0, req->cryptlen, &argcnt);
338 	req_info->outcnt = argcnt;
339 }
340 
341 static inline int cpt_enc_dec(struct skcipher_request *req, u32 enc)
342 {
343 	struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
344 	struct otx_cpt_req_ctx *rctx = skcipher_request_ctx(req);
345 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
346 	u32 enc_iv_len = crypto_skcipher_ivsize(stfm);
347 	struct pci_dev *pdev;
348 	int status, cpu_num;
349 
350 	/* Validate that request doesn't exceed maximum CPT supported size */
351 	if (req->cryptlen > OTX_CPT_MAX_REQ_SIZE)
352 		return -E2BIG;
353 
354 	/* Clear control words */
355 	rctx->ctrl_word.flags = 0;
356 	rctx->fctx.enc.enc_ctrl.flags = 0;
357 
358 	status = create_input_list(req, enc, enc_iv_len);
359 	if (status)
360 		return status;
361 	create_output_list(req, enc_iv_len);
362 
363 	status = get_se_device(&pdev, &cpu_num);
364 	if (status)
365 		return status;
366 
367 	req_info->callback = (void *)otx_cpt_skcipher_callback;
368 	req_info->areq = &req->base;
369 	req_info->req_type = OTX_CPT_ENC_DEC_REQ;
370 	req_info->is_enc = enc;
371 	req_info->is_trunc_hmac = false;
372 	req_info->ctrl.s.grp = 0;
373 
374 	/*
375 	 * We perform an asynchronous send and once
376 	 * the request is completed the driver would
377 	 * intimate through registered call back functions
378 	 */
379 	status = otx_cpt_do_request(pdev, req_info, cpu_num);
380 
381 	return status;
382 }
383 
384 static int otx_cpt_skcipher_encrypt(struct skcipher_request *req)
385 {
386 	return cpt_enc_dec(req, true);
387 }
388 
389 static int otx_cpt_skcipher_decrypt(struct skcipher_request *req)
390 {
391 	return cpt_enc_dec(req, false);
392 }
393 
394 static int otx_cpt_skcipher_xts_setkey(struct crypto_skcipher *tfm,
395 				       const u8 *key, u32 keylen)
396 {
397 	struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
398 	const u8 *key2 = key + (keylen / 2);
399 	const u8 *key1 = key;
400 	int ret;
401 
402 	ret = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
403 	if (ret)
404 		return ret;
405 	ctx->key_len = keylen;
406 	memcpy(ctx->enc_key, key1, keylen / 2);
407 	memcpy(ctx->enc_key + KEY2_OFFSET, key2, keylen / 2);
408 	ctx->cipher_type = OTX_CPT_AES_XTS;
409 	switch (ctx->key_len) {
410 	case 2 * AES_KEYSIZE_128:
411 		ctx->key_type = OTX_CPT_AES_128_BIT;
412 		break;
413 	case 2 * AES_KEYSIZE_256:
414 		ctx->key_type = OTX_CPT_AES_256_BIT;
415 		break;
416 	default:
417 		return -EINVAL;
418 	}
419 
420 	return 0;
421 }
422 
423 static int cpt_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
424 			  u32 keylen, u8 cipher_type)
425 {
426 	struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
427 
428 	if (keylen != DES3_EDE_KEY_SIZE)
429 		return -EINVAL;
430 
431 	ctx->key_len = keylen;
432 	ctx->cipher_type = cipher_type;
433 
434 	memcpy(ctx->enc_key, key, keylen);
435 
436 	return 0;
437 }
438 
439 static int cpt_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
440 			  u32 keylen, u8 cipher_type)
441 {
442 	struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
443 
444 	switch (keylen) {
445 	case AES_KEYSIZE_128:
446 		ctx->key_type = OTX_CPT_AES_128_BIT;
447 		break;
448 	case AES_KEYSIZE_192:
449 		ctx->key_type = OTX_CPT_AES_192_BIT;
450 		break;
451 	case AES_KEYSIZE_256:
452 		ctx->key_type = OTX_CPT_AES_256_BIT;
453 		break;
454 	default:
455 		return -EINVAL;
456 	}
457 	ctx->key_len = keylen;
458 	ctx->cipher_type = cipher_type;
459 
460 	memcpy(ctx->enc_key, key, keylen);
461 
462 	return 0;
463 }
464 
465 static int otx_cpt_skcipher_cbc_aes_setkey(struct crypto_skcipher *tfm,
466 					   const u8 *key, u32 keylen)
467 {
468 	return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_CBC);
469 }
470 
471 static int otx_cpt_skcipher_ecb_aes_setkey(struct crypto_skcipher *tfm,
472 					   const u8 *key, u32 keylen)
473 {
474 	return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_ECB);
475 }
476 
477 static int otx_cpt_skcipher_cfb_aes_setkey(struct crypto_skcipher *tfm,
478 					   const u8 *key, u32 keylen)
479 {
480 	return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_CFB);
481 }
482 
483 static int otx_cpt_skcipher_cbc_des3_setkey(struct crypto_skcipher *tfm,
484 					    const u8 *key, u32 keylen)
485 {
486 	return cpt_des_setkey(tfm, key, keylen, OTX_CPT_DES3_CBC);
487 }
488 
489 static int otx_cpt_skcipher_ecb_des3_setkey(struct crypto_skcipher *tfm,
490 					    const u8 *key, u32 keylen)
491 {
492 	return cpt_des_setkey(tfm, key, keylen, OTX_CPT_DES3_ECB);
493 }
494 
495 static int otx_cpt_enc_dec_init(struct crypto_skcipher *tfm)
496 {
497 	struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
498 
499 	memset(ctx, 0, sizeof(*ctx));
500 	/*
501 	 * Additional memory for skcipher_request is
502 	 * allocated since the cryptd daemon uses
503 	 * this memory for request_ctx information
504 	 */
505 	crypto_skcipher_set_reqsize(tfm, sizeof(struct otx_cpt_req_ctx) +
506 					sizeof(struct skcipher_request));
507 
508 	return 0;
509 }
510 
511 static int cpt_aead_init(struct crypto_aead *tfm, u8 cipher_type, u8 mac_type)
512 {
513 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm);
514 
515 	ctx->cipher_type = cipher_type;
516 	ctx->mac_type = mac_type;
517 
518 	/*
519 	 * When selected cipher is NULL we use HMAC opcode instead of
520 	 * FLEXICRYPTO opcode therefore we don't need to use HASH algorithms
521 	 * for calculating ipad and opad
522 	 */
523 	if (ctx->cipher_type != OTX_CPT_CIPHER_NULL) {
524 		switch (ctx->mac_type) {
525 		case OTX_CPT_SHA1:
526 			ctx->hashalg = crypto_alloc_shash("sha1", 0,
527 							  CRYPTO_ALG_ASYNC);
528 			if (IS_ERR(ctx->hashalg))
529 				return PTR_ERR(ctx->hashalg);
530 			break;
531 
532 		case OTX_CPT_SHA256:
533 			ctx->hashalg = crypto_alloc_shash("sha256", 0,
534 							  CRYPTO_ALG_ASYNC);
535 			if (IS_ERR(ctx->hashalg))
536 				return PTR_ERR(ctx->hashalg);
537 			break;
538 
