1 /* 2 * Copyright (C) 2017 Marvell 3 * 4 * Antoine Tenart <antoine.tenart@free-electrons.com> 5 * 6 * This file is licensed under the terms of the GNU General Public 7 * License version 2. This program is licensed "as is" without any 8 * warranty of any kind, whether express or implied. 9 */ 10 11 #include <linux/device.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/dmapool.h> 14 15 #include <crypto/aes.h> 16 #include <crypto/skcipher.h> 17 18 #include "safexcel.h" 19 20 enum safexcel_cipher_direction { 21 SAFEXCEL_ENCRYPT, 22 SAFEXCEL_DECRYPT, 23 }; 24 25 struct safexcel_cipher_ctx { 26 struct safexcel_context base; 27 struct safexcel_crypto_priv *priv; 28 29 enum safexcel_cipher_direction direction; 30 u32 mode; 31 32 __le32 key[8]; 33 unsigned int key_len; 34 }; 35 36 static void safexcel_cipher_token(struct safexcel_cipher_ctx *ctx, 37 struct crypto_async_request *async, 38 struct safexcel_command_desc *cdesc, 39 u32 length) 40 { 41 struct skcipher_request *req = skcipher_request_cast(async); 42 struct safexcel_token *token; 43 unsigned offset = 0; 44 45 if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) { 46 offset = AES_BLOCK_SIZE / sizeof(u32); 47 memcpy(cdesc->control_data.token, req->iv, AES_BLOCK_SIZE); 48 49 cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD; 50 } 51 52 token = (struct safexcel_token *)(cdesc->control_data.token + offset); 53 54 token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION; 55 token[0].packet_length = length; 56 token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET; 57 token[0].instructions = EIP197_TOKEN_INS_LAST | 58 EIP197_TOKEN_INS_TYPE_CRYTO | 59 EIP197_TOKEN_INS_TYPE_OUTPUT; 60 } 61 62 static int safexcel_aes_setkey(struct crypto_skcipher *ctfm, const u8 *key, 63 unsigned int len) 64 { 65 struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm); 66 struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); 67 struct crypto_aes_ctx aes; 68 int ret, i; 69 70 ret = crypto_aes_expand_key(&aes, key, len); 71 if (ret) { 72 crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN); 73 return ret; 74 } 75 76 for (i = 0; i < len / sizeof(u32); i++) { 77 if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) { 78 ctx->base.needs_inv = true; 79 break; 80 } 81 } 82 83 for (i = 0; i < len / sizeof(u32); i++) 84 ctx->key[i] = cpu_to_le32(aes.key_enc[i]); 85 86 ctx->key_len = len; 87 88 memzero_explicit(&aes, sizeof(aes)); 89 return 0; 90 } 91 92 static int safexcel_context_control(struct safexcel_cipher_ctx *ctx, 93 struct safexcel_command_desc *cdesc) 94 { 95 struct safexcel_crypto_priv *priv = ctx->priv; 96 int ctrl_size; 97 98 if (ctx->direction == SAFEXCEL_ENCRYPT) 99 cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_OUT; 100 else 101 cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_IN; 102 103 cdesc->control_data.control0 |= CONTEXT_CONTROL_KEY_EN; 104 cdesc->control_data.control1 |= ctx->mode; 105 106 switch (ctx->key_len) { 107 case AES_KEYSIZE_128: 108 cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128; 109 ctrl_size = 4; 110 break; 111 case AES_KEYSIZE_192: 112 cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192; 113 ctrl_size = 6; 114 break; 115 case AES_KEYSIZE_256: 116 cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256; 117 ctrl_size = 8; 118 break; 119 default: 120 dev_err(priv->dev, "aes keysize not supported: %u\n", 121 ctx->key_len); 122 return -EINVAL; 123 } 124 cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(ctrl_size); 125 126 return 0; 127 } 128 129 static int safexcel_handle_result(struct safexcel_crypto_priv *priv, int ring, 130 struct crypto_async_request *async, 131 bool *should_complete, int *ret) 132 { 133 struct skcipher_request *req = skcipher_request_cast(async); 134 struct safexcel_result_desc *rdesc; 135 int ndesc = 0; 136 137 *ret = 0; 138 139 spin_lock_bh(&priv->ring[ring].egress_lock); 140 do { 141 rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr); 