xref: /openbmc/linux/drivers/crypto/marvell/cesa/hash.c (revision c67ce71d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
4  *
5  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6  * Author: Arnaud Ebalard <arno@natisbad.org>
7  *
8  * This work is based on an initial version written by
9  * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
10  */
11 
12 #include <crypto/hmac.h>
13 #include <crypto/md5.h>
14 #include <crypto/sha1.h>
15 #include <crypto/sha2.h>
16 #include <linux/device.h>
17 #include <linux/dma-mapping.h>
18 
19 #include "cesa.h"
20 
21 struct mv_cesa_ahash_dma_iter {
22 	struct mv_cesa_dma_iter base;
23 	struct mv_cesa_sg_dma_iter src;
24 };
25 
26 static inline void
27 mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter,
28 			    struct ahash_request *req)
29 {
30 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
31 	unsigned int len = req->nbytes + creq->cache_ptr;
32 
33 	if (!creq->last_req)
34 		len &= ~CESA_HASH_BLOCK_SIZE_MSK;
35 
36 	mv_cesa_req_dma_iter_init(&iter->base, len);
37 	mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
38 	iter->src.op_offset = creq->cache_ptr;
39 }
40 
41 static inline bool
42 mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter)
43 {
44 	iter->src.op_offset = 0;
45 
46 	return mv_cesa_req_dma_iter_next_op(&iter->base);
47 }
48 
49 static inline int
50 mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req *req, gfp_t flags)
51 {
52 	req->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags,
53 				    &req->cache_dma);
54 	if (!req->cache)
55 		return -ENOMEM;
56 
57 	return 0;
58 }
59 
60 static inline void
61 mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req *req)
62 {
63 	if (!req->cache)
64 		return;
65 
66 	dma_pool_free(cesa_dev->dma->cache_pool, req->cache,
67 		      req->cache_dma);
68 }
69 
70 static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req,
71 					   gfp_t flags)
72 {
73 	if (req->padding)
74 		return 0;
75 
76 	req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags,
77 				      &req->padding_dma);
78 	if (!req->padding)
79 		return -ENOMEM;
80 
81 	return 0;
82 }
83 
84 static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req)
85 {
86 	if (!req->padding)
87 		return;
88 
89 	dma_pool_free(cesa_dev->dma->padding_pool, req->padding,
90 		      req->padding_dma);
91 	req->padding = NULL;
92 }
93 
94 static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req)
95 {
96 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
97 
98 	mv_cesa_ahash_dma_free_padding(&creq->req.dma);
99 }
100 
101 static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req)
102 {
103 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
104 
105 	dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
106 	mv_cesa_ahash_dma_free_cache(&creq->req.dma);
107 	mv_cesa_dma_cleanup(&creq->base);
108 }
109 
110 static inline void mv_cesa_ahash_cleanup(struct ahash_request *req)
111 {
112 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
113 
114 	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
115 		mv_cesa_ahash_dma_cleanup(req);
116 }
117 
118 static void mv_cesa_ahash_last_cleanup(struct ahash_request *req)
119 {
120 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
121 
122 	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
123 		mv_cesa_ahash_dma_last_cleanup(req);
124 }
125 
126 static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq)
127 {
128 	unsigned int index, padlen;
129 
130 	index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
131 	padlen = (index < 56) ? (56 - index) : (64 + 56 - index);
132 
133 	return padlen;
134 }
135 
136 static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf)
137 {
138 	unsigned int padlen;
139 
140 	buf[0] = 0x80;
141 	/* Pad out to 56 mod 64 */
142 	padlen = mv_cesa_ahash_pad_len(creq);
143 	memset(buf + 1, 0, padlen - 1);
144 
145 	if (creq->algo_le) {
146 		__le64 bits = cpu_to_le64(creq->len << 3);
147 
148 		memcpy(buf + padlen, &bits, sizeof(bits));
149 	} else {
150 		__be64 bits = cpu_to_be64(creq->len << 3);
151 
152 		memcpy(buf + padlen, &bits, sizeof(bits));
153 	}
154 
155 	return padlen + 8;
156 }
157 
158 static void mv_cesa_ahash_std_step(struct ahash_request *req)
159 {
160 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
161 	struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
162 	struct mv_cesa_engine *engine = creq->base.engine;
163 	struct mv_cesa_op_ctx *op;
164 	unsigned int new_cache_ptr = 0;
165 	u32 frag_mode;
166 	size_t  len;
167 	unsigned int digsize;
168 	int i;
169 
170 	mv_cesa_adjust_op(engine, &creq->op_tmpl);
171 	if (engine->pool)
172 		memcpy(engine->sram_pool, &creq->op_tmpl,
173 		       sizeof(creq->op_tmpl));
174 	else
175 		memcpy_toio(engine->sram, &creq->op_tmpl,
176 			    sizeof(creq->op_tmpl));
177 
178 	if (!sreq->offset) {
179 		digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
180 		for (i = 0; i < digsize / 4; i++)
181 			writel_relaxed(creq->state[i],
182 				       engine->regs + CESA_IVDIG(i));
183 	}
184 
185 	if (creq->cache_ptr) {
186 		if (engine->pool)
187 			memcpy(engine->sram_pool + CESA_SA_DATA_SRAM_OFFSET,
188 			       creq->cache, creq->cache_ptr);
189 		else
190 			memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET,
191 				    creq->cache, creq->cache_ptr);
192 	}
193 
194 	len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset,
195 		    CESA_SA_SRAM_PAYLOAD_SIZE);
196 
197 	if (!creq->last_req) {
198 		new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK;
199 		len &= ~CESA_HASH_BLOCK_SIZE_MSK;
200 	}
201 
202 	if (len - creq->cache_ptr)
203 		sreq->offset += mv_cesa_sg_copy_to_sram(
204 			engine, req->src, creq->src_nents,
