1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014 Imagination Technologies 4 * Authors: Will Thomas, James Hartley 5 * 6 * Interface structure taken from omap-sham driver 7 */ 8 9 #include <linux/clk.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/dmaengine.h> 12 #include <linux/interrupt.h> 13 #include <linux/io.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/of_device.h> 17 #include <linux/platform_device.h> 18 #include <linux/scatterlist.h> 19 20 #include <crypto/internal/hash.h> 21 #include <crypto/md5.h> 22 #include <crypto/sha1.h> 23 #include <crypto/sha2.h> 24 25 #define CR_RESET 0 26 #define CR_RESET_SET 1 27 #define CR_RESET_UNSET 0 28 29 #define CR_MESSAGE_LENGTH_H 0x4 30 #define CR_MESSAGE_LENGTH_L 0x8 31 32 #define CR_CONTROL 0xc 33 #define CR_CONTROL_BYTE_ORDER_3210 0 34 #define CR_CONTROL_BYTE_ORDER_0123 1 35 #define CR_CONTROL_BYTE_ORDER_2310 2 36 #define CR_CONTROL_BYTE_ORDER_1032 3 37 #define CR_CONTROL_BYTE_ORDER_SHIFT 8 38 #define CR_CONTROL_ALGO_MD5 0 39 #define CR_CONTROL_ALGO_SHA1 1 40 #define CR_CONTROL_ALGO_SHA224 2 41 #define CR_CONTROL_ALGO_SHA256 3 42 43 #define CR_INTSTAT 0x10 44 #define CR_INTENAB 0x14 45 #define CR_INTCLEAR 0x18 46 #define CR_INT_RESULTS_AVAILABLE BIT(0) 47 #define CR_INT_NEW_RESULTS_SET BIT(1) 48 #define CR_INT_RESULT_READ_ERR BIT(2) 49 #define CR_INT_MESSAGE_WRITE_ERROR BIT(3) 50 #define CR_INT_STATUS BIT(8) 51 52 #define CR_RESULT_QUEUE 0x1c 53 #define CR_RSD0 0x40 54 #define CR_CORE_REV 0x50 55 #define CR_CORE_DES1 0x60 56 #define CR_CORE_DES2 0x70 57 58 #define DRIVER_FLAGS_BUSY BIT(0) 59 #define DRIVER_FLAGS_FINAL BIT(1) 60 #define DRIVER_FLAGS_DMA_ACTIVE BIT(2) 61 #define DRIVER_FLAGS_OUTPUT_READY BIT(3) 62 #define DRIVER_FLAGS_INIT BIT(4) 63 #define DRIVER_FLAGS_CPU BIT(5) 64 #define DRIVER_FLAGS_DMA_READY BIT(6) 65 #define DRIVER_FLAGS_ERROR BIT(7) 66 #define DRIVER_FLAGS_SG BIT(8) 67 #define DRIVER_FLAGS_SHA1 BIT(18) 68 #define DRIVER_FLAGS_SHA224 BIT(19) 69 #define DRIVER_FLAGS_SHA256 BIT(20) 70 #define DRIVER_FLAGS_MD5 BIT(21) 71 72 #define IMG_HASH_QUEUE_LENGTH 20 73 #define IMG_HASH_DMA_BURST 4 74 #define IMG_HASH_DMA_THRESHOLD 64 75 76 #ifdef __LITTLE_ENDIAN 77 #define IMG_HASH_BYTE_ORDER CR_CONTROL_BYTE_ORDER_3210 78 #else 79 #define IMG_HASH_BYTE_ORDER CR_CONTROL_BYTE_ORDER_0123 80 #endif 81 82 struct img_hash_dev; 83 84 struct img_hash_request_ctx { 85 struct img_hash_dev *hdev; 86 u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32)); 87 unsigned long flags; 88 size_t digsize; 89 90 dma_addr_t dma_addr; 91 size_t dma_ct; 92 93 /* sg root */ 94 struct scatterlist *sgfirst; 95 /* walk state */ 96 struct scatterlist *sg; 97 size_t nents; 98 size_t offset; 99 unsigned int total; 100 size_t sent; 101 102 unsigned long op; 103 104 size_t bufcnt; 105 struct ahash_request fallback_req; 106 107 /* Zero length buffer must remain last member of struct */ 108 u8 buffer[] __aligned(sizeof(u32)); 109 }; 110 111 struct img_hash_ctx { 112 struct img_hash_dev *hdev; 113 unsigned long flags; 114 struct crypto_ahash *fallback; 115 }; 116 117 struct img_hash_dev { 118 struct list_head list; 119 struct device *dev; 120 struct clk *hash_clk; 121 struct clk *sys_clk; 122 void __iomem *io_base; 123 124 phys_addr_t bus_addr; 125 void __iomem *cpu_addr; 126 127 spinlock_t lock; 128 int err; 129 struct tasklet_struct done_task; 130 struct tasklet_struct dma_task; 131 132 unsigned long flags; 133 struct crypto_queue queue; 134 struct ahash_request *req; 135 136 struct dma_chan *dma_lch; 137 }; 138 139 struct img_hash_drv { 140 struct list_head dev_list; 141 spinlock_t lock; 142 }; 143 144 static struct img_hash_drv img_hash = { 145 .dev_list = LIST_HEAD_INIT(img_hash.dev_list), 146 .lock = __SPIN_LOCK_UNLOCKED(img_hash.lock), 147 }; 148 149 static inline u32 img_hash_read(struct img_hash_dev *hdev, u32 