1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2017 Marvell
4 *
5 * Antoine Tenart <antoine.tenart@free-electrons.com>
6 */
7
8 #include <crypto/aes.h>
9 #include <crypto/hmac.h>
10 #include <crypto/md5.h>
11 #include <crypto/sha1.h>
12 #include <crypto/sha2.h>
13 #include <crypto/sha3.h>
14 #include <crypto/skcipher.h>
15 #include <crypto/sm3.h>
16 #include <crypto/internal/cipher.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dmapool.h>
20
21 #include "safexcel.h"
22
23 struct safexcel_ahash_ctx {
24 struct safexcel_context base;
25
26 u32 alg;
27 u8 key_sz;
28 bool cbcmac;
29 bool do_fallback;
30 bool fb_init_done;
31 bool fb_do_setkey;
32
33 struct crypto_aes_ctx *aes;
34 struct crypto_ahash *fback;
35 struct crypto_shash *shpre;
36 struct shash_desc *shdesc;
37 };
38
39 struct safexcel_ahash_req {
40 bool last_req;
41 bool finish;
42 bool hmac;
43 bool needs_inv;
44 bool hmac_zlen;
45 bool len_is_le;
46 bool not_first;
47 bool xcbcmac;
48
49 int nents;
50 dma_addr_t result_dma;
51
52 u32 digest;
53
54 u8 state_sz; /* expected state size, only set once */
55 u8 block_sz; /* block size, only set once */
56 u8 digest_sz; /* output digest size, only set once */
57 __le32 state[SHA3_512_BLOCK_SIZE /
58 sizeof(__le32)] __aligned(sizeof(__le32));
59
60 u64 len;
61 u64 processed;
62
63 u8 cache[HASH_CACHE_SIZE] __aligned(sizeof(u32));
64 dma_addr_t cache_dma;
65 unsigned int cache_sz;
66
67 u8 cache_next[HASH_CACHE_SIZE] __aligned(sizeof(u32));
68 };
69
safexcel_queued_len(struct safexcel_ahash_req * req)70 static inline u64 safexcel_queued_len(struct safexcel_ahash_req *req)
71 {
72 return req->len - req->processed;
73 }
74
safexcel_hash_token(struct safexcel_command_desc * cdesc,u32 input_length,u32 result_length,bool cbcmac)75 static void safexcel_hash_token(struct safexcel_command_desc *cdesc,
76 u32 input_length, u32 result_length,
77 bool cbcmac)
78 {
79 struct safexcel_token *token =
80 (struct safexcel_token *)cdesc->control_data.token;
81
82 token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
83 token[0].packet_length = input_length;
84 token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH;
85
86 input_length &= 15;
87 if (unlikely(cbcmac && input_length)) {
88 token[0].stat = 0;
89 token[1].opcode = EIP197_TOKEN_OPCODE_INSERT;
90 token[1].packet_length = 16 - input_length;
91 token[1].stat = EIP197_TOKEN_STAT_LAST_HASH;
92 token[1].instructions = EIP197_TOKEN_INS_TYPE_HASH;
93 } else {
94 token[0].stat = EIP197_TOKEN_STAT_LAST_HASH;
95 eip197_noop_token(&token[1]);
96 }
97
98 token[2].opcode = EIP197_TOKEN_OPCODE_INSERT;
99 token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
100 EIP197_TOKEN_STAT_LAST_PACKET;
101 token[2].packet_length = result_length;
102 token[2].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
103 EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
104
105 eip197_noop_token(&token[3]);
106 }
107
safexcel_context_control(struct safexcel_ahash_ctx * ctx,struct safexcel_ahash_req * req,struct safexcel_command_desc * cdesc)108 static void safexcel_context_control(struct safexcel_ahash_ctx *ctx,
109 struct safexcel_ahash_req *req,
110 struct safexcel_command_desc *cdesc)
111 {
112 struct safexcel_crypto_priv *priv = ctx->base.priv;
113 u64 count = 0;
114
115 cdesc->control_data.control0 = ctx->alg;
116 cdesc->control_data.control1 = 0;
117
118 /*
119 * Copy the input digest if needed, and setup the context
120 * fields. Do this now as we need it to setup the first command
121 * descriptor.
122 */
123 if (unlikely(req->digest == CONTEXT_CONTROL_DIGEST_XCM)) {
124 if (req->xcbcmac)
125 memcpy(ctx->base.ctxr->data, &ctx->base.ipad, ctx->key_sz);
126 else
127 memcpy(ctx->base.ctxr->data, req->state, req->state_sz);
128
129 if (!req->finish && req->xcbcmac)
130 cdesc->control_data.control0 |=
131 CONTEXT_CONTROL_DIGEST_XCM |
132 CONTEXT_CONTROL_TYPE_HASH_OUT |
133 CONTEXT_CONTROL_NO_FINISH_HASH |
134 CONTEXT_CONTROL_SIZE(req->state_sz /
135 sizeof(u32));
136 else
137 cdesc->control_data.control0 |=
138 CONTEXT_CONTROL_DIGEST_XCM |
139 CONTEXT_CONTROL_TYPE_HASH_OUT |
140 CONTEXT_CONTROL_SIZE(req->state_sz /
141 sizeof(u32));
142 return;
143 } else if (!req->processed) {
144 /* First - and possibly only - block of basic hash only */
145 if (req->finish)
146 cdesc->control_data.control0 |= req->digest |
147 CONTEXT_CONTROL_TYPE_HASH_OUT |
148 CONTEXT_CONTROL_RESTART_HASH |
149 /* ensure its not 0! */
150 CONTEXT_CONTROL_SIZE(1);
151 else
152 cdesc->control_data.control0 |= req->digest |
153 CONTEXT_CONTROL_TYPE_HASH_OUT |
154 CONTEXT_CONTROL_RESTART_HASH |
155 CONTEXT_CONTROL_NO_FINISH_HASH |
156 /* ensure its not 0! */
157 CONTEXT_CONTROL_SIZE(1);
158 return;
159 }
160
161 /* Hash continuation or HMAC, setup (inner) digest from state */
162 memcpy(ctx->base.ctxr->data, req->state, req->state_sz);
163
164 if (req->finish) {
165 /* Compute digest count for hash/HMAC finish operations */
166 if ((req->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED) ||
167 req->hmac_zlen || (req->processed != req->block_sz)) {
168 count = req->processed / EIP197_COUNTER_BLOCK_SIZE;
169
170 /* This is a hardware limitation, as the
171 * counter must fit into an u32. This represents
172 * a fairly big amount of input data, so we
173 * shouldn't see this.
174 */
175 if (unlikely(count & 0xffffffff00000000ULL)) {
176 dev_warn(priv->dev,
177 "Input data is too big\n");
178 return;
179 }
180 }
181
182 if ((req->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED) ||
183 /* Special case: zero length HMAC */
184 req->hmac_zlen ||
185 /* PE HW < 4.4 cannot do HMAC continue, fake using hash */
186 (req->processed != req->block_sz)) {
187 /* Basic hash continue operation, need digest + cnt */
188 cdesc->control_data.control0 |=
189 CONTEXT_CONTROL_SIZE((req->state_sz >> 2) + 1) |
190 CONTEXT_CONTROL_TYPE_HASH_OUT |
191 CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
192 /* For zero-len HMAC, don't finalize, already padded! */
193 if (req->hmac_zlen)
194 cdesc->control_data.control0 |=
195 CONTEXT_CONTROL_NO_FINISH_HASH;
196 cdesc->control_data.control1 |=
197 CONTEXT_CONTROL_DIGEST_CNT;
198 ctx->base.ctxr->data[req->state_sz >> 2] =
199 cpu_to_le32(count);
200 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
201
202 /* Clear zero-length HMAC flag for next operation! */
203 req->hmac_zlen = false;
204 } else { /* HMAC */
205 /* Need outer digest for HMAC finalization */
206 memcpy(ctx->base.ctxr->data + (req->state_sz >> 2),
207 &ctx->base.opad, req->state_sz);
208
209 /* Single pass HMAC - no digest count */
210 cdesc->control_data.control0 |=
211 CONTEXT_CONTROL_SIZE(req->state_sz >> 1) |
212 CONTEXT_CONTROL_TYPE_HASH_OUT |
213 CONTEXT_CONTROL_DIGEST_HMAC;
214 }
215 } else { /* Hash continuation, do not finish yet */
216 cdesc->control_data.control0 |=
217 CONTEXT_CONTROL_SIZE(req->state_sz >> 2) |
218 CONTEXT_CONTROL_DIGEST_PRECOMPUTED |
219 CONTEXT_CONTROL_TYPE_HASH_OUT |
220 CONTEXT_CONTROL_NO_FINISH_HASH;
221 }
222 }
223
224 static int safexcel_ahash_enqueue(struct ahash_request *areq);
225
safexcel_handle_req_result(struct safexcel_crypto_priv * priv,int ring,struct crypto_async_request * async,bool * should_complete,int * ret)226 static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv,
227 int ring,
228 struct crypto_async_request *async,
229 bool *should_complete, int *ret)
230 {
231 struct safexcel_result_desc *rdesc;
232 struct ahash_request *areq = ahash_request_cast(async);
233 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
234 struct safexcel_ahash_req *sreq = ahash_request_ctx_dma(areq);
235 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(ahash);
236 u64 cache_len;
237
238 *ret = 0;
239
240 rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
241 if (IS_ERR(rdesc)) {
242 dev_err(priv->dev,
243 "hash: result: could not retrieve the result descriptor\n");
244 *ret = PTR_ERR(rdesc);
245 } else {
246 *ret = safexcel_rdesc_check_errors(priv, rdesc);
247 }
248
249 safexcel_complete(priv, ring);
250
251 if (sreq->nents) {
252 dma_unmap_sg(priv->dev, areq->src, sreq->nents, DMA_TO_DEVICE);
253 sreq->nents = 0;
254 }
255
256 if (sreq->result_dma) {
257 dma_unmap_single(priv->dev, sreq->result_dma, sreq->digest_sz,
258 DMA_FROM_DEVICE);
259 sreq->result_dma = 0;
260 }
261
262 if (sreq->cache_dma) {
263 dma_unmap_single(priv->dev, sreq->cache_dma, sreq->cache_sz,
264 DMA_TO_DEVICE);
265 sreq->cache_dma = 0;
266 sreq->cache_sz = 0;
267 }
268
269 if (sreq->finish) {
270 if (sreq->hmac &&
271 (sreq->digest != CONTEXT_CONTROL_DIGEST_HMAC)) {
272 /* Faking HMAC using hash - need to do outer hash */
273 memcpy(sreq->cache, sreq->state,
274 crypto_ahash_digestsize(ahash));
275
276 memcpy(sreq->state, &ctx->base.opad, sreq->digest_sz);
277
278 sreq->len = sreq->block_sz +
279 crypto_ahash_digestsize(ahash);
280 sreq->processed = sreq->block_sz;
281 sreq->hmac = 0;
282
283 if (priv->flags & EIP197_TRC_CACHE)
284 ctx->base.needs_inv = true;
285 areq->nbytes = 0;
286 safexcel_ahash_enqueue(areq);
287
288 *should_complete = false; /* Not done yet */
289 return 1;
290 }
291
292 if (unlikely(sreq->digest == CONTEXT_CONTROL_DIGEST_XCM &&
293 ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_CRC32)) {
294 /* Undo final XOR with 0xffffffff ...*/
295 *(__le32 *)areq->result = ~sreq->state[0];
296 } else {
297 memcpy(areq->result, sreq->state,
298 crypto_ahash_digestsize(ahash));
299 }
300 }
301
302 cache_len = safexcel_queued_len(sreq);
303 if (cache_len)
304 memcpy(sreq->cache, sreq->cache_next, cache_len);
305
306 *should_complete = true;
307
308 return 1;
309 }
310
safexcel_ahash_send_req(struct crypto_async_request * async,int ring,int * commands,int * results)311 static int safexcel_ahash_send_req(struct crypto_async_request *async, int ring,
312 int *commands, int *results)
313 {
314 struct ahash_request *areq = ahash_request_cast(async);
315 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
316 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
317 struct safexcel_crypto_priv *priv = ctx->base.priv;
318 struct safexcel_command_desc *cdesc, *first_cdesc = NULL;
319 struct safexcel_result_desc *rdesc;
320 struct scatterlist *sg;
321 struct safexcel_token *dmmy;
322 int i, extra = 0, n_cdesc = 0, ret = 0, cache_len, skip = 0;
323 u64 queued, len;
324
325 queued = safexcel_queued_len(req);
326 if (queued <= HASH_CACHE_SIZE)
327 cache_len = queued;
328 else
329 cache_len = queued - areq->nbytes;
330
331 if (!req->finish && !req->last_req) {
332 /* If this is not the last request and the queued data does not
333 * fit into full cache blocks, cache it for the next send call.
334 */
335 extra = queued & (HASH_CACHE_SIZE - 1);
336
337 /* If this is not the last request and the queued data
338 * is a multiple of a block, cache the last one for now.
339 */
340 if (!extra)
341 extra = HASH_CACHE_SIZE;
342
343 sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
344 req->cache_next, extra,
345 areq->nbytes - extra);
346
347 queued -= extra;
348
349 if (!queued) {
350 *commands = 0;
351 *results = 0;
352 return 0;
353 }
354
355 extra = 0;
356 }
357
358 if (unlikely(req->xcbcmac && req->processed > AES_BLOCK_SIZE)) {
359 if (unlikely(cache_len < AES_BLOCK_SIZE)) {
360 /*
361 * Cache contains less than 1 full block, complete.
362 */
363 extra = AES_BLOCK_SIZE - cache_len;
364 if (queued > cache_len) {
365 /* More data follows: borrow bytes */
366 u64 tmp = queued - cache_len;
367
368 skip = min_t(u64, tmp, extra);
369 sg_pcopy_to_buffer(areq->src,
370 sg_nents(areq->src),
371 req->cache + cache_len,
372 skip, 0);
373 }
374 extra -= skip;
375 memset(req->cache + cache_len + skip, 0, extra);
376 if (!ctx->cbcmac && extra) {
377 // 10- padding for XCBCMAC & CMAC
378 req->cache[cache_len + skip] = 0x80;
379 // HW will use K2 iso K3 - compensate!
