1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Intel Keem Bay OCS HCU Crypto Driver. 4 * 5 * Copyright (C) 2018-2020 Intel Corporation 6 */ 7 8 #include <linux/completion.h> 9 #include <linux/delay.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/interrupt.h> 12 #include <linux/module.h> 13 #include <linux/of_device.h> 14 15 #include <crypto/engine.h> 16 #include <crypto/scatterwalk.h> 17 #include <crypto/sha2.h> 18 #include <crypto/sm3.h> 19 #include <crypto/hmac.h> 20 #include <crypto/internal/hash.h> 21 22 #include "ocs-hcu.h" 23 24 #define DRV_NAME "keembay-ocs-hcu" 25 26 /* Flag marking a final request. */ 27 #define REQ_FINAL BIT(0) 28 /* Flag marking a HMAC request. */ 29 #define REQ_FLAGS_HMAC BIT(1) 30 /* Flag set when HW HMAC is being used. */ 31 #define REQ_FLAGS_HMAC_HW BIT(2) 32 /* Flag set when SW HMAC is being used. */ 33 #define REQ_FLAGS_HMAC_SW BIT(3) 34 35 /** 36 * struct ocs_hcu_ctx: OCS HCU Transform context. 37 * @engine_ctx: Crypto Engine context. 38 * @hcu_dev: The OCS HCU device used by the transformation. 39 * @key: The key (used only for HMAC transformations). 40 * @key_len: The length of the key. 41 * @is_sm3_tfm: Whether or not this is an SM3 transformation. 42 * @is_hmac_tfm: Whether or not this is a HMAC transformation. 43 */ 44 struct ocs_hcu_ctx { 45 struct crypto_engine_ctx engine_ctx; 46 struct ocs_hcu_dev *hcu_dev; 47 u8 key[SHA512_BLOCK_SIZE]; 48 size_t key_len; 49 bool is_sm3_tfm; 50 bool is_hmac_tfm; 51 }; 52 53 /** 54 * struct ocs_hcu_rctx - Context for the request. 55 * @hcu_dev: OCS HCU device to be used to service the request. 56 * @flags: Flags tracking request status. 57 * @algo: Algorithm to use for the request. 58 * @blk_sz: Block size of the transformation / request. 59 * @dig_sz: Digest size of the transformation / request. 60 * @dma_list: OCS DMA linked list. 61 * @hash_ctx: OCS HCU hashing context. 62 * @buffer: Buffer to store: partial block of data and SW HMAC 63 * artifacts (ipad, opad, etc.). 64 * @buf_cnt: Number of bytes currently stored in the buffer. 65 * @buf_dma_addr: The DMA address of @buffer (when mapped). 66 * @buf_dma_count: The number of bytes in @buffer currently DMA-mapped. 67 * @sg: Head of the scatterlist entries containing data. 68 * @sg_data_total: Total data in the SG list at any time. 69 * @sg_data_offset: Offset into the data of the current individual SG node. 70 * @sg_dma_nents: Number of sg entries mapped in dma_list. 71 */ 72 struct ocs_hcu_rctx { 73 struct ocs_hcu_dev *hcu_dev; 74 u32 flags; 75 enum ocs_hcu_algo algo; 76 size_t blk_sz; 77 size_t dig_sz; 78 struct ocs_hcu_dma_list *dma_list; 79 struct ocs_hcu_hash_ctx hash_ctx; 80 /* 81 * Buffer is double the block size because we need space for SW HMAC 82 * artifacts, i.e: 83 * - ipad (1 block) + a possible partial block of data. 84 * - opad (1 block) + digest of H(k ^ ipad || m) 85 */ 86 u8 buffer[2 * SHA512_BLOCK_SIZE]; 87 size_t buf_cnt; 88 dma_addr_t buf_dma_addr; 89 size_t buf_dma_count; 90 struct scatterlist *sg; 91 unsigned int sg_data_total; 92 unsigned int sg_data_offset; 93 unsigned int sg_dma_nents; 94 }; 95 96 /** 97 * struct ocs_hcu_drv - Driver data 98 * @dev_list: The list of HCU devices. 99 * @lock: The lock protecting dev_list. 100 */ 101 struct ocs_hcu_drv { 102 struct list_head dev_list; 103 spinlock_t lock; /* Protects dev_list. */ 104 }; 105 106 static struct ocs_hcu_drv ocs_hcu = { 107 .dev_list = LIST_HEAD_INIT(ocs_hcu.dev_list), 108 .lock = __SPIN_LOCK_UNLOCKED(ocs_hcu.lock), 109 }; 110 111 /* 112 * Return the total amount of data in the request; that is: the data in the 113 * request buffer + the data in the sg list. 114 */ 115 static inline unsigned int kmb_get_total_data(struct ocs_hcu_rctx *rctx) 116 { 117 return rctx->sg_data_total + rctx->buf_cnt; 118 } 119 120 /* Move remaining content of scatter-gather list to context buffer. */ 121 static int flush_sg_to_ocs_buffer(struct ocs_hcu_rctx *rctx) 122 { 123 size_t count; 124 125 if (rctx->sg_data_total > (sizeof(rctx->buffer) - rctx->buf_cnt)) { 126 WARN(1, "%s: sg data does not fit in buffer\n", __func__); 127 return -EINVAL; 128 } 129 130 while (rctx->sg_data_total) { 131 if (!rctx->sg) { 132 WARN(1, "%s: unexpected NULL sg\n", __func__); 133 return -EINVAL; 134 } 135 /* 136 * If current sg has been fully processed, skip to the next 137 * one. 138 */ 139 if (rctx->sg_data_offset == rctx->sg->length) { 140 rctx->sg = sg_next(rctx->sg); 141 rctx->sg_data_offset = 0; 142 continue; 143 } 144 /* 145 * Determine the maximum data available to copy from the node. 146 * Minimum of the length left in the sg node, or the total data 147 * in the request. 