1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Driver for the HiSilicon SEC units found on Hip06 Hip07 4 * 5 * Copyright (c) 2016-2017 HiSilicon Limited. 6 */ 7 #include <linux/acpi.h> 8 #include <linux/atomic.h> 9 #include <linux/delay.h> 10 #include <linux/dma-direction.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmapool.h> 13 #include <linux/io.h> 14 #include <linux/iommu.h> 15 #include <linux/interrupt.h> 16 #include <linux/irq.h> 17 #include <linux/irqreturn.h> 18 #include <linux/mm.h> 19 #include <linux/module.h> 20 #include <linux/of.h> 21 #include <linux/platform_device.h> 22 #include <linux/slab.h> 23 24 #include "sec_drv.h" 25 26 #define SEC_QUEUE_AR_FROCE_ALLOC 0 27 #define SEC_QUEUE_AR_FROCE_NOALLOC 1 28 #define SEC_QUEUE_AR_FROCE_DIS 2 29 30 #define SEC_QUEUE_AW_FROCE_ALLOC 0 31 #define SEC_QUEUE_AW_FROCE_NOALLOC 1 32 #define SEC_QUEUE_AW_FROCE_DIS 2 33 34 /* SEC_ALGSUB registers */ 35 #define SEC_ALGSUB_CLK_EN_REG 0x03b8 36 #define SEC_ALGSUB_CLK_DIS_REG 0x03bc 37 #define SEC_ALGSUB_CLK_ST_REG 0x535c 38 #define SEC_ALGSUB_RST_REQ_REG 0x0aa8 39 #define SEC_ALGSUB_RST_DREQ_REG 0x0aac 40 #define SEC_ALGSUB_RST_ST_REG 0x5a54 41 #define SEC_ALGSUB_RST_ST_IS_RST BIT(0) 42 43 #define SEC_ALGSUB_BUILD_RST_REQ_REG 0x0ab8 44 #define SEC_ALGSUB_BUILD_RST_DREQ_REG 0x0abc 45 #define SEC_ALGSUB_BUILD_RST_ST_REG 0x5a5c 46 #define SEC_ALGSUB_BUILD_RST_ST_IS_RST BIT(0) 47 48 #define SEC_SAA_BASE 0x00001000UL 49 50 /* SEC_SAA registers */ 51 #define SEC_SAA_CTRL_REG(x) ((x) * SEC_SAA_ADDR_SIZE) 52 #define SEC_SAA_CTRL_GET_QM_EN BIT(0) 53 54 #define SEC_ST_INTMSK1_REG 0x0200 55 #define SEC_ST_RINT1_REG 0x0400 56 #define SEC_ST_INTSTS1_REG 0x0600 57 #define SEC_BD_MNG_STAT_REG 0x0800 58 #define SEC_PARSING_STAT_REG 0x0804 59 #define SEC_LOAD_TIME_OUT_CNT_REG 0x0808 60 #define SEC_CORE_WORK_TIME_OUT_CNT_REG 0x080c 61 #define SEC_BACK_TIME_OUT_CNT_REG 0x0810 62 #define SEC_BD1_PARSING_RD_TIME_OUT_CNT_REG 0x0814 63 #define SEC_BD1_PARSING_WR_TIME_OUT_CNT_REG 0x0818 64 #define SEC_BD2_PARSING_RD_TIME_OUT_CNT_REG 0x081c 65 #define SEC_BD2_PARSING_WR_TIME_OUT_CNT_REG 0x0820 66 #define SEC_SAA_ACC_REG 0x083c 67 #define SEC_BD_NUM_CNT_IN_SEC_REG 0x0858 68 #define SEC_LOAD_WORK_TIME_CNT_REG 0x0860 69 #define SEC_CORE_WORK_WORK_TIME_CNT_REG 0x0864 70 #define SEC_BACK_WORK_TIME_CNT_REG 0x0868 71 #define SEC_SAA_IDLE_TIME_CNT_REG 0x086c 72 #define SEC_SAA_CLK_CNT_REG 0x0870 73 74 /* SEC_COMMON registers */ 75 #define SEC_CLK_EN_REG 0x0000 76 #define SEC_CTRL_REG 0x0004 77 78 #define SEC_COMMON_CNT_CLR_CE_REG 0x0008 79 #define SEC_COMMON_CNT_CLR_CE_CLEAR BIT(0) 80 #define SEC_COMMON_CNT_CLR_CE_SNAP_EN BIT(1) 81 82 #define SEC_SECURE_CTRL_REG 0x000c 83 #define SEC_AXI_CACHE_CFG_REG 0x0010 84 #define SEC_AXI_QOS_CFG_REG 0x0014 85 #define SEC_IPV4_MASK_TABLE_REG 0x0020 86 #define SEC_IPV6_MASK_TABLE_X_REG(x) (0x0024 + (x) * 4) 87 #define SEC_FSM_MAX_CNT_REG 0x0064 88 89 #define SEC_CTRL2_REG 0x0068 90 #define SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M GENMASK(3, 0) 91 #define SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_S 0 92 #define SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M GENMASK(6, 4) 93 #define SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_S 4 94 #define SEC_CTRL2_CLK_GATE_EN BIT(7) 95 #define SEC_CTRL2_ENDIAN_BD BIT(8) 96 #define SEC_CTRL2_ENDIAN_BD_TYPE BIT(9) 97 98 #define SEC_CNT_PRECISION_CFG_REG 0x006c 99 #define SEC_DEBUG_BD_CFG_REG 0x0070 100 #define SEC_DEBUG_BD_CFG_WB_NORMAL BIT(0) 101 #define SEC_DEBUG_BD_CFG_WB_EN BIT(1) 102 103 #define SEC_Q_SIGHT_SEL 0x0074 104 #define SEC_Q_SIGHT_HIS_CLR 0x0078 105 #define SEC_Q_VMID_CFG_REG(q) (0x0100 + (q) * 4) 106 #define SEC_Q_WEIGHT_CFG_REG(q) (0x200 + (q) * 4) 107 #define SEC_STAT_CLR_REG 0x0a00 108 #define SEC_SAA_IDLE_CNT_CLR_REG 0x0a04 109 #define SEC_QM_CPL_Q_IDBUF_DFX_CFG_REG 0x0b00 110 #define SEC_QM_CPL_Q_IDBUF_DFX_RESULT_REG 0x0b04 111 #define SEC_QM_BD_DFX_CFG_REG 0x0b08 112 #define SEC_QM_BD_DFX_RESULT_REG 0x0b0c 113 #define SEC_QM_BDID_DFX_RESULT_REG 0x0b10 114 #define SEC_QM_BD_DFIFO_STATUS_REG 0x0b14 115 #define SEC_QM_BD_DFX_CFG2_REG 0x0b1c 116 #define SEC_QM_BD_DFX_RESULT2_REG 0x0b20 117 #define SEC_QM_BD_IDFIFO_STATUS_REG 0x0b18 118 #define SEC_QM_BD_DFIFO_STATUS2_REG 0x0b28 119 #define SEC_QM_BD_IDFIFO_STATUS2_REG 0x0b2c 120 121 #define SEC_HASH_IPV4_MASK 0xfff00000 122 #define SEC_MAX_SAA_NUM 0xa 123 #define SEC_SAA_ADDR_SIZE 0x1000 124 125 #define SEC_Q_INIT_REG 0x0 126 #define SEC_Q_INIT_WO_STAT_CLEAR 0x2 127 #define SEC_Q_INIT_AND_STAT_CLEAR 0x3 128 129 #define SEC_Q_CFG_REG 0x8 130 #define SEC_Q_CFG_REORDER BIT(0) 131 132 #define SEC_Q_PROC_NUM_CFG_REG 0x10 133 #define SEC_QUEUE_ENB_REG 0x18 134 135 #define SEC_Q_DEPTH_CFG_REG 