380 for (i = 0; i < AES_BLOCK_SIZE / 4; i++) {
381 u32 *cache = (void *)req->cache;
382 u32 *ipad = ctx->base.ipad.word;
383 u32 x;
384
385 x = ipad[i] ^ ipad[i + 4];
386 cache[i] ^= swab32(x);
387 }
388 }
389 cache_len = AES_BLOCK_SIZE;
390 queued = queued + extra;
391 }
392
393 /* XCBC continue: XOR previous result into 1st word */
394 crypto_xor(req->cache, (const u8 *)req->state, AES_BLOCK_SIZE);
395 }
396
397 len = queued;
398 /* Add a command descriptor for the cached data, if any */
399 if (cache_len) {
400 req->cache_dma = dma_map_single(priv->dev, req->cache,
401 cache_len, DMA_TO_DEVICE);
402 if (dma_mapping_error(priv->dev, req->cache_dma))
403 return -EINVAL;
404
405 req->cache_sz = cache_len;
406 first_cdesc = safexcel_add_cdesc(priv, ring, 1,
407 (cache_len == len),
408 req->cache_dma, cache_len,
409 len, ctx->base.ctxr_dma,
410 &dmmy);
411 if (IS_ERR(first_cdesc)) {
412 ret = PTR_ERR(first_cdesc);
413 goto unmap_cache;
414 }
415 n_cdesc++;
416
417 queued -= cache_len;
418 if (!queued)
419 goto send_command;
420 }
421
422 /* Now handle the current ahash request buffer(s) */
423 req->nents = dma_map_sg(priv->dev, areq->src,
424 sg_nents_for_len(areq->src,
425 areq->nbytes),
426 DMA_TO_DEVICE);
427 if (!req->nents) {
428 ret = -ENOMEM;
429 goto cdesc_rollback;
430 }
431
432 for_each_sg(areq->src, sg, req->nents, i) {
433 int sglen = sg_dma_len(sg);
434
435 if (unlikely(sglen <= skip)) {
436 skip -= sglen;
437 continue;
438 }
439
440 /* Do not overflow the request */
441 if ((queued + skip) <= sglen)
442 sglen = queued;
443 else
444 sglen -= skip;
445
446 cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc,
447 !(queued - sglen),
448 sg_dma_address(sg) + skip, sglen,
449 len, ctx->base.ctxr_dma, &dmmy);
450 if (IS_ERR(cdesc)) {
451 ret = PTR_ERR(cdesc);
452 goto unmap_sg;
453 }
454
455 if (!n_cdesc)
456 first_cdesc = cdesc;
457 n_cdesc++;
458
459 queued -= sglen;
460 if (!queued)
461 break;
462 skip = 0;
463 }
464
465 send_command:
466 /* Setup the context options */
467 safexcel_context_control(ctx, req, first_cdesc);
468
469 /* Add the token */
470 safexcel_hash_token(first_cdesc, len, req->digest_sz, ctx->cbcmac);
471
472 req->result_dma = dma_map_single(priv->dev, req->state, req->digest_sz,
473 DMA_FROM_DEVICE);
474 if (dma_mapping_error(priv->dev, req->result_dma)) {
475 ret = -EINVAL;
476 goto unmap_sg;
477 }
478
479 /* Add a result descriptor */
480 rdesc = safexcel_add_rdesc(priv, ring, 1, 1, req->result_dma,
481 req->digest_sz);
482 if (IS_ERR(rdesc)) {
483 ret = PTR_ERR(rdesc);
484 goto unmap_result;
485 }
486
487 safexcel_rdr_req_set(priv, ring, rdesc, &areq->base);
488
489 req->processed += len - extra;
490
491 *commands = n_cdesc;
492 *results = 1;
493 return 0;
494
495 unmap_result:
496 dma_unmap_single(priv->dev, req->result_dma, req->digest_sz,
497 DMA_FROM_DEVICE);
498 unmap_sg:
499 if (req->nents) {
500 dma_unmap_sg(priv->dev, areq->src, req->nents, DMA_TO_DEVICE);
501 req->nents = 0;
502 }
503 cdesc_rollback:
504 for (i = 0; i < n_cdesc; i++)
505 safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
506 unmap_cache:
507 if (req->cache_dma) {
508 dma_unmap_single(priv->dev, req->cache_dma, req->cache_sz,
509 DMA_TO_DEVICE);
510 req->cache_dma = 0;
511 req->cache_sz = 0;
512 }
513
514 return ret;
515 }
516
safexcel_handle_inv_result(struct safexcel_crypto_priv * priv,int ring,struct crypto_async_request * async,bool * should_complete,int * ret)517 static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
518 int ring,
519 struct crypto_async_request *async,
520 bool *should_complete, int *ret)
521 {
522 struct safexcel_result_desc *rdesc;
523 struct ahash_request *areq = ahash_request_cast(async);
524 struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
525 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(ahash);
526 int enq_ret;
527
528 *ret = 0;
529
530 rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
531 if (IS_ERR(rdesc)) {
532 dev_err(priv->dev,
533 "hash: invalidate: could not retrieve the result descriptor\n");
534 *ret = PTR_ERR(rdesc);
535 } else {
536 *ret = safexcel_rdesc_check_errors(priv, rdesc);
537 }
538
539 safexcel_complete(priv, ring);
540
541 if (ctx->base.exit_inv) {
542 dma_pool_free(priv->context_pool, ctx->base.ctxr,
543 ctx->base.ctxr_dma);
544
545 *should_complete = true;
546 return 1;
547 }
548
549 ring = safexcel_select_ring(priv);
550 ctx->base.ring = ring;
551
552 spin_lock_bh(&priv->ring[ring].queue_lock);
553 enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, async);
554 spin_unlock_bh(&priv->ring[ring].queue_lock);
555
556 if (enq_ret != -EINPROGRESS)
557 *ret = enq_ret;
558
559 queue_work(priv->ring[ring].workqueue,
560 &priv->ring[ring].work_data.work);
561
562 *should_complete = false;
563
564 return 1;
565 }
566
safexcel_handle_result(struct safexcel_crypto_priv * priv,int ring,struct crypto_async_request * async,bool * should_complete,int * ret)567 static int safexcel_handle_result(struct safexcel_crypto_priv *priv, int ring,
568 struct crypto_async_request *async,
569 bool *should_complete, int *ret)
570 {
571 struct ahash_request *areq = ahash_request_cast(async);
572 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
573 int err;
574
575 BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && req->needs_inv);
576
577 if (req->needs_inv) {
578 req->needs_inv = false;
579 err = safexcel_handle_inv_result(priv, ring, async,
580 should_complete, ret);
581 } else {
582 err = safexcel_handle_req_result(priv, ring, async,
583 should_complete, ret);
584 }
585
586 return err;
587 }
588
safexcel_ahash_send_inv(struct crypto_async_request * async,int ring,int * commands,int * results)589 static int safexcel_ahash_send_inv(struct crypto_async_request *async,
590 int ring, int *commands, int *results)
591 {
592 struct ahash_request *areq = ahash_request_cast(async);
593 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
594 int ret;
595
596 ret = safexcel_invalidate_cache(async, ctx->base.priv,
597 ctx->base.ctxr_dma, ring);
598 if (unlikely(ret))
599 return ret;
600
601 *commands = 1;
602 *results = 1;
603
604 return 0;
605 }
606
safexcel_ahash_send(struct crypto_async_request * async,int ring,int * commands,int * results)607 static int safexcel_ahash_send(struct crypto_async_request *async,
608 int ring, int *commands, int *results)
609 {
610 struct ahash_request *areq = ahash_request_cast(async);
611 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
612 int ret;
613
614 if (req->needs_inv)
615 ret = safexcel_ahash_send_inv(async, ring, commands, results);
616 else
617 ret = safexcel_ahash_send_req(async, ring, commands, results);
618
619 return ret;
620 }
621
safexcel_ahash_exit_inv(struct crypto_tfm * tfm)622 static int safexcel_ahash_exit_inv(struct crypto_tfm *tfm)
623 {
624 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
625 struct safexcel_crypto_priv *priv = ctx->base.priv;
626 EIP197_REQUEST_ON_STACK(req, ahash, EIP197_AHASH_REQ_SIZE);
627 struct safexcel_ahash_req *rctx = ahash_request_ctx_dma(req);
628 DECLARE_CRYPTO_WAIT(result);
629 int ring = ctx->base.ring;
630 int err;
631
632 memset(req, 0, EIP197_AHASH_REQ_SIZE);
633
634 /* create invalidation request */
635 init_completion(&result.completion);
636 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
637 crypto_req_done, &result);
638
639 ahash_request_set_tfm(req, __crypto_ahash_cast(tfm));
640 ctx = crypto_tfm_ctx(req->base.tfm);
641 ctx->base.exit_inv = true;
642 rctx->needs_inv = true;
643
644 spin_lock_bh(&priv->ring[ring].queue_lock);
645 crypto_enqueue_request(&priv->ring[ring].queue, &req->base);
646 spin_unlock_bh(&priv->ring[ring].queue_lock);
647
648 queue_work(priv->ring[ring].workqueue,
649 &priv->ring[ring].work_data.work);
650
651 err = crypto_wait_req(-EINPROGRESS, &result);
652
653 if (err) {
654 dev_warn(priv->dev, "hash: completion error (%d)\n", err);
655 return err;
656 }
657
658 return 0;
659 }
660
661 /* safexcel_ahash_cache: cache data until at least one request can be sent to
662 * the engine, aka. when there is at least 1 block size in the pipe.
663 */
safexcel_ahash_cache(struct ahash_request * areq)664 static int safexcel_ahash_cache(struct ahash_request *areq)
665 {
666 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
667 u64 cache_len;
668
669 /* cache_len: everything accepted by the driver but not sent yet,
670 * tot sz handled by update() - last req sz - tot sz handled by send()
671 */
672 cache_len = safexcel_queued_len(req);
673
674 /*
675 * In case there isn't enough bytes to proceed (less than a
676 * block size), cache the data until we have enough.
677 */
678 if (cache_len + areq->nbytes <= HASH_CACHE_SIZE) {
679 sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
680 req->cache + cache_len,
681 areq->nbytes, 0);
682 return 0;
683 }
684
685 /* We couldn't cache all the data */
686 return -E2BIG;
687 }
688
safexcel_ahash_enqueue(struct ahash_request * areq)689 static int safexcel_ahash_enqueue(struct ahash_request *areq)
690 {
691 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
692 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
693 struct safexcel_crypto_priv *priv = ctx->base.priv;
694 int ret, ring;
695
696 req->needs_inv = false;
697
698 if (ctx->base.ctxr) {
699 if (priv->flags & EIP197_TRC_CACHE && !ctx->base.needs_inv &&
700 /* invalidate for *any* non-XCBC continuation */
701 ((req->not_first && !req->xcbcmac) ||
702 /* invalidate if (i)digest changed */
703 memcmp(ctx->base.ctxr->data, req->state, req->state_sz) ||
704 /* invalidate for HMAC finish with odigest changed */
705 (req->finish && req->hmac &&
706 memcmp(ctx->base.ctxr->data + (req->state_sz>>2),
707 &ctx->base.opad, req->state_sz))))
708 /*
709 * We're still setting needs_inv here, even though it is
710 * cleared right away, because the needs_inv flag can be
711 * set in other functions and we want to keep the same
712 * logic.
713 */
714 ctx->base.needs_inv = true;
715
716 if (ctx->base.needs_inv) {
717 ctx->base.needs_inv = false;
718 req->needs_inv = true;
719 }
720 } else {
721 ctx->base.ring = safexcel_select_ring(priv);
722 ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
723 EIP197_GFP_FLAGS(areq->base),
724 &ctx->base.ctxr_dma);
725 if (!ctx->base.ctxr)
726 return -ENOMEM;
727 }
728 req->not_first = true;
729
730 ring = ctx->base.ring;
731
732 spin_lock_bh(&priv->ring[ring].queue_lock);
733 ret = crypto_enqueue_request(&priv->ring[ring].queue, &areq->base);
734 spin_unlock_bh(&priv->ring[ring].queue_lock);
735
736 queue_work(priv->ring[ring].workqueue,
737 &priv->ring[ring].work_data.work);
738
739 return ret;
740 }
741
safexcel_ahash_update(struct ahash_request * areq)742 static int safexcel_ahash_update(struct ahash_request *areq)
743 {
744 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
745 int ret;
746
747 /* If the request is 0 length, do nothing */
748 if (!areq->nbytes)
749 return 0;
750
751 /* Add request to the cache if it fits */
752 ret = safexcel_ahash_cache(areq);
753
754 /* Update total request length */
755 req->len += areq->nbytes;
756
757 /* If not all data could fit into the cache, go process the excess.
758 * Also go process immediately for an HMAC IV precompute, which
759 * will never be finished at all, but needs to be processed anyway.
760 */
761 if ((ret && !req->finish) || req->last_req)
762 return safexcel_ahash_enqueue(areq);
763
764 return 0;
765 }
766
safexcel_ahash_final(struct ahash_request * areq)767 static int safexcel_ahash_final(struct ahash_request *areq)
768 {
769 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
770 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
771
772 req->finish = true;
773
774 if (unlikely(!req->len && !areq->nbytes)) {
775 /*
776 * If we have an overall 0 length *hash* request:
777 * The HW cannot do 0 length hash, so we provide the correct
778 * result directly here.
779 */
780 if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_MD5)
781 memcpy(areq->result, md5_zero_message_hash,
782 MD5_DIGEST_SIZE);
783 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1)
784 memcpy(areq->result, sha1_zero_message_hash,
785 SHA1_DIGEST_SIZE);
786 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224)
787 memcpy(areq->result, sha224_zero_message_hash,
788 SHA224_DIGEST_SIZE);
789 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256)
790 memcpy(areq->result, sha256_zero_message_hash,
791 SHA256_DIGEST_SIZE);
792 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA384)
793 memcpy(areq->result, sha384_zero_message_hash,
794 SHA384_DIGEST_SIZE);
795 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA512)
796 memcpy(areq->result, sha512_zero_message_hash,
797 SHA512_DIGEST_SIZE);
798 else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SM3) {
799 memcpy(areq->result,
800 EIP197_SM3_ZEROM_HASH, SM3_DIGEST_SIZE);
801 }
802
803 return 0;
804 } else if (unlikely(req->digest == CONTEXT_CONTROL_DIGEST_XCM &&
805 ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_MD5 &&
806 req->len == sizeof(u32) && !areq->nbytes)) {
807 /* Zero length CRC32 */
808 memcpy(areq->result, &ctx->base.ipad, sizeof(u32));
809 return 0;
810 } else if (unlikely(ctx->cbcmac && req->len == AES_BLOCK_SIZE &&
811 !areq->nbytes)) {
812 /* Zero length CBC MAC */
813 memset(areq->result, 0, AES_BLOCK_SIZE);
814 return 0;
815 } else if (unlikely(req->xcbcmac && req->len == AES_BLOCK_SIZE &&
816 !areq->nbytes)) {
817 /* Zero length (X)CBC/CMAC */
818 int i;
819
820 for (i = 0; i < AES_BLOCK_SIZE / sizeof(u32); i++) {
821 u32 *result = (void *)areq->result;
822
823 /* K3 */
824 result[i] = swab32(ctx->base.ipad.word[i + 4]);
825 }
826 areq->result[0] ^= 0x80; // 10- padding
827 aes_encrypt(ctx->aes, areq->result, areq->result);
828 return 0;
829 } else if (unlikely(req->hmac &&
830 (req->len == req->block_sz) &&
831 !areq->nbytes)) {
832 /*
833 * If we have an overall 0 length *HMAC* request:
834 * For HMAC, we need to finalize the inner digest
835 * and then perform the outer hash.
