xref: /openbmc/linux/drivers/crypto/inside-secure/safexcel_hash.c (revision 83268fa6b43cefb60ee188fd53ed49120d3ae4f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017 Marvell
4  *
5  * Antoine Tenart <antoine.tenart@free-electrons.com>
6  */
7 
8 #include <crypto/hmac.h>
9 #include <crypto/md5.h>
10 #include <crypto/sha.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
14 
15 #include "safexcel.h"
16 
17 struct safexcel_ahash_ctx {
18 	struct safexcel_context base;
19 	struct safexcel_crypto_priv *priv;
20 
21 	u32 alg;
22 
23 	u32 ipad[SHA512_DIGEST_SIZE / sizeof(u32)];
24 	u32 opad[SHA512_DIGEST_SIZE / sizeof(u32)];
25 };
26 
27 struct safexcel_ahash_req {
28 	bool last_req;
29 	bool finish;
30 	bool hmac;
31 	bool needs_inv;
32 
33 	int nents;
34 	dma_addr_t result_dma;
35 
36 	u32 digest;
37 
38 	u8 state_sz;    /* expected sate size, only set once */
39 	u32 state[SHA512_DIGEST_SIZE / sizeof(u32)] __aligned(sizeof(u32));
40 
41 	u64 len[2];
42 	u64 processed[2];
43 
44 	u8 cache[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
45 	dma_addr_t cache_dma;
46 	unsigned int cache_sz;
47 
48 	u8 cache_next[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
49 };
50 
51 static inline u64 safexcel_queued_len(struct safexcel_ahash_req *req)
52 {
53 	if (req->len[1] > req->processed[1])
54 		return 0xffffffff - (req->len[0] - req->processed[0]);
55 
56 	return req->len[0] - req->processed[0];
57 }
58 
59 static void safexcel_hash_token(struct safexcel_command_desc *cdesc,
60 				u32 input_length, u32 result_length)
61 {
62 	struct safexcel_token *token =
63 		(struct safexcel_token *)cdesc->control_data.token;
64 
65 	token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
66 	token[0].packet_length = input_length;
67 	token[0].stat = EIP197_TOKEN_STAT_LAST_HASH;
68 	token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH;
69 
70 	token[1].opcode = EIP197_TOKEN_OPCODE_INSERT;
71 	token[1].packet_length = result_length;
72 	token[1].stat = EIP197_TOKEN_STAT_LAST_HASH |
73 			EIP197_TOKEN_STAT_LAST_PACKET;
74 	token[1].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
75 				EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
76 }
77 
78 static void safexcel_context_control(struct safexcel_ahash_ctx *ctx,
79 				     struct safexcel_ahash_req *req,
80 				     struct safexcel_command_desc *cdesc,
81 				     unsigned int digestsize)
82 {
83 	struct safexcel_crypto_priv *priv = ctx->priv;
84 	int i;
85 
86 	cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_OUT;
87 	cdesc->control_data.control0 |= ctx->alg;
88 	cdesc->control_data.control0 |= req->digest;
89 
90 	if (req->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED) {
91 		if (req->processed[0] || req->processed[1]) {
92 			if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_MD5)
93 				cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(5);
94 			else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1)
95 				cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(6);
96 			else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224 ||
97 				 ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256)
98 				cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(9);
99 			else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA384 ||
100 				 ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA512)
101 				cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(17);
102 
103 			cdesc->control_data.control1 |= CONTEXT_CONTROL_DIGEST_CNT;
104 		} else {
105 			cdesc->control_data.control0 |= CONTEXT_CONTROL_RESTART_HASH;
106 		}
107 
108 		if (!req->finish)
109 			cdesc->control_data.control0 |= CONTEXT_CONTROL_NO_FINISH_HASH;
110 
111 		/*
112 		 * Copy the input digest if needed, and setup the context
113 		 * fields. Do this now as we need it to setup the first command
114 		 * descriptor.
115 		 */
116 		if (req->processed[0] || req->processed[1]) {
117 			for (i = 0; i < digestsize / sizeof(u32); i++)
118 				ctx->base.ctxr->data[i] = cpu_to_le32(req->state[i]);
119 
120 			if (req->finish) {
121 				u64 count = req->processed[0] / EIP197_COUNTER_BLOCK_SIZE;
122 				count += ((0xffffffff / EIP197_COUNTER_BLOCK_SIZE) *
123 					  req->processed[1]);
124 
125 				/* This is a haredware limitation, as the
126 				 * counter must fit into an u32. This represents
127 				 * a farily big amount of input data, so we
128 				 * shouldn't see this.
129 				 */
130 				if (unlikely(count & 0xffff0000)) {
131 					dev_warn(priv->dev,
132 						 "Input data is too big\n");
133 					return;
134 				}
135 
136 				ctx->base.ctxr->data[i] = cpu_to_le32(count);
137 			}
138 		}
139 	} else if (req->digest == CONTEXT_CONTROL_DIGEST_HMAC) {
140 		cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(2 * req->state_sz / sizeof(u32));
141 
142 		memcpy(ctx->base.ctxr->data, ctx->ipad, req->state_sz);
143 		memcpy(ctx->base.ctxr->data + req->state_sz / sizeof(u32),
144 		       ctx->opad, req->state_sz);
145 	}
146 }
147 
148 static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
149 				      struct crypto_async_request *async,
150 				      bool *should_complete, int *ret)
151 {
152 	struct safexcel_result_desc *rdesc;
153 	struct ahash_request *areq = ahash_request_cast(async);
154 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
155 	struct safexcel_ahash_req *sreq = ahash_request_ctx(areq);
156 	u64 cache_len;
157 
158 	*ret = 0;
159 
160 	rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
161 	if (IS_ERR(rdesc)) {
162 		dev_err(priv->dev,
163 			"hash: result: could not retrieve the result descriptor\n");
164 		*ret = PTR_ERR(rdesc);
165 	} else {
166 		*ret = safexcel_rdesc_check_errors(priv, rdesc);
167 	}
168 
169 	safexcel_complete(priv, ring);
170 
171 	if (sreq->nents) {
172 		dma_unmap_sg(priv->dev, areq->src, sreq->nents, DMA_TO_DEVICE);
173 		sreq->nents = 0;
174 	}
175 
176 	if (sreq->result_dma) {
177 		dma_unmap_single(priv->dev, sreq->result_dma, sreq->state_sz,
178 				 DMA_FROM_DEVICE);
179 		sreq->result_dma = 0;
180 	}
181 
182 	if (sreq->cache_dma) {
183 		dma_unmap_single(priv->dev, sreq->cache_dma, sreq->cache_sz,
184 				 DMA_TO_DEVICE);
185 		sreq->cache_dma = 0;
186 	}
187 
188 	if (sreq->finish)
189 		memcpy(areq->result, sreq->state,
190 		       crypto_ahash_digestsize(ahash));
191 
192 	cache_len = safexcel_queued_len(sreq);
193 	if (cache_len)
194 		memcpy(sreq->cache, sreq->cache_next, cache_len);
195 
196 	*should_complete = true;
197 
198 	return 1;
199 }
200 
201 static int safexcel_ahash_send_req(struct crypto_async_request *async, int ring,
202 				   int *commands, int *results)
203 {
204 	struct ahash_request *areq = ahash_request_cast(async);
205 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
206 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
207 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
208 	struct safexcel_crypto_priv *priv = ctx->priv;
209 	struct safexcel_command_desc *cdesc, *first_cdesc = NULL;
210 	struct safexcel_result_desc *rdesc;
211 	struct scatterlist *sg;
212 	int i, extra, n_cdesc = 0, ret = 0;
213 	u64 queued, len, cache_len;
214 
215 	queued = len = safexcel_queued_len(req);
216 	if (queued <= crypto_ahash_blocksize(ahash))
217 		cache_len = queued;
218 	else
219 		cache_len = queued - areq->nbytes;
220 
221 	if (!req->last_req) {
222 		/* If this is not the last request and the queued data does not
223 		 * fit into full blocks, cache it for the next send() call.