148 */ 149 count = min(rctx->sg->length - rctx->sg_data_offset, 150 rctx->sg_data_total); 151 /* Copy from scatter-list entry to context buffer. */ 152 scatterwalk_map_and_copy(&rctx->buffer[rctx->buf_cnt], 153 rctx->sg, rctx->sg_data_offset, 154 count, 0); 155 156 rctx->sg_data_offset += count; 157 rctx->sg_data_total -= count; 158 rctx->buf_cnt += count; 159 } 160 161 return 0; 162 } 163 164 static struct ocs_hcu_dev *kmb_ocs_hcu_find_dev(struct ahash_request *req) 165 { 166 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 167 struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm); 168 169 /* If the HCU device for the request was previously set, return it. */ 170 if (tctx->hcu_dev) 171 return tctx->hcu_dev; 172 173 /* 174 * Otherwise, get the first HCU device available (there should be one 175 * and only one device). 176 */ 177 spin_lock_bh(&ocs_hcu.lock); 178 tctx->hcu_dev = list_first_entry_or_null(&ocs_hcu.dev_list, 179 struct ocs_hcu_dev, 180 list); 181 spin_unlock_bh(&ocs_hcu.lock); 182 183 return tctx->hcu_dev; 184 } 185 186 /* Free OCS DMA linked list and DMA-able context buffer. */ 187 static void kmb_ocs_hcu_dma_cleanup(struct ahash_request *req, 188 struct ocs_hcu_rctx *rctx) 189 { 190 struct ocs_hcu_dev *hcu_dev = rctx->hcu_dev; 191 struct device *dev = hcu_dev->dev; 192 193 /* Unmap rctx->buffer (if mapped). */ 194 if (rctx->buf_dma_count) { 195 dma_unmap_single(dev, rctx->buf_dma_addr, rctx->buf_dma_count, 196 DMA_TO_DEVICE); 197 rctx->buf_dma_count = 0; 198 } 199 200 /* Unmap req->src (if mapped). */ 201 if (rctx->sg_dma_nents) { 202 dma_unmap_sg(dev, req->src, rctx->sg_dma_nents, DMA_TO_DEVICE); 203 rctx->sg_dma_nents = 0; 204 } 205 206 /* Free dma_list (if allocated). */ 207 if (rctx->dma_list) { 208 ocs_hcu_dma_list_free(hcu_dev, rctx->dma_list); 209 rctx->dma_list = NULL; 210 } 211 } 212 213 /* 214 * Prepare for DMA operation: 215 * - DMA-map request context buffer (if needed) 216 * - DMA-map SG list (only the entries to be processed, see note below) 217 * - Allocate OCS HCU DMA linked list (number of elements = SG entries to 218 * process + context buffer (if not empty)). 219 * - Add DMA-mapped request context buffer to OCS HCU DMA list. 220 * - Add SG entries to DMA list. 221 * 222 * Note: if this is a final request, we process all the data in the SG list, 223 * otherwise we can only process up to the maximum amount of block-aligned data 224 * (the remainder will be put into the context buffer and processed in the next 225 * request). 226 */ 227 static int kmb_ocs_dma_prepare(struct ahash_request *req) 228 { 229 struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); 230 struct device *dev = rctx->hcu_dev->dev; 231 unsigned int remainder = 0; 232 unsigned int total; 233 size_t nents; 234 size_t count; 235 int rc; 236 int i; 237 238 /* This function should be called only when there is data to process. */ 239 total = kmb_get_total_data(rctx); 240 if (!total) 241 return -EINVAL; 242 243 /* 244 * If this is not a final DMA (terminated DMA), the data passed to the 245 * HCU must be aligned to the block size; compute the remainder data to 246 * be processed in the next request. 247 */ 248 if (!(rctx->flags & REQ_FINAL)) 249 remainder = total % rctx->blk_sz; 250 251 /* Determine the number of scatter gather list entries to process. */ 252 nents = sg_nents_for_len(req->src, rctx->sg_data_total - remainder); 253 254 /* If there are entries to process, map them. */ 255 if (nents) { 256 rctx->sg_dma_nents = dma_map_sg(dev, req->src, nents, 257 DMA_TO_DEVICE); 258 if (!rctx->sg_dma_nents) { 259 dev_err(dev, "Failed to MAP SG\n"); 260 rc = -ENOMEM; 261 goto cleanup; 262 } 263 /* 264 * The value returned by dma_map_sg() can be < nents; so update 265 * nents accordingly. 266 */ 267 nents = rctx->sg_dma_nents; 268 } 269 270 /* 271 * If context buffer is not empty, map it and add extra DMA entry for 272 * it. 273 */ 274 if (rctx->buf_cnt) { 275 rctx->buf_dma_addr = dma_map_single(dev, rctx->buffer, 276 rctx->buf_cnt, 277 DMA_TO_DEVICE); 278 if (dma_mapping_error(dev, rctx->buf_dma_addr)) { 279 dev_err(dev, "Failed to map request context buffer\n"); 280 rc = -ENOMEM; 281 goto cleanup; 282 } 283 rctx->buf_dma_count = rctx->buf_cnt; 284 /* Increase number of dma entries. */ 285 nents++; 286 } 287 288 /* Allocate OCS HCU DMA list. */ 289 rctx->dma_list = ocs_hcu_dma_list_alloc(rctx->hcu_dev, nents); 290 if (!rctx->dma_list) { 291 rc = -ENOMEM; 292 goto cleanup; 293 } 294 295 /* Add request context buffer (if previously DMA-mapped) */ 296 if (rctx->buf_dma_count) { 297 rc = ocs_hcu_dma_list_add_tail(rctx->hcu_dev, rctx->dma_list, 298 rctx->buf_dma_addr, 299 rctx->buf_dma_count); 300 if (rc) 301 goto cleanup; 302 } 303 304 /* Add the SG nodes to be processed to the DMA linked list. */ 305 for_each_sg(req->src, rctx->sg, rctx->sg_dma_nents, i) { 306 /* 307 * The number of bytes to add to the list entry is the minimum 308 * between: 309 * - The DMA length of the SG entry. 