xref: /openbmc/linux/drivers/crypto/hisilicon/sec2/sec_crypto.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 
4 #include <crypto/aes.h>
5 #include <crypto/algapi.h>
6 #include <crypto/authenc.h>
7 #include <crypto/des.h>
8 #include <crypto/hash.h>
9 #include <crypto/internal/aead.h>
10 #include <crypto/sha.h>
11 #include <crypto/skcipher.h>
12 #include <crypto/xts.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/idr.h>
16 
17 #include "sec.h"
18 #include "sec_crypto.h"
19 
20 #define SEC_PRIORITY		4001
21 #define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
22 #define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
23 #define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
24 #define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)
25 
26 /* SEC sqe(bd) bit operational relative MACRO */
27 #define SEC_DE_OFFSET		1
28 #define SEC_CIPHER_OFFSET	4
29 #define SEC_SCENE_OFFSET	3
30 #define SEC_DST_SGL_OFFSET	2
31 #define SEC_SRC_SGL_OFFSET	7
32 #define SEC_CKEY_OFFSET		9
33 #define SEC_CMODE_OFFSET	12
34 #define SEC_AKEY_OFFSET         5
35 #define SEC_AEAD_ALG_OFFSET     11
36 #define SEC_AUTH_OFFSET		6
37 
38 #define SEC_FLAG_OFFSET		7
39 #define SEC_FLAG_MASK		0x0780
40 #define SEC_TYPE_MASK		0x0F
41 #define SEC_DONE_MASK		0x0001
42 
43 #define SEC_TOTAL_IV_SZ		(SEC_IV_SIZE * QM_Q_DEPTH)
44 #define SEC_SGL_SGE_NR		128
45 #define SEC_CTX_DEV(ctx)	(&(ctx)->sec->qm.pdev->dev)
46 #define SEC_CIPHER_AUTH		0xfe
47 #define SEC_AUTH_CIPHER		0x1
48 #define SEC_MAX_MAC_LEN		64
49 #define SEC_MAX_AAD_LEN		65535
50 #define SEC_TOTAL_MAC_SZ	(SEC_MAX_MAC_LEN * QM_Q_DEPTH)
51 
52 #define SEC_PBUF_SZ			512
53 #define SEC_PBUF_IV_OFFSET		SEC_PBUF_SZ
54 #define SEC_PBUF_MAC_OFFSET		(SEC_PBUF_SZ + SEC_IV_SIZE)
55 #define SEC_PBUF_PKG		(SEC_PBUF_SZ + SEC_IV_SIZE +	\
56 			SEC_MAX_MAC_LEN * 2)
57 #define SEC_PBUF_NUM		(PAGE_SIZE / SEC_PBUF_PKG)
58 #define SEC_PBUF_PAGE_NUM	(QM_Q_DEPTH / SEC_PBUF_NUM)
59 #define SEC_PBUF_LEFT_SZ	(SEC_PBUF_PKG * (QM_Q_DEPTH -	\
60 			SEC_PBUF_PAGE_NUM * SEC_PBUF_NUM))
61 #define SEC_TOTAL_PBUF_SZ	(PAGE_SIZE * SEC_PBUF_PAGE_NUM +	\
62 			SEC_PBUF_LEFT_SZ)
63 
64 #define SEC_SQE_LEN_RATE	4
65 #define SEC_SQE_CFLAG		2
66 #define SEC_SQE_AEAD_FLAG	3
67 #define SEC_SQE_DONE		0x1
68 
69 static atomic_t sec_active_devs;
70 
71 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
72 static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
73 {
74 	if (req->c_req.encrypt)
75 		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
76 				 ctx->hlf_q_num;
77 
78 	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
79 				 ctx->hlf_q_num;
80 }
81 
82 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
83 {
84 	if (req->c_req.encrypt)
85 		atomic_dec(&ctx->enc_qcyclic);
86 	else
87 		atomic_dec(&ctx->dec_qcyclic);
88 }
89 
90 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
91 {
92 	int req_id;
93 
94 	mutex_lock(&qp_ctx->req_lock);
95 
96 	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
97 				  0, QM_Q_DEPTH, GFP_ATOMIC);
98 	mutex_unlock(&qp_ctx->req_lock);
99 	if (unlikely(req_id < 0)) {
100 		dev_err(SEC_CTX_DEV(req->ctx), "alloc req id fail!\n");
101 		return req_id;
102 	}
103 
104 	req->qp_ctx = qp_ctx;
105 	qp_ctx->req_list[req_id] = req;
106 	return req_id;
107 }
108 
109 static void sec_free_req_id(struct sec_req *req)
110 {
111 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
112 	int req_id = req->req_id;
113 
114 	if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
115 		dev_err(SEC_CTX_DEV(req->ctx), "free request id invalid!\n");
116 		return;
117 	}
118 
119 	qp_ctx->req_list[req_id] = NULL;
120 	req->qp_ctx = NULL;
121 
122 	mutex_lock(&qp_ctx->req_lock);
123 	idr_remove(&qp_ctx->req_idr, req_id);
124 	mutex_unlock(&qp_ctx->req_lock);
125 }
126 
127 static int sec_aead_verify(struct sec_req *req)
128 {
129 	struct aead_request *aead_req = req->aead_req.aead_req;
130 	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
131 	size_t authsize = crypto_aead_authsize(tfm);
132 	u8 *mac_out = req->aead_req.out_mac;
133 	u8 *mac = mac_out + SEC_MAX_MAC_LEN;
134 	struct scatterlist *sgl = aead_req->src;
135 	size_t sz;
136 
137 	sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac, authsize,
138 				aead_req->cryptlen + aead_req->assoclen -
139 				authsize);
140 	if (unlikely(sz != authsize || memcmp(mac_out, mac, sz))) {
141 		dev_err(SEC_CTX_DEV(req->ctx), "aead verify failure!\n");
142 		return -EBADMSG;
143 	}
144 
145 	return 0;
146 }
147 
148 static void sec_req_cb(struct hisi_qp *qp, void *resp)
149 {
150 	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
151 	struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
152 	struct sec_sqe *bd = resp;
153 	struct sec_ctx *ctx;
154 	struct sec_req *req;
155 	u16 done, flag;
156 	int err = 0;
157 	u8 type;
158 
159 	type = bd->type_cipher_auth & SEC_TYPE_MASK;
160 	if (unlikely(type != SEC_BD_TYPE2)) {
161 		atomic64_inc(&dfx->err_bd_cnt);
162 		pr_err("err bd type [%d]\n", type);
163 		return;
164 	}
165 
166 	req = qp_ctx->req_list[le16_to_cpu(bd->type2.tag)];
167 	if (unlikely(!req)) {
168 		atomic64_inc(&dfx->invalid_req_cnt);
169 		return;
170 	}
171 	req->err_type = bd->type2.error_type;
172 	ctx = req->ctx;
173 	done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
174 	flag = (le16_to_cpu(bd->type2.done_flag) &
175 		SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
176 	if (unlikely(req->err_type || done != SEC_SQE_DONE ||
177 	    (ctx->alg_type == SEC_SKCIPHER && flag != SEC_SQE_CFLAG) ||
178 	    (ctx->alg_type == SEC_AEAD && flag != SEC_SQE_AEAD_FLAG))) {
179 		dev_err(SEC_CTX_DEV(ctx),
180 			"err_type[%d],done[%d],flag[%d]\n",
181 			req->err_type, done, flag);
182 		err = -EIO;
183 		atomic64_inc(&dfx->done_flag_cnt);
184 	}
185 
186 	if (ctx->alg_type == SEC_AEAD && !req->c_req.encrypt)
187 		err = sec_aead_verify(req);
188 
189 	atomic64_inc(&dfx->recv_cnt);
190 
191 	ctx->req_op->buf_unmap(ctx, req);
192 
