1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2016-2017 Hisilicon Limited. */
3 #include <linux/crypto.h>
4 #include <linux/dma-mapping.h>
5 #include <linux/dmapool.h>
6 #include <linux/module.h>
7 #include <linux/mutex.h>
8 #include <linux/slab.h>
9 
10 #include <crypto/aes.h>
11 #include <crypto/algapi.h>
12 #include <crypto/des.h>
13 #include <crypto/skcipher.h>
14 #include <crypto/xts.h>
15 #include <crypto/internal/skcipher.h>
16 
17 #include "sec_drv.h"
18 
19 #define SEC_MAX_CIPHER_KEY		64
20 #define SEC_REQ_LIMIT SZ_32M
21 
22 struct sec_c_alg_cfg {
23 	unsigned c_alg		: 3;
24 	unsigned c_mode		: 3;
25 	unsigned key_len	: 2;
26 	unsigned c_width	: 2;
27 };
28 
29 static const struct sec_c_alg_cfg sec_c_alg_cfgs[] =  {
30 	[SEC_C_DES_ECB_64] = {
31 		.c_alg = SEC_C_ALG_DES,
32 		.c_mode = SEC_C_MODE_ECB,
33 		.key_len = SEC_KEY_LEN_DES,
34 	},
35 	[SEC_C_DES_CBC_64] = {
36 		.c_alg = SEC_C_ALG_DES,
37 		.c_mode = SEC_C_MODE_CBC,
38 		.key_len = SEC_KEY_LEN_DES,
39 	},
40 	[SEC_C_3DES_ECB_192_3KEY] = {
41 		.c_alg = SEC_C_ALG_3DES,
42 		.c_mode = SEC_C_MODE_ECB,
43 		.key_len = SEC_KEY_LEN_3DES_3_KEY,
44 	},
45 	[SEC_C_3DES_ECB_192_2KEY] = {
46 		.c_alg = SEC_C_ALG_3DES,
47 		.c_mode = SEC_C_MODE_ECB,
48 		.key_len = SEC_KEY_LEN_3DES_2_KEY,
49 	},
50 	[SEC_C_3DES_CBC_192_3KEY] = {
51 		.c_alg = SEC_C_ALG_3DES,
52 		.c_mode = SEC_C_MODE_CBC,
53 		.key_len = SEC_KEY_LEN_3DES_3_KEY,
54 	},
55 	[SEC_C_3DES_CBC_192_2KEY] = {
56 		.c_alg = SEC_C_ALG_3DES,
57 		.c_mode = SEC_C_MODE_CBC,
58 		.key_len = SEC_KEY_LEN_3DES_2_KEY,
59 	},
60 	[SEC_C_AES_ECB_128] = {
61 		.c_alg = SEC_C_ALG_AES,
62 		.c_mode = SEC_C_MODE_ECB,
63 		.key_len = SEC_KEY_LEN_AES_128,
64 	},
65 	[SEC_C_AES_ECB_192] = {
66 		.c_alg = SEC_C_ALG_AES,
67 		.c_mode = SEC_C_MODE_ECB,
68 		.key_len = SEC_KEY_LEN_AES_192,
69 	},
70 	[SEC_C_AES_ECB_256] = {
71 		.c_alg = SEC_C_ALG_AES,
72 		.c_mode = SEC_C_MODE_ECB,
73 		.key_len = SEC_KEY_LEN_AES_256,
74 	},
75 	[SEC_C_AES_CBC_128] = {
76 		.c_alg = SEC_C_ALG_AES,
77 		.c_mode = SEC_C_MODE_CBC,
78 		.key_len = SEC_KEY_LEN_AES_128,
79 	},
80 	[SEC_C_AES_CBC_192] = {
81 		.c_alg = SEC_C_ALG_AES,
82 		.c_mode = SEC_C_MODE_CBC,
83 		.key_len = SEC_KEY_LEN_AES_192,
84 	},
85 	[SEC_C_AES_CBC_256] = {
86 		.c_alg = SEC_C_ALG_AES,
87 		.c_mode = SEC_C_MODE_CBC,
88 		.key_len = SEC_KEY_LEN_AES_256,
89 	},
90 	[SEC_C_AES_CTR_128] = {
91 		.c_alg = SEC_C_ALG_AES,
92 		.c_mode = SEC_C_MODE_CTR,
93 		.key_len = SEC_KEY_LEN_AES_128,
94 	},
95 	[SEC_C_AES_CTR_192] = {
96 		.c_alg = SEC_C_ALG_AES,
97 		.c_mode = SEC_C_MODE_CTR,
98 		.key_len = SEC_KEY_LEN_AES_192,
99 	},
100 	[SEC_C_AES_CTR_256] = {
101 		.c_alg = SEC_C_ALG_AES,
102 		.c_mode = SEC_C_MODE_CTR,
103 		.key_len = SEC_KEY_LEN_AES_256,
104 	},
105 	[SEC_C_AES_XTS_128] = {
106 		.c_alg = SEC_C_ALG_AES,
107 		.c_mode = SEC_C_MODE_XTS,
108 		.key_len = SEC_KEY_LEN_AES_128,
109 	},
110 	[SEC_C_AES_XTS_256] = {
111 		.c_alg = SEC_C_ALG_AES,
112 		.c_mode = SEC_C_MODE_XTS,
113 		.key_len = SEC_KEY_LEN_AES_256,
114 	},
115 	[SEC_C_NULL] = {
116 	},
117 };
118 
119 /*
120  * Mutex used to ensure safe operation of reference count of
121  * alg providers
122  */
123 static DEFINE_MUTEX(algs_lock);
124 static unsigned int active_devs;
125 
126 static void sec_alg_skcipher_init_template(struct sec_alg_tfm_ctx *ctx,
127 					   struct sec_bd_info *req,
128 					   enum sec_cipher_alg alg)
129 {
130 	const struct sec_c_alg_cfg *cfg = &sec_c_alg_cfgs[alg];
131 
132 	memset(req, 0, sizeof(*req));
133 	req->w0 |= cfg->c_mode << SEC_BD_W0_C_MODE_S;
134 	req->w1 |= cfg->c_alg << SEC_BD_W1_C_ALG_S;
135 	req->w3 |= cfg->key_len << SEC_BD_W3_C_KEY_LEN_S;
136 	req->w0 |= cfg->c_width << SEC_BD_W0_C_WIDTH_S;
137 
138 	req->cipher_key_addr_lo = lower_32_bits(ctx->pkey);
139 	req->cipher_key_addr_hi = upper_32_bits(ctx->pkey);