224 		 */
225 		extra = queued & (crypto_ahash_blocksize(ahash) - 1);
226 		if (!extra)
227 			/* If this is not the last request and the queued data
228 			 * is a multiple of a block, cache the last one for now.
229 			 */
230 			extra = crypto_ahash_blocksize(ahash);
231 
232 		if (extra) {
233 			sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
234 					   req->cache_next, extra,
235 					   areq->nbytes - extra);
236 
237 			queued -= extra;
238 			len -= extra;
239 
240 			if (!queued) {
241 				*commands = 0;
242 				*results = 0;
243 				return 0;
244 			}
245 		}
246 	}
247 
248 	/* Add a command descriptor for the cached data, if any */
249 	if (cache_len) {
250 		req->cache_dma = dma_map_single(priv->dev, req->cache,
251 						cache_len, DMA_TO_DEVICE);
252 		if (dma_mapping_error(priv->dev, req->cache_dma))
253 			return -EINVAL;
254 
255 		req->cache_sz = cache_len;
256 		first_cdesc = safexcel_add_cdesc(priv, ring, 1,
257 						 (cache_len == len),
258 						 req->cache_dma, cache_len, len,
259 						 ctx->base.ctxr_dma);
260 		if (IS_ERR(first_cdesc)) {
261 			ret = PTR_ERR(first_cdesc);
262 			goto unmap_cache;
263 		}
264 		n_cdesc++;
265 
266 		queued -= cache_len;
267 		if (!queued)
268 			goto send_command;
269 	}
270 
271 	/* Now handle the current ahash request buffer(s) */
272 	req->nents = dma_map_sg(priv->dev, areq->src,
273 				sg_nents_for_len(areq->src, areq->nbytes),
274 				DMA_TO_DEVICE);
275 	if (!req->nents) {
276 		ret = -ENOMEM;
277 		goto cdesc_rollback;
278 	}
279 
280 	for_each_sg(areq->src, sg, req->nents, i) {
281 		int sglen = sg_dma_len(sg);
282 
283 		/* Do not overflow the request */
284 		if (queued < sglen)
285 			sglen = queued;
286 
287 		cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc,
288 					   !(queued - sglen), sg_dma_address(sg),
289 					   sglen, len, ctx->base.ctxr_dma);
290 		if (IS_ERR(cdesc)) {
291 			ret = PTR_ERR(cdesc);
292 			goto unmap_sg;
293 		}
294 		n_cdesc++;
295 
296 		if (n_cdesc == 1)
297 			first_cdesc = cdesc;
298 
299 		queued -= sglen;
300 		if (!queued)
301 			break;
302 	}
303 
304 send_command:
305 	/* Setup the context options */
306 	safexcel_context_control(ctx, req, first_cdesc, req->state_sz);
307 
308 	/* Add the token */
309 	safexcel_hash_token(first_cdesc, len, req->state_sz);
310 
311 	req->result_dma = dma_map_single(priv->dev, req->state, req->state_sz,
312 					 DMA_FROM_DEVICE);
313 	if (dma_mapping_error(priv->dev, req->result_dma)) {
314 		ret = -EINVAL;
315 		goto unmap_sg;
316 	}
317 
318 	/* Add a result descriptor */
319 	rdesc = safexcel_add_rdesc(priv, ring, 1, 1, req->result_dma,
320 				   req->state_sz);
321 	if (IS_ERR(rdesc)) {
322 		ret = PTR_ERR(rdesc);
323 		goto unmap_result;
324 	}
325 
326 	safexcel_rdr_req_set(priv, ring, rdesc, &areq->base);
327 
328 	req->processed[0] += len;
329 	if (req->processed[0] < len)
330 		req->processed[1]++;
331 
332 	*commands = n_cdesc;
333 	*results = 1;
334 	return 0;
335 
336 unmap_result:
337 	dma_unmap_single(priv->dev, req->result_dma, req->state_sz,
338 			 DMA_FROM_DEVICE);
339 unmap_sg:
340 	dma_unmap_sg(priv->dev, areq->src, req->nents, DMA_TO_DEVICE);
341 cdesc_rollback:
342 	for (i = 0; i < n_cdesc; i++)
343 		safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
344 unmap_cache:
345 	if (req->cache_dma) {
346 		dma_unmap_single(priv->dev, req->cache_dma, req->cache_sz,
347 				 DMA_TO_DEVICE);
348 		req->cache_sz = 0;
349 	}
350 
351 	return ret;
352 }
353 
354 static inline bool safexcel_ahash_needs_inv_get(struct ahash_request *areq)
355 {
356 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
357 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
358 	unsigned int state_w_sz = req->state_sz / sizeof(u32);
359 	u64 processed;
360 	int i;
361 
362 	processed = req->processed[0] / EIP197_COUNTER_BLOCK_SIZE;
363 	processed += (0xffffffff / EIP197_COUNTER_BLOCK_SIZE) * req->processed[1];
364 
365 	for (i = 0; i < state_w_sz; i++)
366 		if (ctx->base.ctxr->data[i] != cpu_to_le32(req->state[i]))
367 			return true;
368 
369 	if (ctx->base.ctxr->data[state_w_sz] != cpu_to_le32(processed))
370 		return true;
371 
372 	return false;
373 }
374 
375 static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
376 				      int ring,
377 				      struct crypto_async_request *async,
378 				      bool *should_complete, int *ret)
379 {
380 	struct safexcel_result_desc *rdesc;
381 	struct ahash_request *areq = ahash_request_cast(async);
382 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
383 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(ahash);
384 	int enq_ret;
385 
386 	*ret = 0;
387 
388 	rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
389 	if (IS_ERR(rdesc)) {
390 		dev_err(priv->dev,
391 			"hash: invalidate: could not retrieve the result descriptor\n");
392 		*ret = PTR_ERR(rdesc);
393 	} else {
394 		*ret = safexcel_rdesc_check_errors(priv, rdesc);
395 	}
396 
397 	safexcel_complete(priv, ring);
398 
399 	if (ctx->base.exit_inv) {
400 		dma_pool_free(priv->context_pool, ctx->base.ctxr,
401 			      ctx->base.ctxr_dma);
402 
403 		*should_complete = true;
404 		return 1;
405 	}
406 
407 	ring = safexcel_select_ring(priv);
408 	ctx->base.ring = ring;
409 
410 	spin_lock_bh(&priv->ring[ring].queue_lock);
411 	enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, async);
412 	spin_unlock_bh(&priv->ring[ring].queue_lock);
413 
414 	if (enq_ret != -EINPROGRESS)
415 		*ret = enq_ret;
416 
417 	queue_work(priv->ring[ring].workqueue,
418 		   &priv->ring[ring].work_data.work);
419 
420 	*should_complete = false;
421 
422 	return 1;
423 }
424 
425 static int safexcel_handle_result(struct safexcel_crypto_priv *priv, int ring,
426 				  struct crypto_async_request *async,
427 				  bool *should_complete, int *ret)
428 {
429 	struct ahash_request *areq = ahash_request_cast(async);
430 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
431 	int err;