539 		case OTX_CPT_SHA384:
540 			ctx->hashalg = crypto_alloc_shash("sha384", 0,
541 							  CRYPTO_ALG_ASYNC);
542 			if (IS_ERR(ctx->hashalg))
543 				return PTR_ERR(ctx->hashalg);
544 			break;
545 
546 		case OTX_CPT_SHA512:
547 			ctx->hashalg = crypto_alloc_shash("sha512", 0,
548 							  CRYPTO_ALG_ASYNC);
549 			if (IS_ERR(ctx->hashalg))
550 				return PTR_ERR(ctx->hashalg);
551 			break;
552 		}
553 	}
554 
555 	crypto_aead_set_reqsize(tfm, sizeof(struct otx_cpt_req_ctx));
556 
557 	return 0;
558 }
559 
560 static int otx_cpt_aead_cbc_aes_sha1_init(struct crypto_aead *tfm)
561 {
562 	return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA1);
563 }
564 
565 static int otx_cpt_aead_cbc_aes_sha256_init(struct crypto_aead *tfm)
566 {
567 	return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA256);
568 }
569 
570 static int otx_cpt_aead_cbc_aes_sha384_init(struct crypto_aead *tfm)
571 {
572 	return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA384);
573 }
574 
575 static int otx_cpt_aead_cbc_aes_sha512_init(struct crypto_aead *tfm)
576 {
577 	return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA512);
578 }
579 
580 static int otx_cpt_aead_ecb_null_sha1_init(struct crypto_aead *tfm)
581 {
582 	return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA1);
583 }
584 
585 static int otx_cpt_aead_ecb_null_sha256_init(struct crypto_aead *tfm)
586 {
587 	return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA256);
588 }
589 
590 static int otx_cpt_aead_ecb_null_sha384_init(struct crypto_aead *tfm)
591 {
592 	return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA384);
593 }
594 
595 static int otx_cpt_aead_ecb_null_sha512_init(struct crypto_aead *tfm)
596 {
597 	return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA512);
598 }
599 
600 static int otx_cpt_aead_gcm_aes_init(struct crypto_aead *tfm)
601 {
602 	return cpt_aead_init(tfm, OTX_CPT_AES_GCM, OTX_CPT_MAC_NULL);
603 }
604 
605 static void otx_cpt_aead_exit(struct crypto_aead *tfm)
606 {
607 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm);
608 
609 	kfree(ctx->ipad);
610 	kfree(ctx->opad);
611 	if (ctx->hashalg)
612 		crypto_free_shash(ctx->hashalg);
613 	kfree(ctx->sdesc);
614 }
615 
616 /*
617  * This is the Integrity Check Value validation (aka the authentication tag
618  * length)
619  */
620 static int otx_cpt_aead_set_authsize(struct crypto_aead *tfm,
621 				     unsigned int authsize)
622 {
623 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm);
624 
625 	switch (ctx->mac_type) {
626 	case OTX_CPT_SHA1:
627 		if (authsize != SHA1_DIGEST_SIZE &&
628 		    authsize != SHA1_TRUNC_DIGEST_SIZE)
629 			return -EINVAL;
630 
631 		if (authsize == SHA1_TRUNC_DIGEST_SIZE)
632 			ctx->is_trunc_hmac = true;
633 		break;
634 
635 	case OTX_CPT_SHA256:
636 		if (authsize != SHA256_DIGEST_SIZE &&
637 		    authsize != SHA256_TRUNC_DIGEST_SIZE)
638 			return -EINVAL;
639 
640 		if (authsize == SHA256_TRUNC_DIGEST_SIZE)
641 			ctx->is_trunc_hmac = true;
642 		break;
643 
644 	case OTX_CPT_SHA384:
645 		if (authsize != SHA384_DIGEST_SIZE &&
646 		    authsize != SHA384_TRUNC_DIGEST_SIZE)
647 			return -EINVAL;
648 
649 		if (authsize == SHA384_TRUNC_DIGEST_SIZE)
650 			ctx->is_trunc_hmac = true;
651 		break;
652 
653 	case OTX_CPT_SHA512:
654 		if (authsize != SHA512_DIGEST_SIZE &&
655 		    authsize != SHA512_TRUNC_DIGEST_SIZE)
656 			return -EINVAL;
657 
658 		if (authsize == SHA512_TRUNC_DIGEST_SIZE)
659 			ctx->is_trunc_hmac = true;
660 		break;
661 
662 	case OTX_CPT_MAC_NULL:
663 		if (ctx->cipher_type == OTX_CPT_AES_GCM) {
664 			if (authsize != AES_GCM_ICV_SIZE)
665 				return -EINVAL;
666 		} else
667 			return -EINVAL;
668 		break;
669 
670 	default:
671 		return -EINVAL;
672 	}
673 
674 	tfm->authsize = authsize;
675 	return 0;
676 }
677 
678 static struct otx_cpt_sdesc *alloc_sdesc(struct crypto_shash *alg)
679 {
680 	struct otx_cpt_sdesc *sdesc;
681 	int size;
682 
683 	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
684 	sdesc = kmalloc(size, GFP_KERNEL);
685 	if (!sdesc)
686 		return NULL;
687 
688 	sdesc->shash.tfm = alg;
689 
690 	return sdesc;
691 }
692 
693 static inline void swap_data32(void *buf, u32 len)
694 {
695 	u32 *store = (u32 *) buf;
696 	int i = 0;
697 
698 	for (i = 0 ; i < len/sizeof(u32); i++, store++)
699 		*store = cpu_to_be32(*store);
700 }
701 
702 static inline void swap_data64(void *buf, u32 len)
703 {
704 	u64 *store = (u64 *) buf;
705 	int i = 0;
706 
707 	for (i = 0 ; i < len/sizeof(u64); i++, store++)
708 		*store = cpu_to_be64(*store);
709 }
710 
711 static int copy_pad(u8 mac_type, u8 *out_pad, u8 *in_pad)
712 {
713 	struct sha512_state *sha512;
714 	struct sha256_state *sha256;
715 	struct sha1_state *sha1;
716 
717 	switch (mac_type) {
718 	case OTX_CPT_SHA1:
719 		sha1 = (struct sha1_state *) in_pad;
720 		swap_data32(sha1->state, SHA1_DIGEST_SIZE);
721 		memcpy(out_pad, &sha1->state, SHA1_DIGEST_SIZE);
722 		break;
723 
724 	case OTX_CPT_SHA256:
725 		sha256 = (struct sha256_state *) in_pad;
726 		swap_data32(sha256->state, SHA256_DIGEST_SIZE);
727 		memcpy(out_pad, &sha256->state, SHA256_DIGEST_SIZE);
728 		break;
729 
730 	case OTX_CPT_SHA384:
731 	case OTX_CPT_SHA512:
732 		sha512 = (struct sha512_state *) in_pad;
733 		swap_data64(sha512->state, SHA512_DIGEST_SIZE);
734 		memcpy(out_pad, &sha512->state, SHA512_DIGEST_SIZE);
735 		break;
736 
737 	default:
738 		return -EINVAL;
739 	}
740 
741 	return 0;
742 }
743 
744 static int aead_hmac_init(struct crypto_aead *cipher)
745 {
746 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(cipher);
747 	int state_size = crypto_shash_statesize(ctx->hashalg);
748 	int ds = crypto_shash_digestsize(ctx->hashalg);
749 	int bs = crypto_shash_blocksize(ctx->hashalg);
750 	int authkeylen = ctx->auth_key_len;
751 	u8 *ipad = NULL, *opad = NULL;
752 	int ret = 0, icount = 0;
753 
754 	ctx->sdesc = alloc_sdesc(ctx->hashalg);
