1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3
4 #include <crypto/aes.h>
5 #include <crypto/aead.h>
6 #include <crypto/algapi.h>
7 #include <crypto/authenc.h>
8 #include <crypto/des.h>
9 #include <crypto/hash.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/des.h>
12 #include <crypto/sha1.h>
13 #include <crypto/sha2.h>
14 #include <crypto/skcipher.h>
15 #include <crypto/xts.h>
16 #include <linux/crypto.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/idr.h>
19
20 #include "sec.h"
21 #include "sec_crypto.h"
22
23 #define SEC_PRIORITY 4001
24 #define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE)
25 #define SEC_XTS_MID_KEY_SIZE (3 * AES_MIN_KEY_SIZE)
26 #define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE)
27 #define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE)
28 #define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE)
29
30 /* SEC sqe(bd) bit operational relative MACRO */
31 #define SEC_DE_OFFSET 1
32 #define SEC_CIPHER_OFFSET 4
33 #define SEC_SCENE_OFFSET 3
34 #define SEC_DST_SGL_OFFSET 2
35 #define SEC_SRC_SGL_OFFSET 7
36 #define SEC_CKEY_OFFSET 9
37 #define SEC_CMODE_OFFSET 12
38 #define SEC_AKEY_OFFSET 5
39 #define SEC_AEAD_ALG_OFFSET 11
40 #define SEC_AUTH_OFFSET 6
41
42 #define SEC_DE_OFFSET_V3 9
43 #define SEC_SCENE_OFFSET_V3 5
44 #define SEC_CKEY_OFFSET_V3 13
45 #define SEC_CTR_CNT_OFFSET 25
46 #define SEC_CTR_CNT_ROLLOVER 2
47 #define SEC_SRC_SGL_OFFSET_V3 11
48 #define SEC_DST_SGL_OFFSET_V3 14
49 #define SEC_CALG_OFFSET_V3 4
50 #define SEC_AKEY_OFFSET_V3 9
51 #define SEC_MAC_OFFSET_V3 4
52 #define SEC_AUTH_ALG_OFFSET_V3 15
53 #define SEC_CIPHER_AUTH_V3 0xbf
54 #define SEC_AUTH_CIPHER_V3 0x40
55 #define SEC_FLAG_OFFSET 7
56 #define SEC_FLAG_MASK 0x0780
57 #define SEC_TYPE_MASK 0x0F
58 #define SEC_DONE_MASK 0x0001
59 #define SEC_ICV_MASK 0x000E
60 #define SEC_SQE_LEN_RATE_MASK 0x3
61
62 #define SEC_TOTAL_IV_SZ(depth) (SEC_IV_SIZE * (depth))
63 #define SEC_SGL_SGE_NR 128
64 #define SEC_CIPHER_AUTH 0xfe
65 #define SEC_AUTH_CIPHER 0x1
66 #define SEC_MAX_MAC_LEN 64
67 #define SEC_MAX_AAD_LEN 65535
68 #define SEC_MAX_CCM_AAD_LEN 65279
69 #define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth))
70
71 #define SEC_PBUF_SZ 512
72 #define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ
73 #define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE)
74 #define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \
75 SEC_MAX_MAC_LEN * 2)
76 #define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG)
77 #define SEC_PBUF_PAGE_NUM(depth) ((depth) / SEC_PBUF_NUM)
78 #define SEC_PBUF_LEFT_SZ(depth) (SEC_PBUF_PKG * ((depth) - \
79 SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM))
80 #define SEC_TOTAL_PBUF_SZ(depth) (PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) + \
81 SEC_PBUF_LEFT_SZ(depth))
82
83 #define SEC_SQE_LEN_RATE 4
84 #define SEC_SQE_CFLAG 2
85 #define SEC_SQE_AEAD_FLAG 3
86 #define SEC_SQE_DONE 0x1
87 #define SEC_ICV_ERR 0x2
88 #define MIN_MAC_LEN 4
89 #define MAC_LEN_MASK 0x1U
90 #define MAX_INPUT_DATA_LEN 0xFFFE00
91 #define BITS_MASK 0xFF
92 #define BYTE_BITS 0x8
93 #define SEC_XTS_NAME_SZ 0x3
94 #define IV_CM_CAL_NUM 2
95 #define IV_CL_MASK 0x7
96 #define IV_CL_MIN 2
97 #define IV_CL_MID 4
98 #define IV_CL_MAX 8
99 #define IV_FLAGS_OFFSET 0x6
100 #define IV_CM_OFFSET 0x3
101 #define IV_LAST_BYTE1 1
102 #define IV_LAST_BYTE2 2
103 #define IV_LAST_BYTE_MASK 0xFF
104 #define IV_CTR_INIT 0x1
105 #define IV_BYTE_OFFSET 0x8
106
107 struct sec_skcipher {
108 u64 alg_msk;
109 struct skcipher_alg alg;
110 };
111
112 struct sec_aead {
113 u64 alg_msk;
114 struct aead_alg alg;
115 };
116
117 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
sec_alloc_queue_id(struct sec_ctx * ctx,struct sec_req * req)118 static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
119 {
120 if (req->c_req.encrypt)
121 return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
122 ctx->hlf_q_num;
123
124 return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
125 ctx->hlf_q_num;
126 }
127
sec_free_queue_id(struct sec_ctx * ctx,struct sec_req * req)128 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
129 {
130 if (req->c_req.encrypt)
131 atomic_dec(&ctx->enc_qcyclic);
132 else
133 atomic_dec(&ctx->dec_qcyclic);
134 }
135
sec_alloc_req_id(struct sec_req * req,struct sec_qp_ctx * qp_ctx)136 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
137 {
138 int req_id;
139
140 spin_lock_bh(&qp_ctx->req_lock);
141 req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC);
142 spin_unlock_bh(&qp_ctx->req_lock);
143 if (unlikely(req_id < 0)) {
144 dev_err(req->ctx->dev, "alloc req id fail!\n");
145 return req_id;
146 }
147
148 req->qp_ctx = qp_ctx;
149 qp_ctx->req_list[req_id] = req;
150
151 return req_id;
152 }
153
sec_free_req_id(struct sec_req * req)154 static void sec_free_req_id(struct sec_req *req)
155 {
156 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
157 int req_id = req->req_id;
158
159 if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) {
160 dev_err(req->ctx->dev, "free request id invalid!\n");
161 return;
162 }
163
164 qp_ctx->req_list[req_id] = NULL;
165 req->qp_ctx = NULL;
166
167 spin_lock_bh(&qp_ctx->req_lock);
168 idr_remove(&qp_ctx->req_idr, req_id);
169 spin_unlock_bh(&qp_ctx->req_lock);
170 }
171
pre_parse_finished_bd(struct bd_status * status,void * resp)172 static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
173 {
174 struct sec_sqe *bd = resp;
175
176 status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
177 status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
178 status->flag = (le16_to_cpu(bd->type2.done_flag) &
179 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
180 status->tag = le16_to_cpu(bd->type2.tag);
181 status->err_type = bd->type2.error_type;
182
183 return bd->type_cipher_auth & SEC_TYPE_MASK;
184 }
185
pre_parse_finished_bd3(struct bd_status * status,void * resp)186 static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
187 {
188 struct sec_sqe3 *bd3 = resp;
189
190 status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
191 status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
192 status->flag = (le16_to_cpu(bd3->done_flag) &
193 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
194 status->tag = le64_to_cpu(bd3->tag);
195 status->err_type = bd3->error_type;
196
197 return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
198 }
199
sec_cb_status_check(struct sec_req * req,struct bd_status * status)200 static int sec_cb_status_check(struct sec_req *req,
201 struct bd_status *status)
202 {
203 struct sec_ctx *ctx = req->ctx;
204
205 if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
206 dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
207 req->err_type, status->done);
208 return -EIO;
209 }
210
211 if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
212 if (unlikely(status->flag != SEC_SQE_CFLAG)) {
213 dev_err_ratelimited(ctx->dev, "flag[%u]\n",
214 status->flag);
215 return -EIO;
216 }
217 } else if (unlikely(ctx->alg_type == SEC_AEAD)) {
218 if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
219 status->icv == SEC_ICV_ERR)) {
220 dev_err_ratelimited(ctx->dev,
221 "flag[%u], icv[%u]\n",
222 status->flag, status->icv);
223 return -EBADMSG;
224 }
225 }
226
227 return 0;
228 }
229
sec_req_cb(struct hisi_qp * qp,void * resp)230 static void sec_req_cb(struct hisi_qp *qp, void *resp)
231 {
232 struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
233 struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
234 u8 type_supported = qp_ctx->ctx->type_supported;
235 struct bd_status status;
236 struct sec_ctx *ctx;
237 struct sec_req *req;
238 int err;
239 u8 type;
240
241 if (type_supported == SEC_BD_TYPE2) {
242 type = pre_parse_finished_bd(&status, resp);
243 req = qp_ctx->req_list[status.tag];
244 } else {
245 type = pre_parse_finished_bd3(&status, resp);
246 req = (void *)(uintptr_t)status.tag;
247 }
248
249 if (unlikely(type != type_supported)) {
250 atomic64_inc(&dfx->err_bd_cnt);
251 pr_err("err bd type [%u]\n", type);
252 return;
253 }
254
255 if (unlikely(!req)) {
256 atomic64_inc(&dfx->invalid_req_cnt);
257 atomic_inc(&qp->qp_status.used);
258 return;
259 }
260
261 req->err_type = status.err_type;
262 ctx = req->ctx;
263 err = sec_cb_status_check(req, &status);
264 if (err)
265 atomic64_inc(&dfx->done_flag_cnt);
266
267 atomic64_inc(&dfx->recv_cnt);
268
269 ctx->req_op->buf_unmap(ctx, req);
270
271 ctx->req_op->callback(ctx, req, err);
272 }
273
sec_bd_send(struct sec_ctx * ctx,struct sec_req * req)274 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
275 {
276 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
277 int ret;
278
279 if (ctx->fake_req_limit <=
280 atomic_read(&qp_ctx->qp->qp_status.used) &&
281 !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
282 return -EBUSY;
283
284 spin_lock_bh(&qp_ctx->req_lock);
285 ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
286 if (ctx->fake_req_limit <=
287 atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
288 list_add_tail(&req->backlog_head, &qp_ctx->backlog);
289 atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
290 atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
291 spin_unlock_bh(&qp_ctx->req_lock);
292 return -EBUSY;
293 }
294 spin_unlock_bh(&qp_ctx->req_lock);
295
296 if (unlikely(ret == -EBUSY))
297 return -ENOBUFS;
298
299 if (likely(!ret)) {
300 ret = -EINPROGRESS;
301 atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
302 }
303
304 return ret;
305 }
306
307 /* Get DMA memory resources */
sec_alloc_civ_resource(struct device * dev,struct sec_alg_res * res)308 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
309 {
310 u16 q_depth = res->depth;
311 int i;
312
313 res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
314 &res->c_ivin_dma, GFP_KERNEL);
315 if (!res->c_ivin)
316 return -ENOMEM;
317
318 for (i = 1; i < q_depth; i++) {
319 res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
320 res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
321 }
322
323 return 0;
324 }
325
sec_free_civ_resource(struct device * dev,struct sec_alg_res * res)326 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
327 {
328 if (res->c_ivin)
329 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
330 res->c_ivin, res->c_ivin_dma);
331 }
332
sec_alloc_aiv_resource(struct device * dev,struct sec_alg_res * res)333 static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
334 {
335 u16 q_depth = res->depth;
336 int i;
337
338 res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
339 &res->a_ivin_dma, GFP_KERNEL);
340 if (!res->a_ivin)
341 return -ENOMEM;
342
343 for (i = 1; i < q_depth; i++) {
344 res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
345 res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
346 }
347
348 return 0;
349 }
350
sec_free_aiv_resource(struct device * dev,struct sec_alg_res * res)351 static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
352 {
353 if (res->a_ivin)
354 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
355 res->a_ivin, res->a_ivin_dma);
356 }
357
sec_alloc_mac_resource(struct device * dev,struct sec_alg_res * res)358 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
359 {
360 u16 q_depth = res->depth;
361 int i;
362
363 res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1,
364 &res->out_mac_dma, GFP_KERNEL);
365 if (!res->out_mac)
366 return -ENOMEM;
367
368 for (i = 1; i < q_depth; i++) {
369 res[i].out_mac_dma = res->out_mac_dma +
370 i * (SEC_MAX_MAC_LEN << 1);
371 res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
372 }
373
374 return 0;
375 }
376
sec_free_mac_resource(struct device * dev,struct sec_alg_res * res)377 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
378 {
379 if (res->out_mac)
380 dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1,
381 res->out_mac, res->out_mac_dma);
382 }
383
sec_free_pbuf_resource(struct device * dev,struct sec_alg_res * res)384 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
385 {
386 if (res->pbuf)
387 dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth),
388 res->pbuf, res->pbuf_dma);
389 }
390
391 /*
392 * To improve performance, pbuffer is used for
393 * small packets (< 512Bytes) as IOMMU translation using.
