1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2017 Marvell
4 *
5 * Antoine Tenart <antoine.tenart@free-electrons.com>
6 */
7
8 #include <linux/clk.h>
9 #include <linux/device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/firmware.h>
13 #include <linux/interrupt.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/of_irq.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/workqueue.h>
20
21 #include <crypto/internal/aead.h>
22 #include <crypto/internal/hash.h>
23 #include <crypto/internal/skcipher.h>
24
25 #include "safexcel.h"
26
27 static u32 max_rings = EIP197_MAX_RINGS;
28 module_param(max_rings, uint, 0644);
29 MODULE_PARM_DESC(max_rings, "Maximum number of rings to use.");
30
eip197_trc_cache_setupvirt(struct safexcel_crypto_priv * priv)31 static void eip197_trc_cache_setupvirt(struct safexcel_crypto_priv *priv)
32 {
33 int i;
34
35 /*
36 * Map all interfaces/rings to register index 0
37 * so they can share contexts. Without this, the EIP197 will
38 * assume each interface/ring to be in its own memory domain
39 * i.e. have its own subset of UNIQUE memory addresses.
40 * Which would cause records with the SAME memory address to
41 * use DIFFERENT cache buffers, causing both poor cache utilization
42 * AND serious coherence/invalidation issues.
43 */
44 for (i = 0; i < 4; i++)
45 writel(0, priv->base + EIP197_FLUE_IFC_LUT(i));
46
47 /*
48 * Initialize other virtualization regs for cache
49 * These may not be in their reset state ...
50 */
51 for (i = 0; i < priv->config.rings; i++) {
52 writel(0, priv->base + EIP197_FLUE_CACHEBASE_LO(i));
53 writel(0, priv->base + EIP197_FLUE_CACHEBASE_HI(i));
54 writel(EIP197_FLUE_CONFIG_MAGIC,
55 priv->base + EIP197_FLUE_CONFIG(i));
56 }
57 writel(0, priv->base + EIP197_FLUE_OFFSETS);
58 writel(0, priv->base + EIP197_FLUE_ARC4_OFFSET);
59 }
60
eip197_trc_cache_banksel(struct safexcel_crypto_priv * priv,u32 addrmid,int * actbank)61 static void eip197_trc_cache_banksel(struct safexcel_crypto_priv *priv,
62 u32 addrmid, int *actbank)
63 {
64 u32 val;
65 int curbank;
66
67 curbank = addrmid >> 16;
68 if (curbank != *actbank) {
69 val = readl(priv->base + EIP197_CS_RAM_CTRL);
70 val = (val & ~EIP197_CS_BANKSEL_MASK) |
71 (curbank << EIP197_CS_BANKSEL_OFS);
72 writel(val, priv->base + EIP197_CS_RAM_CTRL);
73 *actbank = curbank;
74 }
75 }
76
eip197_trc_cache_probe(struct safexcel_crypto_priv * priv,int maxbanks,u32 probemask,u32 stride)77 static u32 eip197_trc_cache_probe(struct safexcel_crypto_priv *priv,
78 int maxbanks, u32 probemask, u32 stride)
79 {
80 u32 val, addrhi, addrlo, addrmid, addralias, delta, marker;
81 int actbank;
82
83 /*
84 * And probe the actual size of the physically attached cache data RAM
85 * Using a binary subdivision algorithm downto 32 byte cache lines.
86 */
87 addrhi = 1 << (16 + maxbanks);
88 addrlo = 0;
89 actbank = min(maxbanks - 1, 0);
90 while ((addrhi - addrlo) > stride) {
91 /* write marker to lowest address in top half */
92 addrmid = (addrhi + addrlo) >> 1;
93 marker = (addrmid ^ 0xabadbabe) & probemask; /* Unique */
94 eip197_trc_cache_banksel(priv, addrmid, &actbank);
95 writel(marker,
96 priv->base + EIP197_CLASSIFICATION_RAMS +
97 (addrmid & 0xffff));
98
99 /* write invalid markers to possible aliases */
100 delta = 1 << __fls(addrmid);
101 while (delta >= stride) {
102 addralias = addrmid - delta;
103 eip197_trc_cache_banksel(priv, addralias, &actbank);
104 writel(~marker,
105 priv->base + EIP197_CLASSIFICATION_RAMS +
106 (addralias & 0xffff));
107 delta >>= 1;
108 }
109
110 /* read back marker from top half */
111 eip197_trc_cache_banksel(priv, addrmid, &actbank);
112 val = readl(priv->base + EIP197_CLASSIFICATION_RAMS +
113 (addrmid & 0xffff));
114
115 if ((val & probemask) == marker)
116 /* read back correct, continue with top half */
117 addrlo = addrmid;
118 else
119 /* not read back correct, continue with bottom half */
120 addrhi = addrmid;
121 }
122 return addrhi;
123 }
124
eip197_trc_cache_clear(struct safexcel_crypto_priv * priv,int cs_rc_max,int cs_ht_wc)125 static void eip197_trc_cache_clear(struct safexcel_crypto_priv *priv,
126 int cs_rc_max, int cs_ht_wc)
127 {
128 int i;
129 u32 htable_offset, val, offset;
130
131 /* Clear all records in administration RAM */
132 for (i = 0; i < cs_rc_max; i++) {
133 offset = EIP197_CLASSIFICATION_RAMS + i * EIP197_CS_RC_SIZE;
134
135 writel(EIP197_CS_RC_NEXT(EIP197_RC_NULL) |
136 EIP197_CS_RC_PREV(EIP197_RC_NULL),
137 priv->base + offset);
138
139 val = EIP197_CS_RC_NEXT(i + 1) | EIP197_CS_RC_PREV(i - 1);
140 if (i == 0)
141 val |= EIP197_CS_RC_PREV(EIP197_RC_NULL);
142 else if (i == cs_rc_max - 1)
143 val |= EIP197_CS_RC_NEXT(EIP197_RC_NULL);
144 writel(val, priv->base + offset + 4);
145 /* must also initialize the address key due to ECC! */
146 writel(0, priv->base + offset + 8);
147 writel(0, priv->base + offset + 12);
148 }
149
150 /* Clear the hash table entries */
151 htable_offset = cs_rc_max * EIP197_CS_RC_SIZE;
152 for (i = 0; i < cs_ht_wc; i++)
153 writel(GENMASK(29, 0),
154 priv->base + EIP197_CLASSIFICATION_RAMS +
155 htable_offset + i * sizeof(u32));
156 }
157
eip197_trc_cache_init(struct safexcel_crypto_priv * priv)158 static int eip197_trc_cache_init(struct safexcel_crypto_priv *priv)
159 {
160 u32 val, dsize, asize;
161 int cs_rc_max, cs_ht_wc, cs_trc_rec_wc, cs_trc_lg_rec_wc;
162 int cs_rc_abs_max, cs_ht_sz;
163 int maxbanks;
164
165 /* Setup (dummy) virtualization for cache */
166 eip197_trc_cache_setupvirt(priv);
167
168 /*
169 * Enable the record cache memory access and
170 * probe the bank select width
171 */
172 val = readl(priv->base + EIP197_CS_RAM_CTRL);
173 val &= ~EIP197_TRC_ENABLE_MASK;
174 val |= EIP197_TRC_ENABLE_0 | EIP197_CS_BANKSEL_MASK;
175 writel(val, priv->base + EIP197_CS_RAM_CTRL);
176 val = readl(priv->base + EIP197_CS_RAM_CTRL);
177 maxbanks = ((val&EIP197_CS_BANKSEL_MASK)>>EIP197_CS_BANKSEL_OFS) + 1;
178
179 /* Clear all ECC errors */
180 writel(0, priv->base + EIP197_TRC_ECCCTRL);
181
182 /*
183 * Make sure the cache memory is accessible by taking record cache into
184 * reset. Need data memory access here, not admin access.
185 */
186 val = readl(priv->base + EIP197_TRC_PARAMS);
187 val |= EIP197_TRC_PARAMS_SW_RESET | EIP197_TRC_PARAMS_DATA_ACCESS;
188 writel(val, priv->base + EIP197_TRC_PARAMS);
189
190 /* Probed data RAM size in bytes */
191 dsize = eip197_trc_cache_probe(priv, maxbanks, 0xffffffff, 32);
192
193 /*
194 * Now probe the administration RAM size pretty much the same way
195 * Except that only the lower 30 bits are writable and we don't need
196 * bank selects
197 */
198 val = readl(priv->base + EIP197_TRC_PARAMS);
199 /* admin access now */
200 val &= ~(EIP197_TRC_PARAMS_DATA_ACCESS | EIP197_CS_BANKSEL_MASK);
201 writel(val, priv->base + EIP197_TRC_PARAMS);
202
203 /* Probed admin RAM size in admin words */
204 asize = eip197_trc_cache_probe(priv, 0, 0x3fffffff, 16) >> 4;
205
206 /* Clear any ECC errors detected while probing! */
207 writel(0, priv->base + EIP197_TRC_ECCCTRL);
208
209 /* Sanity check probing results */
210 if (dsize < EIP197_MIN_DSIZE || asize < EIP197_MIN_ASIZE) {
211 dev_err(priv->dev, "Record cache probing failed (%d,%d).",
212 dsize, asize);
213 return -ENODEV;
214 }
215
216 /*
217 * Determine optimal configuration from RAM sizes
218 * Note that we assume that the physical RAM configuration is sane
219 * Therefore, we don't do any parameter error checking here ...
220 */
221
222 /* For now, just use a single record format covering everything */
223 cs_trc_rec_wc = EIP197_CS_TRC_REC_WC;
224 cs_trc_lg_rec_wc = EIP197_CS_TRC_REC_WC;
225
226 /*
227 * Step #1: How many records will physically fit?
228 * Hard upper limit is 1023!
