1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 
4 #include <crypto/aes.h>
5 #include <crypto/aead.h>
6 #include <crypto/algapi.h>
7 #include <crypto/authenc.h>
8 #include <crypto/des.h>
9 #include <crypto/hash.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/des.h>
12 #include <crypto/sha1.h>
13 #include <crypto/sha2.h>
14 #include <crypto/skcipher.h>
15 #include <crypto/xts.h>
16 #include <linux/crypto.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/idr.h>
19 
20 #include "sec.h"
21 #include "sec_crypto.h"
22 
23 #define SEC_PRIORITY		4001
24 #define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
25 #define SEC_XTS_MID_KEY_SIZE	(3 * AES_MIN_KEY_SIZE)
26 #define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
27 #define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
28 #define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)
29 
30 /* SEC sqe(bd) bit operational relative MACRO */
31 #define SEC_DE_OFFSET		1
32 #define SEC_CIPHER_OFFSET	4
33 #define SEC_SCENE_OFFSET	3
34 #define SEC_DST_SGL_OFFSET	2
35 #define SEC_SRC_SGL_OFFSET	7
36 #define SEC_CKEY_OFFSET		9
37 #define SEC_CMODE_OFFSET	12
38 #define SEC_AKEY_OFFSET         5
39 #define SEC_AEAD_ALG_OFFSET     11
40 #define SEC_AUTH_OFFSET		6
41 
42 #define SEC_DE_OFFSET_V3		9
43 #define SEC_SCENE_OFFSET_V3	5
44 #define SEC_CKEY_OFFSET_V3	13
45 #define SEC_CTR_CNT_OFFSET	25
46 #define SEC_CTR_CNT_ROLLOVER	2
47 #define SEC_SRC_SGL_OFFSET_V3	11
48 #define SEC_DST_SGL_OFFSET_V3	14
49 #define SEC_CALG_OFFSET_V3	4
50 #define SEC_AKEY_OFFSET_V3	9
51 #define SEC_MAC_OFFSET_V3	4
52 #define SEC_AUTH_ALG_OFFSET_V3	15
53 #define SEC_CIPHER_AUTH_V3	0xbf
54 #define SEC_AUTH_CIPHER_V3	0x40
55 #define SEC_FLAG_OFFSET		7
56 #define SEC_FLAG_MASK		0x0780
57 #define SEC_TYPE_MASK		0x0F
58 #define SEC_DONE_MASK		0x0001
59 #define SEC_ICV_MASK		0x000E
60 #define SEC_SQE_LEN_RATE_MASK	0x3
61 
62 #define SEC_TOTAL_IV_SZ		(SEC_IV_SIZE * QM_Q_DEPTH)
63 #define SEC_SGL_SGE_NR		128
64 #define SEC_CIPHER_AUTH		0xfe
65 #define SEC_AUTH_CIPHER		0x1
66 #define SEC_MAX_MAC_LEN		64
67 #define SEC_MAX_AAD_LEN		65535
68 #define SEC_MAX_CCM_AAD_LEN	65279
69 #define SEC_TOTAL_MAC_SZ	(SEC_MAX_MAC_LEN * QM_Q_DEPTH)
70 
71 #define SEC_PBUF_SZ			512
72 #define SEC_PBUF_IV_OFFSET		SEC_PBUF_SZ
73 #define SEC_PBUF_MAC_OFFSET		(SEC_PBUF_SZ + SEC_IV_SIZE)
74 #define SEC_PBUF_PKG		(SEC_PBUF_SZ + SEC_IV_SIZE +	\
75 			SEC_MAX_MAC_LEN * 2)
76 #define SEC_PBUF_NUM		(PAGE_SIZE / SEC_PBUF_PKG)
77 #define SEC_PBUF_PAGE_NUM	(QM_Q_DEPTH / SEC_PBUF_NUM)
78 #define SEC_PBUF_LEFT_SZ	(SEC_PBUF_PKG * (QM_Q_DEPTH -	\
79 			SEC_PBUF_PAGE_NUM * SEC_PBUF_NUM))
80 #define SEC_TOTAL_PBUF_SZ	(PAGE_SIZE * SEC_PBUF_PAGE_NUM +	\
81 			SEC_PBUF_LEFT_SZ)
82 
83 #define SEC_SQE_LEN_RATE	4
84 #define SEC_SQE_CFLAG		2
85 #define SEC_SQE_AEAD_FLAG	3
86 #define SEC_SQE_DONE		0x1
87 #define SEC_ICV_ERR		0x2
88 #define MIN_MAC_LEN		4
89 #define MAC_LEN_MASK		0x1U
90 #define MAX_INPUT_DATA_LEN	0xFFFE00
91 #define BITS_MASK		0xFF
92 #define BYTE_BITS		0x8
93 #define SEC_XTS_NAME_SZ		0x3
94 #define IV_CM_CAL_NUM		2
95 #define IV_CL_MASK		0x7
96 #define IV_CL_MIN		2
97 #define IV_CL_MID		4
98 #define IV_CL_MAX		8
99 #define IV_FLAGS_OFFSET	0x6
100 #define IV_CM_OFFSET		0x3
101 #define IV_LAST_BYTE1		1
102 #define IV_LAST_BYTE2		2
103 #define IV_LAST_BYTE_MASK	0xFF
104 #define IV_CTR_INIT		0x1
105 #define IV_BYTE_OFFSET		0x8
106 
107 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
108 static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
109 {
110 	if (req->c_req.encrypt)
111 		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
112 				 ctx->hlf_q_num;
113 
114 	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
115 				 ctx->hlf_q_num;
116 }
117 
118 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
119 {
120 	if (req->c_req.encrypt)
121 		atomic_dec(&ctx->enc_qcyclic);
122 	else
123 		atomic_dec(&ctx->dec_qcyclic);
124 }
125 
126 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
127 {
128 	int req_id;
129 
130 	spin_lock_bh(&qp_ctx->req_lock);
131 
132 	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
133 				  0, QM_Q_DEPTH, GFP_ATOMIC);
134 	spin_unlock_bh(&qp_ctx->req_lock);
135 	if (unlikely(req_id < 0)) {
136 		dev_err(req->ctx->dev, "alloc req id fail!\n");
137 		return req_id;
138 	}
139 
140 	req->qp_ctx = qp_ctx;
141 	qp_ctx->req_list[req_id] = req;
142 
143 	return req_id;
144 }
145 
146 static void sec_free_req_id(struct sec_req *req)
147 {
148 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
149 	int req_id = req->req_id;
150 
151 	if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
152 		dev_err(req->ctx->dev, "free request id invalid!\n");
153 		return;
154 	}
155 
156 	qp_ctx->req_list[req_id] = NULL;
157 	req->qp_ctx = NULL;
158 
159 	spin_lock_bh(&qp_ctx->req_lock);
160 	idr_remove(&qp_ctx->req_idr, req_id);
161 	spin_unlock_bh(&qp_ctx->req_lock);
162 }
163 
164 static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
165 {
166 	struct sec_sqe *bd = resp;
167 
168 	status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
169 	status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
170 	status->flag = (le16_to_cpu(bd->type2.done_flag) &
171 					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
172 	status->tag = le16_to_cpu(bd->type2.tag);
173 	status->err_type = bd->type2.error_type;
174 
175 	return bd->type_cipher_auth & SEC_TYPE_MASK;
176 }
177 
178 static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
179 {
180 	struct sec_sqe3 *bd3 = resp;
181 
182 	status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
183 	status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
184 	status->flag = (le16_to_cpu(bd3->done_flag) &
185 					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
186 	status->tag = le64_to_cpu(bd3->tag);
187 	status->err_type = bd3->error_type;
188 
189 	return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
190 }
191 
192 static int sec_cb_status_check(struct sec_req *req,
193 			       struct bd_status *status)
194 {
195 	struct sec_ctx *ctx = req->ctx;
196 
197 	if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
198 		dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
199 				    req->err_type, status->done);
200 		return -EIO;
201 	}
202 
203 	if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
204 		if (unlikely(status->flag != SEC_SQE_CFLAG)) {
205 			dev_err_ratelimited(ctx->dev, "flag[%u]\n",
206 					    status->flag);
207 			return -EIO;
208 		}
209 	} else if (unlikely(ctx->alg_type == SEC_AEAD)) {
210 		if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
211 			     status->icv == SEC_ICV_ERR)) {
212 			dev_err_ratelimited(ctx->dev,
213 					    "flag[%u], icv[%u]\n",
214 					    status->flag, status->icv);
215 			return -EBADMSG;
216 		}
217 	}
218 
219 	return 0;
220 }
221 
222 static void sec_req_cb(struct hisi_qp *qp, void *resp)
223 {
224 	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
225 	struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
226 	u8 type_supported = qp_ctx->ctx->type_supported;
227 	struct bd_status status;
228 	struct sec_ctx *ctx;
229 	struct sec_req *req;
230 	int err;
231 	u8 type;
232 
233 	if (type_supported == SEC_BD_TYPE2) {
234 		type = pre_parse_finished_bd(&status, resp);
235 		req = qp_ctx->req_list[status.tag];
236 	} else {
237 		type = pre_parse_finished_bd3(&status, resp);
238 		req = (void *)(uintptr_t)status.tag;
239 	}
240 
241 	if (unlikely(type != type_supported)) {
242 		atomic64_inc(&dfx->err_bd_cnt);
243 		pr_err("err bd type [%u]\n", type);
244 		return;
245 	}
246 
247 	if (unlikely(!req)) {
248 		atomic64_inc(&dfx->invalid_req_cnt);
249 		atomic_inc(&qp->qp_status.used);
250 		return;
251 	}
252 
253 	req->err_type = status.err_type;
254 	ctx = req->ctx;
255 	err = sec_cb_status_check(req, &status);
256 	if (err)
257 		atomic64_inc(&dfx->done_flag_cnt);
258 
259 	atomic64_inc(&dfx->recv_cnt);
260 
261 	ctx->req_op->buf_unmap(ctx, req);
262 
263 	ctx->req_op->callback(ctx, req, err);
264 }
265 
266 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
267 {
268 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
269 	int ret;
270 
271 	if (ctx->fake_req_limit <=
272 	    atomic_read(&qp_ctx->qp->qp_status.used) &&
273 	    !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
274 		return -EBUSY;
275 
276 	spin_lock_bh(&qp_ctx->req_lock);
277 	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
278 
279 	if (ctx->fake_req_limit <=
280 	    atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
281 		list_add_tail(&req->backlog_head, &qp_ctx->backlog);
282 		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
283 		atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
284 		spin_unlock_bh(&qp_ctx->req_lock);
285 		return -EBUSY;
286 	}
287 	spin_unlock_bh(&qp_ctx->req_lock);
288 
289 	if (unlikely(ret == -EBUSY))
290 		return -ENOBUFS;
291 
292 	if (likely(!ret)) {
293 		ret = -EINPROGRESS;
294 		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
295 	}
296 
297 	return ret;
298 }
299 
300 /* Get DMA memory resources */
301 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
302 {
303 	int i;
304 
305 	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
306 					 &res->c_ivin_dma, GFP_KERNEL);
307 	if (!res->c_ivin)
308 		return -ENOMEM;
309 
310 	for (i = 1; i < QM_Q_DEPTH; i++) {
311 		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
312 		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
313 	}
314 
315 	return 0;
316 }
317 
