1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 
4 #include <crypto/aes.h>
5 #include <crypto/aead.h>
6 #include <crypto/algapi.h>
7 #include <crypto/authenc.h>
8 #include <crypto/des.h>
9 #include <crypto/hash.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/des.h>
12 #include <crypto/sha1.h>
13 #include <crypto/sha2.h>
14 #include <crypto/skcipher.h>
15 #include <crypto/xts.h>
16 #include <linux/crypto.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/idr.h>
19 
20 #include "sec.h"
21 #include "sec_crypto.h"
22 
23 #define SEC_PRIORITY		4001
24 #define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
25 #define SEC_XTS_MID_KEY_SIZE	(3 * AES_MIN_KEY_SIZE)
26 #define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
27 #define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
28 #define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)
29 
30 /* SEC sqe(bd) bit operational relative MACRO */
31 #define SEC_DE_OFFSET		1
32 #define SEC_CIPHER_OFFSET	4
33 #define SEC_SCENE_OFFSET	3
34 #define SEC_DST_SGL_OFFSET	2
35 #define SEC_SRC_SGL_OFFSET	7
36 #define SEC_CKEY_OFFSET		9
37 #define SEC_CMODE_OFFSET	12
38 #define SEC_AKEY_OFFSET         5
39 #define SEC_AEAD_ALG_OFFSET     11
40 #define SEC_AUTH_OFFSET		6
41 
42 #define SEC_DE_OFFSET_V3		9
43 #define SEC_SCENE_OFFSET_V3	5
44 #define SEC_CKEY_OFFSET_V3	13
45 #define SEC_CTR_CNT_OFFSET	25
46 #define SEC_CTR_CNT_ROLLOVER	2
47 #define SEC_SRC_SGL_OFFSET_V3	11
48 #define SEC_DST_SGL_OFFSET_V3	14
49 #define SEC_CALG_OFFSET_V3	4
50 #define SEC_AKEY_OFFSET_V3	9
51 #define SEC_MAC_OFFSET_V3	4
52 #define SEC_AUTH_ALG_OFFSET_V3	15
53 #define SEC_CIPHER_AUTH_V3	0xbf
54 #define SEC_AUTH_CIPHER_V3	0x40
55 #define SEC_FLAG_OFFSET		7
56 #define SEC_FLAG_MASK		0x0780
57 #define SEC_TYPE_MASK		0x0F
58 #define SEC_DONE_MASK		0x0001
59 #define SEC_ICV_MASK		0x000E
60 #define SEC_SQE_LEN_RATE_MASK	0x3
61 
62 #define SEC_TOTAL_IV_SZ(depth)	(SEC_IV_SIZE * (depth))
63 #define SEC_SGL_SGE_NR		128
64 #define SEC_CIPHER_AUTH		0xfe
65 #define SEC_AUTH_CIPHER		0x1
66 #define SEC_MAX_MAC_LEN		64
67 #define SEC_MAX_AAD_LEN		65535
68 #define SEC_MAX_CCM_AAD_LEN	65279
69 #define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth))
70 
71 #define SEC_PBUF_SZ			512
72 #define SEC_PBUF_IV_OFFSET		SEC_PBUF_SZ
73 #define SEC_PBUF_MAC_OFFSET		(SEC_PBUF_SZ + SEC_IV_SIZE)
74 #define SEC_PBUF_PKG		(SEC_PBUF_SZ + SEC_IV_SIZE +	\
75 			SEC_MAX_MAC_LEN * 2)
76 #define SEC_PBUF_NUM		(PAGE_SIZE / SEC_PBUF_PKG)
77 #define SEC_PBUF_PAGE_NUM(depth)	((depth) / SEC_PBUF_NUM)
78 #define SEC_PBUF_LEFT_SZ(depth)		(SEC_PBUF_PKG * ((depth) -	\
79 				SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM))
80 #define SEC_TOTAL_PBUF_SZ(depth)	(PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) +	\
81 				SEC_PBUF_LEFT_SZ(depth))
82 
83 #define SEC_SQE_LEN_RATE	4
84 #define SEC_SQE_CFLAG		2
85 #define SEC_SQE_AEAD_FLAG	3
86 #define SEC_SQE_DONE		0x1
87 #define SEC_ICV_ERR		0x2
88 #define MIN_MAC_LEN		4
89 #define MAC_LEN_MASK		0x1U
90 #define MAX_INPUT_DATA_LEN	0xFFFE00
91 #define BITS_MASK		0xFF
92 #define BYTE_BITS		0x8
93 #define SEC_XTS_NAME_SZ		0x3
94 #define IV_CM_CAL_NUM		2
95 #define IV_CL_MASK		0x7
96 #define IV_CL_MIN		2
97 #define IV_CL_MID		4
98 #define IV_CL_MAX		8
99 #define IV_FLAGS_OFFSET	0x6
100 #define IV_CM_OFFSET		0x3
101 #define IV_LAST_BYTE1		1
102 #define IV_LAST_BYTE2		2
103 #define IV_LAST_BYTE_MASK	0xFF
104 #define IV_CTR_INIT		0x1
105 #define IV_BYTE_OFFSET		0x8
106 
107 struct sec_skcipher {
108 	u64 alg_msk;
109 	struct skcipher_alg alg;
110 };
111 
112 struct sec_aead {
113 	u64 alg_msk;
114 	struct aead_alg alg;
115 };
116 
117 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
118 static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
119 {
120 	if (req->c_req.encrypt)
121 		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
122 				 ctx->hlf_q_num;
123 
124 	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
125 				 ctx->hlf_q_num;
126 }
127 
128 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
129 {
130 	if (req->c_req.encrypt)
131 		atomic_dec(&ctx->enc_qcyclic);
132 	else
133 		atomic_dec(&ctx->dec_qcyclic);
134 }
135 
136 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
137 {
138 	int req_id;
139 
140 	spin_lock_bh(&qp_ctx->req_lock);
141 	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC);
142 	spin_unlock_bh(&qp_ctx->req_lock);
143 	if (unlikely(req_id < 0)) {
144 		dev_err(req->ctx->dev, "alloc req id fail!\n");
145 		return req_id;
146 	}
147 
148 	req->qp_ctx = qp_ctx;
149 	qp_ctx->req_list[req_id] = req;
150 
151 	return req_id;
152 }
153 
154 static void sec_free_req_id(struct sec_req *req)
155 {
156 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
157 	int req_id = req->req_id;
158 
159 	if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) {
160 		dev_err(req->ctx->dev, "free request id invalid!\n");
161 		return;
162 	}
163 
164 	qp_ctx->req_list[req_id] = NULL;
165 	req->qp_ctx = NULL;
166 
167 	spin_lock_bh(&qp_ctx->req_lock);
168 	idr_remove(&qp_ctx->req_idr, req_id);
169 	spin_unlock_bh(&qp_ctx->req_lock);
170 }
171 
172 static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
173 {
174 	struct sec_sqe *bd = resp;
175 
176 	status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
177 	status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
178 	status->flag = (le16_to_cpu(bd->type2.done_flag) &
179 					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
180 	status->tag = le16_to_cpu(bd->type2.tag);
181 	status->err_type = bd->type2.error_type;
182 
183 	return bd->type_cipher_auth & SEC_TYPE_MASK;
184 }
185 
186 static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
187 {
188 	struct sec_sqe3 *bd3 = resp;
189 
190 	status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
191 	status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
192 	status->flag = (le16_to_cpu(bd3->done_flag) &
193 					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
194 	status->tag = le64_to_cpu(bd3->tag);
195 	status->err_type = bd3->error_type;
196 
197 	return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
198 }
199 
200 static int sec_cb_status_check(struct sec_req *req,
201 			       struct bd_status *status)
202 {
203 	struct sec_ctx *ctx = req->ctx;
204 
205 	if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
206 		dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
207 				    req->err_type, status->done);
208 		return -EIO;
209 	}
210 
211 	if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
212 		if (unlikely(status->flag != SEC_SQE_CFLAG)) {
213 			dev_err_ratelimited(ctx->dev, "flag[%u]\n",
214 					    status->flag);
215 			return -EIO;
216 		}
217 	} else if (unlikely(ctx->alg_type == SEC_AEAD)) {
218 		if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
219 			     status->icv == SEC_ICV_ERR)) {
220 			dev_err_ratelimited(ctx->dev,
221 					    "flag[%u], icv[%u]\n",
222 					    status->flag, status->icv);
223 			return -EBADMSG;
224 		}
225 	}
226 
227 	return 0;
228 }
229 
230 static void sec_req_cb(struct hisi_qp *qp, void *resp)
231 {
232 	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
233 	struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
234 	u8 type_supported = qp_ctx->ctx->type_supported;
235 	struct bd_status status;
236 	struct sec_ctx *ctx;
237 	struct sec_req *req;
238 	int err;
239 	u8 type;
240 
241 	if (type_supported == SEC_BD_TYPE2) {
242 		type = pre_parse_finished_bd(&status, resp);
243 		req = qp_ctx->req_list[status.tag];
244 	} else {
245 		type = pre_parse_finished_bd3(&status, resp);
246 		req = (void *)(uintptr_t)status.tag;
247 	}
248 
249 	if (unlikely(type != type_supported)) {
250 		atomic64_inc(&dfx->err_bd_cnt);
251 		pr_err("err bd type [%u]\n", type);
252 		return;
253 	}
254 
255 	if (unlikely(!req)) {
256 		atomic64_inc(&dfx->invalid_req_cnt);
257 		atomic_inc(&qp->qp_status.used);
258 		return;
259 	}
260 
261 	req->err_type = status.err_type;
262 	ctx = req->ctx;
263 	err = sec_cb_status_check(req, &status);
264 	if (err)
265 		atomic64_inc(&dfx->done_flag_cnt);
266 
267 	atomic64_inc(&dfx->recv_cnt);
268 
269 	ctx->req_op->buf_unmap(ctx, req);
270 
271 	ctx->req_op->callback(ctx, req, err);
272 }
273 
274 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
275 {
276 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
277 	int ret;
278 
279 	if (ctx->fake_req_limit <=
280 	    atomic_read(&qp_ctx->qp->qp_status.used) &&
281 	    !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
282 		return -EBUSY;
283 
284 	spin_lock_bh(&qp_ctx->req_lock);
285 	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
286 	if (ctx->fake_req_limit <=
287 	    atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
288 		list_add_tail(&req->backlog_head, &qp_ctx->backlog);
289 		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
290 		atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
291 		spin_unlock_bh(&qp_ctx->req_lock);
292 		return -EBUSY;
293 	}
294 	spin_unlock_bh(&qp_ctx->req_lock);
295 
296 	if (unlikely(ret == -EBUSY))
297 		return -ENOBUFS;
298 
299 	if (likely(!ret)) {
300 		ret = -EINPROGRESS;
301 		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
302 	}
303 
304 	return ret;
305 }
306 
307 /* Get DMA memory resources */
308 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
309 {
310 	u16 q_depth = res->depth;
311 	int i;
312 
313 	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
314 					 &res->c_ivin_dma, GFP_KERNEL);
315 	if (!res->c_ivin)
316 		return -ENOMEM;
317 
318 	for (i = 1; i < q_depth; i++) {
319 		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
320 		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
321 	}
322 
323 	return 0;
324 }
325 
326 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
327 {
328 	if (res->c_ivin)
329 		dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
330 				  res->c_ivin, res->c_ivin_dma);
331 }
332 
333 static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
334 {
335 	u16 q_depth = res->depth;
336 	int i;
337 
338 	res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
339 					 &res->a_ivin_dma, GFP_KERNEL);
340 	if (!res->a_ivin)
341 		return -ENOMEM;
342 
343 	for (i = 1; i < q_depth; i++) {
344 		res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
345 		res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
346 	}
347 
348 	return 0;
349 }
350 
351 static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
352 {
353 	if (res->a_ivin)
354 		dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
355 				  res->a_ivin, res->a_ivin_dma);
356 }
357 
358 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
359 {
360 	u16 q_depth = res->depth;
361 	int i;
362 
363 	res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1,
364 					  &res->out_mac_dma, GFP_KERNEL);
365 	if (!res->out_mac)
366 		return -ENOMEM;
367 
368 	for (i = 1; i < q_depth; i++) {
369 		res[i].out_mac_dma = res->out_mac_dma +
370 				     i * (SEC_MAX_MAC_LEN << 1);
371 		res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
372 	}
373 
374 	return 0;
375 }
376 
377 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
378 {
379 	if (res->out_mac)
380 		dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1,
381 				  res->out_mac, res->out_mac_dma);
382 }
383 
384 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
385 {
386 	if (res->pbuf)
387 		dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth),
388 				  res->pbuf, res->pbuf_dma);
389 }
390 
391 /*
392  * To improve performance, pbuffer is used for
393  * small packets (< 512Bytes) as IOMMU translation using.
