1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Provide TDMA helper functions used by cipher and hash algorithm 4 * implementations. 5 * 6 * Author: Boris Brezillon <boris.brezillon@free-electrons.com> 7 * Author: Arnaud Ebalard <arno@natisbad.org> 8 * 9 * This work is based on an initial version written by 10 * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc > 11 */ 12 13 #include "cesa.h" 14 15 bool mv_cesa_req_dma_iter_next_transfer(struct mv_cesa_dma_iter *iter, 16 struct mv_cesa_sg_dma_iter *sgiter, 17 unsigned int len) 18 { 19 if (!sgiter->sg) 20 return false; 21 22 sgiter->op_offset += len; 23 sgiter->offset += len; 24 if (sgiter->offset == sg_dma_len(sgiter->sg)) { 25 if (sg_is_last(sgiter->sg)) 26 return false; 27 sgiter->offset = 0; 28 sgiter->sg = sg_next(sgiter->sg); 29 } 30 31 if (sgiter->op_offset == iter->op_len) 32 return false; 33 34 return true; 35 } 36 37 void mv_cesa_dma_step(struct mv_cesa_req *dreq) 38 { 39 struct mv_cesa_engine *engine = dreq->engine; 40 41 writel_relaxed(0, engine->regs + CESA_SA_CFG); 42 43 mv_cesa_set_int_mask(engine, CESA_SA_INT_ACC0_IDMA_DONE); 44 writel_relaxed(CESA_TDMA_DST_BURST_128B | CESA_TDMA_SRC_BURST_128B | 45 CESA_TDMA_NO_BYTE_SWAP | CESA_TDMA_EN, 46 engine->regs + CESA_TDMA_CONTROL); 47 48 writel_relaxed(CESA_SA_CFG_ACT_CH0_IDMA | CESA_SA_CFG_MULTI_PKT | 49 CESA_SA_CFG_CH0_W_IDMA | CESA_SA_CFG_PARA_DIS, 50 engine->regs + CESA_SA_CFG); 51 writel_relaxed(dreq->chain.first->cur_dma, 52 engine->regs + CESA_TDMA_NEXT_ADDR); 53 WARN_ON(readl(engine->regs + CESA_SA_CMD) & 54 CESA_SA_CMD_EN_CESA_SA_ACCL0); 55 writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD); 56 } 57 58 void mv_cesa_dma_cleanup(struct mv_cesa_req *dreq) 59 { 60 struct mv_cesa_tdma_desc *tdma; 61 62 for (tdma = dreq->chain.first; tdma;) { 63 struct mv_cesa_tdma_desc *old_tdma = tdma; 64 u32 type = tdma->flags & CESA_TDMA_TYPE_MSK; 65 66 if (type == CESA_TDMA_OP) 67 dma_pool_free(cesa_dev->dma->op_pool, tdma->op, 68 le32_to_cpu(tdma->src)); 69 70 tdma = tdma->next; 71 dma_pool_free(cesa_dev->dma->tdma_desc_pool, old_tdma, 72 old_tdma->cur_dma); 73 } 74 75 dreq->chain.first = NULL; 76 dreq->chain.last = NULL; 77 } 78 79 void mv_cesa_dma_prepare(struct mv_cesa_req *dreq, 80 struct mv_cesa_engine *engine) 81 { 82 struct mv_cesa_tdma_desc *tdma; 83 84 for (tdma = dreq->chain.first; tdma; tdma = tdma->next) { 85 if (tdma->flags & CESA_TDMA_DST_IN_SRAM) 86 tdma->dst = cpu_to_le32(tdma->dst + engine->sram_dma); 87 88 if (tdma->flags & CESA_TDMA_SRC_IN_SRAM) 89 tdma->src = cpu_to_le32(tdma->src + engine->sram_dma); 90 91 if ((tdma->flags & CESA_TDMA_TYPE_MSK) == CESA_TDMA_OP) 92 mv_cesa_adjust_op(engine, tdma->op); 93 } 94 } 95 96 void mv_cesa_tdma_chain(struct mv_cesa_engine *engine, 97 struct mv_cesa_req *dreq) 98 { 99 if (engine->chain.first == NULL && engine->chain.last == NULL) { 100 engine->chain.first = dreq->chain.first; 101 engine->chain.last = dreq->chain.last; 102 } else { 103 struct mv_cesa_tdma_desc *last; 104 105 last = engine->chain.last; 106 last->next = dreq->chain.first; 107 engine->chain.last = dreq->chain.last; 108 109 /* 110 * Break the DMA chain if the CESA_TDMA_BREAK_CHAIN is set on 111 * the last element of the current chain, or if the request 112 * being queued needs the IV regs to be set before lauching 113 * the request. 