0x50 136 #define SEC_Q_DEPTH_CFG_DEPTH_M GENMASK(11, 0) 137 #define SEC_Q_DEPTH_CFG_DEPTH_S 0 138 139 #define SEC_Q_BASE_HADDR_REG 0x54 140 #define SEC_Q_BASE_LADDR_REG 0x58 141 #define SEC_Q_WR_PTR_REG 0x5c 142 #define SEC_Q_OUTORDER_BASE_HADDR_REG 0x60 143 #define SEC_Q_OUTORDER_BASE_LADDR_REG 0x64 144 #define SEC_Q_OUTORDER_RD_PTR_REG 0x68 145 #define SEC_Q_OT_TH_REG 0x6c 146 147 #define SEC_Q_ARUSER_CFG_REG 0x70 148 #define SEC_Q_ARUSER_CFG_FA BIT(0) 149 #define SEC_Q_ARUSER_CFG_FNA BIT(1) 150 #define SEC_Q_ARUSER_CFG_RINVLD BIT(2) 151 #define SEC_Q_ARUSER_CFG_PKG BIT(3) 152 153 #define SEC_Q_AWUSER_CFG_REG 0x74 154 #define SEC_Q_AWUSER_CFG_FA BIT(0) 155 #define SEC_Q_AWUSER_CFG_FNA BIT(1) 156 #define SEC_Q_AWUSER_CFG_PKG BIT(2) 157 158 #define SEC_Q_ERR_BASE_HADDR_REG 0x7c 159 #define SEC_Q_ERR_BASE_LADDR_REG 0x80 160 #define SEC_Q_CFG_VF_NUM_REG 0x84 161 #define SEC_Q_SOFT_PROC_PTR_REG 0x88 162 #define SEC_Q_FAIL_INT_MSK_REG 0x300 163 #define SEC_Q_FLOW_INT_MKS_REG 0x304 164 #define SEC_Q_FAIL_RINT_REG 0x400 165 #define SEC_Q_FLOW_RINT_REG 0x404 166 #define SEC_Q_FAIL_INT_STATUS_REG 0x500 167 #define SEC_Q_FLOW_INT_STATUS_REG 0x504 168 #define SEC_Q_STATUS_REG 0x600 169 #define SEC_Q_RD_PTR_REG 0x604 170 #define SEC_Q_PRO_PTR_REG 0x608 171 #define SEC_Q_OUTORDER_WR_PTR_REG 0x60c 172 #define SEC_Q_OT_CNT_STATUS_REG 0x610 173 #define SEC_Q_INORDER_BD_NUM_ST_REG 0x650 174 #define SEC_Q_INORDER_GET_FLAG_ST_REG 0x654 175 #define SEC_Q_INORDER_ADD_FLAG_ST_REG 0x658 176 #define SEC_Q_INORDER_TASK_INT_NUM_LEFT_ST_REG 0x65c 177 #define SEC_Q_RD_DONE_PTR_REG 0x660 178 #define SEC_Q_CPL_Q_BD_NUM_ST_REG 0x700 179 #define SEC_Q_CPL_Q_PTR_ST_REG 0x704 180 #define SEC_Q_CPL_Q_H_ADDR_ST_REG 0x708 181 #define SEC_Q_CPL_Q_L_ADDR_ST_REG 0x70c 182 #define SEC_Q_CPL_TASK_INT_NUM_LEFT_ST_REG 0x710 183 #define SEC_Q_WRR_ID_CHECK_REG 0x714 184 #define SEC_Q_CPLQ_FULL_CHECK_REG 0x718 185 #define SEC_Q_SUCCESS_BD_CNT_REG 0x800 186 #define SEC_Q_FAIL_BD_CNT_REG 0x804 187 #define SEC_Q_GET_BD_CNT_REG 0x808 188 #define SEC_Q_IVLD_CNT_REG 0x80c 189 #define SEC_Q_BD_PROC_GET_CNT_REG 0x810 190 #define SEC_Q_BD_PROC_DONE_CNT_REG 0x814 191 #define SEC_Q_LAT_CLR_REG 0x850 192 #define SEC_Q_PKT_LAT_MAX_REG 0x854 193 #define SEC_Q_PKT_LAT_AVG_REG 0x858 194 #define SEC_Q_PKT_LAT_MIN_REG 0x85c 195 #define SEC_Q_ID_CLR_CFG_REG 0x900 196 #define SEC_Q_1ST_BD_ERR_ID_REG 0x904 197 #define SEC_Q_1ST_AUTH_FAIL_ID_REG 0x908 198 #define SEC_Q_1ST_RD_ERR_ID_REG 0x90c 199 #define SEC_Q_1ST_ECC2_ERR_ID_REG 0x910 200 #define SEC_Q_1ST_IVLD_ID_REG 0x914 201 #define SEC_Q_1ST_BD_WR_ERR_ID_REG 0x918 202 #define SEC_Q_1ST_ERR_BD_WR_ERR_ID_REG 0x91c 203 #define SEC_Q_1ST_BD_MAC_WR_ERR_ID_REG 0x920 204 205 struct sec_debug_bd_info { 206 #define SEC_DEBUG_BD_INFO_SOFT_ERR_CHECK_M GENMASK(22, 0) 207 u32 soft_err_check; 208 #define SEC_DEBUG_BD_INFO_HARD_ERR_CHECK_M GENMASK(9, 0) 209 u32 hard_err_check; 210 u32 icv_mac1st_word; 211 #define SEC_DEBUG_BD_INFO_GET_ID_M GENMASK(19, 0) 212 u32 sec_get_id; 213 /* W4---W15 */ 214 u32 reserv_left[12]; 215 }; 216 217 struct sec_out_bd_info { 218 #define SEC_OUT_BD_INFO_Q_ID_M GENMASK(11, 0) 219 #define SEC_OUT_BD_INFO_ECC_2BIT_ERR BIT(14) 220 u16 data; 221 }; 222 223 #define SEC_MAX_DEVICES 8 224 static struct sec_dev_info *sec_devices[SEC_MAX_DEVICES]; 225 static DEFINE_MUTEX(sec_id_lock); 226 227 static int sec_queue_map_io(struct sec_queue *queue) 228 { 229 struct device *dev = queue->dev_info->dev; 230 struct resource *res; 231 232 res = platform_get_resource(to_platform_device(dev), 233 IORESOURCE_MEM, 234 2 + queue->queue_id); 235 if (!res) { 236 dev_err(dev, "Failed to get queue %u memory resource\n", 237 queue->queue_id); 238 return -ENOMEM; 239 } 240 queue->regs = ioremap(res->start, resource_size(res)); 241 if (!queue->regs) 242 return -ENOMEM; 243 244 return 0; 245 } 246 247 static void sec_queue_unmap_io(struct sec_queue *queue) 248 { 249 iounmap(queue->regs); 250 } 251 252 static int sec_queue_ar_pkgattr(struct sec_queue *queue, u32 ar_pkg) 253 { 254 void __iomem *addr = queue->regs + SEC_Q_ARUSER_CFG_REG; 255 u32 regval; 256 257 regval = readl_relaxed(addr); 258 if (ar_pkg) 259 regval |= SEC_Q_ARUSER_CFG_PKG; 260 else 261 regval &= ~SEC_Q_ARUSER_CFG_PKG; 262 writel_relaxed(regval, addr); 263 264 return 0; 265 } 266 267 static int sec_queue_aw_pkgattr(struct sec_queue *queue, u32 aw_pkg) 268 { 269 void __iomem *addr = queue->regs + SEC_Q_AWUSER_CFG_REG; 270 u32 regval; 271 272 regval = readl_relaxed(addr); 273 regval |= SEC_Q_AWUSER_CFG_PKG; 274 writel_relaxed(regval, addr); 275 276 return 0; 277 } 278 279 static int sec_clk_en(struct sec_dev_info *info) 280 { 281 void __iomem *base = info->regs[SEC_COMMON]; 282 u32 i = 0; 283 284 writel_relaxed(0x7, base + SEC_ALGSUB_CLK_EN_REG); 285 do { 286 usleep_range(1000, 10000); 287 if ((readl_relaxed(base + SEC_ALGSUB_CLK_ST_REG) & 0x7) == 0x7) 288 return 0; 289 i++; 290 } while (i < 10); 291 dev_err(info->dev, "sec clock enable fail!