1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2017 Marvell 4 * 5 * Antoine Tenart <antoine.tenart@free-electrons.com> 6 */ 7 8 #include <linux/clk.h> 9 #include <linux/device.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/dmapool.h> 12 #include <linux/firmware.h> 13 #include <linux/interrupt.h> 14 #include <linux/module.h> 15 #include <linux/of_platform.h> 16 #include <linux/of_irq.h> 17 #include <linux/pci.h> 18 #include <linux/platform_device.h> 19 #include <linux/workqueue.h> 20 21 #include <crypto/internal/aead.h> 22 #include <crypto/internal/hash.h> 23 #include <crypto/internal/skcipher.h> 24 25 #include "safexcel.h" 26 27 static u32 max_rings = EIP197_MAX_RINGS; 28 module_param(max_rings, uint, 0644); 29 MODULE_PARM_DESC(max_rings, "Maximum number of rings to use."); 30 31 static void eip197_trc_cache_setupvirt(struct safexcel_crypto_priv *priv) 32 { 33 int i; 34 35 /* 36 * Map all interfaces/rings to register index 0 37 * so they can share contexts. Without this, the EIP197 will 38 * assume each interface/ring to be in its own memory domain 39 * i.e. have its own subset of UNIQUE memory addresses. 40 * Which would cause records with the SAME memory address to 41 * use DIFFERENT cache buffers, causing both poor cache utilization 42 * AND serious coherence/invalidation issues. 43 */ 44 for (i = 0; i < 4; i++) 45 writel(0, priv->base + EIP197_FLUE_IFC_LUT(i)); 46 47 /* 48 * Initialize other virtualization regs for cache 49 * These may not be in their reset state ... 50 */ 51 for (i = 0; i < priv->config.rings; i++) { 52 writel(0, priv->base + EIP197_FLUE_CACHEBASE_LO(i)); 53 writel(0, priv->base + EIP197_FLUE_CACHEBASE_HI(i)); 54 writel(EIP197_FLUE_CONFIG_MAGIC, 55 priv->base + EIP197_FLUE_CONFIG(i)); 56 } 57 writel(0, priv->base + EIP197_FLUE_OFFSETS); 58 writel(0, priv->base + EIP197_FLUE_ARC4_OFFSET); 59 } 60 61 static void eip197_trc_cache_banksel(struct safexcel_crypto_priv *priv, 62 u32 addrmid, int *actbank) 63 { 64 u32 val; 65 int curbank; 66 67 curbank = addrmid >> 16; 68 if (curbank != *actbank) { 69 val = readl(priv->base + EIP197_CS_RAM_CTRL); 70 val = (val & ~EIP197_CS_BANKSEL_MASK) | 71 (curbank << EIP197_CS_BANKSEL_OFS); 72 writel(val, priv->base + EIP197_CS_RAM_CTRL); 73 *actbank = curbank; 74 } 75 } 76 77 static u32 eip197_trc_cache_probe(struct safexcel_crypto_priv *priv, 78 int maxbanks, u32 probemask, u32 stride) 79 { 80 u32 val, addrhi, addrlo, addrmid, addralias, delta, marker; 81 int actbank; 82 83 /* 84 * And probe the actual size of the physically attached cache data RAM 85 * Using a binary subdivision algorithm downto 32 byte cache lines. 86 */ 87 addrhi = 1 << (16 + maxbanks); 88 addrlo = 0; 89 actbank = min(maxbanks - 1, 0); 90 while ((addrhi - addrlo) > stride) { 91 /* write marker to lowest address in top half */ 92 addrmid = (addrhi + addrlo) >> 1; 93 marker = (addrmid ^ 0xabadbabe) & probemask; /* Unique */ 94 eip197_trc_cache_banksel(priv, addrmid, &actbank); 95 writel(marker, 96 priv->base + EIP197_CLASSIFICATION_RAMS + 97 (addrmid & 0xffff)); 98 99 /* write invalid markers to possible aliases */ 100 delta = 1 << __fls(addrmid); 101 while (delta >= stride) { 102 addralias = addrmid - delta; 103 eip197_trc_cache_banksel(priv, addralias, &actbank); 104 writel(~marker, 105 priv->base + EIP197_CLASSIFICATION_RAMS + 106 (addralias & 0xffff)); 107 delta >>= 1; 108 } 109 110 /* read back marker from top half */ 111 eip197_trc_cache_banksel(priv, addrmid, &actbank); 112 val = readl(priv->base + EIP197_CLASSIFICATION_RAMS + 113 (addrmid & 0xffff)); 114 115 if ((val & probemask) == marker) 116 /* read back correct, continue with top half */ 117 addrlo = addrmid; 118 else 119 /* not read back correct, continue with bottom half */ 120 addrhi = addrmid; 121 } 122 return addrhi; 123 } 124 125 static void eip197_trc_cache_clear(struct safexcel_crypto_priv *priv, 126 int cs_rc_max, int cs_ht_wc) 127 { 128 int i; 129 u32 htable_offset, val, offset; 130 131 /* Clear all records in administration RAM */ 132 for (i = 0; i < cs_rc_max; i++) { 133 offset = EIP197_CLASSIFICATION_RAMS + i * EIP197_CS_RC_SIZE; 134 135 writel(EIP197_CS_RC_NEXT(EIP197_RC_NULL) | 136 EIP197_CS_RC_PREV(EIP197_RC_NULL), 137 priv->base + offset); 138 139 val = EIP197_CS_RC_NEXT(i + 1) | EIP197_CS_RC_PREV(i - 1); 140 if (i == 0) 141 val |= EIP197_CS_RC_PREV(EIP197_RC_NULL); 142 else if (i == cs_rc_max - 1) 143 val |= EIP197_CS_RC_NEXT(EIP197_RC_NULL); 144 writel(val, priv->base + offset + 4); 145 /* must also initialize the address key due to ECC! */ 146 writel(0, priv->base + offset + 8); 147 writel(0, priv->base + offset + 12); 148 } 149 150 /* Clear the hash table entries */ 151 htable_offset = cs_rc_max * EIP197_CS_RC_SIZE; 152 for (i = 0; i < cs_ht_wc; i++) 153 writel(GENMASK(29, 0), 154 priv->base + EIP197_CLASSIFICATION_RAMS + 155 htable_offset + i * sizeof(u32)); 156 } 157 158 static int eip197_trc_cache_init(struct safexcel_crypto_priv *priv) 159 { 160 u32 val, dsize, asize; 161 int cs_rc_max, cs_ht_wc, cs_trc_rec_wc, cs_trc_lg_rec_wc; 162 int cs_rc_abs_max, cs_ht_sz; 163 int maxbanks; 164 165 /* Setup (dummy) virtualization for cache */ 166 eip197_trc_cache_setupvirt(priv); 167 168 /* 169 * Enable the record cache memory access and 170 * probe the bank select width 171 */ 172 val = readl(priv->base + EIP197_CS_RAM_CTRL); 173 val &= ~EIP197_TRC_ENABLE_MASK; 174 val |= EIP197_TRC_ENABLE_0 | EIP197_CS_BANKSEL_MASK; 175 writel(val, priv->base + EIP197_CS_RAM_CTRL); 176 val = readl(priv->base + EIP197_CS_RAM_CTRL); 177 maxbanks = ((val&EIP197_CS_BANKSEL_MASK)>>EIP197_CS_BANKSEL_OFS) + 1; 178 179 /* Clear all ECC errors */ 180 writel(0, priv->base + EIP197_TRC_ECCCTRL); 181 182 /* 183 * Make sure the cache memory is accessible by taking record cache into 184 * reset. Need data memory access here, not admin access. 185 */ 186 val = readl(priv->base + EIP197_TRC_PARAMS); 187 val |= EIP197_TRC_PARAMS_SW_RESET | EIP197_TRC_PARAMS_DATA_ACCESS; 188 writel(val, priv->base + EIP197_TRC_PARAMS); 189 190 /* Probed data RAM size in bytes */ 191 dsize = eip197_trc_cache_probe(priv, maxbanks, 0xffffffff, 32); 192 193 /* 194 * Now probe the administration RAM size pretty much the same way 195 * Except that only the lower 30 bits are writable and we don't need 196 * bank selects 197 */ 198 val = readl(priv->base + EIP197_TRC_PARAMS); 199 /* admin access now */ 200 val &= ~(EIP197_TRC_PARAMS_DATA_ACCESS | EIP197_CS_BANKSEL_MASK); 201 writel(val, priv->base + EIP197_TRC_PARAMS); 202 203 /* Probed admin RAM size in admin words */ 204 asize = eip197_trc_cache_probe(priv, 0, 0x3fffffff, 16) >> 4; 205 206 /* Clear any ECC errors detected while probing! */ 207 writel(0, priv->base + EIP197_TRC_ECCCTRL); 208 209 /* Sanity check probing results */ 210 if (dsize < EIP197_MIN_DSIZE || asize < EIP197_MIN_ASIZE) { 211 dev_err(priv->dev, "Record cache probing failed (%d,%d).", 212 dsize, asize); 213 return -ENODEV; 214 } 215 216 /* 217 * Determine optimal configuration from RAM sizes 218 * Note that we assume that the physical RAM configuration is sane 219 * Therefore, we don't do any parameter error checking here ... 220 */ 221 222 /* For now, just use a single record format covering everything */ 223 cs_trc_rec_wc = EIP197_CS_TRC_REC_WC; 224 cs_trc_lg_rec_wc = EIP197_CS_TRC_REC_WC; 225 226 /* 227 * Step #1: How many records will physically fit? 228 * Hard upper limit is 1023! 