836 */
837
838 /* generate pad block in the cache */
839 /* start with a hash block of all zeroes */
840 memset(req->cache, 0, req->block_sz);
841 /* set the first byte to 0x80 to 'append a 1 bit' */
842 req->cache[0] = 0x80;
843 /* add the length in bits in the last 2 bytes */
844 if (req->len_is_le) {
845 /* Little endian length word (e.g. MD5) */
846 req->cache[req->block_sz-8] = (req->block_sz << 3) &
847 255;
848 req->cache[req->block_sz-7] = (req->block_sz >> 5);
849 } else {
850 /* Big endian length word (e.g. any SHA) */
851 req->cache[req->block_sz-2] = (req->block_sz >> 5);
852 req->cache[req->block_sz-1] = (req->block_sz << 3) &
853 255;
854 }
855
856 req->len += req->block_sz; /* plus 1 hash block */
857
858 /* Set special zero-length HMAC flag */
859 req->hmac_zlen = true;
860
861 /* Finalize HMAC */
862 req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
863 } else if (req->hmac) {
864 /* Finalize HMAC */
865 req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
866 }
867
868 return safexcel_ahash_enqueue(areq);
869 }
870
safexcel_ahash_finup(struct ahash_request * areq)871 static int safexcel_ahash_finup(struct ahash_request *areq)
872 {
873 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
874
875 req->finish = true;
876
877 safexcel_ahash_update(areq);
878 return safexcel_ahash_final(areq);
879 }
880
safexcel_ahash_export(struct ahash_request * areq,void * out)881 static int safexcel_ahash_export(struct ahash_request *areq, void *out)
882 {
883 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
884 struct safexcel_ahash_export_state *export = out;
885
886 export->len = req->len;
887 export->processed = req->processed;
888
889 export->digest = req->digest;
890
891 memcpy(export->state, req->state, req->state_sz);
892 memcpy(export->cache, req->cache, HASH_CACHE_SIZE);
893
894 return 0;
895 }
896
safexcel_ahash_import(struct ahash_request * areq,const void * in)897 static int safexcel_ahash_import(struct ahash_request *areq, const void *in)
898 {
899 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
900 const struct safexcel_ahash_export_state *export = in;
901 int ret;
902
903 ret = crypto_ahash_init(areq);
904 if (ret)
905 return ret;
906
907 req->len = export->len;
908 req->processed = export->processed;
909
910 req->digest = export->digest;
911
912 memcpy(req->cache, export->cache, HASH_CACHE_SIZE);
913 memcpy(req->state, export->state, req->state_sz);
914
915 return 0;
916 }
917
safexcel_ahash_cra_init(struct crypto_tfm * tfm)918 static int safexcel_ahash_cra_init(struct crypto_tfm *tfm)
919 {
920 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
921 struct safexcel_alg_template *tmpl =
922 container_of(__crypto_ahash_alg(tfm->__crt_alg),
923 struct safexcel_alg_template, alg.ahash);
924
925 ctx->base.priv = tmpl->priv;
926 ctx->base.send = safexcel_ahash_send;
927 ctx->base.handle_result = safexcel_handle_result;
928 ctx->fb_do_setkey = false;
929
930 crypto_ahash_set_reqsize_dma(__crypto_ahash_cast(tfm),
931 sizeof(struct safexcel_ahash_req));
932 return 0;
933 }
934
safexcel_sha1_init(struct ahash_request * areq)935 static int safexcel_sha1_init(struct ahash_request *areq)
936 {
937 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
938 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
939
940 memset(req, 0, sizeof(*req));
941
942 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
943 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
944 req->state_sz = SHA1_DIGEST_SIZE;
945 req->digest_sz = SHA1_DIGEST_SIZE;
946 req->block_sz = SHA1_BLOCK_SIZE;
947
948 return 0;
949 }
950
safexcel_sha1_digest(struct ahash_request * areq)951 static int safexcel_sha1_digest(struct ahash_request *areq)
952 {
953 int ret = safexcel_sha1_init(areq);
954
955 if (ret)
956 return ret;
957
958 return safexcel_ahash_finup(areq);
959 }
960
safexcel_ahash_cra_exit(struct crypto_tfm * tfm)961 static void safexcel_ahash_cra_exit(struct crypto_tfm *tfm)
962 {
963 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
964 struct safexcel_crypto_priv *priv = ctx->base.priv;
965 int ret;
966
967 /* context not allocated, skip invalidation */
968 if (!ctx->base.ctxr)
969 return;
970
971 if (priv->flags & EIP197_TRC_CACHE) {
972 ret = safexcel_ahash_exit_inv(tfm);
973 if (ret)
974 dev_warn(priv->dev, "hash: invalidation error %d\n", ret);
975 } else {
976 dma_pool_free(priv->context_pool, ctx->base.ctxr,
977 ctx->base.ctxr_dma);
978 }
979 }
980
981 struct safexcel_alg_template safexcel_alg_sha1 = {
982 .type = SAFEXCEL_ALG_TYPE_AHASH,
983 .algo_mask = SAFEXCEL_ALG_SHA1,
984 .alg.ahash = {
985 .init = safexcel_sha1_init,
986 .update = safexcel_ahash_update,
987 .final = safexcel_ahash_final,
988 .finup = safexcel_ahash_finup,
989 .digest = safexcel_sha1_digest,
990 .export = safexcel_ahash_export,
991 .import = safexcel_ahash_import,
992 .halg = {
993 .digestsize = SHA1_DIGEST_SIZE,
994 .statesize = sizeof(struct safexcel_ahash_export_state),
995 .base = {
996 .cra_name = "sha1",
997 .cra_driver_name = "safexcel-sha1",
998 .cra_priority = SAFEXCEL_CRA_PRIORITY,
999 .cra_flags = CRYPTO_ALG_ASYNC |
1000 CRYPTO_ALG_ALLOCATES_MEMORY |
1001 CRYPTO_ALG_KERN_DRIVER_ONLY,
1002 .cra_blocksize = SHA1_BLOCK_SIZE,
1003 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1004 .cra_init = safexcel_ahash_cra_init,
1005 .cra_exit = safexcel_ahash_cra_exit,
1006 .cra_module = THIS_MODULE,
1007 },
1008 },
1009 },
1010 };
1011
safexcel_hmac_sha1_init(struct ahash_request * areq)1012 static int safexcel_hmac_sha1_init(struct ahash_request *areq)
1013 {
1014 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1015 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
1016
1017 memset(req, 0, sizeof(*req));
1018
1019 /* Start from ipad precompute */
1020 memcpy(req->state, &ctx->base.ipad, SHA1_DIGEST_SIZE);
1021 /* Already processed the key^ipad part now! */
1022 req->len = SHA1_BLOCK_SIZE;
1023 req->processed = SHA1_BLOCK_SIZE;
1024
1025 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
1026 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1027 req->state_sz = SHA1_DIGEST_SIZE;
1028 req->digest_sz = SHA1_DIGEST_SIZE;
1029 req->block_sz = SHA1_BLOCK_SIZE;
1030 req->hmac = true;
1031
1032 return 0;
1033 }
1034
safexcel_hmac_sha1_digest(struct ahash_request * areq)1035 static int safexcel_hmac_sha1_digest(struct ahash_request *areq)
1036 {
1037 int ret = safexcel_hmac_sha1_init(areq);
1038
1039 if (ret)
1040 return ret;
1041
1042 return safexcel_ahash_finup(areq);
1043 }
1044
safexcel_hmac_init_pad(struct ahash_request * areq,unsigned int blocksize,const u8 * key,unsigned int keylen,u8 * ipad,u8 * opad)1045 static int safexcel_hmac_init_pad(struct ahash_request *areq,
1046 unsigned int blocksize, const u8 *key,
1047 unsigned int keylen, u8 *ipad, u8 *opad)
1048 {
1049 DECLARE_CRYPTO_WAIT(result);
1050 struct scatterlist sg;
1051 int ret, i;
1052 u8 *keydup;
1053
1054 if (keylen <= blocksize) {
1055 memcpy(ipad, key, keylen);
1056 } else {
1057 keydup = kmemdup(key, keylen, GFP_KERNEL);
1058 if (!keydup)
1059 return -ENOMEM;
1060
1061 ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
1062 crypto_req_done, &result);
1063 sg_init_one(&sg, keydup, keylen);
1064 ahash_request_set_crypt(areq, &sg, ipad, keylen);
1065
1066 ret = crypto_ahash_digest(areq);
1067 ret = crypto_wait_req(ret, &result);
1068
1069 /* Avoid leaking */
1070 kfree_sensitive(keydup);
1071
1072 if (ret)
1073 return ret;
1074
1075 keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(areq));
1076 }
1077
1078 memset(ipad + keylen, 0, blocksize - keylen);
1079 memcpy(opad, ipad, blocksize);
1080
1081 for (i = 0; i < blocksize; i++) {
1082 ipad[i] ^= HMAC_IPAD_VALUE;
1083 opad[i] ^= HMAC_OPAD_VALUE;
1084 }
1085
1086 return 0;
1087 }
1088
safexcel_hmac_init_iv(struct ahash_request * areq,unsigned int blocksize,u8 * pad,void * state)1089 static int safexcel_hmac_init_iv(struct ahash_request *areq,
1090 unsigned int blocksize, u8 *pad, void *state)
1091 {
1092 struct safexcel_ahash_req *req;
1093 DECLARE_CRYPTO_WAIT(result);
1094 struct scatterlist sg;
1095 int ret;
1096
1097 ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
1098 crypto_req_done, &result);
1099 sg_init_one(&sg, pad, blocksize);
1100 ahash_request_set_crypt(areq, &sg, pad, blocksize);
1101
1102 ret = crypto_ahash_init(areq);
1103 if (ret)
1104 return ret;
1105
1106 req = ahash_request_ctx_dma(areq);
1107 req->hmac = true;
1108 req->last_req = true;
1109
1110 ret = crypto_ahash_update(areq);
1111 ret = crypto_wait_req(ret, &result);
1112
1113 return ret ?: crypto_ahash_export(areq, state);
1114 }
1115
__safexcel_hmac_setkey(const char * alg,const u8 * key,unsigned int keylen,void * istate,void * ostate)1116 static int __safexcel_hmac_setkey(const char *alg, const u8 *key,
1117 unsigned int keylen,
1118 void *istate, void *ostate)
1119 {
1120 struct ahash_request *areq;
1121 struct crypto_ahash *tfm;
1122 unsigned int blocksize;
1123 u8 *ipad, *opad;
1124 int ret;
1125
1126 tfm = crypto_alloc_ahash(alg, 0, 0);
1127 if (IS_ERR(tfm))
1128 return PTR_ERR(tfm);
1129
1130 areq = ahash_request_alloc(tfm, GFP_KERNEL);
1131 if (!areq) {
1132 ret = -ENOMEM;
1133 goto free_ahash;
1134 }
1135
1136 crypto_ahash_clear_flags(tfm, ~0);
1137 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
1138
1139 ipad = kcalloc(2, blocksize, GFP_KERNEL);
1140 if (!ipad) {
1141 ret = -ENOMEM;
1142 goto free_request;
1143 }
1144
1145 opad = ipad + blocksize;
1146
1147 ret = safexcel_hmac_init_pad(areq, blocksize, key, keylen, ipad, opad);
1148 if (ret)
1149 goto free_ipad;
1150
1151 ret = safexcel_hmac_init_iv(areq, blocksize, ipad, istate);
1152 if (ret)
1153 goto free_ipad;
1154
1155 ret = safexcel_hmac_init_iv(areq, blocksize, opad, ostate);
1156
1157 free_ipad:
1158 kfree(ipad);
1159 free_request:
1160 ahash_request_free(areq);
1161 free_ahash:
1162 crypto_free_ahash(tfm);
1163
1164 return ret;
1165 }
1166
safexcel_hmac_setkey(struct safexcel_context * base,const u8 * key,unsigned int keylen,const char * alg,unsigned int state_sz)1167 int safexcel_hmac_setkey(struct safexcel_context *base, const u8 *key,
1168 unsigned int keylen, const char *alg,
1169 unsigned int state_sz)
1170 {
1171 struct safexcel_crypto_priv *priv = base->priv;
1172 struct safexcel_ahash_export_state istate, ostate;
1173 int ret;
1174
1175 ret = __safexcel_hmac_setkey(alg, key, keylen, &istate, &ostate);
1176 if (ret)
1177 return ret;
1178
1179 if (priv->flags & EIP197_TRC_CACHE && base->ctxr &&
1180 (memcmp(&base->ipad, istate.state, state_sz) ||
1181 memcmp(&base->opad, ostate.state, state_sz)))
1182 base->needs_inv = true;
1183
1184 memcpy(&base->ipad, &istate.state, state_sz);
1185 memcpy(&base->opad, &ostate.state, state_sz);
1186
1187 return 0;
1188 }
1189
safexcel_hmac_alg_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen,const char * alg,unsigned int state_sz)1190 static int safexcel_hmac_alg_setkey(struct crypto_ahash *tfm, const u8 *key,
1191 unsigned int keylen, const char *alg,
1192 unsigned int state_sz)
1193 {
1194 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
1195
1196 return safexcel_hmac_setkey(&ctx->base, key, keylen, alg, state_sz);
1197 }
1198
safexcel_hmac_sha1_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1199 static int safexcel_hmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
1200 unsigned int keylen)
1201 {
1202 return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha1",
1203 SHA1_DIGEST_SIZE);
1204 }
1205
1206 struct safexcel_alg_template safexcel_alg_hmac_sha1 = {
1207 .type = SAFEXCEL_ALG_TYPE_AHASH,
1208 .algo_mask = SAFEXCEL_ALG_SHA1,
1209 .alg.ahash = {
1210 .init = safexcel_hmac_sha1_init,
1211 .update = safexcel_ahash_update,
1212 .final = safexcel_ahash_final,
1213 .finup = safexcel_ahash_finup,
1214 .digest = safexcel_hmac_sha1_digest,
1215 .setkey = safexcel_hmac_sha1_setkey,
1216 .export = safexcel_ahash_export,
1217 .import = safexcel_ahash_import,
1218 .halg = {
1219 .digestsize = SHA1_DIGEST_SIZE,
1220 .statesize = sizeof(struct safexcel_ahash_export_state),
1221 .base = {
1222 .cra_name = "hmac(sha1)",
1223 .cra_driver_name = "safexcel-hmac-sha1",
1224 .cra_priority = SAFEXCEL_CRA_PRIORITY,
1225 .cra_flags = CRYPTO_ALG_ASYNC |
1226 CRYPTO_ALG_ALLOCATES_MEMORY |
1227 CRYPTO_ALG_KERN_DRIVER_ONLY,
1228 .cra_blocksize = SHA1_BLOCK_SIZE,
1229 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1230 .cra_init = safexcel_ahash_cra_init,
1231 .cra_exit = safexcel_ahash_cra_exit,
1232 .cra_module = THIS_MODULE,
1233 },
1234 },
1235 },
1236 };
1237
safexcel_sha256_init(struct ahash_request * areq)1238 static int safexcel_sha256_init(struct ahash_request *areq)
1239 {
1240 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1241 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
1242
1243 memset(req, 0, sizeof(*req));
1244
1245 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
1246 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1247 req->state_sz = SHA256_DIGEST_SIZE;
1248 req->digest_sz = SHA256_DIGEST_SIZE;
1249 req->block_sz = SHA256_BLOCK_SIZE;