394 */
sec_alloc_pbuf_resource(struct device * dev,struct sec_alg_res * res)395 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
396 {
397 u16 q_depth = res->depth;
398 int size = SEC_PBUF_PAGE_NUM(q_depth);
399 int pbuf_page_offset;
400 int i, j, k;
401
402 res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth),
403 &res->pbuf_dma, GFP_KERNEL);
404 if (!res->pbuf)
405 return -ENOMEM;
406
407 /*
408 * SEC_PBUF_PKG contains data pbuf, iv and
409 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
410 * Every PAGE contains six SEC_PBUF_PKG
411 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
412 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
413 * for the SEC_TOTAL_PBUF_SZ
414 */
415 for (i = 0; i <= size; i++) {
416 pbuf_page_offset = PAGE_SIZE * i;
417 for (j = 0; j < SEC_PBUF_NUM; j++) {
418 k = i * SEC_PBUF_NUM + j;
419 if (k == q_depth)
420 break;
421 res[k].pbuf = res->pbuf +
422 j * SEC_PBUF_PKG + pbuf_page_offset;
423 res[k].pbuf_dma = res->pbuf_dma +
424 j * SEC_PBUF_PKG + pbuf_page_offset;
425 }
426 }
427
428 return 0;
429 }
430
sec_alg_resource_alloc(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)431 static int sec_alg_resource_alloc(struct sec_ctx *ctx,
432 struct sec_qp_ctx *qp_ctx)
433 {
434 struct sec_alg_res *res = qp_ctx->res;
435 struct device *dev = ctx->dev;
436 int ret;
437
438 ret = sec_alloc_civ_resource(dev, res);
439 if (ret)
440 return ret;
441
442 if (ctx->alg_type == SEC_AEAD) {
443 ret = sec_alloc_aiv_resource(dev, res);
444 if (ret)
445 goto alloc_aiv_fail;
446
447 ret = sec_alloc_mac_resource(dev, res);
448 if (ret)
449 goto alloc_mac_fail;
450 }
451 if (ctx->pbuf_supported) {
452 ret = sec_alloc_pbuf_resource(dev, res);
453 if (ret) {
454 dev_err(dev, "fail to alloc pbuf dma resource!\n");
455 goto alloc_pbuf_fail;
456 }
457 }
458
459 return 0;
460
461 alloc_pbuf_fail:
462 if (ctx->alg_type == SEC_AEAD)
463 sec_free_mac_resource(dev, qp_ctx->res);
464 alloc_mac_fail:
465 if (ctx->alg_type == SEC_AEAD)
466 sec_free_aiv_resource(dev, res);
467 alloc_aiv_fail:
468 sec_free_civ_resource(dev, res);
469 return ret;
470 }
471
sec_alg_resource_free(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)472 static void sec_alg_resource_free(struct sec_ctx *ctx,
473 struct sec_qp_ctx *qp_ctx)
474 {
475 struct device *dev = ctx->dev;
476
477 sec_free_civ_resource(dev, qp_ctx->res);
478
479 if (ctx->pbuf_supported)
480 sec_free_pbuf_resource(dev, qp_ctx->res);
481 if (ctx->alg_type == SEC_AEAD) {
482 sec_free_mac_resource(dev, qp_ctx->res);
483 sec_free_aiv_resource(dev, qp_ctx->res);
484 }
485 }
486
sec_alloc_qp_ctx_resource(struct hisi_qm * qm,struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)487 static int sec_alloc_qp_ctx_resource(struct hisi_qm *qm, struct sec_ctx *ctx,
488 struct sec_qp_ctx *qp_ctx)
489 {
490 u16 q_depth = qp_ctx->qp->sq_depth;
491 struct device *dev = ctx->dev;
492 int ret = -ENOMEM;
493
494 qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL);
495 if (!qp_ctx->req_list)
496 return ret;
497
498 qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL);
499 if (!qp_ctx->res)
500 goto err_free_req_list;
501 qp_ctx->res->depth = q_depth;
502
503 qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
504 if (IS_ERR(qp_ctx->c_in_pool)) {
505 dev_err(dev, "fail to create sgl pool for input!\n");
506 goto err_free_res;
507 }
508
509 qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
510 if (IS_ERR(qp_ctx->c_out_pool)) {
511 dev_err(dev, "fail to create sgl pool for output!\n");
512 goto err_free_c_in_pool;
513 }
514
515 ret = sec_alg_resource_alloc(ctx, qp_ctx);
516 if (ret)
517 goto err_free_c_out_pool;
518
519 return 0;
520
521 err_free_c_out_pool:
522 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
523 err_free_c_in_pool:
524 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
525 err_free_res:
526 kfree(qp_ctx->res);
527 err_free_req_list:
528 kfree(qp_ctx->req_list);
529 return ret;
530 }
531
sec_free_qp_ctx_resource(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)532 static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
533 {
534 struct device *dev = ctx->dev;
535
536 sec_alg_resource_free(ctx, qp_ctx);
537 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
538 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
539 kfree(qp_ctx->res);
540 kfree(qp_ctx->req_list);
541 }
542
sec_create_qp_ctx(struct hisi_qm * qm,struct sec_ctx * ctx,int qp_ctx_id,int alg_type)543 static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
544 int qp_ctx_id, int alg_type)
545 {
546 struct sec_qp_ctx *qp_ctx;
547 struct hisi_qp *qp;
548 int ret;
549
550 qp_ctx = &ctx->qp_ctx[qp_ctx_id];
551 qp = ctx->qps[qp_ctx_id];
552 qp->req_type = 0;
553 qp->qp_ctx = qp_ctx;
554 qp_ctx->qp = qp;
555 qp_ctx->ctx = ctx;
556
557 qp->req_cb = sec_req_cb;
558
559 spin_lock_init(&qp_ctx->req_lock);
560 idr_init(&qp_ctx->req_idr);
561 INIT_LIST_HEAD(&qp_ctx->backlog);
562
563 ret = sec_alloc_qp_ctx_resource(qm, ctx, qp_ctx);
564 if (ret)
565 goto err_destroy_idr;
566
567 ret = hisi_qm_start_qp(qp, 0);
568 if (ret < 0)
569 goto err_resource_free;
570
571 return 0;
572
573 err_resource_free:
574 sec_free_qp_ctx_resource(ctx, qp_ctx);
575 err_destroy_idr:
576 idr_destroy(&qp_ctx->req_idr);
577 return ret;
578 }
579
sec_release_qp_ctx(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)580 static void sec_release_qp_ctx(struct sec_ctx *ctx,
581 struct sec_qp_ctx *qp_ctx)
582 {
583 hisi_qm_stop_qp(qp_ctx->qp);
584 sec_free_qp_ctx_resource(ctx, qp_ctx);
585 idr_destroy(&qp_ctx->req_idr);
586 }
587
sec_ctx_base_init(struct sec_ctx * ctx)588 static int sec_ctx_base_init(struct sec_ctx *ctx)
589 {
590 struct sec_dev *sec;
591 int i, ret;
592
593 ctx->qps = sec_create_qps();
594 if (!ctx->qps) {
595 pr_err("Can not create sec qps!\n");
596 return -ENODEV;
597 }
598
599 sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
600 ctx->sec = sec;
601 ctx->dev = &sec->qm.pdev->dev;
602 ctx->hlf_q_num = sec->ctx_q_num >> 1;
603
604 ctx->pbuf_supported = ctx->sec->iommu_used;
605
606 /* Half of queue depth is taken as fake requests limit in the queue. */
607 ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1;
608 ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
609 GFP_KERNEL);
610 if (!ctx->qp_ctx) {
611 ret = -ENOMEM;
612 goto err_destroy_qps;
613 }
614
615 for (i = 0; i < sec->ctx_q_num; i++) {
616 ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
617 if (ret)
618 goto err_sec_release_qp_ctx;
619 }
620
621 return 0;
622
623 err_sec_release_qp_ctx:
624 for (i = i - 1; i >= 0; i--)
625 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
626 kfree(ctx->qp_ctx);
627 err_destroy_qps:
628 sec_destroy_qps(ctx->qps, sec->ctx_q_num);
629 return ret;
630 }
631
sec_ctx_base_uninit(struct sec_ctx * ctx)632 static void sec_ctx_base_uninit(struct sec_ctx *ctx)
633 {
634 int i;
635
636 for (i = 0; i < ctx->sec->ctx_q_num; i++)
637 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
638
639 sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
640 kfree(ctx->qp_ctx);
641 }
642
sec_cipher_init(struct sec_ctx * ctx)643 static int sec_cipher_init(struct sec_ctx *ctx)
644 {
645 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
646
647 c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
648 &c_ctx->c_key_dma, GFP_KERNEL);
649 if (!c_ctx->c_key)
650 return -ENOMEM;
651
652 return 0;
653 }
654
sec_cipher_uninit(struct sec_ctx * ctx)655 static void sec_cipher_uninit(struct sec_ctx *ctx)
656 {
657 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
658
659 memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
660 dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
661 c_ctx->c_key, c_ctx->c_key_dma);
662 }
663
sec_auth_init(struct sec_ctx * ctx)664 static int sec_auth_init(struct sec_ctx *ctx)
665 {
666 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
667
668 a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
669 &a_ctx->a_key_dma, GFP_KERNEL);
670 if (!a_ctx->a_key)
671 return -ENOMEM;
672
673 return 0;
674 }
675
sec_auth_uninit(struct sec_ctx * ctx)676 static void sec_auth_uninit(struct sec_ctx *ctx)
677 {
678 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
679
680 memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
681 dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
682 a_ctx->a_key, a_ctx->a_key_dma);
683 }
684
sec_skcipher_fbtfm_init(struct crypto_skcipher * tfm)685 static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
686 {
687 const char *alg = crypto_tfm_alg_name(&tfm->base);
688 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
689 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
690
691 c_ctx->fallback = false;
692
693 /* Currently, only XTS mode need fallback tfm when using 192bit key */
694 if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
695 return 0;
696
697 c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
698 CRYPTO_ALG_NEED_FALLBACK);
699 if (IS_ERR(c_ctx->fbtfm)) {
700 pr_err("failed to alloc xts mode fallback tfm!\n");
701 return PTR_ERR(c_ctx->fbtfm);
702 }
703
704 return 0;
705 }
706
sec_skcipher_init(struct crypto_skcipher * tfm)707 static int sec_skcipher_init(struct crypto_skcipher *tfm)
708 {
709 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
710 int ret;
711
712 ctx->alg_type = SEC_SKCIPHER;
713 crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
714 ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
715 if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
716 pr_err("get error skcipher iv size!\n");
717 return -EINVAL;
718 }
719
720 ret = sec_ctx_base_init(ctx);
721 if (ret)
722 return ret;
723
724 ret = sec_cipher_init(ctx);
725 if (ret)
726 goto err_cipher_init;
727
728 ret = sec_skcipher_fbtfm_init(tfm);
729 if (ret)
730 goto err_fbtfm_init;
731
732 return 0;
733
734 err_fbtfm_init:
735 sec_cipher_uninit(ctx);
736 err_cipher_init:
737 sec_ctx_base_uninit(ctx);
738 return ret;
739 }
740
sec_skcipher_uninit(struct crypto_skcipher * tfm)741 static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
742 {
743 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
744
745 if (ctx->c_ctx.fbtfm)
746 crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
747
748 sec_cipher_uninit(ctx);
749 sec_ctx_base_uninit(ctx);
750 }
751
sec_skcipher_3des_setkey(struct crypto_skcipher * tfm,const u8 * key,const u32 keylen,const enum sec_cmode c_mode)752 static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
753 const u32 keylen,
754 const enum sec_cmode c_mode)
755 {
756 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
757 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
758 int ret;
759
760 ret = verify_skcipher_des3_key(tfm, key);
761 if (ret)
762 return ret;
763
764 switch (keylen) {
765 case SEC_DES3_2KEY_SIZE:
766 c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
767 break;
768 case SEC_DES3_3KEY_SIZE:
769 c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
770 break;
771 default:
772 return -EINVAL;
773 }
774
775 return 0;
776 }
777
sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx * c_ctx,const u32 keylen,const enum sec_cmode c_mode)778 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
779 const u32 keylen,
780 const enum sec_cmode c_mode)
781 {
782 if (c_mode == SEC_CMODE_XTS) {
783 switch (keylen) {
784 case SEC_XTS_MIN_KEY_SIZE:
785 c_ctx->c_key_len = SEC_CKEY_128BIT;
786 break;
787 case SEC_XTS_MID_KEY_SIZE:
788 c_ctx->fallback = true;
789 break;
790 case SEC_XTS_MAX_KEY_SIZE:
791 c_ctx->c_key_len = SEC_CKEY_256BIT;
792 break;
793 default:
794 pr_err("hisi_sec2: xts mode key error!\n");
795 return -EINVAL;
796 }
797 } else {
798 if (c_ctx->c_alg == SEC_CALG_SM4 &&
799 keylen != AES_KEYSIZE_128) {
800 pr_err("hisi_sec2: sm4 key error!\n");
801 return -EINVAL;
802 } else {
803 switch (keylen) {
804 case AES_KEYSIZE_128:
805 c_ctx->c_key_len = SEC_CKEY_128BIT;
806 break;
807 case AES_KEYSIZE_192:
808 c_ctx->c_key_len = SEC_CKEY_192BIT;
809 break;
810 case AES_KEYSIZE_256:
811 c_ctx->c_key_len = SEC_CKEY_256BIT;
812 break;
813 default:
814 pr_err("hisi_sec2: aes key error!\n");
815 return -EINVAL;
816 }
817 }
818 }
819
820 return 0;
821 }
822
sec_skcipher_setkey(struct crypto_skcipher * tfm,const u8 * key,const u32 keylen,const enum sec_calg c_alg,const enum sec_cmode c_mode)823 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
824 const u32 keylen, const enum sec_calg c_alg,
825 const enum sec_cmode c_mode)
826 {
827 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
828 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
829 struct device *dev = ctx->dev;
830 int ret;
831
832 if (c_mode == SEC_CMODE_XTS) {
833 ret = xts_verify_key(tfm, key, keylen);
834 if (ret) {
835 dev_err(dev, "xts mode key err!\n");
836 return ret;
837 }
838 }
839
840 c_ctx->c_alg = c_alg;
841 c_ctx->c_mode = c_mode;
842
843 switch (c_alg) {
844 case SEC_CALG_3DES:
845 ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
846 break;
847 case SEC_CALG_AES:
848 case SEC_CALG_SM4:
849 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
850 break;
851 default:
852 return -EINVAL;
853 }
854
855 if (ret) {
856 dev_err(dev, "set sec key err!\n");
857 return ret;
858 }
859
860 memcpy(c_ctx->c_key, key, keylen);
861 if (c_ctx->fallback && c_ctx->fbtfm) {
862 ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
863 if (ret) {
864 dev_err(dev, "failed to set fallback skcipher key!\n");
865 return ret;
866 }
867 }
868 return 0;
869 }
870
871 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \
872 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
873 u32 keylen) \
874 { \
875 return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \
876 }
877
GEN_SEC_SETKEY_FUNC(aes_ecb,SEC_CALG_AES,SEC_CMODE_ECB)878 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
879 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
880 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
881 GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
882 GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
883 GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
884 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
885 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
886 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
887 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
888 GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
889 GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
890 GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
891
892 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
893 struct scatterlist *src)
894 {
895 struct sec_aead_req *a_req = &req->aead_req;
896 struct aead_request *aead_req = a_req->aead_req;
897 struct sec_cipher_req *c_req = &req->c_req;
898 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
899 struct device *dev = ctx->dev;
900 int copy_size, pbuf_length;
901 int req_id = req->req_id;
902 struct crypto_aead *tfm;
903 size_t authsize;
904 u8 *mac_offset;
905
906 if (ctx->alg_type == SEC_AEAD)
907 copy_size = aead_req->cryptlen + aead_req->assoclen;
908 else
909 copy_size = c_req->c_len;
910
911 pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
912 qp_ctx->res[req_id].pbuf, copy_size);
913 if (unlikely(pbuf_length != copy_size)) {
914 dev_err(dev, "copy src data to pbuf error!\n");
915 return -EINVAL;
916 }
917 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
918 tfm = crypto_aead_reqtfm(aead_req);
919 authsize = crypto_aead_authsize(tfm);
920 mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
921 memcpy(a_req->out_mac, mac_offset, authsize);
922 }
923
924 req->in_dma = qp_ctx->res[req_id].pbuf_dma;
925 c_req->c_out_dma = req->in_dma;
926
927 return 0;
928 }
929
sec_cipher_pbuf_unmap(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * dst)930 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
931 struct scatterlist *dst)
932 {
933 struct aead_request *aead_req = req->aead_req.aead_req;
934 struct sec_cipher_req *c_req = &req->c_req;
935 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
936 int copy_size, pbuf_length;
937 int req_id = req->req_id;
938
939 if (ctx->alg_type == SEC_AEAD)
940 copy_size = c_req->c_len + aead_req->assoclen;
941 else
942 copy_size = c_req->c_len;
943
944 pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
945 qp_ctx->res[req_id].pbuf, copy_size);
946 if (unlikely(pbuf_length != copy_size))
947 dev_err(ctx->dev, "copy pbuf data to dst error!\n");
948 }
949
sec_aead_mac_init(struct sec_aead_req * req)950 static int sec_aead_mac_init(struct sec_aead_req *req)
951 {
952 struct aead_request *aead_req = req->aead_req;
953 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
954 size_t authsize = crypto_aead_authsize(tfm);
955 u8 *mac_out = req->out_mac;
956 struct scatterlist *sgl = aead_req->src;
957 size_t copy_size;
958 off_t skip_size;
959
960 /* Copy input mac */
961 skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
962 copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
963 authsize, skip_size);
964 if (unlikely(copy_size != authsize))
965 return -EINVAL;
966
967 return 0;
968 }
969
sec_cipher_map(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * src,struct scatterlist * dst)970 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
971 struct scatterlist *src, struct scatterlist *dst)
972 {
973 struct sec_cipher_req *c_req = &req->c_req;
974 struct sec_aead_req *a_req = &req->aead_req;
975 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
976 struct sec_alg_res *res = &qp_ctx->res[req->req_id];
977 struct device *dev = ctx->dev;
978 int ret;
979
980 if (req->use_pbuf) {
981 c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
982 c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
983 if (ctx->alg_type == SEC_AEAD) {
984 a_req->a_ivin = res->a_ivin;
985 a_req->a_ivin_dma = res->a_ivin_dma;
986 a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
987 a_req->out_mac_dma = res->pbuf_dma +
988 SEC_PBUF_MAC_OFFSET;
989 }
990 ret = sec_cipher_pbuf_map(ctx, req, src);
991
992 return ret;
993 }
994 c_req->c_ivin = res->c_ivin;
995 c_req->c_ivin_dma = res->c_ivin_dma;
996 if (ctx->alg_type == SEC_AEAD) {
997 a_req->a_ivin = res->a_ivin;
998 a_req->a_ivin_dma = res->a_ivin_dma;
999 a_req->out_mac = res->out_mac;
1000 a_req->out_mac_dma = res->out_mac_dma;
1001 }
1002
1003 req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
1004 qp_ctx->c_in_pool,
1005 req->req_id,
1006 &req->in_dma);
1007 if (IS_ERR(req->in)) {
1008 dev_err(dev, "fail to dma map input sgl buffers!\n");
1009 return PTR_ERR(req->in);
1010 }
1011
1012 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
1013 ret = sec_aead_mac_init(a_req);
1014 if (unlikely(ret)) {
1015 dev_err(dev, "fail to init mac data for ICV!\n");
1016 return ret;
1017 }
1018 }
1019
1020 if (dst == src) {
1021 c_req->c_out = req->in;
1022 c_req->c_out_dma = req->in_dma;
1023 } else {
1024 c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
1025 qp_ctx->c_out_pool,
1026 req->req_id,
1027 &c_req->c_out_dma);
1028
1029 if (IS_ERR(c_req->c_out)) {
1030 dev_err(dev, "fail to dma map output sgl buffers!\n");
1031 hisi_acc_sg_buf_unmap(dev, src, req->in);
1032 return PTR_ERR(c_req->c_out);
1033 }
1034 }
1035
1036 return 0;
1037 }
1038
sec_cipher_unmap(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * src,struct scatterlist * dst)1039 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
1040 struct scatterlist *src, struct scatterlist *dst)
1041 {
1042 struct sec_cipher_req *c_req = &req->c_req;
1043 struct device *dev = ctx->dev;
1044
1045 if (req->use_pbuf) {
1046 sec_cipher_pbuf_unmap(ctx, req, dst);
1047 } else {
1048 if (dst != src)
1049 hisi_acc_sg_buf_unmap(dev, src, req->in);
1050
1051 hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