318 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
319 {
320 	if (res->c_ivin)
321 		dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
322 				  res->c_ivin, res->c_ivin_dma);
323 }
324 
325 static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
326 {
327 	int i;
328 
329 	res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
330 					 &res->a_ivin_dma, GFP_KERNEL);
331 	if (!res->a_ivin)
332 		return -ENOMEM;
333 
334 	for (i = 1; i < QM_Q_DEPTH; i++) {
335 		res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
336 		res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
337 	}
338 
339 	return 0;
340 }
341 
342 static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
343 {
344 	if (res->a_ivin)
345 		dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
346 				  res->a_ivin, res->a_ivin_dma);
347 }
348 
349 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
350 {
351 	int i;
352 
353 	res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
354 					  &res->out_mac_dma, GFP_KERNEL);
355 	if (!res->out_mac)
356 		return -ENOMEM;
357 
358 	for (i = 1; i < QM_Q_DEPTH; i++) {
359 		res[i].out_mac_dma = res->out_mac_dma +
360 				     i * (SEC_MAX_MAC_LEN << 1);
361 		res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
362 	}
363 
364 	return 0;
365 }
366 
367 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
368 {
369 	if (res->out_mac)
370 		dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
371 				  res->out_mac, res->out_mac_dma);
372 }
373 
374 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
375 {
376 	if (res->pbuf)
377 		dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ,
378 				  res->pbuf, res->pbuf_dma);
379 }
380 
381 /*
382  * To improve performance, pbuffer is used for
383  * small packets (< 512Bytes) as IOMMU translation using.
384  */
385 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
386 {
387 	int pbuf_page_offset;
388 	int i, j, k;
389 
390 	res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ,
391 				&res->pbuf_dma, GFP_KERNEL);
392 	if (!res->pbuf)
393 		return -ENOMEM;
394 
395 	/*
396 	 * SEC_PBUF_PKG contains data pbuf, iv and
397 	 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
398 	 * Every PAGE contains six SEC_PBUF_PKG
399 	 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
400 	 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
401 	 * for the SEC_TOTAL_PBUF_SZ
402 	 */
403 	for (i = 0; i <= SEC_PBUF_PAGE_NUM; i++) {
404 		pbuf_page_offset = PAGE_SIZE * i;
405 		for (j = 0; j < SEC_PBUF_NUM; j++) {
406 			k = i * SEC_PBUF_NUM + j;
407 			if (k == QM_Q_DEPTH)
408 				break;
409 			res[k].pbuf = res->pbuf +
410 				j * SEC_PBUF_PKG + pbuf_page_offset;
411 			res[k].pbuf_dma = res->pbuf_dma +
412 				j * SEC_PBUF_PKG + pbuf_page_offset;
413 		}
414 	}
415 
416 	return 0;
417 }
418 
419 static int sec_alg_resource_alloc(struct sec_ctx *ctx,
420 				  struct sec_qp_ctx *qp_ctx)
421 {
422 	struct sec_alg_res *res = qp_ctx->res;
423 	struct device *dev = ctx->dev;
424 	int ret;
425 
426 	ret = sec_alloc_civ_resource(dev, res);
427 	if (ret)
428 		return ret;
429 
430 	if (ctx->alg_type == SEC_AEAD) {
431 		ret = sec_alloc_aiv_resource(dev, res);
432 		if (ret)
433 			goto alloc_aiv_fail;
434 
435 		ret = sec_alloc_mac_resource(dev, res);
436 		if (ret)
437 			goto alloc_mac_fail;
438 	}
439 	if (ctx->pbuf_supported) {
440 		ret = sec_alloc_pbuf_resource(dev, res);
441 		if (ret) {
442 			dev_err(dev, "fail to alloc pbuf dma resource!\n");
443 			goto alloc_pbuf_fail;
444 		}
445 	}
446 
447 	return 0;
448 
449 alloc_pbuf_fail:
450 	if (ctx->alg_type == SEC_AEAD)
451 		sec_free_mac_resource(dev, qp_ctx->res);
452 alloc_mac_fail:
453 	if (ctx->alg_type == SEC_AEAD)
454 		sec_free_aiv_resource(dev, res);
455 alloc_aiv_fail:
456 	sec_free_civ_resource(dev, res);
457 	return ret;
458 }
459 
460 static void sec_alg_resource_free(struct sec_ctx *ctx,
461 				  struct sec_qp_ctx *qp_ctx)
462 {
463 	struct device *dev = ctx->dev;
464 
465 	sec_free_civ_resource(dev, qp_ctx->res);
466 
467 	if (ctx->pbuf_supported)
468 		sec_free_pbuf_resource(dev, qp_ctx->res);
469 	if (ctx->alg_type == SEC_AEAD)
470 		sec_free_mac_resource(dev, qp_ctx->res);
471 }
472 
473 static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
474 			     int qp_ctx_id, int alg_type)
475 {
476 	struct device *dev = ctx->dev;
477 	struct sec_qp_ctx *qp_ctx;
478 	struct hisi_qp *qp;
479 	int ret = -ENOMEM;
480 
481 	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
482 	qp = ctx->qps[qp_ctx_id];
483 	qp->req_type = 0;
484 	qp->qp_ctx = qp_ctx;
485 	qp_ctx->qp = qp;
486 	qp_ctx->ctx = ctx;
487 
488 	qp->req_cb = sec_req_cb;
489 
490 	spin_lock_init(&qp_ctx->req_lock);
491 	idr_init(&qp_ctx->req_idr);
492 	INIT_LIST_HEAD(&qp_ctx->backlog);
493 
494 	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
495 						     SEC_SGL_SGE_NR);
496 	if (IS_ERR(qp_ctx->c_in_pool)) {
497 		dev_err(dev, "fail to create sgl pool for input!\n");
498 		goto err_destroy_idr;
499 	}
500 
501 	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
502 						      SEC_SGL_SGE_NR);
503 	if (IS_ERR(qp_ctx->c_out_pool)) {
504 		dev_err(dev, "fail to create sgl pool for output!\n");
505 		goto err_free_c_in_pool;
506 	}
507 
508 	ret = sec_alg_resource_alloc(ctx, qp_ctx);
509 	if (ret)
510 		goto err_free_c_out_pool;
511 
512 	ret = hisi_qm_start_qp(qp, 0);
513 	if (ret < 0)
514 		goto err_queue_free;
515 
516 	return 0;
517 
518 err_queue_free:
519 	sec_alg_resource_free(ctx, qp_ctx);
520 err_free_c_out_pool:
521 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
522 err_free_c_in_pool:
523 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
524 err_destroy_idr:
525 	idr_destroy(&qp_ctx->req_idr);
526 	return ret;
527 }
528 
529 static void sec_release_qp_ctx(struct sec_ctx *ctx,
530 			       struct sec_qp_ctx *qp_ctx)
531 {
532 	struct device *dev = ctx->dev;
533 
534 	hisi_qm_stop_qp(qp_ctx->qp);
535 	sec_alg_resource_free(ctx, qp_ctx);
536 
537 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
538 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
539 
540 	idr_destroy(&qp_ctx->req_idr);
541 }
542 
543 static int sec_ctx_base_init(struct sec_ctx *ctx)
544 {
545 	struct sec_dev *sec;
546 	int i, ret;
547 
548 	ctx->qps = sec_create_qps();
549 	if (!ctx->qps) {
550 		pr_err("Can not create sec qps!\n");
551 		return -ENODEV;
552 	}
553 
554 	sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
555 	ctx->sec = sec;
556 	ctx->dev = &sec->qm.pdev->dev;
557 	ctx->hlf_q_num = sec->ctx_q_num >> 1;
558 
559 	ctx->pbuf_supported = ctx->sec->iommu_used;
560 
561 	/* Half of queue depth is taken as fake requests limit in the queue. */
562 	ctx->fake_req_limit = QM_Q_DEPTH >> 1;
563 	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
564 			      GFP_KERNEL);
565 	if (!ctx->qp_ctx) {
566 		ret = -ENOMEM;
567 		goto err_destroy_qps;
568 	}
569 
570 	for (i = 0; i < sec->ctx_q_num; i++) {
571 		ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
572 		if (ret)
573 			goto err_sec_release_qp_ctx;
574 	}
575 
576 	return 0;
577 
578 err_sec_release_qp_ctx:
579 	for (i = i - 1; i >= 0; i--)
580 		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
581 	kfree(ctx->qp_ctx);
582 err_destroy_qps:
583 	sec_destroy_qps(ctx->qps, sec->ctx_q_num);
584 	return ret;
585 }
586 
587 static void sec_ctx_base_uninit(struct sec_ctx *ctx)
588 {
589 	int i;
590 
591 	for (i = 0; i < ctx->sec->ctx_q_num; i++)
592 		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
593 
594 	sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
595 	kfree(ctx->qp_ctx);
596 }
597 
598 static int sec_cipher_init(struct sec_ctx *ctx)
599 {
600 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
601 
602 	c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
603 					  &c_ctx->c_key_dma, GFP_KERNEL);
604 	if (!c_ctx->c_key)
605 		return -ENOMEM;
606 
607 	return 0;
608 }
609 
610 static void sec_cipher_uninit(struct sec_ctx *ctx)
611 {
612 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
613 
614 	memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
615 	dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
616 			  c_ctx->c_key, c_ctx->c_key_dma);
617 }
618 
619 static int sec_auth_init(struct sec_ctx *ctx)
620 {
621 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
622 
623 	a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
624 					  &a_ctx->a_key_dma, GFP_KERNEL);
625 	if (!a_ctx->a_key)
626 		return -ENOMEM;
627 
628 	return 0;
629 }
630 
631 static void sec_auth_uninit(struct sec_ctx *ctx)
632 {
633 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
634 
635 	memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
636 	dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
637 			  a_ctx->a_key, a_ctx->a_key_dma);
638 }
639 
640 static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
641 {
642 	const char *alg = crypto_tfm_alg_name(&tfm->base);
643 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
644 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
645 
646 	c_ctx->fallback = false;
647 
648 	/* Currently, only XTS mode need fallback tfm when using 192bit key */
649 	if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
650 		return 0;
651 
652 	c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
653 						  CRYPTO_ALG_NEED_FALLBACK);
654 	if (IS_ERR(c_ctx->fbtfm)) {
655 		pr_err("failed to alloc xts mode fallback tfm!\n");
656 		return PTR_ERR(c_ctx->fbtfm);
657 	}
658 
659 	return 0;
660 }
661 
662 static int sec_skcipher_init(struct crypto_skcipher *tfm)