1250
1251 return 0;
1252 }
1253
safexcel_sha256_digest(struct ahash_request * areq)1254 static int safexcel_sha256_digest(struct ahash_request *areq)
1255 {
1256 int ret = safexcel_sha256_init(areq);
1257
1258 if (ret)
1259 return ret;
1260
1261 return safexcel_ahash_finup(areq);
1262 }
1263
1264 struct safexcel_alg_template safexcel_alg_sha256 = {
1265 .type = SAFEXCEL_ALG_TYPE_AHASH,
1266 .algo_mask = SAFEXCEL_ALG_SHA2_256,
1267 .alg.ahash = {
1268 .init = safexcel_sha256_init,
1269 .update = safexcel_ahash_update,
1270 .final = safexcel_ahash_final,
1271 .finup = safexcel_ahash_finup,
1272 .digest = safexcel_sha256_digest,
1273 .export = safexcel_ahash_export,
1274 .import = safexcel_ahash_import,
1275 .halg = {
1276 .digestsize = SHA256_DIGEST_SIZE,
1277 .statesize = sizeof(struct safexcel_ahash_export_state),
1278 .base = {
1279 .cra_name = "sha256",
1280 .cra_driver_name = "safexcel-sha256",
1281 .cra_priority = SAFEXCEL_CRA_PRIORITY,
1282 .cra_flags = CRYPTO_ALG_ASYNC |
1283 CRYPTO_ALG_ALLOCATES_MEMORY |
1284 CRYPTO_ALG_KERN_DRIVER_ONLY,
1285 .cra_blocksize = SHA256_BLOCK_SIZE,
1286 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1287 .cra_init = safexcel_ahash_cra_init,
1288 .cra_exit = safexcel_ahash_cra_exit,
1289 .cra_module = THIS_MODULE,
1290 },
1291 },
1292 },
1293 };
1294
safexcel_sha224_init(struct ahash_request * areq)1295 static int safexcel_sha224_init(struct ahash_request *areq)
1296 {
1297 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1298 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
1299
1300 memset(req, 0, sizeof(*req));
1301
1302 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
1303 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1304 req->state_sz = SHA256_DIGEST_SIZE;
1305 req->digest_sz = SHA256_DIGEST_SIZE;
1306 req->block_sz = SHA256_BLOCK_SIZE;
1307
1308 return 0;
1309 }
1310
safexcel_sha224_digest(struct ahash_request * areq)1311 static int safexcel_sha224_digest(struct ahash_request *areq)
1312 {
1313 int ret = safexcel_sha224_init(areq);
1314
1315 if (ret)
1316 return ret;
1317
1318 return safexcel_ahash_finup(areq);
1319 }
1320
1321 struct safexcel_alg_template safexcel_alg_sha224 = {
1322 .type = SAFEXCEL_ALG_TYPE_AHASH,
1323 .algo_mask = SAFEXCEL_ALG_SHA2_256,
1324 .alg.ahash = {
1325 .init = safexcel_sha224_init,
1326 .update = safexcel_ahash_update,
1327 .final = safexcel_ahash_final,
1328 .finup = safexcel_ahash_finup,
1329 .digest = safexcel_sha224_digest,
1330 .export = safexcel_ahash_export,
1331 .import = safexcel_ahash_import,
1332 .halg = {
1333 .digestsize = SHA224_DIGEST_SIZE,
1334 .statesize = sizeof(struct safexcel_ahash_export_state),
1335 .base = {
1336 .cra_name = "sha224",
1337 .cra_driver_name = "safexcel-sha224",
1338 .cra_priority = SAFEXCEL_CRA_PRIORITY,
1339 .cra_flags = CRYPTO_ALG_ASYNC |
1340 CRYPTO_ALG_ALLOCATES_MEMORY |
1341 CRYPTO_ALG_KERN_DRIVER_ONLY,
1342 .cra_blocksize = SHA224_BLOCK_SIZE,
1343 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1344 .cra_init = safexcel_ahash_cra_init,
1345 .cra_exit = safexcel_ahash_cra_exit,
1346 .cra_module = THIS_MODULE,
1347 },
1348 },
1349 },
1350 };
1351
safexcel_hmac_sha224_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1352 static int safexcel_hmac_sha224_setkey(struct crypto_ahash *tfm, const u8 *key,
1353 unsigned int keylen)
1354 {
1355 return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha224",
1356 SHA256_DIGEST_SIZE);
1357 }
1358
safexcel_hmac_sha224_init(struct ahash_request * areq)1359 static int safexcel_hmac_sha224_init(struct ahash_request *areq)
1360 {
1361 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1362 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
1363
1364 memset(req, 0, sizeof(*req));
1365
1366 /* Start from ipad precompute */
1367 memcpy(req->state, &ctx->base.ipad, SHA256_DIGEST_SIZE);
1368 /* Already processed the key^ipad part now! */
1369 req->len = SHA256_BLOCK_SIZE;
1370 req->processed = SHA256_BLOCK_SIZE;
1371
1372 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
1373 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1374 req->state_sz = SHA256_DIGEST_SIZE;
1375 req->digest_sz = SHA256_DIGEST_SIZE;
1376 req->block_sz = SHA256_BLOCK_SIZE;
1377 req->hmac = true;
1378
1379 return 0;
1380 }
1381
safexcel_hmac_sha224_digest(struct ahash_request * areq)1382 static int safexcel_hmac_sha224_digest(struct ahash_request *areq)
1383 {
1384 int ret = safexcel_hmac_sha224_init(areq);
1385
1386 if (ret)
1387 return ret;
1388
1389 return safexcel_ahash_finup(areq);
1390 }
1391
1392 struct safexcel_alg_template safexcel_alg_hmac_sha224 = {
1393 .type = SAFEXCEL_ALG_TYPE_AHASH,
1394 .algo_mask = SAFEXCEL_ALG_SHA2_256,
1395 .alg.ahash = {
1396 .init = safexcel_hmac_sha224_init,
1397 .update = safexcel_ahash_update,
1398 .final = safexcel_ahash_final,
1399 .finup = safexcel_ahash_finup,
1400 .digest = safexcel_hmac_sha224_digest,
1401 .setkey = safexcel_hmac_sha224_setkey,
1402 .export = safexcel_ahash_export,
1403 .import = safexcel_ahash_import,
1404 .halg = {
1405 .digestsize = SHA224_DIGEST_SIZE,
1406 .statesize = sizeof(struct safexcel_ahash_export_state),
1407 .base = {
1408 .cra_name = "hmac(sha224)",
1409 .cra_driver_name = "safexcel-hmac-sha224",
1410 .cra_priority = SAFEXCEL_CRA_PRIORITY,
1411 .cra_flags = CRYPTO_ALG_ASYNC |
1412 CRYPTO_ALG_ALLOCATES_MEMORY |
1413 CRYPTO_ALG_KERN_DRIVER_ONLY,
1414 .cra_blocksize = SHA224_BLOCK_SIZE,
1415 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1416 .cra_init = safexcel_ahash_cra_init,
1417 .cra_exit = safexcel_ahash_cra_exit,
1418 .cra_module = THIS_MODULE,
1419 },
1420 },
1421 },
1422 };
1423
safexcel_hmac_sha256_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1424 static int safexcel_hmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
1425 unsigned int keylen)
1426 {
1427 return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha256",
1428 SHA256_DIGEST_SIZE);
1429 }
1430
safexcel_hmac_sha256_init(struct ahash_request * areq)1431 static int safexcel_hmac_sha256_init(struct ahash_request *areq)
1432 {
1433 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1434 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
1435
1436 memset(req, 0, sizeof(*req));
1437
1438 /* Start from ipad precompute */
1439 memcpy(req->state, &ctx->base.ipad, SHA256_DIGEST_SIZE);
1440 /* Already processed the key^ipad part now! */
1441 req->len = SHA256_BLOCK_SIZE;
1442 req->processed = SHA256_BLOCK_SIZE;
1443
1444 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
1445 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1446 req->state_sz = SHA256_DIGEST_SIZE;
1447 req->digest_sz = SHA256_DIGEST_SIZE;
1448 req->block_sz = SHA256_BLOCK_SIZE;
1449 req->hmac = true;
1450
1451 return 0;
1452 }
1453
safexcel_hmac_sha256_digest(struct ahash_request * areq)1454 static int safexcel_hmac_sha256_digest(struct ahash_request *areq)
1455 {
1456 int ret = safexcel_hmac_sha256_init(areq);
1457
1458 if (ret)
1459 return ret;
1460
1461 return safexcel_ahash_finup(areq);
1462 }
1463
1464 struct safexcel_alg_template safexcel_alg_hmac_sha256 = {
1465 .type = SAFEXCEL_ALG_TYPE_AHASH,
1466 .algo_mask = SAFEXCEL_ALG_SHA2_256,
1467 .alg.ahash = {
1468 .init = safexcel_hmac_sha256_init,
1469 .update = safexcel_ahash_update,
1470 .final = safexcel_ahash_final,
1471 .finup = safexcel_ahash_finup,
1472 .digest = safexcel_hmac_sha256_digest,
1473 .setkey = safexcel_hmac_sha256_setkey,
1474 .export = safexcel_ahash_export,
1475 .import = safexcel_ahash_import,
1476 .halg = {
1477 .digestsize = SHA256_DIGEST_SIZE,
1478 .statesize = sizeof(struct safexcel_ahash_export_state),
1479 .base = {
1480 .cra_name = "hmac(sha256)",
1481 .cra_driver_name = "safexcel-hmac-sha256",
1482 .cra_priority = SAFEXCEL_CRA_PRIORITY,
1483 .cra_flags = CRYPTO_ALG_ASYNC |
1484 CRYPTO_ALG_ALLOCATES_MEMORY |
1485 CRYPTO_ALG_KERN_DRIVER_ONLY,
1486 .cra_blocksize = SHA256_BLOCK_SIZE,
1487 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1488 .cra_init = safexcel_ahash_cra_init,
1489 .cra_exit = safexcel_ahash_cra_exit,
1490 .cra_module = THIS_MODULE,
1491 },
1492 },
1493 },
1494 };
1495
safexcel_sha512_init(struct ahash_request * areq)1496 static int safexcel_sha512_init(struct ahash_request *areq)
1497 {
1498 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1499 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
1500
1501 memset(req, 0, sizeof(*req));
1502
1503 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512;
1504 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1505 req->state_sz = SHA512_DIGEST_SIZE;
1506 req->digest_sz = SHA512_DIGEST_SIZE;
1507 req->block_sz = SHA512_BLOCK_SIZE;
1508
1509 return 0;
1510 }
1511
safexcel_sha512_digest(struct ahash_request * areq)1512 static int safexcel_sha512_digest(struct ahash_request *areq)
1513 {
1514 int ret = safexcel_sha512_init(areq);
1515
1516 if (ret)
1517 return ret;
1518
1519 return safexcel_ahash_finup(areq);
1520 }
1521
1522 struct safexcel_alg_template safexcel_alg_sha512 = {
1523 .type = SAFEXCEL_ALG_TYPE_AHASH,
1524 .algo_mask = SAFEXCEL_ALG_SHA2_512,
1525 .alg.ahash = {
1526 .init = safexcel_sha512_init,
1527 .update = safexcel_ahash_update,
1528 .final = safexcel_ahash_final,
1529 .finup = safexcel_ahash_finup,
1530 .digest = safexcel_sha512_digest,
1531 .export = safexcel_ahash_export,
1532 .import = safexcel_ahash_import,
1533 .halg = {
1534 .digestsize = SHA512_DIGEST_SIZE,
1535 .statesize = sizeof(struct safexcel_ahash_export_state),
1536 .base = {
1537 .cra_name = "sha512",
1538 .cra_driver_name = "safexcel-sha512",
1539 .cra_priority = SAFEXCEL_CRA_PRIORITY,
1540 .cra_flags = CRYPTO_ALG_ASYNC |
1541 CRYPTO_ALG_ALLOCATES_MEMORY |
1542 CRYPTO_ALG_KERN_DRIVER_ONLY,
1543 .cra_blocksize = SHA512_BLOCK_SIZE,
1544 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1545 .cra_init = safexcel_ahash_cra_init,
1546 .cra_exit = safexcel_ahash_cra_exit,
1547 .cra_module = THIS_MODULE,
1548 },
1549 },
1550 },
1551 };
1552
safexcel_sha384_init(struct ahash_request * areq)1553 static int safexcel_sha384_init(struct ahash_request *areq)
1554 {
1555 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1556 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
1557
1558 memset(req, 0, sizeof(*req));
1559
1560 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384;
1561 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1562 req->state_sz = SHA512_DIGEST_SIZE;
1563 req->digest_sz = SHA512_DIGEST_SIZE;
1564 req->block_sz = SHA512_BLOCK_SIZE;
1565
1566 return 0;
1567 }
1568
safexcel_sha384_digest(struct ahash_request * areq)1569 static int safexcel_sha384_digest(struct ahash_request *areq)
1570 {
1571 int ret = safexcel_sha384_init(areq);
1572
1573 if (ret)
1574 return ret;
1575
1576 return safexcel_ahash_finup(areq);
1577 }
1578
1579 struct safexcel_alg_template safexcel_alg_sha384 = {
1580 .type = SAFEXCEL_ALG_TYPE_AHASH,
1581 .algo_mask = SAFEXCEL_ALG_SHA2_512,
1582 .alg.ahash = {
1583 .init = safexcel_sha384_init,
1584 .update = safexcel_ahash_update,
1585 .final = safexcel_ahash_final,
1586 .finup = safexcel_ahash_finup,
1587 .digest = safexcel_sha384_digest,
1588 .export = safexcel_ahash_export,
1589 .import = safexcel_ahash_import,
1590 .halg = {
1591 .digestsize = SHA384_DIGEST_SIZE,
1592 .statesize = sizeof(struct safexcel_ahash_export_state),
1593 .base = {
1594 .cra_name = "sha384",
1595 .cra_driver_name = "safexcel-sha384",
1596 .cra_priority = SAFEXCEL_CRA_PRIORITY,
1597 .cra_flags = CRYPTO_ALG_ASYNC |
1598 CRYPTO_ALG_ALLOCATES_MEMORY |
1599 CRYPTO_ALG_KERN_DRIVER_ONLY,
1600 .cra_blocksize = SHA384_BLOCK_SIZE,
1601 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1602 .cra_init = safexcel_ahash_cra_init,
1603 .cra_exit = safexcel_ahash_cra_exit,
1604 .cra_module = THIS_MODULE,
1605 },
1606 },
1607 },
1608 };
1609
safexcel_hmac_sha512_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1610 static int safexcel_hmac_sha512_setkey(struct crypto_ahash *tfm, const u8 *key,
1611 unsigned int keylen)
1612 {
1613 return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha512",
1614 SHA512_DIGEST_SIZE);
1615 }
1616
safexcel_hmac_sha512_init(struct ahash_request * areq)1617 static int safexcel_hmac_sha512_init(struct ahash_request *areq)
1618 {
1619 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1620 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
1621
1622 memset(req, 0, sizeof(*req));
1623
1624 /* Start from ipad precompute */
1625 memcpy(req->state, &ctx->base.ipad, SHA512_DIGEST_SIZE);
1626 /* Already processed the key^ipad part now! */
1627 req->len = SHA512_BLOCK_SIZE;
1628 req->processed = SHA512_BLOCK_SIZE;
1629
1630 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512;
1631 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1632 req->state_sz = SHA512_DIGEST_SIZE;
1633 req->digest_sz = SHA512_DIGEST_SIZE;
1634 req->block_sz = SHA512_BLOCK_SIZE;
1635 req->hmac = true;
1636
1637 return 0;
1638 }
1639
safexcel_hmac_sha512_digest(struct ahash_request * areq)1640 static int safexcel_hmac_sha512_digest(struct ahash_request *areq)