140 }
141 
142 static void sec_alg_skcipher_init_context(struct crypto_skcipher *atfm,
143 					  const u8 *key,
144 					  unsigned int keylen,
145 					  enum sec_cipher_alg alg)
146 {
147 	struct crypto_tfm *tfm = crypto_skcipher_tfm(atfm);
148 	struct sec_alg_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
149 
150 	ctx->cipher_alg = alg;
151 	memcpy(ctx->key, key, keylen);
152 	sec_alg_skcipher_init_template(ctx, &ctx->req_template,
153 				       ctx->cipher_alg);
154 }
155 
156 static int sec_alloc_and_fill_hw_sgl(struct sec_hw_sgl **sec_sgl,
157 				     dma_addr_t *psec_sgl,
158 				     struct scatterlist *sgl,
159 				     int count,
160 				     struct sec_dev_info *info)
161 {
162 	struct sec_hw_sgl *sgl_current = NULL;
163 	struct sec_hw_sgl *sgl_next;
164 	dma_addr_t sgl_next_dma;
165 	struct scatterlist *sg;
166 	int ret, sge_index, i;
167 
168 	if (!count)
169 		return -EINVAL;
170 
171 	for_each_sg(sgl, sg, count, i) {
172 		sge_index = i % SEC_MAX_SGE_NUM;
173 		if (sge_index == 0) {
174 			sgl_next = dma_pool_zalloc(info->hw_sgl_pool,
175 						   GFP_KERNEL, &sgl_next_dma);
176 			if (!sgl_next) {
177 				ret = -ENOMEM;
178 				goto err_free_hw_sgls;
179 			}
180 
181 			if (!sgl_current) { /* First one */
182 				*psec_sgl = sgl_next_dma;
183 				*sec_sgl = sgl_next;
184 			} else { /* Chained */
185 				sgl_current->entry_sum_in_sgl = SEC_MAX_SGE_NUM;
186 				sgl_current->next_sgl = sgl_next_dma;
187 				sgl_current->next = sgl_next;
188 			}
189 			sgl_current = sgl_next;
190 		}
191 		sgl_current->sge_entries[sge_index].buf = sg_dma_address(sg);
192 		sgl_current->sge_entries[sge_index].len = sg_dma_len(sg);
193 		sgl_current->data_bytes_in_sgl += sg_dma_len(sg);
194 	}
195 	sgl_current->entry_sum_in_sgl = count % SEC_MAX_SGE_NUM;
196 	sgl_current->next_sgl = 0;
197 	(*sec_sgl)->entry_sum_in_chain = count;
198 
199 	return 0;
200 
201 err_free_hw_sgls:
202 	sgl_current = *sec_sgl;
203 	while (sgl_current) {
204 		sgl_next = sgl_current->next;
205 		dma_pool_free(info->hw_sgl_pool, sgl_current,
206 			      sgl_current->next_sgl);
207 		sgl_current = sgl_next;
208 	}
209 	*psec_sgl = 0;
210 
211 	return ret;
212 }
213 
214 static void sec_free_hw_sgl(struct sec_hw_sgl *hw_sgl,
215 			    dma_addr_t psec_sgl, struct sec_dev_info *info)
216 {
217 	struct sec_hw_sgl *sgl_current, *sgl_next;
218 
219 	if (!hw_sgl)
220 		return;
221 	sgl_current = hw_sgl;
222 	while (sgl_current->next) {
223 		sgl_next = sgl_current->next;
224 		dma_pool_free(info->hw_sgl_pool, sgl_current,
225 			      sgl_current->next_sgl);
226 		sgl_current = sgl_next;
227 	}
228 	dma_pool_free(info->hw_sgl_pool, hw_sgl, psec_sgl);
229 }
230 
231 static int sec_alg_skcipher_setkey(struct crypto_skcipher *tfm,
232 				   const u8 *key, unsigned int keylen,
233 				   enum sec_cipher_alg alg)
234 {
235 	struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
236 	struct device *dev = ctx->queue->dev_info->dev;
237 
238 	mutex_lock(&ctx->lock);
239 	if (ctx->key) {
240 		/* rekeying */
241 		memset(ctx->key, 0, SEC_MAX_CIPHER_KEY);
242 	} else {
243 		/* new key */
244 		ctx->key = dma_alloc_coherent(dev, SEC_MAX_CIPHER_KEY,
245 					      &ctx->pkey, GFP_KERNEL);
246 		if (!ctx->key) {
247 			mutex_unlock(&ctx->lock);
248 			return -ENOMEM;
249 		}
250 	}
251 	mutex_unlock(&ctx->lock);
252 	sec_alg_skcipher_init_context(tfm, key, keylen, alg);
253 
254 	return 0;
255 }
256 
257 static int sec_alg_skcipher_setkey_aes_ecb(struct crypto_skcipher *tfm,
258 					   const u8 *key, unsigned int keylen)
259 {
260 	enum sec_cipher_alg alg;
261 
262 	switch (keylen) {
263 	case AES_KEYSIZE_128:
264 		alg = SEC_C_AES_ECB_128;
265 		break;
266 	case AES_KEYSIZE_192:
267 		alg = SEC_C_AES_ECB_192;
268 		break;
269 	case AES_KEYSIZE_256:
270 		alg = SEC_C_AES_ECB_256;
271 		break;
272 	default:
273 		return -EINVAL;
274 	}
275 
276 	return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
277 }
278 
279 static int sec_alg_skcipher_setkey_aes_cbc(struct crypto_skcipher *tfm,
280 					   const u8 *key, unsigned int keylen)
281 {
282 	enum sec_cipher_alg alg;
283 
284 	switch (keylen) {
285 	case AES_KEYSIZE_128:
286 		alg = SEC_C_AES_CBC_128;
287 		break;
288 	case AES_KEYSIZE_192:
289 		alg = SEC_C_AES_CBC_192;
290 		break;
291 	case AES_KEYSIZE_256:
292 		alg = SEC_C_AES_CBC_256;
293 		break;
294 	default:
295 		return -EINVAL;
296 	}
297 
298 	return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
299 }
300 
301 static int sec_alg_skcipher_setkey_aes_ctr(struct crypto_skcipher *tfm,
302 					   const u8 *key, unsigned int keylen)
303 {
304 	enum sec_cipher_alg alg;
305 
306 	switch (keylen) {
307 	case AES_KEYSIZE_128:
308 		alg = SEC_C_AES_CTR_128;
309 		break;
310 	case AES_KEYSIZE_192:
311 		alg = SEC_C_AES_CTR_192;
312 		break;
313 	case AES_KEYSIZE_256:
314 		alg = SEC_C_AES_CTR_256;
315 		break;
316 	default:
317 		return -EINVAL;
318 	}
319 
320 	return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
321 }
322 
323 static int sec_alg_skcipher_setkey_aes_xts(struct crypto_skcipher *tfm,
324 					   const u8 *key, unsigned int keylen)
325 {
326 	enum sec_cipher_alg alg;
327 	int ret;
328 
329 	ret = xts_verify_key(tfm, key, keylen);
330 	if (ret)
331 		return ret;
332 
333 	switch (keylen) {
334 	case AES_KEYSIZE_128 * 2:
335 		alg = SEC_C_AES_XTS_128;
336 		break;
337 	case AES_KEYSIZE_256 * 2:
338 		alg = SEC_C_AES_XTS_256;
339 		break;
340 	default:
341 		return -EINVAL;
342 	}
343 
344 	return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
345 }
346 
347 static int sec_alg_skcipher_setkey_des_ecb(struct crypto_skcipher *tfm,
348 					   const u8 *key, unsigned int keylen)
349 {
350 	if (keylen != DES_KEY_SIZE)
351 		return -EINVAL;
352 
353 	return sec_alg_skcipher_setkey(tfm, key, keylen, SEC_C_DES_ECB_64);
354 }
355 
356 static int sec_alg_skcipher_setkey_des_cbc(struct crypto_skcipher *tfm,
357 					   const u8 *key, unsigned int keylen)
358 {
359 	if (keylen != DES_KEY_SIZE)
360 		return -EINVAL;
361 
362 	return sec_alg_skcipher_setkey(tfm, key, keylen, SEC_C_DES_CBC_64);
363 }
364 
365 static int sec_alg_skcipher_setkey_3des_ecb(struct crypto_skcipher *tfm,
366 					    const u8 *key, unsigned int keylen)
367 {
368 	if (keylen != DES_KEY_SIZE * 3)
369 		return -EINVAL;
370 
371 	return sec_alg_skcipher_setkey(tfm, key, keylen,
372 				       SEC_C_3DES_ECB_192_3KEY);
373 }
374 
375 static int sec_alg_skcipher_setkey_3des_cbc(struct crypto_skcipher *tfm,
376 					    const u8 *key, unsigned int keylen)
377 {
378 	if (keylen != DES3_EDE_KEY_SIZE)
379 		return -EINVAL;
380 
381 	return sec_alg_skcipher_setkey(tfm, key, keylen,
382 				       SEC_C_3DES_CBC_192_3KEY);
383 }
384 
385 static void sec_alg_free_el(struct sec_request_el *el,
386 			    struct sec_dev_info *info)
387 {
388 	sec_free_hw_sgl(el->out, el->dma_out, info);
389 	sec_free_hw_sgl(el->in, el->dma_in, info);
390 	kfree(el->sgl_in);
391 	kfree(el->sgl_out);
392 	kfree(el);
393 }
394 
395 /* queuelock must be held */
396 static int sec_send_request(struct sec_request *sec_req, struct sec_queue *queue)
397 {
398 	struct sec_request_el *el, *temp;
399 	int ret = 0;
400 
401 	mutex_lock(&sec_req->lock);
402 	list_for_each_entry_safe(el, temp, &sec_req->elements, head) {
403 		/*
404 		 * Add to hardware queue only under following circumstances
405 		 * 1) Software and hardware queue empty so no chain dependencies
406 		 * 2) No dependencies as new IV - (check software queue empty
407 		 *    to maintain order)
408 		 * 3) No dependencies because the mode does no chaining.