755 	if (!ctx->sdesc)
756 		return -ENOMEM;
757 
758 	ctx->ipad = kzalloc(bs, GFP_KERNEL);
759 	if (!ctx->ipad) {
760 		ret = -ENOMEM;
761 		goto calc_fail;
762 	}
763 
764 	ctx->opad = kzalloc(bs, GFP_KERNEL);
765 	if (!ctx->opad) {
766 		ret = -ENOMEM;
767 		goto calc_fail;
768 	}
769 
770 	ipad = kzalloc(state_size, GFP_KERNEL);
771 	if (!ipad) {
772 		ret = -ENOMEM;
773 		goto calc_fail;
774 	}
775 
776 	opad = kzalloc(state_size, GFP_KERNEL);
777 	if (!opad) {
778 		ret = -ENOMEM;
779 		goto calc_fail;
780 	}
781 
782 	if (authkeylen > bs) {
783 		ret = crypto_shash_digest(&ctx->sdesc->shash, ctx->key,
784 					  authkeylen, ipad);
785 		if (ret)
786 			goto calc_fail;
787 
788 		authkeylen = ds;
789 	} else {
790 		memcpy(ipad, ctx->key, authkeylen);
791 	}
792 
793 	memset(ipad + authkeylen, 0, bs - authkeylen);
794 	memcpy(opad, ipad, bs);
795 
796 	for (icount = 0; icount < bs; icount++) {
797 		ipad[icount] ^= 0x36;
798 		opad[icount] ^= 0x5c;
799 	}
800 
801 	/*
802 	 * Partial Hash calculated from the software
803 	 * algorithm is retrieved for IPAD & OPAD
804 	 */
805 
806 	/* IPAD Calculation */
807 	crypto_shash_init(&ctx->sdesc->shash);
808 	crypto_shash_update(&ctx->sdesc->shash, ipad, bs);
809 	crypto_shash_export(&ctx->sdesc->shash, ipad);
810 	ret = copy_pad(ctx->mac_type, ctx->ipad, ipad);
811 	if (ret)
812 		goto calc_fail;
813 
814 	/* OPAD Calculation */
815 	crypto_shash_init(&ctx->sdesc->shash);
816 	crypto_shash_update(&ctx->sdesc->shash, opad, bs);
817 	crypto_shash_export(&ctx->sdesc->shash, opad);
818 	ret = copy_pad(ctx->mac_type, ctx->opad, opad);
819 	if (ret)
820 		goto calc_fail;
821 
822 	kfree(ipad);
823 	kfree(opad);
824 
825 	return 0;
826 
827 calc_fail:
828 	kfree(ctx->ipad);
829 	ctx->ipad = NULL;
830 	kfree(ctx->opad);
831 	ctx->opad = NULL;
832 	kfree(ipad);
833 	kfree(opad);
834 	kfree(ctx->sdesc);
835 	ctx->sdesc = NULL;
836 
837 	return ret;
838 }
839 
840 static int otx_cpt_aead_cbc_aes_sha_setkey(struct crypto_aead *cipher,
841 					   const unsigned char *key,
842 					   unsigned int keylen)
843 {
844 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(cipher);
845 	struct crypto_authenc_key_param *param;
846 	int enckeylen = 0, authkeylen = 0;
847 	struct rtattr *rta = (void *)key;
848 	int status = -EINVAL;
849 
850 	if (!RTA_OK(rta, keylen))
851 		goto badkey;
852 
853 	if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
854 		goto badkey;
855 
856 	if (RTA_PAYLOAD(rta) < sizeof(*param))
857 		goto badkey;
858 
859 	param = RTA_DATA(rta);
860 	enckeylen = be32_to_cpu(param->enckeylen);
861 	key += RTA_ALIGN(rta->rta_len);
862 	keylen -= RTA_ALIGN(rta->rta_len);
863 	if (keylen < enckeylen)
864 		goto badkey;
865 
866 	if (keylen > OTX_CPT_MAX_KEY_SIZE)
867 		goto badkey;
868 
869 	authkeylen = keylen - enckeylen;
870 	memcpy(ctx->key, key, keylen);
871 
872 	switch (enckeylen) {
873 	case AES_KEYSIZE_128:
874 		ctx->key_type = OTX_CPT_AES_128_BIT;
875 		break;
876 	case AES_KEYSIZE_192:
877 		ctx->key_type = OTX_CPT_AES_192_BIT;
878 		break;
879 	case AES_KEYSIZE_256:
880 		ctx->key_type = OTX_CPT_AES_256_BIT;
881 		break;
882 	default:
883 		/* Invalid key length */
884 		goto badkey;
885 	}
886 
887 	ctx->enc_key_len = enckeylen;
888 	ctx->auth_key_len = authkeylen;
889 
890 	status = aead_hmac_init(cipher);
891 	if (status)
892 		goto badkey;
893 
894 	return 0;
895 badkey:
896 	return status;
897 }
898 
899 static int otx_cpt_aead_ecb_null_sha_setkey(struct crypto_aead *cipher,
900 					    const unsigned char *key,
901 					    unsigned int keylen)
902 {
903 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(cipher);
904 	struct crypto_authenc_key_param *param;
905 	struct rtattr *rta = (void *)key;
906 	int enckeylen = 0;
907 
908 	if (!RTA_OK(rta, keylen))
909 		goto badkey;
910 
911 	if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
912 		goto badkey;
913 
914 	if (RTA_PAYLOAD(rta) < sizeof(*param))
915 		goto badkey;
916 
917 	param = RTA_DATA(rta);
918 	enckeylen = be32_to_cpu(param->enckeylen);
919 	key += RTA_ALIGN(rta->rta_len);
920 	keylen -= RTA_ALIGN(rta->rta_len);
921 	if (enckeylen != 0)
922 		goto badkey;
923 
924 	if (keylen > OTX_CPT_MAX_KEY_SIZE)
925 		goto badkey;
926 
927 	memcpy(ctx->key, key, keylen);
928 	ctx->enc_key_len = enckeylen;
929 	ctx->auth_key_len = keylen;
930 	return 0;
931 badkey:
932 	return -EINVAL;
933 }
934 
935 static int otx_cpt_aead_gcm_aes_setkey(struct crypto_aead *cipher,
936 				       const unsigned char *key,
937 				       unsigned int keylen)
938 {
939 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(cipher);
940 
941 	/*
942 	 * For aes gcm we expect to get encryption key (16, 24, 32 bytes)
943 	 * and salt (4 bytes)
944 	 */
945 	switch (keylen) {
946 	case AES_KEYSIZE_128 + AES_GCM_SALT_SIZE:
947 		ctx->key_type = OTX_CPT_AES_128_BIT;
948 		ctx->enc_key_len = AES_KEYSIZE_128;
949 		break;
950 	case AES_KEYSIZE_192 + AES_GCM_SALT_SIZE:
951 		ctx->key_type = OTX_CPT_AES_192_BIT;
952 		ctx->enc_key_len = AES_KEYSIZE_192;
953 		break;
954 	case AES_KEYSIZE_256 + AES_GCM_SALT_SIZE:
955 		ctx->key_type = OTX_CPT_AES_256_BIT;
956 		ctx->enc_key_len = AES_KEYSIZE_256;
957 		break;
958 	default:
959 		/* Invalid key and salt length */
960 		return -EINVAL;
961 	}
962 
963 	/* Store encryption key and salt */
964 	memcpy(ctx->key, key, keylen);
965 
966 	return 0;
967 }
968 
969 static inline u32 create_aead_ctx_hdr(struct aead_request *req, u32 enc,
970 				      u32 *argcnt)
971 {
972 	struct otx_cpt_req_ctx *rctx = aead_request_ctx(req);
973 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
974 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm);
975 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
976 	struct otx_cpt_fc_ctx *fctx = &rctx->fctx;
977 	int mac_len = crypto_aead_authsize(tfm);
978 	int ds;
979 
980 	rctx->ctrl_word.e.enc_data_offset = req->assoclen;
981 
982 	switch (ctx->cipher_type) {