229 */
230 cs_rc_abs_max = min_t(uint, ((dsize >> 2) / cs_trc_lg_rec_wc), 1023);
231 /* Step #2: Need at least 2 words in the admin RAM per record */
232 cs_rc_max = min_t(uint, cs_rc_abs_max, (asize >> 1));
233 /* Step #3: Determine log2 of hash table size */
234 cs_ht_sz = __fls(asize - cs_rc_max) - 2;
235 /* Step #4: determine current size of hash table in dwords */
236 cs_ht_wc = 16 << cs_ht_sz; /* dwords, not admin words */
237 /* Step #5: add back excess words and see if we can fit more records */
238 cs_rc_max = min_t(uint, cs_rc_abs_max, asize - (cs_ht_wc >> 2));
239
240 /* Clear the cache RAMs */
241 eip197_trc_cache_clear(priv, cs_rc_max, cs_ht_wc);
242
243 /* Disable the record cache memory access */
244 val = readl(priv->base + EIP197_CS_RAM_CTRL);
245 val &= ~EIP197_TRC_ENABLE_MASK;
246 writel(val, priv->base + EIP197_CS_RAM_CTRL);
247
248 /* Write head and tail pointers of the record free chain */
249 val = EIP197_TRC_FREECHAIN_HEAD_PTR(0) |
250 EIP197_TRC_FREECHAIN_TAIL_PTR(cs_rc_max - 1);
251 writel(val, priv->base + EIP197_TRC_FREECHAIN);
252
253 /* Configure the record cache #1 */
254 val = EIP197_TRC_PARAMS2_RC_SZ_SMALL(cs_trc_rec_wc) |
255 EIP197_TRC_PARAMS2_HTABLE_PTR(cs_rc_max);
256 writel(val, priv->base + EIP197_TRC_PARAMS2);
257
258 /* Configure the record cache #2 */
259 val = EIP197_TRC_PARAMS_RC_SZ_LARGE(cs_trc_lg_rec_wc) |
260 EIP197_TRC_PARAMS_BLK_TIMER_SPEED(1) |
261 EIP197_TRC_PARAMS_HTABLE_SZ(cs_ht_sz);
262 writel(val, priv->base + EIP197_TRC_PARAMS);
263
264 dev_info(priv->dev, "TRC init: %dd,%da (%dr,%dh)\n",
265 dsize, asize, cs_rc_max, cs_ht_wc + cs_ht_wc);
266 return 0;
267 }
268
eip197_init_firmware(struct safexcel_crypto_priv * priv)269 static void eip197_init_firmware(struct safexcel_crypto_priv *priv)
270 {
271 int pe, i;
272 u32 val;
273
274 for (pe = 0; pe < priv->config.pes; pe++) {
275 /* Configure the token FIFO's */
276 writel(3, EIP197_PE(priv) + EIP197_PE_ICE_PUTF_CTRL(pe));
277 writel(0, EIP197_PE(priv) + EIP197_PE_ICE_PPTF_CTRL(pe));
278
279 /* Clear the ICE scratchpad memory */
280 val = readl(EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe));
281 val |= EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_TIMER |
282 EIP197_PE_ICE_SCRATCH_CTRL_TIMER_EN |
283 EIP197_PE_ICE_SCRATCH_CTRL_SCRATCH_ACCESS |
284 EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_ACCESS;
285 writel(val, EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe));
286
287 /* clear the scratchpad RAM using 32 bit writes only */
288 for (i = 0; i < EIP197_NUM_OF_SCRATCH_BLOCKS; i++)
289 writel(0, EIP197_PE(priv) +
290 EIP197_PE_ICE_SCRATCH_RAM(pe) + (i << 2));
291
292 /* Reset the IFPP engine to make its program mem accessible */
293 writel(EIP197_PE_ICE_x_CTRL_SW_RESET |
294 EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR |
295 EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR,
296 EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe));
297
298 /* Reset the IPUE engine to make its program mem accessible */
299 writel(EIP197_PE_ICE_x_CTRL_SW_RESET |
300 EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR |
301 EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR,
302 EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe));
303
304 /* Enable access to all IFPP program memories */
305 writel(EIP197_PE_ICE_RAM_CTRL_FPP_PROG_EN,
306 EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
307
308 /* bypass the OCE, if present */
309 if (priv->flags & EIP197_OCE)
310 writel(EIP197_DEBUG_OCE_BYPASS, EIP197_PE(priv) +
311 EIP197_PE_DEBUG(pe));
312 }
313
314 }
315
eip197_write_firmware(struct safexcel_crypto_priv * priv,const struct firmware * fw)316 static int eip197_write_firmware(struct safexcel_crypto_priv *priv,
317 const struct firmware *fw)
318 {
319 u32 val;
320 int i;
321
322 /* Write the firmware */
323 for (i = 0; i < fw->size / sizeof(u32); i++) {
324 if (priv->data->fw_little_endian)
325 val = le32_to_cpu(((const __le32 *)fw->data)[i]);
326 else
327 val = be32_to_cpu(((const __be32 *)fw->data)[i]);
328
329 writel(val,
330 priv->base + EIP197_CLASSIFICATION_RAMS +
331 i * sizeof(val));
332 }
333
334 /* Exclude final 2 NOPs from size */
335 return i - EIP197_FW_TERMINAL_NOPS;
336 }
337
338 /*
339 * If FW is actual production firmware, then poll for its initialization
340 * to complete and check if it is good for the HW, otherwise just return OK.
341 */
poll_fw_ready(struct safexcel_crypto_priv * priv,int fpp)342 static bool poll_fw_ready(struct safexcel_crypto_priv *priv, int fpp)
343 {
344 int pe, pollcnt;
345 u32 base, pollofs;
346
347 if (fpp)
348 pollofs = EIP197_FW_FPP_READY;
349 else
350 pollofs = EIP197_FW_PUE_READY;
351
352 for (pe = 0; pe < priv->config.pes; pe++) {
353 base = EIP197_PE_ICE_SCRATCH_RAM(pe);
354 pollcnt = EIP197_FW_START_POLLCNT;
355 while (pollcnt &&
356 (readl_relaxed(EIP197_PE(priv) + base +
357 pollofs) != 1)) {
358 pollcnt--;
359 }
360 if (!pollcnt) {
361 dev_err(priv->dev, "FW(%d) for PE %d failed to start\n",
362 fpp, pe);
363 return false;
364 }
365 }
366 return true;
367 }
368
eip197_start_firmware(struct safexcel_crypto_priv * priv,int ipuesz,int ifppsz,int minifw)369 static bool eip197_start_firmware(struct safexcel_crypto_priv *priv,
370 int ipuesz, int ifppsz, int minifw)
371 {
372 int pe;
373 u32 val;
374
375 for (pe = 0; pe < priv->config.pes; pe++) {
376 /* Disable access to all program memory */
377 writel(0, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
378
379 /* Start IFPP microengines */
380 if (minifw)
381 val = 0;
382 else
383 val = EIP197_PE_ICE_UENG_START_OFFSET((ifppsz - 1) &
384 EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) |
385 EIP197_PE_ICE_UENG_DEBUG_RESET;
386 writel(val, EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe));
387
388 /* Start IPUE microengines */
389 if (minifw)
390 val = 0;
391 else
392 val = EIP197_PE_ICE_UENG_START_OFFSET((ipuesz - 1) &
393 EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) |
394 EIP197_PE_ICE_UENG_DEBUG_RESET;
395 writel(val, EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe));
396 }
397
398 /* For miniFW startup, there is no initialization, so always succeed */
399 if (minifw)
400 return true;
401
402 /* Wait until all the firmwares have properly started up */
403 if (!poll_fw_ready(priv, 1))
404 return false;
405 if (!poll_fw_ready(priv, 0))
406 return false;
407
408 return true;
409 }
410
eip197_load_firmwares(struct safexcel_crypto_priv * priv)411 static int eip197_load_firmwares(struct safexcel_crypto_priv *priv)
412 {
413 const char *fw_name[] = {"ifpp.bin", "ipue.bin"};
414 const struct firmware *fw[FW_NB];
415 char fw_path[37], *dir = NULL;
416 int i, j, ret = 0, pe;
417 int ipuesz, ifppsz, minifw = 0;
418
419 if (priv->data->version == EIP197D_MRVL)
420 dir = "eip197d";
421 else if (priv->data->version == EIP197B_MRVL ||
422 priv->data->version == EIP197_DEVBRD)
423 dir = "eip197b";
424 else if (priv->data->version == EIP197C_MXL)
425 dir = "eip197c";
426 else
427 return -ENODEV;
428
429 retry_fw:
430 for (i = 0; i < FW_NB; i++) {
431 snprintf(fw_path, 37, "inside-secure/%s/%s", dir, fw_name[i]);
432 ret = firmware_request_nowarn(&fw[i], fw_path, priv->dev);
433 if (ret) {
434 if (minifw || priv->data->version != EIP197B_MRVL)
435 goto release_fw;
436
437 /* Fallback to the old firmware location for the
438 * EIP197b.
439 */
440 ret = firmware_request_nowarn(&fw[i], fw_name[i],
441 priv->dev);
442 if (ret)
443 goto release_fw;
444 }
445 }
446
447 eip197_init_firmware(priv);
448
449 ifppsz = eip197_write_firmware(priv, fw[FW_IFPP]);
450
451 /* Enable access to IPUE program memories */
452 for (pe = 0; pe < priv->config.pes; pe++)
453 writel(EIP197_PE_ICE_RAM_CTRL_PUE_PROG_EN,
454 EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
455
456 ipuesz = eip197_write_firmware(priv, fw[FW_IPUE]);
457
458 if (eip197_start_firmware(priv, ipuesz, ifppsz, minifw)) {
459 dev_dbg(priv->dev, "Firmware loaded successfully\n");
460 return 0;
461 }
462
463 ret = -ENODEV;
464
465 release_fw:
466 for (j = 0; j < i; j++)
467 release_firmware(fw[j]);
468
469 if (!minifw) {
470 /* Retry with minifw path */
471 dev_dbg(priv->dev, "Firmware set not (fully) present or init failed, falling back to BCLA mode\n");
472 dir = "eip197_minifw";
473 minifw = 1;
474 goto retry_fw;
475 }
476
477 dev_err(priv->dev, "Firmware load failed.\n");
478
479 return ret;
480 }
481
safexcel_hw_setup_cdesc_rings(struct safexcel_crypto_priv * priv)482 static int safexcel_hw_setup_cdesc_rings(struct safexcel_crypto_priv *priv)
483 {
484 u32 cd_size_rnd, val;
485 int i, cd_fetch_cnt;
486
487 cd_size_rnd = (priv->config.cd_size +
488 (BIT(priv->hwconfig.hwdataw) - 1)) >>
489 priv->hwconfig.hwdataw;
490 /* determine number of CD's we can fetch into the CD FIFO as 1 block */
491 if (priv->flags & SAFEXCEL_HW_EIP197) {
492 /* EIP197: try to fetch enough in 1 go to keep all pipes busy */
493 cd_fetch_cnt = (1 << priv->hwconfig.hwcfsize) / cd_size_rnd;
494 cd_fetch_cnt = min_t(uint, cd_fetch_cnt,
495 (priv->config.pes * EIP197_FETCH_DEPTH));
496 } else {
497 /* for the EIP97, just fetch all that fits minus 1 */
498 cd_fetch_cnt = ((1 << priv->hwconfig.hwcfsize) /
499 cd_size_rnd) - 1;
500 }
501 /*
502 * Since we're using command desc's way larger than formally specified,
503 * we need to check whether we can fit even 1 for low-end EIP196's!