409 		 *
410 		 * In other cases first insert onto the software queue which
411 		 * is then emptied as requests complete
412 		 */
413 		if (!queue->havesoftqueue ||
414 		    (kfifo_is_empty(&queue->softqueue) &&
415 		     sec_queue_empty(queue))) {
416 			ret = sec_queue_send(queue, &el->req, sec_req);
417 			if (ret == -EAGAIN) {
418 				/* Wait unti we can send then try again */
419 				/* DEAD if here - should not happen */
420 				ret = -EBUSY;
421 				goto err_unlock;
422 			}
423 		} else {
424 			kfifo_put(&queue->softqueue, el);
425 		}
426 	}
427 err_unlock:
428 	mutex_unlock(&sec_req->lock);
429 
430 	return ret;
431 }
432 
433 static void sec_skcipher_alg_callback(struct sec_bd_info *sec_resp,
434 				      struct crypto_async_request *req_base)
435 {
436 	struct skcipher_request *skreq = container_of(req_base,
437 						      struct skcipher_request,
438 						      base);
439 	struct sec_request *sec_req = skcipher_request_ctx(skreq);
440 	struct sec_request *backlog_req;
441 	struct sec_request_el *sec_req_el, *nextrequest;
442 	struct sec_alg_tfm_ctx *ctx = sec_req->tfm_ctx;
443 	struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(skreq);
444 	struct device *dev = ctx->queue->dev_info->dev;
445 	int icv_or_skey_en, ret;
446 	bool done;
447 
448 	sec_req_el = list_first_entry(&sec_req->elements, struct sec_request_el,
449 				      head);
450 	icv_or_skey_en = (sec_resp->w0 & SEC_BD_W0_ICV_OR_SKEY_EN_M) >>
451 		SEC_BD_W0_ICV_OR_SKEY_EN_S;
452 	if (sec_resp->w1 & SEC_BD_W1_BD_INVALID || icv_or_skey_en == 3) {
453 		dev_err(dev, "Got an invalid answer %lu %d\n",
454 			sec_resp->w1 & SEC_BD_W1_BD_INVALID,
455 			icv_or_skey_en);
456 		sec_req->err = -EINVAL;
457 		/*
458 		 * We need to muddle on to avoid getting stuck with elements
459 		 * on the queue. Error will be reported so requester so
460 		 * it should be able to handle appropriately.
461 		 */
462 	}
463 
464 	mutex_lock(&ctx->queue->queuelock);
465 	/* Put the IV in place for chained cases */
466 	switch (ctx->cipher_alg) {
467 	case SEC_C_AES_CBC_128:
468 	case SEC_C_AES_CBC_192:
469 	case SEC_C_AES_CBC_256:
470 		if (sec_req_el->req.w0 & SEC_BD_W0_DE)
471 			sg_pcopy_to_buffer(sec_req_el->sgl_out,
472 					   sg_nents(sec_req_el->sgl_out),
473 					   skreq->iv,
474 					   crypto_skcipher_ivsize(atfm),
475 					   sec_req_el->el_length -
476 					   crypto_skcipher_ivsize(atfm));
477 		else
478 			sg_pcopy_to_buffer(sec_req_el->sgl_in,
479 					   sg_nents(sec_req_el->sgl_in),
480 					   skreq->iv,
481 					   crypto_skcipher_ivsize(atfm),
482 					   sec_req_el->el_length -
483 					   crypto_skcipher_ivsize(atfm));
484 		/* No need to sync to the device as coherent DMA */
485 		break;
486 	case SEC_C_AES_CTR_128:
487 	case SEC_C_AES_CTR_192:
488 	case SEC_C_AES_CTR_256:
489 		crypto_inc(skreq->iv, 16);
490 		break;
491 	default:
492 		/* Do not update */
493 		break;
494 	}
495 
496 	if (ctx->queue->havesoftqueue &&
497 	    !kfifo_is_empty(&ctx->queue->softqueue) &&
498 	    sec_queue_empty(ctx->queue)) {
499 		ret = kfifo_get(&ctx->queue->softqueue, &nextrequest);
500 		if (ret <= 0)
501 			dev_err(dev,
502 				"Error getting next element from kfifo %d\n",
503 				ret);
504 		else
505 			/* We know there is space so this cannot fail */
506 			sec_queue_send(ctx->queue, &nextrequest->req,
507 				       nextrequest->sec_req);
508 	} else if (!list_empty(&ctx->backlog)) {
509 		/* Need to verify there is room first */
510 		backlog_req = list_first_entry(&ctx->backlog,
511 					       typeof(*backlog_req),
512 					       backlog_head);
513 		if (sec_queue_can_enqueue(ctx->queue,
514 		    backlog_req->num_elements) ||
515 		    (ctx->queue->havesoftqueue &&
516 		     kfifo_avail(&ctx->queue->softqueue) >
517 		     backlog_req->num_elements)) {
518 			sec_send_request(backlog_req, ctx->queue);
519 			backlog_req->req_base->complete(backlog_req->req_base,
520 							-EINPROGRESS);
521 			list_del(&backlog_req->backlog_head);
522 		}
523 	}
524 	mutex_unlock(&ctx->queue->queuelock);
525 
526 	mutex_lock(&sec_req->lock);
527 	list_del(&sec_req_el->head);
528 	mutex_unlock(&sec_req->lock);
529 	sec_alg_free_el(sec_req_el, ctx->queue->dev_info);
530 
531 	/*
532 	 * Request is done.