offset) 150 { 151 return readl_relaxed(hdev->io_base + offset); 152 } 153 154 static inline void img_hash_write(struct img_hash_dev *hdev, 155 u32 offset, u32 value) 156 { 157 writel_relaxed(value, hdev->io_base + offset); 158 } 159 160 static inline u32 img_hash_read_result_queue(struct img_hash_dev *hdev) 161 { 162 return be32_to_cpu(img_hash_read(hdev, CR_RESULT_QUEUE)); 163 } 164 165 static void img_hash_start(struct img_hash_dev *hdev, bool dma) 166 { 167 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req); 168 u32 cr = IMG_HASH_BYTE_ORDER << CR_CONTROL_BYTE_ORDER_SHIFT; 169 170 if (ctx->flags & DRIVER_FLAGS_MD5) 171 cr |= CR_CONTROL_ALGO_MD5; 172 else if (ctx->flags & DRIVER_FLAGS_SHA1) 173 cr |= CR_CONTROL_ALGO_SHA1; 174 else if (ctx->flags & DRIVER_FLAGS_SHA224) 175 cr |= CR_CONTROL_ALGO_SHA224; 176 else if (ctx->flags & DRIVER_FLAGS_SHA256) 177 cr |= CR_CONTROL_ALGO_SHA256; 178 dev_dbg(hdev->dev, "Starting hash process\n"); 179 img_hash_write(hdev, CR_CONTROL, cr); 180 181 /* 182 * The hardware block requires two cycles between writing the control 183 * register and writing the first word of data in non DMA mode, to 184 * ensure the first data write is not grouped in burst with the control 185 * register write a read is issued to 'flush' the bus. 186 */ 187 if (!dma) 188 img_hash_read(hdev, CR_CONTROL); 189 } 190 191 static int img_hash_xmit_cpu(struct img_hash_dev *hdev, const u8 *buf, 192 size_t length, int final) 193 { 194 u32 count, len32; 195 const u32 *buffer = (const u32 *)buf; 196 197 dev_dbg(hdev->dev, "xmit_cpu: length: %zu bytes\n", length); 198 199 if (final) 200 hdev->flags |= DRIVER_FLAGS_FINAL; 201 202 len32 = DIV_ROUND_UP(length, sizeof(u32)); 203 204 for (count = 0; count < len32; count++) 205 writel_relaxed(buffer[count], hdev->cpu_addr); 206 207 return -EINPROGRESS; 208 } 209 210 static void img_hash_dma_callback(void *data) 211 { 212 struct img_hash_dev *hdev = (struct img_hash_dev *)data; 213 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req); 214 215 if (ctx->bufcnt) { 216 img_hash_xmit_cpu(hdev, ctx->buffer, ctx->bufcnt, 0); 217 ctx->bufcnt = 0; 218 } 219 if (ctx->sg) 220 tasklet_schedule(&hdev->dma_task); 221 } 222 223 static int img_hash_xmit_dma(struct img_hash_dev *hdev, struct scatterlist *sg) 224 { 225 struct dma_async_tx_descriptor *desc; 226 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req); 227 228 ctx->dma_ct = dma_map_sg(hdev->dev, sg, 1, DMA_TO_DEVICE); 229 if (ctx->dma_ct == 0) { 230 dev_err(hdev->dev, "Invalid DMA sg\n"); 231 hdev->err = -EINVAL; 232 return -EINVAL; 233 } 234 235 desc = dmaengine_prep_slave_sg(hdev->dma_lch, 236 sg, 237 ctx->dma_ct, 238 DMA_MEM_TO_DEV, 239 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 240 if (!desc) { 241 dev_err(hdev->dev, "Null DMA descriptor\n"); 242 hdev->err = -EINVAL; 243 dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE); 244 return -EINVAL; 245 } 246 desc->callback = img_hash_dma_callback; 247 desc->callback_param = hdev; 248 dmaengine_submit(desc); 249 dma_async_issue_pending(hdev->dma_lch); 250 251 return 0; 252 } 253 254 static int img_hash_write_via_cpu(struct img_hash_dev *hdev) 255 { 256 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req); 257 258 ctx->bufcnt = sg_copy_to_buffer(hdev->req->src, sg_nents(ctx->sg), 259 ctx->buffer, hdev->req->nbytes); 260 261 ctx->total = hdev->req->nbytes; 262 ctx->bufcnt = 0; 263 264 hdev->flags |= (DRIVER_FLAGS_CPU | DRIVER_FLAGS_FINAL); 265 266 img_hash_start(hdev, false); 267 268 return img_hash_xmit_cpu(hdev, ctx->buffer, ctx->total, 1); 269 } 270 271 static int img_hash_finish(struct ahash_request *req) 272 { 273 struct img_hash_request_ctx *ctx = ahash_request_ctx(req); 274 275 if (!req->result) 276 return -EINVAL; 277 278 memcpy(req->result, ctx->digest, ctx->digsize); 279 280 return 0; 281 } 282 