394  */
395 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
396 {
397 	u16 q_depth = res->depth;
398 	int size = SEC_PBUF_PAGE_NUM(q_depth);
399 	int pbuf_page_offset;
400 	int i, j, k;
401 
402 	res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth),
403 				&res->pbuf_dma, GFP_KERNEL);
404 	if (!res->pbuf)
405 		return -ENOMEM;
406 
407 	/*
408 	 * SEC_PBUF_PKG contains data pbuf, iv and
409 	 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
410 	 * Every PAGE contains six SEC_PBUF_PKG
411 	 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
412 	 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
413 	 * for the SEC_TOTAL_PBUF_SZ
414 	 */
415 	for (i = 0; i <= size; i++) {
416 		pbuf_page_offset = PAGE_SIZE * i;
417 		for (j = 0; j < SEC_PBUF_NUM; j++) {
418 			k = i * SEC_PBUF_NUM + j;
419 			if (k == q_depth)
420 				break;
421 			res[k].pbuf = res->pbuf +
422 				j * SEC_PBUF_PKG + pbuf_page_offset;
423 			res[k].pbuf_dma = res->pbuf_dma +
424 				j * SEC_PBUF_PKG + pbuf_page_offset;
425 		}
426 	}
427 
428 	return 0;
429 }
430 
431 static int sec_alg_resource_alloc(struct sec_ctx *ctx,
432 				  struct sec_qp_ctx *qp_ctx)
433 {
434 	struct sec_alg_res *res = qp_ctx->res;
435 	struct device *dev = ctx->dev;
436 	int ret;
437 
438 	ret = sec_alloc_civ_resource(dev, res);
439 	if (ret)
440 		return ret;
441 
442 	if (ctx->alg_type == SEC_AEAD) {
443 		ret = sec_alloc_aiv_resource(dev, res);
444 		if (ret)
445 			goto alloc_aiv_fail;
446 
447 		ret = sec_alloc_mac_resource(dev, res);
448 		if (ret)
449 			goto alloc_mac_fail;
450 	}
451 	if (ctx->pbuf_supported) {
452 		ret = sec_alloc_pbuf_resource(dev, res);
453 		if (ret) {
454 			dev_err(dev, "fail to alloc pbuf dma resource!\n");
455 			goto alloc_pbuf_fail;
456 		}
457 	}
458 
459 	return 0;
460 
461 alloc_pbuf_fail:
462 	if (ctx->alg_type == SEC_AEAD)
463 		sec_free_mac_resource(dev, qp_ctx->res);
464 alloc_mac_fail:
465 	if (ctx->alg_type == SEC_AEAD)
466 		sec_free_aiv_resource(dev, res);
467 alloc_aiv_fail:
468 	sec_free_civ_resource(dev, res);
469 	return ret;
470 }
471 
472 static void sec_alg_resource_free(struct sec_ctx *ctx,
473 				  struct sec_qp_ctx *qp_ctx)
474 {
475 	struct device *dev = ctx->dev;
476 
477 	sec_free_civ_resource(dev, qp_ctx->res);
478 
479 	if (ctx->pbuf_supported)
480 		sec_free_pbuf_resource(dev, qp_ctx->res);
481 	if (ctx->alg_type == SEC_AEAD) {
482 		sec_free_mac_resource(dev, qp_ctx->res);
483 		sec_free_aiv_resource(dev, qp_ctx->res);
484 	}
485 }
486 
487 static int sec_alloc_qp_ctx_resource(struct hisi_qm *qm, struct sec_ctx *ctx,
488 				     struct sec_qp_ctx *qp_ctx)
489 {
490 	u16 q_depth = qp_ctx->qp->sq_depth;
491 	struct device *dev = ctx->dev;
492 	int ret = -ENOMEM;
493 
494 	qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL);
495 	if (!qp_ctx->req_list)
496 		return ret;
497 
498 	qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL);
499 	if (!qp_ctx->res)
500 		goto err_free_req_list;
501 	qp_ctx->res->depth = q_depth;
502 
503 	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
504 	if (IS_ERR(qp_ctx->c_in_pool)) {
505 		dev_err(dev, "fail to create sgl pool for input!\n");
506 		goto err_free_res;
507 	}
508 
509 	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
510 	if (IS_ERR(qp_ctx->c_out_pool)) {
511 		dev_err(dev, "fail to create sgl pool for output!\n");
512 		goto err_free_c_in_pool;
513 	}
514 
515 	ret = sec_alg_resource_alloc(ctx, qp_ctx);
516 	if (ret)
517 		goto err_free_c_out_pool;
518 
519 	return 0;
520 
521 err_free_c_out_pool:
522 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
523 err_free_c_in_pool:
524 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
525 err_free_res:
526 	kfree(qp_ctx->res);
527 err_free_req_list:
528 	kfree(qp_ctx->req_list);
529 	return ret;
530 }
531 
532 static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
533 {
534 	struct device *dev = ctx->dev;
535 
536 	sec_alg_resource_free(ctx, qp_ctx);
537 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
538 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
539 	kfree(qp_ctx->res);
540 	kfree(qp_ctx->req_list);
541 }
542 
543 static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
544 			     int qp_ctx_id, int alg_type)
545 {
546 	struct sec_qp_ctx *qp_ctx;
547 	struct hisi_qp *qp;
548 	int ret;
549 
550 	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
551 	qp = ctx->qps[qp_ctx_id];
552 	qp->req_type = 0;
553 	qp->qp_ctx = qp_ctx;
554 	qp_ctx->qp = qp;
555 	qp_ctx->ctx = ctx;
556 
557 	qp->req_cb = sec_req_cb;
558 
559 	spin_lock_init(&qp_ctx->req_lock);
560 	idr_init(&qp_ctx->req_idr);
561 	INIT_LIST_HEAD(&qp_ctx->backlog);
562 
563 	ret = sec_alloc_qp_ctx_resource(qm, ctx, qp_ctx);
564 	if (ret)
565 		goto err_destroy_idr;
566 
567 	ret = hisi_qm_start_qp(qp, 0);
568 	if (ret < 0)
569 		goto err_resource_free;
570 
571 	return 0;
572 
573 err_resource_free:
574 	sec_free_qp_ctx_resource(ctx, qp_ctx);
575 err_destroy_idr:
576 	idr_destroy(&qp_ctx->req_idr);
577 	return ret;
578 }
579 
580 static void sec_release_qp_ctx(struct sec_ctx *ctx,
581 			       struct sec_qp_ctx *qp_ctx)
582 {
583 	hisi_qm_stop_qp(qp_ctx->qp);
584 	sec_free_qp_ctx_resource(ctx, qp_ctx);
585 	idr_destroy(&qp_ctx->req_idr);
586 }
587 
588 static int sec_ctx_base_init(struct sec_ctx *ctx)
589 {
590 	struct sec_dev *sec;
591 	int i, ret;
592 
593 	ctx->qps = sec_create_qps();
594 	if (!ctx->qps) {
595 		pr_err("Can not create sec qps!\n");
596 		return -ENODEV;
597 	}
598 
599 	sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
600 	ctx->sec = sec;
601 	ctx->dev = &sec->qm.pdev->dev;
602 	ctx->hlf_q_num = sec->ctx_q_num >> 1;
603 
604 	ctx->pbuf_supported = ctx->sec->iommu_used;
605 
606 	/* Half of queue depth is taken as fake requests limit in the queue. */
607 	ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1;
608 	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
609 			      GFP_KERNEL);
610 	if (!ctx->qp_ctx) {
611 		ret = -ENOMEM;
612 		goto err_destroy_qps;
613 	}
614 
615 	for (i = 0; i < sec->ctx_q_num; i++) {
616 		ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
617 		if (ret)
618 			goto err_sec_release_qp_ctx;
619 	}
620 
621 	return 0;
622 
623 err_sec_release_qp_ctx:
624 	for (i = i - 1; i >= 0; i--)
625 		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
626 	kfree(ctx->qp_ctx);
627 err_destroy_qps:
628 	sec_destroy_qps(ctx->qps, sec->ctx_q_num);
629 	return ret;
630 }
631 
632 static void sec_ctx_base_uninit(struct sec_ctx *ctx)
633 {
634 	int i;
635 
636 	for (i = 0; i < ctx->sec->ctx_q_num; i++)
637 		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
638 
639 	sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
640 	kfree(ctx->qp_ctx);
641 }
642 
643 static int sec_cipher_init(struct sec_ctx *ctx)
644 {
645 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
646 
647 	c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
648 					  &c_ctx->c_key_dma, GFP_KERNEL);
649 	if (!c_ctx->c_key)
650 		return -ENOMEM;
651 
652 	return 0;
653 }
654 
655 static void sec_cipher_uninit(struct sec_ctx *ctx)
656 {
657 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
658 
659 	memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
660 	dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
661 			  c_ctx->c_key, c_ctx->c_key_dma);
662 }
663 
664 static int sec_auth_init(struct sec_ctx *ctx)
665 {
666 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
667 
668 	a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
669 					  &a_ctx->a_key_dma, GFP_KERNEL);
670 	if (!a_ctx->a_key)
671 		return -ENOMEM;
672 
673 	return 0;
674 }
675 
676 static void sec_auth_uninit(struct sec_ctx *ctx)
677 {
678 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
679 
680 	memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
681 	dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
682 			  a_ctx->a_key, a_ctx->a_key_dma);
683 }
684 
685 static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
686 {
687 	const char *alg = crypto_tfm_alg_name(&tfm->base);
688 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
689 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
690 
691 	c_ctx->fallback = false;
692 
693 	/* Currently, only XTS mode need fallback tfm when using 192bit key */
694 	if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
695 		return 0;
696 
697 	c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
698 						  CRYPTO_ALG_NEED_FALLBACK);
699 	if (IS_ERR(c_ctx->fbtfm)) {
700 		pr_err("failed to alloc xts mode fallback tfm!\n");
701 		return PTR_ERR(c_ctx->fbtfm);
702 	}
703 
704 	return 0;
705 }
706 
707 static int sec_skcipher_init(struct crypto_skcipher *tfm)
708 {
709 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
710 	int ret;
711 
712 	ctx->alg_type = SEC_SKCIPHER;
713 	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
714 	ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
715 	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
716 		pr_err("get error skcipher iv size!\n");
717 		return -EINVAL;
718 	}
719 
720 	ret = sec_ctx_base_init(ctx);
721 	if (ret)
722 		return ret;
723 
724 	ret = sec_cipher_init(ctx);
725 	if (ret)
726 		goto err_cipher_init;
727 
728 	ret = sec_skcipher_fbtfm_init(tfm);
729 	if (ret)
730 		goto err_fbtfm_init;
731 
732 	return 0;
733 
734 err_fbtfm_init:
735 	sec_cipher_uninit(ctx);
736 err_cipher_init:
737 	sec_ctx_base_uninit(ctx);
738 	return ret;
739 }
740 
741 static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