983 	case OTX_CPT_AES_CBC:
984 		fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_CPTR;
985 		/* Copy encryption key to context */
986 		memcpy(fctx->enc.encr_key, ctx->key + ctx->auth_key_len,
987 		       ctx->enc_key_len);
988 		/* Copy IV to context */
989 		memcpy(fctx->enc.encr_iv, req->iv, crypto_aead_ivsize(tfm));
990 
991 		ds = crypto_shash_digestsize(ctx->hashalg);
992 		if (ctx->mac_type == OTX_CPT_SHA384)
993 			ds = SHA512_DIGEST_SIZE;
994 		if (ctx->ipad)
995 			memcpy(fctx->hmac.e.ipad, ctx->ipad, ds);
996 		if (ctx->opad)
997 			memcpy(fctx->hmac.e.opad, ctx->opad, ds);
998 		break;
999 
1000 	case OTX_CPT_AES_GCM:
1001 		fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_DPTR;
1002 		/* Copy encryption key to context */
1003 		memcpy(fctx->enc.encr_key, ctx->key, ctx->enc_key_len);
1004 		/* Copy salt to context */
1005 		memcpy(fctx->enc.encr_iv, ctx->key + ctx->enc_key_len,
1006 		       AES_GCM_SALT_SIZE);
1007 
1008 		rctx->ctrl_word.e.iv_offset = req->assoclen - AES_GCM_IV_OFFSET;
1009 		break;
1010 
1011 	default:
1012 		/* Unknown cipher type */
1013 		return -EINVAL;
1014 	}
1015 	rctx->ctrl_word.flags = cpu_to_be64(rctx->ctrl_word.flags);
1016 
1017 	req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER;
1018 	req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ;
1019 	req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_FC |
1020 				 DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER);
1021 	if (enc) {
1022 		req_info->req.opcode.s.minor = 2;
1023 		req_info->req.param1 = req->cryptlen;
1024 		req_info->req.param2 = req->cryptlen + req->assoclen;
1025 	} else {
1026 		req_info->req.opcode.s.minor = 3;
1027 		req_info->req.param1 = req->cryptlen - mac_len;
1028 		req_info->req.param2 = req->cryptlen + req->assoclen - mac_len;
1029 	}
1030 
1031 	fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type;
1032 	fctx->enc.enc_ctrl.e.aes_key = ctx->key_type;
1033 	fctx->enc.enc_ctrl.e.mac_type = ctx->mac_type;
1034 	fctx->enc.enc_ctrl.e.mac_len = mac_len;
1035 	fctx->enc.enc_ctrl.flags = cpu_to_be64(fctx->enc.enc_ctrl.flags);
1036 
1037 	/*
1038 	 * Storing Packet Data Information in offset
1039 	 * Control Word First 8 bytes
1040 	 */
1041 	req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word;
1042 	req_info->in[*argcnt].size = CONTROL_WORD_LEN;
1043 	req_info->req.dlen += CONTROL_WORD_LEN;
1044 	++(*argcnt);
1045 
1046 	req_info->in[*argcnt].vptr = (u8 *)fctx;
1047 	req_info->in[*argcnt].size = sizeof(struct otx_cpt_fc_ctx);
1048 	req_info->req.dlen += sizeof(struct otx_cpt_fc_ctx);
1049 	++(*argcnt);
1050 
1051 	return 0;
1052 }
1053 
1054 static inline u32 create_hmac_ctx_hdr(struct aead_request *req, u32 *argcnt,
1055 				      u32 enc)
1056 {
1057 	struct otx_cpt_req_ctx *rctx = aead_request_ctx(req);
1058 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1059 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx(tfm);
1060 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1061 
1062 	req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER;
1063 	req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ;
1064 	req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_HMAC |
1065 				 DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER);
1066 	req_info->is_trunc_hmac = ctx->is_trunc_hmac;
1067 
1068 	req_info->req.opcode.s.minor = 0;
1069 	req_info->req.param1 = ctx->auth_key_len;
1070 	req_info->req.param2 = ctx->mac_type << 8;
1071 
1072 	/* Add authentication key */
1073 	req_info->in[*argcnt].vptr = ctx->key;
1074 	req_info->in[*argcnt].size = round_up(ctx->auth_key_len, 8);
1075 	req_info->req.dlen += round_up(ctx->auth_key_len, 8);
1076 	++(*argcnt);
1077 
1078 	return 0;
1079 }
1080 
1081 static inline u32 create_aead_input_list(struct aead_request *req, u32 enc)
1082 {
1083 	struct otx_cpt_req_ctx *rctx = aead_request_ctx(req);
1084 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1085 	u32 inputlen =  req->cryptlen + req->assoclen;
1086 	u32 status, argcnt = 0;
1087 
1088 	status = create_aead_ctx_hdr(req, enc, &argcnt);
1089 	if (status)
1090 		return status;
1091 	update_input_data(req_info, req->src, inputlen, &argcnt);
1092 	req_info->incnt = argcnt;
1093 
1094 	return 0;
1095 }
1096 
1097 static inline u32 create_aead_output_list(struct aead_request *req, u32 enc,
1098 					  u32 mac_len)
1099 {
1100 	struct otx_cpt_req_ctx *rctx = aead_request_ctx(req);
1101 	struct otx_cpt_req_info *req_info =  &rctx->cpt_req;
1102 	u32 argcnt = 0, outputlen = 0;
1103 
1104 	if (enc)
1105 		outputlen = req->cryptlen +  req->assoclen + mac_len;
1106 	else
1107 		outputlen = req->cryptlen + req->assoclen - mac_len;
1108 
1109 	update_output_data(req_info, req->dst, 0, outputlen, &argcnt);
1110 	req_info->outcnt = argcnt;
1111 
1112 	return 0;
1113 }
1114 
1115 static inline u32 create_aead_null_input_list(struct aead_request *req,
1116 					      u32 enc, u32 mac_len)
1117 {
1118 	struct otx_cpt_req_ctx *rctx = aead_request_ctx(req);
1119 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1120 	u32 inputlen, argcnt = 0;
1121 
1122 	if (enc)
1123 		inputlen =  req->cryptlen + req->assoclen;
1124 	else
1125 		inputlen =  req->cryptlen + req->assoclen - mac_len;
1126 
1127 	create_hmac_ctx_hdr(req, &argcnt, enc);
1128 	update_input_data(req_info, req->src, inputlen, &argcnt);
1129 	req_info->incnt = argcnt;
1130 
1131 	return 0;
1132 }
1133 
1134 static inline u32 create_aead_null_output_list(struct aead_request *req,
1135 					       u32 enc, u32 mac_len)
1136 {
1137 	struct otx_cpt_req_ctx *rctx = aead_request_ctx(req);
1138 	struct otx_cpt_req_info *req_info =  &rctx->cpt_req;
1139 	struct scatterlist *dst;
1140 	u8 *ptr = NULL;
1141 	int argcnt = 0, status, offset;
1142 	u32 inputlen;
1143 
1144 	if (enc)
1145 		inputlen =  req->cryptlen + req->assoclen;
1146 	else
1147 		inputlen =  req->cryptlen + req->assoclen - mac_len;