504 */
505 if (!cd_fetch_cnt) {
506 dev_err(priv->dev, "Unable to fit even 1 command desc!\n");
507 return -ENODEV;
508 }
509
510 for (i = 0; i < priv->config.rings; i++) {
511 /* ring base address */
512 writel(lower_32_bits(priv->ring[i].cdr.base_dma),
513 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
514 writel(upper_32_bits(priv->ring[i].cdr.base_dma),
515 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
516
517 writel(EIP197_xDR_DESC_MODE_64BIT | EIP197_CDR_DESC_MODE_ADCP |
518 (priv->config.cd_offset << 14) | priv->config.cd_size,
519 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE);
520 writel(((cd_fetch_cnt *
521 (cd_size_rnd << priv->hwconfig.hwdataw)) << 16) |
522 (cd_fetch_cnt * (priv->config.cd_offset / sizeof(u32))),
523 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG);
524
525 /* Configure DMA tx control */
526 val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
527 val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
528 writel(val, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DMA_CFG);
529
530 /* clear any pending interrupt */
531 writel(GENMASK(5, 0),
532 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT);
533 }
534
535 return 0;
536 }
537
safexcel_hw_setup_rdesc_rings(struct safexcel_crypto_priv * priv)538 static int safexcel_hw_setup_rdesc_rings(struct safexcel_crypto_priv *priv)
539 {
540 u32 rd_size_rnd, val;
541 int i, rd_fetch_cnt;
542
543 /* determine number of RD's we can fetch into the FIFO as one block */
544 rd_size_rnd = (EIP197_RD64_FETCH_SIZE +
545 (BIT(priv->hwconfig.hwdataw) - 1)) >>
546 priv->hwconfig.hwdataw;
547 if (priv->flags & SAFEXCEL_HW_EIP197) {
548 /* EIP197: try to fetch enough in 1 go to keep all pipes busy */
549 rd_fetch_cnt = (1 << priv->hwconfig.hwrfsize) / rd_size_rnd;
550 rd_fetch_cnt = min_t(uint, rd_fetch_cnt,
551 (priv->config.pes * EIP197_FETCH_DEPTH));
552 } else {
553 /* for the EIP97, just fetch all that fits minus 1 */
554 rd_fetch_cnt = ((1 << priv->hwconfig.hwrfsize) /
555 rd_size_rnd) - 1;
556 }
557
558 for (i = 0; i < priv->config.rings; i++) {
559 /* ring base address */
560 writel(lower_32_bits(priv->ring[i].rdr.base_dma),
561 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
562 writel(upper_32_bits(priv->ring[i].rdr.base_dma),
563 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
564
565 writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.rd_offset << 14) |
566 priv->config.rd_size,
567 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE);
568
569 writel(((rd_fetch_cnt *
570 (rd_size_rnd << priv->hwconfig.hwdataw)) << 16) |
571 (rd_fetch_cnt * (priv->config.rd_offset / sizeof(u32))),
572 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG);
573
574 /* Configure DMA tx control */
575 val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
576 val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
577 val |= EIP197_HIA_xDR_WR_RES_BUF | EIP197_HIA_xDR_WR_CTRL_BUF;
578 writel(val,
579 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DMA_CFG);
580
581 /* clear any pending interrupt */
582 writel(GENMASK(7, 0),
583 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT);
584
585 /* enable ring interrupt */
586 val = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
587 val |= EIP197_RDR_IRQ(i);
588 writel(val, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
589 }
590
591 return 0;
592 }
593
safexcel_hw_init(struct safexcel_crypto_priv * priv)594 static int safexcel_hw_init(struct safexcel_crypto_priv *priv)
595 {
596 u32 val;
597 int i, ret, pe, opbuflo, opbufhi;
598
599 dev_dbg(priv->dev, "HW init: using %d pipe(s) and %d ring(s)\n",
600 priv->config.pes, priv->config.rings);
601
602 /*
603 * For EIP197's only set maximum number of TX commands to 2^5 = 32
604 * Skip for the EIP97 as it does not have this field.
605 */
606 if (priv->flags & SAFEXCEL_HW_EIP197) {
607 val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
608 val |= EIP197_MST_CTRL_TX_MAX_CMD(5);
609 writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
610 }
611
612 /* Configure wr/rd cache values */
613 writel(EIP197_MST_CTRL_RD_CACHE(RD_CACHE_4BITS) |
614 EIP197_MST_CTRL_WD_CACHE(WR_CACHE_4BITS),
615 EIP197_HIA_GEN_CFG(priv) + EIP197_MST_CTRL);
616
617 /* Interrupts reset */
618
619 /* Disable all global interrupts */
620 writel(0, EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ENABLE_CTRL);
621
622 /* Clear any pending interrupt */
623 writel(GENMASK(31, 0), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK);
624
625 /* Processing Engine configuration */
626 for (pe = 0; pe < priv->config.pes; pe++) {
627 /* Data Fetch Engine configuration */
628
629 /* Reset all DFE threads */
630 writel(EIP197_DxE_THR_CTRL_RESET_PE,
631 EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
632
633 if (priv->flags & EIP197_PE_ARB)
634 /* Reset HIA input interface arbiter (if present) */
635 writel(EIP197_HIA_RA_PE_CTRL_RESET,
636 EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe));
637
638 /* DMA transfer size to use */
639 val = EIP197_HIA_DFE_CFG_DIS_DEBUG;
640 val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(6) |
641 EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(9);
642 val |= EIP197_HIA_DxE_CFG_MIN_CTRL_SIZE(6) |
643 EIP197_HIA_DxE_CFG_MAX_CTRL_SIZE(7);
644 val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(RD_CACHE_3BITS);
645 val |= EIP197_HIA_DxE_CFG_CTRL_CACHE_CTRL(RD_CACHE_3BITS);
646 writel(val, EIP197_HIA_DFE(priv) + EIP197_HIA_DFE_CFG(pe));
647
648 /* Leave the DFE threads reset state */
649 writel(0, EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
650
651 /* Configure the processing engine thresholds */
652 writel(EIP197_PE_IN_xBUF_THRES_MIN(6) |
653 EIP197_PE_IN_xBUF_THRES_MAX(9),
654 EIP197_PE(priv) + EIP197_PE_IN_DBUF_THRES(pe));
655 writel(EIP197_PE_IN_xBUF_THRES_MIN(6) |
656 EIP197_PE_IN_xBUF_THRES_MAX(7),
657 EIP197_PE(priv) + EIP197_PE_IN_TBUF_THRES(pe));
658
659 if (priv->flags & SAFEXCEL_HW_EIP197)
660 /* enable HIA input interface arbiter and rings */
661 writel(EIP197_HIA_RA_PE_CTRL_EN |
662 GENMASK(priv->config.rings - 1, 0),
663 EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe));
664
665 /* Data Store Engine configuration */
666
667 /* Reset all DSE threads */
668 writel(EIP197_DxE_THR_CTRL_RESET_PE,
669 EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
670
671 /* Wait for all DSE threads to complete */
672 while ((readl(EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_STAT(pe)) &
673 GENMASK(15, 12)) != GENMASK(15, 12))
674 ;
675
676 /* DMA transfer size to use */
677 if (priv->hwconfig.hwnumpes > 4) {
678 opbuflo = 9;
679 opbufhi = 10;
680 } else {
681 opbuflo = 7;
682 opbufhi = 8;
683 }
684 val = EIP197_HIA_DSE_CFG_DIS_DEBUG;
685 val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(opbuflo) |
686 EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(opbufhi);
687 val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(WR_CACHE_3BITS);
688 val |= EIP197_HIA_DSE_CFG_ALWAYS_BUFFERABLE;
689 /* FIXME: instability issues can occur for EIP97 but disabling
690 * it impacts performance.
691 */
692 if (priv->flags & SAFEXCEL_HW_EIP197)
693 val |= EIP197_HIA_DSE_CFG_EN_SINGLE_WR;
694 writel(val, EIP197_HIA_DSE(priv) + EIP197_HIA_DSE_CFG(pe));
695
696 /* Leave the DSE threads reset state */
697 writel(0, EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
698
699 /* Configure the processing engine thresholds */
700 writel(EIP197_PE_OUT_DBUF_THRES_MIN(opbuflo) |
701 EIP197_PE_OUT_DBUF_THRES_MAX(opbufhi),
702 EIP197_PE(priv) + EIP197_PE_OUT_DBUF_THRES(pe));
703
704 /* Processing Engine configuration */
705
706 /* Token & context configuration */
707 val = EIP197_PE_EIP96_TOKEN_CTRL_CTX_UPDATES |
708 EIP197_PE_EIP96_TOKEN_CTRL_NO_TOKEN_WAIT |
709 EIP197_PE_EIP96_TOKEN_CTRL_ENABLE_TIMEOUT;
710 writel(val, EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL(pe));
711
712 /* H/W capabilities selection: just enable everything */
713 writel(EIP197_FUNCTION_ALL,
714 EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION_EN(pe));
715 writel(EIP197_FUNCTION_ALL,
716 EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION2_EN(pe));
717 }
718
719 /* Command Descriptor Rings prepare */
720 for (i = 0; i < priv->config.rings; i++) {
721 /* Clear interrupts for this ring */
722 writel(GENMASK(31, 0),
723 EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CLR(i));
724
725 /* Disable external triggering */
726 writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG);
727
728 /* Clear the pending prepared counter */
729 writel(EIP197_xDR_PREP_CLR_COUNT,
730 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT);
731
732 /* Clear the pending processed counter */
733 writel(EIP197_xDR_PROC_CLR_COUNT,
734 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT);
735
736 writel(0,
737 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR);
738 writel(0,
739 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR);
740
741 writel((EIP197_DEFAULT_RING_SIZE * priv->config.cd_offset),
742 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_SIZE);
743 }
744
745 /* Result Descriptor Ring prepare */
746 for (i = 0; i < priv->config.rings; i++) {
747 /* Disable external triggering*/
748 writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG);
749
750 /* Clear the pending prepared counter */
751 writel(EIP197_xDR_PREP_CLR_COUNT,
752 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT);
753
754 /* Clear the pending processed counter */
755 writel(EIP197_xDR_PROC_CLR_COUNT,
756 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT);
757
758 writel(0,
759 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR);
760 writel(0,
761 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR);
762
763 /* Ring size */
764 writel((EIP197_DEFAULT_RING_SIZE * priv->config.rd_offset),
765 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_SIZE);
766 }
767
768 for (pe = 0; pe < priv->config.pes; pe++) {
769 /* Enable command descriptor rings */
770 writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
771 EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
772
773 /* Enable result descriptor rings */
774 writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
775 EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
776 }
777
778 /* Clear any HIA interrupt */
779 writel(GENMASK(30, 20), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK);
780
781 if (priv->flags & EIP197_SIMPLE_TRC) {
782 writel(EIP197_STRC_CONFIG_INIT |
783 EIP197_STRC_CONFIG_LARGE_REC(EIP197_CS_TRC_REC_WC) |
784 EIP197_STRC_CONFIG_SMALL_REC(EIP197_CS_TRC_REC_WC),
785 priv->base + EIP197_STRC_CONFIG);
786 writel(EIP197_PE_EIP96_TOKEN_CTRL2_CTX_DONE,
787 EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL2(0));
788 } else if (priv->flags & SAFEXCEL_HW_EIP197) {
789 ret = eip197_trc_cache_init(priv);
790 if (ret)
791 return ret;
792 }
793
794 if (priv->flags & EIP197_ICE) {
795 ret = eip197_load_firmwares(priv);
796 if (ret)
797 return ret;
798 }
799
800 return safexcel_hw_setup_cdesc_rings(priv) ?:
801 safexcel_hw_setup_rdesc_rings(priv) ?:
802 0;
803 }
804
805 /* Called with ring's lock taken */
safexcel_try_push_requests(struct safexcel_crypto_priv * priv,int ring)806 static void safexcel_try_push_requests(struct safexcel_crypto_priv *priv,
807 int ring)
808 {
809 int coal = min_t(int, priv->ring[ring].requests, EIP197_MAX_BATCH_SZ);
810
811 if (!coal)
812 return;
813
814 /* Configure when we want an interrupt */
815 writel(EIP197_HIA_RDR_THRESH_PKT_MODE |
816 EIP197_HIA_RDR_THRESH_PROC_PKT(coal),
817 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_THRESH);
818 }
819
safexcel_dequeue(struct safexcel_crypto_priv * priv,int ring)820 void safexcel_dequeue(struct safexcel_crypto_priv *priv, int ring)
821 {
822 struct crypto_async_request *req, *backlog;
823 struct safexcel_context *ctx;
824 int ret, nreq = 0, cdesc = 0, rdesc = 0, commands, results;
825
826 /* If a request wasn't properly dequeued because of a lack of resources,
827 * proceeded it first,
828 */
829 req = priv->ring[ring].req;
830 backlog = priv->ring[ring].backlog;
831 if (req)
832 goto handle_req;
833
834 while (true) {
835 spin_lock_bh(&priv->ring[ring].queue_lock);
836 backlog = crypto_get_backlog(&priv->ring[ring].queue);
837 req = crypto_dequeue_request(&priv->ring[ring].queue);
838 spin_unlock_bh(&priv->ring[ring].queue_lock);
839
840 if (!req) {
841 priv->ring[ring].req = NULL;
842 priv->ring[ring].backlog = NULL;
843 goto finalize;
844 }
845
846 handle_req:
847 ctx = crypto_tfm_ctx(req->tfm);
848 ret = ctx->send(req, ring, &commands, &results);
849 if (ret)
850 goto request_failed;
851
852 if (backlog)
853 crypto_request_complete(backlog, -EINPROGRESS);
854
855 /* In case the send() helper did not issue any command to push
856 * to the engine because the input data was cached, continue to
857 * dequeue other requests as this is valid and not an error.