114 */ 115 if (!(last->flags & CESA_TDMA_BREAK_CHAIN) && 116 !(dreq->chain.first->flags & CESA_TDMA_SET_STATE)) 117 last->next_dma = dreq->chain.first->cur_dma; 118 } 119 } 120 121 int mv_cesa_tdma_process(struct mv_cesa_engine *engine, u32 status) 122 { 123 struct crypto_async_request *req = NULL; 124 struct mv_cesa_tdma_desc *tdma = NULL, *next = NULL; 125 dma_addr_t tdma_cur; 126 int res = 0; 127 128 tdma_cur = readl(engine->regs + CESA_TDMA_CUR); 129 130 for (tdma = engine->chain.first; tdma; tdma = next) { 131 spin_lock_bh(&engine->lock); 132 next = tdma->next; 133 spin_unlock_bh(&engine->lock); 134 135 if (tdma->flags & CESA_TDMA_END_OF_REQ) { 136 struct crypto_async_request *backlog = NULL; 137 struct mv_cesa_ctx *ctx; 138 u32 current_status; 139 140 spin_lock_bh(&engine->lock); 141 /* 142 * if req is NULL, this means we're processing the 143 * request in engine->req. 144 */ 145 if (!req) 146 req = engine->req; 147 else 148 req = mv_cesa_dequeue_req_locked(engine, 149 &backlog); 150 151 /* Re-chaining to the next request */ 152 engine->chain.first = tdma->next; 153 tdma->next = NULL; 154 155 /* If this is the last request, clear the chain */ 156 if (engine->chain.first == NULL) 157 engine->chain.last = NULL; 158 spin_unlock_bh(&engine->lock); 159 160 ctx = crypto_tfm_ctx(req->tfm); 161 current_status = (tdma->cur_dma == tdma_cur) ? 162 status : CESA_SA_INT_ACC0_IDMA_DONE; 163 res = ctx->ops->process(req, current_status); 164 ctx->ops->complete(req); 165 166 if (res == 0) 167 mv_cesa_engine_enqueue_complete_request(engine, 168 req); 169 170 if (backlog) 171 backlog->complete(backlog, -EINPROGRESS); 172 } 173 174 if (res || tdma->cur_dma == tdma_cur) 175 break; 176 } 177 178 /* 179 * Save the last request in error to engine->req, so that the core 180 * knows which request was fautly 181 */ 182 if (res) { 183 spin_lock_bh(&engine->lock); 184 engine->req = req; 185 spin_unlock_bh(&engine->lock); 186 } 187 188 return res; 189 } 190 191 static struct mv_cesa_tdma_desc * 192 mv_cesa_dma_add_desc(struct mv_cesa_tdma_chain *chain, gfp_t flags) 193 { 194 struct mv_cesa_tdma_desc *new_tdma = NULL; 195 dma_addr_t dma_handle; 196 197 new_tdma = dma_pool_zalloc(cesa_dev->dma->tdma_desc_pool, flags, 198 &dma_handle); 199 if (!new_tdma) 200 return ERR_PTR(-ENOMEM); 201 202 new_tdma->cur_dma = dma_handle; 203 if (chain->last) { 204 chain->last->next_dma = cpu_to_le32(dma_handle); 205 chain->last->next = new_tdma; 206 } else { 207 chain->first = new_tdma; 208 } 209 210 chain->last = new_tdma; 211 212 return new_tdma; 213 } 214 215 int mv_cesa_dma_add_result_op(struct mv_cesa_tdma_chain *chain, dma_addr_t src, 216 u32 size, u32 flags, gfp_t gfp_flags) 217 { 218 struct mv_cesa_tdma_desc *tdma, *op_desc; 219 220 tdma = mv_cesa_dma_add_desc(chain, gfp_flags); 221 if (IS_ERR(tdma)) 222 return PTR_ERR(tdma); 223 224 /* We re-use an existing op_desc object to retrieve the context 225 * and result instead of allocating a new one. 226 * There is at least one object of this type in a CESA crypto 227 * req, just pick the first one in the chain. 