1148 
1149 	/*
1150 	 * If source and destination are different
1151 	 * then copy payload to destination
1152 	 */
1153 	if (req->src != req->dst) {
1154 
1155 		ptr = kmalloc(inputlen, (req_info->areq->flags &
1156 					 CRYPTO_TFM_REQ_MAY_SLEEP) ?
1157 					 GFP_KERNEL : GFP_ATOMIC);
1158 		if (!ptr) {
1159 			status = -ENOMEM;
1160 			goto error;
1161 		}
1162 
1163 		status = sg_copy_to_buffer(req->src, sg_nents(req->src), ptr,
1164 					   inputlen);
1165 		if (status != inputlen) {
1166 			status = -EINVAL;
1167 			goto error_free;
1168 		}
1169 		status = sg_copy_from_buffer(req->dst, sg_nents(req->dst), ptr,
1170 					     inputlen);
1171 		if (status != inputlen) {
1172 			status = -EINVAL;
1173 			goto error_free;
1174 		}
1175 		kfree(ptr);
1176 	}
1177 
1178 	if (enc) {
1179 		/*
1180 		 * In an encryption scenario hmac needs
1181 		 * to be appended after payload
1182 		 */
1183 		dst = req->dst;
1184 		offset = inputlen;
1185 		while (offset >= dst->length) {
1186 			offset -= dst->length;
1187 			dst = sg_next(dst);
1188 			if (!dst) {
1189 				status = -ENOENT;
1190 				goto error;
1191 			}
1192 		}
1193 
1194 		update_output_data(req_info, dst, offset, mac_len, &argcnt);
1195 	} else {
1196 		/*
1197 		 * In a decryption scenario calculated hmac for received
1198 		 * payload needs to be compare with hmac received
1199 		 */
1200 		status = sg_copy_buffer(req->src, sg_nents(req->src),
1201 					rctx->fctx.hmac.s.hmac_recv, mac_len,
1202 					inputlen, true);
1203 		if (status != mac_len) {
1204 			status = -EINVAL;
1205 			goto error;
1206 		}
1207 
1208 		req_info->out[argcnt].vptr = rctx->fctx.hmac.s.hmac_calc;
1209 		req_info->out[argcnt].size = mac_len;
1210 		argcnt++;
1211 	}
1212 
1213 	req_info->outcnt = argcnt;
1214 	return 0;
1215 
1216 error_free:
1217 	kfree(ptr);
1218 error:
1219 	return status;
1220 }
1221 
1222 static u32 cpt_aead_enc_dec(struct aead_request *req, u8 reg_type, u8 enc)
1223 {
1224 	struct otx_cpt_req_ctx *rctx = aead_request_ctx(req);
1225 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1226 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1227 	struct pci_dev *pdev;
1228 	u32 status, cpu_num;
1229 
1230 	/* Clear control words */
1231 	rctx->ctrl_word.flags = 0;
1232 	rctx->fctx.enc.enc_ctrl.flags = 0;
1233 
1234 	req_info->callback = otx_cpt_aead_callback;
1235 	req_info->areq = &req->base;
1236 	req_info->req_type = reg_type;
1237 	req_info->is_enc = enc;
1238 	req_info->is_trunc_hmac = false;
1239 
1240 	switch (reg_type) {
1241 	case OTX_CPT_AEAD_ENC_DEC_REQ:
1242 		status = create_aead_input_list(req, enc);
1243 		if (status)
1244 			return status;
1245 		status = create_aead_output_list(req, enc,
1246 						 crypto_aead_authsize(tfm));
1247 		if (status)
1248 			return status;
1249 		break;
1250 
1251 	case OTX_CPT_AEAD_ENC_DEC_NULL_REQ:
1252 		status = create_aead_null_input_list(req, enc,
1253 						     crypto_aead_authsize(tfm));
1254 		if (status)
1255 			return status;
1256 		status = create_aead_null_output_list(req, enc,
1257 						crypto_aead_authsize(tfm));
1258 		if (status)
1259 			return status;
1260 		break;
1261 
1262 	default:
1263 		return -EINVAL;
1264 	}
1265 
1266 	/* Validate that request doesn't exceed maximum CPT supported size */
1267 	if (req_info->req.param1 > OTX_CPT_MAX_REQ_SIZE ||
1268 	    req_info->req.param2 > OTX_CPT_MAX_REQ_SIZE)
1269 		return -E2BIG;
1270 
1271 	status = get_se_device(&pdev, &cpu_num);
1272 	if (status)
1273 		return status;
1274 
1275 	req_info->ctrl.s.grp = 0;
1276 
1277 	status = otx_cpt_do_request(pdev, req_info, cpu_num);
1278 	/*
1279 	 * We perform an asynchronous send and once
1280 	 * the request is completed the driver would
1281 	 * intimate through registered call back functions
1282 	 */
1283 	return status;
1284 }
1285 
1286 static int otx_cpt_aead_encrypt(struct aead_request *req)
1287 {
1288 	return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_REQ, true);
1289 }
1290 
1291 static int otx_cpt_aead_decrypt(struct aead_request *req)
1292 {
1293 	return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_REQ, false);
1294 }
1295 
1296 static int otx_cpt_aead_null_encrypt(struct aead_request *req)
1297 {
1298 	return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_NULL_REQ, true);
1299 }
1300 
1301 static int otx_cpt_aead_null_decrypt(struct aead_request *req)
1302 {
1303 	return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_NULL_REQ, false);
1304 }
1305 
1306 static struct skcipher_alg otx_cpt_skciphers[] = { {
1307 	.base.cra_name = "xts(aes)",
1308 	.base.cra_driver_name = "cpt_xts_aes",
1309 	.base.cra_flags = CRYPTO_ALG_ASYNC,
1310 	.base.cra_blocksize = AES_BLOCK_SIZE,
1311 	.base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
1312 	.base.cra_alignmask = 7,
1313 	.base.cra_priority = 4001,
1314 	.base.cra_module = THIS_MODULE,
1315 
1316 	.init = otx_cpt_enc_dec_init,