229 */ 230 cs_rc_abs_max = min_t(uint, ((dsize >> 2) / cs_trc_lg_rec_wc), 1023); 231 /* Step #2: Need at least 2 words in the admin RAM per record */ 232 cs_rc_max = min_t(uint, cs_rc_abs_max, (asize >> 1)); 233 /* Step #3: Determine log2 of hash table size */ 234 cs_ht_sz = __fls(asize - cs_rc_max) - 2; 235 /* Step #4: determine current size of hash table in dwords */ 236 cs_ht_wc = 16 << cs_ht_sz; /* dwords, not admin words */ 237 /* Step #5: add back excess words and see if we can fit more records */ 238 cs_rc_max = min_t(uint, cs_rc_abs_max, asize - (cs_ht_wc >> 2)); 239 240 /* Clear the cache RAMs */ 241 eip197_trc_cache_clear(priv, cs_rc_max, cs_ht_wc); 242 243 /* Disable the record cache memory access */ 244 val = readl(priv->base + EIP197_CS_RAM_CTRL); 245 val &= ~EIP197_TRC_ENABLE_MASK; 246 writel(val, priv->base + EIP197_CS_RAM_CTRL); 247 248 /* Write head and tail pointers of the record free chain */ 249 val = EIP197_TRC_FREECHAIN_HEAD_PTR(0) | 250 EIP197_TRC_FREECHAIN_TAIL_PTR(cs_rc_max - 1); 251 writel(val, priv->base + EIP197_TRC_FREECHAIN); 252 253 /* Configure the record cache #1 */ 254 val = EIP197_TRC_PARAMS2_RC_SZ_SMALL(cs_trc_rec_wc) | 255 EIP197_TRC_PARAMS2_HTABLE_PTR(cs_rc_max); 256 writel(val, priv->base + EIP197_TRC_PARAMS2); 257 258 /* Configure the record cache #2 */ 259 val = EIP197_TRC_PARAMS_RC_SZ_LARGE(cs_trc_lg_rec_wc) | 260 EIP197_TRC_PARAMS_BLK_TIMER_SPEED(1) | 261 EIP197_TRC_PARAMS_HTABLE_SZ(cs_ht_sz); 262 writel(val, priv->base + EIP197_TRC_PARAMS); 263 264 dev_info(priv->dev, "TRC init: %dd,%da (%dr,%dh)\n", 265 dsize, asize, cs_rc_max, cs_ht_wc + cs_ht_wc); 266 return 0; 267 } 268 269 static void eip197_init_firmware(struct safexcel_crypto_priv *priv) 270 { 271 int pe, i; 272 u32 val; 273 274 for (pe = 0; pe < priv->config.pes; pe++) { 275 /* Configure the token FIFO's */ 276 writel(3, EIP197_PE(priv) + EIP197_PE_ICE_PUTF_CTRL(pe)); 277 writel(0, EIP197_PE(priv) + EIP197_PE_ICE_PPTF_CTRL(pe)); 278 279 /* Clear the ICE scratchpad memory */ 280 val = readl(EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe)); 281 val |= EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_TIMER | 282 EIP197_PE_ICE_SCRATCH_CTRL_TIMER_EN | 283 EIP197_PE_ICE_SCRATCH_CTRL_SCRATCH_ACCESS | 284 EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_ACCESS; 285 writel(val, EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe)); 286 287 /* clear the scratchpad RAM using 32 bit writes only */ 288 for (i = 0; i < EIP197_NUM_OF_SCRATCH_BLOCKS; i++) 289 writel(0, EIP197_PE(priv) + 290 EIP197_PE_ICE_SCRATCH_RAM(pe) + (i << 2)); 291 292 /* Reset the IFPP engine to make its program mem accessible */ 293 writel(EIP197_PE_ICE_x_CTRL_SW_RESET | 294 EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR | 295 EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR, 296 EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe)); 297 298 /* Reset the IPUE engine to make its program mem accessible */ 299 writel(EIP197_PE_ICE_x_CTRL_SW_RESET | 300 EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR | 301 EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR, 302 EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe)); 303 304 /* Enable access to all IFPP program memories */ 305 writel(EIP197_PE_ICE_RAM_CTRL_FPP_PROG_EN, 306 EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe)); 307 308 /* bypass the OCE, if present */ 309 if (priv->flags & EIP197_OCE) 310 writel(EIP197_DEBUG_OCE_BYPASS, EIP197_PE(priv) + 311 EIP197_PE_DEBUG(pe)); 312 } 313 314 } 315 316 static int eip197_write_firmware(struct safexcel_crypto_priv *priv, 317 const struct firmware *fw) 318 { 319 const __be32 *data = (const __be32 *)fw->data; 320 int i; 321 322 /* Write the firmware */ 323 for (i = 0; i < fw->size / sizeof(u32); i++) 324 writel(be32_to_cpu(data[i]), 325 priv->base + EIP197_CLASSIFICATION_RAMS + 326 i * sizeof(__be32)); 327 328 /* Exclude final 2 NOPs from size */ 329 return i - EIP197_FW_TERMINAL_NOPS; 330 } 331 332 /* 333 * If FW is actual production firmware, then poll for its initialization 334 * to complete and check if it is good for the HW, otherwise just return OK. 335 */ 336 static bool poll_fw_ready(struct safexcel_crypto_priv *priv, int fpp) 337 { 338 int pe, pollcnt; 339 u32 base, pollofs; 340 341 if (fpp) 342 pollofs = EIP197_FW_FPP_READY; 343 else 344 pollofs = EIP197_FW_PUE_READY; 345 346 for (pe = 0; pe < priv->config.pes; pe++) { 347 base = EIP197_PE_ICE_SCRATCH_RAM(pe); 348 pollcnt = EIP197_FW_START_POLLCNT; 349 while (pollcnt && 350 (readl_relaxed(EIP197_PE(priv) + base + 351 pollofs) != 1)) { 352 pollcnt--; 353 } 354 if (!pollcnt) { 355 dev_err(priv->dev, "FW(%d) for PE %d failed to start\n", 356 fpp, pe); 357 return false; 358 } 359 } 360 return true; 361 } 362 363 static bool eip197_start_firmware(struct safexcel_crypto_priv *priv, 364 int ipuesz, int ifppsz, int minifw) 365 { 366 int pe; 367 u32 val; 368 369 for (pe = 0; pe < priv->config.pes; pe++) { 370 /* Disable access to all program memory */ 371 writel(0, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe)); 372 373 /* Start IFPP microengines */ 374 if (minifw) 375 val = 0; 376 else 377 val = EIP197_PE_ICE_UENG_START_OFFSET((ifppsz - 1) & 378 EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) | 379 EIP197_PE_ICE_UENG_DEBUG_RESET; 380 writel(val, EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe)); 381 382 /* Start IPUE microengines */ 383 if (minifw) 384 val = 0; 385 else 386 val = EIP197_PE_ICE_UENG_START_OFFSET((ipuesz - 1) & 387 EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) | 388 EIP197_PE_ICE_UENG_DEBUG_RESET; 389 writel(val, EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe)); 390 } 391 392 /* For miniFW startup, there is no initialization, so always succeed */ 393 if (minifw) 394 return true; 395 396 /* Wait until all the firmwares have properly started up */ 397 if (!poll_fw_ready(priv, 1)) 398 return false; 399 if (!poll_fw_ready(priv, 0)) 400 return false; 401 402 return true; 403 } 404 405 static int eip197_load_firmwares(struct safexcel_crypto_priv *priv) 406 { 407 const char *fw_name[] = {"ifpp.bin", "ipue.bin"}; 408 const struct firmware *fw[FW_NB]; 409 char fw_path[37], *dir = NULL; 410 int i, j, ret = 0, pe; 411 int ipuesz, ifppsz, minifw = 0; 412 413 if (priv->version == EIP197D_MRVL) 414 dir = "eip197d"; 415 else if (priv->version == EIP197B_MRVL || 416 priv->version == EIP197_DEVBRD) 417 dir = "eip197b"; 418 else 419 return -ENODEV; 420 421 retry_fw: 422 for (i = 0; i < FW_NB; i++) { 423 snprintf(fw_path, 37, "inside-secure/%s/%s", dir, fw_name[i]); 424 ret = firmware_request_nowarn(&fw[i], fw_path, priv->dev); 425 if (ret) { 426 if (minifw || priv->version != EIP197B_MRVL) 427 goto release_fw; 428 429 /* Fallback to the old firmware location for the 430 * EIP197b. 431 */ 432 ret = firmware_request_nowarn(&fw[i], fw_name[i], 433 priv->dev); 434 if (ret) 435 goto release_fw; 436 } 437 } 438 439 eip197_init_firmware(priv); 440 441 ifppsz = eip197_write_firmware(priv, fw[FW_IFPP]); 442 443 /* Enable access to IPUE program memories */ 444 for (pe = 0; pe < priv->config.pes; pe++) 445 writel(EIP197_PE_ICE_RAM_CTRL_PUE_PROG_EN, 446 EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe)); 447 448 ipuesz = eip197_write_firmware(priv, fw[FW_IPUE]); 449 450 if (eip197_start_firmware(priv, ipuesz, ifppsz, minifw)) { 451 dev_dbg(priv->dev, "Firmware loaded successfully\n"); 452 return 0; 453 } 454 455 ret = -ENODEV; 456 457 release_fw: 458 for (j = 0; j < i; j++) 459 release_firmware(fw[j]); 460 461 if (!minifw) { 462 /* Retry with minifw path */ 463 dev_dbg(priv->dev, "Firmware set not (fully) present or init failed, falling back to BCLA mode\n"); 464 dir = "eip197_minifw"; 465 minifw = 1; 466 goto retry_fw; 467 } 468 469 dev_dbg(priv->dev, "Firmware load failed.\n"); 470 471 return ret; 472 } 473 474 static int safexcel_hw_setup_cdesc_rings(struct safexcel_crypto_priv *priv) 475 { 476 u32 cd_size_rnd, val; 477 int i, cd_fetch_cnt; 478 479 cd_size_rnd = (priv->config.cd_size + 480 (BIT(priv->hwconfig.hwdataw) - 1)) >> 481 priv->hwconfig.hwdataw; 482 /* determine number of CD's we can fetch into the CD FIFO as 1 block */ 483 if (priv->flags & SAFEXCEL_HW_EIP197) { 484 /* EIP197: try to fetch enough in 1 go to keep all pipes busy */ 485 cd_fetch_cnt = (1 << priv->hwconfig.hwcfsize) / cd_size_rnd; 486 cd_fetch_cnt = min_t(uint, cd_fetch_cnt, 487 (priv->config.pes * EIP197_FETCH_DEPTH)); 488 } else { 489 /* for the EIP97, just fetch all that fits minus 1 */ 490 cd_fetch_cnt = ((1 << priv->hwconfig.hwcfsize) / 491 cd_size_rnd) - 1; 492 } 493 /* 494 * Since we're using command desc's way larger than formally specified, 495 * we need to check whether we can fit even 1 for low-end EIP196's! 496 */ 497 if (!cd_fetch_cnt) { 498 dev_err(priv->dev, "Unable to fit even 1 command desc!