283 static void img_hash_copy_hash(struct ahash_request *req) 284 { 285 struct img_hash_request_ctx *ctx = ahash_request_ctx(req); 286 u32 *hash = (u32 *)ctx->digest; 287 int i; 288 289 for (i = (ctx->digsize / sizeof(u32)) - 1; i >= 0; i--) 290 hash[i] = img_hash_read_result_queue(ctx->hdev); 291 } 292 293 static void img_hash_finish_req(struct ahash_request *req, int err) 294 { 295 struct img_hash_request_ctx *ctx = ahash_request_ctx(req); 296 struct img_hash_dev *hdev = ctx->hdev; 297 298 if (!err) { 299 img_hash_copy_hash(req); 300 if (DRIVER_FLAGS_FINAL & hdev->flags) 301 err = img_hash_finish(req); 302 } else { 303 dev_warn(hdev->dev, "Hash failed with error %d\n", err); 304 ctx->flags |= DRIVER_FLAGS_ERROR; 305 } 306 307 hdev->flags &= ~(DRIVER_FLAGS_DMA_READY | DRIVER_FLAGS_OUTPUT_READY | 308 DRIVER_FLAGS_CPU | DRIVER_FLAGS_BUSY | DRIVER_FLAGS_FINAL); 309 310 if (req->base.complete) 311 req->base.complete(&req->base, err); 312 } 313 314 static int img_hash_write_via_dma(struct img_hash_dev *hdev) 315 { 316 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req); 317 318 img_hash_start(hdev, true); 319 320 dev_dbg(hdev->dev, "xmit dma size: %d\n", ctx->total); 321 322 if (!ctx->total) 323 hdev->flags |= DRIVER_FLAGS_FINAL; 324 325 hdev->flags |= DRIVER_FLAGS_DMA_ACTIVE | DRIVER_FLAGS_FINAL; 326 327 tasklet_schedule(&hdev->dma_task); 328 329 return -EINPROGRESS; 330 } 331 332 static int img_hash_dma_init(struct img_hash_dev *hdev) 333 { 334 struct dma_slave_config dma_conf; 335 int err; 336 337 hdev->dma_lch = dma_request_chan(hdev->dev, "tx"); 338 if (IS_ERR(hdev->dma_lch)) { 339 dev_err(hdev->dev, "Couldn't acquire a slave DMA channel.\n"); 340 return PTR_ERR(hdev->dma_lch); 341 } 342 dma_conf.direction = DMA_MEM_TO_DEV; 343 dma_conf.dst_addr = hdev->bus_addr; 344 dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 345 dma_conf.dst_maxburst = IMG_HASH_DMA_BURST; 346 dma_conf.device_fc = false; 347 348 err = dmaengine_slave_config(hdev->dma_lch, &dma_conf); 349 if (err) { 350 dev_err(hdev->dev, "Couldn't configure DMA slave.\n"); 351 dma_release_channel(hdev->dma_lch); 352 return err; 353 } 354 355 return 0; 356 } 357 358 static void img_hash_dma_task(unsigned long d) 359 { 360 struct img_hash_dev *hdev = (struct img_hash_dev *)d; 361 struct img_hash_request_ctx *ctx; 362 u8 *addr; 363 size_t nbytes, bleft, wsend, len, tbc; 364 struct scatterlist tsg; 365 366 if (!hdev->req) 367 return; 368 369 ctx = ahash_request_ctx(hdev->req); 370 if (!ctx->sg) 371 return; 372 373 addr = sg_virt(ctx->sg); 374 nbytes = ctx->sg->length - ctx->offset; 375 376 /* 377 * The hash accelerator does not support a data valid mask. This means 378 * that if each dma (i.e. per page) is not a multiple of 4 bytes, the 379 * padding bytes in the last word written by that dma would erroneously 380 * be included in the hash. To avoid this we round down the transfer, 381 * and add the excess to the start of the next dma. It does not matter 382 * that the final dma may not be a multiple of 4 bytes as the hashing 383 * block is programmed to accept the correct number of bytes. 384 */ 385 386 bleft = nbytes % 4; 387 wsend = (nbytes / 4); 388 389 if (wsend) { 390 sg_init_one(&tsg, addr + ctx->offset, wsend * 4); 391 if (img_hash_xmit_dma(hdev, &tsg)) { 392 dev_err(hdev->dev, "DMA failed, falling back to CPU"); 393 ctx->flags |= DRIVER_FLAGS_CPU; 394 hdev->err = 0; 395 img_hash_xmit_cpu(hdev, addr + ctx->offset, 396 wsend * 4, 0); 397 ctx->sent += wsend * 4; 398 wsend = 0; 399 } else { 400 ctx->sent += wsend * 4; 401 } 402 } 403 404 if (bleft) { 405 ctx->bufcnt = sg_pcopy_to_buffer(ctx->sgfirst, ctx->nents, 406 ctx->buffer, bleft, ctx->sent); 407 tbc = 0; 408 ctx->sg = sg_next(ctx->sg); 409 while (ctx->sg && (ctx->bufcnt < 4)) { 410 len = ctx->sg->length; 411 if (likely(len > (4 - ctx->bufcnt))) 