1317 	.ivsize = AES_BLOCK_SIZE,
1318 	.min_keysize = 2 * AES_MIN_KEY_SIZE,
1319 	.max_keysize = 2 * AES_MAX_KEY_SIZE,
1320 	.setkey = otx_cpt_skcipher_xts_setkey,
1321 	.encrypt = otx_cpt_skcipher_encrypt,
1322 	.decrypt = otx_cpt_skcipher_decrypt,
1323 }, {
1324 	.base.cra_name = "cbc(aes)",
1325 	.base.cra_driver_name = "cpt_cbc_aes",
1326 	.base.cra_flags = CRYPTO_ALG_ASYNC,
1327 	.base.cra_blocksize = AES_BLOCK_SIZE,
1328 	.base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
1329 	.base.cra_alignmask = 7,
1330 	.base.cra_priority = 4001,
1331 	.base.cra_module = THIS_MODULE,
1332 
1333 	.init = otx_cpt_enc_dec_init,
1334 	.ivsize = AES_BLOCK_SIZE,
1335 	.min_keysize = AES_MIN_KEY_SIZE,
1336 	.max_keysize = AES_MAX_KEY_SIZE,
1337 	.setkey = otx_cpt_skcipher_cbc_aes_setkey,
1338 	.encrypt = otx_cpt_skcipher_encrypt,
1339 	.decrypt = otx_cpt_skcipher_decrypt,
1340 }, {
1341 	.base.cra_name = "ecb(aes)",
1342 	.base.cra_driver_name = "cpt_ecb_aes",
1343 	.base.cra_flags = CRYPTO_ALG_ASYNC,
1344 	.base.cra_blocksize = AES_BLOCK_SIZE,
1345 	.base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
1346 	.base.cra_alignmask = 7,
1347 	.base.cra_priority = 4001,
1348 	.base.cra_module = THIS_MODULE,
1349 
1350 	.init = otx_cpt_enc_dec_init,
1351 	.ivsize = 0,
1352 	.min_keysize = AES_MIN_KEY_SIZE,
1353 	.max_keysize = AES_MAX_KEY_SIZE,
1354 	.setkey = otx_cpt_skcipher_ecb_aes_setkey,
1355 	.encrypt = otx_cpt_skcipher_encrypt,
1356 	.decrypt = otx_cpt_skcipher_decrypt,
1357 }, {
1358 	.base.cra_name = "cfb(aes)",
1359 	.base.cra_driver_name = "cpt_cfb_aes",
1360 	.base.cra_flags = CRYPTO_ALG_ASYNC,
1361 	.base.cra_blocksize = AES_BLOCK_SIZE,
1362 	.base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
1363 	.base.cra_alignmask = 7,
1364 	.base.cra_priority = 4001,
1365 	.base.cra_module = THIS_MODULE,
1366 
1367 	.init = otx_cpt_enc_dec_init,
1368 	.ivsize = AES_BLOCK_SIZE,
1369 	.min_keysize = AES_MIN_KEY_SIZE,
1370 	.max_keysize = AES_MAX_KEY_SIZE,
1371 	.setkey = otx_cpt_skcipher_cfb_aes_setkey,
1372 	.encrypt = otx_cpt_skcipher_encrypt,
1373 	.decrypt = otx_cpt_skcipher_decrypt,
1374 }, {
1375 	.base.cra_name = "cbc(des3_ede)",
1376 	.base.cra_driver_name = "cpt_cbc_des3_ede",
1377 	.base.cra_flags = CRYPTO_ALG_ASYNC,
1378 	.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1379 	.base.cra_ctxsize = sizeof(struct otx_cpt_des3_ctx),
1380 	.base.cra_alignmask = 7,
1381 	.base.cra_priority = 4001,
1382 	.base.cra_module = THIS_MODULE,
1383 
1384 	.init = otx_cpt_enc_dec_init,
1385 	.min_keysize = DES3_EDE_KEY_SIZE,
1386 	.max_keysize = DES3_EDE_KEY_SIZE,
1387 	.ivsize = DES_BLOCK_SIZE,
1388 	.setkey = otx_cpt_skcipher_cbc_des3_setkey,
1389 	.encrypt = otx_cpt_skcipher_encrypt,
1390 	.decrypt = otx_cpt_skcipher_decrypt,
1391 }, {
1392 	.base.cra_name = "ecb(des3_ede)",
1393 	.base.cra_driver_name = "cpt_ecb_des3_ede",
1394 	.base.cra_flags = CRYPTO_ALG_ASYNC,
1395 	.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1396 	.base.cra_ctxsize = sizeof(struct otx_cpt_des3_ctx),
1397 	.base.cra_alignmask = 7,
1398 	.base.cra_priority = 4001,
1399 	.base.cra_module = THIS_MODULE,
1400 
1401 	.init = otx_cpt_enc_dec_init,
1402 	.min_keysize = DES3_EDE_KEY_SIZE,
1403 	.max_keysize = DES3_EDE_KEY_SIZE,
1404 	.ivsize = 0,
1405 	.setkey = otx_cpt_skcipher_ecb_des3_setkey,
1406 	.encrypt = otx_cpt_skcipher_encrypt,
1407 	.decrypt = otx_cpt_skcipher_decrypt,
1408 } };
1409 
1410 static struct aead_alg otx_cpt_aeads[] = { {
1411 	.base = {
1412 		.cra_name = "authenc(hmac(sha1),cbc(aes))",
1413 		.cra_driver_name = "cpt_hmac_sha1_cbc_aes",
1414 		.cra_blocksize = AES_BLOCK_SIZE,
1415 		.cra_flags = CRYPTO_ALG_ASYNC,
1416 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1417 		.cra_priority = 4001,
1418 		.cra_alignmask = 0,
1419 		.cra_module = THIS_MODULE,
1420 	},
1421 	.init = otx_cpt_aead_cbc_aes_sha1_init,
1422 	.exit = otx_cpt_aead_exit,
1423 	.setkey = otx_cpt_aead_cbc_aes_sha_setkey,
1424 	.setauthsize = otx_cpt_aead_set_authsize,
1425 	.encrypt = otx_cpt_aead_encrypt,
1426 	.decrypt = otx_cpt_aead_decrypt,
1427 	.ivsize = AES_BLOCK_SIZE,
1428 	.maxauthsize = SHA1_DIGEST_SIZE,
1429 }, {
1430 	.base = {
1431 		.cra_name = "authenc(hmac(sha256),cbc(aes))",
1432 		.cra_driver_name = "cpt_hmac_sha256_cbc_aes",
1433 		.cra_blocksize = AES_BLOCK_SIZE,
1434 		.cra_flags = CRYPTO_ALG_ASYNC,
1435 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1436 		.cra_priority = 4001,
1437 		.cra_alignmask = 0,
1438 		.cra_module = THIS_MODULE,
1439 	},
1440 	.init = otx_cpt_aead_cbc_aes_sha256_init,
1441 	.exit = otx_cpt_aead_exit,
1442 	.setkey = otx_cpt_aead_cbc_aes_sha_setkey,
1443 	.setauthsize = otx_cpt_aead_set_authsize,
1444 	.encrypt = otx_cpt_aead_encrypt,
1445 	.decrypt = otx_cpt_aead_decrypt,
1446 	.ivsize = AES_BLOCK_SIZE,
1447 	.maxauthsize = SHA256_DIGEST_SIZE,
1448 }, {
1449 	.base = {
1450 		.cra_name = "authenc(hmac(sha384),cbc(aes))",