742 {
743 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
744 
745 	if (ctx->c_ctx.fbtfm)
746 		crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
747 
748 	sec_cipher_uninit(ctx);
749 	sec_ctx_base_uninit(ctx);
750 }
751 
752 static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
753 				    const u32 keylen,
754 				    const enum sec_cmode c_mode)
755 {
756 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
757 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
758 	int ret;
759 
760 	ret = verify_skcipher_des3_key(tfm, key);
761 	if (ret)
762 		return ret;
763 
764 	switch (keylen) {
765 	case SEC_DES3_2KEY_SIZE:
766 		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
767 		break;
768 	case SEC_DES3_3KEY_SIZE:
769 		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
770 		break;
771 	default:
772 		return -EINVAL;
773 	}
774 
775 	return 0;
776 }
777 
778 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
779 				       const u32 keylen,
780 				       const enum sec_cmode c_mode)
781 {
782 	if (c_mode == SEC_CMODE_XTS) {
783 		switch (keylen) {
784 		case SEC_XTS_MIN_KEY_SIZE:
785 			c_ctx->c_key_len = SEC_CKEY_128BIT;
786 			break;
787 		case SEC_XTS_MID_KEY_SIZE:
788 			c_ctx->fallback = true;
789 			break;
790 		case SEC_XTS_MAX_KEY_SIZE:
791 			c_ctx->c_key_len = SEC_CKEY_256BIT;
792 			break;
793 		default:
794 			pr_err("hisi_sec2: xts mode key error!\n");
795 			return -EINVAL;
796 		}
797 	} else {
798 		if (c_ctx->c_alg == SEC_CALG_SM4 &&
799 		    keylen != AES_KEYSIZE_128) {
800 			pr_err("hisi_sec2: sm4 key error!\n");
801 			return -EINVAL;
802 		} else {
803 			switch (keylen) {
804 			case AES_KEYSIZE_128:
805 				c_ctx->c_key_len = SEC_CKEY_128BIT;
806 				break;
807 			case AES_KEYSIZE_192:
808 				c_ctx->c_key_len = SEC_CKEY_192BIT;
809 				break;
810 			case AES_KEYSIZE_256:
811 				c_ctx->c_key_len = SEC_CKEY_256BIT;
812 				break;
813 			default:
814 				pr_err("hisi_sec2: aes key error!\n");
815 				return -EINVAL;
816 			}
817 		}
818 	}
819 
820 	return 0;
821 }
822 
823 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
824 			       const u32 keylen, const enum sec_calg c_alg,
825 			       const enum sec_cmode c_mode)
826 {
827 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
828 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
829 	struct device *dev = ctx->dev;
830 	int ret;
831 
832 	if (c_mode == SEC_CMODE_XTS) {
833 		ret = xts_verify_key(tfm, key, keylen);
834 		if (ret) {
835 			dev_err(dev, "xts mode key err!\n");
836 			return ret;
837 		}
838 	}
839 
840 	c_ctx->c_alg  = c_alg;
841 	c_ctx->c_mode = c_mode;
842 
843 	switch (c_alg) {
844 	case SEC_CALG_3DES:
845 		ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
846 		break;
847 	case SEC_CALG_AES:
848 	case SEC_CALG_SM4:
849 		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
850 		break;
851 	default:
852 		return -EINVAL;
853 	}
854 
855 	if (ret) {
856 		dev_err(dev, "set sec key err!\n");
857 		return ret;
858 	}
859 
860 	memcpy(c_ctx->c_key, key, keylen);
861 	if (c_ctx->fallback && c_ctx->fbtfm) {
862 		ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
863 		if (ret) {
864 			dev_err(dev, "failed to set fallback skcipher key!\n");
865 			return ret;
866 		}
867 	}
868 	return 0;
869 }
870 
871 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
872 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
873 	u32 keylen)							\
874 {									\
875 	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
876 }
877 
878 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
879 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
880 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
881 GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
882 GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
883 GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
884 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
885 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
886 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
887 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
888 GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
889 GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
890 GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
891 
892 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
893 			struct scatterlist *src)
894 {
895 	struct sec_aead_req *a_req = &req->aead_req;
896 	struct aead_request *aead_req = a_req->aead_req;
897 	struct sec_cipher_req *c_req = &req->c_req;
898 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
899 	struct device *dev = ctx->dev;
900 	int copy_size, pbuf_length;
901 	int req_id = req->req_id;
902 	struct crypto_aead *tfm;
903 	size_t authsize;
904 	u8 *mac_offset;
905 
906 	if (ctx->alg_type == SEC_AEAD)
907 		copy_size = aead_req->cryptlen + aead_req->assoclen;
908 	else
909 		copy_size = c_req->c_len;
910 
911 	pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
912 			qp_ctx->res[req_id].pbuf, copy_size);
913 	if (unlikely(pbuf_length != copy_size)) {
914 		dev_err(dev, "copy src data to pbuf error!\n");
915 		return -EINVAL;
916 	}
917 	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
918 		tfm = crypto_aead_reqtfm(aead_req);
919 		authsize = crypto_aead_authsize(tfm);
920 		mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
921 		memcpy(a_req->out_mac, mac_offset, authsize);
922 	}
923 
924 	req->in_dma = qp_ctx->res[req_id].pbuf_dma;
925 	c_req->c_out_dma = req->in_dma;
926 
927 	return 0;
928 }
929 
930 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
931 			struct scatterlist *dst)
932 {
933 	struct aead_request *aead_req = req->aead_req.aead_req;
934 	struct sec_cipher_req *c_req = &req->c_req;
935 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
936 	int copy_size, pbuf_length;
937 	int req_id = req->req_id;
938 
939 	if (ctx->alg_type == SEC_AEAD)
940 		copy_size = c_req->c_len + aead_req->assoclen;
941 	else
942 		copy_size = c_req->c_len;
943 
944 	pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
945 			qp_ctx->res[req_id].pbuf, copy_size);
946 	if (unlikely(pbuf_length != copy_size))
947 		dev_err(ctx->dev, "copy pbuf data to dst error!\n");
948 }
949 
950 static int sec_aead_mac_init(struct sec_aead_req *req)
951 {
952 	struct aead_request *aead_req = req->aead_req;
953 	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
954 	size_t authsize = crypto_aead_authsize(tfm);
955 	u8 *mac_out = req->out_mac;
956 	struct scatterlist *sgl = aead_req->src;
957 	size_t copy_size;
958 	off_t skip_size;
959 
960 	/* Copy input mac */
961 	skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
962 	copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
963 				       authsize, skip_size);
964 	if (unlikely(copy_size != authsize))
965 		return -EINVAL;
966 
967 	return 0;
968 }
969 
970 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
971 			  struct scatterlist *src, struct scatterlist *dst)
972 {
973 	struct sec_cipher_req *c_req = &req->c_req;
974 	struct sec_aead_req *a_req = &req->aead_req;
975 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
976 	struct sec_alg_res *res = &qp_ctx->res[req->req_id];
977 	struct device *dev = ctx->dev;
978 	int ret;
979 
980 	if (req->use_pbuf) {
981 		c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
982 		c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
983 		if (ctx->alg_type == SEC_AEAD) {
984 			a_req->a_ivin = res->a_ivin;
985 			a_req->a_ivin_dma = res->a_ivin_dma;
986 			a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
987 			a_req->out_mac_dma = res->pbuf_dma +
988 					SEC_PBUF_MAC_OFFSET;
989 		}
990 		ret = sec_cipher_pbuf_map(ctx, req, src);
991 
992 		return ret;
993 	}
994 	c_req->c_ivin = res->c_ivin;
995 	c_req->c_ivin_dma = res->c_ivin_dma;
996 	if (ctx->alg_type == SEC_AEAD) {
997 		a_req->a_ivin = res->a_ivin;
998 		a_req->a_ivin_dma = res->a_ivin_dma;
999 		a_req->out_mac = res->out_mac;
1000 		a_req->out_mac_dma = res->out_mac_dma;
1001 	}
1002 
1003 	req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
1004 						qp_ctx->c_in_pool,
1005 						req->req_id,
1006 						&req->in_dma);
1007 	if (IS_ERR(req->in)) {
1008 		dev_err(dev, "fail to dma map input sgl buffers!\n");
1009 		return PTR_ERR(req->in);
1010 	}
1011 
1012 	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
1013 		ret = sec_aead_mac_init(a_req);
1014 		if (unlikely(ret)) {
1015 			dev_err(dev, "fail to init mac data for ICV!\n");
1016 			return ret;
1017 		}
1018 	}
1019 
1020 	if (dst == src) {
1021 		c_req->c_out = req->in;
1022 		c_req->c_out_dma = req->in_dma;
1023 	} else {
1024 		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
1025 							     qp_ctx->c_out_pool,
1026 							     req->req_id,
1027 							     &c_req->c_out_dma);
1028 
1029 		if (IS_ERR(c_req->c_out)) {
1030 			dev_err(dev, "fail to dma map output sgl buffers!\n");
1031 			hisi_acc_sg_buf_unmap(dev, src, req->in);
1032 			return PTR_ERR(c_req->c_out);
1033 		}
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
1040 			     struct scatterlist *src, struct scatterlist *dst)
1041 {
1042 	struct sec_cipher_req *c_req = &req->c_req;
1043 	struct device *dev = ctx->dev;
1044 
1045 	if (req->use_pbuf) {
1046 		sec_cipher_pbuf_unmap(ctx, req, dst);
1047 	} else {
1048 		if (dst != src)
1049 			hisi_acc_sg_buf_unmap(dev, src, req->in);
1050 
1051 		hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
1052 	}
1053 }
1054 