310 * - The data left to be processed. 311 */ 312 count = min(rctx->sg_data_total - remainder, 313 sg_dma_len(rctx->sg) - rctx->sg_data_offset); 314 /* 315 * Do not create a zero length DMA descriptor. Check in case of 316 * zero length SG node. 317 */ 318 if (count == 0) 319 continue; 320 /* Add sg to HCU DMA list. */ 321 rc = ocs_hcu_dma_list_add_tail(rctx->hcu_dev, 322 rctx->dma_list, 323 rctx->sg->dma_address, 324 count); 325 if (rc) 326 goto cleanup; 327 328 /* Update amount of data remaining in SG list. */ 329 rctx->sg_data_total -= count; 330 331 /* 332 * If remaining data is equal to remainder (note: 'less than' 333 * case should never happen in practice), we are done: update 334 * offset and exit the loop. 335 */ 336 if (rctx->sg_data_total <= remainder) { 337 WARN_ON(rctx->sg_data_total < remainder); 338 rctx->sg_data_offset += count; 339 break; 340 } 341 342 /* 343 * If we get here is because we need to process the next sg in 344 * the list; set offset within the sg to 0. 345 */ 346 rctx->sg_data_offset = 0; 347 } 348 349 return 0; 350 cleanup: 351 dev_err(dev, "Failed to prepare DMA.\n"); 352 kmb_ocs_hcu_dma_cleanup(req, rctx); 353 354 return rc; 355 } 356 357 static void kmb_ocs_hcu_secure_cleanup(struct ahash_request *req) 358 { 359 struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); 360 361 /* Clear buffer of any data. */ 362 memzero_explicit(rctx->buffer, sizeof(rctx->buffer)); 363 } 364 365 static int kmb_ocs_hcu_handle_queue(struct ahash_request *req) 366 { 367 struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req); 368 369 if (!hcu_dev) 370 return -ENOENT; 371 372 return crypto_transfer_hash_request_to_engine(hcu_dev->engine, req); 373 } 374 375 static int prepare_ipad(struct ahash_request *req) 376 { 377 struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); 378 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 379 struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm); 380 int i; 381 382 WARN(rctx->buf_cnt, "%s: Context buffer is not empty\n", __func__); 383 WARN(!(rctx->flags & REQ_FLAGS_HMAC_SW), 384 "%s: HMAC_SW flag is not set\n", __func__); 385 /* 386 * Key length must be equal to block size. If key is shorter, 387 * we pad it with zero (note: key cannot be longer, since 388 * longer keys are hashed by kmb_ocs_hcu_setkey()). 389 */ 390 if (ctx->key_len > rctx->blk_sz) { 391 WARN(1, "%s: Invalid key length in tfm context\n", __func__); 392 return -EINVAL; 393 } 394 memzero_explicit(&ctx->key[ctx->key_len], 395 rctx->blk_sz - ctx->key_len); 396 ctx->key_len = rctx->blk_sz; 397 /* 398 * Prepare IPAD for HMAC. Only done for first block. 399 * HMAC(k,m) = H(k ^ opad || H(k ^ ipad || m)) 400 * k ^ ipad will be first hashed block. 401 * k ^ opad will be calculated in the final request. 402 * Only needed if not using HW HMAC. 403 */ 404 for (i = 0; i < rctx->blk_sz; i++) 405 rctx->buffer[i] = ctx->key[i] ^ HMAC_IPAD_VALUE; 406 rctx->buf_cnt = rctx->blk_sz; 407 408 return 0; 409 } 410 411 static int kmb_ocs_hcu_do_one_request(struct crypto_engine *engine, void *areq) 412 { 413 struct ahash_request *req = container_of(areq, struct ahash_request, 414 base); 415 struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req); 416 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 417 struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); 418 struct ocs_hcu_ctx *tctx = crypto_ahash_ctx(tfm); 419 int rc; 420 int i; 421 422 if (!hcu_dev) { 423 rc = -ENOENT; 424 goto error; 425 } 426 427 /* 428 * If hardware HMAC flag is set, perform HMAC in hardware. 429 * 430 * NOTE: this flag implies REQ_FINAL && kmb_get_total_data(rctx) 431 */ 432 if (rctx->flags & REQ_FLAGS_HMAC_HW) { 433 /* Map input data into the HCU DMA linked list. */ 434 rc = kmb_ocs_dma_prepare(req); 435 if (rc) 436 goto error; 437 438 rc = ocs_hcu_hmac(hcu_dev, rctx->algo, tctx->key, tctx->key_len, 439 rctx->dma_list, req->result, rctx->dig_sz); 440 441 /* Unmap data and free DMA list regardless of return code. */ 442 kmb_ocs_hcu_dma_cleanup(req, rctx); 443 444 /* Process previous return code. */ 445 if (rc) 446 goto error; 447 448 goto done; 449 } 450 451 /* Handle update request case. */ 452 if (!