1052 }
1053 }
1054
sec_skcipher_sgl_map(struct sec_ctx * ctx,struct sec_req * req)1055 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1056 {
1057 struct skcipher_request *sq = req->c_req.sk_req;
1058
1059 return sec_cipher_map(ctx, req, sq->src, sq->dst);
1060 }
1061
sec_skcipher_sgl_unmap(struct sec_ctx * ctx,struct sec_req * req)1062 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1063 {
1064 struct skcipher_request *sq = req->c_req.sk_req;
1065
1066 sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1067 }
1068
sec_aead_aes_set_key(struct sec_cipher_ctx * c_ctx,struct crypto_authenc_keys * keys)1069 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
1070 struct crypto_authenc_keys *keys)
1071 {
1072 switch (keys->enckeylen) {
1073 case AES_KEYSIZE_128:
1074 c_ctx->c_key_len = SEC_CKEY_128BIT;
1075 break;
1076 case AES_KEYSIZE_192:
1077 c_ctx->c_key_len = SEC_CKEY_192BIT;
1078 break;
1079 case AES_KEYSIZE_256:
1080 c_ctx->c_key_len = SEC_CKEY_256BIT;
1081 break;
1082 default:
1083 pr_err("hisi_sec2: aead aes key error!\n");
1084 return -EINVAL;
1085 }
1086 memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
1087
1088 return 0;
1089 }
1090
sec_aead_auth_set_key(struct sec_auth_ctx * ctx,struct crypto_authenc_keys * keys)1091 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
1092 struct crypto_authenc_keys *keys)
1093 {
1094 struct crypto_shash *hash_tfm = ctx->hash_tfm;
1095 int blocksize, digestsize, ret;
1096
1097 if (!keys->authkeylen) {
1098 pr_err("hisi_sec2: aead auth key error!\n");
1099 return -EINVAL;
1100 }
1101
1102 blocksize = crypto_shash_blocksize(hash_tfm);
1103 digestsize = crypto_shash_digestsize(hash_tfm);
1104 if (keys->authkeylen > blocksize) {
1105 ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
1106 keys->authkeylen, ctx->a_key);
1107 if (ret) {
1108 pr_err("hisi_sec2: aead auth digest error!\n");
1109 return -EINVAL;
1110 }
1111 ctx->a_key_len = digestsize;
1112 } else {
1113 memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
1114 ctx->a_key_len = keys->authkeylen;
1115 }
1116
1117 return 0;
1118 }
1119
sec_aead_setauthsize(struct crypto_aead * aead,unsigned int authsize)1120 static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
1121 {
1122 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
1123 struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
1124 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1125
1126 if (unlikely(a_ctx->fallback_aead_tfm))
1127 return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
1128
1129 return 0;
1130 }
1131
sec_aead_fallback_setkey(struct sec_auth_ctx * a_ctx,struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1132 static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
1133 struct crypto_aead *tfm, const u8 *key,
1134 unsigned int keylen)
1135 {
1136 crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
1137 crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
1138 crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
1139 return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
1140 }
1141
sec_aead_setkey(struct crypto_aead * tfm,const u8 * key,const u32 keylen,const enum sec_hash_alg a_alg,const enum sec_calg c_alg,const enum sec_mac_len mac_len,const enum sec_cmode c_mode)1142 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1143 const u32 keylen, const enum sec_hash_alg a_alg,
1144 const enum sec_calg c_alg,
1145 const enum sec_mac_len mac_len,
1146 const enum sec_cmode c_mode)
1147 {
1148 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1149 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1150 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1151 struct device *dev = ctx->dev;
1152 struct crypto_authenc_keys keys;
1153 int ret;
1154
1155 ctx->a_ctx.a_alg = a_alg;
1156 ctx->c_ctx.c_alg = c_alg;
1157 ctx->a_ctx.mac_len = mac_len;
1158 c_ctx->c_mode = c_mode;
1159
1160 if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
1161 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
1162 if (ret) {
1163 dev_err(dev, "set sec aes ccm cipher key err!\n");
1164 return ret;
1165 }
1166 memcpy(c_ctx->c_key, key, keylen);
1167
1168 if (unlikely(a_ctx->fallback_aead_tfm)) {
1169 ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
1170 if (ret)
1171 return ret;
1172 }
1173
1174 return 0;
1175 }
1176
1177 if (crypto_authenc_extractkeys(&keys, key, keylen))
1178 goto bad_key;
1179
1180 ret = sec_aead_aes_set_key(c_ctx, &keys);
1181 if (ret) {
1182 dev_err(dev, "set sec cipher key err!\n");
1183 goto bad_key;
1184 }
1185
1186 ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
1187 if (ret) {
1188 dev_err(dev, "set sec auth key err!\n");
1189 goto bad_key;
1190 }
1191
1192 if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK) ||
1193 (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
1194 dev_err(dev, "MAC or AUTH key length error!\n");
1195 goto bad_key;
1196 }
1197
1198 return 0;
1199
1200 bad_key:
1201 memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
1202 return -EINVAL;
1203 }
1204
1205
1206 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \
1207 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \
1208 u32 keylen) \
1209 { \
1210 return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
1211 }
1212
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1,SEC_A_HMAC_SHA1,SEC_CALG_AES,SEC_HMAC_SHA1_MAC,SEC_CMODE_CBC)1213 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
1214 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
1215 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
1216 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
1217 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
1218 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
1219 GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
1220 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1221 GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
1222 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1223 GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
1224 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1225 GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
1226 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1227
1228 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1229 {
1230 struct aead_request *aq = req->aead_req.aead_req;
1231
1232 return sec_cipher_map(ctx, req, aq->src, aq->dst);
1233 }
1234
sec_aead_sgl_unmap(struct sec_ctx * ctx,struct sec_req * req)1235 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1236 {
1237 struct aead_request *aq = req->aead_req.aead_req;
1238
1239 sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1240 }
1241
sec_request_transfer(struct sec_ctx * ctx,struct sec_req * req)1242 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
1243 {
1244 int ret;
1245
1246 ret = ctx->req_op->buf_map(ctx, req);
1247 if (unlikely(ret))
1248 return ret;
1249
1250 ctx->req_op->do_transfer(ctx, req);
1251
1252 ret = ctx->req_op->bd_fill(ctx, req);
1253 if (unlikely(ret))
1254 goto unmap_req_buf;
1255
1256 return ret;
1257
1258 unmap_req_buf:
1259 ctx->req_op->buf_unmap(ctx, req);
1260 return ret;
1261 }
1262
sec_request_untransfer(struct sec_ctx * ctx,struct sec_req * req)1263 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
1264 {
1265 ctx->req_op->buf_unmap(ctx, req);
1266 }
1267
sec_skcipher_copy_iv(struct sec_ctx * ctx,struct sec_req * req)1268 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1269 {
1270 struct skcipher_request *sk_req = req->c_req.sk_req;
1271 struct sec_cipher_req *c_req = &req->c_req;
1272
1273 memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1274 }
1275
sec_skcipher_bd_fill(struct sec_ctx * ctx,struct sec_req * req)1276 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1277 {
1278 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1279 struct sec_cipher_req *c_req = &req->c_req;
1280 struct sec_sqe *sec_sqe = &req->sec_sqe;
1281 u8 scene, sa_type, da_type;
1282 u8 bd_type, cipher;
1283 u8 de = 0;
1284
1285 memset(sec_sqe, 0, sizeof(struct sec_sqe));
1286
1287 sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1288 sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1289 sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
1290 sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1291
1292 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
1293 SEC_CMODE_OFFSET);
1294 sec_sqe->type2.c_alg = c_ctx->c_alg;
1295 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1296 SEC_CKEY_OFFSET);
1297
1298 bd_type = SEC_BD_TYPE2;
1299 if (c_req->encrypt)
1300 cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
1301 else
1302 cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
1303 sec_sqe->type_cipher_auth = bd_type | cipher;
1304
1305 /* Set destination and source address type */
1306 if (req->use_pbuf) {
1307 sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1308 da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1309 } else {
1310 sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1311 da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1312 }
1313
1314 sec_sqe->sdm_addr_type |= da_type;
1315 scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1316 if (req->in_dma != c_req->c_out_dma)
1317 de = 0x1 << SEC_DE_OFFSET;
1318
1319 sec_sqe->sds_sa_type = (de | scene | sa_type);
1320
1321 sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1322 sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1323
1324 return 0;
1325 }
1326
sec_skcipher_bd_fill_v3(struct sec_ctx * ctx,struct sec_req * req)1327 static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1328 {
1329 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1330 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1331 struct sec_cipher_req *c_req = &req->c_req;
1332 u32 bd_param = 0;
1333 u16 cipher;
1334
1335 memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