1055 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1056 {
1057 	struct skcipher_request *sq = req->c_req.sk_req;
1058 
1059 	return sec_cipher_map(ctx, req, sq->src, sq->dst);
1060 }
1061 
1062 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1063 {
1064 	struct skcipher_request *sq = req->c_req.sk_req;
1065 
1066 	sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1067 }
1068 
1069 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
1070 				struct crypto_authenc_keys *keys)
1071 {
1072 	switch (keys->enckeylen) {
1073 	case AES_KEYSIZE_128:
1074 		c_ctx->c_key_len = SEC_CKEY_128BIT;
1075 		break;
1076 	case AES_KEYSIZE_192:
1077 		c_ctx->c_key_len = SEC_CKEY_192BIT;
1078 		break;
1079 	case AES_KEYSIZE_256:
1080 		c_ctx->c_key_len = SEC_CKEY_256BIT;
1081 		break;
1082 	default:
1083 		pr_err("hisi_sec2: aead aes key error!\n");
1084 		return -EINVAL;
1085 	}
1086 	memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
1087 
1088 	return 0;
1089 }
1090 
1091 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
1092 				 struct crypto_authenc_keys *keys)
1093 {
1094 	struct crypto_shash *hash_tfm = ctx->hash_tfm;
1095 	int blocksize, digestsize, ret;
1096 
1097 	if (!keys->authkeylen) {
1098 		pr_err("hisi_sec2: aead auth key error!\n");
1099 		return -EINVAL;
1100 	}
1101 
1102 	blocksize = crypto_shash_blocksize(hash_tfm);
1103 	digestsize = crypto_shash_digestsize(hash_tfm);
1104 	if (keys->authkeylen > blocksize) {
1105 		ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
1106 					      keys->authkeylen, ctx->a_key);
1107 		if (ret) {
1108 			pr_err("hisi_sec2: aead auth digest error!\n");
1109 			return -EINVAL;
1110 		}
1111 		ctx->a_key_len = digestsize;
1112 	} else {
1113 		memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
1114 		ctx->a_key_len = keys->authkeylen;
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
1121 {
1122 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
1123 	struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
1124 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1125 
1126 	if (unlikely(a_ctx->fallback_aead_tfm))
1127 		return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
1128 
1129 	return 0;
1130 }
1131 
1132 static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
1133 				    struct crypto_aead *tfm, const u8 *key,
1134 				    unsigned int keylen)
1135 {
1136 	crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
1137 	crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
1138 			      crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
1139 	return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
1140 }
1141 
1142 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1143 			   const u32 keylen, const enum sec_hash_alg a_alg,
1144 			   const enum sec_calg c_alg,
1145 			   const enum sec_mac_len mac_len,
1146 			   const enum sec_cmode c_mode)
1147 {
1148 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1149 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1150 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1151 	struct device *dev = ctx->dev;
1152 	struct crypto_authenc_keys keys;
1153 	int ret;
1154 
1155 	ctx->a_ctx.a_alg = a_alg;
1156 	ctx->c_ctx.c_alg = c_alg;
1157 	ctx->a_ctx.mac_len = mac_len;
1158 	c_ctx->c_mode = c_mode;
1159 
1160 	if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
1161 		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
1162 		if (ret) {
1163 			dev_err(dev, "set sec aes ccm cipher key err!\n");
1164 			return ret;
1165 		}
1166 		memcpy(c_ctx->c_key, key, keylen);
1167 
1168 		if (unlikely(a_ctx->fallback_aead_tfm)) {
1169 			ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
1170 			if (ret)
1171 				return ret;
1172 		}
1173 
1174 		return 0;
1175 	}
1176 
1177 	if (crypto_authenc_extractkeys(&keys, key, keylen))
1178 		goto bad_key;
1179 
1180 	ret = sec_aead_aes_set_key(c_ctx, &keys);
1181 	if (ret) {
1182 		dev_err(dev, "set sec cipher key err!\n");
1183 		goto bad_key;
1184 	}
1185 
1186 	ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
1187 	if (ret) {
1188 		dev_err(dev, "set sec auth key err!\n");
1189 		goto bad_key;
1190 	}
1191 
1192 	if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK)  ||
1193 	    (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
1194 		dev_err(dev, "MAC or AUTH key length error!\n");
1195 		goto bad_key;
1196 	}
1197 
1198 	return 0;
1199 
1200 bad_key:
1201 	memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
1202 	return -EINVAL;
1203 }
1204 
1205 
1206 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode)	\
1207 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key,	\
1208 	u32 keylen)							\
1209 {									\
1210 	return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
1211 }
1212 
1213 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
1214 			 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
1215 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
1216 			 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
1217 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
1218 			 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
1219 GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
1220 			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1221 GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
1222 			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1223 GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
1224 			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1225 GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
1226 			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1227 
1228 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1229 {
1230 	struct aead_request *aq = req->aead_req.aead_req;
1231 
1232 	return sec_cipher_map(ctx, req, aq->src, aq->dst);
1233 }
1234 
1235 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1236 {
1237 	struct aead_request *aq = req->aead_req.aead_req;
1238 
1239 	sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1240 }
1241 
1242 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
1243 {
1244 	int ret;
1245 
1246 	ret = ctx->req_op->buf_map(ctx, req);
1247 	if (unlikely(ret))
1248 		return ret;
1249 
1250 	ctx->req_op->do_transfer(ctx, req);
1251 
1252 	ret = ctx->req_op->bd_fill(ctx, req);
1253 	if (unlikely(ret))
1254 		goto unmap_req_buf;
1255 
1256 	return ret;
1257 
1258 unmap_req_buf:
1259 	ctx->req_op->buf_unmap(ctx, req);
1260 	return ret;
1261 }
1262 
1263 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
1264 {
1265 	ctx->req_op->buf_unmap(ctx, req);
1266 }
1267 
1268 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1269 {
1270 	struct skcipher_request *sk_req = req->c_req.sk_req;
1271 	struct sec_cipher_req *c_req = &req->c_req;
1272 
1273 	memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1274 }
1275 
1276 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1277 {
1278 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1279 	struct sec_cipher_req *c_req = &req->c_req;
1280 	struct sec_sqe *sec_sqe = &req->sec_sqe;
1281 	u8 scene, sa_type, da_type;
1282 	u8 bd_type, cipher;
1283 	u8 de = 0;
1284 
1285 	memset(sec_sqe, 0, sizeof(struct sec_sqe));
1286 
1287 	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1288 	sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1289 	sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
1290 	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1291 
1292 	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
1293 						SEC_CMODE_OFFSET);
1294 	sec_sqe->type2.c_alg = c_ctx->c_alg;
1295 	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1296 						SEC_CKEY_OFFSET);
1297 
1298 	bd_type = SEC_BD_TYPE2;
1299 	if (c_req->encrypt)
1300 		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
1301 	else
1302 		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
1303 	sec_sqe->type_cipher_auth = bd_type | cipher;
1304 
1305 	/* Set destination and source address type */
1306 	if (req->use_pbuf) {
1307 		sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1308 		da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1309 	} else {
1310 		sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1311 		da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1312 	}
1313 
1314 	sec_sqe->sdm_addr_type |= da_type;
1315 	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1316 	if (req->in_dma != c_req->c_out_dma)
1317 		de = 0x1 << SEC_DE_OFFSET;
1318 
1319 	sec_sqe->sds_sa_type = (de | scene | sa_type);
1320 
1321 	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1322 	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1323 
1324 	return 0;
1325 }
1326 
1327 static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1328 {
1329 	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1330 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1331 	struct sec_cipher_req *c_req = &req->c_req;
1332 	u32 bd_param = 0;
1333 	u16 cipher;
1334 
1335 	memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
1336 
1337 	sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1338 	sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1339 	sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
1340 	sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1341 
1342 	sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
1343 						c_ctx->c_mode;
1344 	sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1345 						SEC_CKEY_OFFSET_V3);
1346 
1347 	if (c_req->encrypt)
1348 		cipher = SEC_CIPHER_ENC;