(rctx->flags & REQ_FINAL)) { 453 /* Update should always have input data. */ 454 if (!kmb_get_total_data(rctx)) 455 return -EINVAL; 456 457 /* Map input data into the HCU DMA linked list. */ 458 rc = kmb_ocs_dma_prepare(req); 459 if (rc) 460 goto error; 461 462 /* Do hashing step. */ 463 rc = ocs_hcu_hash_update(hcu_dev, &rctx->hash_ctx, 464 rctx->dma_list); 465 466 /* Unmap data and free DMA list regardless of return code. */ 467 kmb_ocs_hcu_dma_cleanup(req, rctx); 468 469 /* Process previous return code. */ 470 if (rc) 471 goto error; 472 473 /* 474 * Reset request buffer count (data in the buffer was just 475 * processed). 476 */ 477 rctx->buf_cnt = 0; 478 /* 479 * Move remaining sg data into the request buffer, so that it 480 * will be processed during the next request. 481 * 482 * NOTE: we have remaining data if kmb_get_total_data() was not 483 * a multiple of block size. 484 */ 485 rc = flush_sg_to_ocs_buffer(rctx); 486 if (rc) 487 goto error; 488 489 goto done; 490 } 491 492 /* If we get here, this is a final request. */ 493 494 /* If there is data to process, use finup. */ 495 if (kmb_get_total_data(rctx)) { 496 /* Map input data into the HCU DMA linked list. */ 497 rc = kmb_ocs_dma_prepare(req); 498 if (rc) 499 goto error; 500 501 /* Do hashing step. */ 502 rc = ocs_hcu_hash_finup(hcu_dev, &rctx->hash_ctx, 503 rctx->dma_list, 504 req->result, rctx->dig_sz); 505 /* Free DMA list regardless of return code. */ 506 kmb_ocs_hcu_dma_cleanup(req, rctx); 507 508 /* Process previous return code. */ 509 if (rc) 510 goto error; 511 512 } else { /* Otherwise (if we have no data), use final. */ 513 rc = ocs_hcu_hash_final(hcu_dev, &rctx->hash_ctx, req->result, 514 rctx->dig_sz); 515 if (rc) 516 goto error; 517 } 518 519 /* 520 * If we are finalizing a SW HMAC request, we just computed the result 521 * of: H(k ^ ipad || m). 522 * 523 * We now need to complete the HMAC calculation with the OPAD step, 524 * that is, we need to compute H(k ^ opad || digest), where digest is 525 * the digest we just obtained, i.e., H(k ^ ipad || m). 526 */ 527 if (rctx->flags & REQ_FLAGS_HMAC_SW) { 528 /* 529 * Compute k ^ opad and store it in the request buffer (which 530 * is not used anymore at this point). 531 * Note: key has been padded / hashed already (so keylen == 532 * blksz) . 533 */ 534 WARN_ON(tctx->key_len != rctx->blk_sz); 535 for (i = 0; i < rctx->blk_sz; i++) 536 rctx->buffer[i] = tctx->key[i] ^ HMAC_OPAD_VALUE; 537 /* Now append the digest to the rest of the buffer. */ 538 for (i = 0; (i < rctx->dig_sz); i++) 539 rctx->buffer[rctx->blk_sz + i] = req->result[i]; 540 541 /* Now hash the buffer to obtain the final HMAC. */ 542 rc = ocs_hcu_digest(hcu_dev, rctx->algo, rctx->buffer, 543 rctx->blk_sz + rctx->dig_sz, req->result, 544 rctx->dig_sz); 545 if (rc) 546 goto error; 547 } 548 549 /* Perform secure clean-up. */ 550 kmb_ocs_hcu_secure_cleanup(req); 551 done: 552 crypto_finalize_hash_request(hcu_dev->engine, req, 0); 553 554 return 0; 555 556 error: 557 kmb_ocs_hcu_secure_cleanup(req); 558 return rc; 559 } 560 561 static int kmb_ocs_hcu_init(struct ahash_request *req) 562 { 563 struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req); 564 struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); 565 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 566 struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm); 567 568 if (!hcu_dev) 569 return -ENOENT; 570 571 /* Initialize entire request context to zero. */ 572 memset(rctx, 0, sizeof(*rctx)); 573 574 rctx->hcu_dev = hcu_dev; 575 rctx->dig_sz = crypto_ahash_digestsize(tfm); 576 577 switch (rctx->dig_sz) { 578 #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 579 case SHA224_DIGEST_SIZE: 580 rctx->blk_sz = SHA224_BLOCK_SIZE; 581 rctx->algo = OCS_HCU_ALGO_SHA224; 582 break; 583 #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */ 584 case SHA256_DIGEST_SIZE: 585 rctx->blk_sz = SHA256_BLOCK_SIZE; 586 /* 587 * SHA256 and SM3 have the same digest size: use info from tfm 588 * context to find out which one we should use. 589 */ 590 rctx->algo = ctx->is_sm3_tfm ? OCS_HCU_ALGO_SM3 : 591 OCS_HCU_ALGO_SHA256; 592 break; 593 case SHA384_DIGEST_SIZE: 594 rctx->blk_sz = SHA384_BLOCK_SIZE; 595 rctx->algo = OCS_HCU_ALGO_SHA384; 596 break; 597 case SHA512_DIGEST_SIZE: 598 rctx->blk_sz = SHA512_BLOCK_SIZE; 599 rctx->algo = OCS_HCU_ALGO_SHA512; 600 break; 601 default: 602 return -EINVAL; 603 } 604 605 /* Initialize intermediate data. */ 606 ocs_hcu_hash_init(&rctx->hash_ctx, rctx->algo); 607 608 /* If this a HMAC request, set HMAC flag. */ 609 if (ctx->is_hmac_tfm) 610 rctx->flags |= REQ_FLAGS_HMAC; 611 612 return 0; 613 } 614 615 static int kmb_ocs_hcu_update(struct ahash_request *req) 616 { 617 struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); 618 int rc; 619 620 if (!req->nbytes) 621 return 0; 622 623 rctx->sg_data_total = req->nbytes; 624 rctx->sg_data_offset = 0; 625 rctx->sg = req->src; 626 627 /* 628 * If we are doing HMAC, then we must use SW-assisted HMAC, since HW 629 * HMAC does not support context switching (there it can only be used 630 * with finup() or digest()). 