193 	ctx->req_op->callback(ctx, req, err);
194 }
195 
196 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
197 {
198 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
199 	int ret;
200 
201 	mutex_lock(&qp_ctx->req_lock);
202 	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
203 	mutex_unlock(&qp_ctx->req_lock);
204 	atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
205 
206 	if (unlikely(ret == -EBUSY))
207 		return -ENOBUFS;
208 
209 	if (!ret) {
210 		if (req->fake_busy) {
211 			atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
212 			ret = -EBUSY;
213 		} else {
214 			ret = -EINPROGRESS;
215 		}
216 	}
217 
218 	return ret;
219 }
220 
221 /* Get DMA memory resources */
222 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
223 {
224 	int i;
225 
226 	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
227 					 &res->c_ivin_dma, GFP_KERNEL);
228 	if (!res->c_ivin)
229 		return -ENOMEM;
230 
231 	for (i = 1; i < QM_Q_DEPTH; i++) {
232 		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
233 		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
234 	}
235 
236 	return 0;
237 }
238 
239 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
240 {
241 	if (res->c_ivin)
242 		dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
243 				  res->c_ivin, res->c_ivin_dma);
244 }
245 
246 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
247 {
248 	int i;
249 
250 	res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
251 					  &res->out_mac_dma, GFP_KERNEL);
252 	if (!res->out_mac)
253 		return -ENOMEM;
254 
255 	for (i = 1; i < QM_Q_DEPTH; i++) {
256 		res[i].out_mac_dma = res->out_mac_dma +
257 				     i * (SEC_MAX_MAC_LEN << 1);
258 		res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
259 	}
260 
261 	return 0;
262 }
263 
264 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
265 {
266 	if (res->out_mac)
267 		dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
268 				  res->out_mac, res->out_mac_dma);
269 }
270 
271 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
272 {
273 	if (res->pbuf)
274 		dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ,
275 				  res->pbuf, res->pbuf_dma);
276 }
277 
278 /*
279  * To improve performance, pbuffer is used for
280  * small packets (< 512Bytes) as IOMMU translation using.
281  */
282 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
283 {
284 	int pbuf_page_offset;
285 	int i, j, k;
286 
287 	res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ,
288 				&res->pbuf_dma, GFP_KERNEL);
289 	if (!res->pbuf)
290 		return -ENOMEM;
291 
292 	/*
293 	 * SEC_PBUF_PKG contains data pbuf, iv and
294 	 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
295 	 * Every PAGE contains six SEC_PBUF_PKG
296 	 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
297 	 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
298 	 * for the SEC_TOTAL_PBUF_SZ
299 	 */
300 	for (i = 0; i <= SEC_PBUF_PAGE_NUM; i++) {
301 		pbuf_page_offset = PAGE_SIZE * i;
302 		for (j = 0; j < SEC_PBUF_NUM; j++) {
303 			k = i * SEC_PBUF_NUM + j;
304 			if (k == QM_Q_DEPTH)
305 				break;
306 			res[k].pbuf = res->pbuf +
307 				j * SEC_PBUF_PKG + pbuf_page_offset;
308 			res[k].pbuf_dma = res->pbuf_dma +
309 				j * SEC_PBUF_PKG + pbuf_page_offset;
310 		}
311 	}
312 	return 0;
313 }
314 
315 static int sec_alg_resource_alloc(struct sec_ctx *ctx,
316 				  struct sec_qp_ctx *qp_ctx)
317 {
318 	struct device *dev = SEC_CTX_DEV(ctx);
319 	struct sec_alg_res *res = qp_ctx->res;
320 	int ret;
321 
322 	ret = sec_alloc_civ_resource(dev, res);
323 	if (ret)
324 		return ret;
325 
326 	if (ctx->alg_type == SEC_AEAD) {
327 		ret = sec_alloc_mac_resource(dev, res);
328 		if (ret)
329 			goto alloc_fail;
330 	}
331 	if (ctx->pbuf_supported) {
332 		ret = sec_alloc_pbuf_resource(dev, res);
333 		if (ret) {
334 			dev_err(dev, "fail to alloc pbuf dma resource!\n");
335 			goto alloc_fail;
336 		}
337 	}
338 
339 	return 0;
340 alloc_fail:
341 	sec_free_civ_resource(dev, res);
342 
343 	return ret;
344 }
345 
346 static void sec_alg_resource_free(struct sec_ctx *ctx,
347 				  struct sec_qp_ctx *qp_ctx)
348 {
349 	struct device *dev = SEC_CTX_DEV(ctx);
350 
351 	sec_free_civ_resource(dev, qp_ctx->res);
352 
353 	if (ctx->pbuf_supported)
354 		sec_free_pbuf_resource(dev, qp_ctx->res);
355 	if (ctx->alg_type == SEC_AEAD)
356 		sec_free_mac_resource(dev, qp_ctx->res);
357 }
358 
359 static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
360 			     int qp_ctx_id, int alg_type)
361 {
362 	struct device *dev = SEC_CTX_DEV(ctx);
363 	struct sec_qp_ctx *qp_ctx;
364 	struct hisi_qp *qp;
365 	int ret = -ENOMEM;
366 
367 	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
368 	qp = ctx->qps[qp_ctx_id];
369 	qp->req_type = 0;
370 	qp->qp_ctx = qp_ctx;
371 	qp->req_cb = sec_req_cb;
372 	qp_ctx->qp = qp;
373 	qp_ctx->ctx = ctx;
374 
375 	mutex_init(&qp_ctx->req_lock);
376 	atomic_set(&qp_ctx->pending_reqs, 0);
377 	idr_init(&qp_ctx->req_idr);
378 
379 	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
380 						     SEC_SGL_SGE_NR);
381 	if (IS_ERR(qp_ctx->c_in_pool)) {
382 		dev_err(dev, "fail to create sgl pool for input!\n");
383 		goto err_destroy_idr;
384 	}
385 
386 	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
387 						      SEC_SGL_SGE_NR);
388 	if (IS_ERR(qp_ctx->c_out_pool)) {
389 		dev_err(dev, "fail to create sgl pool for output!\n");
390 		goto err_free_c_in_pool;
391 	}
392 
393 	ret = sec_alg_resource_alloc(ctx, qp_ctx);
394 	if (ret)
395 		goto err_free_c_out_pool;
396 
397 	ret = hisi_qm_start_qp(qp, 0);
398 	if (ret < 0)
399 		goto err_queue_free;
400 
401 	return 0;
402 
403 err_queue_free:
404 	sec_alg_resource_free(ctx, qp_ctx);
405 err_free_c_out_pool:
406 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
407 err_free_c_in_pool:
408 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
409 err_destroy_idr:
410 	idr_destroy(&qp_ctx->req_idr);
411 
412 	return ret;
413 }
414 