205 			CESA_SA_DATA_SRAM_OFFSET + creq->cache_ptr,
206 			len - creq->cache_ptr, sreq->offset);
207 
208 	op = &creq->op_tmpl;
209 
210 	frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK;
211 
212 	if (creq->last_req && sreq->offset == req->nbytes &&
213 	    creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
214 		if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
215 			frag_mode = CESA_SA_DESC_CFG_NOT_FRAG;
216 		else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG)
217 			frag_mode = CESA_SA_DESC_CFG_LAST_FRAG;
218 	}
219 
220 	if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG ||
221 	    frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) {
222 		if (len &&
223 		    creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
224 			mv_cesa_set_mac_op_total_len(op, creq->len);
225 		} else {
226 			int trailerlen = mv_cesa_ahash_pad_len(creq) + 8;
227 
228 			if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) {
229 				len &= CESA_HASH_BLOCK_SIZE_MSK;
230 				new_cache_ptr = 64 - trailerlen;
231 				if (engine->pool)
232 					memcpy(creq->cache,
233 					       engine->sram_pool +
234 					       CESA_SA_DATA_SRAM_OFFSET + len,
235 					       new_cache_ptr);
236 				else
237 					memcpy_fromio(creq->cache,
238 						      engine->sram +
239 						      CESA_SA_DATA_SRAM_OFFSET +
240 						      len,
241 						      new_cache_ptr);
242 			} else {
243 				i = mv_cesa_ahash_pad_req(creq, creq->cache);
244 				len += i;
245 				if (engine->pool)
246 					memcpy(engine->sram_pool + len +
247 					       CESA_SA_DATA_SRAM_OFFSET,
248 					       creq->cache, i);
249 				else
250 					memcpy_toio(engine->sram + len +
251 						    CESA_SA_DATA_SRAM_OFFSET,
252 						    creq->cache, i);
253 			}
254 
255 			if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG)
256 				frag_mode = CESA_SA_DESC_CFG_MID_FRAG;
257 			else
258 				frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG;
259 		}
260 	}
261 
262 	mv_cesa_set_mac_op_frag_len(op, len);
263 	mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK);
264 
265 	/* FIXME: only update enc_len field */
266 	if (engine->pool)
267 		memcpy(engine->sram_pool, op, sizeof(*op));
268 	else
269 		memcpy_toio(engine->sram, op, sizeof(*op));
270 
271 	if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
272 		mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
273 				      CESA_SA_DESC_CFG_FRAG_MSK);
274 
275 	creq->cache_ptr = new_cache_ptr;
276 
277 	mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
278 	writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
279 	WARN_ON(readl(engine->regs + CESA_SA_CMD) &
280 		CESA_SA_CMD_EN_CESA_SA_ACCL0);
281 	writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
282 }
283 
284 static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status)
285 {
286 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
287 	struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
288 
289 	if (sreq->offset < (req->nbytes - creq->cache_ptr))
290 		return -EINPROGRESS;
291 
292 	return 0;
293 }
294 
295 static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req)
296 {
297 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
298 	struct mv_cesa_req *basereq = &creq->base;
299 
300 	mv_cesa_dma_prepare(basereq, basereq->engine);
301 }
302 
303 static void mv_cesa_ahash_std_prepare(struct ahash_request *req)
304 {
305 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
306 	struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
307 
308 	sreq->offset = 0;
309 }
310 
311 static void mv_cesa_ahash_dma_step(struct ahash_request *req)
312 {
313 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
314 	struct mv_cesa_req *base = &creq->base;
315 
316 	/* We must explicitly set the digest state. */
317 	if (base->chain.first->flags & CESA_TDMA_SET_STATE) {
318 		struct mv_cesa_engine *engine = base->engine;
319 		int i;
320 
321 		/* Set the hash state in the IVDIG regs. */
322 		for (i = 0; i < ARRAY_SIZE(creq->state); i++)
323 			writel_relaxed(creq->state[i], engine->regs +
324 				       CESA_IVDIG(i));
325 	}
326 
327 	mv_cesa_dma_step(base);
328 }
329 
330 static void mv_cesa_ahash_step(struct crypto_async_request *req)
331 {
332 	struct ahash_request *ahashreq = ahash_request_cast(req);
333 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
334 
335 	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
336 		mv_cesa_ahash_dma_step(ahashreq);
337 	else
338 		mv_cesa_ahash_std_step(ahashreq);
339 }
340 
341 static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
342 {
343 	struct ahash_request *ahashreq = ahash_request_cast(req);
344 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
345 
346 	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
347 		return mv_cesa_dma_process(&creq->base, status);
348 
349 	return mv_cesa_ahash_std_process(ahashreq, status);
350 }
351 
352 static void mv_cesa_ahash_complete(struct crypto_async_request *req)
353 {
354 	struct ahash_request *ahashreq = ahash_request_cast(req);
355 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
356 	struct mv_cesa_engine *engine = creq->base.engine;
357 	unsigned int digsize;
358 	int i;
359 
360 	digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
361 
362 	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ &&
363 	    (creq->base.chain.last->flags & CESA_TDMA_TYPE_MSK) ==
364 	     CESA_TDMA_RESULT) {
365 		__le32 *data = NULL;
366 
367 		/*
368 		 * Result is already in the correct endianness when the SA is
369 		 * used
370 		 */
371 		data = creq->base.chain.last->op->ctx.hash.hash;
372 		for (i = 0; i < digsize / 4; i++)
373 			creq->state[i] = le32_to_cpu(data[i]);
374 
375 		memcpy(ahashreq->result, data, digsize);