631 */ 632 if (rctx->flags & REQ_FLAGS_HMAC && 633 !(rctx->flags & REQ_FLAGS_HMAC_SW)) { 634 rctx->flags |= REQ_FLAGS_HMAC_SW; 635 rc = prepare_ipad(req); 636 if (rc) 637 return rc; 638 } 639 640 /* 641 * If remaining sg_data fits into ctx buffer, just copy it there; we'll 642 * process it at the next update() or final(). 643 */ 644 if (rctx->sg_data_total <= (sizeof(rctx->buffer) - rctx->buf_cnt)) 645 return flush_sg_to_ocs_buffer(rctx); 646 647 return kmb_ocs_hcu_handle_queue(req); 648 } 649 650 /* Common logic for kmb_ocs_hcu_final() and kmb_ocs_hcu_finup(). */ 651 static int kmb_ocs_hcu_fin_common(struct ahash_request *req) 652 { 653 struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); 654 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 655 struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm); 656 int rc; 657 658 rctx->flags |= REQ_FINAL; 659 660 /* 661 * If this is a HMAC request and, so far, we didn't have to switch to 662 * SW HMAC, check if we can use HW HMAC. 663 */ 664 if (rctx->flags & REQ_FLAGS_HMAC && 665 !(rctx->flags & REQ_FLAGS_HMAC_SW)) { 666 /* 667 * If we are here, it means we never processed any data so far, 668 * so we can use HW HMAC, but only if there is some data to 669 * process (since OCS HW MAC does not support zero-length 670 * messages) and the key length is supported by the hardware 671 * (OCS HCU HW only supports length <= 64); if HW HMAC cannot 672 * be used, fall back to SW-assisted HMAC. 673 */ 674 if (kmb_get_total_data(rctx) && 675 ctx->key_len <= OCS_HCU_HW_KEY_LEN) { 676 rctx->flags |= REQ_FLAGS_HMAC_HW; 677 } else { 678 rctx->flags |= REQ_FLAGS_HMAC_SW; 679 rc = prepare_ipad(req); 680 if (rc) 681 return rc; 682 } 683 } 684 685 return kmb_ocs_hcu_handle_queue(req); 686 } 687 688 static int kmb_ocs_hcu_final(struct ahash_request *req) 689 { 690 struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); 691 692 rctx->sg_data_total = 0; 693 rctx->sg_data_offset = 0; 694 rctx->sg = NULL; 695 696 return kmb_ocs_hcu_fin_common(req); 697 } 698 699 static int kmb_ocs_hcu_finup(struct ahash_request *req) 700 { 701 struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); 702 703 rctx->sg_data_total = req->nbytes; 704 rctx->sg_data_offset = 0; 705 rctx->sg = req->src; 706 707 return kmb_ocs_hcu_fin_common(req); 708 } 709 710 static int kmb_ocs_hcu_digest(struct ahash_request *req) 711 { 712 int rc = 0; 713 struct ocs_hcu_dev *hcu_dev = kmb_ocs_hcu_find_dev(req); 714 715 if (!hcu_dev) 716 return -ENOENT; 717 718 rc = kmb_ocs_hcu_init(req); 719 if (rc) 720 return rc; 721 722 rc = kmb_ocs_hcu_finup(req); 723 724 return rc; 725 } 726 727 static int kmb_ocs_hcu_export(struct ahash_request *req, void *out) 728 { 729 struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); 730 731 /* Intermediate data is always stored and applied per request. */ 732 memcpy(out, rctx, sizeof(*rctx)); 733 734 return 0; 735 } 736 737 static int kmb_ocs_hcu_import(struct ahash_request *req, const void *in) 738 { 739 struct ocs_hcu_rctx *rctx = ahash_request_ctx_dma(req); 740 741 /* Intermediate data is always stored and applied per request. */ 742 memcpy(rctx, in, sizeof(*rctx)); 743 744 return 0; 745 } 746 747 static int kmb_ocs_hcu_setkey(struct crypto_ahash *tfm, const u8 *key, 748 unsigned int keylen) 749 { 750 unsigned int digestsize = crypto_ahash_digestsize(tfm); 751 struct ocs_hcu_ctx *ctx = crypto_ahash_ctx(tfm); 752 size_t blk_sz = crypto_ahash_blocksize(tfm); 753 struct crypto_ahash *ahash_tfm; 754 struct ahash_request *req; 755 struct crypto_wait wait; 756 struct scatterlist sg; 757 const char *alg_name; 758 int rc; 759 760 /* 761 * Key length must be equal to block size: 762 * - If key is shorter, we are done for now (the key will be padded 763 * later on); this is to maximize the use of HW HMAC (which works 764 * only for keys <= 64 bytes). 