1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 4 #include <crypto/aes.h> 5 #include <crypto/aead.h> 6 #include <crypto/algapi.h> 7 #include <crypto/authenc.h> 8 #include <crypto/des.h> 9 #include <crypto/hash.h> 10 #include <crypto/internal/aead.h> 11 #include <crypto/internal/des.h> 12 #include <crypto/sha1.h> 13 #include <crypto/sha2.h> 14 #include <crypto/skcipher.h> 15 #include <crypto/xts.h> 16 #include <linux/crypto.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/idr.h> 19 20 #include "sec.h" 21 #include "sec_crypto.h" 22 23 #define SEC_PRIORITY 4001 24 #define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE) 25 #define SEC_XTS_MID_KEY_SIZE (3 * AES_MIN_KEY_SIZE) 26 #define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE) 27 #define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE) 28 #define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE) 29 30 /* SEC sqe(bd) bit operational relative MACRO */ 31 #define SEC_DE_OFFSET 1 32 #define SEC_CIPHER_OFFSET 4 33 #define SEC_SCENE_OFFSET 3 34 #define SEC_DST_SGL_OFFSET 2 35 #define SEC_SRC_SGL_OFFSET 7 36 #define SEC_CKEY_OFFSET 9 37 #define SEC_CMODE_OFFSET 12 38 #define SEC_AKEY_OFFSET 5 39 #define SEC_AEAD_ALG_OFFSET 11 40 #define SEC_AUTH_OFFSET 6 41 42 #define SEC_DE_OFFSET_V3 9 43 #define SEC_SCENE_OFFSET_V3 5 44 #define SEC_CKEY_OFFSET_V3 13 45 #define SEC_CTR_CNT_OFFSET 25 46 #define SEC_CTR_CNT_ROLLOVER 2 47 #define SEC_SRC_SGL_OFFSET_V3 11 48 #define SEC_DST_SGL_OFFSET_V3 14 49 #define SEC_CALG_OFFSET_V3 4 50 #define SEC_AKEY_OFFSET_V3 9 51 #define SEC_MAC_OFFSET_V3 4 52 #define SEC_AUTH_ALG_OFFSET_V3 15 53 #define SEC_CIPHER_AUTH_V3 0xbf 54 #define SEC_AUTH_CIPHER_V3 0x40 55 #define SEC_FLAG_OFFSET 7 56 #define SEC_FLAG_MASK 0x0780 57 #define SEC_TYPE_MASK 0x0F 58 #define SEC_DONE_MASK 0x0001 59 #define SEC_ICV_MASK 0x000E 60 #define SEC_SQE_LEN_RATE_MASK 0x3 61 62 #define SEC_TOTAL_IV_SZ(depth) (SEC_IV_SIZE * (depth)) 63 #define SEC_SGL_SGE_NR 128 64 #define SEC_CIPHER_AUTH 0xfe 65 #define SEC_AUTH_CIPHER 0x1 66 #define SEC_MAX_MAC_LEN 64 67 #define SEC_MAX_AAD_LEN 65535 68 #define SEC_MAX_CCM_AAD_LEN 65279 69 #define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth)) 70 71 #define SEC_PBUF_SZ 512 72 #define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ 73 #define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE) 74 #define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \ 75 SEC_MAX_MAC_LEN * 2) 76 #define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG) 77 #define SEC_PBUF_PAGE_NUM(depth) ((depth) / SEC_PBUF_NUM) 78 #define SEC_PBUF_LEFT_SZ(depth) (SEC_PBUF_PKG * ((depth) - \ 79 SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM)) 80 #define SEC_TOTAL_PBUF_SZ(depth) (PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) + \ 81 SEC_PBUF_LEFT_SZ(depth)) 82 83 #define SEC_SQE_LEN_RATE 4 84 #define SEC_SQE_CFLAG 2 85 #define SEC_SQE_AEAD_FLAG 3 86 #define SEC_SQE_DONE 0x1 87 #define SEC_ICV_ERR 0x2 88 #define MIN_MAC_LEN 4 89 #define MAC_LEN_MASK 0x1U 90 #define MAX_INPUT_DATA_LEN 0xFFFE00 91 #define BITS_MASK 0xFF 92 #define BYTE_BITS 0x8 93 #define SEC_XTS_NAME_SZ 0x3 94 #define IV_CM_CAL_NUM 2 95 #define IV_CL_MASK 0x7 96 #define IV_CL_MIN 2 97 #define IV_CL_MID 4 98 #define IV_CL_MAX 8 99 #define IV_FLAGS_OFFSET 0x6 100 #define IV_CM_OFFSET 0x3 101 #define IV_LAST_BYTE1 1 102 #define IV_LAST_BYTE2 2 103 #define IV_LAST_BYTE_MASK 0xFF 104 #define IV_CTR_INIT 0x1 105 #define IV_BYTE_OFFSET 0x8 106 107 struct sec_skcipher { 108 u64 alg_msk; 109 struct skcipher_alg alg; 110 }; 111 112 struct sec_aead { 113 u64 alg_msk; 114 struct aead_alg alg; 115 }; 116 117 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */ 118 static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req) 119 { 120 if (req->c_req.encrypt) 121 return (u32)atomic_inc_return(&ctx->enc_qcyclic) % 122 ctx->hlf_q_num; 123 124 return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num + 125 ctx->hlf_q_num; 126 } 127 128 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req) 129 { 130 if (req->c_req.encrypt) 131 atomic_dec(&ctx->enc_qcyclic); 132 else 133 atomic_dec(&ctx->dec_qcyclic); 134 } 135 136 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx) 137 { 138 int req_id; 139 140 spin_lock_bh(&qp_ctx->req_lock); 141 req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC); 142 spin_unlock_bh(&qp_ctx->req_lock); 143 if (unlikely(req_id < 0)) { 144 dev_err(req->ctx->dev, "alloc req id fail!\n"); 145 return req_id; 146 } 147 148 req->qp_ctx = qp_ctx; 149 qp_ctx->req_list[req_id] = req; 150 151 return req_id; 152 } 153 154 static void sec_free_req_id(struct sec_req *req) 155 { 156 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 157 int req_id = req->req_id; 158 159 if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) { 160 dev_err(req->ctx->dev, "free request id invalid!\n"); 161 return; 162 } 163 164 qp_ctx->req_list[req_id] = NULL; 165 req->qp_ctx = NULL; 166 167 spin_lock_bh(&qp_ctx->req_lock); 168 idr_remove(&qp_ctx->req_idr, req_id); 169 spin_unlock_bh(&qp_ctx->req_lock); 170 } 171 172 static u8 pre_parse_finished_bd(struct bd_status *status, void *resp) 173 { 174 struct sec_sqe *bd = resp; 175 176 status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK; 177 status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1; 178 status->flag = (le16_to_cpu(bd->type2.done_flag) & 179 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET; 180 status->tag = le16_to_cpu(bd->type2.tag); 181 status->err_type = bd->type2.error_type; 182 183 return bd->type_cipher_auth & SEC_TYPE_MASK; 184 } 185 186 static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp) 187 { 188 struct sec_sqe3 *bd3 = resp; 189 190 status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK; 191 status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1; 192 status->flag = (le16_to_cpu(bd3->done_flag) & 193 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET; 194 status->tag = le64_to_cpu(bd3->tag); 195 status->err_type = bd3->error_type; 196 197 return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK; 198 } 199 200 static int sec_cb_status_check(struct sec_req *req, 201 struct bd_status *status) 202 { 203 struct sec_ctx *ctx = req->ctx; 204 205 if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) { 206 dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n", 207 req->err_type, status->done); 208 return -EIO; 209 } 210 211 if (unlikely(ctx->alg_type == SEC_SKCIPHER)) { 212 if (unlikely(status->flag != SEC_SQE_CFLAG)) { 213 dev_err_ratelimited(ctx->dev, "flag[%u]\n", 214 status->flag); 215 return -EIO; 216 } 217 } else if (unlikely(ctx->alg_type == SEC_AEAD)) { 218 if (unlikely(status->flag != SEC_SQE_AEAD_FLAG || 219 status->icv == SEC_ICV_ERR)) { 220 dev_err_ratelimited(ctx->dev, 221 "flag[%u], icv[%u]\n", 222 status->flag, status->icv); 223 return -EBADMSG; 224 } 225 } 226 227 return 0; 228 } 229 230 static void sec_req_cb(struct hisi_qp *qp, void *resp) 231 { 232 struct sec_qp_ctx *qp_ctx = qp->qp_ctx; 233 struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx; 234 u8 type_supported = qp_ctx->ctx->type_supported; 235 struct bd_status status; 236 struct sec_ctx *ctx; 237 struct sec_req *req; 238 int err; 239 u8 type; 240 241 if (type_supported == SEC_BD_TYPE2) { 242 type = pre_parse_finished_bd(&status, resp); 243 req = qp_ctx->req_list[status.tag]; 244 } else { 245 type = pre_parse_finished_bd3(&status, resp); 246 req = (void *)(uintptr_t)status.tag; 247 } 248 249 if (unlikely(type != type_supported)) { 250 atomic64_inc(&dfx->err_bd_cnt); 251 pr_err("err bd type [%u]\n", type); 252 return; 253 } 254 255 if (unlikely(!req)) { 256 atomic64_inc(&dfx->invalid_req_cnt); 257 atomic_inc(&qp->qp_status.used); 258 return; 259 } 260 261 req->err_type = status.err_type; 262 ctx = req->ctx; 263 err = sec_cb_status_check(req, &status); 264 if (err) 265 atomic64_inc(&dfx->done_flag_cnt); 266 267 atomic64_inc(&dfx->recv_cnt); 268 269 ctx->req_op->buf_unmap(ctx, req); 270 271 ctx->req_op->callback(ctx, req, err); 272 } 273 274 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req) 275 { 276 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 277 int ret; 278 279 if (ctx->fake_req_limit <= 280 atomic_read(&qp_ctx->qp->qp_status.used) && 281 !