\n"); 499 return -ENODEV; 500 } 501 502 for (i = 0; i < priv->config.rings; i++) { 503 /* ring base address */ 504 writel(lower_32_bits(priv->ring[i].cdr.base_dma), 505 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); 506 writel(upper_32_bits(priv->ring[i].cdr.base_dma), 507 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); 508 509 writel(EIP197_xDR_DESC_MODE_64BIT | EIP197_CDR_DESC_MODE_ADCP | 510 (priv->config.cd_offset << 14) | priv->config.cd_size, 511 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE); 512 writel(((cd_fetch_cnt * 513 (cd_size_rnd << priv->hwconfig.hwdataw)) << 16) | 514 (cd_fetch_cnt * (priv->config.cd_offset / sizeof(u32))), 515 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG); 516 517 /* Configure DMA tx control */ 518 val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS); 519 val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS); 520 writel(val, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DMA_CFG); 521 522 /* clear any pending interrupt */ 523 writel(GENMASK(5, 0), 524 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT); 525 } 526 527 return 0; 528 } 529 530 static int safexcel_hw_setup_rdesc_rings(struct safexcel_crypto_priv *priv) 531 { 532 u32 rd_size_rnd, val; 533 int i, rd_fetch_cnt; 534 535 /* determine number of RD's we can fetch into the FIFO as one block */ 536 rd_size_rnd = (EIP197_RD64_FETCH_SIZE + 537 (BIT(priv->hwconfig.hwdataw) - 1)) >> 538 priv->hwconfig.hwdataw; 539 if (priv->flags & SAFEXCEL_HW_EIP197) { 540 /* EIP197: try to fetch enough in 1 go to keep all pipes busy */ 541 rd_fetch_cnt = (1 << priv->hwconfig.hwrfsize) / rd_size_rnd; 542 rd_fetch_cnt = min_t(uint, rd_fetch_cnt, 543 (priv->config.pes * EIP197_FETCH_DEPTH)); 544 } else { 545 /* for the EIP97, just fetch all that fits minus 1 */ 546 rd_fetch_cnt = ((1 << priv->hwconfig.hwrfsize) / 547 rd_size_rnd) - 1; 548 } 549 550 for (i = 0; i < priv->config.rings; i++) { 551 /* ring base address */ 552 writel(lower_32_bits(priv->ring[i].rdr.base_dma), 553 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); 554 writel(upper_32_bits(priv->ring[i].rdr.base_dma), 555 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); 556 557 writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.rd_offset << 14) | 558 priv->config.rd_size, 559 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE); 560 561 writel(((rd_fetch_cnt * 562 (rd_size_rnd << priv->hwconfig.hwdataw)) << 16) | 563 (rd_fetch_cnt * (priv->config.rd_offset / sizeof(u32))), 564 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG); 565 566 /* Configure DMA tx control */ 567 val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS); 568 val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS); 569 val |= EIP197_HIA_xDR_WR_RES_BUF | EIP197_HIA_xDR_WR_CTRL_BUF; 570 writel(val, 571 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DMA_CFG); 572 573 /* clear any pending interrupt */ 574 writel(GENMASK(7, 0), 575 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT); 576 577 /* enable ring interrupt */ 578 val = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i)); 579 val |= EIP197_RDR_IRQ(i); 580 writel(val, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i)); 581 } 582 583 return 0; 584 } 585 586 static int safexcel_hw_init(struct safexcel_crypto_priv *priv) 587 { 588 u32 val; 589 int i, ret, pe, opbuflo, opbufhi; 590 591 dev_dbg(priv->dev, "HW init: using %d pipe(s) and %d ring(s)\n", 592 priv->config.pes, priv->config.rings); 593 594 /* 595 * For EIP197's only set maximum number of TX commands to 2^5 = 32 596 * Skip for the EIP97 as it does not have this field. 597 */ 598 if (priv->flags & SAFEXCEL_HW_EIP197) { 599 val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); 600 val |= EIP197_MST_CTRL_TX_MAX_CMD(5); 601 writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); 602 } 603 604 /* Configure wr/rd cache values */ 605 writel(EIP197_MST_CTRL_RD_CACHE(RD_CACHE_4BITS) | 606 EIP197_MST_CTRL_WD_CACHE(WR_CACHE_4BITS), 607 EIP197_HIA_GEN_CFG(priv) + EIP197_MST_CTRL); 608 609 /* Interrupts reset */ 610 611 /* Disable all global interrupts */ 612 writel(0, EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ENABLE_CTRL); 613 614 /* Clear any pending interrupt */ 615 writel(GENMASK(31, 0), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK); 616 617 /* Processing Engine configuration */ 618 for (pe = 0; pe < priv->config.pes; pe++) { 619 /* Data Fetch Engine configuration */ 620 621 /* Reset all DFE threads */ 622 writel(EIP197_DxE_THR_CTRL_RESET_PE, 623 EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe)); 624 625 if (priv->flags & EIP197_PE_ARB) 626 /* Reset HIA input interface arbiter (if present) */ 627 writel(EIP197_HIA_RA_PE_CTRL_RESET, 628 EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe)); 629 630 /* DMA transfer size to use */ 631 val = EIP197_HIA_DFE_CFG_DIS_DEBUG; 632 val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(6) | 633 EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(9); 634 val |= EIP197_HIA_DxE_CFG_MIN_CTRL_SIZE(6) | 635 EIP197_HIA_DxE_CFG_MAX_CTRL_SIZE(7); 636 val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(RD_CACHE_3BITS); 637 val |= EIP197_HIA_DxE_CFG_CTRL_CACHE_CTRL(RD_CACHE_3BITS); 638 writel(val, EIP197_HIA_DFE(priv) + EIP197_HIA_DFE_CFG(pe)); 639 640 /* Leave the DFE threads reset state */ 641 writel(0, EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe)); 642 643 /* Configure the processing engine thresholds */ 644 writel(EIP197_PE_IN_xBUF_THRES_MIN(6) | 645 EIP197_PE_IN_xBUF_THRES_MAX(9), 646 EIP197_PE(priv) + EIP197_PE_IN_DBUF_THRES(pe)); 647 writel(EIP197_PE_IN_xBUF_THRES_MIN(6) | 648 EIP197_PE_IN_xBUF_THRES_MAX(7), 649 EIP197_PE(priv) + EIP197_PE_IN_TBUF_THRES(pe)); 650 651 if (priv->flags & SAFEXCEL_HW_EIP197) 652 /* enable HIA input interface arbiter and rings */ 653 writel(EIP197_HIA_RA_PE_CTRL_EN | 654 GENMASK(priv->config.rings - 1, 0), 655 EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe)); 656 657 /* Data Store Engine configuration */ 658 659 /* Reset all DSE threads */ 660 writel(EIP197_DxE_THR_CTRL_RESET_PE, 661 EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe)); 662 663 /* Wait for all DSE threads to complete */ 664 while ((readl(EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_STAT(pe)) & 665 GENMASK(15, 12)) != GENMASK(15, 12)) 666 ; 667 668 /* DMA transfer size to use */ 669 if (priv->hwconfig.hwnumpes > 4) { 670 opbuflo = 9; 671 opbufhi = 10; 672 } else { 673 opbuflo = 7; 674 opbufhi = 8; 675 } 676 val = EIP197_HIA_DSE_CFG_DIS_DEBUG; 677 val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(opbuflo) | 678 EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(opbufhi); 679 val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(WR_CACHE_3BITS); 680 val |= EIP197_HIA_DSE_CFG_ALWAYS_BUFFERABLE; 681 /* FIXME: instability issues can occur for EIP97 but disabling 682 * it impacts performance. 683 */ 684 if (priv->flags & SAFEXCEL_HW_EIP197) 685 val |= EIP197_HIA_DSE_CFG_EN_SINGLE_WR; 686 writel(val, EIP197_HIA_DSE(priv) + EIP197_HIA_DSE_CFG(pe)); 687 688 /* Leave the DSE threads reset state */ 689 writel(0, EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe)); 690 691 /* Configure the processing engine thresholds */ 692 writel(EIP197_PE_OUT_DBUF_THRES_MIN(opbuflo) | 693 EIP197_PE_OUT_DBUF_THRES_MAX(opbufhi), 694 EIP197_PE(priv) + EIP197_PE_OUT_DBUF_THRES(pe)); 695 696 /* Processing Engine configuration */ 697 698 /* Token & context configuration */ 699 val = EIP197_PE_EIP96_TOKEN_CTRL_CTX_UPDATES | 700 EIP197_PE_EIP96_TOKEN_CTRL_NO_TOKEN_WAIT | 701 EIP197_PE_EIP96_TOKEN_CTRL_ENABLE_TIMEOUT; 702 writel(val, EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL(pe)); 703 704 /* H/W capabilities selection: just enable everything */ 705 writel(EIP197_FUNCTION_ALL, 706 EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION_EN(pe)); 707 writel(EIP197_FUNCTION_ALL, 708 EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION2_EN(pe)); 709 } 710 711 /* Command Descriptor Rings prepare */ 712 for (i = 0; i < priv->config.rings; i++) { 713 /* Clear interrupts for this ring */ 714 writel(GENMASK(31, 0), 715 EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CLR(i)); 716 717 /* Disable external triggering */ 718 writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG); 719 720 /* Clear the pending prepared counter */ 721 writel(EIP197_xDR_PREP_CLR_COUNT, 722 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT); 723 724 /* Clear the pending processed counter */ 725 writel(EIP197_xDR_PROC_CLR_COUNT, 726 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT); 727 728 writel(0, 729 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR); 730 writel(0, 731 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR); 732 733 writel((EIP197_DEFAULT_RING_SIZE * priv->config.cd_offset), 734 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_SIZE); 735 } 736 737 /* Result Descriptor Ring prepare */ 738 for (i = 0; i < priv->config.rings; i++) { 739 /* Disable external triggering*/ 740 writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG); 741 742 /* Clear the pending prepared counter */ 743 writel(EIP197_xDR_PREP_CLR_COUNT, 744 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT); 745 746 /* Clear the pending processed counter */ 747 writel(EIP197_xDR_PROC_CLR_COUNT, 748 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT); 749 750 writel(0, 751 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR); 752 writel(0, 753 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR); 754 755 /* Ring size */ 756 writel((EIP197_DEFAULT_RING_SIZE * priv->config.rd_offset), 757 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_SIZE); 758 } 759 760 for (pe = 0; pe < priv->config.pes; pe++) { 761 /* Enable command descriptor rings */ 762 writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0), 763 EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe)); 764 765 /* Enable result descriptor rings */ 766 writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0), 767 EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe)); 768 } 769 770 /* Clear any HIA interrupt */ 771 writel(GENMASK(30, 20), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK); 772 773 if (priv->flags & EIP197_SIMPLE_TRC) { 774 writel(EIP197_STRC_CONFIG_INIT | 775 EIP197_STRC_CONFIG_LARGE_REC(EIP197_CS_TRC_REC_WC) | 776 EIP197_STRC_CONFIG_SMALL_REC(EIP197_CS_TRC_REC_WC), 777 priv->base + EIP197_STRC_CONFIG); 778 writel(EIP197_PE_EIP96_TOKEN_CTRL2_CTX_DONE, 779 EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL2(0)); 780 } else if (priv->flags & SAFEXCEL_HW_EIP197) { 781 ret = eip197_trc_cache_init(priv); 782 if (ret) 783 return ret; 784 } 785 786 if (priv->flags & EIP197_ICE) { 787 ret = eip197_load_firmwares(priv); 788 if (ret) 789 return ret; 790 } 791 792 return safexcel_hw_setup_cdesc_rings(priv) ?: 793 safexcel_hw_setup_rdesc_rings(priv) ?: 794 0; 795 } 796 797 /* Called with ring's lock taken */ 798 static void safexcel_try_push_requests(struct safexcel_crypto_priv *priv, 799 int ring) 800 { 801 int coal = min_t(int, priv->ring[ring].requests, EIP197_MAX_BATCH_SZ); 802 803 if (!coal) 804 return; 805 806 /* Configure when we want an interrupt */ 807 writel(EIP197_HIA_RDR_THRESH_PKT_MODE | 808 EIP197_HIA_RDR_THRESH_PROC_PKT(coal), 809 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_THRESH); 810 } 811 812 void safexcel_dequeue(struct safexcel_crypto_priv *priv, int ring) 813 { 814 struct crypto_async_request *req, *backlog; 815 struct safexcel_context *ctx; 816 int ret, nreq = 0, cdesc = 0, rdesc = 0, commands, results; 817 818 /* If a request wasn't properly dequeued because of a lack of resources, 819 * proceeded it first, 820 */ 821 req = priv->ring[ring].req; 822 backlog = priv->ring[ring].backlog; 823 if (req) 824 goto handle_req; 825 826 while (true) { 827 spin_lock_bh(&priv->ring[ring].queue_lock); 828 backlog = crypto_get_backlog(&priv->ring[ring].queue); 829 req = crypto_dequeue_request(&priv->ring[ring].queue); 830 spin_unlock_bh(&priv->ring[ring].queue_lock); 831 832 if (!req) { 833 priv->ring[ring].req = NULL; 834 priv->ring[ring].backlog = NULL; 835 goto finalize; 836 } 837 838 handle_req: 839 ctx = crypto_tfm_ctx(req->tfm); 840 ret = ctx->send(req, ring, &commands, &results); 841 if (ret) 842 goto request_failed; 843 844 if (backlog) 845 backlog->complete(backlog, -EINPROGRESS); 846 847 /* In case the send() helper did not issue any command to push 848 * to the engine because the input data was cached, continue to 849 * dequeue other requests as this is valid and not an error. 850 */ 851 if (!commands && !results) 852 continue; 853 854 cdesc += commands; 855 rdesc += results; 856 nreq++; 857 } 858 859 request_failed: 860 /* Not enough resources to handle all the requests. Bail out and save 861 * the request and the backlog for the next dequeue call (per-ring). 862 */ 863 priv->ring[ring].req = req; 864 priv->ring[ring].backlog = backlog; 865 866 finalize: 867 if (!nreq) 868 return; 869 870 spin_lock_bh(&priv->ring[ring].lock); 871 872 priv->ring[ring].requests += nreq; 873 874 if (!priv->ring[ring].busy) { 875 safexcel_try_push_requests(priv, ring); 876 priv->ring[ring].busy = true; 877 } 878 879 spin_unlock_bh(&priv->ring[ring].lock); 880 881 /* let the RDR know we have pending descriptors */ 882 writel((rdesc * priv->config.rd_offset), 883 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT); 884 885 /* let the CDR know we have pending descriptors */ 886 writel((cdesc * priv->config.cd_offset), 887 EIP197_HIA_CDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT); 888 } 889 890 inline int safexcel_rdesc_check_errors(struct safexcel_crypto_priv *priv, 891 void *rdp) 892 { 893 struct safexcel_result_desc *rdesc = rdp; 894 struct result_data_desc *result_data = rdp + priv->config.res_offset; 895 896 if (likely((!rdesc->last_seg) || /* Rest only valid if last seg! */ 897 ((!rdesc->descriptor_overflow) && 898 (!rdesc->buffer_overflow) && 899 (!result_data->error_code)))) 900 return 0; 901 902 if (rdesc->descriptor_overflow) 903 dev_err(priv->dev, "Descriptor overflow detected"); 904 905 if (rdesc->buffer_overflow) 906 dev_err(priv->dev, "Buffer overflow detected"); 907 908 if (result_data->error_code & 0x4066) { 909 /* Fatal error (bits 1,2,5,6 & 14) */ 910 dev_err(priv->dev, 911 "result descriptor error (%x)", 912 result_data->error_code); 913 914 return -EIO; 915 } else if (result_data->error_code & 916 (BIT(7) | BIT(4) | BIT(3) | BIT(0))) { 917 /* 918 * Give priority over authentication fails: 919 * Blocksize, length & overflow errors, 920 * something wrong with the input! 921 */ 922 return -EINVAL; 923 } else if (result_data->error_code & BIT(9)) { 924 /* Authentication failed */ 925 return -EBADMSG; 926 } 927 928 /* All other non-fatal errors */ 929 return -EINVAL; 930 } 931 932 inline void safexcel_rdr_req_set(struct safexcel_crypto_priv *priv, 933 int ring, 934 struct safexcel_result_desc *rdesc, 935 struct crypto_async_request *req) 936 { 937 int i = safexcel_ring_rdr_rdesc_index(priv, ring, rdesc); 938 939 priv->ring[ring].rdr_req[i] = req; 940 } 941 942 inline struct crypto_async_request * 943 safexcel_rdr_req_get(struct safexcel_crypto_priv *priv, int ring) 944 { 945 int i = safexcel_ring_first_rdr_index(priv, ring); 946 947 return priv->ring[ring].rdr_req[i]; 948 } 949 950 void safexcel_complete(struct safexcel_crypto_priv *priv, int ring) 951 { 952 struct safexcel_command_desc *cdesc; 953 954 /* Acknowledge the command descriptors */ 955 do { 956 cdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].cdr); 957 if (IS_ERR(cdesc)) { 958 dev_err(priv->dev, 959 "Could not retrieve the command descriptor\n"); 960 return; 961 } 962 } while (!cdesc->last_seg); 963 } 964 965 void safexcel_inv_complete(struct crypto_async_request *req, int error) 966 { 967 struct safexcel_inv_result *result = req->data; 968 969 if (error == -EINPROGRESS) 970 return; 971 972 result->error = error; 973 complete(&result->completion); 974 } 975 976 int safexcel_invalidate_cache(struct crypto_async_request *async, 977 struct safexcel_crypto_priv *priv, 978 dma_addr_t ctxr_dma, int ring) 979 { 980 struct safexcel_command_desc *cdesc; 981 struct safexcel_result_desc *rdesc; 982 struct safexcel_token *dmmy; 983 int ret = 0; 984 985 /* Prepare command descriptor */ 986 cdesc = safexcel_add_cdesc(priv, ring, true, true, 0, 0, 0, ctxr_dma, 987 &dmmy); 988 if (IS_ERR(cdesc)) 989 return PTR_ERR(cdesc); 990 991 cdesc->control_data.type = EIP197_TYPE_EXTENDED; 