1336
1337 sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1338 sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1339 sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
1340 sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1341
1342 sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
1343 c_ctx->c_mode;
1344 sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1345 SEC_CKEY_OFFSET_V3);
1346
1347 if (c_req->encrypt)
1348 cipher = SEC_CIPHER_ENC;
1349 else
1350 cipher = SEC_CIPHER_DEC;
1351 sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
1352
1353 /* Set the CTR counter mode is 128bit rollover */
1354 sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
1355 SEC_CTR_CNT_OFFSET);
1356
1357 if (req->use_pbuf) {
1358 bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
1359 bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
1360 } else {
1361 bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
1362 bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
1363 }
1364
1365 bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
1366 if (req->in_dma != c_req->c_out_dma)
1367 bd_param |= 0x1 << SEC_DE_OFFSET_V3;
1368
1369 bd_param |= SEC_BD_TYPE3;
1370 sec_sqe3->bd_param = cpu_to_le32(bd_param);
1371
1372 sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
1373 sec_sqe3->tag = cpu_to_le64(req);
1374
1375 return 0;
1376 }
1377
1378 /* increment counter (128-bit int) */
ctr_iv_inc(__u8 * counter,__u8 bits,__u32 nums)1379 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
1380 {
1381 do {
1382 --bits;
1383 nums += counter[bits];
1384 counter[bits] = nums & BITS_MASK;
1385 nums >>= BYTE_BITS;
1386 } while (bits && nums);
1387 }
1388
sec_update_iv(struct sec_req * req,enum sec_alg_type alg_type)1389 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1390 {
1391 struct aead_request *aead_req = req->aead_req.aead_req;
1392 struct skcipher_request *sk_req = req->c_req.sk_req;
1393 u32 iv_size = req->ctx->c_ctx.ivsize;
1394 struct scatterlist *sgl;
1395 unsigned int cryptlen;
1396 size_t sz;
1397 u8 *iv;
1398
1399 if (req->c_req.encrypt)
1400 sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1401 else
1402 sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1403
1404 if (alg_type == SEC_SKCIPHER) {
1405 iv = sk_req->iv;
1406 cryptlen = sk_req->cryptlen;
1407 } else {
1408 iv = aead_req->iv;
1409 cryptlen = aead_req->cryptlen;
1410 }
1411
1412 if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
1413 sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1414 cryptlen - iv_size);
1415 if (unlikely(sz != iv_size))
1416 dev_err(req->ctx->dev, "copy output iv error!\n");
1417 } else {
1418 sz = cryptlen / iv_size;
1419 if (cryptlen % iv_size)
1420 sz += 1;
1421 ctr_iv_inc(iv, iv_size, sz);
1422 }
1423 }
1424
sec_back_req_clear(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)1425 static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
1426 struct sec_qp_ctx *qp_ctx)
1427 {
1428 struct sec_req *backlog_req = NULL;
1429
1430 spin_lock_bh(&qp_ctx->req_lock);
1431 if (ctx->fake_req_limit >=
1432 atomic_read(&qp_ctx->qp->qp_status.used) &&
1433 !list_empty(&qp_ctx->backlog)) {
1434 backlog_req = list_first_entry(&qp_ctx->backlog,
1435 typeof(*backlog_req), backlog_head);
1436 list_del(&backlog_req->backlog_head);
1437 }
1438 spin_unlock_bh(&qp_ctx->req_lock);
1439
1440 return backlog_req;
1441 }
1442
sec_skcipher_callback(struct sec_ctx * ctx,struct sec_req * req,int err)1443 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1444 int err)
1445 {
1446 struct skcipher_request *sk_req = req->c_req.sk_req;
1447 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1448 struct skcipher_request *backlog_sk_req;
1449 struct sec_req *backlog_req;
1450
1451 sec_free_req_id(req);
1452
1453 /* IV output at encrypto of CBC/CTR mode */
1454 if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1455 ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1456 sec_update_iv(req, SEC_SKCIPHER);
1457
1458 while (1) {
1459 backlog_req = sec_back_req_clear(ctx, qp_ctx);
1460 if (!backlog_req)
1461 break;
1462
1463 backlog_sk_req = backlog_req->c_req.sk_req;
1464 skcipher_request_complete(backlog_sk_req, -EINPROGRESS);
1465 atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
1466 }
1467
1468 skcipher_request_complete(sk_req, err);
1469 }
1470
set_aead_auth_iv(struct sec_ctx * ctx,struct sec_req * req)1471 static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1472 {
1473 struct aead_request *aead_req = req->aead_req.aead_req;
1474 struct sec_cipher_req *c_req = &req->c_req;
1475 struct sec_aead_req *a_req = &req->aead_req;
1476 size_t authsize = ctx->a_ctx.mac_len;
1477 u32 data_size = aead_req->cryptlen;
1478 u8 flage = 0;
1479 u8 cm, cl;
1480
1481 /* the specification has been checked in aead_iv_demension_check() */
1482 cl = c_req->c_ivin[0] + 1;
1483 c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
1484 memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
1485 c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
1486
1487 /* the last 3bit is L' */
1488 flage |= c_req->c_ivin[0] & IV_CL_MASK;
1489
1490 /* the M' is bit3~bit5, the Flags is bit6 */
1491 cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
1492 flage |= cm << IV_CM_OFFSET;
1493 if (aead_req->assoclen)
1494 flage |= 0x01 << IV_FLAGS_OFFSET;
1495
1496 memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
1497 a_req->a_ivin[0] = flage;
1498
1499 /*
1500 * the last 32bit is counter's initial number,
1501 * but the nonce uses the first 16bit
1502 * the tail 16bit fill with the cipher length
1503 */
1504 if (!c_req->encrypt)
1505 data_size = aead_req->cryptlen - authsize;
1506
1507 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
1508 data_size & IV_LAST_BYTE_MASK;
1509 data_size >>= IV_BYTE_OFFSET;
1510 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
1511 data_size & IV_LAST_BYTE_MASK;
1512 }
1513
sec_aead_set_iv(struct sec_ctx * ctx,struct sec_req * req)1514 static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
1515 {
1516 struct aead_request *aead_req = req->aead_req.aead_req;
1517 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
1518 size_t authsize = crypto_aead_authsize(tfm);
1519 struct sec_cipher_req *c_req = &req->c_req;
1520 struct sec_aead_req *a_req = &req->aead_req;
1521
1522 memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1523
1524 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
1525 /*
1526 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
1527 * the counter must set to 0x01
1528 */
1529 ctx->a_ctx.mac_len = authsize;
1530 /* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
1531 set_aead_auth_iv(ctx, req);
1532 }
1533
1534 /* GCM 12Byte Cipher_IV == Auth_IV */
1535 if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
1536 ctx->a_ctx.mac_len = authsize;
1537 memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
1538 }
1539 }
1540
sec_auth_bd_fill_xcm(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe * sec_sqe)1541 static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
1542 struct sec_req *req, struct sec_sqe *sec_sqe)
1543 {
1544 struct sec_aead_req *a_req = &req->aead_req;
1545 struct aead_request *aq = a_req->aead_req;
1546
1547 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1548 sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);
1549
1550 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1551 sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
1552 sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1553 sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
1554
1555 if (dir)
1556 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1557 else
1558 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1559
1560 sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
1561 sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
1562 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1563
1564 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1565 }
1566
sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe3 * sqe3)1567 static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
1568 struct sec_req *req, struct sec_sqe3 *sqe3)
1569 {
1570 struct sec_aead_req *a_req = &req->aead_req;
1571 struct aead_request *aq = a_req->aead_req;
1572
1573 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1574 sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);
1575
1576 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1577 sqe3->a_key_addr = sqe3->c_key_addr;
1578 sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1579 sqe3->auth_mac_key |= SEC_NO_AUTH;
1580
1581 if (dir)
1582 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1583 else
1584 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1585
1586 sqe3->a_len_key = cpu_to_le32(aq->assoclen);
1587 sqe3->auth_src_offset = cpu_to_le16(0x0);
1588 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1589 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1590 }
1591
sec_auth_bd_fill_ex(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe * sec_sqe)1592 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1593 struct sec_req *req, struct sec_sqe *sec_sqe)
1594 {
1595 struct sec_aead_req *a_req = &req->aead_req;
1596 struct sec_cipher_req *c_req = &req->c_req;
1597 struct aead_request *aq = a_req->aead_req;
1598
1599 sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1600
1601 sec_sqe->type2.mac_key_alg =
1602 cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
1603
1604 sec_sqe->type2.mac_key_alg |=
1605 cpu_to_le32((u32)((ctx->a_key_len) /
1606 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
1607
1608 sec_sqe->type2.mac_key_alg |=
1609 cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1610
1611 if (dir) {
1612 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1613 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1614 } else {