415 static void sec_release_qp_ctx(struct sec_ctx *ctx,
416 			       struct sec_qp_ctx *qp_ctx)
417 {
418 	struct device *dev = SEC_CTX_DEV(ctx);
419 
420 	hisi_qm_stop_qp(qp_ctx->qp);
421 	sec_alg_resource_free(ctx, qp_ctx);
422 
423 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
424 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
425 
426 	idr_destroy(&qp_ctx->req_idr);
427 }
428 
429 static int sec_ctx_base_init(struct sec_ctx *ctx)
430 {
431 	struct sec_dev *sec;
432 	int i, ret;
433 
434 	ctx->qps = sec_create_qps();
435 	if (!ctx->qps) {
436 		pr_err("Can not create sec qps!\n");
437 		return -ENODEV;
438 	}
439 
440 	sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
441 	ctx->sec = sec;
442 	ctx->hlf_q_num = sec->ctx_q_num >> 1;
443 
444 	ctx->pbuf_supported = ctx->sec->iommu_used;
445 
446 	/* Half of queue depth is taken as fake requests limit in the queue. */
447 	ctx->fake_req_limit = QM_Q_DEPTH >> 1;
448 	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
449 			      GFP_KERNEL);
450 	if (!ctx->qp_ctx)
451 		return -ENOMEM;
452 
453 	for (i = 0; i < sec->ctx_q_num; i++) {
454 		ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
455 		if (ret)
456 			goto err_sec_release_qp_ctx;
457 	}
458 
459 	return 0;
460 err_sec_release_qp_ctx:
461 	for (i = i - 1; i >= 0; i--)
462 		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
463 
464 	sec_destroy_qps(ctx->qps, sec->ctx_q_num);
465 	kfree(ctx->qp_ctx);
466 	return ret;
467 }
468 
469 static void sec_ctx_base_uninit(struct sec_ctx *ctx)
470 {
471 	int i;
472 
473 	for (i = 0; i < ctx->sec->ctx_q_num; i++)
474 		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
475 
476 	sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
477 	kfree(ctx->qp_ctx);
478 }
479 
480 static int sec_cipher_init(struct sec_ctx *ctx)
481 {
482 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
483 
484 	c_ctx->c_key = dma_alloc_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
485 					  &c_ctx->c_key_dma, GFP_KERNEL);
486 	if (!c_ctx->c_key)
487 		return -ENOMEM;
488 
489 	return 0;
490 }
491 
492 static void sec_cipher_uninit(struct sec_ctx *ctx)
493 {
494 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
495 
496 	memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
497 	dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
498 			  c_ctx->c_key, c_ctx->c_key_dma);
499 }
500 
501 static int sec_auth_init(struct sec_ctx *ctx)
502 {
503 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
504 
505 	a_ctx->a_key = dma_alloc_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
506 					  &a_ctx->a_key_dma, GFP_KERNEL);
507 	if (!a_ctx->a_key)
508 		return -ENOMEM;
509 
510 	return 0;
511 }
512 
513 static void sec_auth_uninit(struct sec_ctx *ctx)
514 {
515 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
516 
517 	memzero_explicit(a_ctx->a_key, SEC_MAX_KEY_SIZE);
518 	dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
519 			  a_ctx->a_key, a_ctx->a_key_dma);
520 }
521 
522 static int sec_skcipher_init(struct crypto_skcipher *tfm)
523 {
524 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
525 	int ret;
526 
527 	ctx->alg_type = SEC_SKCIPHER;
528 	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
529 	ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
530 	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
531 		dev_err(SEC_CTX_DEV(ctx), "get error skcipher iv size!\n");
532 		return -EINVAL;
533 	}
534 
535 	ret = sec_ctx_base_init(ctx);
536 	if (ret)
537 		return ret;
538 
539 	ret = sec_cipher_init(ctx);
540 	if (ret)
541 		goto err_cipher_init;
542 
543 	return 0;
544 err_cipher_init:
545 	sec_ctx_base_uninit(ctx);
546 
547 	return ret;
548 }
549 
550 static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
551 {
552 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
553 
554 	sec_cipher_uninit(ctx);
555 	sec_ctx_base_uninit(ctx);
556 }
557 
558 static int sec_skcipher_3des_setkey(struct sec_cipher_ctx *c_ctx,
559 				    const u32 keylen,
560 				    const enum sec_cmode c_mode)
561 {
562 	switch (keylen) {
563 	case SEC_DES3_2KEY_SIZE:
564 		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
565 		break;
566 	case SEC_DES3_3KEY_SIZE:
567 		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
568 		break;
569 	default:
570 		return -EINVAL;
571 	}
572 
573 	return 0;
574 }
575 
576 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
577 				       const u32 keylen,
578 				       const enum sec_cmode c_mode)
579 {
580 	if (c_mode == SEC_CMODE_XTS) {
581 		switch (keylen) {
582 		case SEC_XTS_MIN_KEY_SIZE:
583 			c_ctx->c_key_len = SEC_CKEY_128BIT;
584 			break;
585 		case SEC_XTS_MAX_KEY_SIZE:
586 			c_ctx->c_key_len = SEC_CKEY_256BIT;
587 			break;
588 		default:
589 			pr_err("hisi_sec2: xts mode key error!\n");
590 			return -EINVAL;
591 		}
592 	} else {
593 		switch (keylen) {
594 		case AES_KEYSIZE_128:
595 			c_ctx->c_key_len = SEC_CKEY_128BIT;
596 			break;
597 		case AES_KEYSIZE_192:
598 			c_ctx->c_key_len = SEC_CKEY_192BIT;
599 			break;
600 		case AES_KEYSIZE_256:
601 			c_ctx->c_key_len = SEC_CKEY_256BIT;
602 			break;
603 		default:
604 			pr_err("hisi_sec2: aes key error!\n");
605 			return -EINVAL;
606 		}
607 	}
608 
609 	return 0;
610 }
611 
612 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
613 			       const u32 keylen, const enum sec_calg c_alg,
614 			       const enum sec_cmode c_mode)
615 {
616 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
617 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
618 	int ret;
619 
620 	if (c_mode == SEC_CMODE_XTS) {
621 		ret = xts_verify_key(tfm, key, keylen);
622 		if (ret) {
623 			dev_err(SEC_CTX_DEV(ctx), "xts mode key err!\n");
624 			return ret;
625 		}
626 	}
627 
628 	c_ctx->c_alg  = c_alg;
629 	c_ctx->c_mode = c_mode;
630 
631 	switch (c_alg) {
632 	case SEC_CALG_3DES:
633 		ret = sec_skcipher_3des_setkey(c_ctx, keylen, c_mode);
634 		break;
635 	case SEC_CALG_AES:
636 	case SEC_CALG_SM4:
637 		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
638 		break;
639 	default:
640 		return -EINVAL;
641 	}
642 
643 	if (ret) {
644 		dev_err(SEC_CTX_DEV(ctx), "set sec key err!\n");
645 		return ret;
646 	}
647 
648 	memcpy(c_ctx->c_key, key, keylen);
649 
650 	return 0;
651 }
652 
653 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
654 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
655 	u32 keylen)							\
656 {									\
657 	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
658 }
659 
660 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
661 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
662 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
663 
664 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
665 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
666 
667 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
668 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
669 
670 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
671 			struct scatterlist *src)
672 {
673 	struct aead_request *aead_req = req->aead_req.aead_req;
674 	struct sec_cipher_req *c_req = &req->c_req;
675 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
676 	struct device *dev = SEC_CTX_DEV(ctx);
677 	int copy_size, pbuf_length;
678 	int req_id = req->req_id;
679 
680 	if (ctx->alg_type == SEC_AEAD)
681 		copy_size = aead_req->cryptlen + aead_req->assoclen;
682 	else
683 		copy_size = c_req->c_len;
684 
685 	pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
686 				qp_ctx->res[req_id].pbuf,
687 				copy_size);
688 
689 	if (unlikely(pbuf_length != copy_size)) {
690 		dev_err(dev, "copy src data to pbuf error!\n");
691 		return -EINVAL;
692 	}
693 
694 	c_req->c_in_dma = qp_ctx->res[req_id].pbuf_dma;
695 
696 	if (!c_req->c_in_dma) {
697 		dev_err(dev, "fail to set pbuffer address!\n");
698 		return -ENOMEM;
699 	}
700 
701 	c_req->c_out_dma = c_req->c_in_dma;
702 
703 	return 0;
704 }
705 
706 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
707 			struct scatterlist *dst)
708 {
709 	struct aead_request *aead_req = req->aead_req.aead_req;
710 	struct sec_cipher_req *c_req = &req->c_req;
711 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
712 	struct device *dev = SEC_CTX_DEV(ctx);
713 	int copy_size, pbuf_length;
714 	int req_id = req->req_id;
715 
716 	if (ctx->alg_type == SEC_AEAD)
717 		copy_size = c_req->c_len + aead_req->assoclen;
718 	else
719 		copy_size = c_req->c_len;
720 
721 	pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
722 				qp_ctx->res[req_id].pbuf,
723 				copy_size);
724 
725 	if (unlikely(pbuf_length != copy_size))
726 		dev_err(dev, "copy pbuf data to dst error!\n");
727 
728 }
729 
730 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
731 			  struct scatterlist *src, struct scatterlist *dst)
732 {
733 	struct sec_cipher_req *c_req = &req->c_req;
734 	struct sec_aead_req *a_req = &req->aead_req;
735 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
736 	struct sec_alg_res *res = &qp_ctx->res[req->req_id];
737 	struct device *dev = SEC_CTX_DEV(ctx);
738 	int ret;
739 
740 	if (req->use_pbuf) {
741 		ret = sec_cipher_pbuf_map(ctx, req, src);
742 		c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
743 		c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
744 		if (ctx->alg_type == SEC_AEAD) {
745 			a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
746 			a_req->out_mac_dma = res->pbuf_dma +
747 					SEC_PBUF_MAC_OFFSET;
748 		}
749 
750 		return ret;
751 	}
752 	c_req->c_ivin = res->c_ivin;
753 	c_req->c_ivin_dma = res->c_ivin_dma;
754 	if (ctx->alg_type == SEC_AEAD) {
755 		a_req->out_mac = res->out_mac;
756 		a_req->out_mac_dma = res->out_mac_dma;
757 	}
758 
759 	c_req->c_in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
760 						    qp_ctx->c_in_pool,
761 						    req->req_id,
762 						    &c_req->c_in_dma);
763 
764 	if (IS_ERR(c_req->c_in)) {
765 		dev_err(dev, "fail to dma map input sgl buffers!\n");
766 		return PTR_ERR(c_req->c_in);
767 	}
768 
769 	if (dst == src) {
770 		c_req->c_out = c_req->c_in;
771 		c_req->c_out_dma = c_req->c_in_dma;
772 	} else {
773 		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
774 							     qp_ctx->c_out_pool,
775 							     req->req_id,
776 							     &c_req->c_out_dma);
777 
778 		if (IS_ERR(c_req->c_out)) {
779 			dev_err(dev, "fail to dma map output sgl buffers!\n");
780 			hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
781 			return PTR_ERR(c_req->c_out);
782 		}
783 	}
784 
785 	return 0;
786 }
787 
788 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
789 			     struct scatterlist *src, struct scatterlist *dst)
790 {
791 	struct sec_cipher_req *c_req = &req->c_req;
792 	struct device *dev = SEC_CTX_DEV(ctx);
793 
794 	if (req->use_pbuf) {
795 		sec_cipher_pbuf_unmap(ctx, req, dst);
796 	} else {
797 		if (dst != src)
798 			hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
799 
800 		hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
801 	}
802 }
803 
804 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
805 {
806 	struct skcipher_request *sq = req->c_req.sk_req;
807 
808 	return sec_cipher_map(ctx, req, sq->src, sq->dst);
809 }
810 
811 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
812 {
813 	struct skcipher_request *sq = req->c_req.sk_req;
814 
815 	sec_cipher_unmap(ctx, req, sq->src, sq->dst);
816 }
817 
818 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
819 				struct crypto_authenc_keys *keys)
820 {
821 	switch (keys->enckeylen) {
822 	case AES_KEYSIZE_128:
823 		c_ctx->c_key_len = SEC_CKEY_128BIT;
824 		break;
825 	case AES_KEYSIZE_192:
826 		c_ctx->c_key_len = SEC_CKEY_192BIT;
827 		break;
828 	case AES_KEYSIZE_256:
829 		c_ctx->c_key_len = SEC_CKEY_256BIT;
830 		break;
831 	default:
832 		pr_err("hisi_sec2: aead aes key error!\n");
833 		return -EINVAL;
834 	}
835 	memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
836 
837 	return 0;
838 }
839 