992 cdesc->control_data.options = 0; 993 cdesc->control_data.context_lo &= ~EIP197_CONTEXT_SIZE_MASK; 994 cdesc->control_data.control0 = CONTEXT_CONTROL_INV_TR; 995 996 /* Prepare result descriptor */ 997 rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0); 998 999 if (IS_ERR(rdesc)) { 1000 ret = PTR_ERR(rdesc); 1001 goto cdesc_rollback; 1002 } 1003 1004 safexcel_rdr_req_set(priv, ring, rdesc, async); 1005 1006 return ret; 1007 1008 cdesc_rollback: 1009 safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr); 1010 1011 return ret; 1012 } 1013 1014 static inline void safexcel_handle_result_descriptor(struct safexcel_crypto_priv *priv, 1015 int ring) 1016 { 1017 struct crypto_async_request *req; 1018 struct safexcel_context *ctx; 1019 int ret, i, nreq, ndesc, tot_descs, handled = 0; 1020 bool should_complete; 1021 1022 handle_results: 1023 tot_descs = 0; 1024 1025 nreq = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT); 1026 nreq >>= EIP197_xDR_PROC_xD_PKT_OFFSET; 1027 nreq &= EIP197_xDR_PROC_xD_PKT_MASK; 1028 if (!nreq) 1029 goto requests_left; 1030 1031 for (i = 0; i < nreq; i++) { 1032 req = safexcel_rdr_req_get(priv, ring); 1033 1034 ctx = crypto_tfm_ctx(req->tfm); 1035 ndesc = ctx->handle_result(priv, ring, req, 1036 &should_complete, &ret); 1037 if (ndesc < 0) { 1038 dev_err(priv->dev, "failed to handle result (%d)\n", 1039 ndesc); 1040 goto acknowledge; 1041 } 1042 1043 if (should_complete) { 1044 local_bh_disable(); 1045 req->complete(req, ret); 1046 local_bh_enable(); 1047 } 1048 1049 tot_descs += ndesc; 1050 handled++; 1051 } 1052 1053 acknowledge: 1054 if (i) 1055 writel(EIP197_xDR_PROC_xD_PKT(i) | 1056 (tot_descs * priv->config.rd_offset), 1057 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT); 1058 1059 /* If the number of requests overflowed the counter, try to proceed more 1060 * requests. 1061 */ 1062 if (nreq == EIP197_xDR_PROC_xD_PKT_MASK) 1063 goto handle_results; 1064 1065 requests_left: 1066 spin_lock_bh(&priv->ring[ring].lock); 1067 1068 priv->ring[ring].requests -= handled; 1069 safexcel_try_push_requests(priv, ring); 1070 1071 if (!priv->ring[ring].requests) 1072 priv->ring[ring].busy = false; 1073 1074 spin_unlock_bh(&priv->ring[ring].lock); 1075 } 1076 1077 static void safexcel_dequeue_work(struct work_struct *work) 1078 { 1079 struct safexcel_work_data *data = 1080 container_of(work, struct safexcel_work_data, work); 1081 1082 safexcel_dequeue(data->priv, data->ring); 1083 } 1084 1085 struct safexcel_ring_irq_data { 1086 struct safexcel_crypto_priv *priv; 1087 int ring; 1088 }; 1089 1090 static irqreturn_t safexcel_irq_ring(int irq, void *data) 1091 { 1092 struct safexcel_ring_irq_data *irq_data = data; 1093 struct safexcel_crypto_priv *priv = irq_data->priv; 1094 int ring = irq_data->ring, rc = IRQ_NONE; 1095 u32 status, stat; 1096 1097 status = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLED_STAT(ring)); 1098 if (!status) 1099 return rc; 1100 1101 /* RDR interrupts */ 1102 if (status & EIP197_RDR_IRQ(ring)) { 1103 stat = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT); 1104 1105 if (unlikely(stat & EIP197_xDR_ERR)) { 1106 /* 1107 * Fatal error, the RDR is unusable and must be 1108 * reinitialized. This should not happen under 1109 * normal circumstances. 1110 */ 1111 dev_err(priv->dev, "RDR: fatal error.\n"); 1112 } else if (likely(stat & EIP197_xDR_THRESH)) { 1113 rc = IRQ_WAKE_THREAD; 1114 } 1115 1116 /* ACK the interrupts */ 1117 writel(stat & 0xff, 1118 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT); 1119 } 1120 1121 /* ACK the interrupts */ 1122 writel(status, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ACK(ring)); 1123 1124 return rc; 1125 } 1126 1127 static irqreturn_t safexcel_irq_ring_thread(int irq, void *data) 1128 { 1129 struct safexcel_ring_irq_data *irq_data = data; 1130 struct safexcel_crypto_priv *priv = irq_data->priv; 1131 int ring = irq_data->ring; 1132 1133 safexcel_handle_result_descriptor(priv, ring); 1134 1135 queue_work(priv->ring[ring].workqueue, 1136 &priv->ring[ring].work_data.work); 1137 1138 return IRQ_HANDLED; 1139 } 1140 1141 static int safexcel_request_ring_irq(void *pdev, int irqid, 1142 int is_pci_dev, 1143 int ring_id, 1144 irq_handler_t handler, 1145 irq_handler_t threaded_handler, 1146 struct safexcel_ring_irq_data *ring_irq_priv) 1147 { 1148 int ret, irq, cpu; 1149 struct device *dev; 1150 1151 if (IS_ENABLED(CONFIG_PCI) && is_pci_dev) { 1152 struct pci_dev *pci_pdev = pdev; 1153 1154 dev = &pci_pdev->dev; 1155 irq = pci_irq_vector(pci_pdev, irqid); 1156 if (irq < 0) { 1157 dev_err(dev, "unable to get device MSI IRQ %d (err %d)\n", 1158 irqid, irq); 1159 return irq; 1160 } 1161 } else if (IS_ENABLED(CONFIG_OF)) { 1162 struct platform_device *plf_pdev = pdev; 1163 char irq_name[6] = {0}; /* "ringX\0" */ 1164 1165 snprintf(irq_name, 6, "ring%d", irqid); 1166 dev = &plf_pdev->dev; 1167 irq = platform_get_irq_byname(plf_pdev, irq_name); 1168 1169 if (irq < 0) 1170 return irq; 1171 } else { 1172 return -ENXIO; 1173 } 1174 1175 ret = devm_request_threaded_irq(dev, irq, handler, 1176 threaded_handler, IRQF_ONESHOT, 1177 dev_name(dev), ring_irq_priv); 1178 if (ret) { 1179 dev_err(dev, "unable to request IRQ %d\n", irq); 1180 return ret; 1181 } 1182 1183 /* Set affinity */ 1184 cpu = cpumask_local_spread(ring_id, NUMA_NO_NODE); 1185 irq_set_affinity_hint(irq, get_cpu_mask(cpu)); 1186 1187 return irq; 1188 } 1189 1190 static struct safexcel_alg_template *safexcel_algs[] = { 1191 &safexcel_alg_ecb_des, 1192 &safexcel_alg_cbc_des, 1193 &safexcel_alg_ecb_des3_ede, 1194 &safexcel_alg_cbc_des3_ede, 1195 &safexcel_alg_ecb_aes, 1196 &safexcel_alg_cbc_aes, 1197 &safexcel_alg_cfb_aes, 1198 &safexcel_alg_ofb_aes, 1199 &safexcel_alg_ctr_aes, 1200 &safexcel_alg_md5, 1201 &safexcel_alg_sha1, 1202 &safexcel_alg_sha224, 1203 &safexcel_alg_sha256, 1204 &safexcel_alg_sha384, 1205 &safexcel_alg_sha512, 1206 &safexcel_alg_hmac_md5, 1207 &safexcel_alg_hmac_sha1, 1208 &safexcel_alg_hmac_sha224, 1209 &safexcel_alg_hmac_sha256, 1210 &safexcel_alg_hmac_sha384, 1211 &safexcel_alg_hmac_sha512, 1212 &safexcel_alg_authenc_hmac_sha1_cbc_aes, 1213 &safexcel_alg_authenc_hmac_sha224_cbc_aes, 1214 &safexcel_alg_authenc_hmac_sha256_cbc_aes, 1215 &safexcel_alg_authenc_hmac_sha384_cbc_aes, 1216 &safexcel_alg_authenc_hmac_sha512_cbc_aes, 1217 &safexcel_alg_authenc_hmac_sha1_cbc_des3_ede, 1218 &safexcel_alg_authenc_hmac_sha1_ctr_aes, 1219 &safexcel_alg_authenc_hmac_sha224_ctr_aes, 1220 &safexcel_alg_authenc_hmac_sha256_ctr_aes, 1221 &safexcel_alg_authenc_hmac_sha384_ctr_aes, 1222 &safexcel_alg_authenc_hmac_sha512_ctr_aes, 1223 &safexcel_alg_xts_aes, 1224 &safexcel_alg_gcm, 1225 &safexcel_alg_ccm, 1226 &safexcel_alg_crc32, 1227 &safexcel_alg_cbcmac, 1228 &safexcel_alg_xcbcmac, 1229 &safexcel_alg_cmac, 1230 &safexcel_alg_chacha20, 1231 &safexcel_alg_chachapoly, 1232 &safexcel_alg_chachapoly_esp, 1233 &safexcel_alg_sm3, 1234 &safexcel_alg_hmac_sm3, 1235 &safexcel_alg_ecb_sm4, 1236 &safexcel_alg_cbc_sm4, 1237 &safexcel_alg_ofb_sm4, 1238 &safexcel_alg_cfb_sm4, 1239 &safexcel_alg_ctr_sm4, 1240 &safexcel_alg_authenc_hmac_sha1_cbc_sm4, 1241 &safexcel_alg_authenc_hmac_sm3_cbc_sm4, 1242 &safexcel_alg_authenc_hmac_sha1_ctr_sm4, 1243 &safexcel_alg_authenc_hmac_sm3_ctr_sm4, 1244 &safexcel_alg_sha3_224, 1245 &safexcel_alg_sha3_256, 1246 &safexcel_alg_sha3_384, 1247 &safexcel_alg_sha3_512, 1248 &safexcel_alg_hmac_sha3_224, 1249 &safexcel_alg_hmac_sha3_256, 1250 &safexcel_alg_hmac_sha3_384, 1251 &safexcel_alg_hmac_sha3_512, 1252 &safexcel_alg_authenc_hmac_sha1_cbc_des, 1253 &safexcel_alg_authenc_hmac_sha256_cbc_des3_ede, 1254 &safexcel_alg_authenc_hmac_sha224_cbc_des3_ede, 1255 &safexcel_alg_authenc_hmac_sha512_cbc_des3_ede, 1256 &safexcel_alg_authenc_hmac_sha384_cbc_des3_ede, 1257 &safexcel_alg_authenc_hmac_sha256_cbc_des, 1258 &safexcel_alg_authenc_hmac_sha224_cbc_des, 1259 &safexcel_alg_authenc_hmac_sha512_cbc_des, 1260 &safexcel_alg_authenc_hmac_sha384_cbc_des, 1261 &safexcel_alg_rfc4106_gcm, 1262 &safexcel_alg_rfc4543_gcm, 1263 &safexcel_alg_rfc4309_ccm, 1264 }; 1265 1266 static int safexcel_register_algorithms(struct safexcel_crypto_priv *priv) 1267 { 1268 int i, j, ret = 0; 1269 