1615 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
1616 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1617 }
1618 sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1619
1620 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1621
1622 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1623 }
1624
sec_aead_bd_fill(struct sec_ctx * ctx,struct sec_req * req)1625 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1626 {
1627 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1628 struct sec_sqe *sec_sqe = &req->sec_sqe;
1629 int ret;
1630
1631 ret = sec_skcipher_bd_fill(ctx, req);
1632 if (unlikely(ret)) {
1633 dev_err(ctx->dev, "skcipher bd fill is error!\n");
1634 return ret;
1635 }
1636
1637 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1638 ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1639 sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1640 else
1641 sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1642
1643 return 0;
1644 }
1645
sec_auth_bd_fill_ex_v3(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe3 * sqe3)1646 static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
1647 struct sec_req *req, struct sec_sqe3 *sqe3)
1648 {
1649 struct sec_aead_req *a_req = &req->aead_req;
1650 struct sec_cipher_req *c_req = &req->c_req;
1651 struct aead_request *aq = a_req->aead_req;
1652
1653 sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
1654
1655 sqe3->auth_mac_key |=
1656 cpu_to_le32((u32)(ctx->mac_len /
1657 SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);
1658
1659 sqe3->auth_mac_key |=
1660 cpu_to_le32((u32)(ctx->a_key_len /
1661 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);
1662
1663 sqe3->auth_mac_key |=
1664 cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
1665
1666 if (dir) {
1667 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
1668 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1669 } else {
1670 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
1671 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1672 }
1673 sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
1674
1675 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1676
1677 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1678 }
1679
sec_aead_bd_fill_v3(struct sec_ctx * ctx,struct sec_req * req)1680 static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1681 {
1682 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1683 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1684 int ret;
1685
1686 ret = sec_skcipher_bd_fill_v3(ctx, req);
1687 if (unlikely(ret)) {
1688 dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
1689 return ret;
1690 }
1691
1692 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1693 ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1694 sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
1695 req, sec_sqe3);
1696 else
1697 sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
1698 req, sec_sqe3);
1699
1700 return 0;
1701 }
1702
sec_aead_callback(struct sec_ctx * c,struct sec_req * req,int err)1703 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1704 {
1705 struct aead_request *a_req = req->aead_req.aead_req;
1706 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1707 struct sec_aead_req *aead_req = &req->aead_req;
1708 struct sec_cipher_req *c_req = &req->c_req;
1709 size_t authsize = crypto_aead_authsize(tfm);
1710 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1711 struct aead_request *backlog_aead_req;
1712 struct sec_req *backlog_req;
1713 size_t sz;
1714
1715 if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1716 sec_update_iv(req, SEC_AEAD);
1717
1718 /* Copy output mac */
1719 if (!err && c_req->encrypt) {
1720 struct scatterlist *sgl = a_req->dst;
1721
1722 sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1723 aead_req->out_mac,
1724 authsize, a_req->cryptlen +
1725 a_req->assoclen);
1726 if (unlikely(sz != authsize)) {
1727 dev_err(c->dev, "copy out mac err!\n");
1728 err = -EINVAL;
1729 }
1730 }
1731
1732 sec_free_req_id(req);
1733
1734 while (1) {
1735 backlog_req = sec_back_req_clear(c, qp_ctx);
1736 if (!backlog_req)
1737 break;
1738
1739 backlog_aead_req = backlog_req->aead_req.aead_req;
1740 aead_request_complete(backlog_aead_req, -EINPROGRESS);
1741 atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
1742 }
1743
1744 aead_request_complete(a_req, err);
1745 }
1746
sec_request_uninit(struct sec_ctx * ctx,struct sec_req * req)1747 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1748 {
1749 sec_free_req_id(req);
1750 sec_free_queue_id(ctx, req);
1751 }
1752
sec_request_init(struct sec_ctx * ctx,struct sec_req * req)1753 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1754 {
1755 struct sec_qp_ctx *qp_ctx;
1756 int queue_id;
1757
1758 /* To load balance */
1759 queue_id = sec_alloc_queue_id(ctx, req);
1760 qp_ctx = &ctx->qp_ctx[queue_id];
1761
1762 req->req_id = sec_alloc_req_id(req, qp_ctx);
1763 if (unlikely(req->req_id < 0)) {
1764 sec_free_queue_id(ctx, req);
1765 return req->req_id;
1766 }
1767
1768 return 0;
1769 }
1770
sec_process(struct sec_ctx * ctx,struct sec_req * req)1771 static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1772 {
1773 struct sec_cipher_req *c_req = &req->c_req;
1774 int ret;
1775
1776 ret = sec_request_init(ctx, req);
1777 if (unlikely(ret))
1778 return ret;
1779
1780 ret = sec_request_transfer(ctx, req);
1781 if (unlikely(ret))
1782 goto err_uninit_req;
1783
1784 /* Output IV as decrypto */
1785 if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1786 ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1787 sec_update_iv(req, ctx->alg_type);
1788
1789 ret = ctx->req_op->bd_send(ctx, req);
1790 if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
1791 (ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1792 dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1793 goto err_send_req;
1794 }
1795
1796 return ret;
1797
1798 err_send_req:
1799 /* As failing, restore the IV from user */
1800 if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1801 if (ctx->alg_type == SEC_SKCIPHER)
1802 memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1803 ctx->c_ctx.ivsize);
1804 else
1805 memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1806 ctx->c_ctx.ivsize);
1807 }
1808
1809 sec_request_untransfer(ctx, req);
1810 err_uninit_req:
1811 sec_request_uninit(ctx, req);
1812 return ret;
1813 }
1814
1815 static const struct sec_req_op sec_skcipher_req_ops = {
1816 .buf_map = sec_skcipher_sgl_map,
1817 .buf_unmap = sec_skcipher_sgl_unmap,
1818 .do_transfer = sec_skcipher_copy_iv,
1819 .bd_fill = sec_skcipher_bd_fill,
1820 .bd_send = sec_bd_send,
1821 .callback = sec_skcipher_callback,
1822 .process = sec_process,
1823 };
1824
1825 static const struct sec_req_op sec_aead_req_ops = {
1826 .buf_map = sec_aead_sgl_map,
1827 .buf_unmap = sec_aead_sgl_unmap,
1828 .do_transfer = sec_aead_set_iv,
1829 .bd_fill = sec_aead_bd_fill,
1830 .bd_send = sec_bd_send,
1831 .callback = sec_aead_callback,
1832 .process = sec_process,
1833 };
1834
1835 static const struct sec_req_op sec_skcipher_req_ops_v3 = {
1836 .buf_map = sec_skcipher_sgl_map,
1837 .buf_unmap = sec_skcipher_sgl_unmap,
1838 .do_transfer = sec_skcipher_copy_iv,
1839 .bd_fill = sec_skcipher_bd_fill_v3,
1840 .bd_send = sec_bd_send,
1841 .callback = sec_skcipher_callback,
1842 .process = sec_process,
1843 };
1844
1845 static const struct sec_req_op sec_aead_req_ops_v3 = {
1846 .buf_map = sec_aead_sgl_map,
1847 .buf_unmap = sec_aead_sgl_unmap,
1848 .do_transfer = sec_aead_set_iv,
1849 .bd_fill = sec_aead_bd_fill_v3,
1850 .bd_send = sec_bd_send,
1851 .callback = sec_aead_callback,
1852 .process = sec_process,
1853 };
1854
sec_skcipher_ctx_init(struct crypto_skcipher * tfm)1855 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1856 {
1857 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1858 int ret;
1859
1860 ret = sec_skcipher_init(tfm);
1861 if (ret)
1862 return ret;
1863
1864 if (ctx->sec->qm.ver < QM_HW_V3) {
1865 ctx->type_supported = SEC_BD_TYPE2;
1866 ctx->req_op = &sec_skcipher_req_ops;
1867 } else {
1868 ctx->type_supported = SEC_BD_TYPE3;
1869 ctx->req_op = &sec_skcipher_req_ops_v3;
1870 }
1871
1872 return ret;
1873 }
1874
sec_skcipher_ctx_exit(struct crypto_skcipher * tfm)1875 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1876 {
1877 sec_skcipher_uninit(tfm);
1878 }
1879
sec_aead_init(struct crypto_aead * tfm)1880 static int sec_aead_init(struct crypto_aead *tfm)
1881 {
1882 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1883 int ret;
1884
1885 crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1886 ctx->alg_type = SEC_AEAD;
1887 ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1888 if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
1889 ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1890 pr_err("get error aead iv size!\n");
1891 return -EINVAL;
1892 }
1893
1894 ret = sec_ctx_base_init(ctx);
1895 if (ret)
1896 return ret;
1897 if (ctx->sec->qm.ver < QM_HW_V3) {
1898 ctx->type_supported = SEC_BD_TYPE2;
1899 ctx->req_op = &sec_aead_req_ops;
1900 } else {
1901 ctx->type_supported = SEC_BD_TYPE3;
1902 ctx->req_op = &sec_aead_req_ops_v3;
1903 }
1904
1905 ret = sec_auth_init(ctx);
1906 if (ret)
1907 goto err_auth_init;
1908
1909 ret = sec_cipher_init(ctx);
1910 if (ret)
1911 goto err_cipher_init;
1912
1913 return ret;
1914
1915 err_cipher_init:
1916 sec_auth_uninit(ctx);
1917 err_auth_init:
1918 sec_ctx_base_uninit(ctx);
1919 return ret;
1920 }
1921
sec_aead_exit(struct crypto_aead * tfm)1922 static void sec_aead_exit(struct crypto_aead *tfm)
1923 {
1924 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1925
1926 sec_cipher_uninit(ctx);
1927 sec_auth_uninit(ctx);
1928 sec_ctx_base_uninit(ctx);
1929 }
1930