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)) 282 return -EBUSY; 283 284 spin_lock_bh(&qp_ctx->req_lock); 285 ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe); 286 287 if (ctx->fake_req_limit <= 288 atomic_read(&qp_ctx->qp->qp_status.used) && !ret) { 289 list_add_tail(&req->backlog_head, &qp_ctx->backlog); 290 atomic64_inc(&ctx->sec->debug.dfx.send_cnt); 291 atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt); 292 spin_unlock_bh(&qp_ctx->req_lock); 293 return -EBUSY; 294 } 295 spin_unlock_bh(&qp_ctx->req_lock); 296 297 if (unlikely(ret == -EBUSY)) 298 return -ENOBUFS; 299 300 if (likely(!ret)) { 301 ret = -EINPROGRESS; 302 atomic64_inc(&ctx->sec->debug.dfx.send_cnt); 303 } 304 305 return ret; 306 } 307 308 /* Get DMA memory resources */ 309 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res) 310 { 311 u16 q_depth = res->depth; 312 int i; 313 314 res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth), 315 &res->c_ivin_dma, GFP_KERNEL); 316 if (!res->c_ivin) 317 return -ENOMEM; 318 319 for (i = 1; i < q_depth; i++) { 320 res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE; 321 res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE; 322 } 323 324 return 0; 325 } 326 327 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res) 328 { 329 if (res->c_ivin) 330 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth), 331 res->c_ivin, res->c_ivin_dma); 332 } 333 334 static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res) 335 { 336 u16 q_depth = res->depth; 337 int i; 338 339 res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth), 340 &res->a_ivin_dma, GFP_KERNEL); 341 if (!res->a_ivin) 342 return -ENOMEM; 343 344 for (i = 1; i < q_depth; i++) { 345 res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE; 346 res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE; 347 } 348 349 return 0; 350 } 351 352 static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res) 353 { 354 if (res->a_ivin) 355 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth), 356 res->a_ivin, res->a_ivin_dma); 357 } 358 359 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res) 360 { 361 u16 q_depth = res->depth; 362 int i; 363 364 res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1, 365 &res->out_mac_dma, GFP_KERNEL); 366 if (!res->out_mac) 367 return -ENOMEM; 368 369 for (i = 1; i < q_depth; i++) { 370 res[i].out_mac_dma = res->out_mac_dma + 371 i * (SEC_MAX_MAC_LEN << 1); 372 res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1); 373 } 374 375 return 0; 376 } 377 378 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res) 379 { 380 if (res->out_mac) 381 dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1, 382 res->out_mac, res->out_mac_dma); 383 } 384 385 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res) 386 { 387 if (res->pbuf) 388 dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth), 389 res->pbuf, res->pbuf_dma); 390 } 391 392 /* 393 * To improve performance, pbuffer is used for 394 * small packets (< 512Bytes) as IOMMU translation using. 395 */ 396 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res) 397 { 398 u16 q_depth = res->depth; 399 int size = SEC_PBUF_PAGE_NUM(q_depth); 400 int pbuf_page_offset; 401 int i, j, k; 402 403 res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth), 404 &res->pbuf_dma, GFP_KERNEL); 405 if (!res->pbuf) 406 return -ENOMEM; 407 408 /* 409 * SEC_PBUF_PKG contains data pbuf, iv and 410 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC> 411 * Every PAGE contains six SEC_PBUF_PKG 412 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG 413 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE 414 * for the SEC_TOTAL_PBUF_SZ 415 */ 416 for (i = 0; i <= size; i++) { 417 pbuf_page_offset = PAGE_SIZE * i; 418 for (j = 0; j < SEC_PBUF_NUM; j++) { 419 k = i * SEC_PBUF_NUM + j; 420 if (k == q_depth) 421 break; 422 res[k].pbuf = res->pbuf + 423 j * SEC_PBUF_PKG + pbuf_page_offset; 424 res[k].pbuf_dma = res->pbuf_dma + 425 j * SEC_PBUF_PKG + pbuf_page_offset; 426 } 427 } 428 429 return 0; 430 } 431 432 static int sec_alg_resource_alloc(struct sec_ctx *ctx, 433 struct sec_qp_ctx *qp_ctx) 434 { 435 struct sec_alg_res *res = qp_ctx->res; 436 struct device *dev = ctx->dev; 437 int ret; 438 439 ret = sec_alloc_civ_resource(dev, res); 440 if (ret) 441 return ret; 442 443 if (ctx->alg_type == SEC_AEAD) { 444 ret = sec_alloc_aiv_resource(dev, res); 445 if (ret) 446 goto alloc_aiv_fail; 447 448 ret = sec_alloc_mac_resource(dev, res); 449 if (ret) 450 goto alloc_mac_fail; 451 } 452 if (ctx->pbuf_supported) { 453 ret = sec_alloc_pbuf_resource(dev, res); 454 if (ret) { 455 dev_err(dev, "fail to alloc pbuf dma resource!\n"); 456 goto alloc_pbuf_fail; 457 } 458 } 459 460 return 0; 461 462 alloc_pbuf_fail: 463 if (ctx->alg_type == SEC_AEAD) 464 sec_free_mac_resource(dev, qp_ctx->res); 465 alloc_mac_fail: 466 if (ctx->alg_type == SEC_AEAD) 467 sec_free_aiv_resource(dev, res); 468 alloc_aiv_fail: 469 sec_free_civ_resource(dev, res); 470 return ret; 471 } 472 473 static void sec_alg_resource_free(struct sec_ctx *ctx, 474 struct sec_qp_ctx *qp_ctx) 475 { 476 struct device *dev = ctx->dev; 477 478 sec_free_civ_resource(dev, qp_ctx->res); 479 480 if (ctx->pbuf_supported) 481 sec_free_pbuf_resource(dev, qp_ctx->res); 482 if (ctx->alg_type == SEC_AEAD) 483 sec_free_mac_resource(dev, qp_ctx->res); 484 } 485 486 static int sec_alloc_qp_ctx_resource(struct hisi_qm *qm, struct sec_ctx *ctx, 487 struct sec_qp_ctx *qp_ctx) 488 { 489 u16 q_depth = qp_ctx->qp->sq_depth; 490 struct device *dev = ctx->dev; 491 int ret = -ENOMEM; 492 493 qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL); 494 if (!qp_ctx->req_list) 495 return ret; 496 497 qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL); 498 if (!qp_ctx->res) 499 goto err_free_req_list; 500 qp_ctx->res->depth = q_depth; 501 502 qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR); 503 if (IS_ERR(qp_ctx->c_in_pool)) { 504 dev_err(dev, "fail to create sgl pool for input!\n"); 505 goto err_free_res; 506 } 507 508 qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR); 509 if (IS_ERR(qp_ctx->c_out_pool)) { 510 dev_err(dev, "fail to create sgl pool for output!\n"); 511 goto err_free_c_in_pool; 512 } 513 514 ret = sec_alg_resource_alloc(ctx, qp_ctx); 515 if (ret) 516 goto err_free_c_out_pool; 517 518 return 0; 519 520 err_free_c_out_pool: 521 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool); 522 err_free_c_in_pool: 523 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool); 524 err_free_res: 525 kfree(qp_ctx->res); 526 err_free_req_list: 527 kfree(qp_ctx->req_list); 528 return ret; 529 } 530 531 static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx) 532 { 533 struct device *dev = ctx->dev; 534 535 sec_alg_resource_free(ctx, qp_ctx); 536 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool); 537 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool); 538 kfree(qp_ctx->res); 539 kfree(qp_ctx->req_list); 540 } 541 542 static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx, 543 int qp_ctx_id, int alg_type) 544 { 545 struct sec_qp_ctx *qp_ctx; 546 struct hisi_qp *qp; 547 int ret; 548 549 qp_ctx = &ctx->qp_ctx[qp_ctx_id]; 550 qp = ctx->qps[qp_ctx_id]; 551 qp->req_type = 0; 552 qp->qp_ctx = qp_ctx; 553 qp_ctx->qp = qp; 554 qp_ctx->ctx = ctx; 555 556 qp->req_cb = sec_req_cb; 557 558 spin_lock_init(&qp_ctx->req_lock); 559 idr_init(&qp_ctx->req_idr); 560 INIT_LIST_HEAD(&qp_ctx->backlog); 561 562 ret = sec_alloc_qp_ctx_resource(qm, ctx, qp_ctx); 563 if (ret) 564 goto err_destroy_idr; 565 566 ret = hisi_qm_start_qp(qp, 0); 567 if (ret < 0) 568 goto err_resource_free; 569 570 return 0; 571 572 err_resource_free: 573 sec_free_qp_ctx_resource(ctx, qp_ctx); 574 err_destroy_idr: 575 idr_destroy(&qp_ctx->req_idr); 576 return ret; 577 } 578 579 static void sec_release_qp_ctx(struct sec_ctx *ctx, 580 struct sec_qp_ctx *qp_ctx) 581 { 582 hisi_qm_stop_qp(qp_ctx->qp); 583 sec_free_qp_ctx_resource(ctx, qp_ctx); 584 idr_destroy(&qp_ctx->req_idr); 585 } 586 587 static int sec_ctx_base_init(struct sec_ctx *ctx) 588 { 589 struct sec_dev *sec; 590 int i, ret; 591 592 ctx->qps = sec_create_qps(); 593 if (!ctx->qps) { 594 pr_err("Can not create sec qps!\n"); 595 return -ENODEV; 596 } 597 598 sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm); 599 ctx->sec = sec; 600 ctx->dev = &sec->qm.pdev->dev; 601 ctx->hlf_q_num = sec->ctx_q_num >> 1; 602 603 ctx->pbuf_supported = ctx->sec->iommu_used; 604 605 /* Half of queue depth is taken as fake requests limit in the queue. */ 606 ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1; 607 ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx), 608 GFP_KERNEL); 609 if (!ctx->qp_ctx) { 610 ret = -ENOMEM; 611 goto err_destroy_qps; 612 } 613 614 for (i = 0; i < sec->ctx_q_num; i++) { 615 ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0); 616 if (ret) 617 goto err_sec_release_qp_ctx; 618 } 619 620 return 0; 621 622 err_sec_release_qp_ctx: 623 for (i = i - 1; i >= 0; i--) 624 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]); 625 kfree(ctx->qp_ctx); 626 err_destroy_qps: 627 sec_destroy_qps(ctx->qps, sec->ctx_q_num); 628 return ret; 629 } 630 631 static void sec_ctx_base_uninit(struct sec_ctx *ctx) 632 { 633 int i; 634 635 for (i = 0; i < ctx->sec->ctx_q_num; i++) 636 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]); 637 638 sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num); 639 kfree(ctx->qp_ctx); 640 } 641 642 static int sec_cipher_init(struct sec_ctx *ctx) 643 { 644 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 645 646 c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE, 647 &c_ctx->c_key_dma, GFP_KERNEL); 648 if (!c_ctx->c_key) 649 return -ENOMEM; 650 651 return 0; 652 } 653 654 static void sec_cipher_uninit(struct sec_ctx *ctx) 655 { 656 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 657 658 memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE); 659 dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE, 660 c_ctx->c_key, c_ctx->c_key_dma); 661 } 662 663 static int sec_auth_init(struct sec_ctx *ctx) 664 { 665 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 666 667 a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE, 668 &a_ctx->a_key_dma, GFP_KERNEL); 669 if (!a_ctx->a_key) 670 return -ENOMEM; 671 672 return 0; 673 } 674 675 static void sec_auth_uninit(struct sec_ctx *ctx) 676 { 677 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 678 679 memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE); 680 dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE, 681 a_ctx->a_key, a_ctx->a_key_dma); 682 } 683 684 static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm) 685 { 686 const char *alg = crypto_tfm_alg_name(&tfm->base); 687 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 688 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 689 690 c_ctx->fallback = false; 691 692 /* Currently, only XTS mode need fallback tfm when using 192bit key */ 693 if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ))) 694 return 0; 695 696 c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0, 697 CRYPTO_ALG_NEED_FALLBACK); 698 if (IS_ERR(c_ctx->fbtfm)) { 699 pr_err("failed to alloc xts mode fallback tfm!