\n"); 292 293 return -EIO; 294 } 295 296 static int sec_clk_dis(struct sec_dev_info *info) 297 { 298 void __iomem *base = info->regs[SEC_COMMON]; 299 u32 i = 0; 300 301 writel_relaxed(0x7, base + SEC_ALGSUB_CLK_DIS_REG); 302 do { 303 usleep_range(1000, 10000); 304 if ((readl_relaxed(base + SEC_ALGSUB_CLK_ST_REG) & 0x7) == 0) 305 return 0; 306 i++; 307 } while (i < 10); 308 dev_err(info->dev, "sec clock disable fail!\n"); 309 310 return -EIO; 311 } 312 313 static int sec_reset_whole_module(struct sec_dev_info *info) 314 { 315 void __iomem *base = info->regs[SEC_COMMON]; 316 bool is_reset, b_is_reset; 317 u32 i = 0; 318 319 writel_relaxed(1, base + SEC_ALGSUB_RST_REQ_REG); 320 writel_relaxed(1, base + SEC_ALGSUB_BUILD_RST_REQ_REG); 321 while (1) { 322 usleep_range(1000, 10000); 323 is_reset = readl_relaxed(base + SEC_ALGSUB_RST_ST_REG) & 324 SEC_ALGSUB_RST_ST_IS_RST; 325 b_is_reset = readl_relaxed(base + SEC_ALGSUB_BUILD_RST_ST_REG) & 326 SEC_ALGSUB_BUILD_RST_ST_IS_RST; 327 if (is_reset && b_is_reset) 328 break; 329 i++; 330 if (i > 10) { 331 dev_err(info->dev, "Reset req failed\n"); 332 return -EIO; 333 } 334 } 335 336 i = 0; 337 writel_relaxed(1, base + SEC_ALGSUB_RST_DREQ_REG); 338 writel_relaxed(1, base + SEC_ALGSUB_BUILD_RST_DREQ_REG); 339 while (1) { 340 usleep_range(1000, 10000); 341 is_reset = readl_relaxed(base + SEC_ALGSUB_RST_ST_REG) & 342 SEC_ALGSUB_RST_ST_IS_RST; 343 b_is_reset = readl_relaxed(base + SEC_ALGSUB_BUILD_RST_ST_REG) & 344 SEC_ALGSUB_BUILD_RST_ST_IS_RST; 345 if (!is_reset && !b_is_reset) 346 break; 347 348 i++; 349 if (i > 10) { 350 dev_err(info->dev, "Reset dreq failed\n"); 351 return -EIO; 352 } 353 } 354 355 return 0; 356 } 357 358 static void sec_bd_endian_little(struct sec_dev_info *info) 359 { 360 void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG; 361 u32 regval; 362 363 regval = readl_relaxed(addr); 364 regval &= ~(SEC_CTRL2_ENDIAN_BD | SEC_CTRL2_ENDIAN_BD_TYPE); 365 writel_relaxed(regval, addr); 366 } 367 368 /* 369 * sec_cache_config - configure optimum cache placement 370 */ 371 static void sec_cache_config(struct sec_dev_info *info) 372 { 373 struct iommu_domain *domain; 374 void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL_REG; 375 376 domain = iommu_get_domain_for_dev(info->dev); 377 378 /* Check that translation is occurring */ 379 if (domain && (domain->type & __IOMMU_DOMAIN_PAGING)) 380 writel_relaxed(0x44cf9e, addr); 381 else 382 writel_relaxed(0x4cfd9, addr); 383 } 384 385 static void sec_data_axiwr_otsd_cfg(struct sec_dev_info *info, u32 cfg) 386 { 387 void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG; 388 u32 regval; 389 390 regval = readl_relaxed(addr); 391 regval &= ~SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M; 392 regval |= (cfg << SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_S) & 393 SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M; 394 writel_relaxed(regval, addr); 395 } 396 397 static void sec_data_axird_otsd_cfg(struct sec_dev_info *info, u32 cfg) 398 { 399 void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG; 400 u32 regval; 401 402 regval = readl_relaxed(addr); 403 regval &= ~SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M; 404 regval |= (cfg << SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_S) & 405 SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M; 406 writel_relaxed(regval, addr); 407 } 408 409 static void sec_clk_gate_en(struct sec_dev_info *info, bool clkgate) 410 { 411 void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG; 412 u32 regval; 413 414 regval = readl_relaxed(addr); 415 if (clkgate) 416 regval |= SEC_CTRL2_CLK_GATE_EN; 417 else 418 regval &= ~SEC_CTRL2_CLK_GATE_EN; 419 writel_relaxed(regval, addr); 420 } 421 422 static void sec_comm_cnt_cfg(struct sec_dev_info *info, bool clr_ce) 423 { 424 void __iomem *addr = info->regs[SEC_SAA] + SEC_COMMON_CNT_CLR_CE_REG; 425 u32 regval; 426 427 regval = readl_relaxed(addr); 428 if (clr_ce) 429 regval |= SEC_COMMON_CNT_CLR_CE_CLEAR; 430 else 431 regval &= ~SEC_COMMON_CNT_CLR_CE_CLEAR; 432 writel_relaxed(regval, addr); 433 } 434 435 static void sec_commsnap_en(struct sec_dev_info *info, bool snap_en) 436 { 437 void __iomem *addr = info->regs[SEC_SAA] + SEC_COMMON_CNT_CLR_CE_REG; 438 u32 regval; 439 440 regval = readl_relaxed(addr); 441 if (snap_en) 442 regval |= SEC_COMMON_CNT_CLR_CE_SNAP_EN; 443 else 444 regval &= ~SEC_COMMON_CNT_CLR_CE_SNAP_EN; 445 writel_relaxed(regval, addr); 446 } 447 448 static void sec_ipv6_hashmask(struct sec_dev_info *info, u32 hash_mask[]) 449 { 450 void __iomem *base = info->regs[SEC_SAA]; 451 int i; 452 453 for (i = 0; i < 10; i++) 454 writel_relaxed(hash_mask[0], 455 base + SEC_IPV6_MASK_TABLE_X_REG(i)); 456 } 457 458 static int sec_ipv4_hashmask(struct sec_dev_info *info, u32 hash_mask) 459 { 460 if (hash_mask & SEC_HASH_IPV4_MASK) { 461 dev_err(info->dev, "Sec Ipv4 Hash Mask Input Error!