1641 {
1642 int ret = safexcel_hmac_sha512_init(areq);
1643
1644 if (ret)
1645 return ret;
1646
1647 return safexcel_ahash_finup(areq);
1648 }
1649
1650 struct safexcel_alg_template safexcel_alg_hmac_sha512 = {
1651 .type = SAFEXCEL_ALG_TYPE_AHASH,
1652 .algo_mask = SAFEXCEL_ALG_SHA2_512,
1653 .alg.ahash = {
1654 .init = safexcel_hmac_sha512_init,
1655 .update = safexcel_ahash_update,
1656 .final = safexcel_ahash_final,
1657 .finup = safexcel_ahash_finup,
1658 .digest = safexcel_hmac_sha512_digest,
1659 .setkey = safexcel_hmac_sha512_setkey,
1660 .export = safexcel_ahash_export,
1661 .import = safexcel_ahash_import,
1662 .halg = {
1663 .digestsize = SHA512_DIGEST_SIZE,
1664 .statesize = sizeof(struct safexcel_ahash_export_state),
1665 .base = {
1666 .cra_name = "hmac(sha512)",
1667 .cra_driver_name = "safexcel-hmac-sha512",
1668 .cra_priority = SAFEXCEL_CRA_PRIORITY,
1669 .cra_flags = CRYPTO_ALG_ASYNC |
1670 CRYPTO_ALG_ALLOCATES_MEMORY |
1671 CRYPTO_ALG_KERN_DRIVER_ONLY,
1672 .cra_blocksize = SHA512_BLOCK_SIZE,
1673 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1674 .cra_init = safexcel_ahash_cra_init,
1675 .cra_exit = safexcel_ahash_cra_exit,
1676 .cra_module = THIS_MODULE,
1677 },
1678 },
1679 },
1680 };
1681
safexcel_hmac_sha384_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1682 static int safexcel_hmac_sha384_setkey(struct crypto_ahash *tfm, const u8 *key,
1683 unsigned int keylen)
1684 {
1685 return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sha384",
1686 SHA512_DIGEST_SIZE);
1687 }
1688
safexcel_hmac_sha384_init(struct ahash_request * areq)1689 static int safexcel_hmac_sha384_init(struct ahash_request *areq)
1690 {
1691 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1692 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
1693
1694 memset(req, 0, sizeof(*req));
1695
1696 /* Start from ipad precompute */
1697 memcpy(req->state, &ctx->base.ipad, SHA512_DIGEST_SIZE);
1698 /* Already processed the key^ipad part now! */
1699 req->len = SHA512_BLOCK_SIZE;
1700 req->processed = SHA512_BLOCK_SIZE;
1701
1702 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384;
1703 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1704 req->state_sz = SHA512_DIGEST_SIZE;
1705 req->digest_sz = SHA512_DIGEST_SIZE;
1706 req->block_sz = SHA512_BLOCK_SIZE;
1707 req->hmac = true;
1708
1709 return 0;
1710 }
1711
safexcel_hmac_sha384_digest(struct ahash_request * areq)1712 static int safexcel_hmac_sha384_digest(struct ahash_request *areq)
1713 {
1714 int ret = safexcel_hmac_sha384_init(areq);
1715
1716 if (ret)
1717 return ret;
1718
1719 return safexcel_ahash_finup(areq);
1720 }
1721
1722 struct safexcel_alg_template safexcel_alg_hmac_sha384 = {
1723 .type = SAFEXCEL_ALG_TYPE_AHASH,
1724 .algo_mask = SAFEXCEL_ALG_SHA2_512,
1725 .alg.ahash = {
1726 .init = safexcel_hmac_sha384_init,
1727 .update = safexcel_ahash_update,
1728 .final = safexcel_ahash_final,
1729 .finup = safexcel_ahash_finup,
1730 .digest = safexcel_hmac_sha384_digest,
1731 .setkey = safexcel_hmac_sha384_setkey,
1732 .export = safexcel_ahash_export,
1733 .import = safexcel_ahash_import,
1734 .halg = {
1735 .digestsize = SHA384_DIGEST_SIZE,
1736 .statesize = sizeof(struct safexcel_ahash_export_state),
1737 .base = {
1738 .cra_name = "hmac(sha384)",
1739 .cra_driver_name = "safexcel-hmac-sha384",
1740 .cra_priority = SAFEXCEL_CRA_PRIORITY,
1741 .cra_flags = CRYPTO_ALG_ASYNC |
1742 CRYPTO_ALG_ALLOCATES_MEMORY |
1743 CRYPTO_ALG_KERN_DRIVER_ONLY,
1744 .cra_blocksize = SHA384_BLOCK_SIZE,
1745 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1746 .cra_init = safexcel_ahash_cra_init,
1747 .cra_exit = safexcel_ahash_cra_exit,
1748 .cra_module = THIS_MODULE,
1749 },
1750 },
1751 },
1752 };
1753
safexcel_md5_init(struct ahash_request * areq)1754 static int safexcel_md5_init(struct ahash_request *areq)
1755 {
1756 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1757 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
1758
1759 memset(req, 0, sizeof(*req));
1760
1761 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_MD5;
1762 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1763 req->state_sz = MD5_DIGEST_SIZE;
1764 req->digest_sz = MD5_DIGEST_SIZE;
1765 req->block_sz = MD5_HMAC_BLOCK_SIZE;
1766
1767 return 0;
1768 }
1769
safexcel_md5_digest(struct ahash_request * areq)1770 static int safexcel_md5_digest(struct ahash_request *areq)
1771 {
1772 int ret = safexcel_md5_init(areq);
1773
1774 if (ret)
1775 return ret;
1776
1777 return safexcel_ahash_finup(areq);
1778 }
1779
1780 struct safexcel_alg_template safexcel_alg_md5 = {
1781 .type = SAFEXCEL_ALG_TYPE_AHASH,
1782 .algo_mask = SAFEXCEL_ALG_MD5,
1783 .alg.ahash = {
1784 .init = safexcel_md5_init,
1785 .update = safexcel_ahash_update,
1786 .final = safexcel_ahash_final,
1787 .finup = safexcel_ahash_finup,
1788 .digest = safexcel_md5_digest,
1789 .export = safexcel_ahash_export,
1790 .import = safexcel_ahash_import,
1791 .halg = {
1792 .digestsize = MD5_DIGEST_SIZE,
1793 .statesize = sizeof(struct safexcel_ahash_export_state),
1794 .base = {
1795 .cra_name = "md5",
1796 .cra_driver_name = "safexcel-md5",
1797 .cra_priority = SAFEXCEL_CRA_PRIORITY,
1798 .cra_flags = CRYPTO_ALG_ASYNC |
1799 CRYPTO_ALG_ALLOCATES_MEMORY |
1800 CRYPTO_ALG_KERN_DRIVER_ONLY,
1801 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1802 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1803 .cra_init = safexcel_ahash_cra_init,
1804 .cra_exit = safexcel_ahash_cra_exit,
1805 .cra_module = THIS_MODULE,
1806 },
1807 },
1808 },
1809 };
1810
safexcel_hmac_md5_init(struct ahash_request * areq)1811 static int safexcel_hmac_md5_init(struct ahash_request *areq)
1812 {
1813 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1814 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
1815
1816 memset(req, 0, sizeof(*req));
1817
1818 /* Start from ipad precompute */
1819 memcpy(req->state, &ctx->base.ipad, MD5_DIGEST_SIZE);
1820 /* Already processed the key^ipad part now! */
1821 req->len = MD5_HMAC_BLOCK_SIZE;
1822 req->processed = MD5_HMAC_BLOCK_SIZE;
1823
1824 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_MD5;
1825 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1826 req->state_sz = MD5_DIGEST_SIZE;
1827 req->digest_sz = MD5_DIGEST_SIZE;
1828 req->block_sz = MD5_HMAC_BLOCK_SIZE;
1829 req->len_is_le = true; /* MD5 is little endian! ... */
1830 req->hmac = true;
1831
1832 return 0;
1833 }
1834
safexcel_hmac_md5_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1835 static int safexcel_hmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
1836 unsigned int keylen)
1837 {
1838 return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-md5",
1839 MD5_DIGEST_SIZE);
1840 }
1841
safexcel_hmac_md5_digest(struct ahash_request * areq)1842 static int safexcel_hmac_md5_digest(struct ahash_request *areq)
1843 {
1844 int ret = safexcel_hmac_md5_init(areq);
1845
1846 if (ret)
1847 return ret;
1848
1849 return safexcel_ahash_finup(areq);
1850 }
1851
1852 struct safexcel_alg_template safexcel_alg_hmac_md5 = {
1853 .type = SAFEXCEL_ALG_TYPE_AHASH,
1854 .algo_mask = SAFEXCEL_ALG_MD5,
1855 .alg.ahash = {
1856 .init = safexcel_hmac_md5_init,
1857 .update = safexcel_ahash_update,
1858 .final = safexcel_ahash_final,
1859 .finup = safexcel_ahash_finup,
1860 .digest = safexcel_hmac_md5_digest,
1861 .setkey = safexcel_hmac_md5_setkey,
1862 .export = safexcel_ahash_export,
1863 .import = safexcel_ahash_import,
1864 .halg = {
1865 .digestsize = MD5_DIGEST_SIZE,
1866 .statesize = sizeof(struct safexcel_ahash_export_state),
1867 .base = {
1868 .cra_name = "hmac(md5)",
1869 .cra_driver_name = "safexcel-hmac-md5",
1870 .cra_priority = SAFEXCEL_CRA_PRIORITY,
1871 .cra_flags = CRYPTO_ALG_ASYNC |
1872 CRYPTO_ALG_ALLOCATES_MEMORY |
1873 CRYPTO_ALG_KERN_DRIVER_ONLY,
1874 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1875 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1876 .cra_init = safexcel_ahash_cra_init,
1877 .cra_exit = safexcel_ahash_cra_exit,
1878 .cra_module = THIS_MODULE,
1879 },
1880 },
1881 },
1882 };
1883
safexcel_crc32_cra_init(struct crypto_tfm * tfm)1884 static int safexcel_crc32_cra_init(struct crypto_tfm *tfm)
1885 {
1886 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
1887 int ret = safexcel_ahash_cra_init(tfm);
1888
1889 /* Default 'key' is all zeroes */
1890 memset(&ctx->base.ipad, 0, sizeof(u32));
1891 return ret;
1892 }
1893
safexcel_crc32_init(struct ahash_request * areq)1894 static int safexcel_crc32_init(struct ahash_request *areq)
1895 {
1896 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1897 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
1898
1899 memset(req, 0, sizeof(*req));
1900
1901 /* Start from loaded key */
1902 req->state[0] = cpu_to_le32(~ctx->base.ipad.word[0]);
1903 /* Set processed to non-zero to enable invalidation detection */
1904 req->len = sizeof(u32);
1905 req->processed = sizeof(u32);
1906
1907 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_CRC32;
1908 req->digest = CONTEXT_CONTROL_DIGEST_XCM;
1909 req->state_sz = sizeof(u32);
1910 req->digest_sz = sizeof(u32);
1911 req->block_sz = sizeof(u32);
1912
1913 return 0;
1914 }
1915
safexcel_crc32_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1916 static int safexcel_crc32_setkey(struct crypto_ahash *tfm, const u8 *key,
1917 unsigned int keylen)
1918 {
1919 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1920
1921 if (keylen != sizeof(u32))
1922 return -EINVAL;
1923
1924 memcpy(&ctx->base.ipad, key, sizeof(u32));
1925 return 0;
1926 }
1927
safexcel_crc32_digest(struct ahash_request * areq)1928 static int safexcel_crc32_digest(struct ahash_request *areq)
1929 {
1930 return safexcel_crc32_init(areq) ?: safexcel_ahash_finup(areq);
1931 }
1932
1933 struct safexcel_alg_template safexcel_alg_crc32 = {
1934 .type = SAFEXCEL_ALG_TYPE_AHASH,
1935 .algo_mask = 0,
1936 .alg.ahash = {
1937 .init = safexcel_crc32_init,
1938 .update = safexcel_ahash_update,
1939 .final = safexcel_ahash_final,
1940 .finup = safexcel_ahash_finup,
1941 .digest = safexcel_crc32_digest,
1942 .setkey = safexcel_crc32_setkey,
1943 .export = safexcel_ahash_export,
1944 .import = safexcel_ahash_import,
1945 .halg = {
1946 .digestsize = sizeof(u32),
1947 .statesize = sizeof(struct safexcel_ahash_export_state),
1948 .base = {
1949 .cra_name = "crc32",
1950 .cra_driver_name = "safexcel-crc32",
1951 .cra_priority = SAFEXCEL_CRA_PRIORITY,
1952 .cra_flags = CRYPTO_ALG_OPTIONAL_KEY |
1953 CRYPTO_ALG_ASYNC |
1954 CRYPTO_ALG_ALLOCATES_MEMORY |
1955 CRYPTO_ALG_KERN_DRIVER_ONLY,
1956 .cra_blocksize = 1,
1957 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1958 .cra_init = safexcel_crc32_cra_init,
1959 .cra_exit = safexcel_ahash_cra_exit,
1960 .cra_module = THIS_MODULE,
1961 },
1962 },
1963 },
1964 };
1965
safexcel_cbcmac_init(struct ahash_request * areq)1966 static int safexcel_cbcmac_init(struct ahash_request *areq)
1967 {
1968 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1969 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
1970
1971 memset(req, 0, sizeof(*req));
1972
1973 /* Start from loaded keys */
1974 memcpy(req->state, &ctx->base.ipad, ctx->key_sz);
1975 /* Set processed to non-zero to enable invalidation detection */
1976 req->len = AES_BLOCK_SIZE;
1977 req->processed = AES_BLOCK_SIZE;
1978
1979 req->digest = CONTEXT_CONTROL_DIGEST_XCM;
1980 req->state_sz = ctx->key_sz;
1981 req->digest_sz = AES_BLOCK_SIZE;
1982 req->block_sz = AES_BLOCK_SIZE;
1983 req->xcbcmac = true;
1984
1985 return 0;
1986 }
1987
safexcel_cbcmac_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int len)1988 static int safexcel_cbcmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1989 unsigned int len)
1990 {
1991 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1992 struct crypto_aes_ctx aes;
1993 int ret, i;
1994
1995 ret = aes_expandkey(&aes, key, len);
1996 if (ret)
1997 return ret;
1998
1999 memset(&ctx->base.ipad, 0, 2 * AES_BLOCK_SIZE);
2000 for (i = 0; i < len / sizeof(u32); i++)
2001 ctx->base.ipad.be[i + 8] = cpu_to_be32(aes.key_enc[i]);
2002
2003 if (len == AES_KEYSIZE_192) {
2004 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC192;
2005 ctx->key_sz = AES_MAX_KEY_SIZE + 2 * AES_BLOCK_SIZE;
2006 } else if (len == AES_KEYSIZE_256) {
2007 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC256;
2008 ctx->key_sz = AES_MAX_KEY_SIZE + 2 * AES_BLOCK_SIZE;
2009 } else {
2010 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC128;
2011 ctx->key_sz = AES_MIN_KEY_SIZE + 2 * AES_BLOCK_SIZE;
2012 }
2013 ctx->cbcmac = true;
2014
2015 memzero_explicit(&aes, sizeof(aes));
2016 return 0;
2017 }
2018
safexcel_cbcmac_digest(struct ahash_request * areq)2019 static int safexcel_cbcmac_digest(struct ahash_request *areq)
2020 {
2021 return safexcel_cbcmac_init(areq) ?: safexcel_ahash_finup(areq);
2022 }
2023
2024 struct safexcel_alg_template safexcel_alg_cbcmac = {
2025 .type = SAFEXCEL_ALG_TYPE_AHASH,
2026 .algo_mask = 0,
2027 .alg.ahash = {
2028 .init = safexcel_cbcmac_init,
