xref: /openbmc/linux/drivers/crypto/inside-secure/safexcel.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017 Marvell
4  *
5  * Antoine Tenart <antoine.tenart@free-electrons.com>
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/firmware.h>
13 #include <linux/interrupt.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/of_irq.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/workqueue.h>
20 
21 #include <crypto/internal/aead.h>
22 #include <crypto/internal/hash.h>
23 #include <crypto/internal/skcipher.h>
24 
25 #include "safexcel.h"
26 
27 static u32 max_rings = EIP197_MAX_RINGS;
28 module_param(max_rings, uint, 0644);
29 MODULE_PARM_DESC(max_rings, "Maximum number of rings to use.");
30 
31 static void eip197_trc_cache_setupvirt(struct safexcel_crypto_priv *priv)
32 {
33 	int i;
34 
35 	/*
36 	 * Map all interfaces/rings to register index 0
37 	 * so they can share contexts. Without this, the EIP197 will
38 	 * assume each interface/ring to be in its own memory domain
39 	 * i.e. have its own subset of UNIQUE memory addresses.
40 	 * Which would cause records with the SAME memory address to
41 	 * use DIFFERENT cache buffers, causing both poor cache utilization
42 	 * AND serious coherence/invalidation issues.
43 	 */
44 	for (i = 0; i < 4; i++)
45 		writel(0, priv->base + EIP197_FLUE_IFC_LUT(i));
46 
47 	/*
48 	 * Initialize other virtualization regs for cache
49 	 * These may not be in their reset state ...
50 	 */
51 	for (i = 0; i < priv->config.rings; i++) {
52 		writel(0, priv->base + EIP197_FLUE_CACHEBASE_LO(i));
53 		writel(0, priv->base + EIP197_FLUE_CACHEBASE_HI(i));
54 		writel(EIP197_FLUE_CONFIG_MAGIC,
55 		       priv->base + EIP197_FLUE_CONFIG(i));
56 	}
57 	writel(0, priv->base + EIP197_FLUE_OFFSETS);
58 	writel(0, priv->base + EIP197_FLUE_ARC4_OFFSET);
59 }
60 
61 static void eip197_trc_cache_banksel(struct safexcel_crypto_priv *priv,
62 				     u32 addrmid, int *actbank)
63 {
64 	u32 val;
65 	int curbank;
66 
67 	curbank = addrmid >> 16;
68 	if (curbank != *actbank) {
69 		val = readl(priv->base + EIP197_CS_RAM_CTRL);
70 		val = (val & ~EIP197_CS_BANKSEL_MASK) |
71 		      (curbank << EIP197_CS_BANKSEL_OFS);
72 		writel(val, priv->base + EIP197_CS_RAM_CTRL);
73 		*actbank = curbank;
74 	}
75 }
76 
77 static u32 eip197_trc_cache_probe(struct safexcel_crypto_priv *priv,
78 				  int maxbanks, u32 probemask, u32 stride)
79 {
80 	u32 val, addrhi, addrlo, addrmid, addralias, delta, marker;
81 	int actbank;
82 
83 	/*
84 	 * And probe the actual size of the physically attached cache data RAM
85 	 * Using a binary subdivision algorithm downto 32 byte cache lines.
86 	 */
87 	addrhi = 1 << (16 + maxbanks);
88 	addrlo = 0;
89 	actbank = min(maxbanks - 1, 0);
90 	while ((addrhi - addrlo) > stride) {
91 		/* write marker to lowest address in top half */
92 		addrmid = (addrhi + addrlo) >> 1;
93 		marker = (addrmid ^ 0xabadbabe) & probemask; /* Unique */
94 		eip197_trc_cache_banksel(priv, addrmid, &actbank);
95 		writel(marker,
96 			priv->base + EIP197_CLASSIFICATION_RAMS +
97 			(addrmid & 0xffff));
98 
99 		/* write invalid markers to possible aliases */
100 		delta = 1 << __fls(addrmid);
101 		while (delta >= stride) {
102 			addralias = addrmid - delta;
103 			eip197_trc_cache_banksel(priv, addralias, &actbank);
104 			writel(~marker,
105 			       priv->base + EIP197_CLASSIFICATION_RAMS +
106 			       (addralias & 0xffff));
107 			delta >>= 1;
108 		}
109 
110 		/* read back marker from top half */
111 		eip197_trc_cache_banksel(priv, addrmid, &actbank);
112 		val = readl(priv->base + EIP197_CLASSIFICATION_RAMS +
113 			    (addrmid & 0xffff));
114 
115 		if ((val & probemask) == marker)
116 			/* read back correct, continue with top half */
117 			addrlo = addrmid;
118 		else
119 			/* not read back correct, continue with bottom half */
120 			addrhi = addrmid;
121 	}
122 	return addrhi;
123 }
124 
125 static void eip197_trc_cache_clear(struct safexcel_crypto_priv *priv,
126 				   int cs_rc_max, int cs_ht_wc)
127 {
128 	int i;
129 	u32 htable_offset, val, offset;
130 
131 	/* Clear all records in administration RAM */
132 	for (i = 0; i < cs_rc_max; i++) {
133 		offset = EIP197_CLASSIFICATION_RAMS + i * EIP197_CS_RC_SIZE;
134 
135 		writel(EIP197_CS_RC_NEXT(EIP197_RC_NULL) |
136 		       EIP197_CS_RC_PREV(EIP197_RC_NULL),
137 		       priv->base + offset);
138 
139 		val = EIP197_CS_RC_NEXT(i + 1) | EIP197_CS_RC_PREV(i - 1);
140 		if (i == 0)
141 			val |= EIP197_CS_RC_PREV(EIP197_RC_NULL);
142 		else if (i == cs_rc_max - 1)
143 			val |= EIP197_CS_RC_NEXT(EIP197_RC_NULL);
144 		writel(val, priv->base + offset + 4);
145 		/* must also initialize the address key due to ECC! */
146 		writel(0, priv->base + offset + 8);
147 		writel(0, priv->base + offset + 12);
148 	}
149 
150 	/* Clear the hash table entries */
151 	htable_offset = cs_rc_max * EIP197_CS_RC_SIZE;
152 	for (i = 0; i < cs_ht_wc; i++)
153 		writel(GENMASK(29, 0),
154 		       priv->base + EIP197_CLASSIFICATION_RAMS +
155 		       htable_offset + i * sizeof(u32));
156 }
157 
158 static int eip197_trc_cache_init(struct safexcel_crypto_priv *priv)
159 {
160 	u32 val, dsize, asize;
161 	int cs_rc_max, cs_ht_wc, cs_trc_rec_wc, cs_trc_lg_rec_wc;
162 	int cs_rc_abs_max, cs_ht_sz;
163 	int maxbanks;
164 
165 	/* Setup (dummy) virtualization for cache */
166 	eip197_trc_cache_setupvirt(priv);
167 
168 	/*
169 	 * Enable the record cache memory access and
170 	 * probe the bank select width
171 	 */
172 	val = readl(priv->base + EIP197_CS_RAM_CTRL);
173 	val &= ~EIP197_TRC_ENABLE_MASK;
174 	val |= EIP197_TRC_ENABLE_0 | EIP197_CS_BANKSEL_MASK;
175 	writel(val, priv->base + EIP197_CS_RAM_CTRL);
176 	val = readl(priv->base + EIP197_CS_RAM_CTRL);
177 	maxbanks = ((val&EIP197_CS_BANKSEL_MASK)>>EIP197_CS_BANKSEL_OFS) + 1;
178 
179 	/* Clear all ECC errors */
180 	writel(0, priv->base + EIP197_TRC_ECCCTRL);
181 
182 	/*
183 	 * Make sure the cache memory is accessible by taking record cache into
184 	 * reset. Need data memory access here, not admin access.
185 	 */
186 	val = readl(priv->base + EIP197_TRC_PARAMS);
187 	val |= EIP197_TRC_PARAMS_SW_RESET | EIP197_TRC_PARAMS_DATA_ACCESS;
188 	writel(val, priv->base + EIP197_TRC_PARAMS);
189 
190 	/* Probed data RAM size in bytes */
191 	dsize = eip197_trc_cache_probe(priv, maxbanks, 0xffffffff, 32);
192 
193 	/*
194 	 * Now probe the administration RAM size pretty much the same way
195 	 * Except that only the lower 30 bits are writable and we don't need
196 	 * bank selects
197 	 */
198 	val = readl(priv->base + EIP197_TRC_PARAMS);
199 	/* admin access now */
200 	val &= ~(EIP197_TRC_PARAMS_DATA_ACCESS | EIP197_CS_BANKSEL_MASK);
201 	writel(val, priv->base + EIP197_TRC_PARAMS);
202 
203 	/* Probed admin RAM size in admin words */
204 	asize = eip197_trc_cache_probe(priv, 0, 0x3fffffff, 16) >> 4;
205 
206 	/* Clear any ECC errors detected while probing! */
207 	writel(0, priv->base + EIP197_TRC_ECCCTRL);
208 
209 	/* Sanity check probing results */
210 	if (dsize < EIP197_MIN_DSIZE || asize < EIP197_MIN_ASIZE) {
211 		dev_err(priv->dev, "Record cache probing failed (%d,%d).",
212 			dsize, asize);
213 		return -ENODEV;
214 	}
215 
216 	/*
217 	 * Determine optimal configuration from RAM sizes
218 	 * Note that we assume that the physical RAM configuration is sane
219 	 * Therefore, we don't do any parameter error checking here ...
220 	 */
221 
222 	/* For now, just use a single record format covering everything */
223 	cs_trc_rec_wc = EIP197_CS_TRC_REC_WC;
224 	cs_trc_lg_rec_wc = EIP197_CS_TRC_REC_WC;
225 
226 	/*
227 	 * Step #1: How many records will physically fit?
228 	 * Hard upper limit is 1023!