432 
433 	BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && req->needs_inv);
434 
435 	if (req->needs_inv) {
436 		req->needs_inv = false;
437 		err = safexcel_handle_inv_result(priv, ring, async,
438 						 should_complete, ret);
439 	} else {
440 		err = safexcel_handle_req_result(priv, ring, async,
441 						 should_complete, ret);
442 	}
443 
444 	return err;
445 }
446 
447 static int safexcel_ahash_send_inv(struct crypto_async_request *async,
448 				   int ring, int *commands, int *results)
449 {
450 	struct ahash_request *areq = ahash_request_cast(async);
451 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
452 	int ret;
453 
454 	ret = safexcel_invalidate_cache(async, ctx->priv,
455 					ctx->base.ctxr_dma, ring);
456 	if (unlikely(ret))
457 		return ret;
458 
459 	*commands = 1;
460 	*results = 1;
461 
462 	return 0;
463 }
464 
465 static int safexcel_ahash_send(struct crypto_async_request *async,
466 			       int ring, int *commands, int *results)
467 {
468 	struct ahash_request *areq = ahash_request_cast(async);
469 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
470 	int ret;
471 
472 	if (req->needs_inv)
473 		ret = safexcel_ahash_send_inv(async, ring, commands, results);
474 	else
475 		ret = safexcel_ahash_send_req(async, ring, commands, results);
476 
477 	return ret;
478 }
479 
480 static int safexcel_ahash_exit_inv(struct crypto_tfm *tfm)
481 {
482 	struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
483 	struct safexcel_crypto_priv *priv = ctx->priv;
484 	EIP197_REQUEST_ON_STACK(req, ahash, EIP197_AHASH_REQ_SIZE);
485 	struct safexcel_ahash_req *rctx = ahash_request_ctx(req);
486 	struct safexcel_inv_result result = {};
487 	int ring = ctx->base.ring;
488 
489 	memset(req, 0, sizeof(struct ahash_request));
490 
491 	/* create invalidation request */
492 	init_completion(&result.completion);
493 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
494 				   safexcel_inv_complete, &result);
495 
496 	ahash_request_set_tfm(req, __crypto_ahash_cast(tfm));
497 	ctx = crypto_tfm_ctx(req->base.tfm);
498 	ctx->base.exit_inv = true;
499 	rctx->needs_inv = true;
500 
501 	spin_lock_bh(&priv->ring[ring].queue_lock);
502 	crypto_enqueue_request(&priv->ring[ring].queue, &req->base);
503 	spin_unlock_bh(&priv->ring[ring].queue_lock);
504 
505 	queue_work(priv->ring[ring].workqueue,
506 		   &priv->ring[ring].work_data.work);
507 
508 	wait_for_completion(&result.completion);
509 
510 	if (result.error) {
511 		dev_warn(priv->dev, "hash: completion error (%d)\n",
512 			 result.error);
513 		return result.error;
514 	}
515 
516 	return 0;
517 }
518 
519 /* safexcel_ahash_cache: cache data until at least one request can be sent to
520  * the engine, aka. when there is at least 1 block size in the pipe.
521  */
522 static int safexcel_ahash_cache(struct ahash_request *areq)
523 {
524 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
525 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
526 	u64 queued, cache_len;
527 
528 	/* queued: everything accepted by the driver which will be handled by
529 	 * the next send() calls.
530 	 * tot sz handled by update() - tot sz handled by send()
531 	 */
532 	queued = safexcel_queued_len(req);
533 	/* cache_len: everything accepted by the driver but not sent yet,
534 	 * tot sz handled by update() - last req sz - tot sz handled by send()
535 	 */
536 	cache_len = queued - areq->nbytes;
537 
538 	/*
539 	 * In case there isn't enough bytes to proceed (less than a
540 	 * block size), cache the data until we have enough.
541 	 */
542 	if (cache_len + areq->nbytes <= crypto_ahash_blocksize(ahash)) {
543 		sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
544 				   req->cache + cache_len,
545 				   areq->nbytes, 0);
546 		return areq->nbytes;
547 	}
548 
549 	/* We couldn't cache all the data */
550 	return -E2BIG;
551 }
552 
553 static int safexcel_ahash_enqueue(struct ahash_request *areq)
554 {
555 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
556 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
557 	struct safexcel_crypto_priv *priv = ctx->priv;
558 	int ret, ring;
559 
560 	req->needs_inv = false;
561 
562 	if (ctx->base.ctxr) {
563 		if (priv->flags & EIP197_TRC_CACHE && !ctx->base.needs_inv &&
564 		    (req->processed[0] || req->processed[1]) &&
565 		    req->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED)
566 			/* We're still setting needs_inv here, even though it is
567 			 * cleared right away, because the needs_inv flag can be
568 			 * set in other functions and we want to keep the same
569 			 * logic.
570 			 */
571 			ctx->base.needs_inv = safexcel_ahash_needs_inv_get(areq);
572 
573 		if (ctx->base.needs_inv) {
574 			ctx->base.needs_inv = false;
575 			req->needs_inv = true;
576 		}
577 	} else {
578 		ctx->base.ring = safexcel_select_ring(priv);
579 		ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
580 						 EIP197_GFP_FLAGS(areq->base),
581 						 &ctx->base.ctxr_dma);
582 		if (!ctx->base.ctxr)
583 			return -ENOMEM;
584 	}
585 
586 	ring = ctx->base.ring;
587 
588 	spin_lock_bh(&priv->ring[ring].queue_lock);
589 	ret = crypto_enqueue_request(&priv->ring[ring].queue, &areq->base);
590 	spin_unlock_bh(&priv->ring[ring].queue_lock);
591 
592 	queue_work(priv->ring[ring].workqueue,
593 		   &priv->ring[ring].work_data.work);
594 
595 	return ret;
596 }
597 
598 static int safexcel_ahash_update(struct ahash_request *areq)
599 {
600 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
601 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
602 
603 	/* If the request is 0 length, do nothing */
604 	if (!areq->nbytes)
605 		return 0;
606 
607 	req->len[0] += areq->nbytes;
608 	if (req->len[0] < areq->nbytes)
609 		req->len[1]++;
610 
611 	safexcel_ahash_cache(areq);
612 
613 	/*
614 	 * We're not doing partial updates when performing an hmac request.
615 	 * Everything will be handled by the final() call.