765 * - If key is longer, we hash it. 766 */ 767 if (keylen <= blk_sz) { 768 memcpy(ctx->key, key, keylen); 769 ctx->key_len = keylen; 770 return 0; 771 } 772 773 switch (digestsize) { 774 #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 775 case SHA224_DIGEST_SIZE: 776 alg_name = "sha224-keembay-ocs"; 777 break; 778 #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */ 779 case SHA256_DIGEST_SIZE: 780 alg_name = ctx->is_sm3_tfm ? "sm3-keembay-ocs" : 781 "sha256-keembay-ocs"; 782 break; 783 case SHA384_DIGEST_SIZE: 784 alg_name = "sha384-keembay-ocs"; 785 break; 786 case SHA512_DIGEST_SIZE: 787 alg_name = "sha512-keembay-ocs"; 788 break; 789 default: 790 return -EINVAL; 791 } 792 793 ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0); 794 if (IS_ERR(ahash_tfm)) 795 return PTR_ERR(ahash_tfm); 796 797 req = ahash_request_alloc(ahash_tfm, GFP_KERNEL); 798 if (!req) { 799 rc = -ENOMEM; 800 goto err_free_ahash; 801 } 802 803 crypto_init_wait(&wait); 804 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, 805 crypto_req_done, &wait); 806 crypto_ahash_clear_flags(ahash_tfm, ~0); 807 808 sg_init_one(&sg, key, keylen); 809 ahash_request_set_crypt(req, &sg, ctx->key, keylen); 810 811 rc = crypto_wait_req(crypto_ahash_digest(req), &wait); 812 if (rc == 0) 813 ctx->key_len = digestsize; 814 815 ahash_request_free(req); 816 err_free_ahash: 817 crypto_free_ahash(ahash_tfm); 818 819 return rc; 820 } 821 822 /* Set request size and initialize tfm context. */ 823 static void __cra_init(struct crypto_tfm *tfm, struct ocs_hcu_ctx *ctx) 824 { 825 crypto_ahash_set_reqsize_dma(__crypto_ahash_cast(tfm), 826 sizeof(struct ocs_hcu_rctx)); 827 828 /* Init context to 0. */ 829 memzero_explicit(ctx, sizeof(*ctx)); 830 /* Set engine ops. */ 831 ctx->engine_ctx.op.do_one_request = kmb_ocs_hcu_do_one_request; 832 } 833 834 static int kmb_ocs_hcu_sha_cra_init(struct crypto_tfm *tfm) 835 { 836 struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); 837 838 __cra_init(tfm, ctx); 839 840 return 0; 841 } 842 843 static int kmb_ocs_hcu_sm3_cra_init(struct crypto_tfm *tfm) 844 { 845 struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); 846 847 __cra_init(tfm, ctx); 848 849 ctx->is_sm3_tfm = true; 850 851 return 0; 852 } 853 854 static int kmb_ocs_hcu_hmac_sm3_cra_init(struct crypto_tfm *tfm) 855 { 856 struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); 857 858 __cra_init(tfm, ctx); 859 860 ctx->is_sm3_tfm = true; 861 ctx->is_hmac_tfm = true; 862 863 return 0; 864 } 865 866 static int kmb_ocs_hcu_hmac_cra_init(struct crypto_tfm *tfm) 867 { 868 struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); 869 870 __cra_init(tfm, ctx); 871 872 ctx->is_hmac_tfm = true; 873 874 return 0; 875 } 876 877 /* Function called when 'tfm' is de-initialized. */ 878 static void kmb_ocs_hcu_hmac_cra_exit(struct crypto_tfm *tfm) 879 { 880 struct ocs_hcu_ctx *ctx = crypto_tfm_ctx(tfm); 881 882 /* Clear the key. */ 883 memzero_explicit(ctx->key, sizeof(ctx->key)); 884 } 885 886 static struct ahash_alg ocs_hcu_algs[] = { 887 #ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 888 { 889 .init = kmb_ocs_hcu_init, 890 .update = kmb_ocs_hcu_update, 891 .final = kmb_ocs_hcu_final, 892 .finup = kmb_ocs_hcu_finup, 893 .digest = kmb_ocs_hcu_digest, 894 .export = kmb_ocs_hcu_export, 895 .import = kmb_ocs_hcu_import, 896 .halg = { 897 .digestsize = SHA224_DIGEST_SIZE, 898 .statesize = sizeof(struct ocs_hcu_rctx), 899 .base = { 900 .cra_name = "sha224", 901 .cra_driver_name = "sha224-keembay-ocs", 902 .cra_priority = 255, 903 .cra_flags = CRYPTO_ALG_ASYNC, 904 .cra_blocksize = SHA224_BLOCK_SIZE, 905 .cra_ctxsize = sizeof(struct ocs_hcu_ctx), 906 .cra_alignmask = 0, 907 .cra_module = THIS_MODULE, 908 .cra_init = kmb_ocs_hcu_sha_cra_init, 909 } 910 } 911 }, 912 { 913 .init = kmb_ocs_hcu_init, 914 .update = kmb_ocs_hcu_update, 915 .final = kmb_ocs_hcu_final, 916 .finup = kmb_ocs_hcu_finup, 917 .digest = kmb_ocs_hcu_digest, 918 .export = kmb_ocs_hcu_export, 919 .import = kmb_ocs_hcu_import, 920 .setkey = kmb_ocs_hcu_setkey, 921 .halg = { 922 .digestsize = SHA224_DIGEST_SIZE, 923 .statesize = sizeof(struct ocs_hcu_rctx), 924 .base = { 925 .cra_name = "hmac(sha224)", 926 .cra_driver_name = "hmac-sha224-keembay-ocs", 927 .cra_priority = 255, 928 .cra_flags = CRYPTO_ALG_ASYNC, 929 .cra_blocksize = SHA224_BLOCK_SIZE, 930 .cra_ctxsize = sizeof(struct ocs_hcu_ctx), 931 .cra_alignmask = 0, 932 .cra_module = THIS_MODULE, 933 .cra_init = kmb_ocs_hcu_hmac_cra_init, 934 .cra_exit = kmb_ocs_hcu_hmac_cra_exit, 935 } 936 } 937 }, 938 #endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_HCU_HMAC_SHA224 */ 939 { 940 .init = kmb_ocs_hcu_init, 