2029 .update = safexcel_ahash_update,
2030 .final = safexcel_ahash_final,
2031 .finup = safexcel_ahash_finup,
2032 .digest = safexcel_cbcmac_digest,
2033 .setkey = safexcel_cbcmac_setkey,
2034 .export = safexcel_ahash_export,
2035 .import = safexcel_ahash_import,
2036 .halg = {
2037 .digestsize = AES_BLOCK_SIZE,
2038 .statesize = sizeof(struct safexcel_ahash_export_state),
2039 .base = {
2040 .cra_name = "cbcmac(aes)",
2041 .cra_driver_name = "safexcel-cbcmac-aes",
2042 .cra_priority = SAFEXCEL_CRA_PRIORITY,
2043 .cra_flags = CRYPTO_ALG_ASYNC |
2044 CRYPTO_ALG_ALLOCATES_MEMORY |
2045 CRYPTO_ALG_KERN_DRIVER_ONLY,
2046 .cra_blocksize = 1,
2047 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
2048 .cra_init = safexcel_ahash_cra_init,
2049 .cra_exit = safexcel_ahash_cra_exit,
2050 .cra_module = THIS_MODULE,
2051 },
2052 },
2053 },
2054 };
2055
safexcel_xcbcmac_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int len)2056 static int safexcel_xcbcmac_setkey(struct crypto_ahash *tfm, const u8 *key,
2057 unsigned int len)
2058 {
2059 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
2060 u32 key_tmp[3 * AES_BLOCK_SIZE / sizeof(u32)];
2061 int ret, i;
2062
2063 ret = aes_expandkey(ctx->aes, key, len);
2064 if (ret)
2065 return ret;
2066
2067 /* precompute the XCBC key material */
2068 aes_encrypt(ctx->aes, (u8 *)key_tmp + 2 * AES_BLOCK_SIZE,
2069 "\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1\x1");
2070 aes_encrypt(ctx->aes, (u8 *)key_tmp,
2071 "\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2\x2");
2072 aes_encrypt(ctx->aes, (u8 *)key_tmp + AES_BLOCK_SIZE,
2073 "\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3\x3");
2074 for (i = 0; i < 3 * AES_BLOCK_SIZE / sizeof(u32); i++)
2075 ctx->base.ipad.word[i] = swab32(key_tmp[i]);
2076
2077 ret = aes_expandkey(ctx->aes,
2078 (u8 *)key_tmp + 2 * AES_BLOCK_SIZE,
2079 AES_MIN_KEY_SIZE);
2080 if (ret)
2081 return ret;
2082
2083 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC128;
2084 ctx->key_sz = AES_MIN_KEY_SIZE + 2 * AES_BLOCK_SIZE;
2085 ctx->cbcmac = false;
2086
2087 return 0;
2088 }
2089
safexcel_xcbcmac_cra_init(struct crypto_tfm * tfm)2090 static int safexcel_xcbcmac_cra_init(struct crypto_tfm *tfm)
2091 {
2092 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
2093
2094 safexcel_ahash_cra_init(tfm);
2095 ctx->aes = kmalloc(sizeof(*ctx->aes), GFP_KERNEL);
2096 return ctx->aes == NULL ? -ENOMEM : 0;
2097 }
2098
safexcel_xcbcmac_cra_exit(struct crypto_tfm * tfm)2099 static void safexcel_xcbcmac_cra_exit(struct crypto_tfm *tfm)
2100 {
2101 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
2102
2103 kfree(ctx->aes);
2104 safexcel_ahash_cra_exit(tfm);
2105 }
2106
2107 struct safexcel_alg_template safexcel_alg_xcbcmac = {
2108 .type = SAFEXCEL_ALG_TYPE_AHASH,
2109 .algo_mask = 0,
2110 .alg.ahash = {
2111 .init = safexcel_cbcmac_init,
2112 .update = safexcel_ahash_update,
2113 .final = safexcel_ahash_final,
2114 .finup = safexcel_ahash_finup,
2115 .digest = safexcel_cbcmac_digest,
2116 .setkey = safexcel_xcbcmac_setkey,
2117 .export = safexcel_ahash_export,
2118 .import = safexcel_ahash_import,
2119 .halg = {
2120 .digestsize = AES_BLOCK_SIZE,
2121 .statesize = sizeof(struct safexcel_ahash_export_state),
2122 .base = {
2123 .cra_name = "xcbc(aes)",
2124 .cra_driver_name = "safexcel-xcbc-aes",
2125 .cra_priority = SAFEXCEL_CRA_PRIORITY,
2126 .cra_flags = CRYPTO_ALG_ASYNC |
2127 CRYPTO_ALG_ALLOCATES_MEMORY |
2128 CRYPTO_ALG_KERN_DRIVER_ONLY,
2129 .cra_blocksize = AES_BLOCK_SIZE,
2130 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
2131 .cra_init = safexcel_xcbcmac_cra_init,
2132 .cra_exit = safexcel_xcbcmac_cra_exit,
2133 .cra_module = THIS_MODULE,
2134 },
2135 },
2136 },
2137 };
2138
safexcel_cmac_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int len)2139 static int safexcel_cmac_setkey(struct crypto_ahash *tfm, const u8 *key,
2140 unsigned int len)
2141 {
2142 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
2143 __be64 consts[4];
2144 u64 _const[2];
2145 u8 msb_mask, gfmask;
2146 int ret, i;
2147
2148 /* precompute the CMAC key material */
2149 ret = aes_expandkey(ctx->aes, key, len);
2150 if (ret)
2151 return ret;
2152
2153 for (i = 0; i < len / sizeof(u32); i++)
2154 ctx->base.ipad.word[i + 8] = swab32(ctx->aes->key_enc[i]);
2155
2156 /* code below borrowed from crypto/cmac.c */
2157 /* encrypt the zero block */
2158 memset(consts, 0, AES_BLOCK_SIZE);
2159 aes_encrypt(ctx->aes, (u8 *)consts, (u8 *)consts);
2160
2161 gfmask = 0x87;
2162 _const[0] = be64_to_cpu(consts[1]);
2163 _const[1] = be64_to_cpu(consts[0]);
2164
2165 /* gf(2^128) multiply zero-ciphertext with u and u^2 */
2166 for (i = 0; i < 4; i += 2) {
2167 msb_mask = ((s64)_const[1] >> 63) & gfmask;
2168 _const[1] = (_const[1] << 1) | (_const[0] >> 63);
2169 _const[0] = (_const[0] << 1) ^ msb_mask;
2170
2171 consts[i + 0] = cpu_to_be64(_const[1]);
2172 consts[i + 1] = cpu_to_be64(_const[0]);
2173 }
2174 /* end of code borrowed from crypto/cmac.c */
2175
2176 for (i = 0; i < 2 * AES_BLOCK_SIZE / sizeof(u32); i++)
2177 ctx->base.ipad.be[i] = cpu_to_be32(((u32 *)consts)[i]);
2178
2179 if (len == AES_KEYSIZE_192) {
2180 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC192;
2181 ctx->key_sz = AES_MAX_KEY_SIZE + 2 * AES_BLOCK_SIZE;
2182 } else if (len == AES_KEYSIZE_256) {
2183 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC256;
2184 ctx->key_sz = AES_MAX_KEY_SIZE + 2 * AES_BLOCK_SIZE;
2185 } else {
2186 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC128;
2187 ctx->key_sz = AES_MIN_KEY_SIZE + 2 * AES_BLOCK_SIZE;
2188 }
2189 ctx->cbcmac = false;
2190
2191 return 0;
2192 }
2193
2194 struct safexcel_alg_template safexcel_alg_cmac = {
2195 .type = SAFEXCEL_ALG_TYPE_AHASH,
2196 .algo_mask = 0,
2197 .alg.ahash = {
2198 .init = safexcel_cbcmac_init,
2199 .update = safexcel_ahash_update,
2200 .final = safexcel_ahash_final,
2201 .finup = safexcel_ahash_finup,
2202 .digest = safexcel_cbcmac_digest,
2203 .setkey = safexcel_cmac_setkey,
2204 .export = safexcel_ahash_export,
2205 .import = safexcel_ahash_import,
2206 .halg = {
2207 .digestsize = AES_BLOCK_SIZE,
2208 .statesize = sizeof(struct safexcel_ahash_export_state),
2209 .base = {
2210 .cra_name = "cmac(aes)",
2211 .cra_driver_name = "safexcel-cmac-aes",
2212 .cra_priority = SAFEXCEL_CRA_PRIORITY,
2213 .cra_flags = CRYPTO_ALG_ASYNC |
2214 CRYPTO_ALG_ALLOCATES_MEMORY |
2215 CRYPTO_ALG_KERN_DRIVER_ONLY,
2216 .cra_blocksize = AES_BLOCK_SIZE,
2217 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
2218 .cra_init = safexcel_xcbcmac_cra_init,
2219 .cra_exit = safexcel_xcbcmac_cra_exit,
2220 .cra_module = THIS_MODULE,
2221 },
2222 },
2223 },
2224 };
2225
safexcel_sm3_init(struct ahash_request * areq)2226 static int safexcel_sm3_init(struct ahash_request *areq)
2227 {
2228 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
2229 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
2230
2231 memset(req, 0, sizeof(*req));
2232
2233 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SM3;
2234 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
2235 req->state_sz = SM3_DIGEST_SIZE;
2236 req->digest_sz = SM3_DIGEST_SIZE;
2237 req->block_sz = SM3_BLOCK_SIZE;
2238
2239 return 0;
2240 }
2241
safexcel_sm3_digest(struct ahash_request * areq)2242 static int safexcel_sm3_digest(struct ahash_request *areq)
2243 {
2244 int ret = safexcel_sm3_init(areq);
2245
2246 if (ret)
2247 return ret;
2248
2249 return safexcel_ahash_finup(areq);
2250 }
2251
2252 struct safexcel_alg_template safexcel_alg_sm3 = {
2253 .type = SAFEXCEL_ALG_TYPE_AHASH,
2254 .algo_mask = SAFEXCEL_ALG_SM3,
2255 .alg.ahash = {
2256 .init = safexcel_sm3_init,
2257 .update = safexcel_ahash_update,
2258 .final = safexcel_ahash_final,
2259 .finup = safexcel_ahash_finup,
2260 .digest = safexcel_sm3_digest,
2261 .export = safexcel_ahash_export,
2262 .import = safexcel_ahash_import,
2263 .halg = {
2264 .digestsize = SM3_DIGEST_SIZE,
2265 .statesize = sizeof(struct safexcel_ahash_export_state),
2266 .base = {
2267 .cra_name = "sm3",
2268 .cra_driver_name = "safexcel-sm3",
2269 .cra_priority = SAFEXCEL_CRA_PRIORITY,
2270 .cra_flags = CRYPTO_ALG_ASYNC |
2271 CRYPTO_ALG_ALLOCATES_MEMORY |
2272 CRYPTO_ALG_KERN_DRIVER_ONLY,
2273 .cra_blocksize = SM3_BLOCK_SIZE,
2274 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
2275 .cra_init = safexcel_ahash_cra_init,
2276 .cra_exit = safexcel_ahash_cra_exit,
2277 .cra_module = THIS_MODULE,
2278 },
2279 },
2280 },
2281 };
2282
safexcel_hmac_sm3_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)2283 static int safexcel_hmac_sm3_setkey(struct crypto_ahash *tfm, const u8 *key,
2284 unsigned int keylen)
2285 {
2286 return safexcel_hmac_alg_setkey(tfm, key, keylen, "safexcel-sm3",
2287 SM3_DIGEST_SIZE);
2288 }
2289
safexcel_hmac_sm3_init(struct ahash_request * areq)2290 static int safexcel_hmac_sm3_init(struct ahash_request *areq)
2291 {
2292 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
2293 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
2294
2295 memset(req, 0, sizeof(*req));
2296
2297 /* Start from ipad precompute */
2298 memcpy(req->state, &ctx->base.ipad, SM3_DIGEST_SIZE);
2299 /* Already processed the key^ipad part now! */
2300 req->len = SM3_BLOCK_SIZE;
2301 req->processed = SM3_BLOCK_SIZE;
2302
2303 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SM3;
2304 req->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
2305 req->state_sz = SM3_DIGEST_SIZE;
2306 req->digest_sz = SM3_DIGEST_SIZE;
2307 req->block_sz = SM3_BLOCK_SIZE;
2308 req->hmac = true;
2309
2310 return 0;
2311 }
2312
safexcel_hmac_sm3_digest(struct ahash_request * areq)2313 static int safexcel_hmac_sm3_digest(struct ahash_request *areq)
2314 {
2315 int ret = safexcel_hmac_sm3_init(areq);
2316
2317 if (ret)
2318 return ret;
2319
2320 return safexcel_ahash_finup(areq);
2321 }
2322
2323 struct safexcel_alg_template safexcel_alg_hmac_sm3 = {
2324 .type = SAFEXCEL_ALG_TYPE_AHASH,
2325 .algo_mask = SAFEXCEL_ALG_SM3,
2326 .alg.ahash = {
2327 .init = safexcel_hmac_sm3_init,
2328 .update = safexcel_ahash_update,
2329 .final = safexcel_ahash_final,
2330 .finup = safexcel_ahash_finup,
2331 .digest = safexcel_hmac_sm3_digest,
2332 .setkey = safexcel_hmac_sm3_setkey,
2333 .export = safexcel_ahash_export,
2334 .import = safexcel_ahash_import,
2335 .halg = {
2336 .digestsize = SM3_DIGEST_SIZE,
2337 .statesize = sizeof(struct safexcel_ahash_export_state),
2338 .base = {
2339 .cra_name = "hmac(sm3)",
2340 .cra_driver_name = "safexcel-hmac-sm3",
2341 .cra_priority = SAFEXCEL_CRA_PRIORITY,
2342 .cra_flags = CRYPTO_ALG_ASYNC |
2343 CRYPTO_ALG_ALLOCATES_MEMORY |
2344 CRYPTO_ALG_KERN_DRIVER_ONLY,
2345 .cra_blocksize = SM3_BLOCK_SIZE,
2346 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
2347 .cra_init = safexcel_ahash_cra_init,
2348 .cra_exit = safexcel_ahash_cra_exit,
2349 .cra_module = THIS_MODULE,
2350 },
2351 },
2352 },
2353 };
2354
safexcel_sha3_224_init(struct ahash_request * areq)2355 static int safexcel_sha3_224_init(struct ahash_request *areq)
2356 {
2357 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
2358 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
2359 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
2360
2361 memset(req, 0, sizeof(*req));
2362
2363 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_224;
2364 req->digest = CONTEXT_CONTROL_DIGEST_INITIAL;
2365 req->state_sz = SHA3_224_DIGEST_SIZE;
2366 req->digest_sz = SHA3_224_DIGEST_SIZE;
2367 req->block_sz = SHA3_224_BLOCK_SIZE;
2368 ctx->do_fallback = false;
2369 ctx->fb_init_done = false;
2370 return 0;
2371 }
2372
safexcel_sha3_fbcheck(struct ahash_request * req)2373 static int safexcel_sha3_fbcheck(struct ahash_request *req)
2374 {
2375 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2376 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
2377 struct ahash_request *subreq = ahash_request_ctx_dma(req);
2378 int ret = 0;
2379
2380 if (ctx->do_fallback) {
2381 ahash_request_set_tfm(subreq, ctx->fback);
2382 ahash_request_set_callback(subreq, req->base.flags,
2383 req->base.complete, req->base.data);
2384 ahash_request_set_crypt(subreq, req->src, req->result,
2385 req->nbytes);
2386 if (!ctx->fb_init_done) {
2387 if (ctx->fb_do_setkey) {
2388 /* Set fallback cipher HMAC key */
2389 u8 key[SHA3_224_BLOCK_SIZE];
2390
2391 memcpy(key, &ctx->base.ipad,
2392 crypto_ahash_blocksize(ctx->fback) / 2);
2393 memcpy(key +
2394 crypto_ahash_blocksize(ctx->fback) / 2,
2395 &ctx->base.opad,
2396 crypto_ahash_blocksize(ctx->fback) / 2);
2397 ret = crypto_ahash_setkey(ctx->fback, key,
2398 crypto_ahash_blocksize(ctx->fback));
2399 memzero_explicit(key,
2400 crypto_ahash_blocksize(ctx->fback));
2401 ctx->fb_do_setkey = false;
2402 }
2403 ret = ret ?: crypto_ahash_init(subreq);
2404 ctx->fb_init_done = true;
2405 }
2406 }
2407 return ret;
2408 }
2409
safexcel_sha3_update(struct ahash_request * req)2410 static int safexcel_sha3_update(struct ahash_request *req)
2411 {
2412 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2413 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