\n"); 700 return PTR_ERR(c_ctx->fbtfm); 701 } 702 703 return 0; 704 } 705 706 static int sec_skcipher_init(struct crypto_skcipher *tfm) 707 { 708 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 709 int ret; 710 711 ctx->alg_type = SEC_SKCIPHER; 712 crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req)); 713 ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm); 714 if (ctx->c_ctx.ivsize > SEC_IV_SIZE) { 715 pr_err("get error skcipher iv size!\n"); 716 return -EINVAL; 717 } 718 719 ret = sec_ctx_base_init(ctx); 720 if (ret) 721 return ret; 722 723 ret = sec_cipher_init(ctx); 724 if (ret) 725 goto err_cipher_init; 726 727 ret = sec_skcipher_fbtfm_init(tfm); 728 if (ret) 729 goto err_fbtfm_init; 730 731 return 0; 732 733 err_fbtfm_init: 734 sec_cipher_uninit(ctx); 735 err_cipher_init: 736 sec_ctx_base_uninit(ctx); 737 return ret; 738 } 739 740 static void sec_skcipher_uninit(struct crypto_skcipher *tfm) 741 { 742 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 743 744 if (ctx->c_ctx.fbtfm) 745 crypto_free_sync_skcipher(ctx->c_ctx.fbtfm); 746 747 sec_cipher_uninit(ctx); 748 sec_ctx_base_uninit(ctx); 749 } 750 751 static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key, 752 const u32 keylen, 753 const enum sec_cmode c_mode) 754 { 755 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 756 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 757 int ret; 758 759 ret = verify_skcipher_des3_key(tfm, key); 760 if (ret) 761 return ret; 762 763 switch (keylen) { 764 case SEC_DES3_2KEY_SIZE: 765 c_ctx->c_key_len = SEC_CKEY_3DES_2KEY; 766 break; 767 case SEC_DES3_3KEY_SIZE: 768 c_ctx->c_key_len = SEC_CKEY_3DES_3KEY; 769 break; 770 default: 771 return -EINVAL; 772 } 773 774 return 0; 775 } 776 777 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx, 778 const u32 keylen, 779 const enum sec_cmode c_mode) 780 { 781 if (c_mode == SEC_CMODE_XTS) { 782 switch (keylen) { 783 case SEC_XTS_MIN_KEY_SIZE: 784 c_ctx->c_key_len = SEC_CKEY_128BIT; 785 break; 786 case SEC_XTS_MID_KEY_SIZE: 787 c_ctx->fallback = true; 788 break; 789 case SEC_XTS_MAX_KEY_SIZE: 790 c_ctx->c_key_len = SEC_CKEY_256BIT; 791 break; 792 default: 793 pr_err("hisi_sec2: xts mode key error!\n"); 794 return -EINVAL; 795 } 796 } else { 797 if (c_ctx->c_alg == SEC_CALG_SM4 && 798 keylen != AES_KEYSIZE_128) { 799 pr_err("hisi_sec2: sm4 key error!\n"); 800 return -EINVAL; 801 } else { 802 switch (keylen) { 803 case AES_KEYSIZE_128: 804 c_ctx->c_key_len = SEC_CKEY_128BIT; 805 break; 806 case AES_KEYSIZE_192: 807 c_ctx->c_key_len = SEC_CKEY_192BIT; 808 break; 809 case AES_KEYSIZE_256: 810 c_ctx->c_key_len = SEC_CKEY_256BIT; 811 break; 812 default: 813 pr_err("hisi_sec2: aes key error!\n"); 814 return -EINVAL; 815 } 816 } 817 } 818 819 return 0; 820 } 821 822 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, 823 const u32 keylen, const enum sec_calg c_alg, 824 const enum sec_cmode c_mode) 825 { 826 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 827 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 828 struct device *dev = ctx->dev; 829 int ret; 830 831 if (c_mode == SEC_CMODE_XTS) { 832 ret = xts_verify_key(tfm, key, keylen); 833 if (ret) { 834 dev_err(dev, "xts mode key err!\n"); 835 return ret; 836 } 837 } 838 839 c_ctx->c_alg = c_alg; 840 c_ctx->c_mode = c_mode; 841 842 switch (c_alg) { 843 case SEC_CALG_3DES: 844 ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode); 845 break; 846 case SEC_CALG_AES: 847 case SEC_CALG_SM4: 848 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode); 849 break; 850 default: 851 return -EINVAL; 852 } 853 854 if (ret) { 855 dev_err(dev, "set sec key err!\n"); 856 return ret; 857 } 858 859 memcpy(c_ctx->c_key, key, keylen); 860 if (c_ctx->fallback && c_ctx->fbtfm) { 861 ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen); 862 if (ret) { 863 dev_err(dev, "failed to set fallback skcipher key!\n"); 864 return ret; 865 } 866 } 867 return 0; 868 } 869 870 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \ 871 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\ 872 u32 keylen) \ 873 { \ 874 return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \ 875 } 876 877 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB) 878 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC) 879 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS) 880 GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB) 881 GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB) 882 GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR) 883 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB) 884 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC) 885 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS) 886 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC) 887 GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB) 888 GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB) 889 GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR) 890 891 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req, 892 struct scatterlist *src) 893 { 894 struct sec_aead_req *a_req = &req->aead_req; 895 struct aead_request *aead_req = a_req->aead_req; 896 struct sec_cipher_req *c_req = &req->c_req; 897 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 898 struct device *dev = ctx->dev; 899 int copy_size, pbuf_length; 900 int req_id = req->req_id; 901 struct crypto_aead *tfm; 902 size_t authsize; 903 u8 *mac_offset; 904 905 if (ctx->alg_type == SEC_AEAD) 906 copy_size = aead_req->cryptlen + aead_req->assoclen; 907 else 908 copy_size = c_req->c_len; 909 910 pbuf_length = sg_copy_to_buffer(src, sg_nents(src), 911 qp_ctx->res[req_id].pbuf, copy_size); 912 if (unlikely(pbuf_length != copy_size)) { 913 dev_err(dev, "copy src data to pbuf error!\n"); 914 return -EINVAL; 915 } 916 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) { 917 tfm = crypto_aead_reqtfm(aead_req); 918 authsize = crypto_aead_authsize(tfm); 919 mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize; 920 memcpy(a_req->out_mac, mac_offset, authsize); 921 } 922 923 req->in_dma = qp_ctx->res[req_id].pbuf_dma; 924 c_req->c_out_dma = req->in_dma; 925 926 return 0; 927 } 928 929 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req, 930 struct scatterlist *dst) 931 { 932 struct aead_request *aead_req = req->aead_req.aead_req; 933 struct sec_cipher_req *c_req = &req->c_req; 934 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 935 int copy_size, pbuf_length; 936 int req_id = req->req_id; 937 938 if (ctx->alg_type == SEC_AEAD) 939 copy_size = c_req->c_len + aead_req->assoclen; 940 else 941 copy_size = c_req->c_len; 942 943 pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst), 944 qp_ctx->res[req_id].pbuf, copy_size); 945 if (unlikely(pbuf_length != copy_size)) 946 dev_err(ctx->dev, "copy pbuf data to dst error!\n"); 947 } 948 949 static int sec_aead_mac_init(struct sec_aead_req *req) 950 { 951 struct aead_request *aead_req = req->aead_req; 952 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req); 953 size_t authsize = crypto_aead_authsize(tfm); 954 u8 *mac_out = req->out_mac; 955 struct scatterlist *sgl = aead_req->src; 956 size_t copy_size; 957 off_t skip_size; 958 959 /* Copy input mac */ 960 skip_size = aead_req->assoclen + aead_req->cryptlen - authsize; 961 copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out, 962 authsize, skip_size); 963 if (unlikely(copy_size != authsize)) 964 return -EINVAL; 965 966 return 0; 967 } 968 969 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req, 970 struct scatterlist *src, struct scatterlist *dst) 971 { 972 struct sec_cipher_req *c_req = &req->c_req; 973 struct sec_aead_req *a_req = &req->aead_req; 974 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 975 struct sec_alg_res *res = &qp_ctx->res[req->req_id]; 976 struct device *dev = ctx->dev; 977 int ret; 978 979 if (req->use_pbuf) { 980 c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET; 981 c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET; 982 if (ctx->alg_type == SEC_AEAD) { 983 a_req->a_ivin = res->a_ivin; 984 a_req->a_ivin_dma = res->a_ivin_dma; 985 a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET; 986 a_req->out_mac_dma = res->pbuf_dma + 987 SEC_PBUF_MAC_OFFSET; 988 } 989 ret = sec_cipher_pbuf_map(ctx, req, src); 990 991 return ret; 992 } 993 c_req->c_ivin = res->c_ivin; 994 c_req->c_ivin_dma = res->c_ivin_dma; 995 if (ctx->alg_type == SEC_AEAD) { 996 a_req->a_ivin = res->a_ivin; 997 a_req->a_ivin_dma = res->a_ivin_dma; 998 a_req->out_mac = res->out_mac; 999 a_req->out_mac_dma = res->out_mac_dma; 1000 } 1001 1002 req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src, 1003 qp_ctx->c_in_pool, 1004 req->req_id, 1005 &req->in_dma); 1006 if (IS_ERR(req->in)) { 1007 dev_err(dev, "fail to dma map input sgl buffers!