1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2016-2017 Hisilicon Limited. */
3 #include <linux/crypto.h>
4 #include <linux/dma-mapping.h>
5 #include <linux/dmapool.h>
6 #include <linux/module.h>
7 #include <linux/mutex.h>
8 #include <linux/slab.h>
9 
10 #include <crypto/aes.h>
11 #include <crypto/algapi.h>
12 #include <crypto/internal/des.h>
13 #include <crypto/skcipher.h>
14 #include <crypto/xts.h>
15 #include <crypto/internal/skcipher.h>
16 
17 #include "sec_drv.h"
18 
19 #define SEC_MAX_CIPHER_KEY		64
20 #define SEC_REQ_LIMIT SZ_32M
21 
22 struct sec_c_alg_cfg {
23 	unsigned c_alg		: 3;
24 	unsigned c_mode		: 3;
25 	unsigned key_len	: 2;
26 	unsigned c_width	: 2;
27 };
28 
29 static const struct sec_c_alg_cfg sec_c_alg_cfgs[] =  {
30 	[SEC_C_DES_ECB_64] = {
31 		.c_alg = SEC_C_ALG_DES,
32 		.c_mode = SEC_C_MODE_ECB,
33 		.key_len = SEC_KEY_LEN_DES,
34 	},
35 	[SEC_C_DES_CBC_64] = {
36 		.c_alg = SEC_C_ALG_DES,
37 		.c_mode = SEC_C_MODE_CBC,
38 		.key_len = SEC_KEY_LEN_DES,
39 	},
40 	[SEC_C_3DES_ECB_192_3KEY] = {
41 		.c_alg = SEC_C_ALG_3DES,
42 		.c_mode = SEC_C_MODE_ECB,
43 		.key_len = SEC_KEY_LEN_3DES_3_KEY,
44 	},
45 	[SEC_C_3DES_ECB_192_2KEY] = {
46 		.c_alg = SEC_C_ALG_3DES,
47 		.c_mode = SEC_C_MODE_ECB,
48 		.key_len = SEC_KEY_LEN_3DES_2_KEY,
49 	},
50 	[SEC_C_3DES_CBC_192_3KEY] = {
51 		.c_alg = SEC_C_ALG_3DES,
52 		.c_mode = SEC_C_MODE_CBC,
53 		.key_len = SEC_KEY_LEN_3DES_3_KEY,
54 	},
55 	[SEC_C_3DES_CBC_192_2KEY] = {
56 		.c_alg = SEC_C_ALG_3DES,
57 		.c_mode = SEC_C_MODE_CBC,
58 		.key_len = SEC_KEY_LEN_3DES_2_KEY,
59 	},
60 	[SEC_C_AES_ECB_128] = {
61 		.c_alg = SEC_C_ALG_AES,
62 		.c_mode = SEC_C_MODE_ECB,
63 		.key_len = SEC_KEY_LEN_AES_128,
64 	},
65 	[SEC_C_AES_ECB_192] = {
66 		.c_alg = SEC_C_ALG_AES,
67 		.c_mode = SEC_C_MODE_ECB,
68 		.key_len = SEC_KEY_LEN_AES_192,
69 	},
70 	[SEC_C_AES_ECB_256] = {
71 		.c_alg = SEC_C_ALG_AES,
72 		.c_mode = SEC_C_MODE_ECB,
73 		.key_len = SEC_KEY_LEN_AES_256,
74 	},
75 	[SEC_C_AES_CBC_128] = {
76 		.c_alg = SEC_C_ALG_AES,
77 		.c_mode = SEC_C_MODE_CBC,
78 		.key_len = SEC_KEY_LEN_AES_128,
79 	},
80 	[SEC_C_AES_CBC_192] = {
81 		.c_alg = SEC_C_ALG_AES,
82 		.c_mode = SEC_C_MODE_CBC,
83 		.key_len = SEC_KEY_LEN_AES_192,
84 	},
85 	[SEC_C_AES_CBC_256] = {
86 		.c_alg = SEC_C_ALG_AES,
87 		.c_mode = SEC_C_MODE_CBC,
88 		.key_len = SEC_KEY_LEN_AES_256,
89 	},
90 	[SEC_C_AES_CTR_128] = {
91 		.c_alg = SEC_C_ALG_AES,
92 		.c_mode = SEC_C_MODE_CTR,
93 		.key_len = SEC_KEY_LEN_AES_128,
94 	},
95 	[SEC_C_AES_CTR_192] = {
96 		.c_alg = SEC_C_ALG_AES,
97 		.c_mode = SEC_C_MODE_CTR,
98 		.key_len = SEC_KEY_LEN_AES_192,