229 	 */
230 	cs_rc_abs_max = min_t(uint, ((dsize >> 2) / cs_trc_lg_rec_wc), 1023);
231 	/* Step #2: Need at least 2 words in the admin RAM per record */
232 	cs_rc_max = min_t(uint, cs_rc_abs_max, (asize >> 1));
233 	/* Step #3: Determine log2 of hash table size */
234 	cs_ht_sz = __fls(asize - cs_rc_max) - 2;
235 	/* Step #4: determine current size of hash table in dwords */
236 	cs_ht_wc = 16 << cs_ht_sz; /* dwords, not admin words */
237 	/* Step #5: add back excess words and see if we can fit more records */
238 	cs_rc_max = min_t(uint, cs_rc_abs_max, asize - (cs_ht_wc >> 2));
239 
240 	/* Clear the cache RAMs */
241 	eip197_trc_cache_clear(priv, cs_rc_max, cs_ht_wc);
242 
243 	/* Disable the record cache memory access */
244 	val = readl(priv->base + EIP197_CS_RAM_CTRL);
245 	val &= ~EIP197_TRC_ENABLE_MASK;
246 	writel(val, priv->base + EIP197_CS_RAM_CTRL);
247 
248 	/* Write head and tail pointers of the record free chain */
249 	val = EIP197_TRC_FREECHAIN_HEAD_PTR(0) |
250 	      EIP197_TRC_FREECHAIN_TAIL_PTR(cs_rc_max - 1);
251 	writel(val, priv->base + EIP197_TRC_FREECHAIN);
252 
253 	/* Configure the record cache #1 */
254 	val = EIP197_TRC_PARAMS2_RC_SZ_SMALL(cs_trc_rec_wc) |
255 	      EIP197_TRC_PARAMS2_HTABLE_PTR(cs_rc_max);
256 	writel(val, priv->base + EIP197_TRC_PARAMS2);
257 
258 	/* Configure the record cache #2 */
259 	val = EIP197_TRC_PARAMS_RC_SZ_LARGE(cs_trc_lg_rec_wc) |
260 	      EIP197_TRC_PARAMS_BLK_TIMER_SPEED(1) |
261 	      EIP197_TRC_PARAMS_HTABLE_SZ(cs_ht_sz);
262 	writel(val, priv->base + EIP197_TRC_PARAMS);
263 
264 	dev_info(priv->dev, "TRC init: %dd,%da (%dr,%dh)\n",
265 		 dsize, asize, cs_rc_max, cs_ht_wc + cs_ht_wc);
266 	return 0;
267 }
268 
269 static void eip197_init_firmware(struct safexcel_crypto_priv *priv)
270 {
271 	int pe, i;
272 	u32 val;
273 
274 	for (pe = 0; pe < priv->config.pes; pe++) {
275 		/* Configure the token FIFO's */
276 		writel(3, EIP197_PE(priv) + EIP197_PE_ICE_PUTF_CTRL(pe));
277 		writel(0, EIP197_PE(priv) + EIP197_PE_ICE_PPTF_CTRL(pe));
278 
279 		/* Clear the ICE scratchpad memory */
280 		val = readl(EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe));
281 		val |= EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_TIMER |
282 		       EIP197_PE_ICE_SCRATCH_CTRL_TIMER_EN |
283 		       EIP197_PE_ICE_SCRATCH_CTRL_SCRATCH_ACCESS |
284 		       EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_ACCESS;
285 		writel(val, EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe));
286 
287 		/* clear the scratchpad RAM using 32 bit writes only */
288 		for (i = 0; i < EIP197_NUM_OF_SCRATCH_BLOCKS; i++)
289 			writel(0, EIP197_PE(priv) +
290 				  EIP197_PE_ICE_SCRATCH_RAM(pe) + (i << 2));
291 
292 		/* Reset the IFPP engine to make its program mem accessible */
293 		writel(EIP197_PE_ICE_x_CTRL_SW_RESET |
294 		       EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR |
295 		       EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR,
296 		       EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe));
297 
298 		/* Reset the IPUE engine to make its program mem accessible */
299 		writel(EIP197_PE_ICE_x_CTRL_SW_RESET |
300 		       EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR |
301 		       EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR,
302 		       EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe));
303 
304 		/* Enable access to all IFPP program memories */
305 		writel(EIP197_PE_ICE_RAM_CTRL_FPP_PROG_EN,
306 		       EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
307 	}
308 
309 }
310 
311 static int eip197_write_firmware(struct safexcel_crypto_priv *priv,
312 				  const struct firmware *fw)
313 {
314 	const __be32 *data = (const __be32 *)fw->data;
315 	int i;
316 
317 	/* Write the firmware */
318 	for (i = 0; i < fw->size / sizeof(u32); i++)
319 		writel(be32_to_cpu(data[i]),
320 		       priv->base + EIP197_CLASSIFICATION_RAMS +
321 		       i * sizeof(__be32));
322 
323 	/* Exclude final 2 NOPs from size */
324 	return i - EIP197_FW_TERMINAL_NOPS;
325 }
326 
327 /*
328  * If FW is actual production firmware, then poll for its initialization
329  * to complete and check if it is good for the HW, otherwise just return OK.
330  */
331 static bool poll_fw_ready(struct safexcel_crypto_priv *priv, int fpp)
332 {
333 	int pe, pollcnt;
334 	u32 base, pollofs;
335 
336 	if (fpp)
337 		pollofs  = EIP197_FW_FPP_READY;
338 	else
339 		pollofs  = EIP197_FW_PUE_READY;
340 
341 	for (pe = 0; pe < priv->config.pes; pe++) {
342 		base = EIP197_PE_ICE_SCRATCH_RAM(pe);
343 		pollcnt = EIP197_FW_START_POLLCNT;
344 		while (pollcnt &&
345 		       (readl_relaxed(EIP197_PE(priv) + base +
346 			      pollofs) != 1)) {
347 			pollcnt--;
348 		}
349 		if (!pollcnt) {
350 			dev_err(priv->dev, "FW(%d) for PE %d failed to start\n",
351 				fpp, pe);
352 			return false;
353 		}
354 	}
355 	return true;
356 }
357 
358 static bool eip197_start_firmware(struct safexcel_crypto_priv *priv,
359 				  int ipuesz, int ifppsz, int minifw)
360 {
361 	int pe;
362 	u32 val;
363 
364 	for (pe = 0; pe < priv->config.pes; pe++) {
365 		/* Disable access to all program memory */
366 		writel(0, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
367 
368 		/* Start IFPP microengines */
369 		if (minifw)
370 			val = 0;
371 		else
372 			val = EIP197_PE_ICE_UENG_START_OFFSET((ifppsz - 1) &
373 					EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) |
374 				EIP197_PE_ICE_UENG_DEBUG_RESET;
375 		writel(val, EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe));
376 
377 		/* Start IPUE microengines */
378 		if (minifw)
379 			val = 0;
380 		else
381 			val = EIP197_PE_ICE_UENG_START_OFFSET((ipuesz - 1) &
382 					EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) |
383 				EIP197_PE_ICE_UENG_DEBUG_RESET;
384 		writel(val, EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe));
385 	}
386 
387 	/* For miniFW startup, there is no initialization, so always succeed */
388 	if (minifw)
389 		return true;
390 
391 	/* Wait until all the firmwares have properly started up */
392 	if (!poll_fw_ready(priv, 1))
393 		return false;
394 	if (!poll_fw_ready(priv, 0))
395 		return false;
396 
397 	return true;
398 }
399 
400 static int eip197_load_firmwares(struct safexcel_crypto_priv *priv)
401 {
402 	const char *fw_name[] = {"ifpp.bin", "ipue.bin"};
403 	const struct firmware *fw[FW_NB];
404 	char fw_path[37], *dir = NULL;
405 	int i, j, ret = 0, pe;
406 	int ipuesz, ifppsz, minifw = 0;
407 
408 	if (priv->version == EIP197D_MRVL)
409 		dir = "eip197d";
410 	else if (priv->version == EIP197B_MRVL ||
411 		 priv->version == EIP197_DEVBRD)
412 		dir = "eip197b";
413 	else
414 		return -ENODEV;
415 
416 retry_fw:
417 	for (i = 0; i < FW_NB; i++) {
418 		snprintf(fw_path, 37, "inside-secure/%s/%s", dir, fw_name[i]);
419 		ret = firmware_request_nowarn(&fw[i], fw_path, priv->dev);
420 		if (ret) {
421 			if (minifw || priv->version != EIP197B_MRVL)
422 				goto release_fw;
423 
424 			/* Fallback to the old firmware location for the
425 			 * EIP197b.
426 			 */
427 			ret = firmware_request_nowarn(&fw[i], fw_name[i],
428 						      priv->dev);
429 			if (ret)
430 				goto release_fw;
431 		}
432 	}
433 
434 	eip197_init_firmware(priv);
435 
436 	ifppsz = eip197_write_firmware(priv, fw[FW_IFPP]);
437 
438 	/* Enable access to IPUE program memories */
439 	for (pe = 0; pe < priv->config.pes; pe++)
440 		writel(EIP197_PE_ICE_RAM_CTRL_PUE_PROG_EN,
441 		       EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
442 
443 	ipuesz = eip197_write_firmware(priv, fw[FW_IPUE]);
444 
445 	if (eip197_start_firmware(priv, ipuesz, ifppsz, minifw)) {
446 		dev_dbg(priv->dev, "Firmware loaded successfully\n");
447 		return 0;
448 	}
449 
450 	ret = -ENODEV;
451 
452 release_fw:
453 	for (j = 0; j < i; j++)
454 		release_firmware(fw[j]);
455 
456 	if (!minifw) {
457 		/* Retry with minifw path */
458 		dev_dbg(priv->dev, "Firmware set not (fully) present or init failed, falling back to BCLA mode\n");
459 		dir = "eip197_minifw";
460 		minifw = 1;
461 		goto retry_fw;
462 	}
463 
464 	dev_dbg(priv->dev, "Firmware load failed.\n");
465 
466 	return ret;
467 }
468 
469 static int safexcel_hw_setup_cdesc_rings(struct safexcel_crypto_priv *priv)
470 {
471 	u32 cd_size_rnd, val;
472 	int i, cd_fetch_cnt;
473 
474 	cd_size_rnd  = (priv->config.cd_size +
475 			(BIT(priv->hwconfig.hwdataw) - 1)) >>
476 		       priv->hwconfig.hwdataw;
477 	/* determine number of CD's we can fetch into the CD FIFO as 1 block */
478 	if (priv->flags & SAFEXCEL_HW_EIP197) {
479 		/* EIP197: try to fetch enough in 1 go to keep all pipes busy */
480 		cd_fetch_cnt = (1 << priv->hwconfig.hwcfsize) / cd_size_rnd;
481 		cd_fetch_cnt = min_t(uint, cd_fetch_cnt,
482 				     (priv->config.pes * EIP197_FETCH_DEPTH));
483 	} else {
484 		/* for the EIP97, just fetch all that fits minus 1 */
485 		cd_fetch_cnt = ((1 << priv->hwconfig.hwcfsize) /
486 				cd_size_rnd) - 1;
487 	}
488 	/*
489 	 * Since we're using command desc's way larger than formally specified,
490 	 * we need to check whether we can fit even 1 for low-end EIP196's!