616 	 */
617 	if (req->digest == CONTEXT_CONTROL_DIGEST_HMAC)
618 		return 0;
619 
620 	if (req->hmac)
621 		return safexcel_ahash_enqueue(areq);
622 
623 	if (!req->last_req &&
624 	    safexcel_queued_len(req) > crypto_ahash_blocksize(ahash))
625 		return safexcel_ahash_enqueue(areq);
626 
627 	return 0;
628 }
629 
630 static int safexcel_ahash_final(struct ahash_request *areq)
631 {
632 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
633 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
634 
635 	req->last_req = true;
636 	req->finish = true;
637 
638 	/* If we have an overall 0 length request */
639 	if (!req->len[0] && !req->len[1] && !areq->nbytes) {
640 		if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_MD5)
641 			memcpy(areq->result, md5_zero_message_hash,
642 			       MD5_DIGEST_SIZE);
643 		else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1)
644 			memcpy(areq->result, sha1_zero_message_hash,
645 			       SHA1_DIGEST_SIZE);
646 		else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224)
647 			memcpy(areq->result, sha224_zero_message_hash,
648 			       SHA224_DIGEST_SIZE);
649 		else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256)
650 			memcpy(areq->result, sha256_zero_message_hash,
651 			       SHA256_DIGEST_SIZE);
652 		else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA384)
653 			memcpy(areq->result, sha384_zero_message_hash,
654 			       SHA384_DIGEST_SIZE);
655 		else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA512)
656 			memcpy(areq->result, sha512_zero_message_hash,
657 			       SHA512_DIGEST_SIZE);
658 
659 		return 0;
660 	}
661 
662 	return safexcel_ahash_enqueue(areq);
663 }
664 
665 static int safexcel_ahash_finup(struct ahash_request *areq)
666 {
667 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
668 
669 	req->last_req = true;
670 	req->finish = true;
671 
672 	safexcel_ahash_update(areq);
673 	return safexcel_ahash_final(areq);
674 }
675 
676 static int safexcel_ahash_export(struct ahash_request *areq, void *out)
677 {
678 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
679 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
680 	struct safexcel_ahash_export_state *export = out;
681 
682 	export->len[0] = req->len[0];
683 	export->len[1] = req->len[1];
684 	export->processed[0] = req->processed[0];
685 	export->processed[1] = req->processed[1];
686 
687 	export->digest = req->digest;
688 
689 	memcpy(export->state, req->state, req->state_sz);
690 	memcpy(export->cache, req->cache, crypto_ahash_blocksize(ahash));
691 
692 	return 0;
693 }
694 
695 static int safexcel_ahash_import(struct ahash_request *areq, const void *in)
696 {
697 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
698 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
699 	const struct safexcel_ahash_export_state *export = in;
700 	int ret;
701 
702 	ret = crypto_ahash_init(areq);
703 	if (ret)
704 		return ret;
705 
706 	req->len[0] = export->len[0];
707 	req->len[1] = export->len[1];
708 	req->processed[0] = export->processed[0];
709 	req->processed[1] = export->processed[1];
710 
711 	req->digest = export->digest;
712 
713 	memcpy(req->cache, export->cache, crypto_ahash_blocksize(ahash));
714 	memcpy(req->state, export->state, req->state_sz);
715 
716 	return 0;
717 }
718 
719 static int safexcel_ahash_cra_init(struct crypto_tfm *tfm)
720 {
721 	struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
722 	struct safexcel_alg_template *tmpl =
723 		container_of(__crypto_ahash_alg(tfm->__crt_alg),
724 			     struct safexcel_alg_template, alg.ahash);
725 
726 	ctx->priv = tmpl->priv;
727 	ctx->base.send = safexcel_ahash_send;
728 	ctx->base.handle_result = safexcel_handle_result;
729 
730 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
731 				 sizeof(struct safexcel_ahash_req));
732 	return 0;
733 }
734 
735 static int safexcel_sha1_init(struct ahash_request *areq)
736 {
737 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
738 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
739 
740 	memset(req, 0, sizeof(*req));
741 
742 	req->state[0] = SHA1_H0;
743 	req->state[1] = SHA1_H1;
744 	req->state[2] = SHA1_H2;
745 	req->state[3] = SHA1_H3;
746 	req->state[4] = SHA1_H4;
747 
748 	ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
749 	req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
750 	req->state_sz = SHA1_DIGEST_SIZE;
751 
752 	return 0;
753 }
754 
755 static int safexcel_sha1_digest(struct ahash_request *areq)
756 {
757 	int ret = safexcel_sha1_init(areq);
758 
759 	if (ret)
760 		return ret;
761 
762 	return safexcel_ahash_finup(areq);
763 }
764 
765 static void safexcel_ahash_cra_exit(struct crypto_tfm *tfm)
766 {
767 	struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
768 	struct safexcel_crypto_priv *priv = ctx->priv;
769 	int ret;
770 
771 	/* context not allocated, skip invalidation */
772 	if (!ctx->base.ctxr)
773 		return;
774 
775 	if (priv->flags & EIP197_TRC_CACHE) {
776 		ret = safexcel_ahash_exit_inv(tfm);
777 		if (ret)
778 			dev_warn(priv->dev, "hash: invalidation error %d\n", ret);
779 	} else {
780 		dma_pool_free(priv->context_pool, ctx->base.ctxr,
781 			      ctx->base.ctxr_dma);
782 	}
783 }
784 
785 struct safexcel_alg_template safexcel_alg_sha1 = {
786 	.type = SAFEXCEL_ALG_TYPE_AHASH,
787 	.engines = EIP97IES | EIP197B | EIP197D,
788 	.alg.ahash = {
789 		.init = safexcel_sha1_init,
790 		.update = safexcel_ahash_update,
791 		.final = safexcel_ahash_final,
792 		.finup = safexcel_ahash_finup,
793 		.digest = safexcel_sha1_digest,
794 		.export = safexcel_ahash_export,
795 		.import = safexcel_ahash_import,
796 		.halg = {
797 			.digestsize = SHA1_DIGEST_SIZE,
798 			.statesize = sizeof(struct safexcel_ahash_export_state),
799 			.base = {
800 				.cra_name = "sha1",
801 				.cra_driver_name = "safexcel-sha1",
802 				.cra_priority = 300,
803 				.cra_flags = CRYPTO_ALG_ASYNC |
804 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
805 				.cra_blocksize = SHA1_BLOCK_SIZE,
806 				.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
807 				.cra_init = safexcel_ahash_cra_init,
808 				.cra_exit = safexcel_ahash_cra_exit,
809 				.cra_module = THIS_MODULE,
810 			},
811 		},
812 	},
813 };
814 
815 static int safexcel_hmac_sha1_init(struct ahash_request *areq)
816 {
817 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
818 
819 	safexcel_sha1_init(areq);
820 	req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
821 	return 0;
822 }
823 
824 static int safexcel_hmac_sha1_digest(struct ahash_request *areq)
825 {
826 	int ret = safexcel_hmac_sha1_init(areq);