376 	} else {
377 		for (i = 0; i < digsize / 4; i++)
378 			creq->state[i] = readl_relaxed(engine->regs +
379 						       CESA_IVDIG(i));
380 		if (creq->last_req) {
381 			/*
382 			 * Hardware's MD5 digest is in little endian format, but
383 			 * SHA in big endian format
384 			 */
385 			if (creq->algo_le) {
386 				__le32 *result = (void *)ahashreq->result;
387 
388 				for (i = 0; i < digsize / 4; i++)
389 					result[i] = cpu_to_le32(creq->state[i]);
390 			} else {
391 				__be32 *result = (void *)ahashreq->result;
392 
393 				for (i = 0; i < digsize / 4; i++)
394 					result[i] = cpu_to_be32(creq->state[i]);
395 			}
396 		}
397 	}
398 
399 	atomic_sub(ahashreq->nbytes, &engine->load);
400 }
401 
402 static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
403 				  struct mv_cesa_engine *engine)
404 {
405 	struct ahash_request *ahashreq = ahash_request_cast(req);
406 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
407 
408 	creq->base.engine = engine;
409 
410 	if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
411 		mv_cesa_ahash_dma_prepare(ahashreq);
412 	else
413 		mv_cesa_ahash_std_prepare(ahashreq);
414 }
415 
416 static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req)
417 {
418 	struct ahash_request *ahashreq = ahash_request_cast(req);
419 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
420 
421 	if (creq->last_req)
422 		mv_cesa_ahash_last_cleanup(ahashreq);
423 
424 	mv_cesa_ahash_cleanup(ahashreq);
425 
426 	if (creq->cache_ptr)
427 		sg_pcopy_to_buffer(ahashreq->src, creq->src_nents,
428 				   creq->cache,
429 				   creq->cache_ptr,
430 				   ahashreq->nbytes - creq->cache_ptr);
431 }
432 
433 static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
434 	.step = mv_cesa_ahash_step,
435 	.process = mv_cesa_ahash_process,
436 	.cleanup = mv_cesa_ahash_req_cleanup,
437 	.complete = mv_cesa_ahash_complete,
438 };
439 
440 static void mv_cesa_ahash_init(struct ahash_request *req,
441 			      struct mv_cesa_op_ctx *tmpl, bool algo_le)
442 {
443 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
444 
445 	memset(creq, 0, sizeof(*creq));
446 	mv_cesa_update_op_cfg(tmpl,
447 			      CESA_SA_DESC_CFG_OP_MAC_ONLY |
448 			      CESA_SA_DESC_CFG_FIRST_FRAG,
449 			      CESA_SA_DESC_CFG_OP_MSK |
450 			      CESA_SA_DESC_CFG_FRAG_MSK);
451 	mv_cesa_set_mac_op_total_len(tmpl, 0);
452 	mv_cesa_set_mac_op_frag_len(tmpl, 0);
453 	creq->op_tmpl = *tmpl;
454 	creq->len = 0;
455 	creq->algo_le = algo_le;
456 }
457 
458 static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm)
459 {
460 	struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm);
461 
462 	ctx->base.ops = &mv_cesa_ahash_req_ops;
463 
464 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
465 				 sizeof(struct mv_cesa_ahash_req));
466 	return 0;
467 }
468 
469 static bool mv_cesa_ahash_cache_req(struct ahash_request *req)
470 {
471 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
472 	bool cached = false;
473 
474 	if (creq->cache_ptr + req->nbytes < CESA_MAX_HASH_BLOCK_SIZE &&
475 	    !creq->last_req) {
476 		cached = true;
477 
478 		if (!req->nbytes)
479 			return cached;
480 
481 		sg_pcopy_to_buffer(req->src, creq->src_nents,
482 				   creq->cache + creq->cache_ptr,
483 				   req->nbytes, 0);
484 
485 		creq->cache_ptr += req->nbytes;
486 	}
487 
488 	return cached;
489 }
490 
491 static struct mv_cesa_op_ctx *
492 mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain,
493 		     struct mv_cesa_op_ctx *tmpl, unsigned int frag_len,
494 		     gfp_t flags)
495 {
496 	struct mv_cesa_op_ctx *op;
497 	int ret;
498 
499 	op = mv_cesa_dma_add_op(chain, tmpl, false, flags);
500 	if (IS_ERR(op))
501 		return op;
502 
503 	/* Set the operation block fragment length. */
504 	mv_cesa_set_mac_op_frag_len(op, frag_len);
505 
506 	/* Append dummy desc to launch operation */
507 	ret = mv_cesa_dma_add_dummy_launch(chain, flags);
508 	if (ret)
509 		return ERR_PTR(ret);
510 
511 	if (mv_cesa_mac_op_is_first_frag(tmpl))
512 		mv_cesa_update_op_cfg(tmpl,
513 				      CESA_SA_DESC_CFG_MID_FRAG,
514 				      CESA_SA_DESC_CFG_FRAG_MSK);
515 
516 	return op;
517 }
518 
519 static int
520 mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain,
521 			    struct mv_cesa_ahash_req *creq,
522 			    gfp_t flags)
523 {
524 	struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
525 	int ret;
526 
527 	if (!creq->cache_ptr)
528 		return 0;
529 
530 	ret = mv_cesa_ahash_dma_alloc_cache(ahashdreq, flags);
531 	if (ret)
532 		return ret;
533 
534 	memcpy(ahashdreq->cache, creq->cache, creq->cache_ptr);
535 
536 	return mv_cesa_dma_add_data_transfer(chain,
537 					     CESA_SA_DATA_SRAM_OFFSET,
538 					     ahashdreq->cache_dma,
539 					     creq->cache_ptr,
540 					     CESA_TDMA_DST_IN_SRAM,
541 					     flags);
542 }
543 
544 static struct mv_cesa_op_ctx *
545 mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain,
546 			   struct mv_cesa_ahash_dma_iter *dma_iter,
547 			   struct mv_cesa_ahash_req *creq,
548 			   unsigned int frag_len, gfp_t flags)
549 {
550 	struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
551 	unsigned int len, trailerlen, padoff = 0;
552 	struct mv_cesa_op_ctx *op;
553 	int ret;
554 
555 	/*
556 	 * If the transfer is smaller than our maximum length, and we have
557 	 * some data outstanding, we can ask the engine to finish the hash.
558 	 */
559 	if (creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX && frag_len) {
560 		op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len,
561 					  flags);
562 		if (IS_ERR(op))
563 			return op;
564 
565 		mv_cesa_set_mac_op_total_len(op, creq->len);
566 		mv_cesa_update_op_cfg(op, mv_cesa_mac_op_is_first_frag(op) ?