491 	 */
492 	if (!cd_fetch_cnt) {
493 		dev_err(priv->dev, "Unable to fit even 1 command desc!\n");
494 		return -ENODEV;
495 	}
496 
497 	for (i = 0; i < priv->config.rings; i++) {
498 		/* ring base address */
499 		writel(lower_32_bits(priv->ring[i].cdr.base_dma),
500 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
501 		writel(upper_32_bits(priv->ring[i].cdr.base_dma),
502 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
503 
504 		writel(EIP197_xDR_DESC_MODE_64BIT | EIP197_CDR_DESC_MODE_ADCP |
505 		       (priv->config.cd_offset << 14) | priv->config.cd_size,
506 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE);
507 		writel(((cd_fetch_cnt *
508 			 (cd_size_rnd << priv->hwconfig.hwdataw)) << 16) |
509 		       (cd_fetch_cnt * (priv->config.cd_offset / sizeof(u32))),
510 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG);
511 
512 		/* Configure DMA tx control */
513 		val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
514 		val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
515 		writel(val, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DMA_CFG);
516 
517 		/* clear any pending interrupt */
518 		writel(GENMASK(5, 0),
519 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT);
520 	}
521 
522 	return 0;
523 }
524 
525 static int safexcel_hw_setup_rdesc_rings(struct safexcel_crypto_priv *priv)
526 {
527 	u32 rd_size_rnd, val;
528 	int i, rd_fetch_cnt;
529 
530 	/* determine number of RD's we can fetch into the FIFO as one block */
531 	rd_size_rnd = (EIP197_RD64_FETCH_SIZE +
532 		       (BIT(priv->hwconfig.hwdataw) - 1)) >>
533 		      priv->hwconfig.hwdataw;
534 	if (priv->flags & SAFEXCEL_HW_EIP197) {
535 		/* EIP197: try to fetch enough in 1 go to keep all pipes busy */
536 		rd_fetch_cnt = (1 << priv->hwconfig.hwrfsize) / rd_size_rnd;
537 		rd_fetch_cnt = min_t(uint, rd_fetch_cnt,
538 				     (priv->config.pes * EIP197_FETCH_DEPTH));
539 	} else {
540 		/* for the EIP97, just fetch all that fits minus 1 */
541 		rd_fetch_cnt = ((1 << priv->hwconfig.hwrfsize) /
542 				rd_size_rnd) - 1;
543 	}
544 
545 	for (i = 0; i < priv->config.rings; i++) {
546 		/* ring base address */
547 		writel(lower_32_bits(priv->ring[i].rdr.base_dma),
548 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
549 		writel(upper_32_bits(priv->ring[i].rdr.base_dma),
550 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
551 
552 		writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.rd_offset << 14) |
553 		       priv->config.rd_size,
554 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE);
555 
556 		writel(((rd_fetch_cnt *
557 			 (rd_size_rnd << priv->hwconfig.hwdataw)) << 16) |
558 		       (rd_fetch_cnt * (priv->config.rd_offset / sizeof(u32))),
559 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG);
560 
561 		/* Configure DMA tx control */
562 		val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
563 		val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
564 		val |= EIP197_HIA_xDR_WR_RES_BUF | EIP197_HIA_xDR_WR_CTRL_BUF;
565 		writel(val,
566 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DMA_CFG);
567 
568 		/* clear any pending interrupt */
569 		writel(GENMASK(7, 0),
570 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT);
571 
572 		/* enable ring interrupt */
573 		val = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
574 		val |= EIP197_RDR_IRQ(i);
575 		writel(val, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
576 	}
577 
578 	return 0;
579 }
580 
581 static int safexcel_hw_init(struct safexcel_crypto_priv *priv)
582 {
583 	u32 val;
584 	int i, ret, pe, opbuflo, opbufhi;
585 
586 	dev_dbg(priv->dev, "HW init: using %d pipe(s) and %d ring(s)\n",
587 		priv->config.pes, priv->config.rings);
588 
589 	/*
590 	 * For EIP197's only set maximum number of TX commands to 2^5 = 32
591 	 * Skip for the EIP97 as it does not have this field.
592 	 */
593 	if (priv->flags & SAFEXCEL_HW_EIP197) {
594 		val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
595 		val |= EIP197_MST_CTRL_TX_MAX_CMD(5);
596 		writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
597 	}
598 
599 	/* Configure wr/rd cache values */
600 	writel(EIP197_MST_CTRL_RD_CACHE(RD_CACHE_4BITS) |
601 	       EIP197_MST_CTRL_WD_CACHE(WR_CACHE_4BITS),
602 	       EIP197_HIA_GEN_CFG(priv) + EIP197_MST_CTRL);
603 
604 	/* Interrupts reset */
605 
606 	/* Disable all global interrupts */
607 	writel(0, EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ENABLE_CTRL);
608 
609 	/* Clear any pending interrupt */
610 	writel(GENMASK(31, 0), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK);
611 
612 	/* Processing Engine configuration */
613 	for (pe = 0; pe < priv->config.pes; pe++) {
614 		/* Data Fetch Engine configuration */
615 
616 		/* Reset all DFE threads */
617 		writel(EIP197_DxE_THR_CTRL_RESET_PE,
618 		       EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
619 
620 		if (priv->flags & EIP197_PE_ARB)
621 			/* Reset HIA input interface arbiter (if present) */
622 			writel(EIP197_HIA_RA_PE_CTRL_RESET,
623 			       EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe));
624 
625 		/* DMA transfer size to use */
626 		val = EIP197_HIA_DFE_CFG_DIS_DEBUG;
627 		val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(6) |
628 		       EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(9);
629 		val |= EIP197_HIA_DxE_CFG_MIN_CTRL_SIZE(6) |
630 		       EIP197_HIA_DxE_CFG_MAX_CTRL_SIZE(7);
631 		val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(RD_CACHE_3BITS);
632 		val |= EIP197_HIA_DxE_CFG_CTRL_CACHE_CTRL(RD_CACHE_3BITS);
633 		writel(val, EIP197_HIA_DFE(priv) + EIP197_HIA_DFE_CFG(pe));
634 
635 		/* Leave the DFE threads reset state */
636 		writel(0, EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
637 
638 		/* Configure the processing engine thresholds */
639 		writel(EIP197_PE_IN_xBUF_THRES_MIN(6) |
640 		       EIP197_PE_IN_xBUF_THRES_MAX(9),
641 		       EIP197_PE(priv) + EIP197_PE_IN_DBUF_THRES(pe));
642 		writel(EIP197_PE_IN_xBUF_THRES_MIN(6) |
643 		       EIP197_PE_IN_xBUF_THRES_MAX(7),
644 		       EIP197_PE(priv) + EIP197_PE_IN_TBUF_THRES(pe));
645 
646 		if (priv->flags & SAFEXCEL_HW_EIP197)
647 			/* enable HIA input interface arbiter and rings */
648 			writel(EIP197_HIA_RA_PE_CTRL_EN |
649 			       GENMASK(priv->config.rings - 1, 0),
650 			       EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe));
651 
652 		/* Data Store Engine configuration */
653 
654 		/* Reset all DSE threads */
655 		writel(EIP197_DxE_THR_CTRL_RESET_PE,
656 		       EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
657 
658 		/* Wait for all DSE threads to complete */
659 		while ((readl(EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_STAT(pe)) &
660 			GENMASK(15, 12)) != GENMASK(15, 12))
661 			;
662 
663 		/* DMA transfer size to use */
664 		if (priv->hwconfig.hwnumpes > 4) {
665 			opbuflo = 9;
666 			opbufhi = 10;
667 		} else {
668 			opbuflo = 7;
669 			opbufhi = 8;
670 		}
671 		val = EIP197_HIA_DSE_CFG_DIS_DEBUG;
672 		val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(opbuflo) |
673 		       EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(opbufhi);
674 		val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(WR_CACHE_3BITS);
675 		val |= EIP197_HIA_DSE_CFG_ALWAYS_BUFFERABLE;
676 		/* FIXME: instability issues can occur for EIP97 but disabling
677 		 * it impacts performance.