533 	 * The dance is needed as the lock is freed in the completion
534 	 */
535 	mutex_lock(&sec_req->lock);
536 	done = list_empty(&sec_req->elements);
537 	mutex_unlock(&sec_req->lock);
538 	if (done) {
539 		if (crypto_skcipher_ivsize(atfm)) {
540 			dma_unmap_single(dev, sec_req->dma_iv,
541 					 crypto_skcipher_ivsize(atfm),
542 					 DMA_TO_DEVICE);
543 		}
544 		dma_unmap_sg(dev, skreq->src, sec_req->len_in,
545 			     DMA_BIDIRECTIONAL);
546 		if (skreq->src != skreq->dst)
547 			dma_unmap_sg(dev, skreq->dst, sec_req->len_out,
548 				     DMA_BIDIRECTIONAL);
549 		skreq->base.complete(&skreq->base, sec_req->err);
550 	}
551 }
552 
553 void sec_alg_callback(struct sec_bd_info *resp, void *shadow)
554 {
555 	struct sec_request *sec_req = shadow;
556 
557 	sec_req->cb(resp, sec_req->req_base);
558 }
559 
560 static int sec_alg_alloc_and_calc_split_sizes(int length, size_t **split_sizes,
561 					      int *steps)
562 {
563 	size_t *sizes;
564 	int i;
565 
566 	/* Split into suitable sized blocks */
567 	*steps = roundup(length, SEC_REQ_LIMIT) / SEC_REQ_LIMIT;
568 	sizes = kcalloc(*steps, sizeof(*sizes), GFP_KERNEL);
569 	if (!sizes)
570 		return -ENOMEM;
571 
572 	for (i = 0; i < *steps - 1; i++)
573 		sizes[i] = SEC_REQ_LIMIT;
574 	sizes[*steps - 1] = length - SEC_REQ_LIMIT * (*steps - 1);
575 	*split_sizes = sizes;
576 
577 	return 0;
578 }
579 
580 static int sec_map_and_split_sg(struct scatterlist *sgl, size_t *split_sizes,
581 				int steps, struct scatterlist ***splits,
582 				int **splits_nents,
583 				int sgl_len_in,
584 				struct device *dev)
585 {
586 	int ret, count;
587 
588 	count = dma_map_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
589 	if (!count)
590 		return -EINVAL;
591 
592 	*splits = kcalloc(steps, sizeof(struct scatterlist *), GFP_KERNEL);
593 	if (!*splits) {
594 		ret = -ENOMEM;
595 		goto err_unmap_sg;
596 	}
597 	*splits_nents = kcalloc(steps, sizeof(int), GFP_KERNEL);
598 	if (!*splits_nents) {
599 		ret = -ENOMEM;
600 		goto err_free_splits;
601 	}
602 
603 	/* output the scatter list before and after this */
604 	ret = sg_split(sgl, count, 0, steps, split_sizes,
605 		       *splits, *splits_nents, GFP_KERNEL);
606 	if (ret) {
607 		ret = -ENOMEM;
608 		goto err_free_splits_nents;
609 	}
610 
611 	return 0;
612 
613 err_free_splits_nents:
614 	kfree(*splits_nents);
615 err_free_splits:
616 	kfree(*splits);
617 err_unmap_sg:
618 	dma_unmap_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
619 
620 	return ret;
621 }
622 
623 /*
624  * Reverses the sec_map_and_split_sg call for messages not yet added to
625  * the queues.
626  */
627 static void sec_unmap_sg_on_err(struct scatterlist *sgl, int steps,
628 				struct scatterlist **splits, int *splits_nents,
629 				int sgl_len_in, struct device *dev)
630 {
631 	int i;
632 
633 	for (i = 0; i < steps; i++)
634 		kfree(splits[i]);
635 	kfree(splits_nents);
636 	kfree(splits);
637 
638 	dma_unmap_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
639 }
640 
641 static struct sec_request_el
642 *sec_alg_alloc_and_fill_el(struct sec_bd_info *template, int encrypt,
643 			   int el_size, bool different_dest,
644 			   struct scatterlist *sgl_in, int n_ents_in,
645 			   struct scatterlist *sgl_out, int n_ents_out,
646 			   struct sec_dev_info *info)
647 {
648 	struct sec_request_el *el;
649 	struct sec_bd_info *req;
650 	int ret;
651 
652 	el = kzalloc(sizeof(*el), GFP_KERNEL);
653 	if (!el)
654 		return ERR_PTR(-ENOMEM);
655 	el->el_length = el_size;
656 	req = &el->req;
657 	memcpy(req, template, sizeof(*req));
658 
659 	req->w0 &= ~SEC_BD_W0_CIPHER_M;
660 	if (encrypt)
661 		req->w0 |= SEC_CIPHER_ENCRYPT << SEC_BD_W0_CIPHER_S;
662 	else
663 		req->w0 |= SEC_CIPHER_DECRYPT << SEC_BD_W0_CIPHER_S;
664 
665 	req->w0 &= ~SEC_BD_W0_C_GRAN_SIZE_19_16_M;
666 	req->w0 |= ((el_size >> 16) << SEC_BD_W0_C_GRAN_SIZE_19_16_S) &
667 		SEC_BD_W0_C_GRAN_SIZE_19_16_M;
668 
669 	req->w0 &= ~SEC_BD_W0_C_GRAN_SIZE_21_20_M;
670 	req->w0 |= ((el_size >> 20) << SEC_BD_W0_C_GRAN_SIZE_21_20_S) &
671 		SEC_BD_W0_C_GRAN_SIZE_21_20_M;
672 
673 	/* Writing whole u32 so no need to take care of masking */
674 	req->w2 = ((1 << SEC_BD_W2_GRAN_NUM_S) & SEC_BD_W2_GRAN_NUM_M) |
675 		((el_size << SEC_BD_W2_C_GRAN_SIZE_15_0_S) &
676 		 SEC_BD_W2_C_GRAN_SIZE_15_0_M);
677 
678 	req->w3 &= ~SEC_BD_W3_CIPHER_LEN_OFFSET_M;
679 	req->w1 |= SEC_BD_W1_ADDR_TYPE;
680 
681 	el->sgl_in = sgl_in;
682 
683 	ret = sec_alloc_and_fill_hw_sgl(&el->in, &el->dma_in, el->sgl_in,
684 					n_ents_in, info);
685 	if (ret)
686 		goto err_free_el;
687 