567 						CESA_SA_DESC_CFG_NOT_FRAG :
568 						CESA_SA_DESC_CFG_LAST_FRAG,
569 				      CESA_SA_DESC_CFG_FRAG_MSK);
570 
571 		ret = mv_cesa_dma_add_result_op(chain,
572 						CESA_SA_CFG_SRAM_OFFSET,
573 						CESA_SA_DATA_SRAM_OFFSET,
574 						CESA_TDMA_SRC_IN_SRAM, flags);
575 		if (ret)
576 			return ERR_PTR(-ENOMEM);
577 		return op;
578 	}
579 
580 	/*
581 	 * The request is longer than the engine can handle, or we have
582 	 * no data outstanding. Manually generate the padding, adding it
583 	 * as a "mid" fragment.
584 	 */
585 	ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags);
586 	if (ret)
587 		return ERR_PTR(ret);
588 
589 	trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding);
590 
591 	len = min(CESA_SA_SRAM_PAYLOAD_SIZE - frag_len, trailerlen);
592 	if (len) {
593 		ret = mv_cesa_dma_add_data_transfer(chain,
594 						CESA_SA_DATA_SRAM_OFFSET +
595 						frag_len,
596 						ahashdreq->padding_dma,
597 						len, CESA_TDMA_DST_IN_SRAM,
598 						flags);
599 		if (ret)
600 			return ERR_PTR(ret);
601 
602 		op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len + len,
603 					  flags);
604 		if (IS_ERR(op))
605 			return op;
606 
607 		if (len == trailerlen)
608 			return op;
609 
610 		padoff += len;
611 	}
612 
613 	ret = mv_cesa_dma_add_data_transfer(chain,
614 					    CESA_SA_DATA_SRAM_OFFSET,
615 					    ahashdreq->padding_dma +
616 					    padoff,
617 					    trailerlen - padoff,
618 					    CESA_TDMA_DST_IN_SRAM,
619 					    flags);
620 	if (ret)
621 		return ERR_PTR(ret);
622 
623 	return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff,
624 				    flags);
625 }
626 
627 static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
628 {
629 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
630 	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
631 		      GFP_KERNEL : GFP_ATOMIC;
632 	struct mv_cesa_req *basereq = &creq->base;
633 	struct mv_cesa_ahash_dma_iter iter;
634 	struct mv_cesa_op_ctx *op = NULL;
635 	unsigned int frag_len;
636 	bool set_state = false;
637 	int ret;
638 	u32 type;
639 
640 	basereq->chain.first = NULL;
641 	basereq->chain.last = NULL;
642 
643 	if (!mv_cesa_mac_op_is_first_frag(&creq->op_tmpl))
644 		set_state = true;
645 
646 	if (creq->src_nents) {
647 		ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
648 				 DMA_TO_DEVICE);
649 		if (!ret) {
650 			ret = -ENOMEM;
651 			goto err;
652 		}
653 	}
654 
655 	mv_cesa_tdma_desc_iter_init(&basereq->chain);
656 	mv_cesa_ahash_req_iter_init(&iter, req);
657 
658 	/*
659 	 * Add the cache (left-over data from a previous block) first.
660 	 * This will never overflow the SRAM size.
661 	 */
662 	ret = mv_cesa_ahash_dma_add_cache(&basereq->chain, creq, flags);
663 	if (ret)
664 		goto err_free_tdma;
665 
666 	if (iter.src.sg) {
667 		/*
668 		 * Add all the new data, inserting an operation block and
669 		 * launch command between each full SRAM block-worth of
670 		 * data. We intentionally do not add the final op block.
671 		 */
672 		while (true) {
673 			ret = mv_cesa_dma_add_op_transfers(&basereq->chain,
674 							   &iter.base,
675 							   &iter.src, flags);
676 			if (ret)
677 				goto err_free_tdma;
678 
679 			frag_len = iter.base.op_len;
680 
681 			if (!mv_cesa_ahash_req_iter_next_op(&iter))
682 				break;
683 
684 			op = mv_cesa_dma_add_frag(&basereq->chain,
685 						  &creq->op_tmpl,
686 						  frag_len, flags);
687 			if (IS_ERR(op)) {
688 				ret = PTR_ERR(op);
689 				goto err_free_tdma;
690 			}
691 		}
692 	} else {
693 		/* Account for the data that was in the cache. */
694 		frag_len = iter.base.op_len;
695 	}
696 
697 	/*
698 	 * At this point, frag_len indicates whether we have any data
699 	 * outstanding which needs an operation.  Queue up the final
700 	 * operation, which depends whether this is the final request.
701 	 */
702 	if (creq->last_req)
703 		op = mv_cesa_ahash_dma_last_req(&basereq->chain, &iter, creq,
704 						frag_len, flags);
705 	else if (frag_len)
706 		op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
707 					  frag_len, flags);
708 
709 	if (IS_ERR(op)) {
710 		ret = PTR_ERR(op);
711 		goto err_free_tdma;
712 	}
713 
714 	/*
715 	 * If results are copied via DMA, this means that this
716 	 * request can be directly processed by the engine,
717 	 * without partial updates. So we can chain it at the
718 	 * DMA level with other requests.
719 	 */
720 	type = basereq->chain.last->flags & CESA_TDMA_TYPE_MSK;
721 
722 	if (op && type != CESA_TDMA_RESULT) {
723 		/* Add dummy desc to wait for crypto operation end */
724 		ret = mv_cesa_dma_add_dummy_end(&basereq->chain, flags);
725 		if (ret)
726 			goto err_free_tdma;
727 	}
728 
729 	if (!creq->last_req)
730 		creq->cache_ptr = req->nbytes + creq->cache_ptr -
731 				  iter.base.len;
732 	else
733 		creq->cache_ptr = 0;
734 
735 	basereq->chain.last->flags |= CESA_TDMA_END_OF_REQ;
736 
737 	if (type != CESA_TDMA_RESULT)
738 		basereq->chain.last->flags |= CESA_TDMA_BREAK_CHAIN;
739 
740 	if (set_state) {
741 		/*
742 		 * Put the CESA_TDMA_SET_STATE flag on the first tdma desc to
743 		 * let the step logic know that the IVDIG registers should be
744 		 * explicitly set before launching a TDMA chain.