663 {
664 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
665 	int ret;
666 
667 	ctx->alg_type = SEC_SKCIPHER;
668 	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
669 	ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
670 	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
671 		pr_err("get error skcipher iv size!\n");
672 		return -EINVAL;
673 	}
674 
675 	ret = sec_ctx_base_init(ctx);
676 	if (ret)
677 		return ret;
678 
679 	ret = sec_cipher_init(ctx);
680 	if (ret)
681 		goto err_cipher_init;
682 
683 	ret = sec_skcipher_fbtfm_init(tfm);
684 	if (ret)
685 		goto err_fbtfm_init;
686 
687 	return 0;
688 
689 err_fbtfm_init:
690 	sec_cipher_uninit(ctx);
691 err_cipher_init:
692 	sec_ctx_base_uninit(ctx);
693 	return ret;
694 }
695 
696 static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
697 {
698 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
699 
700 	if (ctx->c_ctx.fbtfm)
701 		crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
702 
703 	sec_cipher_uninit(ctx);
704 	sec_ctx_base_uninit(ctx);
705 }
706 
707 static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
708 				    const u32 keylen,
709 				    const enum sec_cmode c_mode)
710 {
711 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
712 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
713 	int ret;
714 
715 	ret = verify_skcipher_des3_key(tfm, key);
716 	if (ret)
717 		return ret;
718 
719 	switch (keylen) {
720 	case SEC_DES3_2KEY_SIZE:
721 		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
722 		break;
723 	case SEC_DES3_3KEY_SIZE:
724 		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
725 		break;
726 	default:
727 		return -EINVAL;
728 	}
729 
730 	return 0;
731 }
732 
733 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
734 				       const u32 keylen,
735 				       const enum sec_cmode c_mode)
736 {
737 	if (c_mode == SEC_CMODE_XTS) {
738 		switch (keylen) {
739 		case SEC_XTS_MIN_KEY_SIZE:
740 			c_ctx->c_key_len = SEC_CKEY_128BIT;
741 			break;
742 		case SEC_XTS_MID_KEY_SIZE:
743 			c_ctx->fallback = true;
744 			break;
745 		case SEC_XTS_MAX_KEY_SIZE:
746 			c_ctx->c_key_len = SEC_CKEY_256BIT;
747 			break;
748 		default:
749 			pr_err("hisi_sec2: xts mode key error!\n");
750 			return -EINVAL;
751 		}
752 	} else {
753 		if (c_ctx->c_alg == SEC_CALG_SM4 &&
754 		    keylen != AES_KEYSIZE_128) {
755 			pr_err("hisi_sec2: sm4 key error!\n");
756 			return -EINVAL;
757 		} else {
758 			switch (keylen) {
759 			case AES_KEYSIZE_128:
760 				c_ctx->c_key_len = SEC_CKEY_128BIT;
761 				break;
762 			case AES_KEYSIZE_192:
763 				c_ctx->c_key_len = SEC_CKEY_192BIT;
764 				break;
765 			case AES_KEYSIZE_256:
766 				c_ctx->c_key_len = SEC_CKEY_256BIT;
767 				break;
768 			default:
769 				pr_err("hisi_sec2: aes key error!\n");
770 				return -EINVAL;
771 			}
772 		}
773 	}
774 
775 	return 0;
776 }
777 
778 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
779 			       const u32 keylen, const enum sec_calg c_alg,
780 			       const enum sec_cmode c_mode)
781 {
782 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
783 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
784 	struct device *dev = ctx->dev;
785 	int ret;
786 
787 	if (c_mode == SEC_CMODE_XTS) {
788 		ret = xts_verify_key(tfm, key, keylen);
789 		if (ret) {
790 			dev_err(dev, "xts mode key err!\n");
791 			return ret;
792 		}
793 	}
794 
795 	c_ctx->c_alg  = c_alg;
796 	c_ctx->c_mode = c_mode;
797 
798 	switch (c_alg) {
799 	case SEC_CALG_3DES:
800 		ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
801 		break;
802 	case SEC_CALG_AES:
803 	case SEC_CALG_SM4:
804 		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
805 		break;
806 	default:
807 		return -EINVAL;
808 	}
809 
810 	if (ret) {
811 		dev_err(dev, "set sec key err!\n");
812 		return ret;
813 	}
814 
815 	memcpy(c_ctx->c_key, key, keylen);
816 	if (c_ctx->fallback && c_ctx->fbtfm) {
817 		ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
818 		if (ret) {
819 			dev_err(dev, "failed to set fallback skcipher key!\n");
820 			return ret;
821 		}
822 	}
823 	return 0;
824 }
825 
826 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
827 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
828 	u32 keylen)							\
829 {									\
830 	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
831 }
832 
833 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
834 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
835 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
836 GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
837 GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
838 GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
839 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
840 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
841 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
842 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
843 GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
844 GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
845 GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
846 
847 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
848 			struct scatterlist *src)
849 {
850 	struct sec_aead_req *a_req = &req->aead_req;
851 	struct aead_request *aead_req = a_req->aead_req;
852 	struct sec_cipher_req *c_req = &req->c_req;
853 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
854 	struct device *dev = ctx->dev;
855 	int copy_size, pbuf_length;
856 	int req_id = req->req_id;
857 	struct crypto_aead *tfm;
858 	size_t authsize;
859 	u8 *mac_offset;
860 
861 	if (ctx->alg_type == SEC_AEAD)
862 		copy_size = aead_req->cryptlen + aead_req->assoclen;
863 	else
864 		copy_size = c_req->c_len;
865 
866 	pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
867 			qp_ctx->res[req_id].pbuf, copy_size);
868 	if (unlikely(pbuf_length != copy_size)) {
869 		dev_err(dev, "copy src data to pbuf error!\n");
870 		return -EINVAL;
871 	}
872 	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
873 		tfm = crypto_aead_reqtfm(aead_req);
874 		authsize = crypto_aead_authsize(tfm);
875 		mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
876 		memcpy(a_req->out_mac, mac_offset, authsize);
877 	}
878 
879 	req->in_dma = qp_ctx->res[req_id].pbuf_dma;
880 	c_req->c_out_dma = req->in_dma;
881 
882 	return 0;
883 }
884 
885 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
886 			struct scatterlist *dst)
887 {
888 	struct aead_request *aead_req = req->aead_req.aead_req;
889 	struct sec_cipher_req *c_req = &req->c_req;
890 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
891 	int copy_size, pbuf_length;
892 	int req_id = req->req_id;
893 
894 	if (ctx->alg_type == SEC_AEAD)
895 		copy_size = c_req->c_len + aead_req->assoclen;
896 	else
897 		copy_size = c_req->c_len;
898 
899 	pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
900 			qp_ctx->res[req_id].pbuf, copy_size);
901 	if (unlikely(pbuf_length != copy_size))
902 		dev_err(ctx->dev, "copy pbuf data to dst error!\n");
903 }
904 
905 static int sec_aead_mac_init(struct sec_aead_req *req)
906 {
907 	struct aead_request *aead_req = req->aead_req;
908 	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
909 	size_t authsize = crypto_aead_authsize(tfm);
910 	u8 *mac_out = req->out_mac;
911 	struct scatterlist *sgl = aead_req->src;
912 	size_t copy_size;
913 	off_t skip_size;
914 
915 	/* Copy input mac */
916 	skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
917 	copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
918 				       authsize, skip_size);
919 	if (unlikely(copy_size != authsize))
920 		return -EINVAL;
921 
922 	return 0;
923 }
924 
925 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
926 			  struct scatterlist *src, struct scatterlist *dst)
927 {
928 	struct sec_cipher_req *c_req = &req->c_req;
929 	struct sec_aead_req *a_req = &req->aead_req;
930 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
931 	struct sec_alg_res *res = &qp_ctx->res[req->req_id];
932 	struct device *dev = ctx->dev;
933 	int ret;
934 
935 	if (req->use_pbuf) {
936 		c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
937 		c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
938 		if (ctx->alg_type == SEC_AEAD) {
939 			a_req->a_ivin = res->a_ivin;
940 			a_req->a_ivin_dma = res->a_ivin_dma;
941 			a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
942 			a_req->out_mac_dma = res->pbuf_dma +
943 					SEC_PBUF_MAC_OFFSET;
944 		}
945 		ret = sec_cipher_pbuf_map(ctx, req, src);
946 
947 		return ret;
948 	}
949 	c_req->c_ivin = res->c_ivin;
950 	c_req->c_ivin_dma = res->c_ivin_dma;
951 	if (ctx->alg_type == SEC_AEAD) {
952 		a_req->a_ivin = res->a_ivin;
953 		a_req->a_ivin_dma = res->a_ivin_dma;
954 		a_req->out_mac = res->out_mac;
955 		a_req->out_mac_dma = res->out_mac_dma;
956 	}
957 
958 	req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
959 						qp_ctx->c_in_pool,
960 						req->req_id,
961 						&req->in_dma);
962 	if (IS_ERR(req->in)) {
963 		dev_err(dev, "fail to dma map input sgl buffers!\n");
964 		return PTR_ERR(req->in);
965 	}
966 
967 	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
968 		ret = sec_aead_mac_init(a_req);
969 		if (unlikely(ret)) {
970 			dev_err(dev, "fail to init mac data for ICV!\n");
971 			return ret;
972 		}
973 	}
974 
975 	if (dst == src) {
976 		c_req->c_out = req->in;
977 		c_req->c_out_dma = req->in_dma;
978 	} else {
979 		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
980 							     qp_ctx->c_out_pool,