1270 for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) { 1271 safexcel_algs[i]->priv = priv; 1272 1273 /* Do we have all required base algorithms available? */ 1274 if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) != 1275 safexcel_algs[i]->algo_mask) 1276 /* No, so don't register this ciphersuite */ 1277 continue; 1278 1279 if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER) 1280 ret = crypto_register_skcipher(&safexcel_algs[i]->alg.skcipher); 1281 else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD) 1282 ret = crypto_register_aead(&safexcel_algs[i]->alg.aead); 1283 else 1284 ret = crypto_register_ahash(&safexcel_algs[i]->alg.ahash); 1285 1286 if (ret) 1287 goto fail; 1288 } 1289 1290 return 0; 1291 1292 fail: 1293 for (j = 0; j < i; j++) { 1294 /* Do we have all required base algorithms available? */ 1295 if ((safexcel_algs[j]->algo_mask & priv->hwconfig.algo_flags) != 1296 safexcel_algs[j]->algo_mask) 1297 /* No, so don't unregister this ciphersuite */ 1298 continue; 1299 1300 if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_SKCIPHER) 1301 crypto_unregister_skcipher(&safexcel_algs[j]->alg.skcipher); 1302 else if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_AEAD) 1303 crypto_unregister_aead(&safexcel_algs[j]->alg.aead); 1304 else 1305 crypto_unregister_ahash(&safexcel_algs[j]->alg.ahash); 1306 } 1307 1308 return ret; 1309 } 1310 1311 static void safexcel_unregister_algorithms(struct safexcel_crypto_priv *priv) 1312 { 1313 int i; 1314 1315 for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) { 1316 /* Do we have all required base algorithms available? */ 1317 if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) != 1318 safexcel_algs[i]->algo_mask) 1319 /* No, so don't unregister this ciphersuite */ 1320 continue; 1321 1322 if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER) 1323 crypto_unregister_skcipher(&safexcel_algs[i]->alg.skcipher); 1324 else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD) 1325 crypto_unregister_aead(&safexcel_algs[i]->alg.aead); 1326 else 1327 crypto_unregister_ahash(&safexcel_algs[i]->alg.ahash); 1328 } 1329 } 1330 1331 static void safexcel_configure(struct safexcel_crypto_priv *priv) 1332 { 1333 u32 mask = BIT(priv->hwconfig.hwdataw) - 1; 1334 1335 priv->config.pes = priv->hwconfig.hwnumpes; 1336 priv->config.rings = min_t(u32, priv->hwconfig.hwnumrings, max_rings); 1337 /* Cannot currently support more rings than we have ring AICs! */ 1338 priv->config.rings = min_t(u32, priv->config.rings, 1339 priv->hwconfig.hwnumraic); 1340 1341 priv->config.cd_size = EIP197_CD64_FETCH_SIZE; 1342 priv->config.cd_offset = (priv->config.cd_size + mask) & ~mask; 1343 priv->config.cdsh_offset = (EIP197_MAX_TOKENS + mask) & ~mask; 1344 1345 /* res token is behind the descr, but ofs must be rounded to buswdth */ 1346 priv->config.res_offset = (EIP197_RD64_FETCH_SIZE + mask) & ~mask; 1347 /* now the size of the descr is this 1st part plus the result struct */ 1348 priv->config.rd_size = priv->config.res_offset + 1349 EIP197_RD64_RESULT_SIZE; 1350 priv->config.rd_offset = (priv->config.rd_size + mask) & ~mask; 1351 1352 /* convert dwords to bytes */ 1353 priv->config.cd_offset *= sizeof(u32); 1354 priv->config.cdsh_offset *= sizeof(u32); 1355 priv->config.rd_offset *= sizeof(u32); 1356 priv->config.res_offset *= sizeof(u32); 1357 } 1358 1359 static void safexcel_init_register_offsets(struct safexcel_crypto_priv *priv) 1360 { 1361 struct safexcel_register_offsets *offsets = &priv->offsets; 1362 1363 if (priv->flags & SAFEXCEL_HW_EIP197) { 1364 offsets->hia_aic = EIP197_HIA_AIC_BASE; 1365 offsets->hia_aic_g = EIP197_HIA_AIC_G_BASE; 1366 offsets->hia_aic_r = EIP197_HIA_AIC_R_BASE; 1367 offsets->hia_aic_xdr = EIP197_HIA_AIC_xDR_BASE; 1368 offsets->hia_dfe = EIP197_HIA_DFE_BASE; 1369 offsets->hia_dfe_thr = EIP197_HIA_DFE_THR_BASE; 1370 offsets->hia_dse = EIP197_HIA_DSE_BASE; 1371 offsets->hia_dse_thr = EIP197_HIA_DSE_THR_BASE; 1372 offsets->hia_gen_cfg = EIP197_HIA_GEN_CFG_BASE; 1373 offsets->pe = EIP197_PE_BASE; 1374 offsets->global = EIP197_GLOBAL_BASE; 1375 } else { 1376 offsets->hia_aic = EIP97_HIA_AIC_BASE; 1377 offsets->hia_aic_g = EIP97_HIA_AIC_G_BASE; 1378 offsets->hia_aic_r = EIP97_HIA_AIC_R_BASE; 1379 offsets->hia_aic_xdr = EIP97_HIA_AIC_xDR_BASE; 1380 offsets->hia_dfe = EIP97_HIA_DFE_BASE; 1381 offsets->hia_dfe_thr = EIP97_HIA_DFE_THR_BASE; 1382 offsets->hia_dse = EIP97_HIA_DSE_BASE; 1383 offsets->hia_dse_thr = EIP97_HIA_DSE_THR_BASE; 1384 offsets->hia_gen_cfg = EIP97_HIA_GEN_CFG_BASE; 1385 offsets->pe = EIP97_PE_BASE; 1386 offsets->global = EIP97_GLOBAL_BASE; 1387 } 1388 } 1389 1390 /* 1391 * Generic part of probe routine, shared by platform and PCI driver 1392 * 1393 * Assumes IO resources have been mapped, private data mem has been allocated, 1394 * clocks have been enabled, device pointer has been assigned etc. 1395 * 1396 */ 1397 static int safexcel_probe_generic(void *pdev, 1398 struct safexcel_crypto_priv *priv, 1399 int is_pci_dev) 1400 { 1401 struct device *dev = priv->dev; 1402 u32 peid, version, mask, val, hiaopt, hwopt, peopt; 1403 int i, ret, hwctg; 1404 1405 priv->context_pool = dmam_pool_create("safexcel-context", dev, 1406 sizeof(struct safexcel_context_record), 1407 1, 0); 1408 if (!priv->context_pool) 1409 return -ENOMEM; 1410 1411 /* 1412 * First try the EIP97 HIA version regs 1413 * For the EIP197, this is guaranteed to NOT return any of the test 1414 * values 1415 */ 1416 version = readl(priv->base + EIP97_HIA_AIC_BASE + EIP197_HIA_VERSION); 1417 1418 mask = 0; /* do not swap */ 1419 if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) { 1420 priv->hwconfig.hiaver = EIP197_VERSION_MASK(version); 1421 } else if (EIP197_REG_HI16(version) == EIP197_HIA_VERSION_BE) { 1422 /* read back byte-swapped, so complement byte swap bits */ 1423 mask = EIP197_MST_CTRL_BYTE_SWAP_BITS; 1424 priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version); 1425 } else { 1426 /* So it wasn't an EIP97 ... maybe it's an EIP197? */ 1427 version = readl(priv->base + EIP197_HIA_AIC_BASE + 1428 EIP197_HIA_VERSION); 1429 if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) { 1430 priv->hwconfig.hiaver = EIP197_VERSION_MASK(version); 1431 priv->flags |= SAFEXCEL_HW_EIP197; 1432 } else if (EIP197_REG_HI16(version) == 1433 EIP197_HIA_VERSION_BE) { 1434 /* read back byte-swapped, so complement swap bits */ 1435 mask = EIP197_MST_CTRL_BYTE_SWAP_BITS; 1436 priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version); 1437 priv->flags |= SAFEXCEL_HW_EIP197; 1438 } else { 1439 return -ENODEV; 1440 } 1441 } 1442 1443 /* Now initialize the reg offsets based on the probing info so far */ 1444 safexcel_init_register_offsets(priv); 1445 1446 /* 1447 * If the version was read byte-swapped, we need to flip the device 1448 * swapping Keep in mind here, though, that what we write will also be 1449 * byte-swapped ... 1450 */ 1451 if (mask) { 1452 val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); 1453 val = val ^ (mask >> 24); /* toggle byte swap bits */ 1454 writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); 1455 } 1456 1457 /* 1458 * We're not done probing yet! We may fall through to here if no HIA 1459 * was found at all. So, with the endianness presumably correct now and 1460 * the offsets setup, *really* probe for the EIP97/EIP197. 1461 */ 1462 version = readl(EIP197_GLOBAL(priv) + EIP197_VERSION); 1463 if (((priv->flags & SAFEXCEL_HW_EIP197) && 1464 (EIP197_REG_LO16(version) != EIP197_VERSION_LE) && 1465 (EIP197_REG_LO16(version) != EIP196_VERSION_LE)) || 1466 ((!(priv->flags & SAFEXCEL_HW_EIP197) && 1467 (EIP197_REG_LO16(version) != EIP97_VERSION_LE)))) { 1468 /* 1469 * We did not find the device that matched our initial probing 1470 * (or our initial probing failed) Report appropriate error. 