941 .update = kmb_ocs_hcu_update, 942 .final = kmb_ocs_hcu_final, 943 .finup = kmb_ocs_hcu_finup, 944 .digest = kmb_ocs_hcu_digest, 945 .export = kmb_ocs_hcu_export, 946 .import = kmb_ocs_hcu_import, 947 .halg = { 948 .digestsize = SHA256_DIGEST_SIZE, 949 .statesize = sizeof(struct ocs_hcu_rctx), 950 .base = { 951 .cra_name = "sha256", 952 .cra_driver_name = "sha256-keembay-ocs", 953 .cra_priority = 255, 954 .cra_flags = CRYPTO_ALG_ASYNC, 955 .cra_blocksize = SHA256_BLOCK_SIZE, 956 .cra_ctxsize = sizeof(struct ocs_hcu_ctx), 957 .cra_alignmask = 0, 958 .cra_module = THIS_MODULE, 959 .cra_init = kmb_ocs_hcu_sha_cra_init, 960 } 961 } 962 }, 963 { 964 .init = kmb_ocs_hcu_init, 965 .update = kmb_ocs_hcu_update, 966 .final = kmb_ocs_hcu_final, 967 .finup = kmb_ocs_hcu_finup, 968 .digest = kmb_ocs_hcu_digest, 969 .export = kmb_ocs_hcu_export, 970 .import = kmb_ocs_hcu_import, 971 .setkey = kmb_ocs_hcu_setkey, 972 .halg = { 973 .digestsize = SHA256_DIGEST_SIZE, 974 .statesize = sizeof(struct ocs_hcu_rctx), 975 .base = { 976 .cra_name = "hmac(sha256)", 977 .cra_driver_name = "hmac-sha256-keembay-ocs", 978 .cra_priority = 255, 979 .cra_flags = CRYPTO_ALG_ASYNC, 980 .cra_blocksize = SHA256_BLOCK_SIZE, 981 .cra_ctxsize = sizeof(struct ocs_hcu_ctx), 982 .cra_alignmask = 0, 983 .cra_module = THIS_MODULE, 984 .cra_init = kmb_ocs_hcu_hmac_cra_init, 985 .cra_exit = kmb_ocs_hcu_hmac_cra_exit, 986 } 987 } 988 }, 989 { 990 .init = kmb_ocs_hcu_init, 991 .update = kmb_ocs_hcu_update, 992 .final = kmb_ocs_hcu_final, 993 .finup = kmb_ocs_hcu_finup, 994 .digest = kmb_ocs_hcu_digest, 995 .export = kmb_ocs_hcu_export, 996 .import = kmb_ocs_hcu_import, 997 .halg = { 998 .digestsize = SM3_DIGEST_SIZE, 999 .statesize = sizeof(struct ocs_hcu_rctx), 1000 .base = { 1001 .cra_name = "sm3", 1002 .cra_driver_name = "sm3-keembay-ocs", 1003 .cra_priority = 255, 1004 .cra_flags = CRYPTO_ALG_ASYNC, 1005 .cra_blocksize = SM3_BLOCK_SIZE, 1006 .cra_ctxsize = sizeof(struct ocs_hcu_ctx), 1007 .cra_alignmask = 0, 1008 .cra_module = THIS_MODULE, 1009 .cra_init = kmb_ocs_hcu_sm3_cra_init, 1010 } 1011 } 1012 }, 1013 { 1014 .init = kmb_ocs_hcu_init, 1015 .update = kmb_ocs_hcu_update, 1016 .final = kmb_ocs_hcu_final, 1017 .finup = kmb_ocs_hcu_finup, 1018 .digest = kmb_ocs_hcu_digest, 1019 .export = kmb_ocs_hcu_export, 1020 .import = kmb_ocs_hcu_import, 1021 .setkey = kmb_ocs_hcu_setkey, 1022 .halg = { 1023 .digestsize = SM3_DIGEST_SIZE, 1024 .statesize = sizeof(struct ocs_hcu_rctx), 1025 .base = { 1026 .cra_name = "hmac(sm3)", 1027 .cra_driver_name = "hmac-sm3-keembay-ocs", 1028 .cra_priority = 255, 1029 .cra_flags = CRYPTO_ALG_ASYNC, 1030 .cra_blocksize = SM3_BLOCK_SIZE, 1031 .cra_ctxsize = sizeof(struct ocs_hcu_ctx), 1032 .cra_alignmask = 0, 1033 .cra_module = THIS_MODULE, 1034 .cra_init = kmb_ocs_hcu_hmac_sm3_cra_init, 1035 .cra_exit = kmb_ocs_hcu_hmac_cra_exit, 1036 } 1037 } 1038 }, 1039 { 1040 .init = kmb_ocs_hcu_init, 1041 .update = kmb_ocs_hcu_update, 1042 .final = kmb_ocs_hcu_final, 1043 .finup = kmb_ocs_hcu_finup, 1044 .digest = kmb_ocs_hcu_digest, 1045 .export = kmb_ocs_hcu_export, 1046 .import = kmb_ocs_hcu_import, 1047 .halg = { 1048 .digestsize = SHA384_DIGEST_SIZE, 1049 .statesize = sizeof(struct ocs_hcu_rctx), 1050 .base = { 1051 .cra_name = "sha384", 1052 .cra_driver_name = "sha384-keembay-ocs", 1053 .cra_priority = 255, 1054 .cra_flags = CRYPTO_ALG_ASYNC, 1055 .cra_blocksize = SHA384_BLOCK_SIZE, 1056 .cra_ctxsize = sizeof(struct ocs_hcu_ctx), 1057 .cra_alignmask = 0, 1058 .cra_module = THIS_MODULE, 1059 .cra_init = kmb_ocs_hcu_sha_cra_init, 1060 } 1061 } 1062 }, 1063 { 1064 .init = kmb_ocs_hcu_init, 1065 .update = kmb_ocs_hcu_update, 1066 .final = kmb_ocs_hcu_final, 1067 .finup = kmb_ocs_hcu_finup, 1068 .digest = kmb_ocs_hcu_digest, 1069 .export = kmb_ocs_hcu_export, 1070 .import = kmb_ocs_hcu_import, 1071 .setkey = kmb_ocs_hcu_setkey, 1072 .halg = { 1073 .digestsize = SHA384_DIGEST_SIZE, 1074 .statesize = sizeof(struct ocs_hcu_rctx), 1075 .base = { 1076 .cra_name = "hmac(sha384)", 1077 .cra_driver_name = "hmac-sha384-keembay-ocs", 1078 .cra_priority = 255, 1079 .cra_flags = CRYPTO_ALG_ASYNC, 1080 .cra_blocksize = SHA384_BLOCK_SIZE, 1081 .cra_ctxsize = sizeof(struct ocs_hcu_ctx), 1082 .cra_alignmask = 0, 1083 .cra_module = THIS_MODULE, 1084 .cra_init = kmb_ocs_hcu_hmac_cra_init, 1085 .cra_exit = kmb_ocs_hcu_hmac_cra_exit, 1086 } 1087 } 1088 }, 1089 { 1090 .init = kmb_ocs_hcu_init, 1091 .update = kmb_ocs_hcu_update, 1092 .final = kmb_ocs_hcu_final, 1093 .finup = kmb_ocs_hcu_finup, 1094 .digest = kmb_ocs_hcu_digest, 1095 .export = kmb_ocs_hcu_export, 1096 .import = kmb_ocs_hcu_import, 1097 .halg = { 1098 .digestsize = SHA512_DIGEST_SIZE, 1099 .statesize = sizeof(struct ocs_hcu_rctx), 1100 .base = { 1101 .cra_name = "sha512", 1102 .cra_driver_name = "sha512-keembay-ocs", 1103 .cra_priority = 255, 1104 .cra_flags = CRYPTO_ALG_ASYNC, 1105 .cra_blocksize = SHA512_BLOCK_SIZE, 1106 .cra_ctxsize = sizeof(struct ocs_hcu_ctx), 1107 .cra_alignmask = 0, 1108 .cra_module = THIS_MODULE, 1109 .cra_init = kmb_ocs_hcu_sha_cra_init, 1110 } 1111 } 1112 }, 1113 { 1114 .init = kmb_ocs_hcu_init, 1115 .update = kmb_ocs_hcu_update, 1116 .final = kmb_ocs_hcu_final, 1117 .finup = kmb_ocs_hcu_finup, 1118 .digest = kmb_ocs_hcu_digest, 1119 .export = kmb_ocs_hcu_export, 1120 .import = kmb_ocs_hcu_import, 1121 .setkey = kmb_ocs_hcu_setkey, 1122 .halg = { 1123 .digestsize = SHA512_DIGEST_SIZE, 1124 .statesize = sizeof(struct ocs_hcu_rctx), 1125 .base = { 1126 .cra_name = "hmac(sha512)", 1127 .cra_driver_name = "hmac-sha512-keembay-ocs", 1128 .cra_priority = 255, 1129 .cra_flags = CRYPTO_ALG_ASYNC, 1130 .cra_blocksize = SHA512_BLOCK_SIZE, 1131 .cra_ctxsize = sizeof(struct ocs_hcu_ctx), 1132 .cra_alignmask = 0, 1133 .cra_module = THIS_MODULE, 1134 .cra_init = kmb_ocs_hcu_hmac_cra_init, 1135 .cra_exit = kmb_ocs_hcu_hmac_cra_exit, 1136 } 1137 } 1138 }, 1139 }; 1140 1141 /* Device tree driver match. */ 1142 static const struct of_device_id kmb_ocs_hcu_of_match[] = { 1143 { 1144 .compatible = "intel,keembay-ocs-hcu", 1145 }, 1146 {} 1147 }; 1148 1149 static int kmb_ocs_hcu_remove(struct platform_device *pdev) 1150 { 1151 struct ocs_hcu_dev *hcu_dev; 1152 int rc; 1153 1154 hcu_dev = platform_get_drvdata(pdev); 1155 if (!hcu_dev) 1156 return -ENODEV; 1157 1158 crypto_unregister_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs)); 1159 1160 rc = crypto_engine_exit(hcu_dev->engine); 1161 1162 spin_lock_bh(&ocs_hcu.lock); 1163 list_del(&hcu_dev->list); 1164 spin_unlock_bh(&ocs_hcu.lock); 1165 1166 return rc; 1167 } 1168 1169 static int kmb_ocs_hcu_probe(struct platform_device *pdev) 1170 { 1171 struct device *dev = &pdev->dev; 1172 struct ocs_hcu_dev *hcu_dev; 1173 struct resource *hcu_mem; 1174 int rc; 1175 1176 hcu_dev = devm_kzalloc(dev, sizeof(*hcu_dev), GFP_KERNEL); 1177 if (!hcu_dev) 1178 return -ENOMEM; 1179 1180 hcu_dev->dev = dev; 1181 1182 platform_set_drvdata(pdev, hcu_dev); 1183 rc = dma_set_mask_and_coherent(&pdev->dev, OCS_HCU_DMA_BIT_MASK); 1184 if (rc) 1185 return rc; 1186 1187 /* Get the memory address and remap. */ 1188 hcu_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1189 if (!hcu_mem) { 1190 dev_err(dev, "Could not retrieve io mem resource.\n"); 1191 return -ENODEV; 1192 } 1193 1194 hcu_dev->io_base = devm_ioremap_resource(dev, hcu_mem); 1195 if (IS_ERR(hcu_dev->io_base)) 1196 return PTR_ERR(hcu_dev->io_base); 1197 1198 init_completion(&hcu_dev->irq_done); 1199 1200 /* Get and request IRQ. */ 1201 hcu_dev->irq = platform_get_irq(pdev, 0); 1202 if (hcu_dev->irq < 0) 1203 return hcu_dev->irq; 1204 1205 rc = devm_request_threaded_irq(&pdev->dev, hcu_dev->irq, 1206 ocs_hcu_irq_handler, NULL, 0, 1207 "keembay-ocs-hcu", hcu_dev); 1208 if (rc < 0) { 1209 dev_err(dev, "Could not request IRQ.\n"); 1210 return rc; 1211 } 1212 1213 INIT_LIST_HEAD(&hcu_dev->list); 1214 1215 spin_lock_bh(&ocs_hcu.lock); 1216 list_add_tail(&hcu_dev->list, &ocs_hcu.dev_list); 1217 spin_unlock_bh(&ocs_hcu.lock); 1218 1219 /* Initialize crypto engine */ 1220 hcu_dev->engine = crypto_engine_alloc_init(dev, 1); 1221 if (!hcu_dev->engine) { 1222 rc = -ENOMEM; 1223 goto list_del; 1224 } 1225 1226 rc = crypto_engine_start(hcu_dev->engine); 1227 if (rc) { 1228 dev_err(dev, "Could not start engine.\n"); 1229 goto cleanup; 1230 } 1231 1232 /* Security infrastructure guarantees OCS clock is enabled. */ 1233 1234 rc = crypto_register_ahashes(ocs_hcu_algs, ARRAY_SIZE(ocs_hcu_algs)); 1235 if (rc) { 1236 dev_err(dev, "Could not register algorithms.\n"); 1237 goto cleanup; 1238 } 1239 1240 return 0; 1241 1242 cleanup: 1243 crypto_engine_exit(hcu_dev->engine); 1244 list_del: 1245 spin_lock_bh(&ocs_hcu.lock); 1246 list_del(&hcu_dev->list); 1247 spin_unlock_bh(&ocs_hcu.lock); 1248 1249 return rc; 1250 } 1251 1252 /* The OCS driver is a platform device. */ 1253 static struct platform_driver kmb_ocs_hcu_driver = { 1254 .probe = kmb_ocs_hcu_probe, 1255 .remove = kmb_ocs_hcu_remove, 1256 .driver = { 1257 .name = DRV_NAME, 1258 .of_match_table = kmb_ocs_hcu_of_match, 1259 }, 1260 }; 1261 1262 module_platform_driver(kmb_ocs_hcu_driver); 1263 1264 MODULE_LICENSE("GPL"); 1265