981 							     req->req_id,
982 							     &c_req->c_out_dma);
983 
984 		if (IS_ERR(c_req->c_out)) {
985 			dev_err(dev, "fail to dma map output sgl buffers!\n");
986 			hisi_acc_sg_buf_unmap(dev, src, req->in);
987 			return PTR_ERR(c_req->c_out);
988 		}
989 	}
990 
991 	return 0;
992 }
993 
994 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
995 			     struct scatterlist *src, struct scatterlist *dst)
996 {
997 	struct sec_cipher_req *c_req = &req->c_req;
998 	struct device *dev = ctx->dev;
999 
1000 	if (req->use_pbuf) {
1001 		sec_cipher_pbuf_unmap(ctx, req, dst);
1002 	} else {
1003 		if (dst != src)
1004 			hisi_acc_sg_buf_unmap(dev, src, req->in);
1005 
1006 		hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
1007 	}
1008 }
1009 
1010 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1011 {
1012 	struct skcipher_request *sq = req->c_req.sk_req;
1013 
1014 	return sec_cipher_map(ctx, req, sq->src, sq->dst);
1015 }
1016 
1017 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1018 {
1019 	struct skcipher_request *sq = req->c_req.sk_req;
1020 
1021 	sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1022 }
1023 
1024 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
1025 				struct crypto_authenc_keys *keys)
1026 {
1027 	switch (keys->enckeylen) {
1028 	case AES_KEYSIZE_128:
1029 		c_ctx->c_key_len = SEC_CKEY_128BIT;
1030 		break;
1031 	case AES_KEYSIZE_192:
1032 		c_ctx->c_key_len = SEC_CKEY_192BIT;
1033 		break;
1034 	case AES_KEYSIZE_256:
1035 		c_ctx->c_key_len = SEC_CKEY_256BIT;
1036 		break;
1037 	default:
1038 		pr_err("hisi_sec2: aead aes key error!\n");
1039 		return -EINVAL;
1040 	}
1041 	memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
1042 
1043 	return 0;
1044 }
1045 
1046 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
1047 				 struct crypto_authenc_keys *keys)
1048 {
1049 	struct crypto_shash *hash_tfm = ctx->hash_tfm;
1050 	int blocksize, digestsize, ret;
1051 
1052 	if (!keys->authkeylen) {
1053 		pr_err("hisi_sec2: aead auth key error!\n");
1054 		return -EINVAL;
1055 	}
1056 
1057 	blocksize = crypto_shash_blocksize(hash_tfm);
1058 	digestsize = crypto_shash_digestsize(hash_tfm);
1059 	if (keys->authkeylen > blocksize) {
1060 		ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
1061 					      keys->authkeylen, ctx->a_key);
1062 		if (ret) {
1063 			pr_err("hisi_sec2: aead auth digest error!\n");
1064 			return -EINVAL;
1065 		}
1066 		ctx->a_key_len = digestsize;
1067 	} else {
1068 		memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
1069 		ctx->a_key_len = keys->authkeylen;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
1076 {
1077 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
1078 	struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
1079 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1080 
1081 	if (unlikely(a_ctx->fallback_aead_tfm))
1082 		return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
1083 
1084 	return 0;
1085 }
1086 
1087 static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
1088 				    struct crypto_aead *tfm, const u8 *key,
1089 				    unsigned int keylen)
1090 {
1091 	crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
1092 	crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
1093 			      crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
1094 	return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
1095 }
1096 
1097 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1098 			   const u32 keylen, const enum sec_hash_alg a_alg,
1099 			   const enum sec_calg c_alg,
1100 			   const enum sec_mac_len mac_len,
1101 			   const enum sec_cmode c_mode)
1102 {
1103 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1104 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1105 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1106 	struct device *dev = ctx->dev;
1107 	struct crypto_authenc_keys keys;
1108 	int ret;
1109 
1110 	ctx->a_ctx.a_alg = a_alg;
1111 	ctx->c_ctx.c_alg = c_alg;
1112 	ctx->a_ctx.mac_len = mac_len;
1113 	c_ctx->c_mode = c_mode;
1114 
1115 	if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
1116 		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
1117 		if (ret) {
1118 			dev_err(dev, "set sec aes ccm cipher key err!\n");
1119 			return ret;
1120 		}
1121 		memcpy(c_ctx->c_key, key, keylen);
1122 
1123 		if (unlikely(a_ctx->fallback_aead_tfm)) {
1124 			ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
1125 			if (ret)
1126 				return ret;
1127 		}
1128 
1129 		return 0;
1130 	}
1131 
1132 	if (crypto_authenc_extractkeys(&keys, key, keylen))
1133 		goto bad_key;
1134 
1135 	ret = sec_aead_aes_set_key(c_ctx, &keys);
1136 	if (ret) {
1137 		dev_err(dev, "set sec cipher key err!\n");
1138 		goto bad_key;
1139 	}
1140 
1141 	ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
1142 	if (ret) {
1143 		dev_err(dev, "set sec auth key err!\n");
1144 		goto bad_key;
1145 	}
1146 
1147 	if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK)  ||
1148 	    (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
1149 		dev_err(dev, "MAC or AUTH key length error!\n");
1150 		goto bad_key;
1151 	}
1152 
1153 	return 0;
1154 
1155 bad_key:
1156 	memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
1157 	return -EINVAL;
1158 }
1159 
1160 
1161 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode)	\
1162 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key,	\
1163 	u32 keylen)							\
1164 {									\
1165 	return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
1166 }
1167 
1168 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
1169 			 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
1170 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
1171 			 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
1172 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
1173 			 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
1174 GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
1175 			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1176 GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
1177 			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1178 GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
1179 			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1180 GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
1181 			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1182 
1183 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1184 {
1185 	struct aead_request *aq = req->aead_req.aead_req;
1186 
1187 	return sec_cipher_map(ctx, req, aq->src, aq->dst);
1188 }
1189 
1190 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1191 {
1192 	struct aead_request *aq = req->aead_req.aead_req;
1193 
1194 	sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1195 }
1196 
1197 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
1198 {
1199 	int ret;
1200 
1201 	ret = ctx->req_op->buf_map(ctx, req);
1202 	if (unlikely(ret))
1203 		return ret;
1204 
1205 	ctx->req_op->do_transfer(ctx, req);
1206 
1207 	ret = ctx->req_op->bd_fill(ctx, req);
1208 	if (unlikely(ret))
1209 		goto unmap_req_buf;
1210 
1211 	return ret;
1212 
1213 unmap_req_buf:
1214 	ctx->req_op->buf_unmap(ctx, req);
1215 	return ret;
1216 }
1217 
1218 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
1219 {
1220 	ctx->req_op->buf_unmap(ctx, req);
1221 }
1222 
1223 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1224 {
1225 	struct skcipher_request *sk_req = req->c_req.sk_req;
1226 	struct sec_cipher_req *c_req = &req->c_req;
1227 
1228 	memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1229 }
1230 
1231 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1232 {
1233 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1234 	struct sec_cipher_req *c_req = &req->c_req;
1235 	struct sec_sqe *sec_sqe = &req->sec_sqe;
1236 	u8 scene, sa_type, da_type;
1237 	u8 bd_type, cipher;
1238 	u8 de = 0;
1239 
1240 	memset(sec_sqe, 0, sizeof(struct sec_sqe));
1241 
1242 	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1243 	sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1244 	sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
1245 	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1246 
1247 	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
1248 						SEC_CMODE_OFFSET);
1249 	sec_sqe->type2.c_alg = c_ctx->c_alg;
1250 	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1251 						SEC_CKEY_OFFSET);
1252 
1253 	bd_type = SEC_BD_TYPE2;
1254 	if (c_req->encrypt)
1255 		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
1256 	else
1257 		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
1258 	sec_sqe->type_cipher_auth = bd_type | cipher;
1259 
1260 	/* Set destination and source address type */
1261 	if (req->use_pbuf) {
1262 		sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1263 		da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1264 	} else {
1265 		sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1266 		da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1267 	}
1268 
1269 	sec_sqe->sdm_addr_type |= da_type;
1270 	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1271 	if (req->in_dma != c_req->c_out_dma)
1272 		de = 0x1 << SEC_DE_OFFSET;
1273 
1274 	sec_sqe->sds_sa_type = (de | scene | sa_type);
1275 
1276 	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1277 	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1278 
1279 	return 0;
1280 }
1281 
1282 static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1283 {