1349 	else
1350 		cipher = SEC_CIPHER_DEC;
1351 	sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
1352 
1353 	/* Set the CTR counter mode is 128bit rollover */
1354 	sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
1355 					SEC_CTR_CNT_OFFSET);
1356 
1357 	if (req->use_pbuf) {
1358 		bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
1359 		bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
1360 	} else {
1361 		bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
1362 		bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
1363 	}
1364 
1365 	bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
1366 	if (req->in_dma != c_req->c_out_dma)
1367 		bd_param |= 0x1 << SEC_DE_OFFSET_V3;
1368 
1369 	bd_param |= SEC_BD_TYPE3;
1370 	sec_sqe3->bd_param = cpu_to_le32(bd_param);
1371 
1372 	sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
1373 	sec_sqe3->tag = cpu_to_le64(req);
1374 
1375 	return 0;
1376 }
1377 
1378 /* increment counter (128-bit int) */
1379 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
1380 {
1381 	do {
1382 		--bits;
1383 		nums += counter[bits];
1384 		counter[bits] = nums & BITS_MASK;
1385 		nums >>= BYTE_BITS;
1386 	} while (bits && nums);
1387 }
1388 
1389 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1390 {
1391 	struct aead_request *aead_req = req->aead_req.aead_req;
1392 	struct skcipher_request *sk_req = req->c_req.sk_req;
1393 	u32 iv_size = req->ctx->c_ctx.ivsize;
1394 	struct scatterlist *sgl;
1395 	unsigned int cryptlen;
1396 	size_t sz;
1397 	u8 *iv;
1398 
1399 	if (req->c_req.encrypt)
1400 		sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1401 	else
1402 		sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1403 
1404 	if (alg_type == SEC_SKCIPHER) {
1405 		iv = sk_req->iv;
1406 		cryptlen = sk_req->cryptlen;
1407 	} else {
1408 		iv = aead_req->iv;
1409 		cryptlen = aead_req->cryptlen;
1410 	}
1411 
1412 	if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
1413 		sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1414 					cryptlen - iv_size);
1415 		if (unlikely(sz != iv_size))
1416 			dev_err(req->ctx->dev, "copy output iv error!\n");
1417 	} else {
1418 		sz = cryptlen / iv_size;
1419 		if (cryptlen % iv_size)
1420 			sz += 1;
1421 		ctr_iv_inc(iv, iv_size, sz);
1422 	}
1423 }
1424 
1425 static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
1426 				struct sec_qp_ctx *qp_ctx)
1427 {
1428 	struct sec_req *backlog_req = NULL;
1429 
1430 	spin_lock_bh(&qp_ctx->req_lock);
1431 	if (ctx->fake_req_limit >=
1432 	    atomic_read(&qp_ctx->qp->qp_status.used) &&
1433 	    !list_empty(&qp_ctx->backlog)) {
1434 		backlog_req = list_first_entry(&qp_ctx->backlog,
1435 				typeof(*backlog_req), backlog_head);
1436 		list_del(&backlog_req->backlog_head);
1437 	}
1438 	spin_unlock_bh(&qp_ctx->req_lock);
1439 
1440 	return backlog_req;
1441 }
1442 
1443 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1444 				  int err)
1445 {
1446 	struct skcipher_request *sk_req = req->c_req.sk_req;
1447 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1448 	struct skcipher_request *backlog_sk_req;
1449 	struct sec_req *backlog_req;
1450 
1451 	sec_free_req_id(req);
1452 
1453 	/* IV output at encrypto of CBC/CTR mode */
1454 	if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1455 	    ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1456 		sec_update_iv(req, SEC_SKCIPHER);
1457 
1458 	while (1) {
1459 		backlog_req = sec_back_req_clear(ctx, qp_ctx);
1460 		if (!backlog_req)
1461 			break;
1462 
1463 		backlog_sk_req = backlog_req->c_req.sk_req;
1464 		skcipher_request_complete(backlog_sk_req, -EINPROGRESS);
1465 		atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
1466 	}
1467 
1468 	skcipher_request_complete(sk_req, err);
1469 }
1470 
1471 static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1472 {
1473 	struct aead_request *aead_req = req->aead_req.aead_req;
1474 	struct sec_cipher_req *c_req = &req->c_req;
1475 	struct sec_aead_req *a_req = &req->aead_req;
1476 	size_t authsize = ctx->a_ctx.mac_len;
1477 	u32 data_size = aead_req->cryptlen;
1478 	u8 flage = 0;
1479 	u8 cm, cl;
1480 
1481 	/* the specification has been checked in aead_iv_demension_check() */
1482 	cl = c_req->c_ivin[0] + 1;
1483 	c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
1484 	memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
1485 	c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
1486 
1487 	/* the last 3bit is L' */
1488 	flage |= c_req->c_ivin[0] & IV_CL_MASK;
1489 
1490 	/* the M' is bit3~bit5, the Flags is bit6 */
1491 	cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
1492 	flage |= cm << IV_CM_OFFSET;
1493 	if (aead_req->assoclen)
1494 		flage |= 0x01 << IV_FLAGS_OFFSET;
1495 
1496 	memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
1497 	a_req->a_ivin[0] = flage;
1498 
1499 	/*
1500 	 * the last 32bit is counter's initial number,
1501 	 * but the nonce uses the first 16bit
1502 	 * the tail 16bit fill with the cipher length
1503 	 */
1504 	if (!c_req->encrypt)
1505 		data_size = aead_req->cryptlen - authsize;
1506 
1507 	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
1508 			data_size & IV_LAST_BYTE_MASK;
1509 	data_size >>= IV_BYTE_OFFSET;
1510 	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
1511 			data_size & IV_LAST_BYTE_MASK;
1512 }
1513 
1514 static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
1515 {
1516 	struct aead_request *aead_req = req->aead_req.aead_req;
1517 	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
1518 	size_t authsize = crypto_aead_authsize(tfm);
1519 	struct sec_cipher_req *c_req = &req->c_req;
1520 	struct sec_aead_req *a_req = &req->aead_req;
1521 
1522 	memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1523 
1524 	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
1525 		/*
1526 		 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
1527 		 * the  counter must set to 0x01
1528 		 */
1529 		ctx->a_ctx.mac_len = authsize;
1530 		/* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
1531 		set_aead_auth_iv(ctx, req);
1532 	}
1533 
1534 	/* GCM 12Byte Cipher_IV == Auth_IV */
1535 	if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
1536 		ctx->a_ctx.mac_len = authsize;
1537 		memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
1538 	}
1539 }
1540 
1541 static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
1542 				 struct sec_req *req, struct sec_sqe *sec_sqe)
1543 {
1544 	struct sec_aead_req *a_req = &req->aead_req;
1545 	struct aead_request *aq = a_req->aead_req;
1546 
1547 	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1548 	sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);
1549 
1550 	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1551 	sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
1552 	sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1553 	sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
1554 
1555 	if (dir)
1556 		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1557 	else
1558 		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1559 
1560 	sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
1561 	sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
1562 	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1563 
1564 	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1565 }
1566 
1567 static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
1568 				    struct sec_req *req, struct sec_sqe3 *sqe3)
1569 {
1570 	struct sec_aead_req *a_req = &req->aead_req;
1571 	struct aead_request *aq = a_req->aead_req;
1572 
1573 	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1574 	sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);
1575 
1576 	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1577 	sqe3->a_key_addr = sqe3->c_key_addr;
1578 	sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1579 	sqe3->auth_mac_key |= SEC_NO_AUTH;
1580 
1581 	if (dir)
1582 		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1583 	else
1584 		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1585 
1586 	sqe3->a_len_key = cpu_to_le32(aq->assoclen);
1587 	sqe3->auth_src_offset = cpu_to_le16(0x0);
1588 	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1589 	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1590 }
1591 
1592 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1593 			       struct sec_req *req, struct sec_sqe *sec_sqe)
1594 {
1595 	struct sec_aead_req *a_req = &req->aead_req;
1596 	struct sec_cipher_req *c_req = &req->c_req;
1597 	struct aead_request *aq = a_req->aead_req;
1598 
1599 	sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1600 
1601 	sec_sqe->type2.mac_key_alg =
1602 			cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
1603 
1604 	sec_sqe->type2.mac_key_alg |=
1605 			cpu_to_le32((u32)((ctx->a_key_len) /
1606 			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
1607 
1608 	sec_sqe->type2.mac_key_alg |=
1609 			cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1610 
1611 	if (dir) {
1612 		sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1613 		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1614 	} else {
1615 		sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
1616 		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1617 	}
1618 	sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1619 
1620 	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1621 
1622 	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1623 }
1624 