827 
828 	if (ret)
829 		return ret;
830 
831 	return safexcel_ahash_finup(areq);
832 }
833 
834 struct safexcel_ahash_result {
835 	struct completion completion;
836 	int error;
837 };
838 
839 static void safexcel_ahash_complete(struct crypto_async_request *req, int error)
840 {
841 	struct safexcel_ahash_result *result = req->data;
842 
843 	if (error == -EINPROGRESS)
844 		return;
845 
846 	result->error = error;
847 	complete(&result->completion);
848 }
849 
850 static int safexcel_hmac_init_pad(struct ahash_request *areq,
851 				  unsigned int blocksize, const u8 *key,
852 				  unsigned int keylen, u8 *ipad, u8 *opad)
853 {
854 	struct safexcel_ahash_result result;
855 	struct scatterlist sg;
856 	int ret, i;
857 	u8 *keydup;
858 
859 	if (keylen <= blocksize) {
860 		memcpy(ipad, key, keylen);
861 	} else {
862 		keydup = kmemdup(key, keylen, GFP_KERNEL);
863 		if (!keydup)
864 			return -ENOMEM;
865 
866 		ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
867 					   safexcel_ahash_complete, &result);
868 		sg_init_one(&sg, keydup, keylen);
869 		ahash_request_set_crypt(areq, &sg, ipad, keylen);
870 		init_completion(&result.completion);
871 
872 		ret = crypto_ahash_digest(areq);
873 		if (ret == -EINPROGRESS || ret == -EBUSY) {
874 			wait_for_completion_interruptible(&result.completion);
875 			ret = result.error;
876 		}
877 
878 		/* Avoid leaking */
879 		memzero_explicit(keydup, keylen);
880 		kfree(keydup);
881 
882 		if (ret)
883 			return ret;
884 
885 		keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(areq));
886 	}
887 
888 	memset(ipad + keylen, 0, blocksize - keylen);
889 	memcpy(opad, ipad, blocksize);
890 
891 	for (i = 0; i < blocksize; i++) {
892 		ipad[i] ^= HMAC_IPAD_VALUE;
893 		opad[i] ^= HMAC_OPAD_VALUE;
894 	}
895 
896 	return 0;
897 }
898 
899 static int safexcel_hmac_init_iv(struct ahash_request *areq,
900 				 unsigned int blocksize, u8 *pad, void *state)
901 {
902 	struct safexcel_ahash_result result;
903 	struct safexcel_ahash_req *req;
904 	struct scatterlist sg;
905 	int ret;
906 
907 	ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
908 				   safexcel_ahash_complete, &result);
909 	sg_init_one(&sg, pad, blocksize);
910 	ahash_request_set_crypt(areq, &sg, pad, blocksize);
911 	init_completion(&result.completion);
912 
913 	ret = crypto_ahash_init(areq);
914 	if (ret)
915 		return ret;
916 
917 	req = ahash_request_ctx(areq);
918 	req->hmac = true;
919 	req->last_req = true;
920 
921 	ret = crypto_ahash_update(areq);
922 	if (ret && ret != -EINPROGRESS && ret != -EBUSY)
923 		return ret;
924 
925 	wait_for_completion_interruptible(&result.completion);
926 	if (result.error)
927 		return result.error;
928 
929 	return crypto_ahash_export(areq, state);
930 }
931 
932 int safexcel_hmac_setkey(const char *alg, const u8 *key, unsigned int keylen,
933 			 void *istate, void *ostate)
934 {
935 	struct ahash_request *areq;
936 	struct crypto_ahash *tfm;
937 	unsigned int blocksize;
938 	u8 *ipad, *opad;
939 	int ret;
940 
941 	tfm = crypto_alloc_ahash(alg, 0, 0);
942 	if (IS_ERR(tfm))
943 		return PTR_ERR(tfm);
944 
945 	areq = ahash_request_alloc(tfm, GFP_KERNEL);
946 	if (!areq) {
947 		ret = -ENOMEM;
948 		goto free_ahash;
949 	}
950 
951 	crypto_ahash_clear_flags(tfm, ~0);
952 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
953 
954 	ipad = kcalloc(2, blocksize, GFP_KERNEL);
955 	if (!ipad) {
956 		ret = -ENOMEM;
957 		goto free_request;
958 	}
959 
960 	opad = ipad + blocksize;
961 
962 	ret = safexcel_hmac_init_pad(areq, blocksize, key, keylen, ipad, opad);
963 	if (ret)
964 		goto free_ipad;
965 
966 	ret = safexcel_hmac_init_iv(areq, blocksize, ipad, istate);
967 	if (ret)
968 		goto free_ipad;
969 
970 	ret = safexcel_hmac_init_iv(areq, blocksize, opad, ostate);
971 
972 free_ipad:
973 	kfree(ipad);
974 free_request:
975 	ahash_request_free(areq);
976 free_ahash:
977 	crypto_free_ahash(tfm);
978 
979 	return ret;
980 }
981 
982 static int safexcel_hmac_alg_setkey(struct crypto_ahash *tfm, const u8 *key,
983 				    unsigned int keylen, const char *alg,
984 				    unsigned int state_sz)
985 {
986 	struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
987 	struct safexcel_crypto_priv *priv = ctx->priv;
988 	struct safexcel_ahash_export_state istate, ostate;
989 	int ret, i;
990 
991 	ret = safexcel_hmac_setkey(alg, key, keylen, &istate, &ostate);
992 	if (ret)
993 		return ret;
994 
995 	if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr) {
996 		for (i = 0; i < state_sz / sizeof(u32); i++) {
997 			if (ctx->ipad[i] != le32_to_cpu(istate.state[i]) ||
998 			    ctx->opad[i] != le32_to_cpu(ostate.state[i])) {
999 				ctx->base.needs_inv = true;
1000 				break;
1001 			}
1002 		}
1003 	}
1004 
1005 	memcpy(ctx->ipad, &istate.state, state_sz);
1006 	memcpy(ctx->opad, &ostate.state, state_sz);
1007 
1008 	return 0;
1009 }
1010 
1011 static int safexcel_hmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
1012 				     unsigned int keylen)
1013 {
1014 	return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha1",
1015 					SHA1_DIGEST_SIZE);
1016 }
1017 
1018 struct safexcel_alg_template safexcel_alg_hmac_sha1 = {
1019 	.type = SAFEXCEL_ALG_TYPE_AHASH,
1020 	.engines = EIP97IES | EIP197B | EIP197D,
1021 	.alg.ahash = {
1022 		.init = safexcel_hmac_sha1_init,
1023 		.update = safexcel_ahash_update,
1024 		.final = safexcel_ahash_final,
1025 		.finup = safexcel_ahash_finup,
1026 		.digest = safexcel_hmac_sha1_digest,
1027 		.setkey = safexcel_hmac_sha1_setkey,
1028 		.export = safexcel_ahash_export,
1029 		.import = safexcel_ahash_import,
1030 		.halg = {
1031 			.digestsize = SHA1_DIGEST_SIZE,
1032 			.statesize = sizeof(struct safexcel_ahash_export_state),
1033 			.base = {
1034 				.cra_name = "hmac(sha1)",
1035 				.cra_driver_name = "safexcel-hmac-sha1",
1036 				.cra_priority = 300,
1037 				.cra_flags = CRYPTO_ALG_ASYNC |
1038 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1039 				.cra_blocksize = SHA1_BLOCK_SIZE,
1040 				.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1041 				.cra_init = safexcel_ahash_cra_init,
1042 				.cra_exit = safexcel_ahash_cra_exit,
1043 				.cra_module = THIS_MODULE,
1044 			},
1045 		},
1046 	},
1047 };
1048 
1049 static int safexcel_sha256_init(struct ahash_request *areq)
1050 {
1051 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1052 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1053 
1054 	memset(req, 0, sizeof(*req));
1055 
1056 	req->state[0] = SHA256_H0;
1057 	req->state[1] = SHA256_H1;
1058 	req->state[2] = SHA256_H2;
1059 	req->state[3] = SHA256_H3;