1451 		.cra_driver_name = "cpt_hmac_sha384_cbc_aes",
1452 		.cra_blocksize = AES_BLOCK_SIZE,
1453 		.cra_flags = CRYPTO_ALG_ASYNC,
1454 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1455 		.cra_priority = 4001,
1456 		.cra_alignmask = 0,
1457 		.cra_module = THIS_MODULE,
1458 	},
1459 	.init = otx_cpt_aead_cbc_aes_sha384_init,
1460 	.exit = otx_cpt_aead_exit,
1461 	.setkey = otx_cpt_aead_cbc_aes_sha_setkey,
1462 	.setauthsize = otx_cpt_aead_set_authsize,
1463 	.encrypt = otx_cpt_aead_encrypt,
1464 	.decrypt = otx_cpt_aead_decrypt,
1465 	.ivsize = AES_BLOCK_SIZE,
1466 	.maxauthsize = SHA384_DIGEST_SIZE,
1467 }, {
1468 	.base = {
1469 		.cra_name = "authenc(hmac(sha512),cbc(aes))",
1470 		.cra_driver_name = "cpt_hmac_sha512_cbc_aes",
1471 		.cra_blocksize = AES_BLOCK_SIZE,
1472 		.cra_flags = CRYPTO_ALG_ASYNC,
1473 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1474 		.cra_priority = 4001,
1475 		.cra_alignmask = 0,
1476 		.cra_module = THIS_MODULE,
1477 	},
1478 	.init = otx_cpt_aead_cbc_aes_sha512_init,
1479 	.exit = otx_cpt_aead_exit,
1480 	.setkey = otx_cpt_aead_cbc_aes_sha_setkey,
1481 	.setauthsize = otx_cpt_aead_set_authsize,
1482 	.encrypt = otx_cpt_aead_encrypt,
1483 	.decrypt = otx_cpt_aead_decrypt,
1484 	.ivsize = AES_BLOCK_SIZE,
1485 	.maxauthsize = SHA512_DIGEST_SIZE,
1486 }, {
1487 	.base = {
1488 		.cra_name = "authenc(hmac(sha1),ecb(cipher_null))",
1489 		.cra_driver_name = "cpt_hmac_sha1_ecb_null",
1490 		.cra_blocksize = 1,
1491 		.cra_flags = CRYPTO_ALG_ASYNC,
1492 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1493 		.cra_priority = 4001,
1494 		.cra_alignmask = 0,
1495 		.cra_module = THIS_MODULE,
1496 	},
1497 	.init = otx_cpt_aead_ecb_null_sha1_init,
1498 	.exit = otx_cpt_aead_exit,
1499 	.setkey = otx_cpt_aead_ecb_null_sha_setkey,
1500 	.setauthsize = otx_cpt_aead_set_authsize,
1501 	.encrypt = otx_cpt_aead_null_encrypt,
1502 	.decrypt = otx_cpt_aead_null_decrypt,
1503 	.ivsize = 0,
1504 	.maxauthsize = SHA1_DIGEST_SIZE,
1505 }, {
1506 	.base = {
1507 		.cra_name = "authenc(hmac(sha256),ecb(cipher_null))",
1508 		.cra_driver_name = "cpt_hmac_sha256_ecb_null",
1509 		.cra_blocksize = 1,
1510 		.cra_flags = CRYPTO_ALG_ASYNC,
1511 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1512 		.cra_priority = 4001,
1513 		.cra_alignmask = 0,
1514 		.cra_module = THIS_MODULE,
1515 	},
1516 	.init = otx_cpt_aead_ecb_null_sha256_init,
1517 	.exit = otx_cpt_aead_exit,
1518 	.setkey = otx_cpt_aead_ecb_null_sha_setkey,
1519 	.setauthsize = otx_cpt_aead_set_authsize,
1520 	.encrypt = otx_cpt_aead_null_encrypt,
1521 	.decrypt = otx_cpt_aead_null_decrypt,
1522 	.ivsize = 0,
1523 	.maxauthsize = SHA256_DIGEST_SIZE,
1524 }, {
1525 	.base = {
1526 		.cra_name = "authenc(hmac(sha384),ecb(cipher_null))",
1527 		.cra_driver_name = "cpt_hmac_sha384_ecb_null",
1528 		.cra_blocksize = 1,
1529 		.cra_flags = CRYPTO_ALG_ASYNC,
1530 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1531 		.cra_priority = 4001,
1532 		.cra_alignmask = 0,
1533 		.cra_module = THIS_MODULE,
1534 	},
1535 	.init = otx_cpt_aead_ecb_null_sha384_init,
1536 	.exit = otx_cpt_aead_exit,
1537 	.setkey = otx_cpt_aead_ecb_null_sha_setkey,
1538 	.setauthsize = otx_cpt_aead_set_authsize,
1539 	.encrypt = otx_cpt_aead_null_encrypt,
1540 	.decrypt = otx_cpt_aead_null_decrypt,
1541 	.ivsize = 0,
1542 	.maxauthsize = SHA384_DIGEST_SIZE,
1543 }, {
1544 	.base = {
1545 		.cra_name = "authenc(hmac(sha512),ecb(cipher_null))",
1546 		.cra_driver_name = "cpt_hmac_sha512_ecb_null",
1547 		.cra_blocksize = 1,
1548 		.cra_flags = CRYPTO_ALG_ASYNC,
1549 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1550 		.cra_priority = 4001,
1551 		.cra_alignmask = 0,
1552 		.cra_module = THIS_MODULE,
1553 	},
1554 	.init = otx_cpt_aead_ecb_null_sha512_init,
1555 	.exit = otx_cpt_aead_exit,
1556 	.setkey = otx_cpt_aead_ecb_null_sha_setkey,
1557 	.setauthsize = otx_cpt_aead_set_authsize,
1558 	.encrypt = otx_cpt_aead_null_encrypt,
1559 	.decrypt = otx_cpt_aead_null_decrypt,
1560 	.ivsize = 0,
1561 	.maxauthsize = SHA512_DIGEST_SIZE,
1562 }, {
1563 	.base = {
1564 		.cra_name = "rfc4106(gcm(aes))",
1565 		.cra_driver_name = "cpt_rfc4106_gcm_aes",
1566 		.cra_blocksize = 1,
1567 		.cra_flags = CRYPTO_ALG_ASYNC,
1568 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx),
1569 		.cra_priority = 4001,
1570 		.cra_alignmask = 0,
1571 		.cra_module = THIS_MODULE,
1572 	},
1573 	.init = otx_cpt_aead_gcm_aes_init,
1574 	.exit = otx_cpt_aead_exit,
1575 	.setkey = otx_cpt_aead_gcm_aes_setkey,
1576 	.setauthsize = otx_cpt_aead_set_authsize,
1577 	.encrypt = otx_cpt_aead_encrypt,
1578 	.decrypt = otx_cpt_aead_decrypt,
1579 	.ivsize = AES_GCM_IV_SIZE,
1580 	.maxauthsize = AES_GCM_ICV_SIZE,
1581 } };
1582 
1583 static inline int is_any_alg_used(void)
1584 {
1585 	int i;
1586 
1587 	for (i = 0; i < ARRAY_SIZE(otx_cpt_skciphers); i++)