1471 */ 1472 dev_err(priv->dev, "Probing for EIP97/EIP19x failed - no such device (read %08x)\n", 1473 version); 1474 return -ENODEV; 1475 } 1476 1477 priv->hwconfig.hwver = EIP197_VERSION_MASK(version); 1478 hwctg = version >> 28; 1479 peid = version & 255; 1480 1481 /* Detect EIP206 processing pipe */ 1482 version = readl(EIP197_PE(priv) + + EIP197_PE_VERSION(0)); 1483 if (EIP197_REG_LO16(version) != EIP206_VERSION_LE) { 1484 dev_err(priv->dev, "EIP%d: EIP206 not detected\n", peid); 1485 return -ENODEV; 1486 } 1487 priv->hwconfig.ppver = EIP197_VERSION_MASK(version); 1488 1489 /* Detect EIP96 packet engine and version */ 1490 version = readl(EIP197_PE(priv) + EIP197_PE_EIP96_VERSION(0)); 1491 if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) { 1492 dev_err(dev, "EIP%d: EIP96 not detected.\n", peid); 1493 return -ENODEV; 1494 } 1495 priv->hwconfig.pever = EIP197_VERSION_MASK(version); 1496 1497 hwopt = readl(EIP197_GLOBAL(priv) + EIP197_OPTIONS); 1498 hiaopt = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_OPTIONS); 1499 1500 priv->hwconfig.icever = 0; 1501 priv->hwconfig.ocever = 0; 1502 priv->hwconfig.psever = 0; 1503 if (priv->flags & SAFEXCEL_HW_EIP197) { 1504 /* EIP197 */ 1505 peopt = readl(EIP197_PE(priv) + EIP197_PE_OPTIONS(0)); 1506 1507 priv->hwconfig.hwdataw = (hiaopt >> EIP197_HWDATAW_OFFSET) & 1508 EIP197_HWDATAW_MASK; 1509 priv->hwconfig.hwcfsize = ((hiaopt >> EIP197_CFSIZE_OFFSET) & 1510 EIP197_CFSIZE_MASK) + 1511 EIP197_CFSIZE_ADJUST; 1512 priv->hwconfig.hwrfsize = ((hiaopt >> EIP197_RFSIZE_OFFSET) & 1513 EIP197_RFSIZE_MASK) + 1514 EIP197_RFSIZE_ADJUST; 1515 priv->hwconfig.hwnumpes = (hiaopt >> EIP197_N_PES_OFFSET) & 1516 EIP197_N_PES_MASK; 1517 priv->hwconfig.hwnumrings = (hiaopt >> EIP197_N_RINGS_OFFSET) & 1518 EIP197_N_RINGS_MASK; 1519 if (hiaopt & EIP197_HIA_OPT_HAS_PE_ARB) 1520 priv->flags |= EIP197_PE_ARB; 1521 if (EIP206_OPT_ICE_TYPE(peopt) == 1) { 1522 priv->flags |= EIP197_ICE; 1523 /* Detect ICE EIP207 class. engine and version */ 1524 version = readl(EIP197_PE(priv) + 1525 EIP197_PE_ICE_VERSION(0)); 1526 if (EIP197_REG_LO16(version) != EIP207_VERSION_LE) { 1527 dev_err(dev, "EIP%d: ICE EIP207 not detected.\n", 1528 peid); 1529 return -ENODEV; 1530 } 1531 priv->hwconfig.icever = EIP197_VERSION_MASK(version); 1532 } 1533 if (EIP206_OPT_OCE_TYPE(peopt) == 1) { 1534 priv->flags |= EIP197_OCE; 1535 /* Detect EIP96PP packet stream editor and version */ 1536 version = readl(EIP197_PE(priv) + EIP197_PE_PSE_VERSION(0)); 1537 if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) { 1538 dev_err(dev, "EIP%d: EIP96PP not detected.\n", peid); 1539 return -ENODEV; 1540 } 1541 priv->hwconfig.psever = EIP197_VERSION_MASK(version); 1542 /* Detect OCE EIP207 class. engine and version */ 1543 version = readl(EIP197_PE(priv) + 1544 EIP197_PE_ICE_VERSION(0)); 1545 if (EIP197_REG_LO16(version) != EIP207_VERSION_LE) { 1546 dev_err(dev, "EIP%d: OCE EIP207 not detected.\n", 1547 peid); 1548 return -ENODEV; 1549 } 1550 priv->hwconfig.ocever = EIP197_VERSION_MASK(version); 1551 } 1552 /* If not a full TRC, then assume simple TRC */ 1553 if (!(hwopt & EIP197_OPT_HAS_TRC)) 1554 priv->flags |= EIP197_SIMPLE_TRC; 1555 /* EIP197 always has SOME form of TRC */ 1556 priv->flags |= EIP197_TRC_CACHE; 1557 } else { 1558 /* EIP97 */ 1559 priv->hwconfig.hwdataw = (hiaopt >> EIP197_HWDATAW_OFFSET) & 1560 EIP97_HWDATAW_MASK; 1561 priv->hwconfig.hwcfsize = (hiaopt >> EIP97_CFSIZE_OFFSET) & 1562 EIP97_CFSIZE_MASK; 1563 priv->hwconfig.hwrfsize = (hiaopt >> EIP97_RFSIZE_OFFSET) & 1564 EIP97_RFSIZE_MASK; 1565 priv->hwconfig.hwnumpes = 1; /* by definition */ 1566 priv->hwconfig.hwnumrings = (hiaopt >> EIP197_N_RINGS_OFFSET) & 1567 EIP197_N_RINGS_MASK; 1568 } 1569 1570 /* Scan for ring AIC's */ 1571 for (i = 0; i < EIP197_MAX_RING_AIC; i++) { 1572 version = readl(EIP197_HIA_AIC_R(priv) + 1573 EIP197_HIA_AIC_R_VERSION(i)); 1574 if (EIP197_REG_LO16(version) != EIP201_VERSION_LE) 1575 break; 1576 } 1577 priv->hwconfig.hwnumraic = i; 1578 /* Low-end EIP196 may not have any ring AIC's ... */ 1579 if (!priv->hwconfig.hwnumraic) { 1580 dev_err(priv->dev, "No ring interrupt controller present!\n"); 1581 return -ENODEV; 1582 } 1583 1584 /* Get supported algorithms from EIP96 transform engine */ 1585 priv->hwconfig.algo_flags = readl(EIP197_PE(priv) + 1586 EIP197_PE_EIP96_OPTIONS(0)); 1587 1588 /* Print single info line describing what we just detected */ 1589 dev_info(priv->dev, "EIP%d:%x(%d,%d,%d,%d)-HIA:%x(%d,%d,%d),PE:%x/%x(alg:%08x)/%x/%x/%x\n", 1590 peid, priv->hwconfig.hwver, hwctg, priv->hwconfig.hwnumpes, 1591 priv->hwconfig.hwnumrings, priv->hwconfig.hwnumraic, 1592 priv->hwconfig.hiaver, priv->hwconfig.hwdataw, 1593 priv->hwconfig.hwcfsize, priv->hwconfig.hwrfsize, 1594 priv->hwconfig.ppver, priv->hwconfig.pever, 1595 priv->hwconfig.algo_flags, priv->hwconfig.icever, 1596 priv->hwconfig.ocever, priv->hwconfig.psever); 1597 1598 safexcel_configure(priv); 1599 1600 if (IS_ENABLED(CONFIG_PCI) && priv->version == EIP197_DEVBRD) { 1601 /* 1602 * Request MSI vectors for global + 1 per ring - 1603 * or just 1 for older dev images 1604 */ 1605 struct pci_dev *pci_pdev = pdev; 1606 1607 ret = pci_alloc_irq_vectors(pci_pdev, 1608 priv->config.rings + 1, 1609 priv->config.rings + 1, 1610 PCI_IRQ_MSI | PCI_IRQ_MSIX); 1611 if (ret < 0) { 1612 dev_err(dev, "Failed to allocate PCI MSI interrupts\n"); 1613 return ret; 1614 } 1615 } 1616 1617 /* Register the ring IRQ handlers and configure the rings */ 1618 priv->ring = devm_kcalloc(dev, priv->config.rings, 1619 sizeof(*priv->ring), 1620 GFP_KERNEL); 1621 if (!priv->ring) 1622 return -ENOMEM; 1623 1624 for (i = 0; i < priv->config.rings; i++) { 1625 char wq_name[9] = {0}; 1626 int irq; 1627 struct safexcel_ring_irq_data *ring_irq; 1628 1629 ret = safexcel_init_ring_descriptors(priv, 1630 &priv->ring[i].cdr, 1631 &priv->ring[i].rdr); 1632 if (ret) { 1633 dev_err(dev, "Failed to initialize rings\n"); 1634 return ret; 1635 } 1636 1637 priv->ring[i].rdr_req = devm_kcalloc(dev, 1638 EIP197_DEFAULT_RING_SIZE, 1639 sizeof(*priv->ring[i].rdr_req), 1640 GFP_KERNEL); 1641 if (!priv->ring[i].rdr_req) 1642 return -ENOMEM; 1643 1644 ring_irq = devm_kzalloc(dev, sizeof(*ring_irq), GFP_KERNEL); 1645 if (!ring_irq) 1646 return -ENOMEM; 1647 1648 ring_irq->priv = priv; 1649 ring_irq->ring = i; 1650 1651 irq = safexcel_request_ring_irq(pdev, 1652 EIP197_IRQ_NUMBER(i, is_pci_dev), 1653 is_pci_dev, 1654 i, 1655 safexcel_irq_ring, 1656 safexcel_irq_ring_thread, 1657 ring_irq); 1658 if (irq < 0) { 1659 dev_err(dev, "Failed to get IRQ ID for ring %d\n", i); 1660 return irq; 1661 } 1662 1663 priv->ring[i].irq = irq; 1664 priv->ring[i].work_data.priv = priv; 1665 priv->ring[i].work_data.ring = i; 1666 INIT_WORK(&priv->ring[i].work_data.work, 1667 safexcel_dequeue_work); 1668 1669 snprintf(wq_name, 9, "wq_ring%d", i); 1670 priv->ring[i].workqueue = 1671 create_singlethread_workqueue(wq_name); 1672 if (!priv->ring[i].workqueue) 1673 return -ENOMEM; 1674 1675 priv->ring[i].requests = 0; 1676 priv->ring[i].busy = false; 1677 1678 crypto_init_queue(&priv->ring[i].queue, 1679 EIP197_DEFAULT_RING_SIZE); 1680 1681 spin_lock_init(&priv->ring[i].lock); 1682 spin_lock_init(&priv->ring[i].queue_lock); 1683 } 1684 1685 atomic_set(&priv->ring_used, 0); 1686 1687 ret = safexcel_hw_init(priv); 1688 if (ret) { 1689 dev_err(dev, "HW init failed (%d)\n", ret); 1690 return ret; 1691 } 1692 1693 ret = safexcel_register_algorithms(priv); 1694 if (ret) { 1695 dev_err(dev, "Failed to register algorithms (%d)\n", ret); 1696 return ret; 1697 } 1698 1699 return 0; 1700 } 1701 1702 static void safexcel_hw_reset_rings(struct safexcel_crypto_priv *priv) 1703 { 1704 int i; 1705 1706 for (i = 0; i < priv->config.rings; i++) { 1707 /* clear any pending interrupt */ 1708 writel(GENMASK(5, 0), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT); 1709 writel(GENMASK(7, 0), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT); 1710 1711 /* Reset the CDR base address */ 1712 writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); 1713 writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); 1714 1715 /* Reset the RDR base address */ 1716 writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); 1717 writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); 1718 } 1719 } 1720 1721 /* for Device Tree platform driver */ 1722 1723 static int safexcel_probe(struct platform_device *pdev) 1724 { 1725 struct device *dev = &pdev->dev; 1726 struct safexcel_crypto_priv *priv; 1727 int ret; 1728 1729 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 