688 	req->data_addr_lo = lower_32_bits(el->dma_in);
689 	req->data_addr_hi = upper_32_bits(el->dma_in);
690 
691 	if (different_dest) {
692 		el->sgl_out = sgl_out;
693 		ret = sec_alloc_and_fill_hw_sgl(&el->out, &el->dma_out,
694 						el->sgl_out,
695 						n_ents_out, info);
696 		if (ret)
697 			goto err_free_hw_sgl_in;
698 
699 		req->w0 |= SEC_BD_W0_DE;
700 		req->cipher_destin_addr_lo = lower_32_bits(el->dma_out);
701 		req->cipher_destin_addr_hi = upper_32_bits(el->dma_out);
702 
703 	} else {
704 		req->w0 &= ~SEC_BD_W0_DE;
705 		req->cipher_destin_addr_lo = lower_32_bits(el->dma_in);
706 		req->cipher_destin_addr_hi = upper_32_bits(el->dma_in);
707 	}
708 
709 	return el;
710 
711 err_free_hw_sgl_in:
712 	sec_free_hw_sgl(el->in, el->dma_in, info);
713 err_free_el:
714 	kfree(el);
715 
716 	return ERR_PTR(ret);
717 }
718 
719 static int sec_alg_skcipher_crypto(struct skcipher_request *skreq,
720 				   bool encrypt)
721 {
722 	struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(skreq);
723 	struct crypto_tfm *tfm = crypto_skcipher_tfm(atfm);
724 	struct sec_alg_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
725 	struct sec_queue *queue = ctx->queue;
726 	struct sec_request *sec_req = skcipher_request_ctx(skreq);
727 	struct sec_dev_info *info = queue->dev_info;
728 	int i, ret, steps;
729 	size_t *split_sizes;
730 	struct scatterlist **splits_in;
731 	struct scatterlist **splits_out = NULL;
732 	int *splits_in_nents;
733 	int *splits_out_nents = NULL;
734 	struct sec_request_el *el, *temp;
735 	bool split = skreq->src != skreq->dst;
736 
737 	mutex_init(&sec_req->lock);
738 	sec_req->req_base = &skreq->base;
739 	sec_req->err = 0;
740 	/* SGL mapping out here to allow us to break it up as necessary */
741 	sec_req->len_in = sg_nents(skreq->src);
742 
743 	ret = sec_alg_alloc_and_calc_split_sizes(skreq->cryptlen, &split_sizes,
744 						 &steps);
745 	if (ret)
746 		return ret;
747 	sec_req->num_elements = steps;
748 	ret = sec_map_and_split_sg(skreq->src, split_sizes, steps, &splits_in,
749 				   &splits_in_nents, sec_req->len_in,
750 				   info->dev);
751 	if (ret)
752 		goto err_free_split_sizes;
753 
754 	if (split) {
755 		sec_req->len_out = sg_nents(skreq->dst);
756 		ret = sec_map_and_split_sg(skreq->dst, split_sizes, steps,
757 					   &splits_out, &splits_out_nents,
758 					   sec_req->len_out, info->dev);
759 		if (ret)
760 			goto err_unmap_in_sg;
761 	}
762 	/* Shared info stored in seq_req - applies to all BDs */
763 	sec_req->tfm_ctx = ctx;
764 	sec_req->cb = sec_skcipher_alg_callback;
765 	INIT_LIST_HEAD(&sec_req->elements);
766 
767 	/*
768 	 * Future optimization.
769 	 * In the chaining case we can't use a dma pool bounce buffer
770 	 * but in the case where we know there is no chaining we can
771 	 */
772 	if (crypto_skcipher_ivsize(atfm)) {
773 		sec_req->dma_iv = dma_map_single(info->dev, skreq->iv,
774 						 crypto_skcipher_ivsize(atfm),
775 						 DMA_TO_DEVICE);
776 		if (dma_mapping_error(info->dev, sec_req->dma_iv)) {
777 			ret = -ENOMEM;
778 			goto err_unmap_out_sg;
779 		}
780 	}
781 
782 	/* Set them all up then queue - cleaner error handling. */
783 	for (i = 0; i < steps; i++) {
784 		el = sec_alg_alloc_and_fill_el(&ctx->req_template,
785 					       encrypt ? 1 : 0,
786 					       split_sizes[i],
787 					       skreq->src != skreq->dst,
788 					       splits_in[i], splits_in_nents[i],
789 					       split ? splits_out[i] : NULL,
790 					       split ? splits_out_nents[i] : 0,
791 					       info);
792 		if (IS_ERR(el)) {
793 			ret = PTR_ERR(el);
794 			goto err_free_elements;
795 		}
796 		el->req.cipher_iv_addr_lo = lower_32_bits(sec_req->dma_iv);
797 		el->req.cipher_iv_addr_hi = upper_32_bits(sec_req->dma_iv);
798 		el->sec_req = sec_req;
799 		list_add_tail(&el->head, &sec_req->elements);
800 	}
801 
802 	/*
803 	 * Only attempt to queue if the whole lot can fit in the queue -
804 	 * we can't successfully cleanup after a partial queing so this
805 	 * must succeed or fail atomically.
806 	 *
807 	 * Big hammer test of both software and hardware queues - could be
808 	 * more refined but this is unlikely to happen so no need.
809 	 */
810 
811 	/* Grab a big lock for a long time to avoid concurrency issues */
812 	mutex_lock(&queue->queuelock);
813 
814 	/*
815 	 * Can go on to queue if we have space in either:
816 	 * 1) The hardware queue and no software queue
817 	 * 2) The software queue
818 	 * AND there is nothing in the backlog.  If there is backlog we
819 	 * have to only queue to the backlog queue and return busy.