840 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
841 				 struct crypto_authenc_keys *keys)
842 {
843 	struct crypto_shash *hash_tfm = ctx->hash_tfm;
844 	int blocksize, ret;
845 
846 	if (!keys->authkeylen) {
847 		pr_err("hisi_sec2: aead auth key error!\n");
848 		return -EINVAL;
849 	}
850 
851 	blocksize = crypto_shash_blocksize(hash_tfm);
852 	if (keys->authkeylen > blocksize) {
853 		ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
854 					      keys->authkeylen, ctx->a_key);
855 		if (ret) {
856 			pr_err("hisi_sec2: aead auth digest error!\n");
857 			return -EINVAL;
858 		}
859 		ctx->a_key_len = blocksize;
860 	} else {
861 		memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
862 		ctx->a_key_len = keys->authkeylen;
863 	}
864 
865 	return 0;
866 }
867 
868 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
869 			   const u32 keylen, const enum sec_hash_alg a_alg,
870 			   const enum sec_calg c_alg,
871 			   const enum sec_mac_len mac_len,
872 			   const enum sec_cmode c_mode)
873 {
874 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
875 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
876 	struct crypto_authenc_keys keys;
877 	int ret;
878 
879 	ctx->a_ctx.a_alg = a_alg;
880 	ctx->c_ctx.c_alg = c_alg;
881 	ctx->a_ctx.mac_len = mac_len;
882 	c_ctx->c_mode = c_mode;
883 
884 	if (crypto_authenc_extractkeys(&keys, key, keylen))
885 		goto bad_key;
886 
887 	ret = sec_aead_aes_set_key(c_ctx, &keys);
888 	if (ret) {
889 		dev_err(SEC_CTX_DEV(ctx), "set sec cipher key err!\n");
890 		goto bad_key;
891 	}
892 
893 	ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
894 	if (ret) {
895 		dev_err(SEC_CTX_DEV(ctx), "set sec auth key err!\n");
896 		goto bad_key;
897 	}
898 
899 	return 0;
900 bad_key:
901 	memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
902 
903 	return -EINVAL;
904 }
905 
906 
907 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode)	\
908 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key,	\
909 	u32 keylen)							\
910 {									\
911 	return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
912 }
913 
914 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
915 			 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
916 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
917 			 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
918 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
919 			 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
920 
921 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
922 {
923 	struct aead_request *aq = req->aead_req.aead_req;
924 
925 	return sec_cipher_map(ctx, req, aq->src, aq->dst);
926 }
927 
928 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
929 {
930 	struct aead_request *aq = req->aead_req.aead_req;
931 
932 	sec_cipher_unmap(ctx, req, aq->src, aq->dst);
933 }
934 
935 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
936 {
937 	int ret;
938 
939 	ret = ctx->req_op->buf_map(ctx, req);
940 	if (unlikely(ret))
941 		return ret;
942 
943 	ctx->req_op->do_transfer(ctx, req);
944 
945 	ret = ctx->req_op->bd_fill(ctx, req);
946 	if (unlikely(ret))
947 		goto unmap_req_buf;
948 
949 	return ret;
950 
951 unmap_req_buf:
952 	ctx->req_op->buf_unmap(ctx, req);
953 
954 	return ret;
955 }
956 
957 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
958 {
959 	ctx->req_op->buf_unmap(ctx, req);
960 }
961 
962 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
963 {
964 	struct skcipher_request *sk_req = req->c_req.sk_req;
965 	struct sec_cipher_req *c_req = &req->c_req;
966 
967 	memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
968 }
969 
970 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
971 {
972 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
973 	struct sec_cipher_req *c_req = &req->c_req;
974 	struct sec_sqe *sec_sqe = &req->sec_sqe;
975 	u8 scene, sa_type, da_type;
976 	u8 bd_type, cipher;
977 	u8 de = 0;
978 
979 	memset(sec_sqe, 0, sizeof(struct sec_sqe));
980 
981 	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
982 	sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
983 	sec_sqe->type2.data_src_addr = cpu_to_le64(c_req->c_in_dma);
984 	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
985 
986 	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
987 						SEC_CMODE_OFFSET);
988 	sec_sqe->type2.c_alg = c_ctx->c_alg;
989 	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
990 						SEC_CKEY_OFFSET);
991 
992 	bd_type = SEC_BD_TYPE2;
993 	if (c_req->encrypt)
994 		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
995 	else
996 		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
997 	sec_sqe->type_cipher_auth = bd_type | cipher;
998 
999 	if (req->use_pbuf)
1000 		sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1001 	else
1002 		sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1003 	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1004 	if (c_req->c_in_dma != c_req->c_out_dma)
1005 		de = 0x1 << SEC_DE_OFFSET;
1006 
1007 	sec_sqe->sds_sa_type = (de | scene | sa_type);
1008 
1009 	/* Just set DST address type */
1010 	if (req->use_pbuf)
1011 		da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1012 	else
1013 		da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1014 	sec_sqe->sdm_addr_type |= da_type;
1015 
1016 	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1017 	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1018 
1019 	return 0;
1020 }
1021 
1022 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1023 {
1024 	struct aead_request *aead_req = req->aead_req.aead_req;
1025 	struct skcipher_request *sk_req = req->c_req.sk_req;
1026 	u32 iv_size = req->ctx->c_ctx.ivsize;
1027 	struct scatterlist *sgl;
1028 	unsigned int cryptlen;
1029 	size_t sz;
1030 	u8 *iv;
1031 
1032 	if (req->c_req.encrypt)
1033 		sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1034 	else
1035 		sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1036 