142 if (IS_ERR(rdesc)) { 143 dev_err(priv->dev, 144 "cipher: result: could not retrieve the result descriptor\n"); 145 *ret = PTR_ERR(rdesc); 146 break; 147 } 148 149 if (rdesc->result_data.error_code) { 150 dev_err(priv->dev, 151 "cipher: result: result descriptor error (%d)\n", 152 rdesc->result_data.error_code); 153 *ret = -EIO; 154 } 155 156 ndesc++; 157 } while (!rdesc->last_seg); 158 159 safexcel_complete(priv, ring); 160 spin_unlock_bh(&priv->ring[ring].egress_lock); 161 162 if (req->src == req->dst) { 163 dma_unmap_sg(priv->dev, req->src, 164 sg_nents_for_len(req->src, req->cryptlen), 165 DMA_BIDIRECTIONAL); 166 } else { 167 dma_unmap_sg(priv->dev, req->src, 168 sg_nents_for_len(req->src, req->cryptlen), 169 DMA_TO_DEVICE); 170 dma_unmap_sg(priv->dev, req->dst, 171 sg_nents_for_len(req->dst, req->cryptlen), 172 DMA_FROM_DEVICE); 173 } 174 175 *should_complete = true; 176 177 return ndesc; 178 } 179 180 static int safexcel_aes_send(struct crypto_async_request *async, 181 int ring, struct safexcel_request *request, 182 int *commands, int *results) 183 { 184 struct skcipher_request *req = skcipher_request_cast(async); 185 struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); 186 struct safexcel_crypto_priv *priv = ctx->priv; 187 struct safexcel_command_desc *cdesc; 188 struct safexcel_result_desc *rdesc; 189 struct scatterlist *sg; 190 int nr_src, nr_dst, n_cdesc = 0, n_rdesc = 0, queued = req->cryptlen; 191 int i, ret = 0; 192 193 if (req->src == req->dst) { 194 nr_src = dma_map_sg(priv->dev, req->src, 195 sg_nents_for_len(req->src, req->cryptlen), 196 DMA_BIDIRECTIONAL); 197 nr_dst = nr_src; 198 if (!nr_src) 199 return -EINVAL; 200 } else { 201 nr_src = dma_map_sg(priv->dev, req->src, 202 sg_nents_for_len(req->src, req->cryptlen), 203 DMA_TO_DEVICE); 204 if (!nr_src) 205 return -EINVAL; 206 207 nr_dst = dma_map_sg(priv->dev, req->dst, 208 sg_nents_for_len(req->dst, req->cryptlen), 209 DMA_FROM_DEVICE); 210 if (!nr_dst) { 211 dma_unmap_sg(priv->dev, req->src, 212 sg_nents_for_len(req->src, req->cryptlen), 213 DMA_TO_DEVICE); 214 return -EINVAL; 215 } 216 } 217 218 memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len); 219 220 spin_lock_bh(&priv->ring[ring].egress_lock); 221 222 /* command descriptors */ 223 for_each_sg(req->src, sg, nr_src, i) { 224 int len = sg_dma_len(sg); 225 226 /* Do not overflow the request */ 227 if (queued - len < 0) 228 len = queued; 229 230 cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - len), 231 sg_dma_address(sg), len, req->cryptlen, 232 ctx->base.ctxr_dma); 233 if (IS_ERR(cdesc)) { 234 /* No space left in the command descriptor ring */ 235 ret = PTR_ERR(cdesc); 236 goto cdesc_rollback; 237 } 238 n_cdesc++; 239 240 if (n_cdesc == 1) { 241 safexcel_context_control(ctx, cdesc); 242 safexcel_cipher_token(ctx, async, cdesc, req->cryptlen); 243 } 244 245 queued -= len; 246 if (!queued) 247 break; 248 } 249 250 /* result descriptors */ 251 for_each_sg(req->dst, sg, nr_dst, i) { 252 bool first = !i, last = (i == nr_dst - 1); 253 u32 len = sg_dma_len(sg); 254 255 rdesc = safexcel_add_rdesc(priv, ring, first, last, 256 sg_dma_address(sg), len); 257 if (IS_ERR(rdesc)) { 258 /* No space left in the result descriptor ring */ 259 ret = PTR_ERR(rdesc); 260 goto rdesc_rollback; 261 } 262 n_rdesc++; 263 } 264 265 spin_unlock_bh(&priv->ring[ring].egress_lock); 266 267 request->req = &req->base; 268 ctx->base.handle_result = safexcel_handle_result; 269 270 *commands = n_cdesc; 271 *results = n_rdesc; 272 return 0; 273 274 rdesc_rollback: 275 for (i = 0; i < n_rdesc; i++) 276 safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr); 277 cdesc_rollback: 278 for (i = 0; i < n_cdesc; i++) 279 safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr); 280 281 spin_unlock_bh(&priv->ring[ring].egress_lock); 282 283 if (req->src == req->dst) { 284 dma_unmap_sg(priv->dev, req->src, 285 sg_nents_for_len(req->src, req->cryptlen), 286 DMA_BIDIRECTIONAL); 