858 */
859 if (!commands && !results)
860 continue;
861
862 cdesc += commands;
863 rdesc += results;
864 nreq++;
865 }
866
867 request_failed:
868 /* Not enough resources to handle all the requests. Bail out and save
869 * the request and the backlog for the next dequeue call (per-ring).
870 */
871 priv->ring[ring].req = req;
872 priv->ring[ring].backlog = backlog;
873
874 finalize:
875 if (!nreq)
876 return;
877
878 spin_lock_bh(&priv->ring[ring].lock);
879
880 priv->ring[ring].requests += nreq;
881
882 if (!priv->ring[ring].busy) {
883 safexcel_try_push_requests(priv, ring);
884 priv->ring[ring].busy = true;
885 }
886
887 spin_unlock_bh(&priv->ring[ring].lock);
888
889 /* let the RDR know we have pending descriptors */
890 writel((rdesc * priv->config.rd_offset),
891 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT);
892
893 /* let the CDR know we have pending descriptors */
894 writel((cdesc * priv->config.cd_offset),
895 EIP197_HIA_CDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT);
896 }
897
safexcel_rdesc_check_errors(struct safexcel_crypto_priv * priv,void * rdp)898 inline int safexcel_rdesc_check_errors(struct safexcel_crypto_priv *priv,
899 void *rdp)
900 {
901 struct safexcel_result_desc *rdesc = rdp;
902 struct result_data_desc *result_data = rdp + priv->config.res_offset;
903
904 if (likely((!rdesc->last_seg) || /* Rest only valid if last seg! */
905 ((!rdesc->descriptor_overflow) &&
906 (!rdesc->buffer_overflow) &&
907 (!result_data->error_code))))
908 return 0;
909
910 if (rdesc->descriptor_overflow)
911 dev_err(priv->dev, "Descriptor overflow detected");
912
913 if (rdesc->buffer_overflow)
914 dev_err(priv->dev, "Buffer overflow detected");
915
916 if (result_data->error_code & 0x4066) {
917 /* Fatal error (bits 1,2,5,6 & 14) */
918 dev_err(priv->dev,
919 "result descriptor error (%x)",
920 result_data->error_code);
921
922 return -EIO;
923 } else if (result_data->error_code &
924 (BIT(7) | BIT(4) | BIT(3) | BIT(0))) {
925 /*
926 * Give priority over authentication fails:
927 * Blocksize, length & overflow errors,
928 * something wrong with the input!
929 */
930 return -EINVAL;
931 } else if (result_data->error_code & BIT(9)) {
932 /* Authentication failed */
933 return -EBADMSG;
934 }
935
936 /* All other non-fatal errors */
937 return -EINVAL;
938 }
939
safexcel_rdr_req_set(struct safexcel_crypto_priv * priv,int ring,struct safexcel_result_desc * rdesc,struct crypto_async_request * req)940 inline void safexcel_rdr_req_set(struct safexcel_crypto_priv *priv,
941 int ring,
942 struct safexcel_result_desc *rdesc,
943 struct crypto_async_request *req)
944 {
945 int i = safexcel_ring_rdr_rdesc_index(priv, ring, rdesc);
946
947 priv->ring[ring].rdr_req[i] = req;
948 }
949
950 inline struct crypto_async_request *
safexcel_rdr_req_get(struct safexcel_crypto_priv * priv,int ring)951 safexcel_rdr_req_get(struct safexcel_crypto_priv *priv, int ring)
952 {
953 int i = safexcel_ring_first_rdr_index(priv, ring);
954
955 return priv->ring[ring].rdr_req[i];
956 }
957
safexcel_complete(struct safexcel_crypto_priv * priv,int ring)958 void safexcel_complete(struct safexcel_crypto_priv *priv, int ring)
959 {
960 struct safexcel_command_desc *cdesc;
961
962 /* Acknowledge the command descriptors */
963 do {
964 cdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].cdr);
965 if (IS_ERR(cdesc)) {
966 dev_err(priv->dev,
967 "Could not retrieve the command descriptor\n");
968 return;
969 }
970 } while (!cdesc->last_seg);
971 }
972
safexcel_invalidate_cache(struct crypto_async_request * async,struct safexcel_crypto_priv * priv,dma_addr_t ctxr_dma,int ring)973 int safexcel_invalidate_cache(struct crypto_async_request *async,
974 struct safexcel_crypto_priv *priv,
975 dma_addr_t ctxr_dma, int ring)
976 {
977 struct safexcel_command_desc *cdesc;
978 struct safexcel_result_desc *rdesc;
979 struct safexcel_token *dmmy;
980 int ret = 0;
981
982 /* Prepare command descriptor */
983 cdesc = safexcel_add_cdesc(priv, ring, true, true, 0, 0, 0, ctxr_dma,
984 &dmmy);
985 if (IS_ERR(cdesc))
986 return PTR_ERR(cdesc);
987
988 cdesc->control_data.type = EIP197_TYPE_EXTENDED;
989 cdesc->control_data.options = 0;
990 cdesc->control_data.context_lo &= ~EIP197_CONTEXT_SIZE_MASK;
991 cdesc->control_data.control0 = CONTEXT_CONTROL_INV_TR;
992
993 /* Prepare result descriptor */
994 rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0);
995
996 if (IS_ERR(rdesc)) {
997 ret = PTR_ERR(rdesc);
998 goto cdesc_rollback;
999 }
1000
1001 safexcel_rdr_req_set(priv, ring, rdesc, async);
1002
1003 return ret;
1004
1005 cdesc_rollback:
1006 safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
1007
1008 return ret;
1009 }
1010
safexcel_handle_result_descriptor(struct safexcel_crypto_priv * priv,int ring)1011 static inline void safexcel_handle_result_descriptor(struct safexcel_crypto_priv *priv,
1012 int ring)
1013 {
1014 struct crypto_async_request *req;
1015 struct safexcel_context *ctx;
1016 int ret, i, nreq, ndesc, tot_descs, handled = 0;
1017 bool should_complete;
1018
1019 handle_results:
1020 tot_descs = 0;
1021
1022 nreq = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT);
1023 nreq >>= EIP197_xDR_PROC_xD_PKT_OFFSET;
1024 nreq &= EIP197_xDR_PROC_xD_PKT_MASK;
1025 if (!nreq)
1026 goto requests_left;
1027
1028 for (i = 0; i < nreq; i++) {
1029 req = safexcel_rdr_req_get(priv, ring);
1030
1031 ctx = crypto_tfm_ctx(req->tfm);
1032 ndesc = ctx->handle_result(priv, ring, req,
1033 &should_complete, &ret);
1034 if (ndesc < 0) {
1035 dev_err(priv->dev, "failed to handle result (%d)\n",
1036 ndesc);
1037 goto acknowledge;
1038 }
1039
1040 if (should_complete) {
1041 local_bh_disable();
1042 crypto_request_complete(req, ret);
1043 local_bh_enable();
1044 }
1045
1046 tot_descs += ndesc;
1047 handled++;
1048 }
1049
1050 acknowledge:
1051 if (i)
1052 writel(EIP197_xDR_PROC_xD_PKT(i) |
1053 (tot_descs * priv->config.rd_offset),
1054 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT);
1055
1056 /* If the number of requests overflowed the counter, try to proceed more
1057 * requests.