1060 	req->state[4] = SHA256_H4;
1061 	req->state[5] = SHA256_H5;
1062 	req->state[6] = SHA256_H6;
1063 	req->state[7] = SHA256_H7;
1064 
1065 	ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
1066 	req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1067 	req->state_sz = SHA256_DIGEST_SIZE;
1068 
1069 	return 0;
1070 }
1071 
1072 static int safexcel_sha256_digest(struct ahash_request *areq)
1073 {
1074 	int ret = safexcel_sha256_init(areq);
1075 
1076 	if (ret)
1077 		return ret;
1078 
1079 	return safexcel_ahash_finup(areq);
1080 }
1081 
1082 struct safexcel_alg_template safexcel_alg_sha256 = {
1083 	.type = SAFEXCEL_ALG_TYPE_AHASH,
1084 	.engines = EIP97IES | EIP197B | EIP197D,
1085 	.alg.ahash = {
1086 		.init = safexcel_sha256_init,
1087 		.update = safexcel_ahash_update,
1088 		.final = safexcel_ahash_final,
1089 		.finup = safexcel_ahash_finup,
1090 		.digest = safexcel_sha256_digest,
1091 		.export = safexcel_ahash_export,
1092 		.import = safexcel_ahash_import,
1093 		.halg = {
1094 			.digestsize = SHA256_DIGEST_SIZE,
1095 			.statesize = sizeof(struct safexcel_ahash_export_state),
1096 			.base = {
1097 				.cra_name = "sha256",
1098 				.cra_driver_name = "safexcel-sha256",
1099 				.cra_priority = 300,
1100 				.cra_flags = CRYPTO_ALG_ASYNC |
1101 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1102 				.cra_blocksize = SHA256_BLOCK_SIZE,
1103 				.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1104 				.cra_init = safexcel_ahash_cra_init,
1105 				.cra_exit = safexcel_ahash_cra_exit,
1106 				.cra_module = THIS_MODULE,
1107 			},
1108 		},
1109 	},
1110 };
1111 
1112 static int safexcel_sha224_init(struct ahash_request *areq)
1113 {
1114 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1115 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1116 
1117 	memset(req, 0, sizeof(*req));
1118 
1119 	req->state[0] = SHA224_H0;
1120 	req->state[1] = SHA224_H1;
1121 	req->state[2] = SHA224_H2;
1122 	req->state[3] = SHA224_H3;
1123 	req->state[4] = SHA224_H4;
1124 	req->state[5] = SHA224_H5;
1125 	req->state[6] = SHA224_H6;
1126 	req->state[7] = SHA224_H7;
1127 
1128 	ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
1129 	req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1130 	req->state_sz = SHA256_DIGEST_SIZE;
1131 
1132 	return 0;
1133 }
1134 
1135 static int safexcel_sha224_digest(struct ahash_request *areq)
1136 {
1137 	int ret = safexcel_sha224_init(areq);
1138 
1139 	if (ret)
1140 		return ret;
1141 
1142 	return safexcel_ahash_finup(areq);
1143 }
1144 
1145 struct safexcel_alg_template safexcel_alg_sha224 = {
1146 	.type = SAFEXCEL_ALG_TYPE_AHASH,
1147 	.engines = EIP97IES | EIP197B | EIP197D,
1148 	.alg.ahash = {
1149 		.init = safexcel_sha224_init,
1150 		.update = safexcel_ahash_update,
1151 		.final = safexcel_ahash_final,
1152 		.finup = safexcel_ahash_finup,
1153 		.digest = safexcel_sha224_digest,
1154 		.export = safexcel_ahash_export,
1155 		.import = safexcel_ahash_import,
1156 		.halg = {
1157 			.digestsize = SHA224_DIGEST_SIZE,
1158 			.statesize = sizeof(struct safexcel_ahash_export_state),
1159 			.base = {
1160 				.cra_name = "sha224",
1161 				.cra_driver_name = "safexcel-sha224",
1162 				.cra_priority = 300,
1163 				.cra_flags = CRYPTO_ALG_ASYNC |
1164 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1165 				.cra_blocksize = SHA224_BLOCK_SIZE,
1166 				.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1167 				.cra_init = safexcel_ahash_cra_init,
1168 				.cra_exit = safexcel_ahash_cra_exit,
1169 				.cra_module = THIS_MODULE,
1170 			},
1171 		},
1172 	},
1173 };
1174 
1175 static int safexcel_hmac_sha224_setkey(struct crypto_ahash *tfm, const u8 *key,
1176 				       unsigned int keylen)
1177 {
1178 	return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha224",
1179 					SHA256_DIGEST_SIZE);
1180 }
1181 
1182 static int safexcel_hmac_sha224_init(struct ahash_request *areq)
1183 {
1184 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1185 
1186 	safexcel_sha224_init(areq);
1187 	req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
1188 	return 0;
1189 }
1190 
1191 static int safexcel_hmac_sha224_digest(struct ahash_request *areq)
1192 {
1193 	int ret = safexcel_hmac_sha224_init(areq);
1194 
1195 	if (ret)
1196 		return ret;
1197 
1198 	return safexcel_ahash_finup(areq);
1199 }
1200 
1201 struct safexcel_alg_template safexcel_alg_hmac_sha224 = {
1202 	.type = SAFEXCEL_ALG_TYPE_AHASH,
1203 	.engines = EIP97IES | EIP197B | EIP197D,
1204 	.alg.ahash = {
1205 		.init = safexcel_hmac_sha224_init,
1206 		.update = safexcel_ahash_update,
1207 		.final = safexcel_ahash_final,
1208 		.finup = safexcel_ahash_finup,
1209 		.digest = safexcel_hmac_sha224_digest,
1210 		.setkey = safexcel_hmac_sha224_setkey,
1211 		.export = safexcel_ahash_export,
1212 		.import = safexcel_ahash_import,
1213 		.halg = {
1214 			.digestsize = SHA224_DIGEST_SIZE,
1215 			.statesize = sizeof(struct safexcel_ahash_export_state),
1216 			.base = {
1217 				.cra_name = "hmac(sha224)",
1218 				.cra_driver_name = "safexcel-hmac-sha224",
1219 				.cra_priority = 300,
1220 				.cra_flags = CRYPTO_ALG_ASYNC |
1221 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1222 				.cra_blocksize = SHA224_BLOCK_SIZE,
1223 				.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1224 				.cra_init = safexcel_ahash_cra_init,
1225 				.cra_exit = safexcel_ahash_cra_exit,
1226 				.cra_module = THIS_MODULE,
1227 			},
1228 		},
1229 	},
1230 };
1231 
1232 static int safexcel_hmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
1233 				     unsigned int keylen)
1234 {
1235 	return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha256",
1236 					SHA256_DIGEST_SIZE);
1237 }
1238 
1239 static int safexcel_hmac_sha256_init(struct ahash_request *areq)
1240 {
1241 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1242 
1243 	safexcel_sha256_init(areq);
1244 	req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
1245 	return 0;
1246 }
1247 
1248 static int safexcel_hmac_sha256_digest(struct ahash_request *areq)
1249 {
1250 	int ret = safexcel_hmac_sha256_init(areq);
1251 
1252 	if (ret)
1253 		return ret;
1254 
1255 	return safexcel_ahash_finup(areq);
1256 }
1257 
1258 struct safexcel_alg_template safexcel_alg_hmac_sha256 = {
1259 	.type = SAFEXCEL_ALG_TYPE_AHASH,
1260 	.engines = EIP97IES | EIP197B | EIP197D,
1261 	.alg.ahash = {
1262 		.init = safexcel_hmac_sha256_init,
1263 		.update = safexcel_ahash_update,
1264 		.final = safexcel_ahash_final,
1265 		.finup = safexcel_ahash_finup,
1266 		.digest = safexcel_hmac_sha256_digest,