678 		 */
679 		if (priv->flags & SAFEXCEL_HW_EIP197)
680 			val |= EIP197_HIA_DSE_CFG_EN_SINGLE_WR;
681 		writel(val, EIP197_HIA_DSE(priv) + EIP197_HIA_DSE_CFG(pe));
682 
683 		/* Leave the DSE threads reset state */
684 		writel(0, EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
685 
686 		/* Configure the procesing engine thresholds */
687 		writel(EIP197_PE_OUT_DBUF_THRES_MIN(opbuflo) |
688 		       EIP197_PE_OUT_DBUF_THRES_MAX(opbufhi),
689 		       EIP197_PE(priv) + EIP197_PE_OUT_DBUF_THRES(pe));
690 
691 		/* Processing Engine configuration */
692 
693 		/* Token & context configuration */
694 		val = EIP197_PE_EIP96_TOKEN_CTRL_CTX_UPDATES |
695 		      EIP197_PE_EIP96_TOKEN_CTRL_NO_TOKEN_WAIT |
696 		      EIP197_PE_EIP96_TOKEN_CTRL_ENABLE_TIMEOUT;
697 		writel(val, EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL(pe));
698 
699 		/* H/W capabilities selection: just enable everything */
700 		writel(EIP197_FUNCTION_ALL,
701 		       EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION_EN(pe));
702 		writel(EIP197_FUNCTION_ALL,
703 		       EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION2_EN(pe));
704 	}
705 
706 	/* Command Descriptor Rings prepare */
707 	for (i = 0; i < priv->config.rings; i++) {
708 		/* Clear interrupts for this ring */
709 		writel(GENMASK(31, 0),
710 		       EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CLR(i));
711 
712 		/* Disable external triggering */
713 		writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG);
714 
715 		/* Clear the pending prepared counter */
716 		writel(EIP197_xDR_PREP_CLR_COUNT,
717 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT);
718 
719 		/* Clear the pending processed counter */
720 		writel(EIP197_xDR_PROC_CLR_COUNT,
721 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT);
722 
723 		writel(0,
724 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR);
725 		writel(0,
726 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR);
727 
728 		writel((EIP197_DEFAULT_RING_SIZE * priv->config.cd_offset),
729 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_SIZE);
730 	}
731 
732 	/* Result Descriptor Ring prepare */
733 	for (i = 0; i < priv->config.rings; i++) {
734 		/* Disable external triggering*/
735 		writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG);
736 
737 		/* Clear the pending prepared counter */
738 		writel(EIP197_xDR_PREP_CLR_COUNT,
739 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT);
740 
741 		/* Clear the pending processed counter */
742 		writel(EIP197_xDR_PROC_CLR_COUNT,
743 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT);
744 
745 		writel(0,
746 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR);
747 		writel(0,
748 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR);
749 
750 		/* Ring size */
751 		writel((EIP197_DEFAULT_RING_SIZE * priv->config.rd_offset),
752 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_SIZE);
753 	}
754 
755 	for (pe = 0; pe < priv->config.pes; pe++) {
756 		/* Enable command descriptor rings */
757 		writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
758 		       EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
759 
760 		/* Enable result descriptor rings */
761 		writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
762 		       EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
763 	}
764 
765 	/* Clear any HIA interrupt */
766 	writel(GENMASK(30, 20), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK);
767 
768 	if (priv->flags & EIP197_SIMPLE_TRC) {
769 		writel(EIP197_STRC_CONFIG_INIT |
770 		       EIP197_STRC_CONFIG_LARGE_REC(EIP197_CS_TRC_REC_WC) |
771 		       EIP197_STRC_CONFIG_SMALL_REC(EIP197_CS_TRC_REC_WC),
772 		       priv->base + EIP197_STRC_CONFIG);
773 		writel(EIP197_PE_EIP96_TOKEN_CTRL2_CTX_DONE,
774 		       EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL2(0));
775 	} else if (priv->flags & SAFEXCEL_HW_EIP197) {
776 		ret = eip197_trc_cache_init(priv);
777 		if (ret)
778 			return ret;
779 	}
780 
781 	if (priv->flags & EIP197_ICE) {
782 		ret = eip197_load_firmwares(priv);
783 		if (ret)
784 			return ret;
785 	}
786 
787 	return safexcel_hw_setup_cdesc_rings(priv) ?:
788 	       safexcel_hw_setup_rdesc_rings(priv) ?:
789 	       0;
790 }
791 
792 /* Called with ring's lock taken */
793 static void safexcel_try_push_requests(struct safexcel_crypto_priv *priv,
794 				       int ring)
795 {
796 	int coal = min_t(int, priv->ring[ring].requests, EIP197_MAX_BATCH_SZ);
797 
798 	if (!coal)
799 		return;
800 
801 	/* Configure when we want an interrupt */
802 	writel(EIP197_HIA_RDR_THRESH_PKT_MODE |
803 	       EIP197_HIA_RDR_THRESH_PROC_PKT(coal),
804 	       EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_THRESH);
805 }
806 
807 void safexcel_dequeue(struct safexcel_crypto_priv *priv, int ring)
808 {
809 	struct crypto_async_request *req, *backlog;
810 	struct safexcel_context *ctx;
811 	int ret, nreq = 0, cdesc = 0, rdesc = 0, commands, results;
812 
813 	/* If a request wasn't properly dequeued because of a lack of resources,
814 	 * proceeded it first,
815 	 */
816 	req = priv->ring[ring].req;
817 	backlog = priv->ring[ring].backlog;
818 	if (req)
819 		goto handle_req;
820 
821 	while (true) {
822 		spin_lock_bh(&priv->ring[ring].queue_lock);
823 		backlog = crypto_get_backlog(&priv->ring[ring].queue);
824 		req = crypto_dequeue_request(&priv->ring[ring].queue);
825 		spin_unlock_bh(&priv->ring[ring].queue_lock);
826 
827 		if (!req) {
828 			priv->ring[ring].req = NULL;
829 			priv->ring[ring].backlog = NULL;
830 			goto finalize;
831 		}
832 
833 handle_req:
834 		ctx = crypto_tfm_ctx(req->tfm);
835 		ret = ctx->send(req, ring, &commands, &results);
836 		if (ret)
837 			goto request_failed;
838 
839 		if (backlog)
840 			backlog->complete(backlog, -EINPROGRESS);
841 
842 		/* In case the send() helper did not issue any command to push
843 		 * to the engine because the input data was cached, continue to
844 		 * dequeue other requests as this is valid and not an error.
845 		 */
846 		if (!commands && !results)
847 			continue;
848 
849 		cdesc += commands;
850 		rdesc += results;
851 		nreq++;
852 	}
853 
854 request_failed:
855 	/* Not enough resources to handle all the requests. Bail out and save
856 	 * the request and the backlog for the next dequeue call (per-ring).
857 	 */
858 	priv->ring[ring].req = req;
859 	priv->ring[ring].backlog = backlog;
860 
861 finalize:
862 	if (!nreq)
863 		return;
864 
865 	spin_lock_bh(&priv->ring[ring].lock);
866 
867 	priv->ring[ring].requests += nreq;
868 
869 	if (!priv->ring[ring].busy) {
870 		safexcel_try_push_requests(priv, ring);
871 		priv->ring[ring].busy = true;
872 	}
873 
874 	spin_unlock_bh(&priv->ring[ring].lock);
875 
876 	/* let the RDR know we have pending descriptors */
877 	writel((rdesc * priv->config.rd_offset),
878 	       EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT);
879 
880 	/* let the CDR know we have pending descriptors */
881 	writel((cdesc * priv->config.cd_offset),
882 	       EIP197_HIA_CDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT);
883 }
884 
885 inline int safexcel_rdesc_check_errors(struct safexcel_crypto_priv *priv,
886 				       void *rdp)
887 {
888 	struct safexcel_result_desc *rdesc = rdp;
889 	struct result_data_desc *result_data = rdp + priv->config.res_offset;
890 
891 	if (likely((!rdesc->last_seg) || /* Rest only valid if last seg! */
892 		   ((!rdesc->descriptor_overflow) &&
893 		    (!rdesc->buffer_overflow) &&
894 		    (!result_data->error_code))))
895 		return 0;
896 
897 	if (rdesc->descriptor_overflow)
898 		dev_err(priv->dev, "Descriptor overflow detected");
899 
900 	if (rdesc->buffer_overflow)
901 		dev_err(priv->dev, "Buffer overflow detected");
902 
903 	if (result_data->error_code & 0x4066) {
904 		/* Fatal error (bits 1,2,5,6 & 14) */
905 		dev_err(priv->dev,
906 			"result descriptor error (%x)",
907 			result_data->error_code);
908 
909 		return -EIO;
910 	} else if (result_data->error_code &
911 		   (BIT(7) | BIT(4) | BIT(3) | BIT(0))) {
912 		/*
913 		 * Give priority over authentication fails:
914 		 * Blocksize, length & overflow errors,
915 		 * something wrong with the input!
916 		 */
917 		return -EINVAL;
918 	} else if (result_data->error_code & BIT(9)) {
919 		/* Authentication failed */
920 		return -EBADMSG;
921 	}
922 
923 	/* All other non-fatal errors */
924 	return -EINVAL;
925 }
926 
927 inline void safexcel_rdr_req_set(struct safexcel_crypto_priv *priv,
928 				 int ring,
929 				 struct safexcel_result_desc *rdesc,
930 				 struct crypto_async_request *req)
931 {
932 	int i = safexcel_ring_rdr_rdesc_index(priv, ring, rdesc);
933 
934 	priv->ring[ring].rdr_req[i] = req;
935 }
936 
937 inline struct crypto_async_request *
938 safexcel_rdr_req_get(struct safexcel_crypto_priv *priv, int ring)
939 {
940 	int i = safexcel_ring_first_rdr_index(priv, ring);
941 
942 	return priv->ring[ring].rdr_req[i];
943 }
944 
945 void safexcel_complete(struct safexcel_crypto_priv *priv, int ring)
946 {
947 	struct safexcel_command_desc *cdesc;
948 
949 	/* Acknowledge the command descriptors */
950 	do {
951 		cdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].cdr);
952 		if (IS_ERR(cdesc)) {
953 			dev_err(priv->dev,
954 				"Could not retrieve the command descriptor\n");
955 			return;
956 		}
957 	} while (!cdesc->last_seg);
958 }
959 
960 void safexcel_inv_complete(struct crypto_async_request *req, int error)
961 {
962 	struct safexcel_inv_result *result = req->data;
963 
964 	if (error == -EINPROGRESS)
965 		return;
966 
967 	result->error = error;
968 	complete(&result->completion);
969 }
970 
971 int safexcel_invalidate_cache(struct crypto_async_request *async,
972 			      struct safexcel_crypto_priv *priv,
973 			      dma_addr_t ctxr_dma, int ring)
974 {
975 	struct safexcel_command_desc *cdesc;
976 	struct safexcel_result_desc *rdesc;
977 	struct safexcel_token  *dmmy;
978 	int ret = 0;
979 
980 	/* Prepare command descriptor */
981 	cdesc = safexcel_add_cdesc(priv, ring, true, true, 0, 0, 0, ctxr_dma,
982 				   &dmmy);
983 	if (IS_ERR(cdesc))
984 		return PTR_ERR(cdesc);
985 
986 	cdesc->control_data.type = EIP197_TYPE_EXTENDED;
987 	cdesc->control_data.options = 0;
988 	cdesc->control_data.context_lo &= ~EIP197_CONTEXT_SIZE_MASK;
989 	cdesc->control_data.control0 = CONTEXT_CONTROL_INV_TR;
990 
991 	/* Prepare result descriptor */
992 	rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0);
993 
994 	if (IS_ERR(rdesc)) {
995 		ret = PTR_ERR(rdesc);
996 		goto cdesc_rollback;
997 	}
998 
999 	safexcel_rdr_req_set(priv, ring, rdesc, async);
1000 
1001 	return ret;
1002 
1003 cdesc_rollback:
1004 	safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
1005 
1006 	return ret;
1007 }
1008 
1009 static inline void safexcel_handle_result_descriptor(struct safexcel_crypto_priv *priv,
1010 						     int ring)
1011 {
1012 	struct crypto_async_request *req;
1013 	struct safexcel_context *ctx;
1014 	int ret, i, nreq, ndesc, tot_descs, handled = 0;
1015 	bool should_complete;
1016 
1017 handle_results:
1018 	tot_descs = 0;
1019 
1020 	nreq = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT);
1021 	nreq >>= EIP197_xDR_PROC_xD_PKT_OFFSET;
1022 	nreq &= EIP197_xDR_PROC_xD_PKT_MASK;
1023 	if (!nreq)
1024 		goto requests_left;
1025 
1026 	for (i = 0; i < nreq; i++) {
1027 		req = safexcel_rdr_req_get(priv, ring);
1028 
1029 		ctx = crypto_tfm_ctx(req->tfm);
1030 		ndesc = ctx->handle_result(priv, ring, req,
1031 					   &should_complete, &ret);
1032 		if (ndesc < 0) {
1033 			dev_err(priv->dev, "failed to handle result (%d)\n",
1034 				ndesc);
1035 			goto acknowledge;
1036 		}
1037 
1038 		if (should_complete) {
1039 			local_bh_disable();
1040 			req->complete(req, ret);
1041 			local_bh_enable();
1042 		}
1043 
1044 		tot_descs += ndesc;
1045 		handled++;
1046 	}
1047 
1048 acknowledge:
1049 	if (i)
1050 		writel(EIP197_xDR_PROC_xD_PKT(i) |
1051 		       (tot_descs * priv->config.rd_offset),
1052 		       EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT);
1053 
1054 	/* If the number of requests overflowed the counter, try to proceed more
1055 	 * requests.