412 len = 4 - ctx->bufcnt; 413 tbc = sg_pcopy_to_buffer(ctx->sgfirst, ctx->nents, 414 ctx->buffer + ctx->bufcnt, len, 415 ctx->sent + ctx->bufcnt); 416 ctx->bufcnt += tbc; 417 if (tbc >= ctx->sg->length) { 418 ctx->sg = sg_next(ctx->sg); 419 tbc = 0; 420 } 421 } 422 423 ctx->sent += ctx->bufcnt; 424 ctx->offset = tbc; 425 426 if (!wsend) 427 img_hash_dma_callback(hdev); 428 } else { 429 ctx->offset = 0; 430 ctx->sg = sg_next(ctx->sg); 431 } 432 } 433 434 static int img_hash_write_via_dma_stop(struct img_hash_dev *hdev) 435 { 436 struct img_hash_request_ctx *ctx = ahash_request_ctx(hdev->req); 437 438 if (ctx->flags & DRIVER_FLAGS_SG) 439 dma_unmap_sg(hdev->dev, ctx->sg, ctx->dma_ct, DMA_TO_DEVICE); 440 441 return 0; 442 } 443 444 static int img_hash_process_data(struct img_hash_dev *hdev) 445 { 446 struct ahash_request *req = hdev->req; 447 struct img_hash_request_ctx *ctx = ahash_request_ctx(req); 448 int err = 0; 449 450 ctx->bufcnt = 0; 451 452 if (req->nbytes >= IMG_HASH_DMA_THRESHOLD) { 453 dev_dbg(hdev->dev, "process data request(%d bytes) using DMA\n", 454 req->nbytes); 455 err = img_hash_write_via_dma(hdev); 456 } else { 457 dev_dbg(hdev->dev, "process data request(%d bytes) using CPU\n", 458 req->nbytes); 459 err = img_hash_write_via_cpu(hdev); 460 } 461 return err; 462 } 463 464 static int img_hash_hw_init(struct img_hash_dev *hdev) 465 { 466 unsigned long long nbits; 467 u32 u, l; 468 469 img_hash_write(hdev, CR_RESET, CR_RESET_SET); 470 img_hash_write(hdev, CR_RESET, CR_RESET_UNSET); 471 img_hash_write(hdev, CR_INTENAB, CR_INT_NEW_RESULTS_SET); 472 473 nbits = (u64)hdev->req->nbytes << 3; 474 u = nbits >> 32; 475 l = nbits; 476 img_hash_write(hdev, CR_MESSAGE_LENGTH_H, u); 477 img_hash_write(hdev, CR_MESSAGE_LENGTH_L, l); 478 479 if (!(DRIVER_FLAGS_INIT & hdev->flags)) { 480 hdev->flags |= DRIVER_FLAGS_INIT; 481 hdev->err = 0; 482 } 483 dev_dbg(hdev->dev, "hw initialized, nbits: %llx\n", nbits); 484 return 0; 485 } 486 487 static int img_hash_init(struct ahash_request *req) 488 { 489 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 490 struct img_hash_request_ctx *rctx = ahash_request_ctx(req); 491 struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm); 492 493 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback); 494 rctx->fallback_req.base.flags = req->base.flags 495 & CRYPTO_TFM_REQ_MAY_SLEEP; 496 497 return crypto_ahash_init(&rctx->fallback_req); 498 } 499 500 static int img_hash_handle_queue(struct img_hash_dev *hdev, 501 struct ahash_request *req) 502 { 503 struct crypto_async_request *async_req, *backlog; 504 struct img_hash_request_ctx *ctx; 505 unsigned long flags; 506 int err = 0, res = 0; 507 508 spin_lock_irqsave(&hdev->lock, flags); 509 510 if (req) 511 res = ahash_enqueue_request(&hdev->queue, req); 512 513 if (DRIVER_FLAGS_BUSY & hdev->flags) { 514 spin_unlock_irqrestore(&hdev->lock, flags); 515 return res; 516 } 517 518 backlog = crypto_get_backlog(&hdev->queue); 519 async_req = crypto_dequeue_request(&hdev->queue); 520 if (async_req) 521 hdev->flags |= DRIVER_FLAGS_BUSY; 522 523 spin_unlock_irqrestore(&hdev->lock, flags); 524 525 if (!async_req) 526 return res; 527 528 if (backlog) 529 backlog->complete(backlog, -EINPROGRESS); 530 531 req = ahash_request_cast(async_req); 532 hdev->req = req; 533 534 ctx = ahash_request_ctx(req); 535 536 dev_info(hdev->dev, "processing req, op: %lu, bytes: %d\n", 537 ctx->op, req->nbytes); 538 539 err = img_hash_hw_init(hdev); 540 541 if (!err) 542 err = img_hash_process_data(hdev); 543 544 if (err != -EINPROGRESS) { 545 /* done_task will not finish so do it here */ 546 img_hash_finish_req(req, err); 547 } 548 return res; 549 } 550 551 static int img_hash_update(struct ahash_request *req) 552 { 553 struct img_hash_request_ctx *rctx = ahash_request_ctx(req); 554 