1625 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1626 {
1627 	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1628 	struct sec_sqe *sec_sqe = &req->sec_sqe;
1629 	int ret;
1630 
1631 	ret = sec_skcipher_bd_fill(ctx, req);
1632 	if (unlikely(ret)) {
1633 		dev_err(ctx->dev, "skcipher bd fill is error!\n");
1634 		return ret;
1635 	}
1636 
1637 	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1638 	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1639 		sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1640 	else
1641 		sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1642 
1643 	return 0;
1644 }
1645 
1646 static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
1647 				   struct sec_req *req, struct sec_sqe3 *sqe3)
1648 {
1649 	struct sec_aead_req *a_req = &req->aead_req;
1650 	struct sec_cipher_req *c_req = &req->c_req;
1651 	struct aead_request *aq = a_req->aead_req;
1652 
1653 	sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
1654 
1655 	sqe3->auth_mac_key |=
1656 			cpu_to_le32((u32)(ctx->mac_len /
1657 			SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);
1658 
1659 	sqe3->auth_mac_key |=
1660 			cpu_to_le32((u32)(ctx->a_key_len /
1661 			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);
1662 
1663 	sqe3->auth_mac_key |=
1664 			cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
1665 
1666 	if (dir) {
1667 		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
1668 		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1669 	} else {
1670 		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
1671 		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1672 	}
1673 	sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
1674 
1675 	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1676 
1677 	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1678 }
1679 
1680 static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1681 {
1682 	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1683 	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1684 	int ret;
1685 
1686 	ret = sec_skcipher_bd_fill_v3(ctx, req);
1687 	if (unlikely(ret)) {
1688 		dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
1689 		return ret;
1690 	}
1691 
1692 	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1693 	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1694 		sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
1695 					req, sec_sqe3);
1696 	else
1697 		sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
1698 				       req, sec_sqe3);
1699 
1700 	return 0;
1701 }
1702 
1703 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1704 {
1705 	struct aead_request *a_req = req->aead_req.aead_req;
1706 	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1707 	struct sec_aead_req *aead_req = &req->aead_req;
1708 	struct sec_cipher_req *c_req = &req->c_req;
1709 	size_t authsize = crypto_aead_authsize(tfm);
1710 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1711 	struct aead_request *backlog_aead_req;
1712 	struct sec_req *backlog_req;
1713 	size_t sz;
1714 
1715 	if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1716 		sec_update_iv(req, SEC_AEAD);
1717 
1718 	/* Copy output mac */
1719 	if (!err && c_req->encrypt) {
1720 		struct scatterlist *sgl = a_req->dst;
1721 
1722 		sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1723 					  aead_req->out_mac,
1724 					  authsize, a_req->cryptlen +
1725 					  a_req->assoclen);
1726 		if (unlikely(sz != authsize)) {
1727 			dev_err(c->dev, "copy out mac err!\n");
1728 			err = -EINVAL;
1729 		}
1730 	}
1731 
1732 	sec_free_req_id(req);
1733 
1734 	while (1) {
1735 		backlog_req = sec_back_req_clear(c, qp_ctx);
1736 		if (!backlog_req)
1737 			break;
1738 
1739 		backlog_aead_req = backlog_req->aead_req.aead_req;
1740 		aead_request_complete(backlog_aead_req, -EINPROGRESS);
1741 		atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
1742 	}
1743 
1744 	aead_request_complete(a_req, err);
1745 }
1746 
1747 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1748 {
1749 	sec_free_req_id(req);
1750 	sec_free_queue_id(ctx, req);
1751 }
1752 
1753 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1754 {
1755 	struct sec_qp_ctx *qp_ctx;
1756 	int queue_id;
1757 
1758 	/* To load balance */
1759 	queue_id = sec_alloc_queue_id(ctx, req);
1760 	qp_ctx = &ctx->qp_ctx[queue_id];
1761 
1762 	req->req_id = sec_alloc_req_id(req, qp_ctx);
1763 	if (unlikely(req->req_id < 0)) {
1764 		sec_free_queue_id(ctx, req);
1765 		return req->req_id;
1766 	}
1767 
1768 	return 0;
1769 }
1770 
1771 static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1772 {
1773 	struct sec_cipher_req *c_req = &req->c_req;
1774 	int ret;
1775 
1776 	ret = sec_request_init(ctx, req);
1777 	if (unlikely(ret))
1778 		return ret;
1779 
1780 	ret = sec_request_transfer(ctx, req);
1781 	if (unlikely(ret))
1782 		goto err_uninit_req;
1783 
1784 	/* Output IV as decrypto */
1785 	if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1786 	    ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1787 		sec_update_iv(req, ctx->alg_type);
1788 
1789 	ret = ctx->req_op->bd_send(ctx, req);
1790 	if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
1791 		(ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1792 		dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1793 		goto err_send_req;
1794 	}
1795 
1796 	return ret;
1797 
1798 err_send_req:
1799 	/* As failing, restore the IV from user */
1800 	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1801 		if (ctx->alg_type == SEC_SKCIPHER)
1802 			memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1803 			       ctx->c_ctx.ivsize);
1804 		else
1805 			memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1806 			       ctx->c_ctx.ivsize);
1807 	}
1808 
1809 	sec_request_untransfer(ctx, req);
1810 err_uninit_req:
1811 	sec_request_uninit(ctx, req);
1812 	return ret;
1813 }
1814 
1815 static const struct sec_req_op sec_skcipher_req_ops = {
1816 	.buf_map	= sec_skcipher_sgl_map,
1817 	.buf_unmap	= sec_skcipher_sgl_unmap,
1818 	.do_transfer	= sec_skcipher_copy_iv,
1819 	.bd_fill	= sec_skcipher_bd_fill,
1820 	.bd_send	= sec_bd_send,
1821 	.callback	= sec_skcipher_callback,
1822 	.process	= sec_process,
1823 };
1824 
1825 static const struct sec_req_op sec_aead_req_ops = {
1826 	.buf_map	= sec_aead_sgl_map,
1827 	.buf_unmap	= sec_aead_sgl_unmap,
1828 	.do_transfer	= sec_aead_set_iv,
1829 	.bd_fill	= sec_aead_bd_fill,
1830 	.bd_send	= sec_bd_send,
1831 	.callback	= sec_aead_callback,
1832 	.process	= sec_process,
1833 };
1834 
1835 static const struct sec_req_op sec_skcipher_req_ops_v3 = {
1836 	.buf_map	= sec_skcipher_sgl_map,
1837 	.buf_unmap	= sec_skcipher_sgl_unmap,
1838 	.do_transfer	= sec_skcipher_copy_iv,
1839 	.bd_fill	= sec_skcipher_bd_fill_v3,
1840 	.bd_send	= sec_bd_send,
1841 	.callback	= sec_skcipher_callback,
1842 	.process	= sec_process,
1843 };
1844 
1845 static const struct sec_req_op sec_aead_req_ops_v3 = {
1846 	.buf_map	= sec_aead_sgl_map,
1847 	.buf_unmap	= sec_aead_sgl_unmap,
1848 	.do_transfer	= sec_aead_set_iv,
1849 	.bd_fill	= sec_aead_bd_fill_v3,
1850 	.bd_send	= sec_bd_send,
1851 	.callback	= sec_aead_callback,
1852 	.process	= sec_process,
1853 };
1854 
1855 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1856 {
1857 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1858 	int ret;
1859 
1860 	ret = sec_skcipher_init(tfm);
1861 	if (ret)
1862 		return ret;
1863 
1864 	if (ctx->sec->qm.ver < QM_HW_V3) {
1865 		ctx->type_supported = SEC_BD_TYPE2;
1866 		ctx->req_op = &sec_skcipher_req_ops;
1867 	} else {
1868 		ctx->type_supported = SEC_BD_TYPE3;
1869 		ctx->req_op = &sec_skcipher_req_ops_v3;
1870 	}
1871 
1872 	return ret;
1873 }
1874 
1875 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1876 {
1877 	sec_skcipher_uninit(tfm);
1878 }
1879 
1880 static int sec_aead_init(struct crypto_aead *tfm)
1881 {
1882 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1883 	int ret;
1884 
1885 	crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1886 	ctx->alg_type = SEC_AEAD;
1887 	ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1888 	if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
1889 	    ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1890 		pr_err("get error aead iv size!\n");
1891 		return -EINVAL;
1892 	}
1893 
1894 	ret = sec_ctx_base_init(ctx);
1895 	if (ret)
1896 		return ret;
1897 	if (ctx->sec->qm.ver < QM_HW_V3) {
1898 		ctx->type_supported = SEC_BD_TYPE2;
1899 		ctx->req_op = &sec_aead_req_ops;
1900 	} else {
1901 		ctx->type_supported = SEC_BD_TYPE3;
1902 		ctx->req_op = &sec_aead_req_ops_v3;
1903 	}
1904 
1905 	ret = sec_auth_init(ctx);
1906 	if (ret)
1907 		goto err_auth_init;
1908 
1909 	ret = sec_cipher_init(ctx);
1910 	if (ret)
1911 		goto err_cipher_init;
1912 
1913 	return ret;
1914 
1915 err_cipher_init:
1916 	sec_auth_uninit(ctx);
1917 err_auth_init:
1918 	sec_ctx_base_uninit(ctx);
1919 	return ret;
1920 }
1921 
1922 static void sec_aead_exit(struct crypto_aead *tfm)
1923 {
1924 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1925 
1926 	sec_cipher_uninit(ctx);
1927 	sec_auth_uninit(ctx);
1928 	sec_ctx_base_uninit(ctx);
1929 }
1930 
1931 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1932 {
1933 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1934 	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1935 	int ret;
1936 
1937 	ret = sec_aead_init(tfm);
1938 	if (ret) {
1939 		pr_err("hisi_sec2: aead init error!\n");
1940 		return ret;
1941 	}
1942 