\n "); 462 return -EINVAL; 463 } 464 465 writel_relaxed(hash_mask, 466 info->regs[SEC_SAA] + SEC_IPV4_MASK_TABLE_REG); 467 468 return 0; 469 } 470 471 static void sec_set_dbg_bd_cfg(struct sec_dev_info *info, u32 cfg) 472 { 473 void __iomem *addr = info->regs[SEC_SAA] + SEC_DEBUG_BD_CFG_REG; 474 u32 regval; 475 476 regval = readl_relaxed(addr); 477 /* Always disable write back of normal bd */ 478 regval &= ~SEC_DEBUG_BD_CFG_WB_NORMAL; 479 480 if (cfg) 481 regval &= ~SEC_DEBUG_BD_CFG_WB_EN; 482 else 483 regval |= SEC_DEBUG_BD_CFG_WB_EN; 484 485 writel_relaxed(regval, addr); 486 } 487 488 static void sec_saa_getqm_en(struct sec_dev_info *info, u32 saa_indx, u32 en) 489 { 490 void __iomem *addr = info->regs[SEC_SAA] + SEC_SAA_BASE + 491 SEC_SAA_CTRL_REG(saa_indx); 492 u32 regval; 493 494 regval = readl_relaxed(addr); 495 if (en) 496 regval |= SEC_SAA_CTRL_GET_QM_EN; 497 else 498 regval &= ~SEC_SAA_CTRL_GET_QM_EN; 499 writel_relaxed(regval, addr); 500 } 501 502 static void sec_saa_int_mask(struct sec_dev_info *info, u32 saa_indx, 503 u32 saa_int_mask) 504 { 505 writel_relaxed(saa_int_mask, 506 info->regs[SEC_SAA] + SEC_SAA_BASE + SEC_ST_INTMSK1_REG + 507 saa_indx * SEC_SAA_ADDR_SIZE); 508 } 509 510 static void sec_streamid(struct sec_dev_info *info, int i) 511 { 512 #define SEC_SID 0x600 513 #define SEC_VMID 0 514 515 writel_relaxed((SEC_VMID | ((SEC_SID & 0xffff) << 8)), 516 info->regs[SEC_SAA] + SEC_Q_VMID_CFG_REG(i)); 517 } 518 519 static void sec_queue_ar_alloc(struct sec_queue *queue, u32 alloc) 520 { 521 void __iomem *addr = queue->regs + SEC_Q_ARUSER_CFG_REG; 522 u32 regval; 523 524 regval = readl_relaxed(addr); 525 if (alloc == SEC_QUEUE_AR_FROCE_ALLOC) { 526 regval |= SEC_Q_ARUSER_CFG_FA; 527 regval &= ~SEC_Q_ARUSER_CFG_FNA; 528 } else { 529 regval &= ~SEC_Q_ARUSER_CFG_FA; 530 regval |= SEC_Q_ARUSER_CFG_FNA; 531 } 532 533 writel_relaxed(regval, addr); 534 } 535 536 static void sec_queue_aw_alloc(struct sec_queue *queue, u32 alloc) 537 { 538 void __iomem *addr = queue->regs + SEC_Q_AWUSER_CFG_REG; 539 u32 regval; 540 541 regval = readl_relaxed(addr); 542 if (alloc == SEC_QUEUE_AW_FROCE_ALLOC) { 543 regval |= SEC_Q_AWUSER_CFG_FA; 544 regval &= ~SEC_Q_AWUSER_CFG_FNA; 545 } else { 546 regval &= ~SEC_Q_AWUSER_CFG_FA; 547 regval |= SEC_Q_AWUSER_CFG_FNA; 548 } 549 550 writel_relaxed(regval, addr); 551 } 552 553 static void sec_queue_reorder(struct sec_queue *queue, bool reorder) 554 { 555 void __iomem *base = queue->regs; 556 u32 regval; 557 558 regval = readl_relaxed(base + SEC_Q_CFG_REG); 559 if (reorder) 560 regval |= SEC_Q_CFG_REORDER; 561 else 562 regval &= ~SEC_Q_CFG_REORDER; 563 writel_relaxed(regval, base + SEC_Q_CFG_REG); 564 } 565 566 static void sec_queue_depth(struct sec_queue *queue, u32 depth) 567 { 568 void __iomem *addr = queue->regs + SEC_Q_DEPTH_CFG_REG; 569 u32 regval; 570 571 regval = readl_relaxed(addr); 572 regval &= ~SEC_Q_DEPTH_CFG_DEPTH_M; 573 regval |= (depth << SEC_Q_DEPTH_CFG_DEPTH_S) & SEC_Q_DEPTH_CFG_DEPTH_M; 574 575 writel_relaxed(regval, addr); 576 } 577 578 static void sec_queue_cmdbase_addr(struct sec_queue *queue, u64 addr) 579 { 580 writel_relaxed(upper_32_bits(addr), queue->regs + SEC_Q_BASE_HADDR_REG); 581 writel_relaxed(lower_32_bits(addr), queue->regs + SEC_Q_BASE_LADDR_REG); 582 } 583 584 static void sec_queue_outorder_addr(struct sec_queue *queue, u64 addr) 585 { 586 writel_relaxed(upper_32_bits(addr), 587 queue->regs + SEC_Q_OUTORDER_BASE_HADDR_REG); 588 writel_relaxed(lower_32_bits(addr), 589 queue->regs + SEC_Q_OUTORDER_BASE_LADDR_REG); 590 } 591 592 static void sec_queue_errbase_addr(struct sec_queue *queue, u64 addr) 593 { 594 writel_relaxed(upper_32_bits(addr), 595 queue->regs + SEC_Q_ERR_BASE_HADDR_REG); 596 writel_relaxed(lower_32_bits(addr), 597 queue->regs + SEC_Q_ERR_BASE_LADDR_REG); 598 } 599 600 static void sec_queue_irq_disable(struct sec_queue *queue) 601 { 602 writel_relaxed((u32)~0, queue->regs + SEC_Q_FLOW_INT_MKS_REG); 603 } 604 605 static void sec_queue_irq_enable(struct sec_queue *queue) 606 { 607 writel_relaxed(0, queue->regs + SEC_Q_FLOW_INT_MKS_REG); 608 } 609 610 static void sec_queue_abn_irq_disable(struct sec_queue *queue) 611 { 612 writel_relaxed((u32)~0, queue->regs + SEC_Q_FAIL_INT_MSK_REG); 613 } 614 615 static void sec_queue_stop(struct sec_queue *queue) 