1058 */
1059 if (nreq == EIP197_xDR_PROC_xD_PKT_MASK)
1060 goto handle_results;
1061
1062 requests_left:
1063 spin_lock_bh(&priv->ring[ring].lock);
1064
1065 priv->ring[ring].requests -= handled;
1066 safexcel_try_push_requests(priv, ring);
1067
1068 if (!priv->ring[ring].requests)
1069 priv->ring[ring].busy = false;
1070
1071 spin_unlock_bh(&priv->ring[ring].lock);
1072 }
1073
safexcel_dequeue_work(struct work_struct * work)1074 static void safexcel_dequeue_work(struct work_struct *work)
1075 {
1076 struct safexcel_work_data *data =
1077 container_of(work, struct safexcel_work_data, work);
1078
1079 safexcel_dequeue(data->priv, data->ring);
1080 }
1081
1082 struct safexcel_ring_irq_data {
1083 struct safexcel_crypto_priv *priv;
1084 int ring;
1085 };
1086
safexcel_irq_ring(int irq,void * data)1087 static irqreturn_t safexcel_irq_ring(int irq, void *data)
1088 {
1089 struct safexcel_ring_irq_data *irq_data = data;
1090 struct safexcel_crypto_priv *priv = irq_data->priv;
1091 int ring = irq_data->ring, rc = IRQ_NONE;
1092 u32 status, stat;
1093
1094 status = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLED_STAT(ring));
1095 if (!status)
1096 return rc;
1097
1098 /* RDR interrupts */
1099 if (status & EIP197_RDR_IRQ(ring)) {
1100 stat = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT);
1101
1102 if (unlikely(stat & EIP197_xDR_ERR)) {
1103 /*
1104 * Fatal error, the RDR is unusable and must be
1105 * reinitialized. This should not happen under
1106 * normal circumstances.
1107 */
1108 dev_err(priv->dev, "RDR: fatal error.\n");
1109 } else if (likely(stat & EIP197_xDR_THRESH)) {
1110 rc = IRQ_WAKE_THREAD;
1111 }
1112
1113 /* ACK the interrupts */
1114 writel(stat & 0xff,
1115 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT);
1116 }
1117
1118 /* ACK the interrupts */
1119 writel(status, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ACK(ring));
1120
1121 return rc;
1122 }
1123
safexcel_irq_ring_thread(int irq,void * data)1124 static irqreturn_t safexcel_irq_ring_thread(int irq, void *data)
1125 {
1126 struct safexcel_ring_irq_data *irq_data = data;
1127 struct safexcel_crypto_priv *priv = irq_data->priv;
1128 int ring = irq_data->ring;
1129
1130 safexcel_handle_result_descriptor(priv, ring);
1131
1132 queue_work(priv->ring[ring].workqueue,
1133 &priv->ring[ring].work_data.work);
1134
1135 return IRQ_HANDLED;
1136 }
1137
safexcel_request_ring_irq(void * pdev,int irqid,int is_pci_dev,int ring_id,irq_handler_t handler,irq_handler_t threaded_handler,struct safexcel_ring_irq_data * ring_irq_priv)1138 static int safexcel_request_ring_irq(void *pdev, int irqid,
1139 int is_pci_dev,
1140 int ring_id,
1141 irq_handler_t handler,
1142 irq_handler_t threaded_handler,
1143 struct safexcel_ring_irq_data *ring_irq_priv)
1144 {
1145 int ret, irq, cpu;
1146 struct device *dev;
1147
1148 if (IS_ENABLED(CONFIG_PCI) && is_pci_dev) {
1149 struct pci_dev *pci_pdev = pdev;
1150
1151 dev = &pci_pdev->dev;
1152 irq = pci_irq_vector(pci_pdev, irqid);
1153 if (irq < 0) {
1154 dev_err(dev, "unable to get device MSI IRQ %d (err %d)\n",
1155 irqid, irq);
1156 return irq;
1157 }
1158 } else if (IS_ENABLED(CONFIG_OF)) {
1159 struct platform_device *plf_pdev = pdev;
1160 char irq_name[6] = {0}; /* "ringX\0" */
1161
1162 snprintf(irq_name, 6, "ring%d", irqid);
1163 dev = &plf_pdev->dev;
1164 irq = platform_get_irq_byname(plf_pdev, irq_name);
1165
1166 if (irq < 0)
1167 return irq;
1168 } else {
1169 return -ENXIO;
1170 }
1171
1172 ret = devm_request_threaded_irq(dev, irq, handler,
1173 threaded_handler, IRQF_ONESHOT,
1174 dev_name(dev), ring_irq_priv);
1175 if (ret) {
1176 dev_err(dev, "unable to request IRQ %d\n", irq);
1177 return ret;
1178 }
1179
1180 /* Set affinity */
1181 cpu = cpumask_local_spread(ring_id, NUMA_NO_NODE);
1182 irq_set_affinity_hint(irq, get_cpu_mask(cpu));
1183
1184 return irq;
1185 }
1186
1187 static struct safexcel_alg_template *safexcel_algs[] = {
1188 &safexcel_alg_ecb_des,
1189 &safexcel_alg_cbc_des,
1190 &safexcel_alg_ecb_des3_ede,
1191 &safexcel_alg_cbc_des3_ede,
1192 &safexcel_alg_ecb_aes,
1193 &safexcel_alg_cbc_aes,
1194 &safexcel_alg_cfb_aes,
1195 &safexcel_alg_ofb_aes,
1196 &safexcel_alg_ctr_aes,
1197 &safexcel_alg_md5,
1198 &safexcel_alg_sha1,
1199 &safexcel_alg_sha224,
1200 &safexcel_alg_sha256,
1201 &safexcel_alg_sha384,
1202 &safexcel_alg_sha512,
1203 &safexcel_alg_hmac_md5,
1204 &safexcel_alg_hmac_sha1,
1205 &safexcel_alg_hmac_sha224,
1206 &safexcel_alg_hmac_sha256,
1207 &safexcel_alg_hmac_sha384,
1208 &safexcel_alg_hmac_sha512,
1209 &safexcel_alg_authenc_hmac_sha1_cbc_aes,
1210 &safexcel_alg_authenc_hmac_sha224_cbc_aes,
1211 &safexcel_alg_authenc_hmac_sha256_cbc_aes,
1212 &safexcel_alg_authenc_hmac_sha384_cbc_aes,
1213 &safexcel_alg_authenc_hmac_sha512_cbc_aes,
1214 &safexcel_alg_authenc_hmac_sha1_cbc_des3_ede,
1215 &safexcel_alg_authenc_hmac_sha1_ctr_aes,
1216 &safexcel_alg_authenc_hmac_sha224_ctr_aes,
1217 &safexcel_alg_authenc_hmac_sha256_ctr_aes,
1218 &safexcel_alg_authenc_hmac_sha384_ctr_aes,
1219 &safexcel_alg_authenc_hmac_sha512_ctr_aes,
1220 &safexcel_alg_xts_aes,
1221 &safexcel_alg_gcm,
1222 &safexcel_alg_ccm,
1223 &safexcel_alg_crc32,
1224 &safexcel_alg_cbcmac,
1225 &safexcel_alg_xcbcmac,
1226 &safexcel_alg_cmac,
1227 &safexcel_alg_chacha20,
1228 &safexcel_alg_chachapoly,
1229 &safexcel_alg_chachapoly_esp,
1230 &safexcel_alg_sm3,
1231 &safexcel_alg_hmac_sm3,
1232 &safexcel_alg_ecb_sm4,
1233 &safexcel_alg_cbc_sm4,
1234 &safexcel_alg_ofb_sm4,
1235 &safexcel_alg_cfb_sm4,
1236 &safexcel_alg_ctr_sm4,
1237 &safexcel_alg_authenc_hmac_sha1_cbc_sm4,
1238 &safexcel_alg_authenc_hmac_sm3_cbc_sm4,
1239 &safexcel_alg_authenc_hmac_sha1_ctr_sm4,
1240 &safexcel_alg_authenc_hmac_sm3_ctr_sm4,
1241 &safexcel_alg_sha3_224,
1242 &safexcel_alg_sha3_256,
1243 &safexcel_alg_sha3_384,
1244 &safexcel_alg_sha3_512,
1245 &safexcel_alg_hmac_sha3_224,
1246 &safexcel_alg_hmac_sha3_256,
1247 &safexcel_alg_hmac_sha3_384,
1248 &safexcel_alg_hmac_sha3_512,
1249 &safexcel_alg_authenc_hmac_sha1_cbc_des,
1250 &safexcel_alg_authenc_hmac_sha256_cbc_des3_ede,
1251 &safexcel_alg_authenc_hmac_sha224_cbc_des3_ede,
1252 &safexcel_alg_authenc_hmac_sha512_cbc_des3_ede,
1253 &safexcel_alg_authenc_hmac_sha384_cbc_des3_ede,
1254 &safexcel_alg_authenc_hmac_sha256_cbc_des,
1255 &safexcel_alg_authenc_hmac_sha224_cbc_des,
1256 &safexcel_alg_authenc_hmac_sha512_cbc_des,
1257 &safexcel_alg_authenc_hmac_sha384_cbc_des,
1258 &safexcel_alg_rfc4106_gcm,
1259 &safexcel_alg_rfc4543_gcm,
1260 &safexcel_alg_rfc4309_ccm,
1261 };
1262
safexcel_register_algorithms(struct safexcel_crypto_priv * priv)1263 static int safexcel_register_algorithms(struct safexcel_crypto_priv *priv)
1264 {
1265 int i, j, ret = 0;
1266
1267 for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
1268 safexcel_algs[i]->priv = priv;
1269
1270 /* Do we have all required base algorithms available? */
1271 if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) !=
1272 safexcel_algs[i]->algo_mask)
1273 /* No, so don't register this ciphersuite */
1274 continue;
1275
1276 if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
1277 ret = crypto_register_skcipher(&safexcel_algs[i]->alg.skcipher);
1278 else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD)
1279 ret = crypto_register_aead(&safexcel_algs[i]->alg.aead);
1280 else
1281 ret = crypto_register_ahash(&safexcel_algs[i]->alg.ahash);
1282
1283 if (ret)