1284 	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1285 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1286 	struct sec_cipher_req *c_req = &req->c_req;
1287 	u32 bd_param = 0;
1288 	u16 cipher;
1289 
1290 	memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
1291 
1292 	sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1293 	sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1294 	sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
1295 	sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1296 
1297 	sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
1298 						c_ctx->c_mode;
1299 	sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1300 						SEC_CKEY_OFFSET_V3);
1301 
1302 	if (c_req->encrypt)
1303 		cipher = SEC_CIPHER_ENC;
1304 	else
1305 		cipher = SEC_CIPHER_DEC;
1306 	sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
1307 
1308 	/* Set the CTR counter mode is 128bit rollover */
1309 	sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
1310 					SEC_CTR_CNT_OFFSET);
1311 
1312 	if (req->use_pbuf) {
1313 		bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
1314 		bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
1315 	} else {
1316 		bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
1317 		bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
1318 	}
1319 
1320 	bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
1321 	if (req->in_dma != c_req->c_out_dma)
1322 		bd_param |= 0x1 << SEC_DE_OFFSET_V3;
1323 
1324 	bd_param |= SEC_BD_TYPE3;
1325 	sec_sqe3->bd_param = cpu_to_le32(bd_param);
1326 
1327 	sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
1328 	sec_sqe3->tag = cpu_to_le64(req);
1329 
1330 	return 0;
1331 }
1332 
1333 /* increment counter (128-bit int) */
1334 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
1335 {
1336 	do {
1337 		--bits;
1338 		nums += counter[bits];
1339 		counter[bits] = nums & BITS_MASK;
1340 		nums >>= BYTE_BITS;
1341 	} while (bits && nums);
1342 }
1343 
1344 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1345 {
1346 	struct aead_request *aead_req = req->aead_req.aead_req;
1347 	struct skcipher_request *sk_req = req->c_req.sk_req;
1348 	u32 iv_size = req->ctx->c_ctx.ivsize;
1349 	struct scatterlist *sgl;
1350 	unsigned int cryptlen;
1351 	size_t sz;
1352 	u8 *iv;
1353 
1354 	if (req->c_req.encrypt)
1355 		sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1356 	else
1357 		sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1358 
1359 	if (alg_type == SEC_SKCIPHER) {
1360 		iv = sk_req->iv;
1361 		cryptlen = sk_req->cryptlen;
1362 	} else {
1363 		iv = aead_req->iv;
1364 		cryptlen = aead_req->cryptlen;
1365 	}
1366 
1367 	if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
1368 		sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1369 					cryptlen - iv_size);
1370 		if (unlikely(sz != iv_size))
1371 			dev_err(req->ctx->dev, "copy output iv error!\n");
1372 	} else {
1373 		sz = cryptlen / iv_size;
1374 		if (cryptlen % iv_size)
1375 			sz += 1;
1376 		ctr_iv_inc(iv, iv_size, sz);
1377 	}
1378 }
1379 
1380 static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
1381 				struct sec_qp_ctx *qp_ctx)
1382 {
1383 	struct sec_req *backlog_req = NULL;
1384 
1385 	spin_lock_bh(&qp_ctx->req_lock);
1386 	if (ctx->fake_req_limit >=
1387 	    atomic_read(&qp_ctx->qp->qp_status.used) &&
1388 	    !list_empty(&qp_ctx->backlog)) {
1389 		backlog_req = list_first_entry(&qp_ctx->backlog,
1390 				typeof(*backlog_req), backlog_head);
1391 		list_del(&backlog_req->backlog_head);
1392 	}
1393 	spin_unlock_bh(&qp_ctx->req_lock);
1394 
1395 	return backlog_req;
1396 }
1397 
1398 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1399 				  int err)
1400 {
1401 	struct skcipher_request *sk_req = req->c_req.sk_req;
1402 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1403 	struct skcipher_request *backlog_sk_req;
1404 	struct sec_req *backlog_req;
1405 
1406 	sec_free_req_id(req);
1407 
1408 	/* IV output at encrypto of CBC/CTR mode */
1409 	if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1410 	    ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1411 		sec_update_iv(req, SEC_SKCIPHER);
1412 
1413 	while (1) {
1414 		backlog_req = sec_back_req_clear(ctx, qp_ctx);
1415 		if (!backlog_req)
1416 			break;
1417 
1418 		backlog_sk_req = backlog_req->c_req.sk_req;
1419 		backlog_sk_req->base.complete(&backlog_sk_req->base,
1420 						-EINPROGRESS);
1421 		atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
1422 	}
1423 
1424 	sk_req->base.complete(&sk_req->base, err);
1425 }
1426 
1427 static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1428 {
1429 	struct aead_request *aead_req = req->aead_req.aead_req;
1430 	struct sec_cipher_req *c_req = &req->c_req;
1431 	struct sec_aead_req *a_req = &req->aead_req;
1432 	size_t authsize = ctx->a_ctx.mac_len;
1433 	u32 data_size = aead_req->cryptlen;
1434 	u8 flage = 0;
1435 	u8 cm, cl;
1436 
1437 	/* the specification has been checked in aead_iv_demension_check() */
1438 	cl = c_req->c_ivin[0] + 1;
1439 	c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
1440 	memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
1441 	c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
1442 
1443 	/* the last 3bit is L' */
1444 	flage |= c_req->c_ivin[0] & IV_CL_MASK;
1445 
1446 	/* the M' is bit3~bit5, the Flags is bit6 */
1447 	cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
1448 	flage |= cm << IV_CM_OFFSET;
1449 	if (aead_req->assoclen)
1450 		flage |= 0x01 << IV_FLAGS_OFFSET;
1451 
1452 	memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
1453 	a_req->a_ivin[0] = flage;
1454 
1455 	/*
1456 	 * the last 32bit is counter's initial number,
1457 	 * but the nonce uses the first 16bit
1458 	 * the tail 16bit fill with the cipher length
1459 	 */
1460 	if (!c_req->encrypt)
1461 		data_size = aead_req->cryptlen - authsize;
1462 
1463 	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
1464 			data_size & IV_LAST_BYTE_MASK;
1465 	data_size >>= IV_BYTE_OFFSET;
1466 	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
1467 			data_size & IV_LAST_BYTE_MASK;
1468 }
1469 
1470 static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
1471 {
1472 	struct aead_request *aead_req = req->aead_req.aead_req;
1473 	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
1474 	size_t authsize = crypto_aead_authsize(tfm);
1475 	struct sec_cipher_req *c_req = &req->c_req;
1476 	struct sec_aead_req *a_req = &req->aead_req;
1477 
1478 	memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1479 
1480 	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
1481 		/*
1482 		 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
1483 		 * the  counter must set to 0x01
1484 		 */
1485 		ctx->a_ctx.mac_len = authsize;
1486 		/* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
1487 		set_aead_auth_iv(ctx, req);
1488 	}
1489 
1490 	/* GCM 12Byte Cipher_IV == Auth_IV */
1491 	if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
1492 		ctx->a_ctx.mac_len = authsize;
1493 		memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
1494 	}
1495 }
1496 
1497 static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
1498 				 struct sec_req *req, struct sec_sqe *sec_sqe)
1499 {
1500 	struct sec_aead_req *a_req = &req->aead_req;
1501 	struct aead_request *aq = a_req->aead_req;
1502 
1503 	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1504 	sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);
1505 
1506 	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1507 	sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
1508 	sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1509 	sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
1510 
1511 	if (dir)
1512 		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1513 	else
1514 		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1515 
1516 	sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
1517 	sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
1518 	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1519 
1520 	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1521 }
1522 
1523 static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
1524 				    struct sec_req *req, struct sec_sqe3 *sqe3)
1525 {
1526 	struct sec_aead_req *a_req = &req->aead_req;
1527 	struct aead_request *aq = a_req->aead_req;
1528 
1529 	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1530 	sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);
1531 
1532 	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1533 	sqe3->a_key_addr = sqe3->c_key_addr;
1534 	sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1535 	sqe3->auth_mac_key |= SEC_NO_AUTH;
1536 
1537 	if (dir)
1538 		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1539 	else
1540 		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1541 
1542 	sqe3->a_len_key = cpu_to_le32(aq->assoclen);
1543 	sqe3->auth_src_offset = cpu_to_le16(0x0);
1544 	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1545 	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1546 }
1547 
1548 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1549 			       struct sec_req *req, struct sec_sqe *sec_sqe)
1550 {
1551 	struct sec_aead_req *a_req = &req->aead_req;
1552 	struct sec_cipher_req *c_req = &req->c_req;
1553 	struct aead_request *aq = a_req->aead_req;
1554 
1555 	sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1556 
1557 	sec_sqe->type2.mac_key_alg =
1558 			cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
1559 