616 { 617 disable_irq(queue->task_irq); 618 sec_queue_irq_disable(queue); 619 writel_relaxed(0x0, queue->regs + SEC_QUEUE_ENB_REG); 620 } 621 622 static void sec_queue_start(struct sec_queue *queue) 623 { 624 sec_queue_irq_enable(queue); 625 enable_irq(queue->task_irq); 626 queue->expected = 0; 627 writel_relaxed(SEC_Q_INIT_AND_STAT_CLEAR, queue->regs + SEC_Q_INIT_REG); 628 writel_relaxed(0x1, queue->regs + SEC_QUEUE_ENB_REG); 629 } 630 631 static struct sec_queue *sec_alloc_queue(struct sec_dev_info *info) 632 { 633 int i; 634 635 mutex_lock(&info->dev_lock); 636 637 /* Get the first idle queue in SEC device */ 638 for (i = 0; i < SEC_Q_NUM; i++) 639 if (!info->queues[i].in_use) { 640 info->queues[i].in_use = true; 641 info->queues_in_use++; 642 mutex_unlock(&info->dev_lock); 643 644 return &info->queues[i]; 645 } 646 mutex_unlock(&info->dev_lock); 647 648 return ERR_PTR(-ENODEV); 649 } 650 651 static int sec_queue_free(struct sec_queue *queue) 652 { 653 struct sec_dev_info *info = queue->dev_info; 654 655 if (queue->queue_id >= SEC_Q_NUM) { 656 dev_err(info->dev, "No queue %u\n", queue->queue_id); 657 return -ENODEV; 658 } 659 660 if (!queue->in_use) { 661 dev_err(info->dev, "Queue %u is idle\n", queue->queue_id); 662 return -ENODEV; 663 } 664 665 mutex_lock(&info->dev_lock); 666 queue->in_use = false; 667 info->queues_in_use--; 668 mutex_unlock(&info->dev_lock); 669 670 return 0; 671 } 672 673 static irqreturn_t sec_isr_handle_th(int irq, void *q) 674 { 675 sec_queue_irq_disable(q); 676 return IRQ_WAKE_THREAD; 677 } 678 679 static irqreturn_t sec_isr_handle(int irq, void *q) 680 { 681 struct sec_queue *queue = q; 682 struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd; 683 struct sec_queue_ring_cq *cq_ring = &queue->ring_cq; 684 struct sec_out_bd_info *outorder_msg; 685 struct sec_bd_info *msg; 686 u32 ooo_read, ooo_write; 687 void __iomem *base = queue->regs; 688 int q_id; 689 690 ooo_read = readl(base + SEC_Q_OUTORDER_RD_PTR_REG); 691 ooo_write = readl(base + SEC_Q_OUTORDER_WR_PTR_REG); 692 outorder_msg = cq_ring->vaddr + ooo_read; 693 q_id = outorder_msg->data & SEC_OUT_BD_INFO_Q_ID_M; 694 msg = msg_ring->vaddr + q_id; 695 696 while ((ooo_write != ooo_read) && msg->w0 & SEC_BD_W0_DONE) { 697 /* 698 * Must be before callback otherwise blocks adding other chained 699 * elements 700 */ 701 set_bit(q_id, queue->unprocessed); 702 if (q_id == queue->expected) 703 while (test_bit(queue->expected, queue->unprocessed)) { 704 clear_bit(queue->expected, queue->unprocessed); 705 msg = msg_ring->vaddr + queue->expected; 706 msg->w0 &= ~SEC_BD_W0_DONE; 707 msg_ring->callback(msg, 708 queue->shadow[queue->expected]); 709 queue->shadow[queue->expected] = NULL; 710 queue->expected = (queue->expected + 1) % 711 SEC_QUEUE_LEN; 712 atomic_dec(&msg_ring->used); 713 } 714 715 ooo_read = (ooo_read + 1) % SEC_QUEUE_LEN; 716 writel(ooo_read, base + SEC_Q_OUTORDER_RD_PTR_REG); 717 ooo_write = readl(base + SEC_Q_OUTORDER_WR_PTR_REG); 718 outorder_msg = cq_ring->vaddr + ooo_read; 719 q_id = outorder_msg->data & SEC_OUT_BD_INFO_Q_ID_M; 720 msg = msg_ring->vaddr + q_id; 721 } 722 723 sec_queue_irq_enable(queue); 724 725 return IRQ_HANDLED; 726 } 727 728 static int sec_queue_irq_init(struct sec_queue *queue) 729 { 730 struct sec_dev_info *info = queue->dev_info; 731 int irq = queue->task_irq; 732 int ret; 733 734 ret = request_threaded_irq(irq, sec_isr_handle_th, sec_isr_handle, 735 IRQF_TRIGGER_RISING, queue->name, queue); 736 if (ret) { 737 dev_err(info->dev, "request irq(%d) failed %d\n", irq, ret); 738 return ret; 739 } 740 disable_irq(irq); 741 742 return 0; 743 } 744 745 static int sec_queue_irq_uninit(struct sec_queue *queue) 746 { 747 free_irq(queue->task_irq, queue); 748 749 return 0; 750 } 751 752 static struct sec_dev_info *sec_device_get(void) 753 { 754 struct sec_dev_info *sec_dev = NULL; 755 struct sec_dev_info *this_sec_dev; 756 int least_busy_n = SEC_Q_NUM + 1; 757 int i; 758 759 /* Find which one is least busy and use that first */ 760 for (i = 0; i < SEC_MAX_DEVICES; i++) { 761 this_sec_dev = sec_devices[i]; 762 if (this_sec_dev && 763 this_sec_dev->queues_in_use < least_busy_n) { 764 least_busy_n = this_sec_dev->queues_in_use; 765 sec_dev = this_sec_dev; 766 } 767 } 768 769 return sec_dev; 770 } 771 772 static struct sec_queue *sec_queue_alloc_start(struct sec_dev_info *info) 773 { 774 struct sec_queue *queue; 775 776 queue = sec_alloc_queue(info); 777 if (IS_ERR(queue)) { 778 dev_err(info->dev, "alloc sec queue failed! %ld\n", 779 PTR_ERR(queue)); 780 return queue; 781 } 782 783 sec_queue_start(queue); 784 785 return queue; 786 } 787 788 /** 789 * sec_queue_alloc_start_safe - get a hw queue from appropriate instance 790 * 791 * This function does extremely simplistic load balancing. It does not take into 792 * account NUMA locality of the accelerator, or which cpu has requested the 793 * queue. Future work may focus on optimizing this in order to improve full 794 * machine throughput. 