1943 	auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1944 	if (IS_ERR(auth_ctx->hash_tfm)) {
1945 		dev_err(ctx->dev, "aead alloc shash error!\n");
1946 		sec_aead_exit(tfm);
1947 		return PTR_ERR(auth_ctx->hash_tfm);
1948 	}
1949 
1950 	return 0;
1951 }
1952 
1953 static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1954 {
1955 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1956 
1957 	crypto_free_shash(ctx->a_ctx.hash_tfm);
1958 	sec_aead_exit(tfm);
1959 }
1960 
1961 static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
1962 {
1963 	struct aead_alg *alg = crypto_aead_alg(tfm);
1964 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1965 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1966 	const char *aead_name = alg->base.cra_name;
1967 	int ret;
1968 
1969 	ret = sec_aead_init(tfm);
1970 	if (ret) {
1971 		dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
1972 		return ret;
1973 	}
1974 
1975 	a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
1976 						     CRYPTO_ALG_NEED_FALLBACK |
1977 						     CRYPTO_ALG_ASYNC);
1978 	if (IS_ERR(a_ctx->fallback_aead_tfm)) {
1979 		dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
1980 		sec_aead_exit(tfm);
1981 		return PTR_ERR(a_ctx->fallback_aead_tfm);
1982 	}
1983 	a_ctx->fallback = false;
1984 
1985 	return 0;
1986 }
1987 
1988 static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
1989 {
1990 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1991 
1992 	crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1993 	sec_aead_exit(tfm);
1994 }
1995 
1996 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1997 {
1998 	return sec_aead_ctx_init(tfm, "sha1");
1999 }
2000 
2001 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
2002 {
2003 	return sec_aead_ctx_init(tfm, "sha256");
2004 }
2005 
2006 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
2007 {
2008 	return sec_aead_ctx_init(tfm, "sha512");
2009 }
2010 
2011 static int sec_skcipher_cryptlen_check(struct sec_ctx *ctx,
2012 	struct sec_req *sreq)
2013 {
2014 	u32 cryptlen = sreq->c_req.sk_req->cryptlen;
2015 	struct device *dev = ctx->dev;
2016 	u8 c_mode = ctx->c_ctx.c_mode;
2017 	int ret = 0;
2018 
2019 	switch (c_mode) {
2020 	case SEC_CMODE_XTS:
2021 		if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
2022 			dev_err(dev, "skcipher XTS mode input length error!\n");
2023 			ret = -EINVAL;
2024 		}
2025 		break;
2026 	case SEC_CMODE_ECB:
2027 	case SEC_CMODE_CBC:
2028 		if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
2029 			dev_err(dev, "skcipher AES input length error!\n");
2030 			ret = -EINVAL;
2031 		}
2032 		break;
2033 	case SEC_CMODE_CFB:
2034 	case SEC_CMODE_OFB:
2035 	case SEC_CMODE_CTR:
2036 		if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
2037 			dev_err(dev, "skcipher HW version error!\n");
2038 			ret = -EINVAL;
2039 		}
2040 		break;
2041 	default:
2042 		ret = -EINVAL;
2043 	}
2044 
2045 	return ret;
2046 }
2047 
2048 static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2049 {
2050 	struct skcipher_request *sk_req = sreq->c_req.sk_req;
2051 	struct device *dev = ctx->dev;
2052 	u8 c_alg = ctx->c_ctx.c_alg;
2053 
2054 	if (unlikely(!sk_req->src || !sk_req->dst ||
2055 		     sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
2056 		dev_err(dev, "skcipher input param error!\n");
2057 		return -EINVAL;
2058 	}
2059 	sreq->c_req.c_len = sk_req->cryptlen;
2060 
2061 	if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
2062 		sreq->use_pbuf = true;
2063 	else
2064 		sreq->use_pbuf = false;
2065 
2066 	if (c_alg == SEC_CALG_3DES) {
2067 		if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2068 			dev_err(dev, "skcipher 3des input length error!\n");
2069 			return -EINVAL;
2070 		}
2071 		return 0;
2072 	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2073 		return sec_skcipher_cryptlen_check(ctx, sreq);
2074 	}
2075 
2076 	dev_err(dev, "skcipher algorithm error!\n");
2077 
2078 	return -EINVAL;
2079 }
2080 
2081 static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
2082 				    struct skcipher_request *sreq, bool encrypt)
2083 {
2084 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
2085 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
2086 	struct device *dev = ctx->dev;
2087 	int ret;
2088 
2089 	if (!c_ctx->fbtfm) {
2090 		dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
2091 		return -EINVAL;
2092 	}
2093 
2094 	skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
2095 
2096 	/* software need sync mode to do crypto */
2097 	skcipher_request_set_callback(subreq, sreq->base.flags,
2098 				      NULL, NULL);
2099 	skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
2100 				   sreq->cryptlen, sreq->iv);
2101 	if (encrypt)
2102 		ret = crypto_skcipher_encrypt(subreq);
2103 	else
2104 		ret = crypto_skcipher_decrypt(subreq);
2105 
2106 	skcipher_request_zero(subreq);
2107 
2108 	return ret;
2109 }
2110 
2111 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
2112 {
2113 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
2114 	struct sec_req *req = skcipher_request_ctx(sk_req);
2115 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
2116 	int ret;
2117 
2118 	if (!sk_req->cryptlen) {
2119 		if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
2120 			return -EINVAL;
2121 		return 0;
2122 	}
2123 
2124 	req->flag = sk_req->base.flags;
2125 	req->c_req.sk_req = sk_req;
2126 	req->c_req.encrypt = encrypt;
2127 	req->ctx = ctx;
2128 
2129 	ret = sec_skcipher_param_check(ctx, req);
2130 	if (unlikely(ret))
2131 		return -EINVAL;
2132 
2133 	if (unlikely(ctx->c_ctx.fallback))
2134 		return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
2135 
2136 	return ctx->req_op->process(ctx, req);
2137 }
2138 
2139 static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
2140 {
2141 	return sec_skcipher_crypto(sk_req, true);
2142 }
2143 
2144 static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
2145 {
2146 	return sec_skcipher_crypto(sk_req, false);
2147 }
2148 
2149 #define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
2150 	sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
2151 {\
2152 	.base = {\
2153 		.cra_name = sec_cra_name,\
2154 		.cra_driver_name = "hisi_sec_"sec_cra_name,\
2155 		.cra_priority = SEC_PRIORITY,\
2156 		.cra_flags = CRYPTO_ALG_ASYNC |\
2157 		 CRYPTO_ALG_NEED_FALLBACK,\
2158 		.cra_blocksize = blk_size,\
2159 		.cra_ctxsize = sizeof(struct sec_ctx),\
2160 		.cra_module = THIS_MODULE,\
2161 	},\
2162 	.init = ctx_init,\
2163 	.exit = ctx_exit,\
2164 	.setkey = sec_set_key,\
2165 	.decrypt = sec_skcipher_decrypt,\
2166 	.encrypt = sec_skcipher_encrypt,\
2167 	.min_keysize = sec_min_key_size,\
2168 	.max_keysize = sec_max_key_size,\
2169 	.ivsize = iv_size,\
2170 }
2171 
2172 #define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
2173 	max_key_size, blk_size, iv_size) \
2174 	SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
2175 	sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
2176 
2177 static struct sec_skcipher sec_skciphers[] = {
2178 	{
2179 		.alg_msk = BIT(0),
2180 		.alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE,
2181 					AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0),
2182 	},
2183 	{
2184 		.alg_msk = BIT(1),
2185 		.alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE,
2186 					AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2187 	},
2188 	{
2189 		.alg_msk = BIT(2),
2190 		.alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr,	AES_MIN_KEY_SIZE,
2191 					AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2192 	},
2193 	{
2194 		.alg_msk = BIT(3),
2195 		.alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,	SEC_XTS_MIN_KEY_SIZE,
2196 					SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2197 	},
2198 	{
2199 		.alg_msk = BIT(4),
2200 		.alg = SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb,	AES_MIN_KEY_SIZE,
2201 					AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2202 	},
2203 	{
2204 		.alg_msk = BIT(5),
2205 		.alg = SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb,	AES_MIN_KEY_SIZE,
2206 					AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2207 	},
2208 	{
2209 		.alg_msk = BIT(12),
2210 		.alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,	AES_MIN_KEY_SIZE,
2211 					AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2212 	},
2213 	{
2214 		.alg_msk = BIT(13),
2215 		.alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE,
2216 					AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2217 	},
2218 	{
2219 		.alg_msk = BIT(14),
2220 		.alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,	SEC_XTS_MIN_KEY_SIZE,
2221 					SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2222 	},
2223 	{
2224 		.alg_msk = BIT(15),
2225 		.alg = SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb,	AES_MIN_KEY_SIZE,
2226 					AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2227 	},
2228 	{
2229 		.alg_msk = BIT(16),
2230 		.alg = SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb,	AES_MIN_KEY_SIZE,
2231 					AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2232 	},
2233 	{
2234 		.alg_msk = BIT(23),
2235 		.alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE,
2236 					SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0),
2237 	},
2238 	{
2239 		.alg_msk = BIT(24),
2240 		.alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE,
2241 					SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE,
2242 					DES3_EDE_BLOCK_SIZE),