1560 	sec_sqe->type2.mac_key_alg |=
1561 			cpu_to_le32((u32)((ctx->a_key_len) /
1562 			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
1563 
1564 	sec_sqe->type2.mac_key_alg |=
1565 			cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1566 
1567 	if (dir) {
1568 		sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1569 		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1570 	} else {
1571 		sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
1572 		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1573 	}
1574 	sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1575 
1576 	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1577 
1578 	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1579 }
1580 
1581 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1582 {
1583 	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1584 	struct sec_sqe *sec_sqe = &req->sec_sqe;
1585 	int ret;
1586 
1587 	ret = sec_skcipher_bd_fill(ctx, req);
1588 	if (unlikely(ret)) {
1589 		dev_err(ctx->dev, "skcipher bd fill is error!\n");
1590 		return ret;
1591 	}
1592 
1593 	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1594 	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1595 		sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1596 	else
1597 		sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1598 
1599 	return 0;
1600 }
1601 
1602 static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
1603 				   struct sec_req *req, struct sec_sqe3 *sqe3)
1604 {
1605 	struct sec_aead_req *a_req = &req->aead_req;
1606 	struct sec_cipher_req *c_req = &req->c_req;
1607 	struct aead_request *aq = a_req->aead_req;
1608 
1609 	sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
1610 
1611 	sqe3->auth_mac_key |=
1612 			cpu_to_le32((u32)(ctx->mac_len /
1613 			SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);
1614 
1615 	sqe3->auth_mac_key |=
1616 			cpu_to_le32((u32)(ctx->a_key_len /
1617 			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);
1618 
1619 	sqe3->auth_mac_key |=
1620 			cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
1621 
1622 	if (dir) {
1623 		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
1624 		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1625 	} else {
1626 		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
1627 		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1628 	}
1629 	sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
1630 
1631 	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1632 
1633 	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1634 }
1635 
1636 static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1637 {
1638 	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1639 	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1640 	int ret;
1641 
1642 	ret = sec_skcipher_bd_fill_v3(ctx, req);
1643 	if (unlikely(ret)) {
1644 		dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
1645 		return ret;
1646 	}
1647 
1648 	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1649 	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1650 		sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
1651 					req, sec_sqe3);
1652 	else
1653 		sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
1654 				       req, sec_sqe3);
1655 
1656 	return 0;
1657 }
1658 
1659 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1660 {
1661 	struct aead_request *a_req = req->aead_req.aead_req;
1662 	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1663 	struct sec_aead_req *aead_req = &req->aead_req;
1664 	struct sec_cipher_req *c_req = &req->c_req;
1665 	size_t authsize = crypto_aead_authsize(tfm);
1666 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1667 	struct aead_request *backlog_aead_req;
1668 	struct sec_req *backlog_req;
1669 	size_t sz;
1670 
1671 	if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1672 		sec_update_iv(req, SEC_AEAD);
1673 
1674 	/* Copy output mac */
1675 	if (!err && c_req->encrypt) {
1676 		struct scatterlist *sgl = a_req->dst;
1677 
1678 		sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1679 					  aead_req->out_mac,
1680 					  authsize, a_req->cryptlen +
1681 					  a_req->assoclen);
1682 
1683 		if (unlikely(sz != authsize)) {
1684 			dev_err(c->dev, "copy out mac err!\n");
1685 			err = -EINVAL;
1686 		}
1687 	}
1688 
1689 	sec_free_req_id(req);
1690 
1691 	while (1) {
1692 		backlog_req = sec_back_req_clear(c, qp_ctx);
1693 		if (!backlog_req)
1694 			break;
1695 
1696 		backlog_aead_req = backlog_req->aead_req.aead_req;
1697 		backlog_aead_req->base.complete(&backlog_aead_req->base,
1698 						-EINPROGRESS);
1699 		atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
1700 	}
1701 
1702 	a_req->base.complete(&a_req->base, err);
1703 }
1704 
1705 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1706 {
1707 	sec_free_req_id(req);
1708 	sec_free_queue_id(ctx, req);
1709 }
1710 
1711 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1712 {
1713 	struct sec_qp_ctx *qp_ctx;
1714 	int queue_id;
1715 
1716 	/* To load balance */
1717 	queue_id = sec_alloc_queue_id(ctx, req);
1718 	qp_ctx = &ctx->qp_ctx[queue_id];
1719 
1720 	req->req_id = sec_alloc_req_id(req, qp_ctx);
1721 	if (unlikely(req->req_id < 0)) {
1722 		sec_free_queue_id(ctx, req);
1723 		return req->req_id;
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1730 {
1731 	struct sec_cipher_req *c_req = &req->c_req;
1732 	int ret;
1733 
1734 	ret = sec_request_init(ctx, req);
1735 	if (unlikely(ret))
1736 		return ret;
1737 
1738 	ret = sec_request_transfer(ctx, req);
1739 	if (unlikely(ret))
1740 		goto err_uninit_req;
1741 
1742 	/* Output IV as decrypto */
1743 	if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1744 	    ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1745 		sec_update_iv(req, ctx->alg_type);
1746 
1747 	ret = ctx->req_op->bd_send(ctx, req);
1748 	if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
1749 		(ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1750 		dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1751 		goto err_send_req;
1752 	}
1753 
1754 	return ret;
1755 
1756 err_send_req:
1757 	/* As failing, restore the IV from user */
1758 	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1759 		if (ctx->alg_type == SEC_SKCIPHER)
1760 			memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1761 			       ctx->c_ctx.ivsize);
1762 		else
1763 			memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1764 			       ctx->c_ctx.ivsize);
1765 	}
1766 
1767 	sec_request_untransfer(ctx, req);
1768 err_uninit_req:
1769 	sec_request_uninit(ctx, req);
1770 	return ret;
1771 }
1772 
1773 static const struct sec_req_op sec_skcipher_req_ops = {
1774 	.buf_map	= sec_skcipher_sgl_map,
1775 	.buf_unmap	= sec_skcipher_sgl_unmap,
1776 	.do_transfer	= sec_skcipher_copy_iv,
1777 	.bd_fill	= sec_skcipher_bd_fill,
1778 	.bd_send	= sec_bd_send,
1779 	.callback	= sec_skcipher_callback,
1780 	.process	= sec_process,
1781 };
1782 
1783 static const struct sec_req_op sec_aead_req_ops = {
1784 	.buf_map	= sec_aead_sgl_map,
1785 	.buf_unmap	= sec_aead_sgl_unmap,
1786 	.do_transfer	= sec_aead_set_iv,
1787 	.bd_fill	= sec_aead_bd_fill,
1788 	.bd_send	= sec_bd_send,
1789 	.callback	= sec_aead_callback,
1790 	.process	= sec_process,
1791 };
1792 
1793 static const struct sec_req_op sec_skcipher_req_ops_v3 = {
1794 	.buf_map	= sec_skcipher_sgl_map,
1795 	.buf_unmap	= sec_skcipher_sgl_unmap,
1796 	.do_transfer	= sec_skcipher_copy_iv,
1797 	.bd_fill	= sec_skcipher_bd_fill_v3,
1798 	.bd_send	= sec_bd_send,
1799 	.callback	= sec_skcipher_callback,
1800 	.process	= sec_process,
1801 };
1802 
1803 static const struct sec_req_op sec_aead_req_ops_v3 = {
1804 	.buf_map	= sec_aead_sgl_map,
1805 	.buf_unmap	= sec_aead_sgl_unmap,
1806 	.do_transfer	= sec_aead_set_iv,
1807 	.bd_fill	= sec_aead_bd_fill_v3,
1808 	.bd_send	= sec_bd_send,
1809 	.callback	= sec_aead_callback,
1810 	.process	= sec_process,
1811 };
1812 
1813 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1814 {
1815 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1816 	int ret;
1817 
1818 	ret = sec_skcipher_init(tfm);
1819 	if (ret)
1820 		return ret;
1821 
1822 	if (ctx->sec->qm.ver < QM_HW_V3) {
1823 		ctx->type_supported = SEC_BD_TYPE2;
1824 		ctx->req_op = &sec_skcipher_req_ops;
1825 	} else {
1826 		ctx->type_supported = SEC_BD_TYPE3;
1827 		ctx->req_op = &sec_skcipher_req_ops_v3;
1828 	}
1829 
1830 	return ret;
1831 }
1832 
1833 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1834 {
1835 	sec_skcipher_uninit(tfm);
1836 }
1837 
1838 static int sec_aead_init(struct crypto_aead *tfm)
1839 {
1840 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1841 	int ret;
1842 
1843 	crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1844 	ctx->alg_type = SEC_AEAD;
1845 	ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1846 	if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
1847 	    ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1848 		pr_err("get error aead iv size!\n");
1849 		return -EINVAL;
1850 	}
1851 
1852 	ret = sec_ctx_base_init(ctx);
1853 	if (ret)
1854 		return ret;
1855 	if (ctx->sec->qm.ver < QM_HW_V3) {
1856 		ctx->type_supported = SEC_BD_TYPE2;
1857 		ctx->req_op = &sec_aead_req_ops;
1858 	} else {
1859 		ctx->type_supported = SEC_BD_TYPE3;
1860 		ctx->req_op = &sec_aead_req_ops_v3;
1861 	}
1862 
1863 	ret = sec_auth_init(ctx);
1864 	if (ret)
1865 		goto err_auth_init;
1866 
1867 	ret = sec_cipher_init(ctx);
1868 	if (ret)
1869 		goto err_cipher_init;
1870 
1871 	return ret;
1872 