745 		 */
746 		basereq->chain.first->flags |= CESA_TDMA_SET_STATE;
747 	}
748 
749 	return 0;
750 
751 err_free_tdma:
752 	mv_cesa_dma_cleanup(basereq);
753 	dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
754 
755 err:
756 	mv_cesa_ahash_last_cleanup(req);
757 
758 	return ret;
759 }
760 
761 static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached)
762 {
763 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
764 
765 	creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
766 	if (creq->src_nents < 0) {
767 		dev_err(cesa_dev->dev, "Invalid number of src SG");
768 		return creq->src_nents;
769 	}
770 
771 	*cached = mv_cesa_ahash_cache_req(req);
772 
773 	if (*cached)
774 		return 0;
775 
776 	if (cesa_dev->caps->has_tdma)
777 		return mv_cesa_ahash_dma_req_init(req);
778 	else
779 		return 0;
780 }
781 
782 static int mv_cesa_ahash_queue_req(struct ahash_request *req)
783 {
784 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
785 	struct mv_cesa_engine *engine;
786 	bool cached = false;
787 	int ret;
788 
789 	ret = mv_cesa_ahash_req_init(req, &cached);
790 	if (ret)
791 		return ret;
792 
793 	if (cached)
794 		return 0;
795 
796 	engine = mv_cesa_select_engine(req->nbytes);
797 	mv_cesa_ahash_prepare(&req->base, engine);
798 
799 	ret = mv_cesa_queue_req(&req->base, &creq->base);
800 
801 	if (mv_cesa_req_needs_cleanup(&req->base, ret))
802 		mv_cesa_ahash_cleanup(req);
803 
804 	return ret;
805 }
806 
807 static int mv_cesa_ahash_update(struct ahash_request *req)
808 {
809 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
810 
811 	creq->len += req->nbytes;
812 
813 	return mv_cesa_ahash_queue_req(req);
814 }
815 
816 static int mv_cesa_ahash_final(struct ahash_request *req)
817 {
818 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
819 	struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
820 
821 	mv_cesa_set_mac_op_total_len(tmpl, creq->len);
822 	creq->last_req = true;
823 	req->nbytes = 0;
824 
825 	return mv_cesa_ahash_queue_req(req);
826 }
827 
828 static int mv_cesa_ahash_finup(struct ahash_request *req)
829 {
830 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
831 	struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
832 
833 	creq->len += req->nbytes;
834 	mv_cesa_set_mac_op_total_len(tmpl, creq->len);
835 	creq->last_req = true;
836 
837 	return mv_cesa_ahash_queue_req(req);
838 }
839 
840 static int mv_cesa_ahash_export(struct ahash_request *req, void *hash,
841 				u64 *len, void *cache)
842 {
843 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
844 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
845 	unsigned int digsize = crypto_ahash_digestsize(ahash);
846 	unsigned int blocksize;
847 
848 	blocksize = crypto_ahash_blocksize(ahash);
849 
850 	*len = creq->len;
851 	memcpy(hash, creq->state, digsize);
852 	memset(cache, 0, blocksize);
853 	memcpy(cache, creq->cache, creq->cache_ptr);
854 
855 	return 0;
856 }
857 
858 static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash,
859 				u64 len, const void *cache)
860 {
861 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
862 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
863 	unsigned int digsize = crypto_ahash_digestsize(ahash);
864 	unsigned int blocksize;
865 	unsigned int cache_ptr;
866 	int ret;
867 
868 	ret = crypto_ahash_init(req);
869 	if (ret)
870 		return ret;
871 
872 	blocksize = crypto_ahash_blocksize(ahash);
873 	if (len >= blocksize)
874 		mv_cesa_update_op_cfg(&creq->op_tmpl,
875 				      CESA_SA_DESC_CFG_MID_FRAG,
876 				      CESA_SA_DESC_CFG_FRAG_MSK);
877 
878 	creq->len = len;
879 	memcpy(creq->state, hash, digsize);
880 	creq->cache_ptr = 0;
881 
882 	cache_ptr = do_div(len, blocksize);
883 	if (!cache_ptr)
884 		return 0;
885 
886 	memcpy(creq->cache, cache, cache_ptr);
887 	creq->cache_ptr = cache_ptr;
888 
889 	return 0;
890 }
891 
892 static int mv_cesa_md5_init(struct ahash_request *req)
893 {
894 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
895 	struct mv_cesa_op_ctx tmpl = { };
896 
897 	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5);
898 
899 	mv_cesa_ahash_init(req, &tmpl, true);
900 
901 	creq->state[0] = MD5_H0;
902 	creq->state[1] = MD5_H1;
903 	creq->state[2] = MD5_H2;
904 	creq->state[3] = MD5_H3;
905 
906 	return 0;
907 }
908 
909 static int mv_cesa_md5_export(struct ahash_request *req, void *out)
910 {
911 	struct md5_state *out_state = out;
912 
913 	return mv_cesa_ahash_export(req, out_state->hash,
914 				    &out_state->byte_count, out_state->block);
915 }
916 
917 static int mv_cesa_md5_import(struct ahash_request *req, const void *in)
918 {
919 	const struct md5_state *in_state = in;
920 
921 	return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count,
922 				    in_state->block);
923 }
924 
925 static int mv_cesa_md5_digest(struct ahash_request *req)
926 {
927 	int ret;
928 
929 	ret = mv_cesa_md5_init(req);
930 	if (ret)
931 		return ret;
932 
933 	return mv_cesa_ahash_finup(req);
934 }
935 