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 555 struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm); 556 557 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback); 558 rctx->fallback_req.base.flags = req->base.flags 559 & CRYPTO_TFM_REQ_MAY_SLEEP; 560 rctx->fallback_req.nbytes = req->nbytes; 561 rctx->fallback_req.src = req->src; 562 563 return crypto_ahash_update(&rctx->fallback_req); 564 } 565 566 static int img_hash_final(struct ahash_request *req) 567 { 568 struct img_hash_request_ctx *rctx = ahash_request_ctx(req); 569 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 570 struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm); 571 572 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback); 573 rctx->fallback_req.base.flags = req->base.flags 574 & CRYPTO_TFM_REQ_MAY_SLEEP; 575 rctx->fallback_req.result = req->result; 576 577 return crypto_ahash_final(&rctx->fallback_req); 578 } 579 580 static int img_hash_finup(struct ahash_request *req) 581 { 582 struct img_hash_request_ctx *rctx = ahash_request_ctx(req); 583 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 584 struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm); 585 586 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback); 587 rctx->fallback_req.base.flags = req->base.flags 588 & CRYPTO_TFM_REQ_MAY_SLEEP; 589 rctx->fallback_req.nbytes = req->nbytes; 590 rctx->fallback_req.src = req->src; 591 rctx->fallback_req.result = req->result; 592 593 return crypto_ahash_finup(&rctx->fallback_req); 594 } 595 596 static int img_hash_import(struct ahash_request *req, const void *in) 597 { 598 struct img_hash_request_ctx *rctx = ahash_request_ctx(req); 599 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 600 struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm); 601 602 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback); 603 rctx->fallback_req.base.flags = req->base.flags 604 & CRYPTO_TFM_REQ_MAY_SLEEP; 605 606 return crypto_ahash_import(&rctx->fallback_req, in); 607 } 608 609 static int img_hash_export(struct ahash_request *req, void *out) 610 { 611 struct img_hash_request_ctx *rctx = ahash_request_ctx(req); 612 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 613 struct img_hash_ctx *ctx = crypto_ahash_ctx(tfm); 614 615 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback); 616 rctx->fallback_req.base.flags = req->base.flags 617 & CRYPTO_TFM_REQ_MAY_SLEEP; 618 619 return crypto_ahash_export(&rctx->fallback_req, out); 620 } 621 622 static int img_hash_digest(struct ahash_request *req) 623 { 624 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 625 struct img_hash_ctx *tctx = crypto_ahash_ctx(tfm); 626 struct img_hash_request_ctx *ctx = ahash_request_ctx(req); 627 struct img_hash_dev *hdev = NULL; 628 struct img_hash_dev *tmp; 629 int err; 630 631 spin_lock(&img_hash.lock); 632 if (!tctx->hdev) { 633 list_for_each_entry(tmp, &img_hash.dev_list, list) { 634 hdev = tmp; 635 break; 636 } 637 tctx->hdev = hdev; 638 639 } else { 640 hdev = tctx->hdev; 641 } 642 643 spin_unlock(&img_hash.lock); 644 ctx->hdev = hdev; 645 ctx->flags = 0; 646 ctx->digsize = crypto_ahash_digestsize(tfm); 647 648 switch (ctx->digsize) { 649 case SHA1_DIGEST_SIZE: 650 ctx->flags |= DRIVER_FLAGS_SHA1; 651 break; 652 case SHA256_DIGEST_SIZE: 653 ctx->flags |= DRIVER_FLAGS_SHA256; 654 break; 655 case SHA224_DIGEST_SIZE: 656 ctx->flags |= DRIVER_FLAGS_SHA224; 657 break; 658 case MD5_DIGEST_SIZE: 659 ctx->flags |= DRIVER_FLAGS_MD5; 660 break; 661 default: 662 return -EINVAL; 663 } 664 665 ctx->bufcnt = 0; 666 ctx->offset = 0; 667 ctx->sent = 0; 668 ctx->total = req->nbytes; 669 ctx->sg = req->src; 670 ctx->sgfirst = req->src; 671 ctx->nents = sg_nents(ctx->sg); 672 673 err = img_hash_handle_queue(tctx->hdev, req); 674 675 return err; 676 } 677 678 static int img_hash_cra_init(struct crypto_tfm *tfm, const char *alg_name) 679 { 680 struct img_hash_ctx *ctx = crypto_tfm_ctx(tfm); 681 682 ctx->fallback = crypto_alloc_ahash(alg_name, 0, 683 CRYPTO_ALG_NEED_FALLBACK); 684 if (IS_ERR(ctx->fallback)) { 685 pr_err("img_hash: Could not load fallback driver.