sec_aead_ctx_init(struct crypto_aead * tfm,const char * hash_name)1931 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1932 {
1933 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1934 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1935 int ret;
1936
1937 ret = sec_aead_init(tfm);
1938 if (ret) {
1939 pr_err("hisi_sec2: aead init error!\n");
1940 return ret;
1941 }
1942
1943 auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1944 if (IS_ERR(auth_ctx->hash_tfm)) {
1945 dev_err(ctx->dev, "aead alloc shash error!\n");
1946 sec_aead_exit(tfm);
1947 return PTR_ERR(auth_ctx->hash_tfm);
1948 }
1949
1950 return 0;
1951 }
1952
sec_aead_ctx_exit(struct crypto_aead * tfm)1953 static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1954 {
1955 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1956
1957 crypto_free_shash(ctx->a_ctx.hash_tfm);
1958 sec_aead_exit(tfm);
1959 }
1960
sec_aead_xcm_ctx_init(struct crypto_aead * tfm)1961 static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
1962 {
1963 struct aead_alg *alg = crypto_aead_alg(tfm);
1964 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1965 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1966 const char *aead_name = alg->base.cra_name;
1967 int ret;
1968
1969 ret = sec_aead_init(tfm);
1970 if (ret) {
1971 dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
1972 return ret;
1973 }
1974
1975 a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
1976 CRYPTO_ALG_NEED_FALLBACK |
1977 CRYPTO_ALG_ASYNC);
1978 if (IS_ERR(a_ctx->fallback_aead_tfm)) {
1979 dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
1980 sec_aead_exit(tfm);
1981 return PTR_ERR(a_ctx->fallback_aead_tfm);
1982 }
1983 a_ctx->fallback = false;
1984
1985 return 0;
1986 }
1987
sec_aead_xcm_ctx_exit(struct crypto_aead * tfm)1988 static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
1989 {
1990 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1991
1992 crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1993 sec_aead_exit(tfm);
1994 }
1995
sec_aead_sha1_ctx_init(struct crypto_aead * tfm)1996 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1997 {
1998 return sec_aead_ctx_init(tfm, "sha1");
1999 }
2000
sec_aead_sha256_ctx_init(struct crypto_aead * tfm)2001 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
2002 {
2003 return sec_aead_ctx_init(tfm, "sha256");
2004 }
2005
sec_aead_sha512_ctx_init(struct crypto_aead * tfm)2006 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
2007 {
2008 return sec_aead_ctx_init(tfm, "sha512");
2009 }
2010
sec_skcipher_cryptlen_check(struct sec_ctx * ctx,struct sec_req * sreq)2011 static int sec_skcipher_cryptlen_check(struct sec_ctx *ctx,
2012 struct sec_req *sreq)
2013 {
2014 u32 cryptlen = sreq->c_req.sk_req->cryptlen;
2015 struct device *dev = ctx->dev;
2016 u8 c_mode = ctx->c_ctx.c_mode;
2017 int ret = 0;
2018
2019 switch (c_mode) {
2020 case SEC_CMODE_XTS:
2021 if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
2022 dev_err(dev, "skcipher XTS mode input length error!\n");
2023 ret = -EINVAL;
2024 }
2025 break;
2026 case SEC_CMODE_ECB:
2027 case SEC_CMODE_CBC:
2028 if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
2029 dev_err(dev, "skcipher AES input length error!\n");
2030 ret = -EINVAL;
2031 }
2032 break;
2033 case SEC_CMODE_CFB:
2034 case SEC_CMODE_OFB:
2035 case SEC_CMODE_CTR:
2036 if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
2037 dev_err(dev, "skcipher HW version error!\n");
2038 ret = -EINVAL;
2039 }
2040 break;
2041 default:
2042 ret = -EINVAL;
2043 }
2044
2045 return ret;
2046 }
2047
sec_skcipher_param_check(struct sec_ctx * ctx,struct sec_req * sreq)2048 static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2049 {
2050 struct skcipher_request *sk_req = sreq->c_req.sk_req;
2051 struct device *dev = ctx->dev;
2052 u8 c_alg = ctx->c_ctx.c_alg;
2053
2054 if (unlikely(!sk_req->src || !sk_req->dst ||
2055 sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
2056 dev_err(dev, "skcipher input param error!\n");
2057 return -EINVAL;
2058 }
2059 sreq->c_req.c_len = sk_req->cryptlen;
2060
2061 if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
2062 sreq->use_pbuf = true;
2063 else
2064 sreq->use_pbuf = false;
2065
2066 if (c_alg == SEC_CALG_3DES) {
2067 if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2068 dev_err(dev, "skcipher 3des input length error!\n");
2069 return -EINVAL;
2070 }
2071 return 0;
2072 } else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2073 return sec_skcipher_cryptlen_check(ctx, sreq);
2074 }
2075
2076 dev_err(dev, "skcipher algorithm error!\n");
2077
2078 return -EINVAL;
2079 }
2080
sec_skcipher_soft_crypto(struct sec_ctx * ctx,struct skcipher_request * sreq,bool encrypt)2081 static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
2082 struct skcipher_request *sreq, bool encrypt)
2083 {
2084 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
2085 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
2086 struct device *dev = ctx->dev;
2087 int ret;
2088
2089 if (!c_ctx->fbtfm) {
2090 dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
2091 return -EINVAL;
2092 }
2093
2094 skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
2095
2096 /* software need sync mode to do crypto */
2097 skcipher_request_set_callback(subreq, sreq->base.flags,
2098 NULL, NULL);
2099 skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
2100 sreq->cryptlen, sreq->iv);
2101 if (encrypt)
2102 ret = crypto_skcipher_encrypt(subreq);
2103 else
2104 ret = crypto_skcipher_decrypt(subreq);
2105
2106 skcipher_request_zero(subreq);
2107
2108 return ret;
2109 }
2110
sec_skcipher_crypto(struct skcipher_request * sk_req,bool encrypt)2111 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
2112 {
2113 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
2114 struct sec_req *req = skcipher_request_ctx(sk_req);
2115 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
2116 int ret;
2117
2118 if (!sk_req->cryptlen) {
2119 if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
2120 return -EINVAL;
2121 return 0;
2122 }
2123
2124 req->flag = sk_req->base.flags;
2125 req->c_req.sk_req = sk_req;
2126 req->c_req.encrypt = encrypt;
2127 req->ctx = ctx;
2128
2129 ret = sec_skcipher_param_check(ctx, req);
2130 if (unlikely(ret))
2131 return -EINVAL;
2132
2133 if (unlikely(ctx->c_ctx.fallback))
2134 return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
2135
2136 return ctx->req_op->process(ctx, req);
2137 }
2138
sec_skcipher_encrypt(struct skcipher_request * sk_req)2139 static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
2140 {
2141 return sec_skcipher_crypto(sk_req, true);
2142 }
2143
sec_skcipher_decrypt(struct skcipher_request * sk_req)2144 static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
2145 {
2146 return sec_skcipher_crypto(sk_req, false);
2147 }
2148
2149 #define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
2150 sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
2151 {\
2152 .base = {\
2153 .cra_name = sec_cra_name,\
2154 .cra_driver_name = "hisi_sec_"sec_cra_name,\
2155 .cra_priority = SEC_PRIORITY,\
2156 .cra_flags = CRYPTO_ALG_ASYNC |\
2157 CRYPTO_ALG_NEED_FALLBACK,\
2158 .cra_blocksize = blk_size,\
2159 .cra_ctxsize = sizeof(struct sec_ctx),\
2160 .cra_module = THIS_MODULE,\
2161 },\
2162 .init = ctx_init,\
2163 .exit = ctx_exit,\
2164 .setkey = sec_set_key,\
2165 .decrypt = sec_skcipher_decrypt,\
2166 .encrypt = sec_skcipher_encrypt,\
2167 .min_keysize = sec_min_key_size,\
2168 .max_keysize = sec_max_key_size,\
2169 .ivsize = iv_size,\
2170 }
2171
2172 #define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
2173 max_key_size, blk_size, iv_size) \
2174 SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
2175 sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
2176
2177 static struct sec_skcipher sec_skciphers[] = {
2178 {
2179 .alg_msk = BIT(0),
2180 .alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE,
2181 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0),
2182 },
2183 {
2184 .alg_msk = BIT(1),
2185 .alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE,
2186 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2187 },
2188 {
2189 .alg_msk = BIT(2),
2190 .alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr, AES_MIN_KEY_SIZE,
2191 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2192 },
2193 {
2194 .alg_msk = BIT(3),
2195 .alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts, SEC_XTS_MIN_KEY_SIZE,
2196 SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2197 },
2198 {
2199 .alg_msk = BIT(4),
2200 .alg = SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb, AES_MIN_KEY_SIZE,
2201 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2202 },
2203 {
2204 .alg_msk = BIT(5),
2205 .alg = SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb, AES_MIN_KEY_SIZE,
2206 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2207 },
2208 {
2209 .alg_msk = BIT(12),
2210 .alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc, AES_MIN_KEY_SIZE,
2211 AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2212 },
2213 {
2214 .alg_msk = BIT(13),
2215 .alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE,
2216 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2217 },
2218 {
2219 .alg_msk = BIT(14),
2220 .alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts, SEC_XTS_MIN_KEY_SIZE,
2221 SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2222 },
2223 {
2224 .alg_msk = BIT(15),
2225 .alg = SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb, AES_MIN_KEY_SIZE,
2226 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2227 },
2228 {
2229 .alg_msk = BIT(16),
2230 .alg = SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb, AES_MIN_KEY_SIZE,
2231 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2232 },
2233 {
2234 .alg_msk = BIT(23),
2235 .alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE,