936 struct ahash_alg mv_md5_alg = {
937 	.init = mv_cesa_md5_init,
938 	.update = mv_cesa_ahash_update,
939 	.final = mv_cesa_ahash_final,
940 	.finup = mv_cesa_ahash_finup,
941 	.digest = mv_cesa_md5_digest,
942 	.export = mv_cesa_md5_export,
943 	.import = mv_cesa_md5_import,
944 	.halg = {
945 		.digestsize = MD5_DIGEST_SIZE,
946 		.statesize = sizeof(struct md5_state),
947 		.base = {
948 			.cra_name = "md5",
949 			.cra_driver_name = "mv-md5",
950 			.cra_priority = 0,
951 			.cra_flags = CRYPTO_ALG_ASYNC |
952 				     CRYPTO_ALG_ALLOCATES_MEMORY |
953 				     CRYPTO_ALG_KERN_DRIVER_ONLY,
954 			.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
955 			.cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
956 			.cra_init = mv_cesa_ahash_cra_init,
957 			.cra_module = THIS_MODULE,
958 		}
959 	}
960 };
961 
962 static int mv_cesa_sha1_init(struct ahash_request *req)
963 {
964 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
965 	struct mv_cesa_op_ctx tmpl = { };
966 
967 	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1);
968 
969 	mv_cesa_ahash_init(req, &tmpl, false);
970 
971 	creq->state[0] = SHA1_H0;
972 	creq->state[1] = SHA1_H1;
973 	creq->state[2] = SHA1_H2;
974 	creq->state[3] = SHA1_H3;
975 	creq->state[4] = SHA1_H4;
976 
977 	return 0;
978 }
979 
980 static int mv_cesa_sha1_export(struct ahash_request *req, void *out)
981 {
982 	struct sha1_state *out_state = out;
983 
984 	return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
985 				    out_state->buffer);
986 }
987 
988 static int mv_cesa_sha1_import(struct ahash_request *req, const void *in)
989 {
990 	const struct sha1_state *in_state = in;
991 
992 	return mv_cesa_ahash_import(req, in_state->state, in_state->count,
993 				    in_state->buffer);
994 }
995 
996 static int mv_cesa_sha1_digest(struct ahash_request *req)
997 {
998 	int ret;
999 
1000 	ret = mv_cesa_sha1_init(req);
1001 	if (ret)
1002 		return ret;
1003 
1004 	return mv_cesa_ahash_finup(req);
1005 }
1006 
1007 struct ahash_alg mv_sha1_alg = {
1008 	.init = mv_cesa_sha1_init,
1009 	.update = mv_cesa_ahash_update,
1010 	.final = mv_cesa_ahash_final,
1011 	.finup = mv_cesa_ahash_finup,
1012 	.digest = mv_cesa_sha1_digest,
1013 	.export = mv_cesa_sha1_export,
1014 	.import = mv_cesa_sha1_import,
1015 	.halg = {
1016 		.digestsize = SHA1_DIGEST_SIZE,
1017 		.statesize = sizeof(struct sha1_state),
1018 		.base = {
1019 			.cra_name = "sha1",
1020 			.cra_driver_name = "mv-sha1",
1021 			.cra_priority = 0,
1022 			.cra_flags = CRYPTO_ALG_ASYNC |
1023 				     CRYPTO_ALG_ALLOCATES_MEMORY |
1024 				     CRYPTO_ALG_KERN_DRIVER_ONLY,
1025 			.cra_blocksize = SHA1_BLOCK_SIZE,
1026 			.cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
1027 			.cra_init = mv_cesa_ahash_cra_init,
1028 			.cra_module = THIS_MODULE,
1029 		}
1030 	}
1031 };
1032 
1033 static int mv_cesa_sha256_init(struct ahash_request *req)
1034 {
1035 	struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
1036 	struct mv_cesa_op_ctx tmpl = { };
1037 
1038 	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256);
1039 
1040 	mv_cesa_ahash_init(req, &tmpl, false);
1041 
1042 	creq->state[0] = SHA256_H0;
1043 	creq->state[1] = SHA256_H1;
1044 	creq->state[2] = SHA256_H2;
1045 	creq->state[3] = SHA256_H3;
1046 	creq->state[4] = SHA256_H4;
1047 	creq->state[5] = SHA256_H5;
1048 	creq->state[6] = SHA256_H6;
1049 	creq->state[7] = SHA256_H7;
1050 
1051 	return 0;
1052 }
1053 
1054 static int mv_cesa_sha256_digest(struct ahash_request *req)
1055 {
1056 	int ret;
1057 
1058 	ret = mv_cesa_sha256_init(req);
1059 	if (ret)
1060 		return ret;
1061 
1062 	return mv_cesa_ahash_finup(req);
1063 }
1064 
1065 static int mv_cesa_sha256_export(struct ahash_request *req, void *out)
1066 {
1067 	struct sha256_state *out_state = out;
1068 
1069 	return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
1070 				    out_state->buf);
1071 }
1072 
1073 static int mv_cesa_sha256_import(struct ahash_request *req, const void *in)
1074 {
1075 	const struct sha256_state *in_state = in;
1076 
1077 	return mv_cesa_ahash_import(req, in_state->state, in_state->count,
1078 				    in_state->buf);
1079 }
1080 
1081 struct ahash_alg mv_sha256_alg = {
1082 	.init = mv_cesa_sha256_init,
1083 	.update = mv_cesa_ahash_update,
1084 	.final = mv_cesa_ahash_final,
1085 	.finup = mv_cesa_ahash_finup,
1086 	.digest = mv_cesa_sha256_digest,
1087 	.export = mv_cesa_sha256_export,
1088 	.import = mv_cesa_sha256_import,
1089 	.halg = {
1090 		.digestsize = SHA256_DIGEST_SIZE,
1091 		.statesize = sizeof(struct sha256_state),
1092 		.base = {
1093 			.cra_name = "sha256",
1094 			.cra_driver_name = "mv-sha256",
1095 			.cra_priority = 0,
1096 			.cra_flags = CRYPTO_ALG_ASYNC |
1097 				     CRYPTO_ALG_ALLOCATES_MEMORY |
1098 				     CRYPTO_ALG_KERN_DRIVER_ONLY,
1099 			.cra_blocksize = SHA256_BLOCK_SIZE,
1100 			.cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
1101 			.cra_init = mv_cesa_ahash_cra_init,
1102 			.cra_module = THIS_MODULE,
1103 		}