\n"); 1008 return PTR_ERR(req->in); 1009 } 1010 1011 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) { 1012 ret = sec_aead_mac_init(a_req); 1013 if (unlikely(ret)) { 1014 dev_err(dev, "fail to init mac data for ICV!\n"); 1015 return ret; 1016 } 1017 } 1018 1019 if (dst == src) { 1020 c_req->c_out = req->in; 1021 c_req->c_out_dma = req->in_dma; 1022 } else { 1023 c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst, 1024 qp_ctx->c_out_pool, 1025 req->req_id, 1026 &c_req->c_out_dma); 1027 1028 if (IS_ERR(c_req->c_out)) { 1029 dev_err(dev, "fail to dma map output sgl buffers!\n"); 1030 hisi_acc_sg_buf_unmap(dev, src, req->in); 1031 return PTR_ERR(c_req->c_out); 1032 } 1033 } 1034 1035 return 0; 1036 } 1037 1038 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req, 1039 struct scatterlist *src, struct scatterlist *dst) 1040 { 1041 struct sec_cipher_req *c_req = &req->c_req; 1042 struct device *dev = ctx->dev; 1043 1044 if (req->use_pbuf) { 1045 sec_cipher_pbuf_unmap(ctx, req, dst); 1046 } else { 1047 if (dst != src) 1048 hisi_acc_sg_buf_unmap(dev, src, req->in); 1049 1050 hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out); 1051 } 1052 } 1053 1054 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req) 1055 { 1056 struct skcipher_request *sq = req->c_req.sk_req; 1057 1058 return sec_cipher_map(ctx, req, sq->src, sq->dst); 1059 } 1060 1061 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req) 1062 { 1063 struct skcipher_request *sq = req->c_req.sk_req; 1064 1065 sec_cipher_unmap(ctx, req, sq->src, sq->dst); 1066 } 1067 1068 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx, 1069 struct crypto_authenc_keys *keys) 1070 { 1071 switch (keys->enckeylen) { 1072 case AES_KEYSIZE_128: 1073 c_ctx->c_key_len = SEC_CKEY_128BIT; 1074 break; 1075 case AES_KEYSIZE_192: 1076 c_ctx->c_key_len = SEC_CKEY_192BIT; 1077 break; 1078 case AES_KEYSIZE_256: 1079 c_ctx->c_key_len = SEC_CKEY_256BIT; 1080 break; 1081 default: 1082 pr_err("hisi_sec2: aead aes key error!\n"); 1083 return -EINVAL; 1084 } 1085 memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen); 1086 1087 return 0; 1088 } 1089 1090 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx, 1091 struct crypto_authenc_keys *keys) 1092 { 1093 struct crypto_shash *hash_tfm = ctx->hash_tfm; 1094 int blocksize, digestsize, ret; 1095 1096 if (!keys->authkeylen) { 1097 pr_err("hisi_sec2: aead auth key error!\n"); 1098 return -EINVAL; 1099 } 1100 1101 blocksize = crypto_shash_blocksize(hash_tfm); 1102 digestsize = crypto_shash_digestsize(hash_tfm); 1103 if (keys->authkeylen > blocksize) { 1104 ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey, 1105 keys->authkeylen, ctx->a_key); 1106 if (ret) { 1107 pr_err("hisi_sec2: aead auth digest error!\n"); 1108 return -EINVAL; 1109 } 1110 ctx->a_key_len = digestsize; 1111 } else { 1112 memcpy(ctx->a_key, keys->authkey, keys->authkeylen); 1113 ctx->a_key_len = keys->authkeylen; 1114 } 1115 1116 return 0; 1117 } 1118 1119 static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize) 1120 { 1121 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 1122 struct sec_ctx *ctx = crypto_tfm_ctx(tfm); 1123 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 1124 1125 if (unlikely(a_ctx->fallback_aead_tfm)) 1126 return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize); 1127 1128 return 0; 1129 } 1130 1131 static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx, 1132 struct crypto_aead *tfm, const u8 *key, 1133 unsigned int keylen) 1134 { 1135 crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK); 1136 crypto_aead_set_flags(a_ctx->fallback_aead_tfm, 1137 crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); 1138 return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen); 1139 } 1140 1141 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key, 1142 const u32 keylen, const enum sec_hash_alg a_alg, 1143 const enum sec_calg c_alg, 1144 const enum sec_mac_len mac_len, 1145 const enum sec_cmode c_mode) 1146 { 1147 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1148 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 1149 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 1150 struct device *dev = ctx->dev; 1151 struct crypto_authenc_keys keys; 1152 int ret; 1153 1154 ctx->a_ctx.a_alg = a_alg; 1155 ctx->c_ctx.c_alg = c_alg; 1156 ctx->a_ctx.mac_len = mac_len; 1157 c_ctx->c_mode = c_mode; 1158 1159 if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) { 1160 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode); 1161 if (ret) { 1162 dev_err(dev, "set sec aes ccm cipher key err!\n"); 1163 return ret; 1164 } 1165 memcpy(c_ctx->c_key, key, keylen); 1166 1167 if (unlikely(a_ctx->fallback_aead_tfm)) { 1168 ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen); 1169 if (ret) 1170 return ret; 1171 } 1172 1173 return 0; 1174 } 1175 1176 if (crypto_authenc_extractkeys(&keys, key, keylen)) 1177 goto bad_key; 1178 1179 ret = sec_aead_aes_set_key(c_ctx, &keys); 1180 if (ret) { 1181 dev_err(dev, "set sec cipher key err!\n"); 1182 goto bad_key; 1183 } 1184 1185 ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys); 1186 if (ret) { 1187 dev_err(dev, "set sec auth key err!\n"); 1188 goto bad_key; 1189 } 1190 1191 if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK) || 1192 (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) { 1193 dev_err(dev, "MAC or AUTH key length error!\n"); 1194 goto bad_key; 1195 } 1196 1197 return 0; 1198 1199 bad_key: 1200 memzero_explicit(&keys, sizeof(struct crypto_authenc_keys)); 1201 return -EINVAL; 1202 } 1203 1204 1205 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \ 1206 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \ 1207 u32 keylen) \ 1208 { \ 1209 return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\ 1210 } 1211 1212 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1, 1213 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC) 1214 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256, 1215 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC) 1216 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512, 1217 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC) 1218 GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES, 1219 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM) 1220 GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES, 1221 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM) 1222 GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4, 1223 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM) 1224 GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4, 1225 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM) 1226 1227 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req) 1228 { 1229 struct aead_request *aq = req->aead_req.aead_req; 1230 1231 return sec_cipher_map(ctx, req, aq->src, aq->dst); 1232 } 1233 1234 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req) 1235 { 1236 struct aead_request *aq = req->aead_req.aead_req; 1237 1238 sec_cipher_unmap(ctx, req, aq->src, aq->dst); 1239 } 1240 1241 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req) 1242 { 1243 int ret; 1244 1245 ret = ctx->req_op->buf_map(ctx, req); 1246 if (unlikely(ret)) 1247 return ret; 1248 1249 ctx->req_op->do_transfer(ctx, req); 1250 1251 ret = ctx->req_op->bd_fill(ctx, req); 1252 if (unlikely(ret)) 1253 goto unmap_req_buf; 1254 1255 return ret; 1256 1257 unmap_req_buf: 1258 ctx->req_op->buf_unmap(ctx, req); 1259 return ret; 1260 } 1261 1262 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req) 1263 { 1264 ctx->req_op->buf_unmap(ctx, req); 1265 } 1266 1267 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req) 1268 { 1269 struct skcipher_request *sk_req = req->c_req.sk_req; 1270 struct sec_cipher_req *c_req = &req->c_req; 1271 1272 memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize); 1273 } 1274 1275 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req) 1276 { 1277 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 1278 struct sec_cipher_req *c_req = &req->c_req; 1279 struct sec_sqe *sec_sqe = &req->sec_sqe; 1280 u8 scene, sa_type, da_type; 1281 u8 bd_type, cipher; 1282 u8 de = 0; 1283 1284 memset(sec_sqe, 0, sizeof(struct sec_sqe)); 1285 1286 sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma); 1287 sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma); 1288 sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma); 1289 sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma); 1290 1291 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) << 1292 SEC_CMODE_OFFSET); 1293 sec_sqe->type2.c_alg = c_ctx->c_alg; 1294 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) << 1295 SEC_CKEY_OFFSET); 1296 1297 bd_type = SEC_BD_TYPE2; 1298 if (c_req->encrypt) 1299 cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET; 1300 else 1301 cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET; 1302 sec_sqe->type_cipher_auth = bd_type | cipher; 1303 1304 /* Set destination and source address type */ 1305 if (req->use_pbuf) { 1306 sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET; 1307 da_type = SEC_PBUF << SEC_DST_SGL_OFFSET; 1308 } else { 1309 sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET; 1310 da_type = SEC_SGL << SEC_DST_SGL_OFFSET; 1311 } 1312 1313 sec_sqe->sdm_addr_type |= da_type; 1314 scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET; 1315 if (req->in_dma != c_req->c_out_dma) 1316 de = 0x1 << SEC_DE_OFFSET; 