2414 struct ahash_request *subreq = ahash_request_ctx_dma(req);
2415
2416 ctx->do_fallback = true;
2417 return safexcel_sha3_fbcheck(req) ?: crypto_ahash_update(subreq);
2418 }
2419
safexcel_sha3_final(struct ahash_request * req)2420 static int safexcel_sha3_final(struct ahash_request *req)
2421 {
2422 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2423 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
2424 struct ahash_request *subreq = ahash_request_ctx_dma(req);
2425
2426 ctx->do_fallback = true;
2427 return safexcel_sha3_fbcheck(req) ?: crypto_ahash_final(subreq);
2428 }
2429
safexcel_sha3_finup(struct ahash_request * req)2430 static int safexcel_sha3_finup(struct ahash_request *req)
2431 {
2432 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2433 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
2434 struct ahash_request *subreq = ahash_request_ctx_dma(req);
2435
2436 ctx->do_fallback |= !req->nbytes;
2437 if (ctx->do_fallback)
2438 /* Update or ex/import happened or len 0, cannot use the HW */
2439 return safexcel_sha3_fbcheck(req) ?:
2440 crypto_ahash_finup(subreq);
2441 else
2442 return safexcel_ahash_finup(req);
2443 }
2444
safexcel_sha3_digest_fallback(struct ahash_request * req)2445 static int safexcel_sha3_digest_fallback(struct ahash_request *req)
2446 {
2447 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2448 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
2449 struct ahash_request *subreq = ahash_request_ctx_dma(req);
2450
2451 ctx->do_fallback = true;
2452 ctx->fb_init_done = false;
2453 return safexcel_sha3_fbcheck(req) ?: crypto_ahash_finup(subreq);
2454 }
2455
safexcel_sha3_224_digest(struct ahash_request * req)2456 static int safexcel_sha3_224_digest(struct ahash_request *req)
2457 {
2458 if (req->nbytes)
2459 return safexcel_sha3_224_init(req) ?: safexcel_ahash_finup(req);
2460
2461 /* HW cannot do zero length hash, use fallback instead */
2462 return safexcel_sha3_digest_fallback(req);
2463 }
2464
safexcel_sha3_export(struct ahash_request * req,void * out)2465 static int safexcel_sha3_export(struct ahash_request *req, void *out)
2466 {
2467 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2468 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
2469 struct ahash_request *subreq = ahash_request_ctx_dma(req);
2470
2471 ctx->do_fallback = true;
2472 return safexcel_sha3_fbcheck(req) ?: crypto_ahash_export(subreq, out);
2473 }
2474
safexcel_sha3_import(struct ahash_request * req,const void * in)2475 static int safexcel_sha3_import(struct ahash_request *req, const void *in)
2476 {
2477 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2478 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
2479 struct ahash_request *subreq = ahash_request_ctx_dma(req);
2480
2481 ctx->do_fallback = true;
2482 return safexcel_sha3_fbcheck(req) ?: crypto_ahash_import(subreq, in);
2483 // return safexcel_ahash_import(req, in);
2484 }
2485
safexcel_sha3_cra_init(struct crypto_tfm * tfm)2486 static int safexcel_sha3_cra_init(struct crypto_tfm *tfm)
2487 {
2488 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
2489 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
2490
2491 safexcel_ahash_cra_init(tfm);
2492
2493 /* Allocate fallback implementation */
2494 ctx->fback = crypto_alloc_ahash(crypto_tfm_alg_name(tfm), 0,
2495 CRYPTO_ALG_ASYNC |
2496 CRYPTO_ALG_NEED_FALLBACK);
2497 if (IS_ERR(ctx->fback))
2498 return PTR_ERR(ctx->fback);
2499
2500 /* Update statesize from fallback algorithm! */
2501 crypto_hash_alg_common(ahash)->statesize =
2502 crypto_ahash_statesize(ctx->fback);
2503 crypto_ahash_set_reqsize_dma(
2504 ahash, max(sizeof(struct safexcel_ahash_req),
2505 sizeof(struct ahash_request) +
2506 crypto_ahash_reqsize(ctx->fback)));
2507 return 0;
2508 }
2509
safexcel_sha3_cra_exit(struct crypto_tfm * tfm)2510 static void safexcel_sha3_cra_exit(struct crypto_tfm *tfm)
2511 {
2512 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
2513
2514 crypto_free_ahash(ctx->fback);
2515 safexcel_ahash_cra_exit(tfm);
2516 }
2517
2518 struct safexcel_alg_template safexcel_alg_sha3_224 = {
2519 .type = SAFEXCEL_ALG_TYPE_AHASH,
2520 .algo_mask = SAFEXCEL_ALG_SHA3,
2521 .alg.ahash = {
2522 .init = safexcel_sha3_224_init,
2523 .update = safexcel_sha3_update,
2524 .final = safexcel_sha3_final,
2525 .finup = safexcel_sha3_finup,
2526 .digest = safexcel_sha3_224_digest,
2527 .export = safexcel_sha3_export,
2528 .import = safexcel_sha3_import,
2529 .halg = {
2530 .digestsize = SHA3_224_DIGEST_SIZE,
2531 .statesize = sizeof(struct safexcel_ahash_export_state),
2532 .base = {
2533 .cra_name = "sha3-224",
2534 .cra_driver_name = "safexcel-sha3-224",
2535 .cra_priority = SAFEXCEL_CRA_PRIORITY,
2536 .cra_flags = CRYPTO_ALG_ASYNC |
2537 CRYPTO_ALG_KERN_DRIVER_ONLY |
2538 CRYPTO_ALG_NEED_FALLBACK,
2539 .cra_blocksize = SHA3_224_BLOCK_SIZE,
2540 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
2541 .cra_init = safexcel_sha3_cra_init,
2542 .cra_exit = safexcel_sha3_cra_exit,
2543 .cra_module = THIS_MODULE,
2544 },
2545 },
2546 },
2547 };
2548
safexcel_sha3_256_init(struct ahash_request * areq)2549 static int safexcel_sha3_256_init(struct ahash_request *areq)
2550 {
2551 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
2552 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
2553 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
2554
2555 memset(req, 0, sizeof(*req));
2556
2557 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_256;
2558 req->digest = CONTEXT_CONTROL_DIGEST_INITIAL;
2559 req->state_sz = SHA3_256_DIGEST_SIZE;
2560 req->digest_sz = SHA3_256_DIGEST_SIZE;
2561 req->block_sz = SHA3_256_BLOCK_SIZE;
2562 ctx->do_fallback = false;
2563 ctx->fb_init_done = false;
2564 return 0;
2565 }
2566
safexcel_sha3_256_digest(struct ahash_request * req)2567 static int safexcel_sha3_256_digest(struct ahash_request *req)
2568 {
2569 if (req->nbytes)
2570 return safexcel_sha3_256_init(req) ?: safexcel_ahash_finup(req);
2571
2572 /* HW cannot do zero length hash, use fallback instead */
2573 return safexcel_sha3_digest_fallback(req);
2574 }
2575
2576 struct safexcel_alg_template safexcel_alg_sha3_256 = {
2577 .type = SAFEXCEL_ALG_TYPE_AHASH,
2578 .algo_mask = SAFEXCEL_ALG_SHA3,
2579 .alg.ahash = {
2580 .init = safexcel_sha3_256_init,
2581 .update = safexcel_sha3_update,
2582 .final = safexcel_sha3_final,
2583 .finup = safexcel_sha3_finup,
2584 .digest = safexcel_sha3_256_digest,
2585 .export = safexcel_sha3_export,
2586 .import = safexcel_sha3_import,
2587 .halg = {
2588 .digestsize = SHA3_256_DIGEST_SIZE,
2589 .statesize = sizeof(struct safexcel_ahash_export_state),
2590 .base = {
2591 .cra_name = "sha3-256",
2592 .cra_driver_name = "safexcel-sha3-256",
2593 .cra_priority = SAFEXCEL_CRA_PRIORITY,
2594 .cra_flags = CRYPTO_ALG_ASYNC |
2595 CRYPTO_ALG_KERN_DRIVER_ONLY |
2596 CRYPTO_ALG_NEED_FALLBACK,
2597 .cra_blocksize = SHA3_256_BLOCK_SIZE,
2598 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
2599 .cra_init = safexcel_sha3_cra_init,
2600 .cra_exit = safexcel_sha3_cra_exit,
2601 .cra_module = THIS_MODULE,
2602 },
2603 },
2604 },
2605 };
2606
safexcel_sha3_384_init(struct ahash_request * areq)2607 static int safexcel_sha3_384_init(struct ahash_request *areq)
2608 {
2609 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
2610 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
2611 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
2612
2613 memset(req, 0, sizeof(*req));
2614
2615 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_384;
2616 req->digest = CONTEXT_CONTROL_DIGEST_INITIAL;
2617 req->state_sz = SHA3_384_DIGEST_SIZE;
2618 req->digest_sz = SHA3_384_DIGEST_SIZE;
2619 req->block_sz = SHA3_384_BLOCK_SIZE;
2620 ctx->do_fallback = false;
2621 ctx->fb_init_done = false;
2622 return 0;
2623 }
2624
safexcel_sha3_384_digest(struct ahash_request * req)2625 static int safexcel_sha3_384_digest(struct ahash_request *req)
2626 {
2627 if (req->nbytes)
2628 return safexcel_sha3_384_init(req) ?: safexcel_ahash_finup(req);
2629
2630 /* HW cannot do zero length hash, use fallback instead */
2631 return safexcel_sha3_digest_fallback(req);
2632 }
2633
2634 struct safexcel_alg_template safexcel_alg_sha3_384 = {
2635 .type = SAFEXCEL_ALG_TYPE_AHASH,
2636 .algo_mask = SAFEXCEL_ALG_SHA3,
2637 .alg.ahash = {
2638 .init = safexcel_sha3_384_init,
2639 .update = safexcel_sha3_update,
2640 .final = safexcel_sha3_final,
2641 .finup = safexcel_sha3_finup,
2642 .digest = safexcel_sha3_384_digest,
2643 .export = safexcel_sha3_export,
2644 .import = safexcel_sha3_import,
2645 .halg = {
2646 .digestsize = SHA3_384_DIGEST_SIZE,
2647 .statesize = sizeof(struct safexcel_ahash_export_state),
2648 .base = {
2649 .cra_name = "sha3-384",
2650 .cra_driver_name = "safexcel-sha3-384",
2651 .cra_priority = SAFEXCEL_CRA_PRIORITY,
2652 .cra_flags = CRYPTO_ALG_ASYNC |
2653 CRYPTO_ALG_KERN_DRIVER_ONLY |
2654 CRYPTO_ALG_NEED_FALLBACK,
2655 .cra_blocksize = SHA3_384_BLOCK_SIZE,
2656 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
2657 .cra_init = safexcel_sha3_cra_init,
2658 .cra_exit = safexcel_sha3_cra_exit,
2659 .cra_module = THIS_MODULE,
2660 },
2661 },
2662 },
2663 };
2664
safexcel_sha3_512_init(struct ahash_request * areq)2665 static int safexcel_sha3_512_init(struct ahash_request *areq)
2666 {
2667 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
2668 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
2669 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
2670
2671 memset(req, 0, sizeof(*req));
2672
2673 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_512;
2674 req->digest = CONTEXT_CONTROL_DIGEST_INITIAL;
2675 req->state_sz = SHA3_512_DIGEST_SIZE;
2676 req->digest_sz = SHA3_512_DIGEST_SIZE;
2677 req->block_sz = SHA3_512_BLOCK_SIZE;
2678 ctx->do_fallback = false;
2679 ctx->fb_init_done = false;
2680 return 0;
2681 }
2682
safexcel_sha3_512_digest(struct ahash_request * req)2683 static int safexcel_sha3_512_digest(struct ahash_request *req)
2684 {
2685 if (req->nbytes)
2686 return safexcel_sha3_512_init(req) ?: safexcel_ahash_finup(req);
2687
2688 /* HW cannot do zero length hash, use fallback instead */
2689 return safexcel_sha3_digest_fallback(req);
2690 }
2691
2692 struct safexcel_alg_template safexcel_alg_sha3_512 = {
2693 .type = SAFEXCEL_ALG_TYPE_AHASH,
2694 .algo_mask = SAFEXCEL_ALG_SHA3,
2695 .alg.ahash = {
2696 .init = safexcel_sha3_512_init,
2697 .update = safexcel_sha3_update,
2698 .final = safexcel_sha3_final,
2699 .finup = safexcel_sha3_finup,
2700 .digest = safexcel_sha3_512_digest,
2701 .export = safexcel_sha3_export,
2702 .import = safexcel_sha3_import,
2703 .halg = {
2704 .digestsize = SHA3_512_DIGEST_SIZE,
2705 .statesize = sizeof(struct safexcel_ahash_export_state),
2706 .base = {
2707 .cra_name = "sha3-512",
2708 .cra_driver_name = "safexcel-sha3-512",
2709 .cra_priority = SAFEXCEL_CRA_PRIORITY,
2710 .cra_flags = CRYPTO_ALG_ASYNC |
2711 CRYPTO_ALG_KERN_DRIVER_ONLY |
2712 CRYPTO_ALG_NEED_FALLBACK,
2713 .cra_blocksize = SHA3_512_BLOCK_SIZE,
2714 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
2715 .cra_init = safexcel_sha3_cra_init,
2716 .cra_exit = safexcel_sha3_cra_exit,
2717 .cra_module = THIS_MODULE,
2718 },
2719 },
2720 },
2721 };
2722
safexcel_hmac_sha3_cra_init(struct crypto_tfm * tfm,const char * alg)2723 static int safexcel_hmac_sha3_cra_init(struct crypto_tfm *tfm, const char *alg)
2724 {
2725 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
2726 int ret;
2727
2728 ret = safexcel_sha3_cra_init(tfm);
2729 if (ret)
2730 return ret;
2731
2732 /* Allocate precalc basic digest implementation */
2733 ctx->shpre = crypto_alloc_shash(alg, 0, CRYPTO_ALG_NEED_FALLBACK);
2734 if (IS_ERR(ctx->shpre))
2735 return PTR_ERR(ctx->shpre);
2736
2737 ctx->shdesc = kmalloc(sizeof(*ctx->shdesc) +
2738 crypto_shash_descsize(ctx->shpre), GFP_KERNEL);
2739 if (!ctx->shdesc) {
2740 crypto_free_shash(ctx->shpre);
2741 return -ENOMEM;
2742 }
2743 ctx->shdesc->tfm = ctx->shpre;
2744 return 0;
2745 }
2746
safexcel_hmac_sha3_cra_exit(struct crypto_tfm * tfm)2747 static void safexcel_hmac_sha3_cra_exit(struct crypto_tfm *tfm)
2748 {
2749 struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
2750
2751 crypto_free_ahash(ctx->fback);
2752 crypto_free_shash(ctx->shpre);
2753 kfree(ctx->shdesc);
2754 safexcel_ahash_cra_exit(tfm);
2755 }
2756
safexcel_hmac_sha3_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)2757 static int safexcel_hmac_sha3_setkey(struct crypto_ahash *tfm, const u8 *key,
2758 unsigned int keylen)
2759 {
2760 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
2761 int ret = 0;
2762
2763 if (keylen > crypto_ahash_blocksize(tfm)) {
2764 /*
2765 * If the key is larger than the blocksize, then hash it
2766 * first using our fallback cipher
2767 */
2768 ret = crypto_shash_digest(ctx->shdesc, key, keylen,
2769 ctx->base.ipad.byte);
2770 keylen = crypto_shash_digestsize(ctx->shpre);
2771
2772 /*
2773 * If the digest is larger than half the blocksize, we need to
2774 * move the rest to opad due to the way our HMAC infra works.