1104 	}
1105 };
1106 
1107 static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad,
1108 				       void *state, unsigned int blocksize)
1109 {
1110 	DECLARE_CRYPTO_WAIT(result);
1111 	struct scatterlist sg;
1112 	int ret;
1113 
1114 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1115 				   crypto_req_done, &result);
1116 	sg_init_one(&sg, pad, blocksize);
1117 	ahash_request_set_crypt(req, &sg, pad, blocksize);
1118 
1119 	ret = crypto_ahash_init(req);
1120 	if (ret)
1121 		return ret;
1122 
1123 	ret = crypto_ahash_update(req);
1124 	ret = crypto_wait_req(ret, &result);
1125 
1126 	if (ret)
1127 		return ret;
1128 
1129 	ret = crypto_ahash_export(req, state);
1130 	if (ret)
1131 		return ret;
1132 
1133 	return 0;
1134 }
1135 
1136 static int mv_cesa_ahmac_pad_init(struct ahash_request *req,
1137 				  const u8 *key, unsigned int keylen,
1138 				  u8 *ipad, u8 *opad,
1139 				  unsigned int blocksize)
1140 {
1141 	DECLARE_CRYPTO_WAIT(result);
1142 	struct scatterlist sg;
1143 	int ret;
1144 	int i;
1145 
1146 	if (keylen <= blocksize) {
1147 		memcpy(ipad, key, keylen);
1148 	} else {
1149 		u8 *keydup = kmemdup(key, keylen, GFP_KERNEL);
1150 
1151 		if (!keydup)
1152 			return -ENOMEM;
1153 
1154 		ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1155 					   crypto_req_done, &result);
1156 		sg_init_one(&sg, keydup, keylen);
1157 		ahash_request_set_crypt(req, &sg, ipad, keylen);
1158 
1159 		ret = crypto_ahash_digest(req);
1160 		ret = crypto_wait_req(ret, &result);
1161 
1162 		/* Set the memory region to 0 to avoid any leak. */
1163 		kfree_sensitive(keydup);
1164 
1165 		if (ret)
1166 			return ret;
1167 
1168 		keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
1169 	}
1170 
1171 	memset(ipad + keylen, 0, blocksize - keylen);
1172 	memcpy(opad, ipad, blocksize);
1173 
1174 	for (i = 0; i < blocksize; i++) {
1175 		ipad[i] ^= HMAC_IPAD_VALUE;
1176 		opad[i] ^= HMAC_OPAD_VALUE;
1177 	}
1178 
1179 	return 0;
1180 }
1181 
1182 static int mv_cesa_ahmac_setkey(const char *hash_alg_name,
1183 				const u8 *key, unsigned int keylen,
1184 				void *istate, void *ostate)
1185 {
1186 	struct ahash_request *req;
1187 	struct crypto_ahash *tfm;
1188 	unsigned int blocksize;
1189 	u8 *ipad = NULL;
1190 	u8 *opad;
1191 	int ret;
1192 
1193 	tfm = crypto_alloc_ahash(hash_alg_name, 0, 0);
1194 	if (IS_ERR(tfm))
1195 		return PTR_ERR(tfm);
1196 
1197 	req = ahash_request_alloc(tfm, GFP_KERNEL);
1198 	if (!req) {
1199 		ret = -ENOMEM;
1200 		goto free_ahash;
1201 	}
1202 
1203 	crypto_ahash_clear_flags(tfm, ~0);
1204 
1205 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
1206 
1207 	ipad = kcalloc(2, blocksize, GFP_KERNEL);
1208 	if (!ipad) {
1209 		ret = -ENOMEM;
1210 		goto free_req;
1211 	}
1212 
1213 	opad = ipad + blocksize;
1214 
1215 	ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize);
1216 	if (ret)
1217 		goto free_ipad;
1218 
1219 	ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize);
1220 	if (ret)
1221 		goto free_ipad;
1222 
1223 	ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize);
1224 
1225 free_ipad:
1226 	kfree(ipad);
1227 free_req:
1228 	ahash_request_free(req);
1229 free_ahash:
1230 	crypto_free_ahash(tfm);
1231 
1232 	return ret;
1233 }
1234 
1235 static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm)
1236 {
1237 	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm);
1238 
1239 	ctx->base.ops = &mv_cesa_ahash_req_ops;
1240 
1241 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1242 				 sizeof(struct mv_cesa_ahash_req));
1243 	return 0;
1244 }
1245 
1246 static int mv_cesa_ahmac_md5_init(struct ahash_request *req)
1247 {
1248 	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1249 	struct mv_cesa_op_ctx tmpl = { };
1250 
1251 	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5);
1252 	memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1253 
1254 	mv_cesa_ahash_init(req, &tmpl, true);
1255 
1256 	return 0;
1257 }
1258 
1259 static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
1260 				    unsigned int keylen)
1261 {
1262 	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1263 	struct md5_state istate, ostate;
1264 	int ret, i;
1265 
1266 	ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate);
1267 	if (ret)
1268 		return ret;
1269 
1270 	for (i = 0; i < ARRAY_SIZE(istate.hash); i++)
1271 		ctx->iv[i] = cpu_to_be32(istate.hash[i]);
1272 
1273 	for (i = 0; i < ARRAY_SIZE(ostate.hash); i++)
1274 		ctx->iv[i + 8] = cpu_to_be32(ostate.hash[i]);
1275 
1276 	return 0;
1277 }
1278 
1279 static int mv_cesa_ahmac_md5_digest(struct ahash_request *req)
1280 {
1281 	int ret;
1282 
1283 	ret = mv_cesa_ahmac_md5_init(req);
1284 	if (ret)
1285 		return ret;
1286 
1287 	return mv_cesa_ahash_finup(req);
1288 }
1289 
1290 struct ahash_alg mv_ahmac_md5_alg = {
1291 	.init = mv_cesa_ahmac_md5_init,
1292 	.update = mv_cesa_ahash_update,
1293 	.final = mv_cesa_ahash_final,
1294 	.finup = mv_cesa_ahash_finup,
1295 	.digest = mv_cesa_ahmac_md5_digest,