1267 		.setkey = safexcel_hmac_sha256_setkey,
1268 		.export = safexcel_ahash_export,
1269 		.import = safexcel_ahash_import,
1270 		.halg = {
1271 			.digestsize = SHA256_DIGEST_SIZE,
1272 			.statesize = sizeof(struct safexcel_ahash_export_state),
1273 			.base = {
1274 				.cra_name = "hmac(sha256)",
1275 				.cra_driver_name = "safexcel-hmac-sha256",
1276 				.cra_priority = 300,
1277 				.cra_flags = CRYPTO_ALG_ASYNC |
1278 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1279 				.cra_blocksize = SHA256_BLOCK_SIZE,
1280 				.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1281 				.cra_init = safexcel_ahash_cra_init,
1282 				.cra_exit = safexcel_ahash_cra_exit,
1283 				.cra_module = THIS_MODULE,
1284 			},
1285 		},
1286 	},
1287 };
1288 
1289 static int safexcel_sha512_init(struct ahash_request *areq)
1290 {
1291 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1292 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1293 
1294 	memset(req, 0, sizeof(*req));
1295 
1296 	req->state[0] = lower_32_bits(SHA512_H0);
1297 	req->state[1] = upper_32_bits(SHA512_H0);
1298 	req->state[2] = lower_32_bits(SHA512_H1);
1299 	req->state[3] = upper_32_bits(SHA512_H1);
1300 	req->state[4] = lower_32_bits(SHA512_H2);
1301 	req->state[5] = upper_32_bits(SHA512_H2);
1302 	req->state[6] = lower_32_bits(SHA512_H3);
1303 	req->state[7] = upper_32_bits(SHA512_H3);
1304 	req->state[8] = lower_32_bits(SHA512_H4);
1305 	req->state[9] = upper_32_bits(SHA512_H4);
1306 	req->state[10] = lower_32_bits(SHA512_H5);
1307 	req->state[11] = upper_32_bits(SHA512_H5);
1308 	req->state[12] = lower_32_bits(SHA512_H6);
1309 	req->state[13] = upper_32_bits(SHA512_H6);
1310 	req->state[14] = lower_32_bits(SHA512_H7);
1311 	req->state[15] = upper_32_bits(SHA512_H7);
1312 
1313 	ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512;
1314 	req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1315 	req->state_sz = SHA512_DIGEST_SIZE;
1316 
1317 	return 0;
1318 }
1319 
1320 static int safexcel_sha512_digest(struct ahash_request *areq)
1321 {
1322 	int ret = safexcel_sha512_init(areq);
1323 
1324 	if (ret)
1325 		return ret;
1326 
1327 	return safexcel_ahash_finup(areq);
1328 }
1329 
1330 struct safexcel_alg_template safexcel_alg_sha512 = {
1331 	.type = SAFEXCEL_ALG_TYPE_AHASH,
1332 	.engines = EIP97IES | EIP197B | EIP197D,
1333 	.alg.ahash = {
1334 		.init = safexcel_sha512_init,
1335 		.update = safexcel_ahash_update,
1336 		.final = safexcel_ahash_final,
1337 		.finup = safexcel_ahash_finup,
1338 		.digest = safexcel_sha512_digest,
1339 		.export = safexcel_ahash_export,
1340 		.import = safexcel_ahash_import,
1341 		.halg = {
1342 			.digestsize = SHA512_DIGEST_SIZE,
1343 			.statesize = sizeof(struct safexcel_ahash_export_state),
1344 			.base = {
1345 				.cra_name = "sha512",
1346 				.cra_driver_name = "safexcel-sha512",
1347 				.cra_priority = 300,
1348 				.cra_flags = CRYPTO_ALG_ASYNC |
1349 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1350 				.cra_blocksize = SHA512_BLOCK_SIZE,
1351 				.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1352 				.cra_init = safexcel_ahash_cra_init,
1353 				.cra_exit = safexcel_ahash_cra_exit,
1354 				.cra_module = THIS_MODULE,
1355 			},
1356 		},
1357 	},
1358 };
1359 
1360 static int safexcel_sha384_init(struct ahash_request *areq)
1361 {
1362 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1363 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1364 
1365 	memset(req, 0, sizeof(*req));
1366 
1367 	req->state[0] = lower_32_bits(SHA384_H0);
1368 	req->state[1] = upper_32_bits(SHA384_H0);
1369 	req->state[2] = lower_32_bits(SHA384_H1);
1370 	req->state[3] = upper_32_bits(SHA384_H1);
1371 	req->state[4] = lower_32_bits(SHA384_H2);
1372 	req->state[5] = upper_32_bits(SHA384_H2);
1373 	req->state[6] = lower_32_bits(SHA384_H3);
1374 	req->state[7] = upper_32_bits(SHA384_H3);
1375 	req->state[8] = lower_32_bits(SHA384_H4);
1376 	req->state[9] = upper_32_bits(SHA384_H4);
1377 	req->state[10] = lower_32_bits(SHA384_H5);
1378 	req->state[11] = upper_32_bits(SHA384_H5);
1379 	req->state[12] = lower_32_bits(SHA384_H6);
1380 	req->state[13] = upper_32_bits(SHA384_H6);
1381 	req->state[14] = lower_32_bits(SHA384_H7);
1382 	req->state[15] = upper_32_bits(SHA384_H7);
1383 
1384 	ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384;
1385 	req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1386 	req->state_sz = SHA512_DIGEST_SIZE;
1387 
1388 	return 0;
1389 }
1390 
1391 static int safexcel_sha384_digest(struct ahash_request *areq)
1392 {
1393 	int ret = safexcel_sha384_init(areq);
1394 
1395 	if (ret)
1396 		return ret;
1397 
1398 	return safexcel_ahash_finup(areq);
1399 }
1400 
1401 struct safexcel_alg_template safexcel_alg_sha384 = {
1402 	.type = SAFEXCEL_ALG_TYPE_AHASH,
1403 	.engines = EIP97IES | EIP197B | EIP197D,
1404 	.alg.ahash = {
1405 		.init = safexcel_sha384_init,
1406 		.update = safexcel_ahash_update,
1407 		.final = safexcel_ahash_final,
1408 		.finup = safexcel_ahash_finup,
1409 		.digest = safexcel_sha384_digest,
1410 		.export = safexcel_ahash_export,
1411 		.import = safexcel_ahash_import,
1412 		.halg = {
1413 			.digestsize = SHA384_DIGEST_SIZE,
1414 			.statesize = sizeof(struct safexcel_ahash_export_state),
1415 			.base = {
1416 				.cra_name = "sha384",
1417 				.cra_driver_name = "safexcel-sha384",
1418 				.cra_priority = 300,
1419 				.cra_flags = CRYPTO_ALG_ASYNC |
1420 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1421 				.cra_blocksize = SHA384_BLOCK_SIZE,
1422 				.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1423 				.cra_init = safexcel_ahash_cra_init,
1424 				.cra_exit = safexcel_ahash_cra_exit,
1425 				.cra_module = THIS_MODULE,
1426 			},
1427 		},
1428 	},
1429 };
1430 
1431 static int safexcel_hmac_sha512_setkey(struct crypto_ahash *tfm, const u8 *key,
1432 				       unsigned int keylen)
1433 {
1434 	return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha512",
1435 					SHA512_DIGEST_SIZE);
1436 }
1437 
1438 static int safexcel_hmac_sha512_init(struct ahash_request *areq)
1439 {
1440 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1441 
1442 	safexcel_sha512_init(areq);
1443 	req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
1444 	return 0;
1445 }
1446 
1447 static int safexcel_hmac_sha512_digest(struct ahash_request *areq)
1448 {
1449 	int ret = safexcel_hmac_sha512_init(areq);
1450 
1451 	if (ret)
1452 		return ret;
1453 
1454 	return safexcel_ahash_finup(areq);
1455 }
1456 
1457 struct safexcel_alg_template safexcel_alg_hmac_sha512 = {
1458 	.type = SAFEXCEL_ALG_TYPE_AHASH,