820 	 */
821 	if ((!sec_queue_can_enqueue(queue, steps) &&
822 	     (!queue->havesoftqueue ||
823 	      kfifo_avail(&queue->softqueue) > steps)) ||
824 	    !list_empty(&ctx->backlog)) {
825 		ret = -EBUSY;
826 		if ((skreq->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
827 			list_add_tail(&sec_req->backlog_head, &ctx->backlog);
828 			mutex_unlock(&queue->queuelock);
829 			goto out;
830 		}
831 
832 		mutex_unlock(&queue->queuelock);
833 		goto err_free_elements;
834 	}
835 	ret = sec_send_request(sec_req, queue);
836 	mutex_unlock(&queue->queuelock);
837 	if (ret)
838 		goto err_free_elements;
839 
840 	ret = -EINPROGRESS;
841 out:
842 	/* Cleanup - all elements in pointer arrays have been copied */
843 	kfree(splits_in_nents);
844 	kfree(splits_in);
845 	kfree(splits_out_nents);
846 	kfree(splits_out);
847 	kfree(split_sizes);
848 	return ret;
849 
850 err_free_elements:
851 	list_for_each_entry_safe(el, temp, &sec_req->elements, head) {
852 		list_del(&el->head);
853 		sec_alg_free_el(el, info);
854 	}
855 	if (crypto_skcipher_ivsize(atfm))
856 		dma_unmap_single(info->dev, sec_req->dma_iv,
857 				 crypto_skcipher_ivsize(atfm),
858 				 DMA_BIDIRECTIONAL);
859 err_unmap_out_sg:
860 	if (split)
861 		sec_unmap_sg_on_err(skreq->dst, steps, splits_out,
862 				    splits_out_nents, sec_req->len_out,
863 				    info->dev);
864 err_unmap_in_sg:
865 	sec_unmap_sg_on_err(skreq->src, steps, splits_in, splits_in_nents,
866 			    sec_req->len_in, info->dev);
867 err_free_split_sizes:
868 	kfree(split_sizes);
869 
870 	return ret;
871 }
872 
873 static int sec_alg_skcipher_encrypt(struct skcipher_request *req)
874 {
875 	return sec_alg_skcipher_crypto(req, true);
876 }
877 
878 static int sec_alg_skcipher_decrypt(struct skcipher_request *req)
879 {
880 	return sec_alg_skcipher_crypto(req, false);
881 }
882 
883 static int sec_alg_skcipher_init(struct crypto_skcipher *tfm)
884 {
885 	struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
886 
887 	mutex_init(&ctx->lock);
888 	INIT_LIST_HEAD(&ctx->backlog);
889 	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_request));
890 
891 	ctx->queue = sec_queue_alloc_start_safe();
892 	if (IS_ERR(ctx->queue))
893 		return PTR_ERR(ctx->queue);
894 
895 	mutex_init(&ctx->queue->queuelock);
896 	ctx->queue->havesoftqueue = false;
897 
898 	return 0;
899 }
900 
901 static void sec_alg_skcipher_exit(struct crypto_skcipher *tfm)
902 {
903 	struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
904 	struct device *dev = ctx->queue->dev_info->dev;
905 
906 	if (ctx->key) {
907 		memzero_explicit(ctx->key, SEC_MAX_CIPHER_KEY);
908 		dma_free_coherent(dev, SEC_MAX_CIPHER_KEY, ctx->key,
909 				  ctx->pkey);
910 	}
911 	sec_queue_stop_release(ctx->queue);
912 }
913 
914 static int sec_alg_skcipher_init_with_queue(struct crypto_skcipher *tfm)
915 {
916 	struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
917 	int ret;
918 
919 	ret = sec_alg_skcipher_init(tfm);
920 	if (ret)
921 		return ret;
922 
923 	INIT_KFIFO(ctx->queue->softqueue);
924 	ret = kfifo_alloc(&ctx->queue->softqueue, 512, GFP_KERNEL);
925 	if (ret) {
926 		sec_alg_skcipher_exit(tfm);
927 		return ret;
928 	}
929 	ctx->queue->havesoftqueue = true;
930 
931 	return 0;
932 }
933 
934 static void sec_alg_skcipher_exit_with_queue(struct crypto_skcipher *tfm)
935 {
936 	struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
937 
938 	kfifo_free(&ctx->queue->softqueue);
939 	sec_alg_skcipher_exit(tfm);
940 }
941 
942 static struct skcipher_alg sec_algs[] = {
943 	{
944 		.base = {
945 			.cra_name = "ecb(aes)",
946 			.cra_driver_name = "hisi_sec_aes_ecb",
947 			.cra_priority = 4001,
948 			.cra_flags = CRYPTO_ALG_ASYNC,
949 			.cra_blocksize = AES_BLOCK_SIZE,
950 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
951 			.cra_alignmask = 0,
952 			.cra_module = THIS_MODULE,
953 		},
954 		.init = sec_alg_skcipher_init,
955 		.exit = sec_alg_skcipher_exit,
956 		.setkey = sec_alg_skcipher_setkey_aes_ecb,
957 		.decrypt = sec_alg_skcipher_decrypt,
958 		.encrypt = sec_alg_skcipher_encrypt,
959 		.min_keysize = AES_MIN_KEY_SIZE,
960 		.max_keysize = AES_MAX_KEY_SIZE,
961 		.ivsize = 0,
962 	}, {
963 		.base = {
964 			.cra_name = "cbc(aes)",
965 			.cra_driver_name = "hisi_sec_aes_cbc",
966 			.cra_priority = 4001,
967 			.cra_flags = CRYPTO_ALG_ASYNC,
968 			.cra_blocksize = AES_BLOCK_SIZE,
969 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
970 			.cra_alignmask = 0,
971 			.cra_module = THIS_MODULE,
972 		},
973 		.init = sec_alg_skcipher_init_with_queue,
974 		.exit = sec_alg_skcipher_exit_with_queue,
975 		.setkey = sec_alg_skcipher_setkey_aes_cbc,
976 		.decrypt = sec_alg_skcipher_decrypt,
977 		.encrypt = sec_alg_skcipher_encrypt,
978 		.min_keysize = AES_MIN_KEY_SIZE,
979 		.max_keysize = AES_MAX_KEY_SIZE,