2243 	},
2244 };
2245 
2246 static int aead_iv_demension_check(struct aead_request *aead_req)
2247 {
2248 	u8 cl;
2249 
2250 	cl = aead_req->iv[0] + 1;
2251 	if (cl < IV_CL_MIN || cl > IV_CL_MAX)
2252 		return -EINVAL;
2253 
2254 	if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
2255 		return -EOVERFLOW;
2256 
2257 	return 0;
2258 }
2259 
2260 static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2261 {
2262 	struct aead_request *req = sreq->aead_req.aead_req;
2263 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2264 	size_t authsize = crypto_aead_authsize(tfm);
2265 	u8 c_mode = ctx->c_ctx.c_mode;
2266 	struct device *dev = ctx->dev;
2267 	int ret;
2268 
2269 	if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
2270 	    req->assoclen > SEC_MAX_AAD_LEN)) {
2271 		dev_err(dev, "aead input spec error!\n");
2272 		return -EINVAL;
2273 	}
2274 
2275 	if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
2276 	   (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
2277 		authsize & MAC_LEN_MASK)))) {
2278 		dev_err(dev, "aead input mac length error!\n");
2279 		return -EINVAL;
2280 	}
2281 
2282 	if (c_mode == SEC_CMODE_CCM) {
2283 		if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
2284 			dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
2285 			return -EINVAL;
2286 		}
2287 		ret = aead_iv_demension_check(req);
2288 		if (ret) {
2289 			dev_err(dev, "aead input iv param error!\n");
2290 			return ret;
2291 		}
2292 	}
2293 
2294 	if (sreq->c_req.encrypt)
2295 		sreq->c_req.c_len = req->cryptlen;
2296 	else
2297 		sreq->c_req.c_len = req->cryptlen - authsize;
2298 	if (c_mode == SEC_CMODE_CBC) {
2299 		if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
2300 			dev_err(dev, "aead crypto length error!\n");
2301 			return -EINVAL;
2302 		}
2303 	}
2304 
2305 	return 0;
2306 }
2307 
2308 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2309 {
2310 	struct aead_request *req = sreq->aead_req.aead_req;
2311 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2312 	size_t authsize = crypto_aead_authsize(tfm);
2313 	struct device *dev = ctx->dev;
2314 	u8 c_alg = ctx->c_ctx.c_alg;
2315 
2316 	if (unlikely(!req->src || !req->dst)) {
2317 		dev_err(dev, "aead input param error!\n");
2318 		return -EINVAL;
2319 	}
2320 
2321 	if (ctx->sec->qm.ver == QM_HW_V2) {
2322 		if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
2323 		    req->cryptlen <= authsize))) {
2324 			ctx->a_ctx.fallback = true;
2325 			return -EINVAL;
2326 		}
2327 	}
2328 
2329 	/* Support AES or SM4 */
2330 	if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
2331 		dev_err(dev, "aead crypto alg error!\n");
2332 		return -EINVAL;
2333 	}
2334 
2335 	if (unlikely(sec_aead_spec_check(ctx, sreq)))
2336 		return -EINVAL;
2337 
2338 	if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
2339 		SEC_PBUF_SZ)
2340 		sreq->use_pbuf = true;
2341 	else
2342 		sreq->use_pbuf = false;
2343 
2344 	return 0;
2345 }
2346 
2347 static int sec_aead_soft_crypto(struct sec_ctx *ctx,
2348 				struct aead_request *aead_req,
2349 				bool encrypt)
2350 {
2351 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
2352 	struct device *dev = ctx->dev;
2353 	struct aead_request *subreq;
2354 	int ret;
2355 
2356 	/* Kunpeng920 aead mode not support input 0 size */
2357 	if (!a_ctx->fallback_aead_tfm) {
2358 		dev_err(dev, "aead fallback tfm is NULL!\n");
2359 		return -EINVAL;
2360 	}
2361 
2362 	subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
2363 	if (!subreq)
2364 		return -ENOMEM;
2365 
2366 	aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
2367 	aead_request_set_callback(subreq, aead_req->base.flags,
2368 				  aead_req->base.complete, aead_req->base.data);
2369 	aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
2370 			       aead_req->cryptlen, aead_req->iv);
2371 	aead_request_set_ad(subreq, aead_req->assoclen);
2372 
2373 	if (encrypt)
2374 		ret = crypto_aead_encrypt(subreq);
2375 	else
2376 		ret = crypto_aead_decrypt(subreq);
2377 	aead_request_free(subreq);
2378 
2379 	return ret;
2380 }
2381 
2382 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
2383 {
2384 	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
2385 	struct sec_req *req = aead_request_ctx(a_req);
2386 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
2387 	int ret;
2388 
2389 	req->flag = a_req->base.flags;
2390 	req->aead_req.aead_req = a_req;
2391 	req->c_req.encrypt = encrypt;
2392 	req->ctx = ctx;
2393 
2394 	ret = sec_aead_param_check(ctx, req);
2395 	if (unlikely(ret)) {
2396 		if (ctx->a_ctx.fallback)
2397 			return sec_aead_soft_crypto(ctx, a_req, encrypt);
2398 		return -EINVAL;
2399 	}
2400 
2401 	return ctx->req_op->process(ctx, req);
2402 }
2403 
2404 static int sec_aead_encrypt(struct aead_request *a_req)
2405 {
2406 	return sec_aead_crypto(a_req, true);
2407 }
2408 
2409 static int sec_aead_decrypt(struct aead_request *a_req)
2410 {
2411 	return sec_aead_crypto(a_req, false);
2412 }
2413 
2414 #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2415 			 ctx_exit, blk_size, iv_size, max_authsize)\
2416 {\
2417 	.base = {\
2418 		.cra_name = sec_cra_name,\
2419 		.cra_driver_name = "hisi_sec_"sec_cra_name,\
2420 		.cra_priority = SEC_PRIORITY,\
2421 		.cra_flags = CRYPTO_ALG_ASYNC |\
2422 		 CRYPTO_ALG_NEED_FALLBACK,\
2423 		.cra_blocksize = blk_size,\
2424 		.cra_ctxsize = sizeof(struct sec_ctx),\
2425 		.cra_module = THIS_MODULE,\
2426 	},\
2427 	.init = ctx_init,\
2428 	.exit = ctx_exit,\
2429 	.setkey = sec_set_key,\
2430 	.setauthsize = sec_aead_setauthsize,\
2431 	.decrypt = sec_aead_decrypt,\
2432 	.encrypt = sec_aead_encrypt,\
2433 	.ivsize = iv_size,\
2434 	.maxauthsize = max_authsize,\
2435 }
2436 
2437 static struct sec_aead sec_aeads[] = {
2438 	{
2439 		.alg_msk = BIT(6),
2440 		.alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
2441 				    sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2442 				    AES_BLOCK_SIZE),
2443 	},
2444 	{
2445 		.alg_msk = BIT(7),
2446 		.alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
2447 				    sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2448 				    AES_BLOCK_SIZE),
2449 	},
2450 	{
2451 		.alg_msk = BIT(17),
2452 		.alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
2453 				    sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2454 				    AES_BLOCK_SIZE),
2455 	},
2456 	{
2457 		.alg_msk = BIT(18),
2458 		.alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
2459 				    sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2460 				    AES_BLOCK_SIZE),
2461 	},
2462 	{
2463 		.alg_msk = BIT(43),
2464 		.alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1,
2465 				    sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2466 				    AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2467 	},
2468 	{
2469 		.alg_msk = BIT(44),
2470 		.alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256,
2471 				    sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2472 				    AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2473 	},
2474 	{
2475 		.alg_msk = BIT(45),
2476 		.alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512,
2477 				    sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2478 				    AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
2479 	},
2480 };
2481 
2482 static void sec_unregister_skcipher(u64 alg_mask, int end)
2483 {
2484 	int i;
2485 
2486 	for (i = 0; i < end; i++)
2487 		if (sec_skciphers[i].alg_msk & alg_mask)
2488 			crypto_unregister_skcipher(&sec_skciphers[i].alg);
2489 }
2490 
2491 static int sec_register_skcipher(u64 alg_mask)
2492 {
2493 	int i, ret, count;
2494 
2495 	count = ARRAY_SIZE(sec_skciphers);
2496 
2497 	for (i = 0; i < count; i++) {
2498 		if (!(sec_skciphers[i].alg_msk & alg_mask))
2499 			continue;
2500 
2501 		ret = crypto_register_skcipher(&sec_skciphers[i].alg);
2502 		if (ret)
2503 			goto err;
2504 	}
2505 
2506 	return 0;
2507 
2508 err:
2509 	sec_unregister_skcipher(alg_mask, i);
2510 
2511 	return ret;
2512 }
2513 
2514 static void sec_unregister_aead(u64 alg_mask, int end)
2515 {
2516 	int i;
2517 
2518 	for (i = 0; i < end; i++)
2519 		if (sec_aeads[i].alg_msk & alg_mask)
2520 			crypto_unregister_aead(&sec_aeads[i].alg);
2521 }
2522 
2523 static int sec_register_aead(u64 alg_mask)
2524 {
2525 	int i, ret, count;
2526 
2527 	count = ARRAY_SIZE(sec_aeads);
2528 
2529 	for (i = 0; i < count; i++) {
2530 		if (!(sec_aeads[i].alg_msk & alg_mask))
2531 			continue;
2532 
2533 		ret = crypto_register_aead(&sec_aeads[i].alg);
2534 		if (ret)
2535 			goto err;
2536 	}
2537 
2538 	return 0;
2539 
2540 err:
2541 	sec_unregister_aead(alg_mask, i);
2542 
2543 	return ret;
2544 }
2545 
2546 int sec_register_to_crypto(struct hisi_qm *qm)
2547 {
2548 	u64 alg_mask;
2549 	int ret = 0;
2550 
2551 	alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
2552 				      SEC_DRV_ALG_BITMAP_LOW_IDX);
2553 
2554 
2555 	ret = sec_register_skcipher(alg_mask);
2556 	if (ret)
2557 		return ret;
2558 
2559 	ret = sec_register_aead(alg_mask);
2560 	if (ret)
2561 		sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2562 
2563 	return ret;
2564 }
2565 
2566 void sec_unregister_from_crypto(struct hisi_qm *qm)
2567 {
2568 	u64 alg_mask;
2569 
2570 	alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
2571 				      SEC_DRV_ALG_BITMAP_LOW_IDX);
2572 
2573 	sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads));
2574 	sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2575 }
2576