1284 goto fail;
1285 }
1286
1287 return 0;
1288
1289 fail:
1290 for (j = 0; j < i; j++) {
1291 /* Do we have all required base algorithms available? */
1292 if ((safexcel_algs[j]->algo_mask & priv->hwconfig.algo_flags) !=
1293 safexcel_algs[j]->algo_mask)
1294 /* No, so don't unregister this ciphersuite */
1295 continue;
1296
1297 if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
1298 crypto_unregister_skcipher(&safexcel_algs[j]->alg.skcipher);
1299 else if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_AEAD)
1300 crypto_unregister_aead(&safexcel_algs[j]->alg.aead);
1301 else
1302 crypto_unregister_ahash(&safexcel_algs[j]->alg.ahash);
1303 }
1304
1305 return ret;
1306 }
1307
safexcel_unregister_algorithms(struct safexcel_crypto_priv * priv)1308 static void safexcel_unregister_algorithms(struct safexcel_crypto_priv *priv)
1309 {
1310 int i;
1311
1312 for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
1313 /* Do we have all required base algorithms available? */
1314 if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) !=
1315 safexcel_algs[i]->algo_mask)
1316 /* No, so don't unregister this ciphersuite */
1317 continue;
1318
1319 if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
1320 crypto_unregister_skcipher(&safexcel_algs[i]->alg.skcipher);
1321 else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD)
1322 crypto_unregister_aead(&safexcel_algs[i]->alg.aead);
1323 else
1324 crypto_unregister_ahash(&safexcel_algs[i]->alg.ahash);
1325 }
1326 }
1327
safexcel_configure(struct safexcel_crypto_priv * priv)1328 static void safexcel_configure(struct safexcel_crypto_priv *priv)
1329 {
1330 u32 mask = BIT(priv->hwconfig.hwdataw) - 1;
1331
1332 priv->config.pes = priv->hwconfig.hwnumpes;
1333 priv->config.rings = min_t(u32, priv->hwconfig.hwnumrings, max_rings);
1334 /* Cannot currently support more rings than we have ring AICs! */
1335 priv->config.rings = min_t(u32, priv->config.rings,
1336 priv->hwconfig.hwnumraic);
1337
1338 priv->config.cd_size = EIP197_CD64_FETCH_SIZE;
1339 priv->config.cd_offset = (priv->config.cd_size + mask) & ~mask;
1340 priv->config.cdsh_offset = (EIP197_MAX_TOKENS + mask) & ~mask;
1341
1342 /* res token is behind the descr, but ofs must be rounded to buswdth */
1343 priv->config.res_offset = (EIP197_RD64_FETCH_SIZE + mask) & ~mask;
1344 /* now the size of the descr is this 1st part plus the result struct */
1345 priv->config.rd_size = priv->config.res_offset +
1346 EIP197_RD64_RESULT_SIZE;
1347 priv->config.rd_offset = (priv->config.rd_size + mask) & ~mask;
1348
1349 /* convert dwords to bytes */
1350 priv->config.cd_offset *= sizeof(u32);
1351 priv->config.cdsh_offset *= sizeof(u32);
1352 priv->config.rd_offset *= sizeof(u32);
1353 priv->config.res_offset *= sizeof(u32);
1354 }
1355
safexcel_init_register_offsets(struct safexcel_crypto_priv * priv)1356 static void safexcel_init_register_offsets(struct safexcel_crypto_priv *priv)
1357 {
1358 struct safexcel_register_offsets *offsets = &priv->offsets;
1359
1360 if (priv->flags & SAFEXCEL_HW_EIP197) {
1361 offsets->hia_aic = EIP197_HIA_AIC_BASE;
1362 offsets->hia_aic_g = EIP197_HIA_AIC_G_BASE;
1363 offsets->hia_aic_r = EIP197_HIA_AIC_R_BASE;
1364 offsets->hia_aic_xdr = EIP197_HIA_AIC_xDR_BASE;
1365 offsets->hia_dfe = EIP197_HIA_DFE_BASE;
1366 offsets->hia_dfe_thr = EIP197_HIA_DFE_THR_BASE;
1367 offsets->hia_dse = EIP197_HIA_DSE_BASE;
1368 offsets->hia_dse_thr = EIP197_HIA_DSE_THR_BASE;
1369 offsets->hia_gen_cfg = EIP197_HIA_GEN_CFG_BASE;
1370 offsets->pe = EIP197_PE_BASE;
1371 offsets->global = EIP197_GLOBAL_BASE;
1372 } else {
1373 offsets->hia_aic = EIP97_HIA_AIC_BASE;
1374 offsets->hia_aic_g = EIP97_HIA_AIC_G_BASE;
1375 offsets->hia_aic_r = EIP97_HIA_AIC_R_BASE;
1376 offsets->hia_aic_xdr = EIP97_HIA_AIC_xDR_BASE;
1377 offsets->hia_dfe = EIP97_HIA_DFE_BASE;
1378 offsets->hia_dfe_thr = EIP97_HIA_DFE_THR_BASE;
1379 offsets->hia_dse = EIP97_HIA_DSE_BASE;
1380 offsets->hia_dse_thr = EIP97_HIA_DSE_THR_BASE;
1381 offsets->hia_gen_cfg = EIP97_HIA_GEN_CFG_BASE;
1382 offsets->pe = EIP97_PE_BASE;
1383 offsets->global = EIP97_GLOBAL_BASE;
1384 }
1385 }
1386
1387 /*
1388 * Generic part of probe routine, shared by platform and PCI driver
1389 *
1390 * Assumes IO resources have been mapped, private data mem has been allocated,
1391 * clocks have been enabled, device pointer has been assigned etc.
1392 *
1393 */
safexcel_probe_generic(void * pdev,struct safexcel_crypto_priv * priv,int is_pci_dev)1394 static int safexcel_probe_generic(void *pdev,
1395 struct safexcel_crypto_priv *priv,
1396 int is_pci_dev)
1397 {
1398 struct device *dev = priv->dev;
1399 u32 peid, version, mask, val, hiaopt, hwopt, peopt;
1400 int i, ret, hwctg;
1401
1402 priv->context_pool = dmam_pool_create("safexcel-context", dev,
1403 sizeof(struct safexcel_context_record),
1404 1, 0);
1405 if (!priv->context_pool)
1406 return -ENOMEM;
1407
1408 /*
1409 * First try the EIP97 HIA version regs
1410 * For the EIP197, this is guaranteed to NOT return any of the test
1411 * values
1412 */
1413 version = readl(priv->base + EIP97_HIA_AIC_BASE + EIP197_HIA_VERSION);
1414
1415 mask = 0; /* do not swap */
1416 if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) {
1417 priv->hwconfig.hiaver = EIP197_VERSION_MASK(version);
1418 } else if (EIP197_REG_HI16(version) == EIP197_HIA_VERSION_BE) {
1419 /* read back byte-swapped, so complement byte swap bits */
1420 mask = EIP197_MST_CTRL_BYTE_SWAP_BITS;
1421 priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version);
1422 } else {
1423 /* So it wasn't an EIP97 ... maybe it's an EIP197? */
1424 version = readl(priv->base + EIP197_HIA_AIC_BASE +
1425 EIP197_HIA_VERSION);
1426 if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) {
1427 priv->hwconfig.hiaver = EIP197_VERSION_MASK(version);
1428 priv->flags |= SAFEXCEL_HW_EIP197;
1429 } else if (EIP197_REG_HI16(version) ==
1430 EIP197_HIA_VERSION_BE) {
1431 /* read back byte-swapped, so complement swap bits */
1432 mask = EIP197_MST_CTRL_BYTE_SWAP_BITS;
1433 priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version);
1434 priv->flags |= SAFEXCEL_HW_EIP197;
1435 } else {
1436 return -ENODEV;
1437 }
1438 }
1439
1440 /* Now initialize the reg offsets based on the probing info so far */
1441 safexcel_init_register_offsets(priv);
1442
1443 /*
1444 * If the version was read byte-swapped, we need to flip the device
1445 * swapping Keep in mind here, though, that what we write will also be
1446 * byte-swapped ...
1447 */
1448 if (mask) {
1449 val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
1450 val = val ^ (mask >> 24); /* toggle byte swap bits */
1451 writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
1452 }
1453
1454 /*
1455 * We're not done probing yet! We may fall through to here if no HIA
1456 * was found at all. So, with the endianness presumably correct now and
1457 * the offsets setup, *really* probe for the EIP97/EIP197.
1458 */
1459 version = readl(EIP197_GLOBAL(priv) + EIP197_VERSION);
1460 if (((priv->flags & SAFEXCEL_HW_EIP197) &&
1461 (EIP197_REG_LO16(version) != EIP197_VERSION_LE) &&
1462 (EIP197_REG_LO16(version) != EIP196_VERSION_LE)) ||
1463 ((!(priv->flags & SAFEXCEL_HW_EIP197) &&
1464 (EIP197_REG_LO16(version) != EIP97_VERSION_LE)))) {
1465 /*
1466 * We did not find the device that matched our initial probing
1467 * (or our initial probing failed) Report appropriate error.