1056 	 */
1057 	if (nreq == EIP197_xDR_PROC_xD_PKT_MASK)
1058 		goto handle_results;
1059 
1060 requests_left:
1061 	spin_lock_bh(&priv->ring[ring].lock);
1062 
1063 	priv->ring[ring].requests -= handled;
1064 	safexcel_try_push_requests(priv, ring);
1065 
1066 	if (!priv->ring[ring].requests)
1067 		priv->ring[ring].busy = false;
1068 
1069 	spin_unlock_bh(&priv->ring[ring].lock);
1070 }
1071 
1072 static void safexcel_dequeue_work(struct work_struct *work)
1073 {
1074 	struct safexcel_work_data *data =
1075 			container_of(work, struct safexcel_work_data, work);
1076 
1077 	safexcel_dequeue(data->priv, data->ring);
1078 }
1079 
1080 struct safexcel_ring_irq_data {
1081 	struct safexcel_crypto_priv *priv;
1082 	int ring;
1083 };
1084 
1085 static irqreturn_t safexcel_irq_ring(int irq, void *data)
1086 {
1087 	struct safexcel_ring_irq_data *irq_data = data;
1088 	struct safexcel_crypto_priv *priv = irq_data->priv;
1089 	int ring = irq_data->ring, rc = IRQ_NONE;
1090 	u32 status, stat;
1091 
1092 	status = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLED_STAT(ring));
1093 	if (!status)
1094 		return rc;
1095 
1096 	/* RDR interrupts */
1097 	if (status & EIP197_RDR_IRQ(ring)) {
1098 		stat = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT);
1099 
1100 		if (unlikely(stat & EIP197_xDR_ERR)) {
1101 			/*
1102 			 * Fatal error, the RDR is unusable and must be
1103 			 * reinitialized. This should not happen under
1104 			 * normal circumstances.
1105 			 */
1106 			dev_err(priv->dev, "RDR: fatal error.\n");
1107 		} else if (likely(stat & EIP197_xDR_THRESH)) {
1108 			rc = IRQ_WAKE_THREAD;
1109 		}
1110 
1111 		/* ACK the interrupts */
1112 		writel(stat & 0xff,
1113 		       EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT);
1114 	}
1115 
1116 	/* ACK the interrupts */
1117 	writel(status, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ACK(ring));
1118 
1119 	return rc;
1120 }
1121 
1122 static irqreturn_t safexcel_irq_ring_thread(int irq, void *data)
1123 {
1124 	struct safexcel_ring_irq_data *irq_data = data;
1125 	struct safexcel_crypto_priv *priv = irq_data->priv;
1126 	int ring = irq_data->ring;
1127 
1128 	safexcel_handle_result_descriptor(priv, ring);
1129 
1130 	queue_work(priv->ring[ring].workqueue,
1131 		   &priv->ring[ring].work_data.work);
1132 
1133 	return IRQ_HANDLED;
1134 }
1135 
1136 static int safexcel_request_ring_irq(void *pdev, int irqid,
1137 				     int is_pci_dev,
1138 				     int ring_id,
1139 				     irq_handler_t handler,
1140 				     irq_handler_t threaded_handler,
1141 				     struct safexcel_ring_irq_data *ring_irq_priv)
1142 {
1143 	int ret, irq, cpu;
1144 	struct device *dev;
1145 
1146 	if (IS_ENABLED(CONFIG_PCI) && is_pci_dev) {
1147 		struct pci_dev *pci_pdev = pdev;
1148 
1149 		dev = &pci_pdev->dev;
1150 		irq = pci_irq_vector(pci_pdev, irqid);
1151 		if (irq < 0) {
1152 			dev_err(dev, "unable to get device MSI IRQ %d (err %d)\n",
1153 				irqid, irq);
1154 			return irq;
1155 		}
1156 	} else if (IS_ENABLED(CONFIG_OF)) {
1157 		struct platform_device *plf_pdev = pdev;
1158 		char irq_name[6] = {0}; /* "ringX\0" */
1159 
1160 		snprintf(irq_name, 6, "ring%d", irqid);
1161 		dev = &plf_pdev->dev;
1162 		irq = platform_get_irq_byname(plf_pdev, irq_name);
1163 
1164 		if (irq < 0) {
1165 			dev_err(dev, "unable to get IRQ '%s' (err %d)\n",
1166 				irq_name, irq);
1167 			return irq;
1168 		}
1169 	} else {
1170 		return -ENXIO;
1171 	}
1172 
1173 	ret = devm_request_threaded_irq(dev, irq, handler,
1174 					threaded_handler, IRQF_ONESHOT,
1175 					dev_name(dev), ring_irq_priv);
1176 	if (ret) {
1177 		dev_err(dev, "unable to request IRQ %d\n", irq);
1178 		return ret;
1179 	}
1180 
1181 	/* Set affinity */
1182 	cpu = cpumask_local_spread(ring_id, NUMA_NO_NODE);
1183 	irq_set_affinity_hint(irq, get_cpu_mask(cpu));
1184 
1185 	return irq;
1186 }
1187 
1188 static struct safexcel_alg_template *safexcel_algs[] = {
1189 	&safexcel_alg_ecb_des,
1190 	&safexcel_alg_cbc_des,
1191 	&safexcel_alg_ecb_des3_ede,
1192 	&safexcel_alg_cbc_des3_ede,
1193 	&safexcel_alg_ecb_aes,
1194 	&safexcel_alg_cbc_aes,
1195 	&safexcel_alg_cfb_aes,
1196 	&safexcel_alg_ofb_aes,
1197 	&safexcel_alg_ctr_aes,
1198 	&safexcel_alg_md5,
1199 	&safexcel_alg_sha1,
1200 	&safexcel_alg_sha224,
1201 	&safexcel_alg_sha256,
1202 	&safexcel_alg_sha384,
1203 	&safexcel_alg_sha512,
1204 	&safexcel_alg_hmac_md5,
1205 	&safexcel_alg_hmac_sha1,
1206 	&safexcel_alg_hmac_sha224,
1207 	&safexcel_alg_hmac_sha256,
1208 	&safexcel_alg_hmac_sha384,
1209 	&safexcel_alg_hmac_sha512,
1210 	&safexcel_alg_authenc_hmac_sha1_cbc_aes,
1211 	&safexcel_alg_authenc_hmac_sha224_cbc_aes,
1212 	&safexcel_alg_authenc_hmac_sha256_cbc_aes,
1213 	&safexcel_alg_authenc_hmac_sha384_cbc_aes,
1214 	&safexcel_alg_authenc_hmac_sha512_cbc_aes,
1215 	&safexcel_alg_authenc_hmac_sha1_cbc_des3_ede,
1216 	&safexcel_alg_authenc_hmac_sha1_ctr_aes,
1217 	&safexcel_alg_authenc_hmac_sha224_ctr_aes,
1218 	&safexcel_alg_authenc_hmac_sha256_ctr_aes,
1219 	&safexcel_alg_authenc_hmac_sha384_ctr_aes,
1220 	&safexcel_alg_authenc_hmac_sha512_ctr_aes,
1221 	&safexcel_alg_xts_aes,
1222 	&safexcel_alg_gcm,
1223 	&safexcel_alg_ccm,
1224 	&safexcel_alg_crc32,
1225 	&safexcel_alg_cbcmac,
1226 	&safexcel_alg_xcbcmac,
1227 	&safexcel_alg_cmac,
1228 	&safexcel_alg_chacha20,
1229 	&safexcel_alg_chachapoly,
1230 	&safexcel_alg_chachapoly_esp,
1231 	&safexcel_alg_sm3,
1232 	&safexcel_alg_hmac_sm3,
1233 	&safexcel_alg_ecb_sm4,
1234 	&safexcel_alg_cbc_sm4,
1235 	&safexcel_alg_ofb_sm4,
1236 	&safexcel_alg_cfb_sm4,
1237 	&safexcel_alg_ctr_sm4,
1238 	&safexcel_alg_authenc_hmac_sha1_cbc_sm4,
1239 	&safexcel_alg_authenc_hmac_sm3_cbc_sm4,
1240 	&safexcel_alg_authenc_hmac_sha1_ctr_sm4,
1241 	&safexcel_alg_authenc_hmac_sm3_ctr_sm4,
1242 	&safexcel_alg_sha3_224,
1243 	&safexcel_alg_sha3_256,
1244 	&safexcel_alg_sha3_384,
1245 	&safexcel_alg_sha3_512,
1246 	&safexcel_alg_hmac_sha3_224,
1247 	&safexcel_alg_hmac_sha3_256,
1248 	&safexcel_alg_hmac_sha3_384,
1249 	&safexcel_alg_hmac_sha3_512,
1250 	&safexcel_alg_authenc_hmac_sha1_cbc_des,
1251 	&safexcel_alg_authenc_hmac_sha256_cbc_des3_ede,
1252 	&safexcel_alg_authenc_hmac_sha224_cbc_des3_ede,
1253 	&safexcel_alg_authenc_hmac_sha512_cbc_des3_ede,
1254 	&safexcel_alg_authenc_hmac_sha384_cbc_des3_ede,
1255 	&safexcel_alg_authenc_hmac_sha256_cbc_des,
1256 	&safexcel_alg_authenc_hmac_sha224_cbc_des,
1257 	&safexcel_alg_authenc_hmac_sha512_cbc_des,
1258 	&safexcel_alg_authenc_hmac_sha384_cbc_des,
1259 	&safexcel_alg_rfc4106_gcm,
1260 	&safexcel_alg_rfc4543_gcm,
1261 	&safexcel_alg_rfc4309_ccm,
1262 };
1263 
1264 static int safexcel_register_algorithms(struct safexcel_crypto_priv *priv)
1265 {
1266 	int i, j, ret = 0;
1267 
1268 	for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
1269 		safexcel_algs[i]->priv = priv;
1270 
1271 		/* Do we have all required base algorithms available? */
1272 		if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) !=
1273 		    safexcel_algs[i]->algo_mask)
1274 			/* No, so don't register this ciphersuite */
1275 			continue;
1276 
1277 		if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
1278 			ret = crypto_register_skcipher(&safexcel_algs[i]->alg.skcipher);
1279 		else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD)
1280 			ret = crypto_register_aead(&safexcel_algs[i]->alg.aead);
1281 		else
1282 			ret = crypto_register_ahash(&safexcel_algs[i]->alg.ahash);
1283 
1284 		if (ret)