1317 1318 sec_sqe->sds_sa_type = (de | scene | sa_type); 1319 1320 sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len); 1321 sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id); 1322 1323 return 0; 1324 } 1325 1326 static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req) 1327 { 1328 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3; 1329 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 1330 struct sec_cipher_req *c_req = &req->c_req; 1331 u32 bd_param = 0; 1332 u16 cipher; 1333 1334 memset(sec_sqe3, 0, sizeof(struct sec_sqe3)); 1335 1336 sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma); 1337 sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma); 1338 sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma); 1339 sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma); 1340 1341 sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) | 1342 c_ctx->c_mode; 1343 sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) << 1344 SEC_CKEY_OFFSET_V3); 1345 1346 if (c_req->encrypt) 1347 cipher = SEC_CIPHER_ENC; 1348 else 1349 cipher = SEC_CIPHER_DEC; 1350 sec_sqe3->c_icv_key |= cpu_to_le16(cipher); 1351 1352 /* Set the CTR counter mode is 128bit rollover */ 1353 sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER << 1354 SEC_CTR_CNT_OFFSET); 1355 1356 if (req->use_pbuf) { 1357 bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3; 1358 bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3; 1359 } else { 1360 bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3; 1361 bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3; 1362 } 1363 1364 bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3; 1365 if (req->in_dma != c_req->c_out_dma) 1366 bd_param |= 0x1 << SEC_DE_OFFSET_V3; 1367 1368 bd_param |= SEC_BD_TYPE3; 1369 sec_sqe3->bd_param = cpu_to_le32(bd_param); 1370 1371 sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len); 1372 sec_sqe3->tag = cpu_to_le64(req); 1373 1374 return 0; 1375 } 1376 1377 /* increment counter (128-bit int) */ 1378 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums) 1379 { 1380 do { 1381 --bits; 1382 nums += counter[bits]; 1383 counter[bits] = nums & BITS_MASK; 1384 nums >>= BYTE_BITS; 1385 } while (bits && nums); 1386 } 1387 1388 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type) 1389 { 1390 struct aead_request *aead_req = req->aead_req.aead_req; 1391 struct skcipher_request *sk_req = req->c_req.sk_req; 1392 u32 iv_size = req->ctx->c_ctx.ivsize; 1393 struct scatterlist *sgl; 1394 unsigned int cryptlen; 1395 size_t sz; 1396 u8 *iv; 1397 1398 if (req->c_req.encrypt) 1399 sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst; 1400 else 1401 sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src; 1402 1403 if (alg_type == SEC_SKCIPHER) { 1404 iv = sk_req->iv; 1405 cryptlen = sk_req->cryptlen; 1406 } else { 1407 iv = aead_req->iv; 1408 cryptlen = aead_req->cryptlen; 1409 } 1410 1411 if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) { 1412 sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size, 1413 cryptlen - iv_size); 1414 if (unlikely(sz != iv_size)) 1415 dev_err(req->ctx->dev, "copy output iv error!\n"); 1416 } else { 1417 sz = cryptlen / iv_size; 1418 if (cryptlen % iv_size) 1419 sz += 1; 1420 ctr_iv_inc(iv, iv_size, sz); 1421 } 1422 } 1423 1424 static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx, 1425 struct sec_qp_ctx *qp_ctx) 1426 { 1427 struct sec_req *backlog_req = NULL; 1428 1429 spin_lock_bh(&qp_ctx->req_lock); 1430 if (ctx->fake_req_limit >= 1431 atomic_read(&qp_ctx->qp->qp_status.used) && 1432 !list_empty(&qp_ctx->backlog)) { 1433 backlog_req = list_first_entry(&qp_ctx->backlog, 1434 typeof(*backlog_req), backlog_head); 1435 list_del(&backlog_req->backlog_head); 1436 } 1437 spin_unlock_bh(&qp_ctx->req_lock); 1438 1439 return backlog_req; 1440 } 1441 1442 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req, 1443 int err) 1444 { 1445 struct skcipher_request *sk_req = req->c_req.sk_req; 1446 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 1447 struct skcipher_request *backlog_sk_req; 1448 struct sec_req *backlog_req; 1449 1450 sec_free_req_id(req); 1451 1452 /* IV output at encrypto of CBC/CTR mode */ 1453 if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC || 1454 ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt) 1455 sec_update_iv(req, SEC_SKCIPHER); 1456 1457 while (1) { 1458 backlog_req = sec_back_req_clear(ctx, qp_ctx); 1459 if (!backlog_req) 1460 break; 1461 1462 backlog_sk_req = backlog_req->c_req.sk_req; 1463 backlog_sk_req->base.complete(&backlog_sk_req->base, 1464 -EINPROGRESS); 1465 atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt); 1466 } 1467 1468 sk_req->base.complete(&sk_req->base, err); 1469 } 1470 1471 static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req) 1472 { 1473 struct aead_request *aead_req = req->aead_req.aead_req; 1474 struct sec_cipher_req *c_req = &req->c_req; 1475 struct sec_aead_req *a_req = &req->aead_req; 1476 size_t authsize = ctx->a_ctx.mac_len; 1477 u32 data_size = aead_req->cryptlen; 1478 u8 flage = 0; 1479 u8 cm, cl; 1480 1481 /* the specification has been checked in aead_iv_demension_check() */ 1482 cl = c_req->c_ivin[0] + 1; 1483 c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00; 1484 memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl); 1485 c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT; 1486 1487 /* the last 3bit is L' */ 1488 flage |= c_req->c_ivin[0] & IV_CL_MASK; 1489 1490 /* the M' is bit3~bit5, the Flags is bit6 */ 1491 cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM; 1492 flage |= cm << IV_CM_OFFSET; 1493 if (aead_req->assoclen) 1494 flage |= 0x01 << IV_FLAGS_OFFSET; 1495 1496 memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize); 1497 a_req->a_ivin[0] = flage; 1498 1499 /* 1500 * the last 32bit is counter's initial number, 1501 * but the nonce uses the first 16bit 1502 * the tail 16bit fill with the cipher length 1503 */ 1504 if (!c_req->encrypt) 1505 data_size = aead_req->cryptlen - authsize; 1506 1507 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = 1508 data_size & IV_LAST_BYTE_MASK; 1509 data_size >>= IV_BYTE_OFFSET; 1510 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] = 1511 data_size & IV_LAST_BYTE_MASK; 1512 } 1513 1514 static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req) 1515 { 1516 struct aead_request *aead_req = req->aead_req.aead_req; 1517 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req); 1518 size_t authsize = crypto_aead_authsize(tfm); 1519 struct sec_cipher_req *c_req = &req->c_req; 1520 struct sec_aead_req *a_req = &req->aead_req; 1521 1522 memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize); 1523 1524 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) { 1525 /* 1526 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter}, 1527 * the counter must set to 0x01 1528 */ 1529 ctx->a_ctx.mac_len = authsize; 1530 /* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */ 1531 set_aead_auth_iv(ctx, req); 1532 } 1533 1534 /* GCM 12Byte Cipher_IV == Auth_IV */ 1535 if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) { 1536 ctx->a_ctx.mac_len = authsize; 1537 memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE); 1538 } 1539 } 1540 1541 static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir, 1542 struct sec_req *req, struct sec_sqe *sec_sqe) 1543 { 1544 struct sec_aead_req *a_req = &req->aead_req; 1545 struct aead_request *aq = a_req->aead_req; 1546 1547 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */ 1548 sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len); 1549 1550 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */ 1551 sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr; 1552 sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma); 1553 sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET; 1554 1555 if (dir) 1556 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH; 1557 else 1558 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER; 1559 1560 sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen); 1561 sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0); 1562 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen); 1563 1564 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma); 1565 } 1566 1567 static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir, 1568 struct sec_req *req, struct sec_sqe3 *sqe3) 1569 { 1570 struct sec_aead_req *a_req = &req->aead_req; 1571 struct aead_request *aq = a_req->aead_req; 1572 1573 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */ 1574 sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3); 1575 1576 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */ 1577 sqe3->a_key_addr = sqe3->c_key_addr; 1578 sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma); 1579 sqe3->auth_mac_key |= SEC_NO_AUTH; 1580 1581 if (dir) 1582 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3; 1583 else 1584 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3; 1585 1586 sqe3->a_len_key = cpu_to_le32(aq->assoclen); 1587 sqe3->auth_src_offset = cpu_to_le16(0x0); 1588 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen); 1589 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma); 1590 } 1591 1592 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir, 1593 struct sec_req *req, struct sec_sqe *sec_sqe) 1594 { 1595 struct sec_aead_req *a_req = &req->aead_req; 1596 struct sec_cipher_req *c_req = &req->c_req; 1597 struct aead_request *aq = a_req->aead_req; 1598 1599 sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma); 1600 1601 sec_sqe->type2.mac_key_alg = 1602 cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE); 1603 1604 sec_sqe->type2.mac_key_alg |= 1605 cpu_to_le32((u32)((ctx->a_key_len) / 1606 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET); 1607 1608 sec_sqe->type2.mac_key_alg |= 1609 cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET); 1610 1611 if (dir) { 1612 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET; 1613 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH; 1614 } else { 1615 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET; 1616 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER; 1617 } 1618 sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen); 1619 1620 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen); 1621 1622 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma); 1623 } 1624 1625 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req) 1626 { 1627 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx; 1628 struct sec_sqe *sec_sqe = &req->sec_sqe; 1629 int ret; 1630 1631 ret = sec_skcipher_bd_fill(ctx, req); 1632 if (unlikely(ret)) { 1633 dev_err(ctx->dev, "skcipher bd fill is error!