1468 */
1469 dev_err(priv->dev, "Probing for EIP97/EIP19x failed - no such device (read %08x)\n",
1470 version);
1471 return -ENODEV;
1472 }
1473
1474 priv->hwconfig.hwver = EIP197_VERSION_MASK(version);
1475 hwctg = version >> 28;
1476 peid = version & 255;
1477
1478 /* Detect EIP206 processing pipe */
1479 version = readl(EIP197_PE(priv) + + EIP197_PE_VERSION(0));
1480 if (EIP197_REG_LO16(version) != EIP206_VERSION_LE) {
1481 dev_err(priv->dev, "EIP%d: EIP206 not detected\n", peid);
1482 return -ENODEV;
1483 }
1484 priv->hwconfig.ppver = EIP197_VERSION_MASK(version);
1485
1486 /* Detect EIP96 packet engine and version */
1487 version = readl(EIP197_PE(priv) + EIP197_PE_EIP96_VERSION(0));
1488 if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) {
1489 dev_err(dev, "EIP%d: EIP96 not detected.\n", peid);
1490 return -ENODEV;
1491 }
1492 priv->hwconfig.pever = EIP197_VERSION_MASK(version);
1493
1494 hwopt = readl(EIP197_GLOBAL(priv) + EIP197_OPTIONS);
1495 hiaopt = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_OPTIONS);
1496
1497 priv->hwconfig.icever = 0;
1498 priv->hwconfig.ocever = 0;
1499 priv->hwconfig.psever = 0;
1500 if (priv->flags & SAFEXCEL_HW_EIP197) {
1501 /* EIP197 */
1502 peopt = readl(EIP197_PE(priv) + EIP197_PE_OPTIONS(0));
1503
1504 priv->hwconfig.hwdataw = (hiaopt >> EIP197_HWDATAW_OFFSET) &
1505 EIP197_HWDATAW_MASK;
1506 priv->hwconfig.hwcfsize = ((hiaopt >> EIP197_CFSIZE_OFFSET) &
1507 EIP197_CFSIZE_MASK) +
1508 EIP197_CFSIZE_ADJUST;
1509 priv->hwconfig.hwrfsize = ((hiaopt >> EIP197_RFSIZE_OFFSET) &
1510 EIP197_RFSIZE_MASK) +
1511 EIP197_RFSIZE_ADJUST;
1512 priv->hwconfig.hwnumpes = (hiaopt >> EIP197_N_PES_OFFSET) &
1513 EIP197_N_PES_MASK;
1514 priv->hwconfig.hwnumrings = (hiaopt >> EIP197_N_RINGS_OFFSET) &
1515 EIP197_N_RINGS_MASK;
1516 if (hiaopt & EIP197_HIA_OPT_HAS_PE_ARB)
1517 priv->flags |= EIP197_PE_ARB;
1518 if (EIP206_OPT_ICE_TYPE(peopt) == 1) {
1519 priv->flags |= EIP197_ICE;
1520 /* Detect ICE EIP207 class. engine and version */
1521 version = readl(EIP197_PE(priv) +
1522 EIP197_PE_ICE_VERSION(0));
1523 if (EIP197_REG_LO16(version) != EIP207_VERSION_LE) {
1524 dev_err(dev, "EIP%d: ICE EIP207 not detected.\n",
1525 peid);
1526 return -ENODEV;
1527 }
1528 priv->hwconfig.icever = EIP197_VERSION_MASK(version);
1529 }
1530 if (EIP206_OPT_OCE_TYPE(peopt) == 1) {
1531 priv->flags |= EIP197_OCE;
1532 /* Detect EIP96PP packet stream editor and version */
1533 version = readl(EIP197_PE(priv) + EIP197_PE_PSE_VERSION(0));
1534 if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) {
1535 dev_err(dev, "EIP%d: EIP96PP not detected.\n", peid);
1536 return -ENODEV;
1537 }
1538 priv->hwconfig.psever = EIP197_VERSION_MASK(version);
1539 /* Detect OCE EIP207 class. engine and version */
1540 version = readl(EIP197_PE(priv) +
1541 EIP197_PE_ICE_VERSION(0));
1542 if (EIP197_REG_LO16(version) != EIP207_VERSION_LE) {
1543 dev_err(dev, "EIP%d: OCE EIP207 not detected.\n",
1544 peid);
1545 return -ENODEV;
1546 }
1547 priv->hwconfig.ocever = EIP197_VERSION_MASK(version);
1548 }
1549 /* If not a full TRC, then assume simple TRC */
1550 if (!(hwopt & EIP197_OPT_HAS_TRC))
1551 priv->flags |= EIP197_SIMPLE_TRC;
1552 /* EIP197 always has SOME form of TRC */
1553 priv->flags |= EIP197_TRC_CACHE;
1554 } else {
1555 /* EIP97 */
1556 priv->hwconfig.hwdataw = (hiaopt >> EIP197_HWDATAW_OFFSET) &
1557 EIP97_HWDATAW_MASK;
1558 priv->hwconfig.hwcfsize = (hiaopt >> EIP97_CFSIZE_OFFSET) &
1559 EIP97_CFSIZE_MASK;
1560 priv->hwconfig.hwrfsize = (hiaopt >> EIP97_RFSIZE_OFFSET) &
1561 EIP97_RFSIZE_MASK;
1562 priv->hwconfig.hwnumpes = 1; /* by definition */
1563 priv->hwconfig.hwnumrings = (hiaopt >> EIP197_N_RINGS_OFFSET) &
1564 EIP197_N_RINGS_MASK;
1565 }
1566
1567 /* Scan for ring AIC's */
1568 for (i = 0; i < EIP197_MAX_RING_AIC; i++) {
1569 version = readl(EIP197_HIA_AIC_R(priv) +
1570 EIP197_HIA_AIC_R_VERSION(i));
1571 if (EIP197_REG_LO16(version) != EIP201_VERSION_LE)
1572 break;
1573 }
1574 priv->hwconfig.hwnumraic = i;
1575 /* Low-end EIP196 may not have any ring AIC's ... */
1576 if (!priv->hwconfig.hwnumraic) {
1577 dev_err(priv->dev, "No ring interrupt controller present!\n");
1578 return -ENODEV;
1579 }
1580
1581 /* Get supported algorithms from EIP96 transform engine */
1582 priv->hwconfig.algo_flags = readl(EIP197_PE(priv) +
1583 EIP197_PE_EIP96_OPTIONS(0));
1584
1585 /* Print single info line describing what we just detected */
1586 dev_info(priv->dev, "EIP%d:%x(%d,%d,%d,%d)-HIA:%x(%d,%d,%d),PE:%x/%x(alg:%08x)/%x/%x/%x\n",
1587 peid, priv->hwconfig.hwver, hwctg, priv->hwconfig.hwnumpes,
1588 priv->hwconfig.hwnumrings, priv->hwconfig.hwnumraic,
1589 priv->hwconfig.hiaver, priv->hwconfig.hwdataw,
1590 priv->hwconfig.hwcfsize, priv->hwconfig.hwrfsize,
1591 priv->hwconfig.ppver, priv->hwconfig.pever,
1592 priv->hwconfig.algo_flags, priv->hwconfig.icever,
1593 priv->hwconfig.ocever, priv->hwconfig.psever);
1594
1595 safexcel_configure(priv);
1596
1597 if (IS_ENABLED(CONFIG_PCI) && priv->data->version == EIP197_DEVBRD) {
1598 /*
1599 * Request MSI vectors for global + 1 per ring -
1600 * or just 1 for older dev images
1601 */
1602 struct pci_dev *pci_pdev = pdev;
1603
1604 ret = pci_alloc_irq_vectors(pci_pdev,
1605 priv->config.rings + 1,
1606 priv->config.rings + 1,
1607 PCI_IRQ_MSI | PCI_IRQ_MSIX);
1608 if (ret < 0) {
1609 dev_err(dev, "Failed to allocate PCI MSI interrupts\n");
1610 return ret;
1611 }
1612 }
1613
1614 /* Register the ring IRQ handlers and configure the rings */
1615 priv->ring = devm_kcalloc(dev, priv->config.rings,
1616 sizeof(*priv->ring),
1617 GFP_KERNEL);
1618 if (!priv->ring)
1619 return -ENOMEM;
1620
1621 for (i = 0; i < priv->config.rings; i++) {
1622 char wq_name[9] = {0};
1623 int irq;
1624 struct safexcel_ring_irq_data *ring_irq;
1625
1626 ret = safexcel_init_ring_descriptors(priv,
1627 &priv->ring[i].cdr,
1628 &priv->ring[i].rdr);
1629 if (ret) {
1630 dev_err(dev, "Failed to initialize rings\n");
1631 goto err_cleanup_rings;
1632 }
1633
1634 priv->ring[i].rdr_req = devm_kcalloc(dev,
1635 EIP197_DEFAULT_RING_SIZE,
1636 sizeof(*priv->ring[i].rdr_req),
1637 GFP_KERNEL);
1638 if (!priv->ring[i].rdr_req) {
1639 ret = -ENOMEM;
1640 goto err_cleanup_rings;
1641 }
1642
1643 ring_irq = devm_kzalloc(dev, sizeof(*ring_irq), GFP_KERNEL);
1644 if (!ring_irq) {
1645 ret = -ENOMEM;
1646 goto err_cleanup_rings;
1647 }
1648
1649 ring_irq->priv = priv;
1650 ring_irq->ring = i;
1651
1652 irq = safexcel_request_ring_irq(pdev,
1653 EIP197_IRQ_NUMBER(i, is_pci_dev),
1654 is_pci_dev,
1655 i,
1656 safexcel_irq_ring,
1657 safexcel_irq_ring_thread,
1658 ring_irq);
1659 if (irq < 0) {
1660 dev_err(dev, "Failed to get IRQ ID for ring %d\n", i);
1661 ret = irq;
1662 goto err_cleanup_rings;
1663 }
1664
1665 priv->ring[i].irq = irq;
1666 priv->ring[i].work_data.priv = priv;
1667 priv->ring[i].work_data.ring = i;
1668 INIT_WORK(&priv->ring[i].work_data.work,
1669 safexcel_dequeue_work);
1670
1671 snprintf(wq_name, 9, "wq_ring%d", i);
1672 priv->ring[i].workqueue =
1673 create_singlethread_workqueue(wq_name);
1674 if (!priv->ring[i].workqueue) {
1675 ret = -ENOMEM;
1676 goto err_cleanup_rings;
1677 }
1678
1679 priv->ring[i].requests = 0;
1680 priv->ring[i].busy = false;
1681
1682 crypto_init_queue(&priv->ring[i].queue,
1683 EIP197_DEFAULT_RING_SIZE);
1684
1685 spin_lock_init(&priv->ring[i].lock);
1686 spin_lock_init(&priv->ring[i].queue_lock);
1687 }
1688
1689 atomic_set(&priv->ring_used, 0);
1690
1691 ret = safexcel_hw_init(priv);
1692 if (ret) {
1693 dev_err(dev, "HW init failed (%d)\n", ret);
1694 goto err_cleanup_rings;
1695 }
1696
1697 ret = safexcel_register_algorithms(priv);
1698 if (ret) {
1699 dev_err(dev, "Failed to register algorithms (%d)\n", ret);
1700 goto err_cleanup_rings;
1701 }
1702
1703 return 0;
1704
1705 err_cleanup_rings:
1706 for (i = 0; i < priv->config.rings; i++) {
1707 if (priv->ring[i].irq)
1708 irq_set_affinity_hint(priv->ring[i].irq, NULL);
1709 if (priv->ring[i].workqueue)
1710 destroy_workqueue(priv->ring[i].workqueue);
1711 }
1712
1713 return ret;
1714 }
1715
safexcel_hw_reset_rings(struct safexcel_crypto_priv * priv)1716 static void safexcel_hw_reset_rings(struct safexcel_crypto_priv *priv)
1717 {
1718 int i;
1719
1720 for (i = 0; i < priv->config.rings; i++) {
1721 /* clear any pending interrupt */
1722 writel(GENMASK(5, 0), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT);
1723 writel(GENMASK(7, 0), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT);
1724
1725 /* Reset the CDR base address */
1726 writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
1727 writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
1728
1729 /* Reset the RDR base address */
1730 writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
1731 writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
1732 }
1733 }
1734
1735 /* for Device Tree platform driver */
1736
safexcel_probe(struct platform_device * pdev)1737 static int safexcel_probe(struct platform_device *pdev)
1738 {
1739 struct device *dev = &pdev->dev;
1740 struct safexcel_crypto_priv *priv;
1741 int ret;
1742