2236 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0),
2237 },
2238 {
2239 .alg_msk = BIT(24),
2240 .alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE,
2241 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE,
2242 DES3_EDE_BLOCK_SIZE),
2243 },
2244 };
2245
aead_iv_demension_check(struct aead_request * aead_req)2246 static int aead_iv_demension_check(struct aead_request *aead_req)
2247 {
2248 u8 cl;
2249
2250 cl = aead_req->iv[0] + 1;
2251 if (cl < IV_CL_MIN || cl > IV_CL_MAX)
2252 return -EINVAL;
2253
2254 if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
2255 return -EOVERFLOW;
2256
2257 return 0;
2258 }
2259
sec_aead_spec_check(struct sec_ctx * ctx,struct sec_req * sreq)2260 static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2261 {
2262 struct aead_request *req = sreq->aead_req.aead_req;
2263 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2264 size_t authsize = crypto_aead_authsize(tfm);
2265 u8 c_mode = ctx->c_ctx.c_mode;
2266 struct device *dev = ctx->dev;
2267 int ret;
2268
2269 if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
2270 req->assoclen > SEC_MAX_AAD_LEN)) {
2271 dev_err(dev, "aead input spec error!\n");
2272 return -EINVAL;
2273 }
2274
2275 if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
2276 (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
2277 authsize & MAC_LEN_MASK)))) {
2278 dev_err(dev, "aead input mac length error!\n");
2279 return -EINVAL;
2280 }
2281
2282 if (c_mode == SEC_CMODE_CCM) {
2283 if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
2284 dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
2285 return -EINVAL;
2286 }
2287 ret = aead_iv_demension_check(req);
2288 if (ret) {
2289 dev_err(dev, "aead input iv param error!\n");
2290 return ret;
2291 }
2292 }
2293
2294 if (sreq->c_req.encrypt)
2295 sreq->c_req.c_len = req->cryptlen;
2296 else
2297 sreq->c_req.c_len = req->cryptlen - authsize;
2298 if (c_mode == SEC_CMODE_CBC) {
2299 if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
2300 dev_err(dev, "aead crypto length error!\n");
2301 return -EINVAL;
2302 }
2303 }
2304
2305 return 0;
2306 }
2307
sec_aead_param_check(struct sec_ctx * ctx,struct sec_req * sreq)2308 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2309 {
2310 struct aead_request *req = sreq->aead_req.aead_req;
2311 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2312 size_t authsize = crypto_aead_authsize(tfm);
2313 struct device *dev = ctx->dev;
2314 u8 c_alg = ctx->c_ctx.c_alg;
2315
2316 if (unlikely(!req->src || !req->dst)) {
2317 dev_err(dev, "aead input param error!\n");
2318 return -EINVAL;
2319 }
2320
2321 if (ctx->sec->qm.ver == QM_HW_V2) {
2322 if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
2323 req->cryptlen <= authsize))) {
2324 ctx->a_ctx.fallback = true;
2325 return -EINVAL;
2326 }
2327 }
2328
2329 /* Support AES or SM4 */
2330 if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
2331 dev_err(dev, "aead crypto alg error!\n");
2332 return -EINVAL;
2333 }
2334
2335 if (unlikely(sec_aead_spec_check(ctx, sreq)))
2336 return -EINVAL;
2337
2338 if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
2339 SEC_PBUF_SZ)
2340 sreq->use_pbuf = true;
2341 else
2342 sreq->use_pbuf = false;
2343
2344 return 0;
2345 }
2346
sec_aead_soft_crypto(struct sec_ctx * ctx,struct aead_request * aead_req,bool encrypt)2347 static int sec_aead_soft_crypto(struct sec_ctx *ctx,
2348 struct aead_request *aead_req,
2349 bool encrypt)
2350 {
2351 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
2352 struct device *dev = ctx->dev;
2353 struct aead_request *subreq;
2354 int ret;
2355
2356 /* Kunpeng920 aead mode not support input 0 size */
2357 if (!a_ctx->fallback_aead_tfm) {
2358 dev_err(dev, "aead fallback tfm is NULL!\n");
2359 return -EINVAL;
2360 }
2361
2362 subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
2363 if (!subreq)
2364 return -ENOMEM;
2365
2366 aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
2367 aead_request_set_callback(subreq, aead_req->base.flags,
2368 aead_req->base.complete, aead_req->base.data);
2369 aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
2370 aead_req->cryptlen, aead_req->iv);
2371 aead_request_set_ad(subreq, aead_req->assoclen);
2372
2373 if (encrypt)
2374 ret = crypto_aead_encrypt(subreq);
2375 else
2376 ret = crypto_aead_decrypt(subreq);
2377 aead_request_free(subreq);
2378
2379 return ret;
2380 }
2381
sec_aead_crypto(struct aead_request * a_req,bool encrypt)2382 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
2383 {
2384 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
2385 struct sec_req *req = aead_request_ctx(a_req);
2386 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
2387 int ret;
2388
2389 req->flag = a_req->base.flags;
2390 req->aead_req.aead_req = a_req;
2391 req->c_req.encrypt = encrypt;
2392 req->ctx = ctx;
2393
2394 ret = sec_aead_param_check(ctx, req);
2395 if (unlikely(ret)) {
2396 if (ctx->a_ctx.fallback)
2397 return sec_aead_soft_crypto(ctx, a_req, encrypt);
2398 return -EINVAL;
2399 }
2400
2401 return ctx->req_op->process(ctx, req);
2402 }
2403
sec_aead_encrypt(struct aead_request * a_req)2404 static int sec_aead_encrypt(struct aead_request *a_req)
2405 {
2406 return sec_aead_crypto(a_req, true);
2407 }
2408
sec_aead_decrypt(struct aead_request * a_req)2409 static int sec_aead_decrypt(struct aead_request *a_req)
2410 {
2411 return sec_aead_crypto(a_req, false);
2412 }
2413
2414 #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2415 ctx_exit, blk_size, iv_size, max_authsize)\
2416 {\
2417 .base = {\
2418 .cra_name = sec_cra_name,\
2419 .cra_driver_name = "hisi_sec_"sec_cra_name,\
2420 .cra_priority = SEC_PRIORITY,\
2421 .cra_flags = CRYPTO_ALG_ASYNC |\
2422 CRYPTO_ALG_NEED_FALLBACK,\
2423 .cra_blocksize = blk_size,\
2424 .cra_ctxsize = sizeof(struct sec_ctx),\
2425 .cra_module = THIS_MODULE,\
2426 },\
2427 .init = ctx_init,\
2428 .exit = ctx_exit,\
2429 .setkey = sec_set_key,\
2430 .setauthsize = sec_aead_setauthsize,\
2431 .decrypt = sec_aead_decrypt,\
2432 .encrypt = sec_aead_encrypt,\
2433 .ivsize = iv_size,\
2434 .maxauthsize = max_authsize,\
2435 }
2436
2437 static struct sec_aead sec_aeads[] = {
2438 {
2439 .alg_msk = BIT(6),
2440 .alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
2441 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2442 AES_BLOCK_SIZE),
2443 },
2444 {
2445 .alg_msk = BIT(7),
2446 .alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
2447 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2448 AES_BLOCK_SIZE),
2449 },
2450 {
2451 .alg_msk = BIT(17),
2452 .alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
2453 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2454 AES_BLOCK_SIZE),
2455 },
2456 {
2457 .alg_msk = BIT(18),
2458 .alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
2459 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2460 AES_BLOCK_SIZE),
2461 },
2462 {
2463 .alg_msk = BIT(43),
2464 .alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1,
2465 sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2466 AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2467 },
2468 {
2469 .alg_msk = BIT(44),
2470 .alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256,
2471 sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2472 AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2473 },
2474 {
2475 .alg_msk = BIT(45),
2476 .alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512,
2477 sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2478 AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
2479 },
2480 };
2481
sec_unregister_skcipher(u64 alg_mask,int end)2482 static void sec_unregister_skcipher(u64 alg_mask, int end)
2483 {
2484 int i;
2485
2486 for (i = 0; i < end; i++)
2487 if (sec_skciphers[i].alg_msk & alg_mask)
2488 crypto_unregister_skcipher(&sec_skciphers[i].alg);
2489 }
2490
sec_register_skcipher(u64 alg_mask)2491 static int sec_register_skcipher(u64 alg_mask)
2492 {
2493 int i, ret, count;
2494
2495 count = ARRAY_SIZE(sec_skciphers);
2496
2497 for (i = 0; i < count; i++) {
2498 if (!(sec_skciphers[i].alg_msk & alg_mask))
2499 continue;
2500
2501 ret = crypto_register_skcipher(&sec_skciphers[i].alg);
2502 if (ret)
2503 goto err;
2504 }
2505
2506 return 0;
2507
2508 err:
2509 sec_unregister_skcipher(alg_mask, i);
2510
2511 return ret;
2512 }
2513
sec_unregister_aead(u64 alg_mask,int end)2514 static void sec_unregister_aead(u64 alg_mask, int end)
2515 {
2516 int i;
2517
2518 for (i = 0; i < end; i++)
2519 if (sec_aeads[i].alg_msk & alg_mask)
2520 crypto_unregister_aead(&sec_aeads[i].alg);
2521 }
2522
sec_register_aead(u64 alg_mask)2523 static int sec_register_aead(u64 alg_mask)
2524 {
2525 int i, ret, count;
2526
2527 count = ARRAY_SIZE(sec_aeads);
2528
2529 for (i = 0; i < count; i++) {
2530 if (!(sec_aeads[i].alg_msk & alg_mask))
2531 continue;
2532
2533 ret = crypto_register_aead(&sec_aeads[i].alg);
2534 if (ret)
2535 goto err;
2536 }
2537
2538 return 0;
2539
2540 err:
2541 sec_unregister_aead(alg_mask, i);
2542
2543 return ret;
2544 }
2545
sec_register_to_crypto(struct hisi_qm * qm)2546 int sec_register_to_crypto(struct hisi_qm *qm)
2547 {
2548 u64 alg_mask;
2549 int ret = 0;
2550
2551 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
2552 SEC_DRV_ALG_BITMAP_LOW_IDX);
2553
2554
2555 ret = sec_register_skcipher(alg_mask);
2556 if (ret)
2557 return ret;
2558
2559 ret = sec_register_aead(alg_mask);
2560 if (ret)
2561 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2562
2563 return ret;
2564 }
2565
sec_unregister_from_crypto(struct hisi_qm * qm)2566 void sec_unregister_from_crypto(struct hisi_qm *qm)
2567 {
2568 u64 alg_mask;
2569
2570 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
2571 SEC_DRV_ALG_BITMAP_LOW_IDX);
2572
2573 sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads));
2574 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2575 }
2576