1588 		if (refcount_read(&otx_cpt_skciphers[i].base.cra_refcnt) != 1)
1589 			return true;
1590 	for (i = 0; i < ARRAY_SIZE(otx_cpt_aeads); i++)
1591 		if (refcount_read(&otx_cpt_aeads[i].base.cra_refcnt) != 1)
1592 			return true;
1593 	return false;
1594 }
1595 
1596 static inline int cpt_register_algs(void)
1597 {
1598 	int i, err = 0;
1599 
1600 	if (!IS_ENABLED(CONFIG_DM_CRYPT)) {
1601 		for (i = 0; i < ARRAY_SIZE(otx_cpt_skciphers); i++)
1602 			otx_cpt_skciphers[i].base.cra_flags &= ~CRYPTO_ALG_DEAD;
1603 
1604 		err = crypto_register_skciphers(otx_cpt_skciphers,
1605 						ARRAY_SIZE(otx_cpt_skciphers));
1606 		if (err)
1607 			return err;
1608 	}
1609 
1610 	for (i = 0; i < ARRAY_SIZE(otx_cpt_aeads); i++)
1611 		otx_cpt_aeads[i].base.cra_flags &= ~CRYPTO_ALG_DEAD;
1612 
1613 	err = crypto_register_aeads(otx_cpt_aeads, ARRAY_SIZE(otx_cpt_aeads));
1614 	if (err) {
1615 		crypto_unregister_skciphers(otx_cpt_skciphers,
1616 					    ARRAY_SIZE(otx_cpt_skciphers));
1617 		return err;
1618 	}
1619 
1620 	return 0;
1621 }
1622 
1623 static inline void cpt_unregister_algs(void)
1624 {
1625 	crypto_unregister_skciphers(otx_cpt_skciphers,
1626 				    ARRAY_SIZE(otx_cpt_skciphers));
1627 	crypto_unregister_aeads(otx_cpt_aeads, ARRAY_SIZE(otx_cpt_aeads));
1628 }
1629 
1630 static int compare_func(const void *lptr, const void *rptr)
1631 {
1632 	struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr;
1633 	struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr;
1634 
1635 	if (ldesc->dev->devfn < rdesc->dev->devfn)
1636 		return -1;
1637 	if (ldesc->dev->devfn > rdesc->dev->devfn)
1638 		return 1;
1639 	return 0;
1640 }
1641 
1642 static void swap_func(void *lptr, void *rptr, int size)
1643 {
1644 	struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr;
1645 	struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr;
1646 	struct cpt_device_desc desc;
1647 
1648 	desc = *ldesc;
1649 	*ldesc = *rdesc;
1650 	*rdesc = desc;
1651 }
1652 
1653 int otx_cpt_crypto_init(struct pci_dev *pdev, struct module *mod,
1654 			enum otx_cptpf_type pf_type,
1655 			enum otx_cptvf_type engine_type,
1656 			int num_queues, int num_devices)
1657 {
1658 	int ret = 0;
1659 	int count;
1660 
1661 	mutex_lock(&mutex);
1662 	switch (engine_type) {
1663 	case OTX_CPT_SE_TYPES:
1664 		count = atomic_read(&se_devices.count);
1665 		if (count >= CPT_MAX_VF_NUM) {
1666 			dev_err(&pdev->dev, "No space to add a new device\n");
1667 			ret = -ENOSPC;
1668 			goto err;
1669 		}
1670 		se_devices.desc[count].pf_type = pf_type;
1671 		se_devices.desc[count].num_queues = num_queues;
1672 		se_devices.desc[count++].dev = pdev;
1673 		atomic_inc(&se_devices.count);
1674 
1675 		if (atomic_read(&se_devices.count) == num_devices &&
1676 		    is_crypto_registered == false) {
1677 			if (cpt_register_algs()) {
1678 				dev_err(&pdev->dev,
1679 				   "Error in registering crypto algorithms\n");
1680 				ret =  -EINVAL;
1681 				goto err;
1682 			}
1683 			try_module_get(mod);
1684 			is_crypto_registered = true;
1685 		}
1686 		sort(se_devices.desc, count, sizeof(struct cpt_device_desc),
1687 		     compare_func, swap_func);
1688 		break;
1689 
1690 	case OTX_CPT_AE_TYPES:
1691 		count = atomic_read(&ae_devices.count);
1692 		if (count >= CPT_MAX_VF_NUM) {
1693 			dev_err(&pdev->dev, "No space to a add new device\n");
1694 			ret = -ENOSPC;
1695 			goto err;
1696 		}
1697 		ae_devices.desc[count].pf_type = pf_type;
1698 		ae_devices.desc[count].num_queues = num_queues;
1699 		ae_devices.desc[count++].dev = pdev;
1700 		atomic_inc(&ae_devices.count);
1701 		sort(ae_devices.desc, count, sizeof(struct cpt_device_desc),
1702 		     compare_func, swap_func);
1703 		break;
1704 
1705 	default:
1706 		dev_err(&pdev->dev, "Unknown VF type %d\n", engine_type);
1707 		ret = BAD_OTX_CPTVF_TYPE;
1708 	}
1709 err:
1710 	mutex_unlock(&mutex);
1711 	return ret;
1712 }
1713 
1714 void otx_cpt_crypto_exit(struct pci_dev *pdev, struct module *mod,
1715 			 enum otx_cptvf_type engine_type)
1716 {
1717 	struct cpt_device_table *dev_tbl;
1718 	bool dev_found = false;
1719 	int i, j, count;
1720 
1721 	mutex_lock(&mutex);
1722 
1723 	dev_tbl = (engine_type == OTX_CPT_AE_TYPES) ? &ae_devices : &se_devices;
1724 	count = atomic_read(&dev_tbl->count);
1725 	for (i = 0; i < count; i++)
1726 		if (pdev == dev_tbl->desc[i].dev) {
1727 			for (j = i; j < count-1; j++)
1728 				dev_tbl->desc[j] = dev_tbl->desc[j+1];
1729 			dev_found = true;
1730 			break;
1731 		}
1732 
1733 	if (!dev_found) {
1734 		dev_err(&pdev->dev, "%s device not found\n", __func__);
1735 		goto exit;
1736 	}
1737 
1738 	if (engine_type != OTX_CPT_AE_TYPES) {
1739 		if (atomic_dec_and_test(&se_devices.count) &&
1740 		    !is_any_alg_used()) {
1741 			cpt_unregister_algs();
1742 			module_put(mod);
1743 			is_crypto_registered = false;
1744 		}
1745 	} else
1746 		atomic_dec(&ae_devices.count);
1747 exit:
1748 	mutex_unlock(&mutex);
1749 }
1750