795 */ 796 struct sec_queue *sec_queue_alloc_start_safe(void) 797 { 798 struct sec_dev_info *info; 799 struct sec_queue *queue = ERR_PTR(-ENODEV); 800 801 mutex_lock(&sec_id_lock); 802 info = sec_device_get(); 803 if (!info) 804 goto unlock; 805 806 queue = sec_queue_alloc_start(info); 807 808 unlock: 809 mutex_unlock(&sec_id_lock); 810 811 return queue; 812 } 813 814 /** 815 * sec_queue_stop_release() - free up a hw queue for reuse 816 * @queue: The queue we are done with. 817 * 818 * This will stop the current queue, terminanting any transactions 819 * that are inflight an return it to the pool of available hw queuess 820 */ 821 int sec_queue_stop_release(struct sec_queue *queue) 822 { 823 struct device *dev = queue->dev_info->dev; 824 int ret; 825 826 sec_queue_stop(queue); 827 828 ret = sec_queue_free(queue); 829 if (ret) 830 dev_err(dev, "Releasing queue failed %d\n", ret); 831 832 return ret; 833 } 834 835 /** 836 * sec_queue_empty() - Is this hardware queue currently empty. 837 * @queue: The queue to test 838 * 839 * We need to know if we have an empty queue for some of the chaining modes 840 * as if it is not empty we may need to hold the message in a software queue 841 * until the hw queue is drained. 842 */ 843 bool sec_queue_empty(struct sec_queue *queue) 844 { 845 struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd; 846 847 return !atomic_read(&msg_ring->used); 848 } 849 850 /** 851 * sec_queue_send() - queue up a single operation in the hw queue 852 * @queue: The queue in which to put the message 853 * @msg: The message 854 * @ctx: Context to be put in the shadow array and passed back to cb on result. 855 * 856 * This function will return -EAGAIN if the queue is currently full. 857 */ 858 int sec_queue_send(struct sec_queue *queue, struct sec_bd_info *msg, void *ctx) 859 { 860 struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd; 861 void __iomem *base = queue->regs; 862 u32 write, read; 863 864 mutex_lock(&msg_ring->lock); 865 read = readl(base + SEC_Q_RD_PTR_REG); 866 write = readl(base + SEC_Q_WR_PTR_REG); 867 if (write == read && atomic_read(&msg_ring->used) == SEC_QUEUE_LEN) { 868 mutex_unlock(&msg_ring->lock); 869 return -EAGAIN; 870 } 871 memcpy(msg_ring->vaddr + write, msg, sizeof(*msg)); 872 queue->shadow[write] = ctx; 873 write = (write + 1) % SEC_QUEUE_LEN; 874 875 /* Ensure content updated before queue advance */ 876 wmb(); 877 writel(write, base + SEC_Q_WR_PTR_REG); 878 879 atomic_inc(&msg_ring->used); 880 mutex_unlock(&msg_ring->lock); 881 882 return 0; 883 } 884 885 bool sec_queue_can_enqueue(struct sec_queue *queue, int num) 886 { 887 struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd; 888 889 return SEC_QUEUE_LEN - atomic_read(&msg_ring->used) >= num; 890 } 891 892 static void sec_queue_hw_init(struct sec_queue *queue) 893 { 894 sec_queue_ar_alloc(queue, SEC_QUEUE_AR_FROCE_NOALLOC); 895 sec_queue_aw_alloc(queue, SEC_QUEUE_AW_FROCE_NOALLOC); 896 sec_queue_ar_pkgattr(queue, 1); 897 sec_queue_aw_pkgattr(queue, 1); 898 899 /* Enable out of order queue */ 900 sec_queue_reorder(queue, true); 901 902 /* Interrupt after a single complete element */ 903 writel_relaxed(1, queue->regs + SEC_Q_PROC_NUM_CFG_REG); 904 905 sec_queue_depth(queue, SEC_QUEUE_LEN - 1); 906 907 sec_queue_cmdbase_addr(queue, queue->ring_cmd.paddr); 908 909 sec_queue_outorder_addr(queue, queue->ring_cq.paddr); 910 911 sec_queue_errbase_addr(queue, queue->ring_db.paddr); 912 913 writel_relaxed(0x100, queue->regs + SEC_Q_OT_TH_REG); 914 915 sec_queue_abn_irq_disable(queue); 916 sec_queue_irq_disable(queue); 917 writel_relaxed(SEC_Q_INIT_AND_STAT_CLEAR, queue->regs + SEC_Q_INIT_REG); 918 } 919 920 static int sec_hw_init(struct sec_dev_info *info) 921 { 922 struct iommu_domain *domain; 923 u32 sec_ipv4_mask = 0; 924 u32 sec_ipv6_mask[10] = {}; 925 u32 i, ret; 926 927 domain = iommu_get_domain_for_dev(info->dev); 928 929 /* 930 * Enable all available processing unit clocks. 931 * Only the first cluster is usable with translations. 