228 */ 229 for (op_desc = chain->first; op_desc; op_desc = op_desc->next) { 230 u32 type = op_desc->flags & CESA_TDMA_TYPE_MSK; 231 232 if (type == CESA_TDMA_OP) 233 break; 234 } 235 236 if (!op_desc) 237 return -EIO; 238 239 tdma->byte_cnt = cpu_to_le32(size | BIT(31)); 240 tdma->src = src; 241 tdma->dst = op_desc->src; 242 tdma->op = op_desc->op; 243 244 flags &= (CESA_TDMA_DST_IN_SRAM | CESA_TDMA_SRC_IN_SRAM); 245 tdma->flags = flags | CESA_TDMA_RESULT; 246 return 0; 247 } 248 249 struct mv_cesa_op_ctx *mv_cesa_dma_add_op(struct mv_cesa_tdma_chain *chain, 250 const struct mv_cesa_op_ctx *op_templ, 251 bool skip_ctx, 252 gfp_t flags) 253 { 254 struct mv_cesa_tdma_desc *tdma; 255 struct mv_cesa_op_ctx *op; 256 dma_addr_t dma_handle; 257 unsigned int size; 258 259 tdma = mv_cesa_dma_add_desc(chain, flags); 260 if (IS_ERR(tdma)) 261 return ERR_CAST(tdma); 262 263 op = dma_pool_alloc(cesa_dev->dma->op_pool, flags, &dma_handle); 264 if (!op) 265 return ERR_PTR(-ENOMEM); 266 267 *op = *op_templ; 268 269 size = skip_ctx ? sizeof(op->desc) : sizeof(*op); 270 271 tdma = chain->last; 272 tdma->op = op; 273 tdma->byte_cnt = cpu_to_le32(size | BIT(31)); 274 tdma->src = cpu_to_le32(dma_handle); 275 tdma->dst = CESA_SA_CFG_SRAM_OFFSET; 276 tdma->flags = CESA_TDMA_DST_IN_SRAM | CESA_TDMA_OP; 277 278 return op; 279 } 280 281 int mv_cesa_dma_add_data_transfer(struct mv_cesa_tdma_chain *chain, 282 dma_addr_t dst, dma_addr_t src, u32 size, 283 u32 flags, gfp_t gfp_flags) 284 { 285 struct mv_cesa_tdma_desc *tdma; 286 287 tdma = mv_cesa_dma_add_desc(chain, gfp_flags); 288 if (IS_ERR(tdma)) 289 return PTR_ERR(tdma); 290 291 tdma->byte_cnt = cpu_to_le32(size | BIT(31)); 292 tdma->src = src; 293 tdma->dst = dst; 294 295 flags &= (CESA_TDMA_DST_IN_SRAM | CESA_TDMA_SRC_IN_SRAM); 296 tdma->flags = flags | CESA_TDMA_DATA; 297 298 return 0; 299 } 300 301 int mv_cesa_dma_add_dummy_launch(struct mv_cesa_tdma_chain *chain, gfp_t flags) 302 { 303 struct mv_cesa_tdma_desc *tdma; 304 305 tdma = mv_cesa_dma_add_desc(chain, flags); 306 return PTR_ERR_OR_ZERO(tdma); 307 } 308 309 int mv_cesa_dma_add_dummy_end(struct mv_cesa_tdma_chain *chain, gfp_t flags) 310 { 311 struct mv_cesa_tdma_desc *tdma; 312 313 tdma = mv_cesa_dma_add_desc(chain, flags); 314 if (IS_ERR(tdma)) 315 return PTR_ERR(tdma); 316 317 tdma->byte_cnt = cpu_to_le32(BIT(31)); 318 319 return 0; 320 } 321 322 int mv_cesa_dma_add_op_transfers(struct mv_cesa_tdma_chain *chain, 323 struct mv_cesa_dma_iter *dma_iter, 324 struct mv_cesa_sg_dma_iter *sgiter, 325 gfp_t gfp_flags) 326 { 327 u32 flags = sgiter->dir == DMA_TO_DEVICE ? 328 CESA_TDMA_DST_IN_SRAM : CESA_TDMA_SRC_IN_SRAM; 329 unsigned int len; 330 331 do { 332 dma_addr_t dst, src; 333 int ret; 334 335 len = mv_cesa_req_dma_iter_transfer_len(dma_iter, sgiter); 336 if (sgiter->dir == DMA_TO_DEVICE) { 337 dst = CESA_SA_DATA_SRAM_OFFSET + sgiter->op_offset; 338 src = sg_dma_address(sgiter->sg) + sgiter->offset; 339 } else { 340 dst = sg_dma_address(sgiter->sg) + sgiter->offset; 341 src = CESA_SA_DATA_SRAM_OFFSET + sgiter->op_offset; 342 } 343 344 ret = mv_cesa_dma_add_data_transfer(chain, dst, src, len, 345 flags, gfp_flags); 346 if (ret) 347 return ret; 348 349 } while (mv_cesa_req_dma_iter_next_transfer(dma_iter, sgiter, len)); 350 351 return 0; 352 } 353