1037 	if (alg_type == SEC_SKCIPHER) {
1038 		iv = sk_req->iv;
1039 		cryptlen = sk_req->cryptlen;
1040 	} else {
1041 		iv = aead_req->iv;
1042 		cryptlen = aead_req->cryptlen;
1043 	}
1044 
1045 	sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1046 				cryptlen - iv_size);
1047 	if (unlikely(sz != iv_size))
1048 		dev_err(SEC_CTX_DEV(req->ctx), "copy output iv error!\n");
1049 }
1050 
1051 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1052 				  int err)
1053 {
1054 	struct skcipher_request *sk_req = req->c_req.sk_req;
1055 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1056 
1057 	atomic_dec(&qp_ctx->pending_reqs);
1058 	sec_free_req_id(req);
1059 
1060 	/* IV output at encrypto of CBC mode */
1061 	if (!err && ctx->c_ctx.c_mode == SEC_CMODE_CBC && req->c_req.encrypt)
1062 		sec_update_iv(req, SEC_SKCIPHER);
1063 
1064 	if (req->fake_busy)
1065 		sk_req->base.complete(&sk_req->base, -EINPROGRESS);
1066 
1067 	sk_req->base.complete(&sk_req->base, err);
1068 }
1069 
1070 static void sec_aead_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1071 {
1072 	struct aead_request *aead_req = req->aead_req.aead_req;
1073 	struct sec_cipher_req *c_req = &req->c_req;
1074 
1075 	memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1076 }
1077 
1078 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1079 			       struct sec_req *req, struct sec_sqe *sec_sqe)
1080 {
1081 	struct sec_aead_req *a_req = &req->aead_req;
1082 	struct sec_cipher_req *c_req = &req->c_req;
1083 	struct aead_request *aq = a_req->aead_req;
1084 
1085 	sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1086 
1087 	sec_sqe->type2.mac_key_alg =
1088 			cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
1089 
1090 	sec_sqe->type2.mac_key_alg |=
1091 			cpu_to_le32((u32)((ctx->a_key_len) /
1092 			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
1093 
1094 	sec_sqe->type2.mac_key_alg |=
1095 			cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1096 
1097 	sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1098 
1099 	if (dir)
1100 		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1101 	else
1102 		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1103 
1104 	sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1105 
1106 	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1107 
1108 	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1109 }
1110 
1111 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1112 {
1113 	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1114 	struct sec_sqe *sec_sqe = &req->sec_sqe;
1115 	int ret;
1116 
1117 	ret = sec_skcipher_bd_fill(ctx, req);
1118 	if (unlikely(ret)) {
1119 		dev_err(SEC_CTX_DEV(ctx), "skcipher bd fill is error!\n");
1120 		return ret;
1121 	}
1122 
1123 	sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1124 
1125 	return 0;
1126 }
1127 
1128 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1129 {
1130 	struct aead_request *a_req = req->aead_req.aead_req;
1131 	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1132 	struct sec_aead_req *aead_req = &req->aead_req;
1133 	struct sec_cipher_req *c_req = &req->c_req;
1134 	size_t authsize = crypto_aead_authsize(tfm);
1135 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1136 	size_t sz;
1137 
1138 	atomic_dec(&qp_ctx->pending_reqs);
1139 
1140 	if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1141 		sec_update_iv(req, SEC_AEAD);
1142 
1143 	/* Copy output mac */
1144 	if (!err && c_req->encrypt) {
1145 		struct scatterlist *sgl = a_req->dst;
1146 
1147 		sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1148 					  aead_req->out_mac,
1149 					  authsize, a_req->cryptlen +
1150 					  a_req->assoclen);
1151 
1152 		if (unlikely(sz != authsize)) {
1153 			dev_err(SEC_CTX_DEV(req->ctx), "copy out mac err!\n");
1154 			err = -EINVAL;
1155 		}
1156 	}
1157 
1158 	sec_free_req_id(req);
1159 
1160 	if (req->fake_busy)
1161 		a_req->base.complete(&a_req->base, -EINPROGRESS);
1162 
1163 	a_req->base.complete(&a_req->base, err);
1164 }
1165 
1166 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1167 {
1168 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1169 
1170 	atomic_dec(&qp_ctx->pending_reqs);
1171 	sec_free_req_id(req);
1172 	sec_free_queue_id(ctx, req);
1173 }
1174 
1175 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1176 {
1177 	struct sec_qp_ctx *qp_ctx;
1178 	int queue_id;
1179 
1180 	/* To load balance */
1181 	queue_id = sec_alloc_queue_id(ctx, req);
1182 	qp_ctx = &ctx->qp_ctx[queue_id];
1183 
1184 	req->req_id = sec_alloc_req_id(req, qp_ctx);
1185 	if (unlikely(req->req_id < 0)) {
1186 		sec_free_queue_id(ctx, req);
1187 		return req->req_id;
1188 	}
1189 
1190 	if (ctx->fake_req_limit <= atomic_inc_return(&qp_ctx->pending_reqs))
1191 		req->fake_busy = true;
1192 	else
1193 		req->fake_busy = false;
1194 
1195 	return 0;
1196 }
1197 
1198 static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1199 {
1200 	struct sec_cipher_req *c_req = &req->c_req;
1201 	int ret;
1202 
1203 	ret = sec_request_init(ctx, req);
1204 	if (unlikely(ret))
1205 		return ret;
1206 
1207 	ret = sec_request_transfer(ctx, req);
1208 	if (unlikely(ret))
1209 		goto err_uninit_req;
1210 
1211 	/* Output IV as decrypto */
1212 	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
1213 		sec_update_iv(req, ctx->alg_type);
1214 
1215 	ret = ctx->req_op->bd_send(ctx, req);
1216 	if (unlikely(ret != -EBUSY && ret != -EINPROGRESS)) {
1217 		dev_err_ratelimited(SEC_CTX_DEV(ctx), "send sec request failed!\n");
1218 		goto err_send_req;
1219 	}
1220 
1221 	return ret;
1222 
1223 err_send_req:
1224 	/* As failing, restore the IV from user */
1225 	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1226 		if (ctx->alg_type == SEC_SKCIPHER)
1227 			memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1228 			       ctx->c_ctx.ivsize);
1229 		else
1230 			memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1231 			       ctx->c_ctx.ivsize);
1232 	}