932 */ 933 if (domain && (domain->type & __IOMMU_DOMAIN_PAGING)) 934 info->num_saas = 5; 935 936 else 937 info->num_saas = 10; 938 939 writel_relaxed(GENMASK(info->num_saas - 1, 0), 940 info->regs[SEC_SAA] + SEC_CLK_EN_REG); 941 942 /* 32 bit little endian */ 943 sec_bd_endian_little(info); 944 945 sec_cache_config(info); 946 947 /* Data axi port write and read outstanding config as per datasheet */ 948 sec_data_axiwr_otsd_cfg(info, 0x7); 949 sec_data_axird_otsd_cfg(info, 0x7); 950 951 /* Enable clock gating */ 952 sec_clk_gate_en(info, true); 953 954 /* Set CNT_CYC register not read clear */ 955 sec_comm_cnt_cfg(info, false); 956 957 /* Enable CNT_CYC */ 958 sec_commsnap_en(info, false); 959 960 writel_relaxed((u32)~0, info->regs[SEC_SAA] + SEC_FSM_MAX_CNT_REG); 961 962 ret = sec_ipv4_hashmask(info, sec_ipv4_mask); 963 if (ret) { 964 dev_err(info->dev, "Failed to set ipv4 hashmask %d\n", ret); 965 return -EIO; 966 } 967 968 sec_ipv6_hashmask(info, sec_ipv6_mask); 969 970 /* do not use debug bd */ 971 sec_set_dbg_bd_cfg(info, 0); 972 973 if (domain && (domain->type & __IOMMU_DOMAIN_PAGING)) { 974 for (i = 0; i < SEC_Q_NUM; i++) { 975 sec_streamid(info, i); 976 /* Same QoS for all queues */ 977 writel_relaxed(0x3f, 978 info->regs[SEC_SAA] + 979 SEC_Q_WEIGHT_CFG_REG(i)); 980 } 981 } 982 983 for (i = 0; i < info->num_saas; i++) { 984 sec_saa_getqm_en(info, i, 1); 985 sec_saa_int_mask(info, i, 0); 986 } 987 988 return 0; 989 } 990 991 static void sec_hw_exit(struct sec_dev_info *info) 992 { 993 int i; 994 995 for (i = 0; i < SEC_MAX_SAA_NUM; i++) { 996 sec_saa_int_mask(info, i, (u32)~0); 997 sec_saa_getqm_en(info, i, 0); 998 } 999 } 1000 1001 static void sec_queue_base_init(struct sec_dev_info *info, 1002 struct sec_queue *queue, int queue_id) 1003 { 1004 queue->dev_info = info; 1005 queue->queue_id = queue_id; 1006 snprintf(queue->name, sizeof(queue->name), 1007 "%s_%d", dev_name(info->dev), queue->queue_id); 1008 } 1009 1010 static int sec_map_io(struct sec_dev_info *info, struct platform_device *pdev) 1011 { 1012 struct resource *res; 1013 int i; 1014 1015 for (i = 0; i < SEC_NUM_ADDR_REGIONS; i++) { 1016 res = platform_get_resource(pdev, IORESOURCE_MEM, i); 1017 1018 if (!res) { 1019 dev_err(info->dev, "Memory resource %d not found\n", i); 1020 return -EINVAL; 1021 } 1022 1023 info->regs[i] = devm_ioremap(info->dev, res->start, 1024 resource_size(res)); 1025 if (!info->regs[i]) { 1026 dev_err(info->dev, 1027 "Memory resource %d could not be remapped\n", 1028 i); 1029 return -EINVAL; 1030 } 1031 } 1032 1033 return 0; 1034 } 1035 1036 static int sec_base_init(struct sec_dev_info *info, 1037 struct platform_device *pdev) 1038 { 1039 int ret; 1040 1041 ret = sec_map_io(info, pdev); 1042 if (ret) 1043 return ret; 1044 1045 ret = sec_clk_en(info); 1046 if (ret) 1047 return ret; 1048 1049 ret = sec_reset_whole_module(info); 1050 if (ret) 1051 goto sec_clk_disable; 1052 1053 ret = sec_hw_init(info); 1054 if (ret) 1055 goto sec_clk_disable; 1056 1057 return 0; 1058 1059 sec_clk_disable: 1060 sec_clk_dis(info); 1061 1062 return ret; 1063 } 1064 1065 static void sec_base_exit(struct sec_dev_info *info) 1066 { 1067 sec_hw_exit(info); 1068 sec_clk_dis(info); 1069 } 1070 1071 #define SEC_Q_CMD_SIZE \ 1072 round_up(SEC_QUEUE_LEN * sizeof(struct sec_bd_info), PAGE_SIZE) 1073 #define SEC_Q_CQ_SIZE \ 1074 round_up(SEC_QUEUE_LEN * sizeof(struct sec_out_bd_info), PAGE_SIZE) 1075 #define SEC_Q_DB_SIZE \ 1076 round_up(SEC_QUEUE_LEN * sizeof(struct sec_debug_bd_info), PAGE_SIZE) 1077 1078 static int sec_queue_res_cfg(struct sec_queue *queue) 1079 { 1080 struct device *dev = queue->dev_info->dev; 1081 struct sec_queue_ring_cmd *ring_cmd = &queue->ring_cmd; 1082 struct sec_queue_ring_cq *ring_cq = &queue->ring_cq; 1083 struct sec_queue_ring_db *ring_db = &queue->ring_db; 1084 int ret; 1085 1086 ring_cmd->vaddr = dma_alloc_coherent(dev, SEC_Q_CMD_SIZE, 1087 &ring_cmd->paddr, GFP_KERNEL); 1088 if (!ring_cmd->vaddr) 1089 return -ENOMEM; 1090 1091 atomic_set(&ring_cmd->used, 0); 1092 mutex_init(&ring_cmd->lock); 1093 ring_cmd->callback = sec_alg_callback; 1094 1095 ring_cq->vaddr = dma_alloc_coherent(dev, SEC_Q_CQ_SIZE, 1096 &ring_cq->paddr, GFP_KERNEL); 1097 if (!ring_cq->vaddr) { 1098 ret = -ENOMEM; 1099 goto err_free_ring_cmd; 1100 } 1101 1102 ring_db->vaddr = dma_alloc_coherent(dev, SEC_Q_DB_SIZE, 1103 &ring_db->paddr, GFP_KERNEL); 1104 if (!ring_db->vaddr) { 1105 ret = -ENOMEM; 1106 goto err_free_ring_cq; 1107 } 1108 queue->task_irq = platform_get_irq(to_platform_device(dev), 1109 queue->queue_id * 2 + 1); 1110 if (queue->task_irq < 0) { 1111 ret = queue->task_irq; 1112 goto err_free_ring_db; 1113 } 1114 1115 return 0; 1116 1117 err_free_ring_db: 1118 dma_free_coherent(dev, SEC_Q_DB_SIZE, queue->ring_db.vaddr, 1119 queue->ring_db.paddr); 1120 err_free_ring_cq: 1121 dma_free_coherent(dev, SEC_Q_CQ_SIZE, queue->ring_cq.vaddr, 1122 queue->ring_cq.paddr); 1123 err_free_ring_cmd: 1124 dma_free_coherent(dev, SEC_Q_CMD_SIZE, queue->ring_cmd.vaddr, 1125 queue->ring_cmd.paddr); 1126 1127 return ret; 1128 } 1129 1130 static void sec_queue_free_ring_pages(struct sec_queue *queue) 1131 { 1132 struct device *dev = queue->dev_info->dev; 