1873 err_cipher_init:
1874 	sec_auth_uninit(ctx);
1875 err_auth_init:
1876 	sec_ctx_base_uninit(ctx);
1877 	return ret;
1878 }
1879 
1880 static void sec_aead_exit(struct crypto_aead *tfm)
1881 {
1882 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1883 
1884 	sec_cipher_uninit(ctx);
1885 	sec_auth_uninit(ctx);
1886 	sec_ctx_base_uninit(ctx);
1887 }
1888 
1889 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1890 {
1891 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1892 	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1893 	int ret;
1894 
1895 	ret = sec_aead_init(tfm);
1896 	if (ret) {
1897 		pr_err("hisi_sec2: aead init error!\n");
1898 		return ret;
1899 	}
1900 
1901 	auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1902 	if (IS_ERR(auth_ctx->hash_tfm)) {
1903 		dev_err(ctx->dev, "aead alloc shash error!\n");
1904 		sec_aead_exit(tfm);
1905 		return PTR_ERR(auth_ctx->hash_tfm);
1906 	}
1907 
1908 	return 0;
1909 }
1910 
1911 static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1912 {
1913 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1914 
1915 	crypto_free_shash(ctx->a_ctx.hash_tfm);
1916 	sec_aead_exit(tfm);
1917 }
1918 
1919 static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
1920 {
1921 	struct aead_alg *alg = crypto_aead_alg(tfm);
1922 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1923 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1924 	const char *aead_name = alg->base.cra_name;
1925 	int ret;
1926 
1927 	ret = sec_aead_init(tfm);
1928 	if (ret) {
1929 		dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
1930 		return ret;
1931 	}
1932 
1933 	a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
1934 						     CRYPTO_ALG_NEED_FALLBACK |
1935 						     CRYPTO_ALG_ASYNC);
1936 	if (IS_ERR(a_ctx->fallback_aead_tfm)) {
1937 		dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
1938 		sec_aead_exit(tfm);
1939 		return PTR_ERR(a_ctx->fallback_aead_tfm);
1940 	}
1941 	a_ctx->fallback = false;
1942 
1943 	return 0;
1944 }
1945 
1946 static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
1947 {
1948 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1949 
1950 	crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1951 	sec_aead_exit(tfm);
1952 }
1953 
1954 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1955 {
1956 	return sec_aead_ctx_init(tfm, "sha1");
1957 }
1958 
1959 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
1960 {
1961 	return sec_aead_ctx_init(tfm, "sha256");
1962 }
1963 
1964 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
1965 {
1966 	return sec_aead_ctx_init(tfm, "sha512");
1967 }
1968 
1969 
1970 static int sec_skcipher_cryptlen_ckeck(struct sec_ctx *ctx,
1971 	struct sec_req *sreq)
1972 {
1973 	u32 cryptlen = sreq->c_req.sk_req->cryptlen;
1974 	struct device *dev = ctx->dev;
1975 	u8 c_mode = ctx->c_ctx.c_mode;
1976 	int ret = 0;
1977 
1978 	switch (c_mode) {
1979 	case SEC_CMODE_XTS:
1980 		if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
1981 			dev_err(dev, "skcipher XTS mode input length error!\n");
1982 			ret = -EINVAL;
1983 		}
1984 		break;
1985 	case SEC_CMODE_ECB:
1986 	case SEC_CMODE_CBC:
1987 		if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
1988 			dev_err(dev, "skcipher AES input length error!\n");
1989 			ret = -EINVAL;
1990 		}
1991 		break;
1992 	case SEC_CMODE_CFB:
1993 	case SEC_CMODE_OFB:
1994 	case SEC_CMODE_CTR:
1995 		if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
1996 			dev_err(dev, "skcipher HW version error!\n");
1997 			ret = -EINVAL;
1998 		}
1999 		break;
2000 	default:
2001 		ret = -EINVAL;
2002 	}
2003 
2004 	return ret;
2005 }
2006 
2007 static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2008 {
2009 	struct skcipher_request *sk_req = sreq->c_req.sk_req;
2010 	struct device *dev = ctx->dev;
2011 	u8 c_alg = ctx->c_ctx.c_alg;
2012 
2013 	if (unlikely(!sk_req->src || !sk_req->dst ||
2014 		     sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
2015 		dev_err(dev, "skcipher input param error!\n");
2016 		return -EINVAL;
2017 	}
2018 	sreq->c_req.c_len = sk_req->cryptlen;
2019 
2020 	if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
2021 		sreq->use_pbuf = true;
2022 	else
2023 		sreq->use_pbuf = false;
2024 
2025 	if (c_alg == SEC_CALG_3DES) {
2026 		if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2027 			dev_err(dev, "skcipher 3des input length error!\n");
2028 			return -EINVAL;
2029 		}
2030 		return 0;
2031 	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2032 		return sec_skcipher_cryptlen_ckeck(ctx, sreq);
2033 	}
2034 
2035 	dev_err(dev, "skcipher algorithm error!\n");
2036 
2037 	return -EINVAL;
2038 }
2039 
2040 static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
2041 				    struct skcipher_request *sreq, bool encrypt)
2042 {
2043 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
2044 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
2045 	struct device *dev = ctx->dev;
2046 	int ret;
2047 
2048 	if (!c_ctx->fbtfm) {
2049 		dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
2050 		return -EINVAL;
2051 	}
2052 
2053 	skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
2054 
2055 	/* software need sync mode to do crypto */
2056 	skcipher_request_set_callback(subreq, sreq->base.flags,
2057 				      NULL, NULL);
2058 	skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
2059 				   sreq->cryptlen, sreq->iv);
2060 	if (encrypt)
2061 		ret = crypto_skcipher_encrypt(subreq);
2062 	else
2063 		ret = crypto_skcipher_decrypt(subreq);
2064 
2065 	skcipher_request_zero(subreq);
2066 
2067 	return ret;
2068 }
2069 
2070 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
2071 {
2072 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
2073 	struct sec_req *req = skcipher_request_ctx(sk_req);
2074 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
2075 	int ret;
2076 
2077 	if (!sk_req->cryptlen) {
2078 		if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
2079 			return -EINVAL;
2080 		return 0;
2081 	}
2082 
2083 	req->flag = sk_req->base.flags;
2084 	req->c_req.sk_req = sk_req;
2085 	req->c_req.encrypt = encrypt;
2086 	req->ctx = ctx;
2087 
2088 	ret = sec_skcipher_param_check(ctx, req);
2089 	if (unlikely(ret))
2090 		return -EINVAL;
2091 
2092 	if (unlikely(ctx->c_ctx.fallback))
2093 		return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
2094 
2095 	return ctx->req_op->process(ctx, req);
2096 }
2097 
2098 static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
2099 {
2100 	return sec_skcipher_crypto(sk_req, true);
2101 }
2102 
2103 static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
2104 {
2105 	return sec_skcipher_crypto(sk_req, false);
2106 }
2107 
2108 #define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
2109 	sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
2110 {\
2111 	.base = {\
2112 		.cra_name = sec_cra_name,\
2113 		.cra_driver_name = "hisi_sec_"sec_cra_name,\
2114 		.cra_priority = SEC_PRIORITY,\
2115 		.cra_flags = CRYPTO_ALG_ASYNC |\
2116 		 CRYPTO_ALG_NEED_FALLBACK,\
2117 		.cra_blocksize = blk_size,\
2118 		.cra_ctxsize = sizeof(struct sec_ctx),\
2119 		.cra_module = THIS_MODULE,\
2120 	},\
2121 	.init = ctx_init,\
2122 	.exit = ctx_exit,\
2123 	.setkey = sec_set_key,\
2124 	.decrypt = sec_skcipher_decrypt,\
2125 	.encrypt = sec_skcipher_encrypt,\
2126 	.min_keysize = sec_min_key_size,\
2127 	.max_keysize = sec_max_key_size,\
2128 	.ivsize = iv_size,\
2129 },
2130 
2131 #define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
2132 	max_key_size, blk_size, iv_size) \
2133 	SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
2134 	sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
2135 
2136 static struct skcipher_alg sec_skciphers[] = {
2137 	SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
2138 			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
2139 			 AES_BLOCK_SIZE, 0)
2140 
2141 	SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
2142 			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
2143 			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
2144 
2145 	SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
2146 			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
2147 			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
2148 
2149 	SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
2150 			 SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE,
2151 			 DES3_EDE_BLOCK_SIZE, 0)
2152 
2153 	SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
2154 			 SEC_DES3_3KEY_SIZE, SEC_DES3_3KEY_SIZE,
2155 			 DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)
2156 
2157 	SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
2158 			 SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
2159 			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
2160 
2161 	SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
2162 			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
2163 			 AES_BLOCK_SIZE, AES_BLOCK_SIZE)
2164 };
2165 
2166 static struct skcipher_alg sec_skciphers_v3[] = {
2167 	SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb,
2168 			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
2169 			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
2170 
2171 	SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb,
2172 			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
2173 			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
2174 
2175 	SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr,