\n"); 1634 return ret; 1635 } 1636 1637 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM || 1638 ctx->c_ctx.c_mode == SEC_CMODE_GCM) 1639 sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe); 1640 else 1641 sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe); 1642 1643 return 0; 1644 } 1645 1646 static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir, 1647 struct sec_req *req, struct sec_sqe3 *sqe3) 1648 { 1649 struct sec_aead_req *a_req = &req->aead_req; 1650 struct sec_cipher_req *c_req = &req->c_req; 1651 struct aead_request *aq = a_req->aead_req; 1652 1653 sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma); 1654 1655 sqe3->auth_mac_key |= 1656 cpu_to_le32((u32)(ctx->mac_len / 1657 SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3); 1658 1659 sqe3->auth_mac_key |= 1660 cpu_to_le32((u32)(ctx->a_key_len / 1661 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3); 1662 1663 sqe3->auth_mac_key |= 1664 cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3); 1665 1666 if (dir) { 1667 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1); 1668 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3; 1669 } else { 1670 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2); 1671 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3; 1672 } 1673 sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen); 1674 1675 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen); 1676 1677 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma); 1678 } 1679 1680 static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req) 1681 { 1682 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx; 1683 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3; 1684 int ret; 1685 1686 ret = sec_skcipher_bd_fill_v3(ctx, req); 1687 if (unlikely(ret)) { 1688 dev_err(ctx->dev, "skcipher bd3 fill is error!\n"); 1689 return ret; 1690 } 1691 1692 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM || 1693 ctx->c_ctx.c_mode == SEC_CMODE_GCM) 1694 sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt, 1695 req, sec_sqe3); 1696 else 1697 sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt, 1698 req, sec_sqe3); 1699 1700 return 0; 1701 } 1702 1703 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err) 1704 { 1705 struct aead_request *a_req = req->aead_req.aead_req; 1706 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req); 1707 struct sec_aead_req *aead_req = &req->aead_req; 1708 struct sec_cipher_req *c_req = &req->c_req; 1709 size_t authsize = crypto_aead_authsize(tfm); 1710 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 1711 struct aead_request *backlog_aead_req; 1712 struct sec_req *backlog_req; 1713 size_t sz; 1714 1715 if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt) 1716 sec_update_iv(req, SEC_AEAD); 1717 1718 /* Copy output mac */ 1719 if (!err && c_req->encrypt) { 1720 struct scatterlist *sgl = a_req->dst; 1721 1722 sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl), 1723 aead_req->out_mac, 1724 authsize, a_req->cryptlen + 1725 a_req->assoclen); 1726 if (unlikely(sz != authsize)) { 1727 dev_err(c->dev, "copy out mac err!\n"); 1728 err = -EINVAL; 1729 } 1730 } 1731 1732 sec_free_req_id(req); 1733 1734 while (1) { 1735 backlog_req = sec_back_req_clear(c, qp_ctx); 1736 if (!backlog_req) 1737 break; 1738 1739 backlog_aead_req = backlog_req->aead_req.aead_req; 1740 backlog_aead_req->base.complete(&backlog_aead_req->base, 1741 -EINPROGRESS); 1742 atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt); 1743 } 1744 1745 a_req->base.complete(&a_req->base, err); 1746 } 1747 1748 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req) 1749 { 1750 sec_free_req_id(req); 1751 sec_free_queue_id(ctx, req); 1752 } 1753 1754 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req) 1755 { 1756 struct sec_qp_ctx *qp_ctx; 1757 int queue_id; 1758 1759 /* To load balance */ 1760 queue_id = sec_alloc_queue_id(ctx, req); 1761 qp_ctx = &ctx->qp_ctx[queue_id]; 1762 1763 req->req_id = sec_alloc_req_id(req, qp_ctx); 1764 if (unlikely(req->req_id < 0)) { 1765 sec_free_queue_id(ctx, req); 1766 return req->req_id; 1767 } 1768 1769 return 0; 1770 } 1771 1772 static int sec_process(struct sec_ctx *ctx, struct sec_req *req) 1773 { 1774 struct sec_cipher_req *c_req = &req->c_req; 1775 int ret; 1776 1777 ret = sec_request_init(ctx, req); 1778 if (unlikely(ret)) 1779 return ret; 1780 1781 ret = sec_request_transfer(ctx, req); 1782 if (unlikely(ret)) 1783 goto err_uninit_req; 1784 1785 /* Output IV as decrypto */ 1786 if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC || 1787 ctx->c_ctx.c_mode == SEC_CMODE_CTR)) 1788 sec_update_iv(req, ctx->alg_type); 1789 1790 ret = ctx->req_op->bd_send(ctx, req); 1791 if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) || 1792 (ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) { 1793 dev_err_ratelimited(ctx->dev, "send sec request failed!\n"); 1794 goto err_send_req; 1795 } 1796 1797 return ret; 1798 1799 err_send_req: 1800 /* As failing, restore the IV from user */ 1801 if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) { 1802 if (ctx->alg_type == SEC_SKCIPHER) 1803 memcpy(req->c_req.sk_req->iv, c_req->c_ivin, 1804 ctx->c_ctx.ivsize); 1805 else 1806 memcpy(req->aead_req.aead_req->iv, c_req->c_ivin, 1807 ctx->c_ctx.ivsize); 1808 } 1809 1810 sec_request_untransfer(ctx, req); 1811 err_uninit_req: 1812 sec_request_uninit(ctx, req); 1813 return ret; 1814 } 1815 1816 static const struct sec_req_op sec_skcipher_req_ops = { 1817 .buf_map = sec_skcipher_sgl_map, 1818 .buf_unmap = sec_skcipher_sgl_unmap, 1819 .do_transfer = sec_skcipher_copy_iv, 1820 .bd_fill = sec_skcipher_bd_fill, 1821 .bd_send = sec_bd_send, 1822 .callback = sec_skcipher_callback, 1823 .process = sec_process, 1824 }; 1825 1826 static const struct sec_req_op sec_aead_req_ops = { 1827 .buf_map = sec_aead_sgl_map, 1828 .buf_unmap = sec_aead_sgl_unmap, 1829 .do_transfer = sec_aead_set_iv, 1830 .bd_fill = sec_aead_bd_fill, 1831 .bd_send = sec_bd_send, 1832 .callback = sec_aead_callback, 1833 .process = sec_process, 1834 }; 1835 1836 static const struct sec_req_op sec_skcipher_req_ops_v3 = { 1837 .buf_map = sec_skcipher_sgl_map, 1838 .buf_unmap = sec_skcipher_sgl_unmap, 1839 .do_transfer = sec_skcipher_copy_iv, 1840 .bd_fill = sec_skcipher_bd_fill_v3, 1841 .bd_send = sec_bd_send, 1842 .callback = sec_skcipher_callback, 1843 .process = sec_process, 1844 }; 1845 1846 static const struct sec_req_op sec_aead_req_ops_v3 = { 1847 .buf_map = sec_aead_sgl_map, 1848 .buf_unmap = sec_aead_sgl_unmap, 1849 .do_transfer = sec_aead_set_iv, 1850 .bd_fill = sec_aead_bd_fill_v3, 1851 .bd_send = sec_bd_send, 1852 .callback = sec_aead_callback, 1853 .process = sec_process, 1854 }; 1855 1856 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm) 1857 { 1858 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 1859 int ret; 1860 1861 ret = sec_skcipher_init(tfm); 1862 if (ret) 1863 return ret; 1864 1865 if (ctx->sec->qm.ver < QM_HW_V3) { 1866 ctx->type_supported = SEC_BD_TYPE2; 1867 ctx->req_op = &sec_skcipher_req_ops; 1868 } else { 1869 ctx->type_supported = SEC_BD_TYPE3; 1870 ctx->req_op = &sec_skcipher_req_ops_v3; 1871 } 1872 1873 return ret; 1874 } 1875 1876 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm) 1877 { 1878 sec_skcipher_uninit(tfm); 1879 } 1880 1881 static int sec_aead_init(struct crypto_aead *tfm) 1882 { 1883 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1884 int ret; 1885 1886 crypto_aead_set_reqsize(tfm, sizeof(struct sec_req)); 1887 ctx->alg_type = SEC_AEAD; 1888 ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm); 1889 if (ctx->c_ctx.ivsize < SEC_AIV_SIZE || 1890 ctx->c_ctx.ivsize > SEC_IV_SIZE) { 1891 pr_err("get error aead iv size!