1459 	.engines = EIP97IES | EIP197B | EIP197D,
1460 	.alg.ahash = {
1461 		.init = safexcel_hmac_sha512_init,
1462 		.update = safexcel_ahash_update,
1463 		.final = safexcel_ahash_final,
1464 		.finup = safexcel_ahash_finup,
1465 		.digest = safexcel_hmac_sha512_digest,
1466 		.setkey = safexcel_hmac_sha512_setkey,
1467 		.export = safexcel_ahash_export,
1468 		.import = safexcel_ahash_import,
1469 		.halg = {
1470 			.digestsize = SHA512_DIGEST_SIZE,
1471 			.statesize = sizeof(struct safexcel_ahash_export_state),
1472 			.base = {
1473 				.cra_name = "hmac(sha512)",
1474 				.cra_driver_name = "safexcel-hmac-sha512",
1475 				.cra_priority = 300,
1476 				.cra_flags = CRYPTO_ALG_ASYNC |
1477 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1478 				.cra_blocksize = SHA512_BLOCK_SIZE,
1479 				.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1480 				.cra_init = safexcel_ahash_cra_init,
1481 				.cra_exit = safexcel_ahash_cra_exit,
1482 				.cra_module = THIS_MODULE,
1483 			},
1484 		},
1485 	},
1486 };
1487 
1488 static int safexcel_hmac_sha384_setkey(struct crypto_ahash *tfm, const u8 *key,
1489 				       unsigned int keylen)
1490 {
1491 	return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha384",
1492 					SHA512_DIGEST_SIZE);
1493 }
1494 
1495 static int safexcel_hmac_sha384_init(struct ahash_request *areq)
1496 {
1497 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1498 
1499 	safexcel_sha384_init(areq);
1500 	req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
1501 	return 0;
1502 }
1503 
1504 static int safexcel_hmac_sha384_digest(struct ahash_request *areq)
1505 {
1506 	int ret = safexcel_hmac_sha384_init(areq);
1507 
1508 	if (ret)
1509 		return ret;
1510 
1511 	return safexcel_ahash_finup(areq);
1512 }
1513 
1514 struct safexcel_alg_template safexcel_alg_hmac_sha384 = {
1515 	.type = SAFEXCEL_ALG_TYPE_AHASH,
1516 	.engines = EIP97IES | EIP197B | EIP197D,
1517 	.alg.ahash = {
1518 		.init = safexcel_hmac_sha384_init,
1519 		.update = safexcel_ahash_update,
1520 		.final = safexcel_ahash_final,
1521 		.finup = safexcel_ahash_finup,
1522 		.digest = safexcel_hmac_sha384_digest,
1523 		.setkey = safexcel_hmac_sha384_setkey,
1524 		.export = safexcel_ahash_export,
1525 		.import = safexcel_ahash_import,
1526 		.halg = {
1527 			.digestsize = SHA384_DIGEST_SIZE,
1528 			.statesize = sizeof(struct safexcel_ahash_export_state),
1529 			.base = {
1530 				.cra_name = "hmac(sha384)",
1531 				.cra_driver_name = "safexcel-hmac-sha384",
1532 				.cra_priority = 300,
1533 				.cra_flags = CRYPTO_ALG_ASYNC |
1534 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1535 				.cra_blocksize = SHA384_BLOCK_SIZE,
1536 				.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1537 				.cra_init = safexcel_ahash_cra_init,
1538 				.cra_exit = safexcel_ahash_cra_exit,
1539 				.cra_module = THIS_MODULE,
1540 			},
1541 		},
1542 	},
1543 };
1544 
1545 static int safexcel_md5_init(struct ahash_request *areq)
1546 {
1547 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1548 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1549 
1550 	memset(req, 0, sizeof(*req));
1551 
1552 	req->state[0] = MD5_H0;
1553 	req->state[1] = MD5_H1;
1554 	req->state[2] = MD5_H2;
1555 	req->state[3] = MD5_H3;
1556 
1557 	ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_MD5;
1558 	req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1559 	req->state_sz = MD5_DIGEST_SIZE;
1560 
1561 	return 0;
1562 }
1563 
1564 static int safexcel_md5_digest(struct ahash_request *areq)
1565 {
1566 	int ret = safexcel_md5_init(areq);
1567 
1568 	if (ret)
1569 		return ret;
1570 
1571 	return safexcel_ahash_finup(areq);
1572 }
1573 
1574 struct safexcel_alg_template safexcel_alg_md5 = {
1575 	.type = SAFEXCEL_ALG_TYPE_AHASH,
1576 	.engines = EIP97IES | EIP197B | EIP197D,
1577 	.alg.ahash = {
1578 		.init = safexcel_md5_init,
1579 		.update = safexcel_ahash_update,
1580 		.final = safexcel_ahash_final,
1581 		.finup = safexcel_ahash_finup,
1582 		.digest = safexcel_md5_digest,
1583 		.export = safexcel_ahash_export,
1584 		.import = safexcel_ahash_import,
1585 		.halg = {
1586 			.digestsize = MD5_DIGEST_SIZE,
1587 			.statesize = sizeof(struct safexcel_ahash_export_state),
1588 			.base = {
1589 				.cra_name = "md5",
1590 				.cra_driver_name = "safexcel-md5",
1591 				.cra_priority = 300,
1592 				.cra_flags = CRYPTO_ALG_ASYNC |
1593 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1594 				.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1595 				.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1596 				.cra_init = safexcel_ahash_cra_init,
1597 				.cra_exit = safexcel_ahash_cra_exit,
1598 				.cra_module = THIS_MODULE,
1599 			},
1600 		},
1601 	},
1602 };
1603 
1604 static int safexcel_hmac_md5_init(struct ahash_request *areq)
1605 {
1606 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1607 
1608 	safexcel_md5_init(areq);
1609 	req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
1610 	return 0;
1611 }
1612 
1613 static int safexcel_hmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
1614 				     unsigned int keylen)
1615 {
1616 	return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-md5",
1617 					MD5_DIGEST_SIZE);
1618 }
1619 
1620 static int safexcel_hmac_md5_digest(struct ahash_request *areq)
1621 {
1622 	int ret = safexcel_hmac_md5_init(areq);
1623 
1624 	if (ret)
1625 		return ret;
1626 
1627 	return safexcel_ahash_finup(areq);
1628 }
1629 
1630 struct safexcel_alg_template safexcel_alg_hmac_md5 = {
1631 	.type = SAFEXCEL_ALG_TYPE_AHASH,
1632 	.engines = EIP97IES | EIP197B | EIP197D,
1633 	.alg.ahash = {
1634 		.init = safexcel_hmac_md5_init,
1635 		.update = safexcel_ahash_update,
1636 		.final = safexcel_ahash_final,
1637 		.finup = safexcel_ahash_finup,
1638 		.digest = safexcel_hmac_md5_digest,
1639 		.setkey = safexcel_hmac_md5_setkey,
1640 		.export = safexcel_ahash_export,
1641 		.import = safexcel_ahash_import,
1642 		.halg = {
1643 			.digestsize = MD5_DIGEST_SIZE,
1644 			.statesize = sizeof(struct safexcel_ahash_export_state),
1645 			.base = {
1646 				.cra_name = "hmac(md5)",
1647 				.cra_driver_name = "safexcel-hmac-md5",
1648 				.cra_priority = 300,
1649 				.cra_flags = CRYPTO_ALG_ASYNC |
1650 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1651 				.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1652 				.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1653 				.cra_init = safexcel_ahash_cra_init,
1654 				.cra_exit = safexcel_ahash_cra_exit,
1655 				.cra_module = THIS_MODULE,
1656 			},
1657 		},
1658 	},
1659 };
1660