1296 	.setkey = mv_cesa_ahmac_md5_setkey,
1297 	.export = mv_cesa_md5_export,
1298 	.import = mv_cesa_md5_import,
1299 	.halg = {
1300 		.digestsize = MD5_DIGEST_SIZE,
1301 		.statesize = sizeof(struct md5_state),
1302 		.base = {
1303 			.cra_name = "hmac(md5)",
1304 			.cra_driver_name = "mv-hmac-md5",
1305 			.cra_priority = 0,
1306 			.cra_flags = CRYPTO_ALG_ASYNC |
1307 				     CRYPTO_ALG_ALLOCATES_MEMORY |
1308 				     CRYPTO_ALG_KERN_DRIVER_ONLY,
1309 			.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1310 			.cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1311 			.cra_init = mv_cesa_ahmac_cra_init,
1312 			.cra_module = THIS_MODULE,
1313 		}
1314 	}
1315 };
1316 
1317 static int mv_cesa_ahmac_sha1_init(struct ahash_request *req)
1318 {
1319 	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1320 	struct mv_cesa_op_ctx tmpl = { };
1321 
1322 	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1);
1323 	memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1324 
1325 	mv_cesa_ahash_init(req, &tmpl, false);
1326 
1327 	return 0;
1328 }
1329 
1330 static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
1331 				     unsigned int keylen)
1332 {
1333 	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1334 	struct sha1_state istate, ostate;
1335 	int ret, i;
1336 
1337 	ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate);
1338 	if (ret)
1339 		return ret;
1340 
1341 	for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1342 		ctx->iv[i] = cpu_to_be32(istate.state[i]);
1343 
1344 	for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1345 		ctx->iv[i + 8] = cpu_to_be32(ostate.state[i]);
1346 
1347 	return 0;
1348 }
1349 
1350 static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req)
1351 {
1352 	int ret;
1353 
1354 	ret = mv_cesa_ahmac_sha1_init(req);
1355 	if (ret)
1356 		return ret;
1357 
1358 	return mv_cesa_ahash_finup(req);
1359 }
1360 
1361 struct ahash_alg mv_ahmac_sha1_alg = {
1362 	.init = mv_cesa_ahmac_sha1_init,
1363 	.update = mv_cesa_ahash_update,
1364 	.final = mv_cesa_ahash_final,
1365 	.finup = mv_cesa_ahash_finup,
1366 	.digest = mv_cesa_ahmac_sha1_digest,
1367 	.setkey = mv_cesa_ahmac_sha1_setkey,
1368 	.export = mv_cesa_sha1_export,
1369 	.import = mv_cesa_sha1_import,
1370 	.halg = {
1371 		.digestsize = SHA1_DIGEST_SIZE,
1372 		.statesize = sizeof(struct sha1_state),
1373 		.base = {
1374 			.cra_name = "hmac(sha1)",
1375 			.cra_driver_name = "mv-hmac-sha1",
1376 			.cra_priority = 0,
1377 			.cra_flags = CRYPTO_ALG_ASYNC |
1378 				     CRYPTO_ALG_ALLOCATES_MEMORY |
1379 				     CRYPTO_ALG_KERN_DRIVER_ONLY,
1380 			.cra_blocksize = SHA1_BLOCK_SIZE,
1381 			.cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1382 			.cra_init = mv_cesa_ahmac_cra_init,
1383 			.cra_module = THIS_MODULE,
1384 		}
1385 	}
1386 };
1387 
1388 static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
1389 				       unsigned int keylen)
1390 {
1391 	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1392 	struct sha256_state istate, ostate;
1393 	int ret, i;
1394 
1395 	ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate);
1396 	if (ret)
1397 		return ret;
1398 
1399 	for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1400 		ctx->iv[i] = cpu_to_be32(istate.state[i]);
1401 
1402 	for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1403 		ctx->iv[i + 8] = cpu_to_be32(ostate.state[i]);
1404 
1405 	return 0;
1406 }
1407 
1408 static int mv_cesa_ahmac_sha256_init(struct ahash_request *req)
1409 {
1410 	struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1411 	struct mv_cesa_op_ctx tmpl = { };
1412 
1413 	mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256);
1414 	memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1415 
1416 	mv_cesa_ahash_init(req, &tmpl, false);
1417 
1418 	return 0;
1419 }
1420 
1421 static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req)
1422 {
1423 	int ret;
1424 
1425 	ret = mv_cesa_ahmac_sha256_init(req);
1426 	if (ret)
1427 		return ret;
1428 
1429 	return mv_cesa_ahash_finup(req);
1430 }
1431 
1432 struct ahash_alg mv_ahmac_sha256_alg = {
1433 	.init = mv_cesa_ahmac_sha256_init,
1434 	.update = mv_cesa_ahash_update,
1435 	.final = mv_cesa_ahash_final,
1436 	.finup = mv_cesa_ahash_finup,
1437 	.digest = mv_cesa_ahmac_sha256_digest,
1438 	.setkey = mv_cesa_ahmac_sha256_setkey,
1439 	.export = mv_cesa_sha256_export,
1440 	.import = mv_cesa_sha256_import,
1441 	.halg = {
1442 		.digestsize = SHA256_DIGEST_SIZE,
1443 		.statesize = sizeof(struct sha256_state),
1444 		.base = {
1445 			.cra_name = "hmac(sha256)",
1446 			.cra_driver_name = "mv-hmac-sha256",
1447 			.cra_priority = 0,
1448 			.cra_flags = CRYPTO_ALG_ASYNC |
1449 				     CRYPTO_ALG_ALLOCATES_MEMORY |
1450 				     CRYPTO_ALG_KERN_DRIVER_ONLY,
1451 			.cra_blocksize = SHA256_BLOCK_SIZE,
1452 			.cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1453 			.cra_init = mv_cesa_ahmac_cra_init,
1454 			.cra_module = THIS_MODULE,
1455 		}
1456 	}
1457 };
1458