1285 			goto fail;
1286 	}
1287 
1288 	return 0;
1289 
1290 fail:
1291 	for (j = 0; j < i; j++) {
1292 		/* Do we have all required base algorithms available? */
1293 		if ((safexcel_algs[j]->algo_mask & priv->hwconfig.algo_flags) !=
1294 		    safexcel_algs[j]->algo_mask)
1295 			/* No, so don't unregister this ciphersuite */
1296 			continue;
1297 
1298 		if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
1299 			crypto_unregister_skcipher(&safexcel_algs[j]->alg.skcipher);
1300 		else if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_AEAD)
1301 			crypto_unregister_aead(&safexcel_algs[j]->alg.aead);
1302 		else
1303 			crypto_unregister_ahash(&safexcel_algs[j]->alg.ahash);
1304 	}
1305 
1306 	return ret;
1307 }
1308 
1309 static void safexcel_unregister_algorithms(struct safexcel_crypto_priv *priv)
1310 {
1311 	int i;
1312 
1313 	for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
1314 		/* Do we have all required base algorithms available? */
1315 		if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) !=
1316 		    safexcel_algs[i]->algo_mask)
1317 			/* No, so don't unregister this ciphersuite */
1318 			continue;
1319 
1320 		if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
1321 			crypto_unregister_skcipher(&safexcel_algs[i]->alg.skcipher);
1322 		else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD)
1323 			crypto_unregister_aead(&safexcel_algs[i]->alg.aead);
1324 		else
1325 			crypto_unregister_ahash(&safexcel_algs[i]->alg.ahash);
1326 	}
1327 }
1328 
1329 static void safexcel_configure(struct safexcel_crypto_priv *priv)
1330 {
1331 	u32 mask = BIT(priv->hwconfig.hwdataw) - 1;
1332 
1333 	priv->config.pes = priv->hwconfig.hwnumpes;
1334 	priv->config.rings = min_t(u32, priv->hwconfig.hwnumrings, max_rings);
1335 	/* Cannot currently support more rings than we have ring AICs! */
1336 	priv->config.rings = min_t(u32, priv->config.rings,
1337 					priv->hwconfig.hwnumraic);
1338 
1339 	priv->config.cd_size = EIP197_CD64_FETCH_SIZE;
1340 	priv->config.cd_offset = (priv->config.cd_size + mask) & ~mask;
1341 	priv->config.cdsh_offset = (EIP197_MAX_TOKENS + mask) & ~mask;
1342 
1343 	/* res token is behind the descr, but ofs must be rounded to buswdth */
1344 	priv->config.res_offset = (EIP197_RD64_FETCH_SIZE + mask) & ~mask;
1345 	/* now the size of the descr is this 1st part plus the result struct */
1346 	priv->config.rd_size    = priv->config.res_offset +
1347 				  EIP197_RD64_RESULT_SIZE;
1348 	priv->config.rd_offset = (priv->config.rd_size + mask) & ~mask;
1349 
1350 	/* convert dwords to bytes */
1351 	priv->config.cd_offset *= sizeof(u32);
1352 	priv->config.cdsh_offset *= sizeof(u32);
1353 	priv->config.rd_offset *= sizeof(u32);
1354 	priv->config.res_offset *= sizeof(u32);
1355 }
1356 
1357 static void safexcel_init_register_offsets(struct safexcel_crypto_priv *priv)
1358 {
1359 	struct safexcel_register_offsets *offsets = &priv->offsets;
1360 
1361 	if (priv->flags & SAFEXCEL_HW_EIP197) {
1362 		offsets->hia_aic	= EIP197_HIA_AIC_BASE;
1363 		offsets->hia_aic_g	= EIP197_HIA_AIC_G_BASE;
1364 		offsets->hia_aic_r	= EIP197_HIA_AIC_R_BASE;
1365 		offsets->hia_aic_xdr	= EIP197_HIA_AIC_xDR_BASE;
1366 		offsets->hia_dfe	= EIP197_HIA_DFE_BASE;
1367 		offsets->hia_dfe_thr	= EIP197_HIA_DFE_THR_BASE;
1368 		offsets->hia_dse	= EIP197_HIA_DSE_BASE;
1369 		offsets->hia_dse_thr	= EIP197_HIA_DSE_THR_BASE;
1370 		offsets->hia_gen_cfg	= EIP197_HIA_GEN_CFG_BASE;
1371 		offsets->pe		= EIP197_PE_BASE;
1372 		offsets->global		= EIP197_GLOBAL_BASE;
1373 	} else {
1374 		offsets->hia_aic	= EIP97_HIA_AIC_BASE;
1375 		offsets->hia_aic_g	= EIP97_HIA_AIC_G_BASE;
1376 		offsets->hia_aic_r	= EIP97_HIA_AIC_R_BASE;
1377 		offsets->hia_aic_xdr	= EIP97_HIA_AIC_xDR_BASE;
1378 		offsets->hia_dfe	= EIP97_HIA_DFE_BASE;
1379 		offsets->hia_dfe_thr	= EIP97_HIA_DFE_THR_BASE;
1380 		offsets->hia_dse	= EIP97_HIA_DSE_BASE;
1381 		offsets->hia_dse_thr	= EIP97_HIA_DSE_THR_BASE;
1382 		offsets->hia_gen_cfg	= EIP97_HIA_GEN_CFG_BASE;
1383 		offsets->pe		= EIP97_PE_BASE;
1384 		offsets->global		= EIP97_GLOBAL_BASE;
1385 	}
1386 }
1387 
1388 /*
1389  * Generic part of probe routine, shared by platform and PCI driver
1390  *
1391  * Assumes IO resources have been mapped, private data mem has been allocated,
1392  * clocks have been enabled, device pointer has been assigned etc.
1393  *
1394  */
1395 static int safexcel_probe_generic(void *pdev,
1396 				  struct safexcel_crypto_priv *priv,
1397 				  int is_pci_dev)
1398 {
1399 	struct device *dev = priv->dev;
1400 	u32 peid, version, mask, val, hiaopt, hwopt, peopt;
1401 	int i, ret, hwctg;
1402 
1403 	priv->context_pool = dmam_pool_create("safexcel-context", dev,
1404 					      sizeof(struct safexcel_context_record),
1405 					      1, 0);
1406 	if (!priv->context_pool)
1407 		return -ENOMEM;
1408 
1409 	/*
1410 	 * First try the EIP97 HIA version regs
1411 	 * For the EIP197, this is guaranteed to NOT return any of the test
1412 	 * values
1413 	 */
1414 	version = readl(priv->base + EIP97_HIA_AIC_BASE + EIP197_HIA_VERSION);
1415 
1416 	mask = 0;  /* do not swap */
1417 	if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) {
1418 		priv->hwconfig.hiaver = EIP197_VERSION_MASK(version);
1419 	} else if (EIP197_REG_HI16(version) == EIP197_HIA_VERSION_BE) {
1420 		/* read back byte-swapped, so complement byte swap bits */
1421 		mask = EIP197_MST_CTRL_BYTE_SWAP_BITS;
1422 		priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version);
1423 	} else {
1424 		/* So it wasn't an EIP97 ... maybe it's an EIP197? */
1425 		version = readl(priv->base + EIP197_HIA_AIC_BASE +
1426 				EIP197_HIA_VERSION);
1427 		if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) {
1428 			priv->hwconfig.hiaver = EIP197_VERSION_MASK(version);
1429 			priv->flags |= SAFEXCEL_HW_EIP197;
1430 		} else if (EIP197_REG_HI16(version) ==
1431 			   EIP197_HIA_VERSION_BE) {
1432 			/* read back byte-swapped, so complement swap bits */
1433 			mask = EIP197_MST_CTRL_BYTE_SWAP_BITS;
1434 			priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version);
1435 			priv->flags |= SAFEXCEL_HW_EIP197;
1436 		} else {
1437 			return -ENODEV;
1438 		}
1439 	}
1440 
1441 	/* Now initialize the reg offsets based on the probing info so far */
1442 	safexcel_init_register_offsets(priv);
1443 
1444 	/*
1445 	 * If the version was read byte-swapped, we need to flip the device
1446 	 * swapping Keep in mind here, though, that what we write will also be
1447 	 * byte-swapped ...
1448 	 */
1449 	if (mask) {
1450 		val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
1451 		val = val ^ (mask >> 24); /* toggle byte swap bits */
1452 		writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
1453 	}
1454 
1455 	/*
1456 	 * We're not done probing yet! We may fall through to here if no HIA
1457 	 * was found at all. So, with the endianness presumably correct now and
1458 	 * the offsets setup, *really* probe for the EIP97/EIP197.
1459 	 */
1460 	version = readl(EIP197_GLOBAL(priv) + EIP197_VERSION);
1461 	if (((priv->flags & SAFEXCEL_HW_EIP197) &&
1462 	     (EIP197_REG_LO16(version) != EIP197_VERSION_LE) &&
1463 	     (EIP197_REG_LO16(version) != EIP196_VERSION_LE)) ||
1464 	    ((!(priv->flags & SAFEXCEL_HW_EIP197) &&
1465 	     (EIP197_REG_LO16(version) != EIP97_VERSION_LE)))) {
1466 		/*
1467 		 * We did not find the device that matched our initial probing
1468 		 * (or our initial probing failed) Report appropriate error.