980 		.ivsize = AES_BLOCK_SIZE,
981 	}, {
982 		.base = {
983 			.cra_name = "ctr(aes)",
984 			.cra_driver_name = "hisi_sec_aes_ctr",
985 			.cra_priority = 4001,
986 			.cra_flags = CRYPTO_ALG_ASYNC,
987 			.cra_blocksize = AES_BLOCK_SIZE,
988 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
989 			.cra_alignmask = 0,
990 			.cra_module = THIS_MODULE,
991 		},
992 		.init = sec_alg_skcipher_init_with_queue,
993 		.exit = sec_alg_skcipher_exit_with_queue,
994 		.setkey = sec_alg_skcipher_setkey_aes_ctr,
995 		.decrypt = sec_alg_skcipher_decrypt,
996 		.encrypt = sec_alg_skcipher_encrypt,
997 		.min_keysize = AES_MIN_KEY_SIZE,
998 		.max_keysize = AES_MAX_KEY_SIZE,
999 		.ivsize = AES_BLOCK_SIZE,
1000 	}, {
1001 		.base = {
1002 			.cra_name = "xts(aes)",
1003 			.cra_driver_name = "hisi_sec_aes_xts",
1004 			.cra_priority = 4001,
1005 			.cra_flags = CRYPTO_ALG_ASYNC,
1006 			.cra_blocksize = AES_BLOCK_SIZE,
1007 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1008 			.cra_alignmask = 0,
1009 			.cra_module = THIS_MODULE,
1010 		},
1011 		.init = sec_alg_skcipher_init,
1012 		.exit = sec_alg_skcipher_exit,
1013 		.setkey = sec_alg_skcipher_setkey_aes_xts,
1014 		.decrypt = sec_alg_skcipher_decrypt,
1015 		.encrypt = sec_alg_skcipher_encrypt,
1016 		.min_keysize = 2 * AES_MIN_KEY_SIZE,
1017 		.max_keysize = 2 * AES_MAX_KEY_SIZE,
1018 		.ivsize = AES_BLOCK_SIZE,
1019 	}, {
1020 	/* Unable to find any test vectors so untested */
1021 		.base = {
1022 			.cra_name = "ecb(des)",
1023 			.cra_driver_name = "hisi_sec_des_ecb",
1024 			.cra_priority = 4001,
1025 			.cra_flags = CRYPTO_ALG_ASYNC,
1026 			.cra_blocksize = DES_BLOCK_SIZE,
1027 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1028 			.cra_alignmask = 0,
1029 			.cra_module = THIS_MODULE,
1030 		},
1031 		.init = sec_alg_skcipher_init,
1032 		.exit = sec_alg_skcipher_exit,
1033 		.setkey = sec_alg_skcipher_setkey_des_ecb,
1034 		.decrypt = sec_alg_skcipher_decrypt,
1035 		.encrypt = sec_alg_skcipher_encrypt,
1036 		.min_keysize = DES_KEY_SIZE,
1037 		.max_keysize = DES_KEY_SIZE,
1038 		.ivsize = 0,
1039 	}, {
1040 		.base = {
1041 			.cra_name = "cbc(des)",
1042 			.cra_driver_name = "hisi_sec_des_cbc",
1043 			.cra_priority = 4001,
1044 			.cra_flags = CRYPTO_ALG_ASYNC,
1045 			.cra_blocksize = DES_BLOCK_SIZE,
1046 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1047 			.cra_alignmask = 0,
1048 			.cra_module = THIS_MODULE,
1049 		},
1050 		.init = sec_alg_skcipher_init_with_queue,
1051 		.exit = sec_alg_skcipher_exit_with_queue,
1052 		.setkey = sec_alg_skcipher_setkey_des_cbc,
1053 		.decrypt = sec_alg_skcipher_decrypt,
1054 		.encrypt = sec_alg_skcipher_encrypt,
1055 		.min_keysize = DES_KEY_SIZE,
1056 		.max_keysize = DES_KEY_SIZE,
1057 		.ivsize = DES_BLOCK_SIZE,
1058 	}, {
1059 		.base = {
1060 			.cra_name = "cbc(des3_ede)",
1061 			.cra_driver_name = "hisi_sec_3des_cbc",
1062 			.cra_priority = 4001,
1063 			.cra_flags = CRYPTO_ALG_ASYNC,
1064 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1065 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1066 			.cra_alignmask = 0,
1067 			.cra_module = THIS_MODULE,
1068 		},
1069 		.init = sec_alg_skcipher_init_with_queue,
1070 		.exit = sec_alg_skcipher_exit_with_queue,
1071 		.setkey = sec_alg_skcipher_setkey_3des_cbc,
1072 		.decrypt = sec_alg_skcipher_decrypt,
1073 		.encrypt = sec_alg_skcipher_encrypt,
1074 		.min_keysize = DES3_EDE_KEY_SIZE,
1075 		.max_keysize = DES3_EDE_KEY_SIZE,
1076 		.ivsize = DES3_EDE_BLOCK_SIZE,
1077 	}, {
1078 		.base = {
1079 			.cra_name = "ecb(des3_ede)",
1080 			.cra_driver_name = "hisi_sec_3des_ecb",
1081 			.cra_priority = 4001,
1082 			.cra_flags = CRYPTO_ALG_ASYNC,
1083 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1084 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1085 			.cra_alignmask = 0,
1086 			.cra_module = THIS_MODULE,
1087 		},
1088 		.init = sec_alg_skcipher_init,
1089 		.exit = sec_alg_skcipher_exit,
1090 		.setkey = sec_alg_skcipher_setkey_3des_ecb,
1091 		.decrypt = sec_alg_skcipher_decrypt,
1092 		.encrypt = sec_alg_skcipher_encrypt,
1093 		.min_keysize = DES3_EDE_KEY_SIZE,
1094 		.max_keysize = DES3_EDE_KEY_SIZE,
1095 		.ivsize = 0,
1096 	}
1097 };
1098 
1099 int sec_algs_register(void)
1100 {
1101 	int ret = 0;
1102 
1103 	mutex_lock(&algs_lock);
1104 	if (++active_devs != 1)
1105 		goto unlock;
1106 
1107 	ret = crypto_register_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
1108 	if (ret)
1109 		--active_devs;
1110 unlock:
1111 	mutex_unlock(&algs_lock);
1112 
1113 	return ret;
1114 }
1115 
1116 void sec_algs_unregister(void)
1117 {
1118 	mutex_lock(&algs_lock);
1119 	if (--active_devs != 0)
1120 		goto unlock;
1121 	crypto_unregister_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
1122 
1123 unlock:
1124 	mutex_unlock(&algs_lock);
1125 }
1126