\n"); 686 return PTR_ERR(ctx->fallback); 687 } 688 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 689 sizeof(struct img_hash_request_ctx) + 690 crypto_ahash_reqsize(ctx->fallback) + 691 IMG_HASH_DMA_THRESHOLD); 692 693 return 0; 694 } 695 696 static int img_hash_cra_md5_init(struct crypto_tfm *tfm) 697 { 698 return img_hash_cra_init(tfm, "md5-generic"); 699 } 700 701 static int img_hash_cra_sha1_init(struct crypto_tfm *tfm) 702 { 703 return img_hash_cra_init(tfm, "sha1-generic"); 704 } 705 706 static int img_hash_cra_sha224_init(struct crypto_tfm *tfm) 707 { 708 return img_hash_cra_init(tfm, "sha224-generic"); 709 } 710 711 static int img_hash_cra_sha256_init(struct crypto_tfm *tfm) 712 { 713 return img_hash_cra_init(tfm, "sha256-generic"); 714 } 715 716 static void img_hash_cra_exit(struct crypto_tfm *tfm) 717 { 718 struct img_hash_ctx *tctx = crypto_tfm_ctx(tfm); 719 720 crypto_free_ahash(tctx->fallback); 721 } 722 723 static irqreturn_t img_irq_handler(int irq, void *dev_id) 724 { 725 struct img_hash_dev *hdev = dev_id; 726 u32 reg; 727 728 reg = img_hash_read(hdev, CR_INTSTAT); 729 img_hash_write(hdev, CR_INTCLEAR, reg); 730 731 if (reg & CR_INT_NEW_RESULTS_SET) { 732 dev_dbg(hdev->dev, "IRQ CR_INT_NEW_RESULTS_SET\n"); 733 if (DRIVER_FLAGS_BUSY & hdev->flags) { 734 hdev->flags |= DRIVER_FLAGS_OUTPUT_READY; 735 if (!(DRIVER_FLAGS_CPU & hdev->flags)) 736 hdev->flags |= DRIVER_FLAGS_DMA_READY; 737 tasklet_schedule(&hdev->done_task); 738 } else { 739 dev_warn(hdev->dev, 740 "HASH interrupt when no active requests.\n"); 741 } 742 } else if (reg & CR_INT_RESULTS_AVAILABLE) { 743 dev_warn(hdev->dev, 744 "IRQ triggered before the hash had completed\n"); 745 } else if (reg & CR_INT_RESULT_READ_ERR) { 746 dev_warn(hdev->dev, 747 "Attempt to read from an empty result queue\n"); 748 } else if (reg & CR_INT_MESSAGE_WRITE_ERROR) { 749 dev_warn(hdev->dev, 750 "Data written before the hardware was configured\n"); 751 } 752 return IRQ_HANDLED; 753 } 754 755 static struct ahash_alg img_algs[] = { 756 { 757 .init = img_hash_init, 758 .update = img_hash_update, 759 .final = img_hash_final, 760 .finup = img_hash_finup, 761 .export = img_hash_export, 762 .import = img_hash_import, 763 .digest = img_hash_digest, 764 .halg = { 765 .digestsize = MD5_DIGEST_SIZE, 766 .statesize = sizeof(struct md5_state), 767 .base = { 768 .cra_name = "md5", 769 .cra_driver_name = "img-md5", 770 .cra_priority = 300, 771 .cra_flags = 772 CRYPTO_ALG_ASYNC | 773 CRYPTO_ALG_NEED_FALLBACK, 774 .cra_blocksize = MD5_HMAC_BLOCK_SIZE, 775 .cra_ctxsize = sizeof(struct img_hash_ctx), 776 .cra_init = img_hash_cra_md5_init, 777 .cra_exit = img_hash_cra_exit, 778 .cra_module = THIS_MODULE, 779 } 780 } 781 }, 782 { 783 .init = img_hash_init, 784 .update = img_hash_update, 785 .final = img_hash_final, 786 .finup = img_hash_finup, 787 .export = img_hash_export, 788 .import = img_hash_import, 789 .digest = img_hash_digest, 790 .halg = { 791 .digestsize = SHA1_DIGEST_SIZE, 792 .statesize = sizeof(struct sha1_state), 793 .base = { 794 .cra_name = "sha1", 795 .cra_driver_name = "img-sha1", 796 .cra_priority = 300, 797 .cra_flags = 798 CRYPTO_ALG_ASYNC | 799 CRYPTO_ALG_NEED_FALLBACK, 800 .cra_blocksize = SHA1_BLOCK_SIZE, 801 .cra_ctxsize = sizeof(struct img_hash_ctx), 802 .cra_init = img_hash_cra_sha1_init, 803 .cra_exit = img_hash_cra_exit, 804 .cra_module = THIS_MODULE, 805 } 806 } 807 }, 808 { 809 .init = img_hash_init, 810 .update = img_hash_update, 811 .final = img_hash_final, 812 .finup = img_hash_finup, 813 .export = img_hash_export, 814 .import = img_hash_import, 