1233 
1234 	sec_request_untransfer(ctx, req);
1235 err_uninit_req:
1236 	sec_request_uninit(ctx, req);
1237 
1238 	return ret;
1239 }
1240 
1241 static const struct sec_req_op sec_skcipher_req_ops = {
1242 	.buf_map	= sec_skcipher_sgl_map,
1243 	.buf_unmap	= sec_skcipher_sgl_unmap,
1244 	.do_transfer	= sec_skcipher_copy_iv,
1245 	.bd_fill	= sec_skcipher_bd_fill,
1246 	.bd_send	= sec_bd_send,
1247 	.callback	= sec_skcipher_callback,
1248 	.process	= sec_process,
1249 };
1250 
1251 static const struct sec_req_op sec_aead_req_ops = {
1252 	.buf_map	= sec_aead_sgl_map,
1253 	.buf_unmap	= sec_aead_sgl_unmap,
1254 	.do_transfer	= sec_aead_copy_iv,
1255 	.bd_fill	= sec_aead_bd_fill,
1256 	.bd_send	= sec_bd_send,
1257 	.callback	= sec_aead_callback,
1258 	.process	= sec_process,
1259 };
1260 
1261 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1262 {
1263 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1264 
1265 	ctx->req_op = &sec_skcipher_req_ops;
1266 
1267 	return sec_skcipher_init(tfm);
1268 }
1269 
1270 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1271 {
1272 	sec_skcipher_uninit(tfm);
1273 }
1274 
1275 static int sec_aead_init(struct crypto_aead *tfm)
1276 {
1277 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1278 	int ret;
1279 
1280 	crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1281 	ctx->alg_type = SEC_AEAD;
1282 	ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1283 	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1284 		dev_err(SEC_CTX_DEV(ctx), "get error aead iv size!\n");
1285 		return -EINVAL;
1286 	}
1287 
1288 	ctx->req_op = &sec_aead_req_ops;
1289 	ret = sec_ctx_base_init(ctx);
1290 	if (ret)
1291 		return ret;
1292 
1293 	ret = sec_auth_init(ctx);
1294 	if (ret)
1295 		goto err_auth_init;
1296 
1297 	ret = sec_cipher_init(ctx);
1298 	if (ret)
1299 		goto err_cipher_init;
1300 
1301 	return ret;
1302 
1303 err_cipher_init:
1304 	sec_auth_uninit(ctx);
1305 err_auth_init:
1306 	sec_ctx_base_uninit(ctx);
1307 
1308 	return ret;
1309 }
1310 
1311 static void sec_aead_exit(struct crypto_aead *tfm)
1312 {
1313 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1314 
1315 	sec_cipher_uninit(ctx);
1316 	sec_auth_uninit(ctx);
1317 	sec_ctx_base_uninit(ctx);
1318 }
1319 
1320 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1321 {
1322 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1323 	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1324 	int ret;
1325 
1326 	ret = sec_aead_init(tfm);
1327 	if (ret) {
1328 		pr_err("hisi_sec2: aead init error!\n");
1329 		return ret;
1330 	}
1331 
1332 	auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1333 	if (IS_ERR(auth_ctx->hash_tfm)) {
1334 		dev_err(SEC_CTX_DEV(ctx), "aead alloc shash error!\n");
1335 		sec_aead_exit(tfm);
1336 		return PTR_ERR(auth_ctx->hash_tfm);
1337 	}
1338 
1339 	return 0;
1340 }
1341 
1342 static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1343 {
1344 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1345 
1346 	crypto_free_shash(ctx->a_ctx.hash_tfm);
1347 	sec_aead_exit(tfm);
1348 }
1349 
1350 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1351 {
1352 	return sec_aead_ctx_init(tfm, "sha1");
1353 }
1354 
1355 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
1356 {
1357 	return sec_aead_ctx_init(tfm, "sha256");
1358 }
1359 
1360 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
1361 {
1362 	return sec_aead_ctx_init(tfm, "sha512");
1363 }
1364 
1365 static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
1366 {
1367 	struct skcipher_request *sk_req = sreq->c_req.sk_req;
1368 	struct device *dev = SEC_CTX_DEV(ctx);
1369 	u8 c_alg = ctx->c_ctx.c_alg;
1370 
1371 	if (unlikely(!sk_req->src || !sk_req->dst)) {
1372 		dev_err(dev, "skcipher input param error!\n");
1373 		return -EINVAL;
1374 	}
1375 	sreq->c_req.c_len = sk_req->cryptlen;
1376 
1377 	if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
1378 		sreq->use_pbuf = true;
1379 	else
1380 		sreq->use_pbuf = false;
1381 
1382 	if (c_alg == SEC_CALG_3DES) {
1383 		if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
1384 			dev_err(dev, "skcipher 3des input length error!\n");
1385 			return -EINVAL;
1386 		}
1387 		return 0;
1388 	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
1389 		if (unlikely(sk_req->cryptlen & (AES_BLOCK_SIZE - 1))) {
1390 			dev_err(dev, "skcipher aes input length error!\n");
1391 			return -EINVAL;
1392 		}
1393 		return 0;
1394 	}
1395 
1396 	dev_err(dev, "skcipher algorithm error!\n");
1397 	return -EINVAL;
1398 }
1399 
1400 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
1401 {
1402 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
1403 	struct sec_req *req = skcipher_request_ctx(sk_req);
1404 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1405 	int ret;
1406 
1407 	if (!sk_req->cryptlen)
1408 		return 0;
1409 
1410 	req->c_req.sk_req = sk_req;
1411 	req->c_req.encrypt = encrypt;
1412 	req->ctx = ctx;
1413 
1414 	ret = sec_skcipher_param_check(ctx, req);
1415 	if (unlikely(ret))
1416 		return -EINVAL;
1417 
1418 	return ctx->req_op->process(ctx, req);
1419 }
1420 
1421 static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
1422 {
1423 	return sec_skcipher_crypto(sk_req, true);
1424 }
1425 
1426 static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
1427 {
1428 	return sec_skcipher_crypto(sk_req, false);
1429 }
1430 
1431 #define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
1432 	sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
1433 {\
1434 	.base = {\
1435 		.cra_name = sec_cra_name,\
1436 		.cra_driver_name = "hisi_sec_"sec_cra_name,\
1437 		.cra_priority = SEC_PRIORITY,\
1438 		.cra_flags = CRYPTO_ALG_ASYNC,\
1439 		.cra_blocksize = blk_size,\
1440 		.cra_ctxsize = sizeof(struct sec_ctx),\
1441 		.cra_module = THIS_MODULE,\
1442 	},\
1443 	.init = ctx_init,\
1444 	.exit = ctx_exit,\
1445 	.setkey = sec_set_key,\
1446 	.decrypt = sec_skcipher_decrypt,\
1447 	.encrypt = sec_skcipher_encrypt,\