\n"); 1892 return -EINVAL; 1893 } 1894 1895 ret = sec_ctx_base_init(ctx); 1896 if (ret) 1897 return ret; 1898 if (ctx->sec->qm.ver < QM_HW_V3) { 1899 ctx->type_supported = SEC_BD_TYPE2; 1900 ctx->req_op = &sec_aead_req_ops; 1901 } else { 1902 ctx->type_supported = SEC_BD_TYPE3; 1903 ctx->req_op = &sec_aead_req_ops_v3; 1904 } 1905 1906 ret = sec_auth_init(ctx); 1907 if (ret) 1908 goto err_auth_init; 1909 1910 ret = sec_cipher_init(ctx); 1911 if (ret) 1912 goto err_cipher_init; 1913 1914 return ret; 1915 1916 err_cipher_init: 1917 sec_auth_uninit(ctx); 1918 err_auth_init: 1919 sec_ctx_base_uninit(ctx); 1920 return ret; 1921 } 1922 1923 static void sec_aead_exit(struct crypto_aead *tfm) 1924 { 1925 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1926 1927 sec_cipher_uninit(ctx); 1928 sec_auth_uninit(ctx); 1929 sec_ctx_base_uninit(ctx); 1930 } 1931 1932 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name) 1933 { 1934 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1935 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx; 1936 int ret; 1937 1938 ret = sec_aead_init(tfm); 1939 if (ret) { 1940 pr_err("hisi_sec2: aead init error!\n"); 1941 return ret; 1942 } 1943 1944 auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0); 1945 if (IS_ERR(auth_ctx->hash_tfm)) { 1946 dev_err(ctx->dev, "aead alloc shash error!\n"); 1947 sec_aead_exit(tfm); 1948 return PTR_ERR(auth_ctx->hash_tfm); 1949 } 1950 1951 return 0; 1952 } 1953 1954 static void sec_aead_ctx_exit(struct crypto_aead *tfm) 1955 { 1956 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1957 1958 crypto_free_shash(ctx->a_ctx.hash_tfm); 1959 sec_aead_exit(tfm); 1960 } 1961 1962 static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm) 1963 { 1964 struct aead_alg *alg = crypto_aead_alg(tfm); 1965 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1966 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 1967 const char *aead_name = alg->base.cra_name; 1968 int ret; 1969 1970 ret = sec_aead_init(tfm); 1971 if (ret) { 1972 dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n"); 1973 return ret; 1974 } 1975 1976 a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0, 1977 CRYPTO_ALG_NEED_FALLBACK | 1978 CRYPTO_ALG_ASYNC); 1979 if (IS_ERR(a_ctx->fallback_aead_tfm)) { 1980 dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n"); 1981 sec_aead_exit(tfm); 1982 return PTR_ERR(a_ctx->fallback_aead_tfm); 1983 } 1984 a_ctx->fallback = false; 1985 1986 return 0; 1987 } 1988 1989 static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm) 1990 { 1991 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1992 1993 crypto_free_aead(ctx->a_ctx.fallback_aead_tfm); 1994 sec_aead_exit(tfm); 1995 } 1996 1997 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm) 1998 { 1999 return sec_aead_ctx_init(tfm, "sha1"); 2000 } 2001 2002 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm) 2003 { 2004 return sec_aead_ctx_init(tfm, "sha256"); 2005 } 2006 2007 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm) 2008 { 2009 return sec_aead_ctx_init(tfm, "sha512"); 2010 } 2011 2012 static int sec_skcipher_cryptlen_ckeck(struct sec_ctx *ctx, 2013 struct sec_req *sreq) 2014 { 2015 u32 cryptlen = sreq->c_req.sk_req->cryptlen; 2016 struct device *dev = ctx->dev; 2017 u8 c_mode = ctx->c_ctx.c_mode; 2018 int ret = 0; 2019 2020 switch (c_mode) { 2021 case SEC_CMODE_XTS: 2022 if (unlikely(cryptlen < AES_BLOCK_SIZE)) { 2023 dev_err(dev, "skcipher XTS mode input length error!\n"); 2024 ret = -EINVAL; 2025 } 2026 break; 2027 case SEC_CMODE_ECB: 2028 case SEC_CMODE_CBC: 2029 if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) { 2030 dev_err(dev, "skcipher AES input length error!\n"); 2031 ret = -EINVAL; 2032 } 2033 break; 2034 case SEC_CMODE_CFB: 2035 case SEC_CMODE_OFB: 2036 case SEC_CMODE_CTR: 2037 if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) { 2038 dev_err(dev, "skcipher HW version error!\n"); 2039 ret = -EINVAL; 2040 } 2041 break; 2042 default: 2043 ret = -EINVAL; 2044 } 2045 2046 return ret; 2047 } 2048 2049 static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq) 2050 { 2051 struct skcipher_request *sk_req = sreq->c_req.sk_req; 2052 struct device *dev = ctx->dev; 2053 u8 c_alg = ctx->c_ctx.c_alg; 2054 2055 if (unlikely(!sk_req->src || !sk_req->dst || 2056 sk_req->cryptlen > MAX_INPUT_DATA_LEN)) { 2057 dev_err(dev, "skcipher input param error!\n"); 2058 return -EINVAL; 2059 } 2060 sreq->c_req.c_len = sk_req->cryptlen; 2061 2062 if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ) 2063 sreq->use_pbuf = true; 2064 else 2065 sreq->use_pbuf = false; 2066 2067 if (c_alg == SEC_CALG_3DES) { 2068 if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) { 2069 dev_err(dev, "skcipher 3des input length error!\n"); 2070 return -EINVAL; 2071 } 2072 return 0; 2073 } else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) { 2074 return sec_skcipher_cryptlen_ckeck(ctx, sreq); 2075 } 2076 2077 dev_err(dev, "skcipher algorithm error!\n"); 2078 2079 return -EINVAL; 2080 } 2081 2082 static int sec_skcipher_soft_crypto(struct sec_ctx *ctx, 2083 struct skcipher_request *sreq, bool encrypt) 2084 { 2085 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 2086 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm); 2087 struct device *dev = ctx->dev; 2088 int ret; 2089 2090 if (!c_ctx->fbtfm) { 2091 dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n"); 2092 return -EINVAL; 2093 } 2094 2095 skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm); 2096 2097 /* software need sync mode to do crypto */ 2098 skcipher_request_set_callback(subreq, sreq->base.flags, 2099 NULL, NULL); 2100 skcipher_request_set_crypt(subreq, sreq->src, sreq->dst, 2101 sreq->cryptlen, sreq->iv); 2102 if (encrypt) 2103 ret = crypto_skcipher_encrypt(subreq); 2104 else 2105 ret = crypto_skcipher_decrypt(subreq); 2106 2107 skcipher_request_zero(subreq); 2108 2109 return ret; 2110 } 2111 2112 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt) 2113 { 2114 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req); 2115 struct sec_req *req = skcipher_request_ctx(sk_req); 2116 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 2117 int ret; 2118 2119 if (!sk_req->cryptlen) { 2120 if (ctx->c_ctx.c_mode == SEC_CMODE_XTS) 2121 return -EINVAL; 2122 return 0; 2123 } 2124 2125 req->flag = sk_req->base.flags; 2126 req->c_req.sk_req = sk_req; 2127 req->c_req.encrypt = encrypt; 2128 req->ctx = ctx; 2129 2130 ret = sec_skcipher_param_check(ctx, req); 2131 if (unlikely(ret)) 2132 return -EINVAL; 2133 2134 if (unlikely(ctx->c_ctx.fallback)) 2135 return sec_skcipher_soft_crypto(ctx, sk_req, encrypt); 2136 2137 return ctx->req_op->process(ctx, req); 2138 } 2139 2140 static int sec_skcipher_encrypt(struct skcipher_request *sk_req) 2141 { 2142 return sec_skcipher_crypto(sk_req, true); 2143 } 2144 2145 static int sec_skcipher_decrypt(struct skcipher_request *sk_req) 2146 { 2147 return sec_skcipher_crypto(sk_req, false); 2148 } 2149 2150 #define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \ 2151 sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\ 2152 {\ 2153 .base = {\ 2154 .cra_name = sec_cra_name,\ 2155 .cra_driver_name = "hisi_sec_"sec_cra_name,\ 2156 .cra_priority = SEC_PRIORITY,\ 2157 .cra_flags = CRYPTO_ALG_ASYNC |\ 2158 CRYPTO_ALG_NEED_FALLBACK,\ 2159 .cra_blocksize = blk_size,\ 2160 .cra_ctxsize = sizeof(struct sec_ctx),\ 2161 .cra_module = THIS_MODULE,\ 2162 },\ 2163 .init = ctx_init,\ 2164 .exit = ctx_exit,\ 2165 .setkey = sec_set_key,\ 2166 .decrypt = sec_skcipher_decrypt,\ 2167 .encrypt = sec_skcipher_encrypt,\ 2168 .min_keysize = sec_min_key_size,\ 2169 .max_keysize = sec_max_key_size,\ 2170 .ivsize = iv_size,\ 2171 } 2172 2173 #define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \ 2174 max_key_size, blk_size, iv_size) \ 2175 SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \ 2176 sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size) 2177 2178 static struct sec_skcipher sec_skciphers[] = { 2179 { 2180 .alg_msk = BIT(0), 2181 .alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE, 2182 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0), 2183 }, 2184 { 2185 .alg_msk = BIT(1), 2186 .alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE, 2187 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), 2188 }, 2189 { 2190 .alg_msk = BIT(2), 2191 .alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr, AES_MIN_KEY_SIZE, 2192 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), 2193 }, 2194 { 2195 .alg_msk = BIT(3), 2196 .alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts, SEC_XTS_MIN_KEY_SIZE, 2197 SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), 2198 }, 2199 { 2200 .alg_msk = BIT(4), 2201 .alg = SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb, AES_MIN_KEY_SIZE, 2202 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), 2203 }, 2204 { 2205 .alg_msk = BIT(5), 2206 .alg = SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb, AES_MIN_KEY_SIZE, 2207 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), 2208 }, 2209 { 2210 .alg_msk = BIT(12), 2211 .alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc, AES_MIN_KEY_SIZE, 2212 AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), 2213 }, 2214 { 2215 .alg_msk = BIT(13), 2216 .alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE, 2217 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), 2218 }, 2219 { 2220 .alg_msk = BIT(14), 2221 .alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts, SEC_XTS_MIN_KEY_SIZE, 2222 SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), 2223 }, 2224 { 2225 .alg_msk = BIT(15), 2226 .alg = SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb, AES_MIN_KEY_SIZE, 2227 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), 2228 }, 2229 { 2230 .alg_msk = BIT(16), 2231 .alg = SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb, AES_MIN_KEY_SIZE, 2232 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), 2233 }, 2234 { 2235 .alg_msk = BIT(23), 2236 .alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE, 2237 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0), 2238 }, 2239 { 2240 .alg_msk = BIT(24), 2241 .alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE, 2242 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 2243 DES3_EDE_BLOCK_SIZE), 2244 }, 2245 }; 2246 2247 static int aead_iv_demension_check(struct aead_request *aead_req) 2248 { 2249 u8 cl; 2250 2251 cl = aead_req->iv[0] + 1; 2252 if (cl < IV_CL_MIN || cl > IV_CL_MAX) 2253 return -EINVAL; 2254 2255 if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl)) 2256 return -EOVERFLOW; 2257 2258 return 0; 2259 } 2260 2261 static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq) 2262 { 2263 struct aead_request *req = sreq->aead_req.aead_req; 2264 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2265 size_t authsize = crypto_aead_authsize(tfm); 2266 u8 c_mode = ctx->c_ctx.c_mode; 2267 struct device *dev = ctx->dev; 2268 int ret; 2269 2270 if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN || 2271 req->assoclen > SEC_MAX_AAD_LEN)) { 2272 dev_err(dev, "aead input spec error!