815 .digest = img_hash_digest, 816 .halg = { 817 .digestsize = SHA224_DIGEST_SIZE, 818 .statesize = sizeof(struct sha256_state), 819 .base = { 820 .cra_name = "sha224", 821 .cra_driver_name = "img-sha224", 822 .cra_priority = 300, 823 .cra_flags = 824 CRYPTO_ALG_ASYNC | 825 CRYPTO_ALG_NEED_FALLBACK, 826 .cra_blocksize = SHA224_BLOCK_SIZE, 827 .cra_ctxsize = sizeof(struct img_hash_ctx), 828 .cra_init = img_hash_cra_sha224_init, 829 .cra_exit = img_hash_cra_exit, 830 .cra_module = THIS_MODULE, 831 } 832 } 833 }, 834 { 835 .init = img_hash_init, 836 .update = img_hash_update, 837 .final = img_hash_final, 838 .finup = img_hash_finup, 839 .export = img_hash_export, 840 .import = img_hash_import, 841 .digest = img_hash_digest, 842 .halg = { 843 .digestsize = SHA256_DIGEST_SIZE, 844 .statesize = sizeof(struct sha256_state), 845 .base = { 846 .cra_name = "sha256", 847 .cra_driver_name = "img-sha256", 848 .cra_priority = 300, 849 .cra_flags = 850 CRYPTO_ALG_ASYNC | 851 CRYPTO_ALG_NEED_FALLBACK, 852 .cra_blocksize = SHA256_BLOCK_SIZE, 853 .cra_ctxsize = sizeof(struct img_hash_ctx), 854 .cra_init = img_hash_cra_sha256_init, 855 .cra_exit = img_hash_cra_exit, 856 .cra_module = THIS_MODULE, 857 } 858 } 859 } 860 }; 861 862 static int img_register_algs(struct img_hash_dev *hdev) 863 { 864 int i, err; 865 866 for (i = 0; i < ARRAY_SIZE(img_algs); i++) { 867 err = crypto_register_ahash(&img_algs[i]); 868 if (err) 869 goto err_reg; 870 } 871 return 0; 872 873 err_reg: 874 for (; i--; ) 875 crypto_unregister_ahash(&img_algs[i]); 876 877 return err; 878 } 879 880 static int img_unregister_algs(struct img_hash_dev *hdev) 881 { 882 int i; 883 884 for (i = 0; i < ARRAY_SIZE(img_algs); i++) 885 crypto_unregister_ahash(&img_algs[i]); 886 return 0; 887 } 888 889 static void img_hash_done_task(unsigned long data) 890 { 891 struct img_hash_dev *hdev = (struct img_hash_dev *)data; 892 int err = 0; 893 894 if (hdev->err == -EINVAL) { 895 err = hdev->err; 896 goto finish; 897 } 898 899 if (!(DRIVER_FLAGS_BUSY & hdev->flags)) { 900 img_hash_handle_queue(hdev, NULL); 901 return; 902 } 903 904 if (DRIVER_FLAGS_CPU & hdev->flags) { 905 if (DRIVER_FLAGS_OUTPUT_READY & hdev->flags) { 906 hdev->flags &= ~DRIVER_FLAGS_OUTPUT_READY; 907 goto finish; 908 } 909 } else if (DRIVER_FLAGS_DMA_READY & hdev->flags) { 910 if (DRIVER_FLAGS_DMA_ACTIVE & hdev->flags) { 911 hdev->flags &= ~DRIVER_FLAGS_DMA_ACTIVE; 912 img_hash_write_via_dma_stop(hdev); 913 if (hdev->err) { 914 err = hdev->err; 915 goto finish; 916 } 917 } 918 if (DRIVER_FLAGS_OUTPUT_READY & hdev->flags) { 919 hdev->flags &= ~(DRIVER_FLAGS_DMA_READY | 920 DRIVER_FLAGS_OUTPUT_READY); 921 goto finish; 922 } 923 } 924 return; 925 926 finish: 927 img_hash_finish_req(hdev->req, err); 928 } 929 930 static const struct of_device_id img_hash_match[] = { 931 { .compatible = "img,hash-accelerator" }, 932 {} 933 }; 934 MODULE_DEVICE_TABLE(of, img_hash_match); 935 936 static int img_hash_probe(struct platform_device *pdev) 937 { 938 struct img_hash_dev *hdev; 939 struct device *dev = &pdev->dev; 940 struct resource *hash_res; 941 int irq; 942 int err; 943 944 hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL); 945 if (hdev == NULL) 946 return -ENOMEM; 947 948 spin_lock_init(&hdev->lock); 949 950 hdev->dev = dev; 951 952 platform_set_drvdata(pdev, hdev); 953 954 INIT_LIST_HEAD(&hdev->list); 955 956 tasklet_init(&hdev->done_task, img_hash_done_task, (unsigned long)hdev); 957 tasklet_init(&hdev->dma_task, img_hash_dma_task, (unsigned long)hdev); 958 959 crypto_init_queue(&hdev->queue, IMG_HASH_QUEUE_LENGTH); 960 961 /* Register bank */ 962 hdev->io_base = devm_platform_ioremap_resource(pdev, 0); 963 if (IS_ERR(hdev->io_base)) { 964 err = PTR_ERR(hdev->io_base); 965 goto res_err; 966 } 967 968 /* Write port (DMA or CPU) */ 969 hash_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 