2176 			 AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
2177 			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
2178 
2179 	SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb,
2180 			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
2181 			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
2182 
2183 	SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb,
2184 			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
2185 			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
2186 
2187 	SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr,
2188 			 AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
2189 			 SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE)
2190 };
2191 
2192 static int aead_iv_demension_check(struct aead_request *aead_req)
2193 {
2194 	u8 cl;
2195 
2196 	cl = aead_req->iv[0] + 1;
2197 	if (cl < IV_CL_MIN || cl > IV_CL_MAX)
2198 		return -EINVAL;
2199 
2200 	if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
2201 		return -EOVERFLOW;
2202 
2203 	return 0;
2204 }
2205 
2206 static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2207 {
2208 	struct aead_request *req = sreq->aead_req.aead_req;
2209 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2210 	size_t authsize = crypto_aead_authsize(tfm);
2211 	u8 c_mode = ctx->c_ctx.c_mode;
2212 	struct device *dev = ctx->dev;
2213 	int ret;
2214 
2215 	if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
2216 	    req->assoclen > SEC_MAX_AAD_LEN)) {
2217 		dev_err(dev, "aead input spec error!\n");
2218 		return -EINVAL;
2219 	}
2220 
2221 	if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
2222 	   (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
2223 		authsize & MAC_LEN_MASK)))) {
2224 		dev_err(dev, "aead input mac length error!\n");
2225 		return -EINVAL;
2226 	}
2227 
2228 	if (c_mode == SEC_CMODE_CCM) {
2229 		if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
2230 			dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
2231 			return -EINVAL;
2232 		}
2233 		ret = aead_iv_demension_check(req);
2234 		if (ret) {
2235 			dev_err(dev, "aead input iv param error!\n");
2236 			return ret;
2237 		}
2238 	}
2239 
2240 	if (sreq->c_req.encrypt)
2241 		sreq->c_req.c_len = req->cryptlen;
2242 	else
2243 		sreq->c_req.c_len = req->cryptlen - authsize;
2244 	if (c_mode == SEC_CMODE_CBC) {
2245 		if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
2246 			dev_err(dev, "aead crypto length error!\n");
2247 			return -EINVAL;
2248 		}
2249 	}
2250 
2251 	return 0;
2252 }
2253 
2254 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2255 {
2256 	struct aead_request *req = sreq->aead_req.aead_req;
2257 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2258 	size_t authsize = crypto_aead_authsize(tfm);
2259 	struct device *dev = ctx->dev;
2260 	u8 c_alg = ctx->c_ctx.c_alg;
2261 
2262 	if (unlikely(!req->src || !req->dst)) {
2263 		dev_err(dev, "aead input param error!\n");
2264 		return -EINVAL;
2265 	}
2266 
2267 	if (ctx->sec->qm.ver == QM_HW_V2) {
2268 		if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
2269 		    req->cryptlen <= authsize))) {
2270 			ctx->a_ctx.fallback = true;
2271 			return -EINVAL;
2272 		}
2273 	}
2274 
2275 	/* Support AES or SM4 */
2276 	if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
2277 		dev_err(dev, "aead crypto alg error!\n");
2278 		return -EINVAL;
2279 	}
2280 
2281 	if (unlikely(sec_aead_spec_check(ctx, sreq)))
2282 		return -EINVAL;
2283 
2284 	if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
2285 		SEC_PBUF_SZ)
2286 		sreq->use_pbuf = true;
2287 	else
2288 		sreq->use_pbuf = false;
2289 
2290 	return 0;
2291 }
2292 
2293 static int sec_aead_soft_crypto(struct sec_ctx *ctx,
2294 				struct aead_request *aead_req,
2295 				bool encrypt)
2296 {
2297 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
2298 	struct device *dev = ctx->dev;
2299 	struct aead_request *subreq;
2300 	int ret;
2301 
2302 	/* Kunpeng920 aead mode not support input 0 size */
2303 	if (!a_ctx->fallback_aead_tfm) {
2304 		dev_err(dev, "aead fallback tfm is NULL!\n");
2305 		return -EINVAL;
2306 	}
2307 
2308 	subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
2309 	if (!subreq)
2310 		return -ENOMEM;
2311 
2312 	aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
2313 	aead_request_set_callback(subreq, aead_req->base.flags,
2314 				  aead_req->base.complete, aead_req->base.data);
2315 	aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
2316 			       aead_req->cryptlen, aead_req->iv);
2317 	aead_request_set_ad(subreq, aead_req->assoclen);
2318 
2319 	if (encrypt)
2320 		ret = crypto_aead_encrypt(subreq);
2321 	else
2322 		ret = crypto_aead_decrypt(subreq);
2323 	aead_request_free(subreq);
2324 
2325 	return ret;
2326 }
2327 
2328 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
2329 {
2330 	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
2331 	struct sec_req *req = aead_request_ctx(a_req);
2332 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
2333 	int ret;
2334 
2335 	req->flag = a_req->base.flags;
2336 	req->aead_req.aead_req = a_req;
2337 	req->c_req.encrypt = encrypt;
2338 	req->ctx = ctx;
2339 
2340 	ret = sec_aead_param_check(ctx, req);
2341 	if (unlikely(ret)) {
2342 		if (ctx->a_ctx.fallback)
2343 			return sec_aead_soft_crypto(ctx, a_req, encrypt);
2344 		return -EINVAL;
2345 	}
2346 
2347 	return ctx->req_op->process(ctx, req);
2348 }
2349 
2350 static int sec_aead_encrypt(struct aead_request *a_req)
2351 {
2352 	return sec_aead_crypto(a_req, true);
2353 }
2354 
2355 static int sec_aead_decrypt(struct aead_request *a_req)
2356 {
2357 	return sec_aead_crypto(a_req, false);
2358 }
2359 
2360 #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2361 			 ctx_exit, blk_size, iv_size, max_authsize)\
2362 {\
2363 	.base = {\
2364 		.cra_name = sec_cra_name,\
2365 		.cra_driver_name = "hisi_sec_"sec_cra_name,\
2366 		.cra_priority = SEC_PRIORITY,\
2367 		.cra_flags = CRYPTO_ALG_ASYNC |\
2368 		 CRYPTO_ALG_NEED_FALLBACK,\
2369 		.cra_blocksize = blk_size,\
2370 		.cra_ctxsize = sizeof(struct sec_ctx),\
2371 		.cra_module = THIS_MODULE,\
2372 	},\
2373 	.init = ctx_init,\
2374 	.exit = ctx_exit,\
2375 	.setkey = sec_set_key,\
2376 	.setauthsize = sec_aead_setauthsize,\
2377 	.decrypt = sec_aead_decrypt,\
2378 	.encrypt = sec_aead_encrypt,\
2379 	.ivsize = iv_size,\
2380 	.maxauthsize = max_authsize,\
2381 }
2382 
2383 static struct aead_alg sec_aeads[] = {
2384 	SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
2385 		     sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
2386 		     sec_aead_ctx_exit, AES_BLOCK_SIZE,
2387 		     AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2388 
2389 	SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
2390 		     sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
2391 		     sec_aead_ctx_exit, AES_BLOCK_SIZE,
2392 		     AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2393 
2394 	SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
2395 		     sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
2396 		     sec_aead_ctx_exit, AES_BLOCK_SIZE,
2397 		     AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
2398 
2399 	SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
2400 		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
2401 		     AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2402 
2403 	SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
2404 		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
2405 		     SEC_AIV_SIZE, AES_BLOCK_SIZE)
2406 };
2407 
2408 static struct aead_alg sec_aeads_v3[] = {
2409 	SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
2410 		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
2411 		     AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2412 
2413 	SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
2414 		     sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ,
2415 		     SEC_AIV_SIZE, AES_BLOCK_SIZE)
2416 };
2417 
2418 int sec_register_to_crypto(struct hisi_qm *qm)
2419 {
2420 	int ret;
2421 
2422 	/* To avoid repeat register */
2423 	ret = crypto_register_skciphers(sec_skciphers,
2424 					ARRAY_SIZE(sec_skciphers));
2425 	if (ret)
2426 		return ret;
2427 
2428 	if (qm->ver > QM_HW_V2) {
2429 		ret = crypto_register_skciphers(sec_skciphers_v3,
2430 						ARRAY_SIZE(sec_skciphers_v3));
2431 		if (ret)
2432 			goto reg_skcipher_fail;
2433 	}
2434 
2435 	ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
2436 	if (ret)
2437 		goto reg_aead_fail;
2438 	if (qm->ver > QM_HW_V2) {
2439 		ret = crypto_register_aeads(sec_aeads_v3, ARRAY_SIZE(sec_aeads_v3));
2440 		if (ret)
2441 			goto reg_aead_v3_fail;
2442 	}
2443 	return ret;
2444 
2445 reg_aead_v3_fail:
2446 	crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
2447 reg_aead_fail:
2448 	if (qm->ver > QM_HW_V2)
2449 		crypto_unregister_skciphers(sec_skciphers_v3,
2450 					    ARRAY_SIZE(sec_skciphers_v3));
2451 reg_skcipher_fail:
2452 	crypto_unregister_skciphers(sec_skciphers,
2453 				    ARRAY_SIZE(sec_skciphers));
2454 	return ret;
2455 }
2456 
2457 void sec_unregister_from_crypto(struct hisi_qm *qm)
2458 {
2459 	if (qm->ver > QM_HW_V2)
2460 		crypto_unregister_aeads(sec_aeads_v3,
2461 					ARRAY_SIZE(sec_aeads_v3));
2462 	crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
2463 
2464 	if (qm->ver > QM_HW_V2)
2465 		crypto_unregister_skciphers(sec_skciphers_v3,
2466 					    ARRAY_SIZE(sec_skciphers_v3));
2467 	crypto_unregister_skciphers(sec_skciphers,
2468 				    ARRAY_SIZE(sec_skciphers));
2469 }
2470