\n"); 2273 return -EINVAL; 2274 } 2275 2276 if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) || 2277 (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN || 2278 authsize & MAC_LEN_MASK)))) { 2279 dev_err(dev, "aead input mac length error!\n"); 2280 return -EINVAL; 2281 } 2282 2283 if (c_mode == SEC_CMODE_CCM) { 2284 if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) { 2285 dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n"); 2286 return -EINVAL; 2287 } 2288 ret = aead_iv_demension_check(req); 2289 if (ret) { 2290 dev_err(dev, "aead input iv param error!\n"); 2291 return ret; 2292 } 2293 } 2294 2295 if (sreq->c_req.encrypt) 2296 sreq->c_req.c_len = req->cryptlen; 2297 else 2298 sreq->c_req.c_len = req->cryptlen - authsize; 2299 if (c_mode == SEC_CMODE_CBC) { 2300 if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) { 2301 dev_err(dev, "aead crypto length error!\n"); 2302 return -EINVAL; 2303 } 2304 } 2305 2306 return 0; 2307 } 2308 2309 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq) 2310 { 2311 struct aead_request *req = sreq->aead_req.aead_req; 2312 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2313 size_t authsize = crypto_aead_authsize(tfm); 2314 struct device *dev = ctx->dev; 2315 u8 c_alg = ctx->c_ctx.c_alg; 2316 2317 if (unlikely(!req->src || !req->dst)) { 2318 dev_err(dev, "aead input param error!\n"); 2319 return -EINVAL; 2320 } 2321 2322 if (ctx->sec->qm.ver == QM_HW_V2) { 2323 if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt && 2324 req->cryptlen <= authsize))) { 2325 ctx->a_ctx.fallback = true; 2326 return -EINVAL; 2327 } 2328 } 2329 2330 /* Support AES or SM4 */ 2331 if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) { 2332 dev_err(dev, "aead crypto alg error!\n"); 2333 return -EINVAL; 2334 } 2335 2336 if (unlikely(sec_aead_spec_check(ctx, sreq))) 2337 return -EINVAL; 2338 2339 if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <= 2340 SEC_PBUF_SZ) 2341 sreq->use_pbuf = true; 2342 else 2343 sreq->use_pbuf = false; 2344 2345 return 0; 2346 } 2347 2348 static int sec_aead_soft_crypto(struct sec_ctx *ctx, 2349 struct aead_request *aead_req, 2350 bool encrypt) 2351 { 2352 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 2353 struct device *dev = ctx->dev; 2354 struct aead_request *subreq; 2355 int ret; 2356 2357 /* Kunpeng920 aead mode not support input 0 size */ 2358 if (!a_ctx->fallback_aead_tfm) { 2359 dev_err(dev, "aead fallback tfm is NULL!\n"); 2360 return -EINVAL; 2361 } 2362 2363 subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL); 2364 if (!subreq) 2365 return -ENOMEM; 2366 2367 aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm); 2368 aead_request_set_callback(subreq, aead_req->base.flags, 2369 aead_req->base.complete, aead_req->base.data); 2370 aead_request_set_crypt(subreq, aead_req->src, aead_req->dst, 2371 aead_req->cryptlen, aead_req->iv); 2372 aead_request_set_ad(subreq, aead_req->assoclen); 2373 2374 if (encrypt) 2375 ret = crypto_aead_encrypt(subreq); 2376 else 2377 ret = crypto_aead_decrypt(subreq); 2378 aead_request_free(subreq); 2379 2380 return ret; 2381 } 2382 2383 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt) 2384 { 2385 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req); 2386 struct sec_req *req = aead_request_ctx(a_req); 2387 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 2388 int ret; 2389 2390 req->flag = a_req->base.flags; 2391 req->aead_req.aead_req = a_req; 2392 req->c_req.encrypt = encrypt; 2393 req->ctx = ctx; 2394 2395 ret = sec_aead_param_check(ctx, req); 2396 if (unlikely(ret)) { 2397 if (ctx->a_ctx.fallback) 2398 return sec_aead_soft_crypto(ctx, a_req, encrypt); 2399 return -EINVAL; 2400 } 2401 2402 return ctx->req_op->process(ctx, req); 2403 } 2404 2405 static int sec_aead_encrypt(struct aead_request *a_req) 2406 { 2407 return sec_aead_crypto(a_req, true); 2408 } 2409 2410 static int sec_aead_decrypt(struct aead_request *a_req) 2411 { 2412 return sec_aead_crypto(a_req, false); 2413 } 2414 2415 #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\ 2416 ctx_exit, blk_size, iv_size, max_authsize)\ 2417 {\ 2418 .base = {\ 2419 .cra_name = sec_cra_name,\ 2420 .cra_driver_name = "hisi_sec_"sec_cra_name,\ 2421 .cra_priority = SEC_PRIORITY,\ 2422 .cra_flags = CRYPTO_ALG_ASYNC |\ 2423 CRYPTO_ALG_NEED_FALLBACK,\ 2424 .cra_blocksize = blk_size,\ 2425 .cra_ctxsize = sizeof(struct sec_ctx),\ 2426 .cra_module = THIS_MODULE,\ 2427 },\ 2428 .init = ctx_init,\ 2429 .exit = ctx_exit,\ 2430 .setkey = sec_set_key,\ 2431 .setauthsize = sec_aead_setauthsize,\ 2432 .decrypt = sec_aead_decrypt,\ 2433 .encrypt = sec_aead_encrypt,\ 2434 .ivsize = iv_size,\ 2435 .maxauthsize = max_authsize,\ 2436 } 2437 2438 static struct sec_aead sec_aeads[] = { 2439 { 2440 .alg_msk = BIT(6), 2441 .alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init, 2442 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE, 2443 AES_BLOCK_SIZE), 2444 }, 2445 { 2446 .alg_msk = BIT(7), 2447 .alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init, 2448 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE, 2449 AES_BLOCK_SIZE), 2450 }, 2451 { 2452 .alg_msk = BIT(17), 2453 .alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init, 2454 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE, 2455 AES_BLOCK_SIZE), 2456 }, 2457 { 2458 .alg_msk = BIT(18), 2459 .alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init, 2460 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE, 2461 AES_BLOCK_SIZE), 2462 }, 2463 { 2464 .alg_msk = BIT(43), 2465 .alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1, 2466 sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE, 2467 AES_BLOCK_SIZE, SHA1_DIGEST_SIZE), 2468 }, 2469 { 2470 .alg_msk = BIT(44), 2471 .alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256, 2472 sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE, 2473 AES_BLOCK_SIZE, SHA256_DIGEST_SIZE), 2474 }, 2475 { 2476 .alg_msk = BIT(45), 2477 .alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512, 2478 sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE, 2479 AES_BLOCK_SIZE, SHA512_DIGEST_SIZE), 2480 }, 2481 }; 2482 2483 static void sec_unregister_skcipher(u64 alg_mask, int end) 2484 { 2485 int i; 2486 2487 for (i = 0; i < end; i++) 2488 if (sec_skciphers[i].alg_msk & alg_mask) 2489 crypto_unregister_skcipher(&sec_skciphers[i].alg); 2490 } 2491 2492 static int sec_register_skcipher(u64 alg_mask) 2493 { 2494 int i, ret, count; 2495 2496 count = ARRAY_SIZE(sec_skciphers); 2497 2498 for (i = 0; i < count; i++) { 2499 if (!(sec_skciphers[i].alg_msk & alg_mask)) 2500 continue; 2501 2502 ret = crypto_register_skcipher(&sec_skciphers[i].alg); 2503 if (ret) 2504 goto err; 2505 } 2506 2507 return 0; 2508 2509 err: 2510 sec_unregister_skcipher(alg_mask, i); 2511 2512 return ret; 2513 } 2514 2515 static void sec_unregister_aead(u64 alg_mask, int end) 2516 { 2517 int i; 2518 2519 for (i = 0; i < end; i++) 2520 if (sec_aeads[i].alg_msk & alg_mask) 2521 crypto_unregister_aead(&sec_aeads[i].alg); 2522 } 2523 2524 static int sec_register_aead(u64 alg_mask) 2525 { 2526 int i, ret, count; 2527 2528 count = ARRAY_SIZE(sec_aeads); 2529 2530 for (i = 0; i < count; i++) { 2531 if (!(sec_aeads[i].alg_msk & alg_mask)) 2532 continue; 2533 2534 ret = crypto_register_aead(&sec_aeads[i].alg); 2535 if (ret) 2536 goto err; 2537 } 2538 2539 return 0; 2540 2541 err: 2542 sec_unregister_aead(alg_mask, i); 2543 2544 return ret; 2545 } 2546 2547 int sec_register_to_crypto(struct hisi_qm *qm) 2548 { 2549 u64 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH, SEC_DRV_ALG_BITMAP_LOW); 2550 int ret; 2551 2552 ret = sec_register_skcipher(alg_mask); 2553 if (ret) 2554 return ret; 2555 2556 ret = sec_register_aead(alg_mask); 2557 if (ret) 2558 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers)); 2559 2560 return ret; 2561 } 2562 2563 void sec_unregister_from_crypto(struct hisi_qm *qm) 2564 { 2565 u64 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH, SEC_DRV_ALG_BITMAP_LOW); 2566 2567 sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads)); 2568 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers)); 2569 } 2570