1743 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1744 if (!priv)
1745 return -ENOMEM;
1746
1747 priv->dev = dev;
1748 priv->data = (struct safexcel_priv_data *)of_device_get_match_data(dev);
1749
1750 platform_set_drvdata(pdev, priv);
1751
1752 priv->base = devm_platform_ioremap_resource(pdev, 0);
1753 if (IS_ERR(priv->base)) {
1754 dev_err(dev, "failed to get resource\n");
1755 return PTR_ERR(priv->base);
1756 }
1757
1758 priv->clk = devm_clk_get(&pdev->dev, NULL);
1759 ret = PTR_ERR_OR_ZERO(priv->clk);
1760 /* The clock isn't mandatory */
1761 if (ret != -ENOENT) {
1762 if (ret)
1763 return ret;
1764
1765 ret = clk_prepare_enable(priv->clk);
1766 if (ret) {
1767 dev_err(dev, "unable to enable clk (%d)\n", ret);
1768 return ret;
1769 }
1770 }
1771
1772 priv->reg_clk = devm_clk_get(&pdev->dev, "reg");
1773 ret = PTR_ERR_OR_ZERO(priv->reg_clk);
1774 /* The clock isn't mandatory */
1775 if (ret != -ENOENT) {
1776 if (ret)
1777 goto err_core_clk;
1778
1779 ret = clk_prepare_enable(priv->reg_clk);
1780 if (ret) {
1781 dev_err(dev, "unable to enable reg clk (%d)\n", ret);
1782 goto err_core_clk;
1783 }
1784 }
1785
1786 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
1787 if (ret)
1788 goto err_reg_clk;
1789
1790 /* Generic EIP97/EIP197 device probing */
1791 ret = safexcel_probe_generic(pdev, priv, 0);
1792 if (ret)
1793 goto err_reg_clk;
1794
1795 return 0;
1796
1797 err_reg_clk:
1798 clk_disable_unprepare(priv->reg_clk);
1799 err_core_clk:
1800 clk_disable_unprepare(priv->clk);
1801 return ret;
1802 }
1803
safexcel_remove(struct platform_device * pdev)1804 static int safexcel_remove(struct platform_device *pdev)
1805 {
1806 struct safexcel_crypto_priv *priv = platform_get_drvdata(pdev);
1807 int i;
1808
1809 safexcel_unregister_algorithms(priv);
1810 safexcel_hw_reset_rings(priv);
1811
1812 clk_disable_unprepare(priv->reg_clk);
1813 clk_disable_unprepare(priv->clk);
1814
1815 for (i = 0; i < priv->config.rings; i++) {
1816 irq_set_affinity_hint(priv->ring[i].irq, NULL);
1817 destroy_workqueue(priv->ring[i].workqueue);
1818 }
1819
1820 return 0;
1821 }
1822
1823 static const struct safexcel_priv_data eip97ies_mrvl_data = {
1824 .version = EIP97IES_MRVL,
1825 };
1826
1827 static const struct safexcel_priv_data eip197b_mrvl_data = {
1828 .version = EIP197B_MRVL,
1829 };
1830
1831 static const struct safexcel_priv_data eip197d_mrvl_data = {
1832 .version = EIP197D_MRVL,
1833 };
1834
1835 static const struct safexcel_priv_data eip197_devbrd_data = {
1836 .version = EIP197_DEVBRD,
1837 };
1838
1839 static const struct safexcel_priv_data eip197c_mxl_data = {
1840 .version = EIP197C_MXL,
1841 .fw_little_endian = true,
1842 };
1843
1844 static const struct of_device_id safexcel_of_match_table[] = {
1845 {
1846 .compatible = "inside-secure,safexcel-eip97ies",
1847 .data = &eip97ies_mrvl_data,
1848 },
1849 {
1850 .compatible = "inside-secure,safexcel-eip197b",
1851 .data = &eip197b_mrvl_data,
1852 },
1853 {
1854 .compatible = "inside-secure,safexcel-eip197d",
1855 .data = &eip197d_mrvl_data,
1856 },
1857 {
1858 .compatible = "inside-secure,safexcel-eip197c-mxl",
1859 .data = &eip197c_mxl_data,
1860 },
1861 /* For backward compatibility and intended for generic use */
1862 {
1863 .compatible = "inside-secure,safexcel-eip97",
1864 .data = &eip97ies_mrvl_data,
1865 },
1866 {
1867 .compatible = "inside-secure,safexcel-eip197",
1868 .data = &eip197b_mrvl_data,
1869 },
1870 {},
1871 };
1872
1873 MODULE_DEVICE_TABLE(of, safexcel_of_match_table);
1874
1875 static struct platform_driver crypto_safexcel = {
1876 .probe = safexcel_probe,
1877 .remove = safexcel_remove,
1878 .driver = {
1879 .name = "crypto-safexcel",
1880 .of_match_table = safexcel_of_match_table,
1881 },
1882 };
1883
1884 /* PCIE devices - i.e. Inside Secure development boards */
1885
safexcel_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1886 static int safexcel_pci_probe(struct pci_dev *pdev,
1887 const struct pci_device_id *ent)
1888 {
1889 struct device *dev = &pdev->dev;
1890 struct safexcel_crypto_priv *priv;
1891 void __iomem *pciebase;
1892 int rc;
1893 u32 val;
1894
1895 dev_dbg(dev, "Probing PCIE device: vendor %04x, device %04x, subv %04x, subdev %04x, ctxt %lx\n",
1896 ent->vendor, ent->device, ent->subvendor,
1897 ent->subdevice, ent->driver_data);
1898
1899 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1900 if (!priv)
1901 return -ENOMEM;
1902
1903 priv->dev = dev;
1904 priv->data = (struct safexcel_priv_data *)ent->driver_data;
1905
1906 pci_set_drvdata(pdev, priv);
1907
1908 /* enable the device */
1909 rc = pcim_enable_device(pdev);
1910 if (rc) {
1911 dev_err(dev, "Failed to enable PCI device\n");
1912 return rc;
1913 }
1914
1915 /* take ownership of PCI BAR0 */
1916 rc = pcim_iomap_regions(pdev, 1, "crypto_safexcel");
1917 if (rc) {
1918 dev_err(dev, "Failed to map IO region for BAR0\n");
1919 return rc;
1920 }
1921 priv->base = pcim_iomap_table(pdev)[0];
1922
1923 if (priv->data->version == EIP197_DEVBRD) {
1924 dev_dbg(dev, "Device identified as FPGA based development board - applying HW reset\n");
1925
1926 rc = pcim_iomap_regions(pdev, 4, "crypto_safexcel");
1927 if (rc) {
1928 dev_err(dev, "Failed to map IO region for BAR4\n");
1929 return rc;
1930 }
1931
1932 pciebase = pcim_iomap_table(pdev)[2];
1933 val = readl(pciebase + EIP197_XLX_IRQ_BLOCK_ID_ADDR);
1934 if ((val >> 16) == EIP197_XLX_IRQ_BLOCK_ID_VALUE) {
1935 dev_dbg(dev, "Detected Xilinx PCIE IRQ block version %d, multiple MSI support enabled\n",
1936 (val & 0xff));
1937
1938 /* Setup MSI identity map mapping */
1939 writel(EIP197_XLX_USER_VECT_LUT0_IDENT,
1940 pciebase + EIP197_XLX_USER_VECT_LUT0_ADDR);
1941 writel(EIP197_XLX_USER_VECT_LUT1_IDENT,
1942 pciebase + EIP197_XLX_USER_VECT_LUT1_ADDR);
1943 writel(EIP197_XLX_USER_VECT_LUT2_IDENT,
1944 pciebase + EIP197_XLX_USER_VECT_LUT2_ADDR);
1945 writel(EIP197_XLX_USER_VECT_LUT3_IDENT,
1946 pciebase + EIP197_XLX_USER_VECT_LUT3_ADDR);
1947
1948 /* Enable all device interrupts */
1949 writel(GENMASK(31, 0),
1950 pciebase + EIP197_XLX_USER_INT_ENB_MSK);
1951 } else {
1952 dev_err(dev, "Unrecognised IRQ block identifier %x\n",
1953 val);
1954 return -ENODEV;
1955 }
1956
1957 /* HW reset FPGA dev board */
1958 /* assert reset */
1959 writel(1, priv->base + EIP197_XLX_GPIO_BASE);
1960 wmb(); /* maintain strict ordering for accesses here */
1961 /* deassert reset */
1962 writel(0, priv->base + EIP197_XLX_GPIO_BASE);
1963 wmb(); /* maintain strict ordering for accesses here */
1964 }
1965
1966 /* enable bus mastering */
1967 pci_set_master(pdev);
1968
1969 /* Generic EIP97/EIP197 device probing */
1970 rc = safexcel_probe_generic(pdev, priv, 1);
1971 return rc;
1972 }
1973
safexcel_pci_remove(struct pci_dev * pdev)1974 static void safexcel_pci_remove(struct pci_dev *pdev)
1975 {
1976 struct safexcel_crypto_priv *priv = pci_get_drvdata(pdev);
1977 int i;
1978
1979 safexcel_unregister_algorithms(priv);
1980
1981 for (i = 0; i < priv->config.rings; i++)
1982 destroy_workqueue(priv->ring[i].workqueue);
1983
1984 safexcel_hw_reset_rings(priv);
1985 }
1986
1987 static const struct pci_device_id safexcel_pci_ids[] = {
1988 {
1989 PCI_DEVICE_SUB(PCI_VENDOR_ID_XILINX, 0x9038,
1990 0x16ae, 0xc522),
1991 .driver_data = (kernel_ulong_t)&eip197_devbrd_data,
1992 },
1993 {},
1994 };
1995
1996 MODULE_DEVICE_TABLE(pci, safexcel_pci_ids);
1997
1998 static struct pci_driver safexcel_pci_driver = {
1999 .name = "crypto-safexcel",
2000 .id_table = safexcel_pci_ids,
2001 .probe = safexcel_pci_probe,
2002 .remove = safexcel_pci_remove,
2003 };
2004
safexcel_init(void)2005 static int __init safexcel_init(void)
2006 {
2007 int ret;
2008
2009 /* Register PCI driver */
2010 ret = pci_register_driver(&safexcel_pci_driver);
2011
2012 /* Register platform driver */
2013 if (IS_ENABLED(CONFIG_OF) && !ret) {
2014 ret = platform_driver_register(&crypto_safexcel);
2015 if (ret)
2016 pci_unregister_driver(&safexcel_pci_driver);
2017 }
2018
2019 return ret;
2020 }
2021
safexcel_exit(void)2022 static void __exit safexcel_exit(void)
2023 {
2024 /* Unregister platform driver */
2025 if (IS_ENABLED(CONFIG_OF))
2026 platform_driver_unregister(&crypto_safexcel);
2027
2028 /* Unregister PCI driver if successfully registered before */
2029 pci_unregister_driver(&safexcel_pci_driver);
2030 }
2031
2032 module_init(safexcel_init);
2033 module_exit(safexcel_exit);
2034
2035 MODULE_AUTHOR("Antoine Tenart <antoine.tenart@free-electrons.com>");
2036 MODULE_AUTHOR("Ofer Heifetz <oferh@marvell.com>");
2037 MODULE_AUTHOR("Igal Liberman <igall@marvell.com>");
2038 MODULE_DESCRIPTION("Support for SafeXcel cryptographic engines: EIP97 & EIP197");
2039 MODULE_LICENSE("GPL v2");
2040 MODULE_IMPORT_NS(CRYPTO_INTERNAL);
2041
2042 MODULE_FIRMWARE("ifpp.bin");
2043 MODULE_FIRMWARE("ipue.bin");
2044 MODULE_FIRMWARE("inside-secure/eip197b/ifpp.bin");
2045 MODULE_FIRMWARE("inside-secure/eip197b/ipue.bin");
2046 MODULE_FIRMWARE("inside-secure/eip197d/ifpp.bin");
2047 MODULE_FIRMWARE("inside-secure/eip197d/ipue.bin");
2048 MODULE_FIRMWARE("inside-secure/eip197_minifw/ifpp.bin");
2049 MODULE_FIRMWARE("inside-secure/eip197_minifw/ipue.bin");
2050