2775 */
2776 if (keylen > crypto_ahash_blocksize(tfm) / 2)
2777 /* Buffers overlap, need to use memmove iso memcpy! */
2778 memmove(&ctx->base.opad,
2779 ctx->base.ipad.byte +
2780 crypto_ahash_blocksize(tfm) / 2,
2781 keylen - crypto_ahash_blocksize(tfm) / 2);
2782 } else {
2783 /*
2784 * Copy the key to our ipad & opad buffers
2785 * Note that ipad and opad each contain one half of the key,
2786 * to match the existing HMAC driver infrastructure.
2787 */
2788 if (keylen <= crypto_ahash_blocksize(tfm) / 2) {
2789 memcpy(&ctx->base.ipad, key, keylen);
2790 } else {
2791 memcpy(&ctx->base.ipad, key,
2792 crypto_ahash_blocksize(tfm) / 2);
2793 memcpy(&ctx->base.opad,
2794 key + crypto_ahash_blocksize(tfm) / 2,
2795 keylen - crypto_ahash_blocksize(tfm) / 2);
2796 }
2797 }
2798
2799 /* Pad key with zeroes */
2800 if (keylen <= crypto_ahash_blocksize(tfm) / 2) {
2801 memset(ctx->base.ipad.byte + keylen, 0,
2802 crypto_ahash_blocksize(tfm) / 2 - keylen);
2803 memset(&ctx->base.opad, 0, crypto_ahash_blocksize(tfm) / 2);
2804 } else {
2805 memset(ctx->base.opad.byte + keylen -
2806 crypto_ahash_blocksize(tfm) / 2, 0,
2807 crypto_ahash_blocksize(tfm) - keylen);
2808 }
2809
2810 /* If doing fallback, still need to set the new key! */
2811 ctx->fb_do_setkey = true;
2812 return ret;
2813 }
2814
safexcel_hmac_sha3_224_init(struct ahash_request * areq)2815 static int safexcel_hmac_sha3_224_init(struct ahash_request *areq)
2816 {
2817 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
2818 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
2819 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
2820
2821 memset(req, 0, sizeof(*req));
2822
2823 /* Copy (half of) the key */
2824 memcpy(req->state, &ctx->base.ipad, SHA3_224_BLOCK_SIZE / 2);
2825 /* Start of HMAC should have len == processed == blocksize */
2826 req->len = SHA3_224_BLOCK_SIZE;
2827 req->processed = SHA3_224_BLOCK_SIZE;
2828 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_224;
2829 req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
2830 req->state_sz = SHA3_224_BLOCK_SIZE / 2;
2831 req->digest_sz = SHA3_224_DIGEST_SIZE;
2832 req->block_sz = SHA3_224_BLOCK_SIZE;
2833 req->hmac = true;
2834 ctx->do_fallback = false;
2835 ctx->fb_init_done = false;
2836 return 0;
2837 }
2838
safexcel_hmac_sha3_224_digest(struct ahash_request * req)2839 static int safexcel_hmac_sha3_224_digest(struct ahash_request *req)
2840 {
2841 if (req->nbytes)
2842 return safexcel_hmac_sha3_224_init(req) ?:
2843 safexcel_ahash_finup(req);
2844
2845 /* HW cannot do zero length HMAC, use fallback instead */
2846 return safexcel_sha3_digest_fallback(req);
2847 }
2848
safexcel_hmac_sha3_224_cra_init(struct crypto_tfm * tfm)2849 static int safexcel_hmac_sha3_224_cra_init(struct crypto_tfm *tfm)
2850 {
2851 return safexcel_hmac_sha3_cra_init(tfm, "sha3-224");
2852 }
2853
2854 struct safexcel_alg_template safexcel_alg_hmac_sha3_224 = {
2855 .type = SAFEXCEL_ALG_TYPE_AHASH,
2856 .algo_mask = SAFEXCEL_ALG_SHA3,
2857 .alg.ahash = {
2858 .init = safexcel_hmac_sha3_224_init,
2859 .update = safexcel_sha3_update,
2860 .final = safexcel_sha3_final,
2861 .finup = safexcel_sha3_finup,
2862 .digest = safexcel_hmac_sha3_224_digest,
2863 .setkey = safexcel_hmac_sha3_setkey,
2864 .export = safexcel_sha3_export,
2865 .import = safexcel_sha3_import,
2866 .halg = {
2867 .digestsize = SHA3_224_DIGEST_SIZE,
2868 .statesize = sizeof(struct safexcel_ahash_export_state),
2869 .base = {
2870 .cra_name = "hmac(sha3-224)",
2871 .cra_driver_name = "safexcel-hmac-sha3-224",
2872 .cra_priority = SAFEXCEL_CRA_PRIORITY,
2873 .cra_flags = CRYPTO_ALG_ASYNC |
2874 CRYPTO_ALG_KERN_DRIVER_ONLY |
2875 CRYPTO_ALG_NEED_FALLBACK,
2876 .cra_blocksize = SHA3_224_BLOCK_SIZE,
2877 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
2878 .cra_init = safexcel_hmac_sha3_224_cra_init,
2879 .cra_exit = safexcel_hmac_sha3_cra_exit,
2880 .cra_module = THIS_MODULE,
2881 },
2882 },
2883 },
2884 };
2885
safexcel_hmac_sha3_256_init(struct ahash_request * areq)2886 static int safexcel_hmac_sha3_256_init(struct ahash_request *areq)
2887 {
2888 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
2889 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
2890 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
2891
2892 memset(req, 0, sizeof(*req));
2893
2894 /* Copy (half of) the key */
2895 memcpy(req->state, &ctx->base.ipad, SHA3_256_BLOCK_SIZE / 2);
2896 /* Start of HMAC should have len == processed == blocksize */
2897 req->len = SHA3_256_BLOCK_SIZE;
2898 req->processed = SHA3_256_BLOCK_SIZE;
2899 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_256;
2900 req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
2901 req->state_sz = SHA3_256_BLOCK_SIZE / 2;
2902 req->digest_sz = SHA3_256_DIGEST_SIZE;
2903 req->block_sz = SHA3_256_BLOCK_SIZE;
2904 req->hmac = true;
2905 ctx->do_fallback = false;
2906 ctx->fb_init_done = false;
2907 return 0;
2908 }
2909
safexcel_hmac_sha3_256_digest(struct ahash_request * req)2910 static int safexcel_hmac_sha3_256_digest(struct ahash_request *req)
2911 {
2912 if (req->nbytes)
2913 return safexcel_hmac_sha3_256_init(req) ?:
2914 safexcel_ahash_finup(req);
2915
2916 /* HW cannot do zero length HMAC, use fallback instead */
2917 return safexcel_sha3_digest_fallback(req);
2918 }
2919
safexcel_hmac_sha3_256_cra_init(struct crypto_tfm * tfm)2920 static int safexcel_hmac_sha3_256_cra_init(struct crypto_tfm *tfm)
2921 {
2922 return safexcel_hmac_sha3_cra_init(tfm, "sha3-256");
2923 }
2924
2925 struct safexcel_alg_template safexcel_alg_hmac_sha3_256 = {
2926 .type = SAFEXCEL_ALG_TYPE_AHASH,
2927 .algo_mask = SAFEXCEL_ALG_SHA3,
2928 .alg.ahash = {
2929 .init = safexcel_hmac_sha3_256_init,
2930 .update = safexcel_sha3_update,
2931 .final = safexcel_sha3_final,
2932 .finup = safexcel_sha3_finup,
2933 .digest = safexcel_hmac_sha3_256_digest,
2934 .setkey = safexcel_hmac_sha3_setkey,
2935 .export = safexcel_sha3_export,
2936 .import = safexcel_sha3_import,
2937 .halg = {
2938 .digestsize = SHA3_256_DIGEST_SIZE,
2939 .statesize = sizeof(struct safexcel_ahash_export_state),
2940 .base = {
2941 .cra_name = "hmac(sha3-256)",
2942 .cra_driver_name = "safexcel-hmac-sha3-256",
2943 .cra_priority = SAFEXCEL_CRA_PRIORITY,
2944 .cra_flags = CRYPTO_ALG_ASYNC |
2945 CRYPTO_ALG_KERN_DRIVER_ONLY |
2946 CRYPTO_ALG_NEED_FALLBACK,
2947 .cra_blocksize = SHA3_256_BLOCK_SIZE,
2948 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
2949 .cra_init = safexcel_hmac_sha3_256_cra_init,
2950 .cra_exit = safexcel_hmac_sha3_cra_exit,
2951 .cra_module = THIS_MODULE,
2952 },
2953 },
2954 },
2955 };
2956
safexcel_hmac_sha3_384_init(struct ahash_request * areq)2957 static int safexcel_hmac_sha3_384_init(struct ahash_request *areq)
2958 {
2959 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
2960 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
2961 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
2962
2963 memset(req, 0, sizeof(*req));
2964
2965 /* Copy (half of) the key */
2966 memcpy(req->state, &ctx->base.ipad, SHA3_384_BLOCK_SIZE / 2);
2967 /* Start of HMAC should have len == processed == blocksize */
2968 req->len = SHA3_384_BLOCK_SIZE;
2969 req->processed = SHA3_384_BLOCK_SIZE;
2970 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_384;
2971 req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
2972 req->state_sz = SHA3_384_BLOCK_SIZE / 2;
2973 req->digest_sz = SHA3_384_DIGEST_SIZE;
2974 req->block_sz = SHA3_384_BLOCK_SIZE;
2975 req->hmac = true;
2976 ctx->do_fallback = false;
2977 ctx->fb_init_done = false;
2978 return 0;
2979 }
2980
safexcel_hmac_sha3_384_digest(struct ahash_request * req)2981 static int safexcel_hmac_sha3_384_digest(struct ahash_request *req)
2982 {
2983 if (req->nbytes)
2984 return safexcel_hmac_sha3_384_init(req) ?:
2985 safexcel_ahash_finup(req);
2986
2987 /* HW cannot do zero length HMAC, use fallback instead */
2988 return safexcel_sha3_digest_fallback(req);
2989 }
2990
safexcel_hmac_sha3_384_cra_init(struct crypto_tfm * tfm)2991 static int safexcel_hmac_sha3_384_cra_init(struct crypto_tfm *tfm)
2992 {
2993 return safexcel_hmac_sha3_cra_init(tfm, "sha3-384");
2994 }
2995
2996 struct safexcel_alg_template safexcel_alg_hmac_sha3_384 = {
2997 .type = SAFEXCEL_ALG_TYPE_AHASH,
2998 .algo_mask = SAFEXCEL_ALG_SHA3,
2999 .alg.ahash = {
3000 .init = safexcel_hmac_sha3_384_init,
3001 .update = safexcel_sha3_update,
3002 .final = safexcel_sha3_final,
3003 .finup = safexcel_sha3_finup,
3004 .digest = safexcel_hmac_sha3_384_digest,
3005 .setkey = safexcel_hmac_sha3_setkey,
3006 .export = safexcel_sha3_export,
3007 .import = safexcel_sha3_import,
3008 .halg = {
3009 .digestsize = SHA3_384_DIGEST_SIZE,
3010 .statesize = sizeof(struct safexcel_ahash_export_state),
3011 .base = {
3012 .cra_name = "hmac(sha3-384)",
3013 .cra_driver_name = "safexcel-hmac-sha3-384",
3014 .cra_priority = SAFEXCEL_CRA_PRIORITY,
3015 .cra_flags = CRYPTO_ALG_ASYNC |
3016 CRYPTO_ALG_KERN_DRIVER_ONLY |
3017 CRYPTO_ALG_NEED_FALLBACK,
3018 .cra_blocksize = SHA3_384_BLOCK_SIZE,
3019 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
3020 .cra_init = safexcel_hmac_sha3_384_cra_init,
3021 .cra_exit = safexcel_hmac_sha3_cra_exit,
3022 .cra_module = THIS_MODULE,
3023 },
3024 },
3025 },
3026 };
3027
safexcel_hmac_sha3_512_init(struct ahash_request * areq)3028 static int safexcel_hmac_sha3_512_init(struct ahash_request *areq)
3029 {
3030 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
3031 struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
3032 struct safexcel_ahash_req *req = ahash_request_ctx_dma(areq);
3033
3034 memset(req, 0, sizeof(*req));
3035
3036 /* Copy (half of) the key */
3037 memcpy(req->state, &ctx->base.ipad, SHA3_512_BLOCK_SIZE / 2);
3038 /* Start of HMAC should have len == processed == blocksize */
3039 req->len = SHA3_512_BLOCK_SIZE;
3040 req->processed = SHA3_512_BLOCK_SIZE;
3041 ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA3_512;
3042 req->digest = CONTEXT_CONTROL_DIGEST_HMAC;
3043 req->state_sz = SHA3_512_BLOCK_SIZE / 2;
3044 req->digest_sz = SHA3_512_DIGEST_SIZE;
3045 req->block_sz = SHA3_512_BLOCK_SIZE;
3046 req->hmac = true;
3047 ctx->do_fallback = false;
3048 ctx->fb_init_done = false;
3049 return 0;
3050 }
3051
safexcel_hmac_sha3_512_digest(struct ahash_request * req)3052 static int safexcel_hmac_sha3_512_digest(struct ahash_request *req)
3053 {
3054 if (req->nbytes)
3055 return safexcel_hmac_sha3_512_init(req) ?:
3056 safexcel_ahash_finup(req);
3057
3058 /* HW cannot do zero length HMAC, use fallback instead */
3059 return safexcel_sha3_digest_fallback(req);
3060 }
3061
safexcel_hmac_sha3_512_cra_init(struct crypto_tfm * tfm)3062 static int safexcel_hmac_sha3_512_cra_init(struct crypto_tfm *tfm)
3063 {
3064 return safexcel_hmac_sha3_cra_init(tfm, "sha3-512");
3065 }
3066 struct safexcel_alg_template safexcel_alg_hmac_sha3_512 = {
3067 .type = SAFEXCEL_ALG_TYPE_AHASH,
3068 .algo_mask = SAFEXCEL_ALG_SHA3,
3069 .alg.ahash = {
3070 .init = safexcel_hmac_sha3_512_init,
3071 .update = safexcel_sha3_update,
3072 .final = safexcel_sha3_final,
3073 .finup = safexcel_sha3_finup,
3074 .digest = safexcel_hmac_sha3_512_digest,
3075 .setkey = safexcel_hmac_sha3_setkey,
3076 .export = safexcel_sha3_export,
3077 .import = safexcel_sha3_import,
3078 .halg = {
3079 .digestsize = SHA3_512_DIGEST_SIZE,
3080 .statesize = sizeof(struct safexcel_ahash_export_state),
3081 .base = {
3082 .cra_name = "hmac(sha3-512)",
3083 .cra_driver_name = "safexcel-hmac-sha3-512",
3084 .cra_priority = SAFEXCEL_CRA_PRIORITY,
3085 .cra_flags = CRYPTO_ALG_ASYNC |
3086 CRYPTO_ALG_KERN_DRIVER_ONLY |
3087 CRYPTO_ALG_NEED_FALLBACK,
3088 .cra_blocksize = SHA3_512_BLOCK_SIZE,
3089 .cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
3090 .cra_init = safexcel_hmac_sha3_512_cra_init,
3091 .cra_exit = safexcel_hmac_sha3_cra_exit,
3092 .cra_module = THIS_MODULE,
3093 },
3094 },
3095 },
3096 };
3097