1469 		 */
1470 		dev_err(priv->dev, "Probing for EIP97/EIP19x failed - no such device (read %08x)\n",
1471 			version);
1472 		return -ENODEV;
1473 	}
1474 
1475 	priv->hwconfig.hwver = EIP197_VERSION_MASK(version);
1476 	hwctg = version >> 28;
1477 	peid = version & 255;
1478 
1479 	/* Detect EIP206 processing pipe */
1480 	version = readl(EIP197_PE(priv) + + EIP197_PE_VERSION(0));
1481 	if (EIP197_REG_LO16(version) != EIP206_VERSION_LE) {
1482 		dev_err(priv->dev, "EIP%d: EIP206 not detected\n", peid);
1483 		return -ENODEV;
1484 	}
1485 	priv->hwconfig.ppver = EIP197_VERSION_MASK(version);
1486 
1487 	/* Detect EIP96 packet engine and version */
1488 	version = readl(EIP197_PE(priv) + EIP197_PE_EIP96_VERSION(0));
1489 	if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) {
1490 		dev_err(dev, "EIP%d: EIP96 not detected.\n", peid);
1491 		return -ENODEV;
1492 	}
1493 	priv->hwconfig.pever = EIP197_VERSION_MASK(version);
1494 
1495 	hwopt = readl(EIP197_GLOBAL(priv) + EIP197_OPTIONS);
1496 	hiaopt = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_OPTIONS);
1497 
1498 	if (priv->flags & SAFEXCEL_HW_EIP197) {
1499 		/* EIP197 */
1500 		peopt = readl(EIP197_PE(priv) + EIP197_PE_OPTIONS(0));
1501 
1502 		priv->hwconfig.hwdataw  = (hiaopt >> EIP197_HWDATAW_OFFSET) &
1503 					  EIP197_HWDATAW_MASK;
1504 		priv->hwconfig.hwcfsize = ((hiaopt >> EIP197_CFSIZE_OFFSET) &
1505 					   EIP197_CFSIZE_MASK) +
1506 					  EIP197_CFSIZE_ADJUST;
1507 		priv->hwconfig.hwrfsize = ((hiaopt >> EIP197_RFSIZE_OFFSET) &
1508 					   EIP197_RFSIZE_MASK) +
1509 					  EIP197_RFSIZE_ADJUST;
1510 		priv->hwconfig.hwnumpes	= (hiaopt >> EIP197_N_PES_OFFSET) &
1511 					  EIP197_N_PES_MASK;
1512 		priv->hwconfig.hwnumrings = (hiaopt >> EIP197_N_RINGS_OFFSET) &
1513 					    EIP197_N_RINGS_MASK;
1514 		if (hiaopt & EIP197_HIA_OPT_HAS_PE_ARB)
1515 			priv->flags |= EIP197_PE_ARB;
1516 		if (EIP206_OPT_ICE_TYPE(peopt) == 1)
1517 			priv->flags |= EIP197_ICE;
1518 		/* If not a full TRC, then assume simple TRC */
1519 		if (!(hwopt & EIP197_OPT_HAS_TRC))
1520 			priv->flags |= EIP197_SIMPLE_TRC;
1521 		/* EIP197 always has SOME form of TRC */
1522 		priv->flags |= EIP197_TRC_CACHE;
1523 	} else {
1524 		/* EIP97 */
1525 		priv->hwconfig.hwdataw  = (hiaopt >> EIP197_HWDATAW_OFFSET) &
1526 					  EIP97_HWDATAW_MASK;
1527 		priv->hwconfig.hwcfsize = (hiaopt >> EIP97_CFSIZE_OFFSET) &
1528 					  EIP97_CFSIZE_MASK;
1529 		priv->hwconfig.hwrfsize = (hiaopt >> EIP97_RFSIZE_OFFSET) &
1530 					  EIP97_RFSIZE_MASK;
1531 		priv->hwconfig.hwnumpes	= 1; /* by definition */
1532 		priv->hwconfig.hwnumrings = (hiaopt >> EIP197_N_RINGS_OFFSET) &
1533 					    EIP197_N_RINGS_MASK;
1534 	}
1535 
1536 	/* Scan for ring AIC's */
1537 	for (i = 0; i < EIP197_MAX_RING_AIC; i++) {
1538 		version = readl(EIP197_HIA_AIC_R(priv) +
1539 				EIP197_HIA_AIC_R_VERSION(i));
1540 		if (EIP197_REG_LO16(version) != EIP201_VERSION_LE)
1541 			break;
1542 	}
1543 	priv->hwconfig.hwnumraic = i;
1544 	/* Low-end EIP196 may not have any ring AIC's ... */
1545 	if (!priv->hwconfig.hwnumraic) {
1546 		dev_err(priv->dev, "No ring interrupt controller present!\n");
1547 		return -ENODEV;
1548 	}
1549 
1550 	/* Get supported algorithms from EIP96 transform engine */
1551 	priv->hwconfig.algo_flags = readl(EIP197_PE(priv) +
1552 				    EIP197_PE_EIP96_OPTIONS(0));
1553 
1554 	/* Print single info line describing what we just detected */
1555 	dev_info(priv->dev, "EIP%d:%x(%d,%d,%d,%d)-HIA:%x(%d,%d,%d),PE:%x/%x,alg:%08x\n",
1556 		 peid, priv->hwconfig.hwver, hwctg, priv->hwconfig.hwnumpes,
1557 		 priv->hwconfig.hwnumrings, priv->hwconfig.hwnumraic,
1558 		 priv->hwconfig.hiaver, priv->hwconfig.hwdataw,
1559 		 priv->hwconfig.hwcfsize, priv->hwconfig.hwrfsize,
1560 		 priv->hwconfig.ppver, priv->hwconfig.pever,
1561 		 priv->hwconfig.algo_flags);
1562 
1563 	safexcel_configure(priv);
1564 
1565 	if (IS_ENABLED(CONFIG_PCI) && priv->version == EIP197_DEVBRD) {
1566 		/*
1567 		 * Request MSI vectors for global + 1 per ring -
1568 		 * or just 1 for older dev images
1569 		 */
1570 		struct pci_dev *pci_pdev = pdev;
1571 
1572 		ret = pci_alloc_irq_vectors(pci_pdev,
1573 					    priv->config.rings + 1,
1574 					    priv->config.rings + 1,
1575 					    PCI_IRQ_MSI | PCI_IRQ_MSIX);
1576 		if (ret < 0) {
1577 			dev_err(dev, "Failed to allocate PCI MSI interrupts\n");
1578 			return ret;
1579 		}
1580 	}
1581 
1582 	/* Register the ring IRQ handlers and configure the rings */
1583 	priv->ring = devm_kcalloc(dev, priv->config.rings,
1584 				  sizeof(*priv->ring),
1585 				  GFP_KERNEL);
1586 	if (!priv->ring)
1587 		return -ENOMEM;
1588 
1589 	for (i = 0; i < priv->config.rings; i++) {
1590 		char wq_name[9] = {0};
1591 		int irq;
1592 		struct safexcel_ring_irq_data *ring_irq;
1593 
1594 		ret = safexcel_init_ring_descriptors(priv,
1595 						     &priv->ring[i].cdr,
1596 						     &priv->ring[i].rdr);
1597 		if (ret) {
1598 			dev_err(dev, "Failed to initialize rings\n");
1599 			return ret;
1600 		}
1601 
1602 		priv->ring[i].rdr_req = devm_kcalloc(dev,
1603 			EIP197_DEFAULT_RING_SIZE,
1604 			sizeof(priv->ring[i].rdr_req),
1605 			GFP_KERNEL);
1606 		if (!priv->ring[i].rdr_req)
1607 			return -ENOMEM;
1608 
1609 		ring_irq = devm_kzalloc(dev, sizeof(*ring_irq), GFP_KERNEL);
1610 		if (!ring_irq)
1611 			return -ENOMEM;
1612 
1613 		ring_irq->priv = priv;
1614 		ring_irq->ring = i;
1615 
1616 		irq = safexcel_request_ring_irq(pdev,
1617 						EIP197_IRQ_NUMBER(i, is_pci_dev),
1618 						is_pci_dev,
1619 						i,
1620 						safexcel_irq_ring,
1621 						safexcel_irq_ring_thread,
1622 						ring_irq);
1623 		if (irq < 0) {
1624 			dev_err(dev, "Failed to get IRQ ID for ring %d\n", i);
1625 			return irq;
1626 		}
1627 
1628 		priv->ring[i].irq = irq;
1629 		priv->ring[i].work_data.priv = priv;
1630 		priv->ring[i].work_data.ring = i;
1631 		INIT_WORK(&priv->ring[i].work_data.work,
1632 			  safexcel_dequeue_work);
1633 
1634 		snprintf(wq_name, 9, "wq_ring%d", i);
1635 		priv->ring[i].workqueue =
1636 			create_singlethread_workqueue(wq_name);
1637 		if (!priv->ring[i].workqueue)
1638 			return -ENOMEM;
1639 
1640 		priv->ring[i].requests = 0;
1641 		priv->ring[i].busy = false;
1642 
1643 		crypto_init_queue(&priv->ring[i].queue,
1644 				  EIP197_DEFAULT_RING_SIZE);
1645 
1646 		spin_lock_init(&priv->ring[i].lock);
1647 		spin_lock_init(&priv->ring[i].queue_lock);
1648 	}
1649 
1650 	atomic_set(&priv->ring_used, 0);
1651 
1652 	ret = safexcel_hw_init(priv);
1653 	if (ret) {
1654 		dev_err(dev, "HW init failed (%d)\n", ret);
1655 		return ret;
1656 	}
1657 
1658 	ret = safexcel_register_algorithms(priv);
1659 	if (ret) {
1660 		dev_err(dev, "Failed to register algorithms (%d)\n", ret);
1661 		return ret;
1662 	}
1663 
1664 	return 0;
1665 }
1666 
1667 static void safexcel_hw_reset_rings(struct safexcel_crypto_priv *priv)
1668 {
1669 	int i;
1670 
1671 	for (i = 0; i < priv->config.rings; i++) {
1672 		/* clear any pending interrupt */
1673 		writel(GENMASK(5, 0), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT);
1674 		writel(GENMASK(7, 0), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT);
1675 
1676 		/* Reset the CDR base address */
1677 		writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
1678 		writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
1679 
1680 		/* Reset the RDR base address */
1681 		writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
1682 		writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
1683 	}
1684 }
1685 
1686 /* for Device Tree platform driver */
1687 
1688 static int safexcel_probe(struct platform_device *pdev)
1689 {
1690 	struct device *dev = &pdev->dev;
1691 	struct safexcel_crypto_priv *priv;
1692 	int ret;
1693 
1694 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1695 	if (!priv)
1696 		return -ENOMEM;
1697 
1698 	priv->dev = dev;
1699 	priv->version = (enum safexcel_eip_version)of_device_get_match_data(dev);