970 hdev->cpu_addr = devm_ioremap_resource(dev, hash_res); 971 if (IS_ERR(hdev->cpu_addr)) { 972 err = PTR_ERR(hdev->cpu_addr); 973 goto res_err; 974 } 975 hdev->bus_addr = hash_res->start; 976 977 irq = platform_get_irq(pdev, 0); 978 if (irq < 0) { 979 err = irq; 980 goto res_err; 981 } 982 983 err = devm_request_irq(dev, irq, img_irq_handler, 0, 984 dev_name(dev), hdev); 985 if (err) { 986 dev_err(dev, "unable to request irq\n"); 987 goto res_err; 988 } 989 dev_dbg(dev, "using IRQ channel %d\n", irq); 990 991 hdev->hash_clk = devm_clk_get(&pdev->dev, "hash"); 992 if (IS_ERR(hdev->hash_clk)) { 993 dev_err(dev, "clock initialization failed.\n"); 994 err = PTR_ERR(hdev->hash_clk); 995 goto res_err; 996 } 997 998 hdev->sys_clk = devm_clk_get(&pdev->dev, "sys"); 999 if (IS_ERR(hdev->sys_clk)) { 1000 dev_err(dev, "clock initialization failed.\n"); 1001 err = PTR_ERR(hdev->sys_clk); 1002 goto res_err; 1003 } 1004 1005 err = clk_prepare_enable(hdev->hash_clk); 1006 if (err) 1007 goto res_err; 1008 1009 err = clk_prepare_enable(hdev->sys_clk); 1010 if (err) 1011 goto clk_err; 1012 1013 err = img_hash_dma_init(hdev); 1014 if (err) 1015 goto dma_err; 1016 1017 dev_dbg(dev, "using %s for DMA transfers\n", 1018 dma_chan_name(hdev->dma_lch)); 1019 1020 spin_lock(&img_hash.lock); 1021 list_add_tail(&hdev->list, &img_hash.dev_list); 1022 spin_unlock(&img_hash.lock); 1023 1024 err = img_register_algs(hdev); 1025 if (err) 1026 goto err_algs; 1027 dev_info(dev, "Img MD5/SHA1/SHA224/SHA256 Hardware accelerator initialized\n"); 1028 1029 return 0; 1030 1031 err_algs: 1032 spin_lock(&img_hash.lock); 1033 list_del(&hdev->list); 1034 spin_unlock(&img_hash.lock); 1035 dma_release_channel(hdev->dma_lch); 1036 dma_err: 1037 clk_disable_unprepare(hdev->sys_clk); 1038 clk_err: 1039 clk_disable_unprepare(hdev->hash_clk); 1040 res_err: 1041 tasklet_kill(&hdev->done_task); 1042 tasklet_kill(&hdev->dma_task); 1043 1044 return err; 1045 } 1046 1047 static int img_hash_remove(struct platform_device *pdev) 1048 { 1049 struct img_hash_dev *hdev; 1050 1051 hdev = platform_get_drvdata(pdev); 1052 spin_lock(&img_hash.lock); 1053 list_del(&hdev->list); 1054 spin_unlock(&img_hash.lock); 1055 1056 img_unregister_algs(hdev); 1057 1058 tasklet_kill(&hdev->done_task); 1059 tasklet_kill(&hdev->dma_task); 1060 1061 dma_release_channel(hdev->dma_lch); 1062 1063 clk_disable_unprepare(hdev->hash_clk); 1064 clk_disable_unprepare(hdev->sys_clk); 1065 1066 return 0; 1067 } 1068 1069 #ifdef CONFIG_PM_SLEEP 1070 static int img_hash_suspend(struct device *dev) 1071 { 1072 struct img_hash_dev *hdev = dev_get_drvdata(dev); 1073 1074 clk_disable_unprepare(hdev->hash_clk); 1075 clk_disable_unprepare(hdev->sys_clk); 1076 1077 return 0; 1078 } 1079 1080 static int img_hash_resume(struct device *dev) 1081 { 1082 struct img_hash_dev *hdev = dev_get_drvdata(dev); 1083 int ret; 1084 1085 ret = clk_prepare_enable(hdev->hash_clk); 1086 if (ret) 1087 return ret; 1088 1089 ret = clk_prepare_enable(hdev->sys_clk); 1090 if (ret) { 1091 clk_disable_unprepare(hdev->hash_clk); 1092 return ret; 1093 } 1094 1095 return 0; 1096 } 1097 #endif /* CONFIG_PM_SLEEP */ 1098 1099 static const struct dev_pm_ops img_hash_pm_ops = { 1100 SET_SYSTEM_SLEEP_PM_OPS(img_hash_suspend, img_hash_resume) 1101 }; 1102 1103 static struct platform_driver img_hash_driver = { 1104 .probe = img_hash_probe, 1105 .remove = img_hash_remove, 1106 .driver = { 1107 .name = "img-hash-accelerator", 1108 .pm = &img_hash_pm_ops, 1109 .of_match_table = of_match_ptr(img_hash_match), 1110 } 1111 }; 1112 module_platform_driver(img_hash_driver); 1113 1114 MODULE_LICENSE("GPL v2"); 1115 MODULE_DESCRIPTION("Imgtec SHA1/224/256 & MD5 hw accelerator driver"); 1116 MODULE_AUTHOR("Will Thomas."); 1117 MODULE_AUTHOR("James Hartley <james.hartley@imgtec.com>"); 1118