1133 1134 dma_free_coherent(dev, SEC_Q_DB_SIZE, queue->ring_db.vaddr, 1135 queue->ring_db.paddr); 1136 dma_free_coherent(dev, SEC_Q_CQ_SIZE, queue->ring_cq.vaddr, 1137 queue->ring_cq.paddr); 1138 dma_free_coherent(dev, SEC_Q_CMD_SIZE, queue->ring_cmd.vaddr, 1139 queue->ring_cmd.paddr); 1140 } 1141 1142 static int sec_queue_config(struct sec_dev_info *info, struct sec_queue *queue, 1143 int queue_id) 1144 { 1145 int ret; 1146 1147 sec_queue_base_init(info, queue, queue_id); 1148 1149 ret = sec_queue_res_cfg(queue); 1150 if (ret) 1151 return ret; 1152 1153 ret = sec_queue_map_io(queue); 1154 if (ret) { 1155 dev_err(info->dev, "Queue map failed %d\n", ret); 1156 sec_queue_free_ring_pages(queue); 1157 return ret; 1158 } 1159 1160 sec_queue_hw_init(queue); 1161 1162 return 0; 1163 } 1164 1165 static void sec_queue_unconfig(struct sec_dev_info *info, 1166 struct sec_queue *queue) 1167 { 1168 sec_queue_unmap_io(queue); 1169 sec_queue_free_ring_pages(queue); 1170 } 1171 1172 static int sec_id_alloc(struct sec_dev_info *info) 1173 { 1174 int ret = 0; 1175 int i; 1176 1177 mutex_lock(&sec_id_lock); 1178 1179 for (i = 0; i < SEC_MAX_DEVICES; i++) 1180 if (!sec_devices[i]) 1181 break; 1182 if (i == SEC_MAX_DEVICES) { 1183 ret = -ENOMEM; 1184 goto unlock; 1185 } 1186 info->sec_id = i; 1187 sec_devices[info->sec_id] = info; 1188 1189 unlock: 1190 mutex_unlock(&sec_id_lock); 1191 1192 return ret; 1193 } 1194 1195 static void sec_id_free(struct sec_dev_info *info) 1196 { 1197 mutex_lock(&sec_id_lock); 1198 sec_devices[info->sec_id] = NULL; 1199 mutex_unlock(&sec_id_lock); 1200 } 1201 1202 static int sec_probe(struct platform_device *pdev) 1203 { 1204 struct sec_dev_info *info; 1205 struct device *dev = &pdev->dev; 1206 int i, j; 1207 int ret; 1208 1209 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 1210 if (ret) { 1211 dev_err(dev, "Failed to set 64 bit dma mask %d", ret); 1212 return -ENODEV; 1213 } 1214 1215 info = devm_kzalloc(dev, (sizeof(*info)), GFP_KERNEL); 1216 if (!info) 1217 return -ENOMEM; 1218 1219 info->dev = dev; 1220 mutex_init(&info->dev_lock); 1221 1222 info->hw_sgl_pool = dmam_pool_create("sgl", dev, 1223 sizeof(struct sec_hw_sgl), 64, 0); 1224 if (!info->hw_sgl_pool) { 1225 dev_err(dev, "Failed to create sec sgl dma pool\n"); 1226 return -ENOMEM; 1227 } 1228 1229 ret = sec_base_init(info, pdev); 1230 if (ret) { 1231 dev_err(dev, "Base initialization fail! %d\n", ret); 1232 return ret; 1233 } 1234 1235 for (i = 0; i < SEC_Q_NUM; i++) { 1236 ret = sec_queue_config(info, &info->queues[i], i); 1237 if (ret) 1238 goto queues_unconfig; 1239 1240 ret = sec_queue_irq_init(&info->queues[i]); 1241 if (ret) { 1242 sec_queue_unconfig(info, &info->queues[i]); 1243 goto queues_unconfig; 1244 } 1245 } 1246 1247 ret = sec_algs_register(); 1248 if (ret) { 1249 dev_err(dev, "Failed to register algorithms with crypto %d\n", 1250 ret); 1251 goto queues_unconfig; 1252 } 1253 1254 platform_set_drvdata(pdev, info); 1255 1256 ret = sec_id_alloc(info); 1257 if (ret) 1258 goto algs_unregister; 1259 1260 return 0; 1261 1262 algs_unregister: 1263 sec_algs_unregister(); 1264 queues_unconfig: 1265 for (j = i - 1; j >= 0; j--) { 1266 sec_queue_irq_uninit(&info->queues[j]); 1267 sec_queue_unconfig(info, &info->queues[j]); 1268 } 1269 sec_base_exit(info); 1270 1271 return ret; 1272 } 1273 1274 static int sec_remove(struct platform_device *pdev) 1275 { 1276 struct sec_dev_info *info = platform_get_drvdata(pdev); 1277 int i; 1278 1279 /* Unexpose as soon as possible, reuse during remove is fine */ 1280 sec_id_free(info); 1281 1282 sec_algs_unregister(); 1283 1284 for (i = 0; i < SEC_Q_NUM; i++) { 1285 sec_queue_irq_uninit(&info->queues[i]); 1286 sec_queue_unconfig(info, &info->queues[i]); 1287 } 1288 1289 sec_base_exit(info); 1290 1291 return 0; 1292 } 1293 1294 static const __maybe_unused struct of_device_id sec_match[] = { 1295 { .compatible = "hisilicon,hip06-sec" }, 1296 { .compatible = "hisilicon,hip07-sec" }, 1297 {} 1298 }; 1299 MODULE_DEVICE_TABLE(of, sec_match); 1300 1301 static const __maybe_unused struct acpi_device_id sec_acpi_match[] = { 1302 { "HISI02C1", 0 }, 1303 { } 1304 }; 1305 MODULE_DEVICE_TABLE(acpi, sec_acpi_match); 1306 1307 static struct platform_driver sec_driver = { 1308 .probe = sec_probe, 1309 .remove = sec_remove, 1310 .driver = { 1311 .name = "hisi_sec_platform_driver", 1312 .of_match_table = sec_match, 1313 .acpi_match_table = ACPI_PTR(sec_acpi_match), 1314 }, 1315 }; 1316 module_platform_driver(sec_driver); 1317 1318 MODULE_LICENSE("GPL"); 1319 MODULE_DESCRIPTION("HiSilicon Security Accelerators"); 1320 MODULE_AUTHOR("Zaibo Xu <xuzaibo@huawei.com"); 1321 MODULE_AUTHOR("Jonathan Cameron <jonathan.cameron@huawei.com>"); 1322