1700 
1701 	platform_set_drvdata(pdev, priv);
1702 
1703 	priv->base = devm_platform_ioremap_resource(pdev, 0);
1704 	if (IS_ERR(priv->base)) {
1705 		dev_err(dev, "failed to get resource\n");
1706 		return PTR_ERR(priv->base);
1707 	}
1708 
1709 	priv->clk = devm_clk_get(&pdev->dev, NULL);
1710 	ret = PTR_ERR_OR_ZERO(priv->clk);
1711 	/* The clock isn't mandatory */
1712 	if  (ret != -ENOENT) {
1713 		if (ret)
1714 			return ret;
1715 
1716 		ret = clk_prepare_enable(priv->clk);
1717 		if (ret) {
1718 			dev_err(dev, "unable to enable clk (%d)\n", ret);
1719 			return ret;
1720 		}
1721 	}
1722 
1723 	priv->reg_clk = devm_clk_get(&pdev->dev, "reg");
1724 	ret = PTR_ERR_OR_ZERO(priv->reg_clk);
1725 	/* The clock isn't mandatory */
1726 	if  (ret != -ENOENT) {
1727 		if (ret)
1728 			goto err_core_clk;
1729 
1730 		ret = clk_prepare_enable(priv->reg_clk);
1731 		if (ret) {
1732 			dev_err(dev, "unable to enable reg clk (%d)\n", ret);
1733 			goto err_core_clk;
1734 		}
1735 	}
1736 
1737 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
1738 	if (ret)
1739 		goto err_reg_clk;
1740 
1741 	/* Generic EIP97/EIP197 device probing */
1742 	ret = safexcel_probe_generic(pdev, priv, 0);
1743 	if (ret)
1744 		goto err_reg_clk;
1745 
1746 	return 0;
1747 
1748 err_reg_clk:
1749 	clk_disable_unprepare(priv->reg_clk);
1750 err_core_clk:
1751 	clk_disable_unprepare(priv->clk);
1752 	return ret;
1753 }
1754 
1755 static int safexcel_remove(struct platform_device *pdev)
1756 {
1757 	struct safexcel_crypto_priv *priv = platform_get_drvdata(pdev);
1758 	int i;
1759 
1760 	safexcel_unregister_algorithms(priv);
1761 	safexcel_hw_reset_rings(priv);
1762 
1763 	clk_disable_unprepare(priv->reg_clk);
1764 	clk_disable_unprepare(priv->clk);
1765 
1766 	for (i = 0; i < priv->config.rings; i++) {
1767 		irq_set_affinity_hint(priv->ring[i].irq, NULL);
1768 		destroy_workqueue(priv->ring[i].workqueue);
1769 	}
1770 
1771 	return 0;
1772 }
1773 
1774 static const struct of_device_id safexcel_of_match_table[] = {
1775 	{
1776 		.compatible = "inside-secure,safexcel-eip97ies",
1777 		.data = (void *)EIP97IES_MRVL,
1778 	},
1779 	{
1780 		.compatible = "inside-secure,safexcel-eip197b",
1781 		.data = (void *)EIP197B_MRVL,
1782 	},
1783 	{
1784 		.compatible = "inside-secure,safexcel-eip197d",
1785 		.data = (void *)EIP197D_MRVL,
1786 	},
1787 	/* For backward compatibility and intended for generic use */
1788 	{
1789 		.compatible = "inside-secure,safexcel-eip97",
1790 		.data = (void *)EIP97IES_MRVL,
1791 	},
1792 	{
1793 		.compatible = "inside-secure,safexcel-eip197",
1794 		.data = (void *)EIP197B_MRVL,
1795 	},
1796 	{},
1797 };
1798 
1799 static struct platform_driver  crypto_safexcel = {
1800 	.probe		= safexcel_probe,
1801 	.remove		= safexcel_remove,
1802 	.driver		= {
1803 		.name	= "crypto-safexcel",
1804 		.of_match_table = safexcel_of_match_table,
1805 	},
1806 };
1807 
1808 /* PCIE devices - i.e. Inside Secure development boards */
1809 
1810 static int safexcel_pci_probe(struct pci_dev *pdev,
1811 			       const struct pci_device_id *ent)
1812 {
1813 	struct device *dev = &pdev->dev;
1814 	struct safexcel_crypto_priv *priv;
1815 	void __iomem *pciebase;
1816 	int rc;
1817 	u32 val;
1818 
1819 	dev_dbg(dev, "Probing PCIE device: vendor %04x, device %04x, subv %04x, subdev %04x, ctxt %lx\n",
1820 		ent->vendor, ent->device, ent->subvendor,
1821 		ent->subdevice, ent->driver_data);
1822 
1823 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1824 	if (!priv)
1825 		return -ENOMEM;
1826 
1827 	priv->dev = dev;
1828 	priv->version = (enum safexcel_eip_version)ent->driver_data;
1829 
1830 	pci_set_drvdata(pdev, priv);
1831 
1832 	/* enable the device */
1833 	rc = pcim_enable_device(pdev);
1834 	if (rc) {
1835 		dev_err(dev, "Failed to enable PCI device\n");
1836 		return rc;
1837 	}
1838 
1839 	/* take ownership of PCI BAR0 */
1840 	rc = pcim_iomap_regions(pdev, 1, "crypto_safexcel");
1841 	if (rc) {
1842 		dev_err(dev, "Failed to map IO region for BAR0\n");
1843 		return rc;
1844 	}
1845 	priv->base = pcim_iomap_table(pdev)[0];
1846 
1847 	if (priv->version == EIP197_DEVBRD) {
1848 		dev_dbg(dev, "Device identified as FPGA based development board - applying HW reset\n");
1849 
1850 		rc = pcim_iomap_regions(pdev, 4, "crypto_safexcel");
1851 		if (rc) {
1852 			dev_err(dev, "Failed to map IO region for BAR4\n");
1853 			return rc;
1854 		}
1855 
1856 		pciebase = pcim_iomap_table(pdev)[2];
1857 		val = readl(pciebase + EIP197_XLX_IRQ_BLOCK_ID_ADDR);
1858 		if ((val >> 16) == EIP197_XLX_IRQ_BLOCK_ID_VALUE) {
1859 			dev_dbg(dev, "Detected Xilinx PCIE IRQ block version %d, multiple MSI support enabled\n",
1860 				(val & 0xff));
1861 
1862 			/* Setup MSI identity map mapping */
1863 			writel(EIP197_XLX_USER_VECT_LUT0_IDENT,
1864 			       pciebase + EIP197_XLX_USER_VECT_LUT0_ADDR);
1865 			writel(EIP197_XLX_USER_VECT_LUT1_IDENT,
1866 			       pciebase + EIP197_XLX_USER_VECT_LUT1_ADDR);
1867 			writel(EIP197_XLX_USER_VECT_LUT2_IDENT,
1868 			       pciebase + EIP197_XLX_USER_VECT_LUT2_ADDR);
1869 			writel(EIP197_XLX_USER_VECT_LUT3_IDENT,
1870 			       pciebase + EIP197_XLX_USER_VECT_LUT3_ADDR);
1871 
1872 			/* Enable all device interrupts */
1873 			writel(GENMASK(31, 0),
1874 			       pciebase + EIP197_XLX_USER_INT_ENB_MSK);
1875 		} else {
1876 			dev_err(dev, "Unrecognised IRQ block identifier %x\n",
1877 				val);
1878 			return -ENODEV;
1879 		}
1880 
1881 		/* HW reset FPGA dev board */
1882 		/* assert reset */
1883 		writel(1, priv->base + EIP197_XLX_GPIO_BASE);
1884 		wmb(); /* maintain strict ordering for accesses here */
1885 		/* deassert reset */
1886 		writel(0, priv->base + EIP197_XLX_GPIO_BASE);
1887 		wmb(); /* maintain strict ordering for accesses here */
1888 	}
1889 
1890 	/* enable bus mastering */
1891 	pci_set_master(pdev);
1892 
1893 	/* Generic EIP97/EIP197 device probing */
1894 	rc = safexcel_probe_generic(pdev, priv, 1);
1895 	return rc;
1896 }
1897 
1898 static void safexcel_pci_remove(struct pci_dev *pdev)
1899 {
1900 	struct safexcel_crypto_priv *priv = pci_get_drvdata(pdev);
1901 	int i;
1902 
1903 	safexcel_unregister_algorithms(priv);
1904 
1905 	for (i = 0; i < priv->config.rings; i++)
1906 		destroy_workqueue(priv->ring[i].workqueue);
1907 
1908 	safexcel_hw_reset_rings(priv);
1909 }
1910 
1911 static const struct pci_device_id safexcel_pci_ids[] = {
1912 	{
1913 		PCI_DEVICE_SUB(PCI_VENDOR_ID_XILINX, 0x9038,
1914 			       0x16ae, 0xc522),
1915 		.driver_data = EIP197_DEVBRD,
1916 	},
1917 	{},
1918 };
1919 
1920 MODULE_DEVICE_TABLE(pci, safexcel_pci_ids);
1921 
1922 static struct pci_driver safexcel_pci_driver = {
1923 	.name          = "crypto-safexcel",
1924 	.id_table      = safexcel_pci_ids,
1925 	.probe         = safexcel_pci_probe,
1926 	.remove        = safexcel_pci_remove,
1927 };
1928 
1929 static int __init safexcel_init(void)
1930 {
1931 	int ret;
1932 
1933 	/* Register PCI driver */
1934 	ret = pci_register_driver(&safexcel_pci_driver);
1935 
1936 	/* Register platform driver */
1937 	if (IS_ENABLED(CONFIG_OF) && !ret) {
1938 		ret = platform_driver_register(&crypto_safexcel);
1939 		if (ret)
1940 			pci_unregister_driver(&safexcel_pci_driver);
1941 	}
1942 
1943 	return ret;
1944 }
1945 
1946 static void __exit safexcel_exit(void)
1947 {
1948 	/* Unregister platform driver */
1949 	if (IS_ENABLED(CONFIG_OF))
1950 		platform_driver_unregister(&crypto_safexcel);
1951 
1952 	/* Unregister PCI driver if successfully registered before */
1953 	pci_unregister_driver(&safexcel_pci_driver);
1954 }
1955 
1956 module_init(safexcel_init);
1957 module_exit(safexcel_exit);
1958 
1959 MODULE_AUTHOR("Antoine Tenart <antoine.tenart@free-electrons.com>");
1960 MODULE_AUTHOR("Ofer Heifetz <oferh@marvell.com>");
1961 MODULE_AUTHOR("Igal Liberman <igall@marvell.com>");
1962 MODULE_DESCRIPTION("Support for SafeXcel cryptographic engines: EIP97 & EIP197");
1963 MODULE_LICENSE("GPL v2");
1964