1730 if (!priv) 1731 return -ENOMEM; 1732 1733 priv->dev = dev; 1734 priv->version = (enum safexcel_eip_version)of_device_get_match_data(dev); 1735 1736 platform_set_drvdata(pdev, priv); 1737 1738 priv->base = devm_platform_ioremap_resource(pdev, 0); 1739 if (IS_ERR(priv->base)) { 1740 dev_err(dev, "failed to get resource\n"); 1741 return PTR_ERR(priv->base); 1742 } 1743 1744 priv->clk = devm_clk_get(&pdev->dev, NULL); 1745 ret = PTR_ERR_OR_ZERO(priv->clk); 1746 /* The clock isn't mandatory */ 1747 if (ret != -ENOENT) { 1748 if (ret) 1749 return ret; 1750 1751 ret = clk_prepare_enable(priv->clk); 1752 if (ret) { 1753 dev_err(dev, "unable to enable clk (%d)\n", ret); 1754 return ret; 1755 } 1756 } 1757 1758 priv->reg_clk = devm_clk_get(&pdev->dev, "reg"); 1759 ret = PTR_ERR_OR_ZERO(priv->reg_clk); 1760 /* The clock isn't mandatory */ 1761 if (ret != -ENOENT) { 1762 if (ret) 1763 goto err_core_clk; 1764 1765 ret = clk_prepare_enable(priv->reg_clk); 1766 if (ret) { 1767 dev_err(dev, "unable to enable reg clk (%d)\n", ret); 1768 goto err_core_clk; 1769 } 1770 } 1771 1772 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 1773 if (ret) 1774 goto err_reg_clk; 1775 1776 /* Generic EIP97/EIP197 device probing */ 1777 ret = safexcel_probe_generic(pdev, priv, 0); 1778 if (ret) 1779 goto err_reg_clk; 1780 1781 return 0; 1782 1783 err_reg_clk: 1784 clk_disable_unprepare(priv->reg_clk); 1785 err_core_clk: 1786 clk_disable_unprepare(priv->clk); 1787 return ret; 1788 } 1789 1790 static int safexcel_remove(struct platform_device *pdev) 1791 { 1792 struct safexcel_crypto_priv *priv = platform_get_drvdata(pdev); 1793 int i; 1794 1795 safexcel_unregister_algorithms(priv); 1796 safexcel_hw_reset_rings(priv); 1797 1798 clk_disable_unprepare(priv->reg_clk); 1799 clk_disable_unprepare(priv->clk); 1800 1801 for (i = 0; i < priv->config.rings; i++) { 1802 irq_set_affinity_hint(priv->ring[i].irq, NULL); 1803 destroy_workqueue(priv->ring[i].workqueue); 1804 } 1805 1806 return 0; 1807 } 1808 1809 static const struct of_device_id safexcel_of_match_table[] = { 1810 { 1811 .compatible = "inside-secure,safexcel-eip97ies", 1812 .data = (void *)EIP97IES_MRVL, 1813 }, 1814 { 1815 .compatible = "inside-secure,safexcel-eip197b", 1816 .data = (void *)EIP197B_MRVL, 1817 }, 1818 { 1819 .compatible = "inside-secure,safexcel-eip197d", 1820 .data = (void *)EIP197D_MRVL, 1821 }, 1822 /* For backward compatibility and intended for generic use */ 1823 { 1824 .compatible = "inside-secure,safexcel-eip97", 1825 .data = (void *)EIP97IES_MRVL, 1826 }, 1827 { 1828 .compatible = "inside-secure,safexcel-eip197", 1829 .data = (void *)EIP197B_MRVL, 1830 }, 1831 {}, 1832 }; 1833 1834 MODULE_DEVICE_TABLE(of, safexcel_of_match_table); 1835 1836 static struct platform_driver crypto_safexcel = { 1837 .probe = safexcel_probe, 1838 .remove = safexcel_remove, 1839 .driver = { 1840 .name = "crypto-safexcel", 1841 .of_match_table = safexcel_of_match_table, 1842 }, 1843 }; 1844 1845 /* PCIE devices - i.e. Inside Secure development boards */ 1846 1847 static int safexcel_pci_probe(struct pci_dev *pdev, 1848 const struct pci_device_id *ent) 1849 { 1850 struct device *dev = &pdev->dev; 1851 struct safexcel_crypto_priv *priv; 1852 void __iomem *pciebase; 1853 int rc; 1854 u32 val; 1855 1856 dev_dbg(dev, "Probing PCIE device: vendor %04x, device %04x, subv %04x, subdev %04x, ctxt %lx\n", 1857 ent->vendor, ent->device, ent->subvendor, 1858 ent->subdevice, ent->driver_data); 1859 1860 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 1861 if (!priv) 1862 return -ENOMEM; 1863 1864 priv->dev = dev; 1865 priv->version = (enum safexcel_eip_version)ent->driver_data; 1866 1867 pci_set_drvdata(pdev, priv); 1868 1869 /* enable the device */ 1870 rc = pcim_enable_device(pdev); 1871 if (rc) { 1872 dev_err(dev, "Failed to enable PCI device\n"); 1873 return rc; 1874 } 1875 1876 /* take ownership of PCI BAR0 */ 1877 rc = pcim_iomap_regions(pdev, 1, "crypto_safexcel"); 1878 if (rc) { 1879 dev_err(dev, "Failed to map IO region for BAR0\n"); 1880 return rc; 1881 } 1882 priv->base = pcim_iomap_table(pdev)[0]; 1883 1884 if (priv->version == EIP197_DEVBRD) { 1885 dev_dbg(dev, "Device identified as FPGA based development board - applying HW reset\n"); 1886 1887 rc = pcim_iomap_regions(pdev, 4, "crypto_safexcel"); 1888 if (rc) { 1889 dev_err(dev, "Failed to map IO region for BAR4\n"); 1890 return rc; 1891 } 1892 1893 pciebase = pcim_iomap_table(pdev)[2]; 1894 val = readl(pciebase + EIP197_XLX_IRQ_BLOCK_ID_ADDR); 1895 if ((val >> 16) == EIP197_XLX_IRQ_BLOCK_ID_VALUE) { 1896 dev_dbg(dev, "Detected Xilinx PCIE IRQ block version %d, multiple MSI support enabled\n", 1897 (val & 0xff)); 1898 1899 /* Setup MSI identity map mapping */ 1900 writel(EIP197_XLX_USER_VECT_LUT0_IDENT, 1901 pciebase + EIP197_XLX_USER_VECT_LUT0_ADDR); 1902 writel(EIP197_XLX_USER_VECT_LUT1_IDENT, 1903 pciebase + EIP197_XLX_USER_VECT_LUT1_ADDR); 1904 writel(EIP197_XLX_USER_VECT_LUT2_IDENT, 1905 pciebase + EIP197_XLX_USER_VECT_LUT2_ADDR); 1906 writel(EIP197_XLX_USER_VECT_LUT3_IDENT, 1907 pciebase + EIP197_XLX_USER_VECT_LUT3_ADDR); 1908 1909 /* Enable all device interrupts */ 1910 writel(GENMASK(31, 0), 1911 pciebase + EIP197_XLX_USER_INT_ENB_MSK); 1912 } else { 1913 dev_err(dev, "Unrecognised IRQ block identifier %x\n", 1914 val); 1915 return -ENODEV; 1916 } 1917 1918 /* HW reset FPGA dev board */ 1919 /* assert reset */ 1920 writel(1, priv->base + EIP197_XLX_GPIO_BASE); 1921 wmb(); /* maintain strict ordering for accesses here */ 1922 /* deassert reset */ 1923 writel(0, priv->base + EIP197_XLX_GPIO_BASE); 1924 wmb(); /* maintain strict ordering for accesses here */ 1925 } 1926 1927 /* enable bus mastering */ 1928 pci_set_master(pdev); 1929 1930 /* Generic EIP97/EIP197 device probing */ 1931 rc = safexcel_probe_generic(pdev, priv, 1); 1932 return rc; 1933 } 1934 1935 static void safexcel_pci_remove(struct pci_dev *pdev) 1936 { 1937 struct safexcel_crypto_priv *priv = pci_get_drvdata(pdev); 1938 int i; 1939 1940 safexcel_unregister_algorithms(priv); 1941 1942 for (i = 0; i < priv->config.rings; i++) 1943 destroy_workqueue(priv->ring[i].workqueue); 1944 1945 safexcel_hw_reset_rings(priv); 1946 } 1947 1948 static const struct pci_device_id safexcel_pci_ids[] = { 1949 { 1950 PCI_DEVICE_SUB(PCI_VENDOR_ID_XILINX, 0x9038, 1951 0x16ae, 0xc522), 1952 .driver_data = EIP197_DEVBRD, 1953 }, 1954 {}, 1955 }; 1956 1957 MODULE_DEVICE_TABLE(pci, safexcel_pci_ids); 1958 1959 static struct pci_driver safexcel_pci_driver = { 1960 .name = "crypto-safexcel", 1961 .id_table = safexcel_pci_ids, 1962 .probe = safexcel_pci_probe, 1963 .remove = safexcel_pci_remove, 1964 }; 1965 1966 static int __init safexcel_init(void) 1967 { 1968 int ret; 1969 1970 /* Register PCI driver */ 1971 ret = pci_register_driver(&safexcel_pci_driver); 1972 1973 /* Register platform driver */ 1974 if (IS_ENABLED(CONFIG_OF) && !ret) { 1975 ret = platform_driver_register(&crypto_safexcel); 1976 if (ret) 1977 pci_unregister_driver(&safexcel_pci_driver); 1978 } 1979 1980 return ret; 1981 } 1982 1983 static void __exit safexcel_exit(void) 1984 { 1985 /* Unregister platform driver */ 1986 if (IS_ENABLED(CONFIG_OF)) 1987 platform_driver_unregister(&crypto_safexcel); 1988 1989 /* Unregister PCI driver if successfully registered before */ 1990 pci_unregister_driver(&safexcel_pci_driver); 1991 } 1992 1993 module_init(safexcel_init); 1994 module_exit(safexcel_exit); 1995 1996 MODULE_AUTHOR("Antoine Tenart <antoine.tenart@free-electrons.com>"); 1997 MODULE_AUTHOR("Ofer Heifetz <oferh@marvell.com>"); 1998 MODULE_AUTHOR("Igal Liberman <igall@marvell.com>"); 1999 MODULE_DESCRIPTION("Support for SafeXcel cryptographic engines: EIP97 & EIP197"); 2000 MODULE_LICENSE("GPL v2"); 2001 MODULE_IMPORT_NS(CRYPTO_INTERNAL); 2002 2003 MODULE_FIRMWARE("ifpp.bin"); 2004 MODULE_FIRMWARE("ipue.bin"); 2005 MODULE_FIRMWARE("inside-secure/eip197b/ifpp.bin"); 2006 MODULE_FIRMWARE("inside-secure/eip197b/ipue.bin"); 2007 MODULE_FIRMWARE("inside-secure/eip197d/ifpp.bin"); 2008 MODULE_FIRMWARE("inside-secure/eip197d/ipue.bin"); 2009 MODULE_FIRMWARE("inside-secure/eip197_minifw/ifpp.bin"); 2010 MODULE_FIRMWARE("inside-secure/eip197_minifw/ipue.bin"); 2011