1448 	.min_keysize = sec_min_key_size,\
1449 	.max_keysize = sec_max_key_size,\
1450 	.ivsize = iv_size,\
1451 },
1452 
1453 #define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
1454 	max_key_size, blk_size, iv_size) \
1455 	SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
1456 	sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
1457 
1458 static struct skcipher_alg sec_skciphers[] = {
1459 	SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
1460 			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
1461 			 AES_BLOCK_SIZE, 0)
1462 
1463 	SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
1464 			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
1465 			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
1466 
1467 	SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
1468 			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
1469 			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
1470 
1471 	SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
1472 			 SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
1473 			 DES3_EDE_BLOCK_SIZE, 0)
1474 
1475 	SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
1476 			 SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
1477 			 DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)
1478 
1479 	SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
1480 			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
1481 			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
1482 
1483 	SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
1484 			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
1485 			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
1486 };
1487 
1488 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
1489 {
1490 	u8 c_alg = ctx->c_ctx.c_alg;
1491 	struct aead_request *req = sreq->aead_req.aead_req;
1492 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1493 	size_t authsize = crypto_aead_authsize(tfm);
1494 
1495 	if (unlikely(!req->src || !req->dst || !req->cryptlen ||
1496 		req->assoclen > SEC_MAX_AAD_LEN)) {
1497 		dev_err(SEC_CTX_DEV(ctx), "aead input param error!\n");
1498 		return -EINVAL;
1499 	}
1500 
1501 	if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
1502 		SEC_PBUF_SZ)
1503 		sreq->use_pbuf = true;
1504 	else
1505 		sreq->use_pbuf = false;
1506 
1507 	/* Support AES only */
1508 	if (unlikely(c_alg != SEC_CALG_AES)) {
1509 		dev_err(SEC_CTX_DEV(ctx), "aead crypto alg error!\n");
1510 		return -EINVAL;
1511 
1512 	}
1513 	if (sreq->c_req.encrypt)
1514 		sreq->c_req.c_len = req->cryptlen;
1515 	else
1516 		sreq->c_req.c_len = req->cryptlen - authsize;
1517 
1518 	if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
1519 		dev_err(SEC_CTX_DEV(ctx), "aead crypto length error!\n");
1520 		return -EINVAL;
1521 	}
1522 
1523 	return 0;
1524 }
1525 
1526 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
1527 {
1528 	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1529 	struct sec_req *req = aead_request_ctx(a_req);
1530 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1531 	int ret;
1532 
1533 	req->aead_req.aead_req = a_req;
1534 	req->c_req.encrypt = encrypt;
1535 	req->ctx = ctx;
1536 
1537 	ret = sec_aead_param_check(ctx, req);
1538 	if (unlikely(ret))
1539 		return -EINVAL;
1540 
1541 	return ctx->req_op->process(ctx, req);
1542 }
1543 
1544 static int sec_aead_encrypt(struct aead_request *a_req)
1545 {
1546 	return sec_aead_crypto(a_req, true);
1547 }
1548 
1549 static int sec_aead_decrypt(struct aead_request *a_req)
1550 {
1551 	return sec_aead_crypto(a_req, false);
1552 }
1553 
1554 #define SEC_AEAD_GEN_ALG(sec_cra_name, sec_set_key, ctx_init,\
1555 			 ctx_exit, blk_size, iv_size, max_authsize)\
1556 {\
1557 	.base = {\
1558 		.cra_name = sec_cra_name,\
1559 		.cra_driver_name = "hisi_sec_"sec_cra_name,\
1560 		.cra_priority = SEC_PRIORITY,\
1561 		.cra_flags = CRYPTO_ALG_ASYNC,\
1562 		.cra_blocksize = blk_size,\
1563 		.cra_ctxsize = sizeof(struct sec_ctx),\
1564 		.cra_module = THIS_MODULE,\
1565 	},\
1566 	.init = ctx_init,\
1567 	.exit = ctx_exit,\
1568 	.setkey = sec_set_key,\
1569 	.decrypt = sec_aead_decrypt,\
1570 	.encrypt = sec_aead_encrypt,\
1571 	.ivsize = iv_size,\
1572 	.maxauthsize = max_authsize,\
1573 }
1574 
1575 #define SEC_AEAD_ALG(algname, keyfunc, aead_init, blksize, ivsize, authsize)\
1576 	SEC_AEAD_GEN_ALG(algname, keyfunc, aead_init,\
1577 			sec_aead_ctx_exit, blksize, ivsize, authsize)
1578 
1579 static struct aead_alg sec_aeads[] = {
1580 	SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
1581 		     sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
1582 		     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
1583 
1584 	SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
1585 		     sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
1586 		     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
1587 
1588 	SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
1589 		     sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
1590 		     AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
1591 };
1592 
1593 int sec_register_to_crypto(void)
1594 {
1595 	int ret = 0;
1596 
1597 	/* To avoid repeat register */
1598 	if (atomic_add_return(1, &sec_active_devs) == 1) {
1599 		ret = crypto_register_skciphers(sec_skciphers,
1600 						ARRAY_SIZE(sec_skciphers));
1601 		if (ret)
1602 			return ret;
1603 
1604 		ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
1605 		if (ret)
1606 			goto reg_aead_fail;
1607 	}
1608 
1609 	return ret;
1610 
1611 reg_aead_fail:
1612 	crypto_unregister_skciphers(sec_skciphers, ARRAY_SIZE(sec_skciphers));
1613 
1614 	return ret;
1615 }
1616 
1617 void sec_unregister_from_crypto(void)
1618 {
1619 	if (atomic_sub_return(1, &sec_active_devs) == 0) {
1620 		crypto_unregister_skciphers(sec_skciphers,
1621 					    ARRAY_SIZE(sec_skciphers));
1622 		crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
1623 	}
1624 }
1625