287 } else { 288 dma_unmap_sg(priv->dev, req->src, 289 sg_nents_for_len(req->src, req->cryptlen), 290 DMA_TO_DEVICE); 291 dma_unmap_sg(priv->dev, req->dst, 292 sg_nents_for_len(req->dst, req->cryptlen), 293 DMA_FROM_DEVICE); 294 } 295 296 return ret; 297 } 298 299 static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv, 300 int ring, 301 struct crypto_async_request *async, 302 bool *should_complete, int *ret) 303 { 304 struct skcipher_request *req = skcipher_request_cast(async); 305 struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); 306 struct safexcel_result_desc *rdesc; 307 int ndesc = 0, enq_ret; 308 309 *ret = 0; 310 311 spin_lock_bh(&priv->ring[ring].egress_lock); 312 do { 313 rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr); 314 if (IS_ERR(rdesc)) { 315 dev_err(priv->dev, 316 "cipher: invalidate: could not retrieve the result descriptor\n"); 317 *ret = PTR_ERR(rdesc); 318 break; 319 } 320 321 if (rdesc->result_data.error_code) { 322 dev_err(priv->dev, "cipher: invalidate: result descriptor error (%d)\n", 323 rdesc->result_data.error_code); 324 *ret = -EIO; 325 } 326 327 ndesc++; 328 } while (!rdesc->last_seg); 329 330 safexcel_complete(priv, ring); 331 spin_unlock_bh(&priv->ring[ring].egress_lock); 332 333 if (ctx->base.exit_inv) { 334 dma_pool_free(priv->context_pool, ctx->base.ctxr, 335 ctx->base.ctxr_dma); 336 337 *should_complete = true; 338 339 return ndesc; 340 } 341 342 ring = safexcel_select_ring(priv); 343 ctx->base.ring = ring; 344 ctx->base.needs_inv = false; 345 ctx->base.send = safexcel_aes_send; 346 347 spin_lock_bh(&priv->ring[ring].queue_lock); 348 enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, async); 349 spin_unlock_bh(&priv->ring[ring].queue_lock); 350 351 if (enq_ret != -EINPROGRESS) 352 *ret = enq_ret; 353 354 if (!priv->ring[ring].need_dequeue) 355 safexcel_dequeue(priv, ring); 356 357 *should_complete = false; 358 359 return ndesc; 360 } 361 362 static int safexcel_cipher_send_inv(struct crypto_async_request *async, 363 int ring, struct safexcel_request *request, 364 int *commands, int *results) 365 { 366 struct skcipher_request *req = skcipher_request_cast(async); 367 struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); 368 struct safexcel_crypto_priv *priv = ctx->priv; 369 int ret; 370 371 ctx->base.handle_result = safexcel_handle_inv_result; 372 373 ret = safexcel_invalidate_cache(async, &ctx->base, priv, 374 ctx->base.ctxr_dma, ring, request); 375 if (unlikely(ret)) 376 return ret; 377 378 *commands = 1; 379 *results = 1; 380 381 return 0; 382 } 383 384 static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm) 385 { 386 struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); 387 struct safexcel_crypto_priv *priv = ctx->priv; 388 struct skcipher_request req; 389 struct safexcel_inv_result result = { 0 }; 390 int ring = ctx->base.ring; 391 392 memset(&req, 0, sizeof(struct skcipher_request)); 393 394 /* create invalidation request */ 395 init_completion(&result.completion); 396 skcipher_request_set_callback(&req, CRYPTO_TFM_REQ_MAY_BACKLOG, 397 safexcel_inv_complete, &result); 398 399 skcipher_request_set_tfm(&req, __crypto_skcipher_cast(tfm)); 400 ctx = crypto_tfm_ctx(req.base.tfm); 401 ctx->base.exit_inv = true; 402 ctx->base.send = safexcel_cipher_send_inv; 403 404 spin_lock_bh(&priv->ring[ring].queue_lock); 405 crypto_enqueue_request(&priv->ring[ring].queue, &req.base); 406 spin_unlock_bh(&priv->ring[ring].queue_lock); 407 408 if (!priv->ring[ring].need_dequeue) 409 safexcel_dequeue(priv, ring); 410 411 wait_for_completion_interruptible(&result.completion); 412 413 if (result.error) { 414 dev_warn(priv->dev, 415 "cipher: sync: invalidate: completion error %d\n", 416 result.error); 417 return result.error; 418 } 419 420 return 0; 421 } 422 423 static int safexcel_aes(struct skcipher_request *req, 424 enum safexcel_cipher_direction dir, u32 mode) 425 { 426 struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); 427 struct safexcel_crypto_priv *priv = ctx->priv; 428 int ret, ring; 429 430 ctx->direction = dir; 431 ctx->mode = mode; 432 433 if (ctx->base.ctxr) { 434 if (ctx->base.needs_inv) 435 ctx->base.send = safexcel_cipher_send_inv; 436 } else { 437 ctx->base.ring = safexcel_select_ring(priv); 438 ctx->base.send = safexcel_aes_send; 439 440 ctx->base.ctxr = dma_pool_zalloc(priv->context_pool, 441 EIP197_GFP_FLAGS(req->base), 442 &ctx->base.ctxr_dma); 443 if (!ctx->base.ctxr) 444 return -ENOMEM; 445 } 446 447 ring = ctx->base.ring; 448 449 spin_lock_bh(&priv->ring[ring].queue_lock); 450 ret = crypto_enqueue_request(&priv->ring[ring].queue, &req->base); 451 spin_unlock_bh(&priv->ring[ring].queue_lock); 452 453 if (!priv->ring[ring].need_dequeue) 454 safexcel_dequeue(priv, ring); 455 456 return ret; 457 } 458 459 static int safexcel_ecb_aes_encrypt(struct skcipher_request *req) 460 { 461 return safexcel_aes(req, SAFEXCEL_ENCRYPT, 462 CONTEXT_CONTROL_CRYPTO_MODE_ECB); 463 } 464 465 static int safexcel_ecb_aes_decrypt(struct skcipher_request *req) 466 { 467 return safexcel_aes(req, SAFEXCEL_DECRYPT, 468 CONTEXT_CONTROL_CRYPTO_MODE_ECB); 469 } 470 471 static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm) 472 { 473 struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); 474 struct safexcel_alg_template *tmpl = 475 container_of(tfm->__crt_alg, struct safexcel_alg_template, 476 alg.skcipher.base); 477 478 ctx->priv = tmpl->priv; 479 480 return 0; 481 } 482 483 static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm) 484 { 485 struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); 486 struct safexcel_crypto_priv *priv = ctx->priv; 487 int ret; 488 489 memzero_explicit(ctx->key, 8 * sizeof(u32)); 490 491 /* context not allocated, skip invalidation */ 492 if (!ctx->base.ctxr) 493 return; 494 495 memzero_explicit(ctx->base.ctxr->data, 8 * sizeof(u32)); 496 497 ret = safexcel_cipher_exit_inv(tfm); 498 if (ret) 499 dev_warn(priv->dev, "cipher: invalidation error %d\n", ret); 500 } 501 502 struct safexcel_alg_template safexcel_alg_ecb_aes = { 503 .type = SAFEXCEL_ALG_TYPE_SKCIPHER, 504 .alg.skcipher = { 505 .setkey = safexcel_aes_setkey, 506 .encrypt = safexcel_ecb_aes_encrypt, 507 .decrypt = safexcel_ecb_aes_decrypt, 508 .min_keysize = AES_MIN_KEY_SIZE, 509 .max_keysize = AES_MAX_KEY_SIZE, 510 .base = { 511 .cra_name = "ecb(aes)", 512 .cra_driver_name = "safexcel-ecb-aes", 513 .cra_priority = 300, 514 .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC | 515 CRYPTO_ALG_KERN_DRIVER_ONLY, 516 .cra_blocksize = AES_BLOCK_SIZE, 517 .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), 518 .cra_alignmask = 0, 519 .cra_init = safexcel_skcipher_cra_init, 520 .cra_exit = safexcel_skcipher_cra_exit, 521 .cra_module = THIS_MODULE, 522 }, 523 }, 524 }; 525 526 static int safexcel_cbc_aes_encrypt(struct skcipher_request *req) 527 { 528 return safexcel_aes(req, SAFEXCEL_ENCRYPT, 529 CONTEXT_CONTROL_CRYPTO_MODE_CBC); 530 } 531 532 static int safexcel_cbc_aes_decrypt(struct skcipher_request *req) 533 { 534 return safexcel_aes(req, SAFEXCEL_DECRYPT, 535 CONTEXT_CONTROL_CRYPTO_MODE_CBC); 536 } 537 538 struct safexcel_alg_template safexcel_alg_cbc_aes = { 539 .type = SAFEXCEL_ALG_TYPE_SKCIPHER, 540 .alg.skcipher = { 541 .setkey = safexcel_aes_setkey, 542 .encrypt = safexcel_cbc_aes_encrypt, 543 .decrypt = safexcel_cbc_aes_decrypt, 544 .min_keysize = AES_MIN_KEY_SIZE, 545 .max_keysize = AES_MAX_KEY_SIZE, 546 .ivsize = AES_BLOCK_SIZE, 547 .base = { 548 .cra_name = "cbc(aes)", 549 .cra_driver_name = "safexcel-cbc-aes", 550 .cra_priority = 300, 551 .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC | 552 CRYPTO_ALG_KERN_DRIVER_ONLY, 553 .cra_blocksize = AES_BLOCK_SIZE, 554 .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), 555 .cra_alignmask = 0, 556 .cra_init = safexcel_skcipher_cra_init, 557 .cra_exit = safexcel_skcipher_cra_exit, 558 .cra_module = THIS_MODULE, 559 }, 560 }, 561 }; 562