99 	},
100 	[SEC_C_AES_CTR_256] = {
101 		.c_alg = SEC_C_ALG_AES,
102 		.c_mode = SEC_C_MODE_CTR,
103 		.key_len = SEC_KEY_LEN_AES_256,
104 	},
105 	[SEC_C_AES_XTS_128] = {
106 		.c_alg = SEC_C_ALG_AES,
107 		.c_mode = SEC_C_MODE_XTS,
108 		.key_len = SEC_KEY_LEN_AES_128,
109 	},
110 	[SEC_C_AES_XTS_256] = {
111 		.c_alg = SEC_C_ALG_AES,
112 		.c_mode = SEC_C_MODE_XTS,
113 		.key_len = SEC_KEY_LEN_AES_256,
114 	},
115 	[SEC_C_NULL] = {
116 	},
117 };
118 
119 /*
120  * Mutex used to ensure safe operation of reference count of
121  * alg providers
122  */
123 static DEFINE_MUTEX(algs_lock);
124 static unsigned int active_devs;
125 
126 static void sec_alg_skcipher_init_template(struct sec_alg_tfm_ctx *ctx,
127 					   struct sec_bd_info *req,
128 					   enum sec_cipher_alg alg)
129 {
130 	const struct sec_c_alg_cfg *cfg = &sec_c_alg_cfgs[alg];
131 
132 	memset(req, 0, sizeof(*req));
133 	req->w0 |= cfg->c_mode << SEC_BD_W0_C_MODE_S;
134 	req->w1 |= cfg->c_alg << SEC_BD_W1_C_ALG_S;
135 	req->w3 |= cfg->key_len << SEC_BD_W3_C_KEY_LEN_S;
136 	req->w0 |= cfg->c_width << SEC_BD_W0_C_WIDTH_S;
137 
138 	req->cipher_key_addr_lo = lower_32_bits(ctx->pkey);
139 	req->cipher_key_addr_hi = upper_32_bits(ctx->pkey);
140 }
141 
142 static void sec_alg_skcipher_init_context(struct crypto_skcipher *atfm,
143 					  const u8 *key,
144 					  unsigned int keylen,
145 					  enum sec_cipher_alg alg)
146 {
147 	struct crypto_tfm *tfm = crypto_skcipher_tfm(atfm);
148 	struct sec_alg_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
149 
150 	ctx->cipher_alg = alg;
151 	memcpy(ctx->key, key, keylen);
152 	sec_alg_skcipher_init_template(ctx, &ctx->req_template,
153 				       ctx->cipher_alg);
154 }
155 
156 static int sec_alloc_and_fill_hw_sgl(struct sec_hw_sgl **sec_sgl,
157 				     dma_addr_t *psec_sgl,
158 				     struct scatterlist *sgl,
159 				     int count,
160 				     struct sec_dev_info *info)
161 {
162 	struct sec_hw_sgl *sgl_current = NULL;
163 	struct sec_hw_sgl *sgl_next;
164 	dma_addr_t sgl_next_dma;
165 	struct scatterlist *sg;
166 	int ret, sge_index, i;
167 
168 	if (!count)
169 		return -EINVAL;
170 
171 	for_each_sg(sgl, sg, count, i) {
172 		sge_index = i % SEC_MAX_SGE_NUM;
173 		if (sge_index == 0) {
174 			sgl_next = dma_pool_zalloc(info->hw_sgl_pool,
175 						   GFP_KERNEL, &sgl_next_dma);
176 			if (!sgl_next) {
177 				ret = -ENOMEM;
178 				goto err_free_hw_sgls;
179 			}
180 
181 			if (!sgl_current) { /* First one */
182 				*psec_sgl = sgl_next_dma;
183 				*sec_sgl = sgl_next;
184 			} else { /* Chained */
185 				sgl_current->entry_sum_in_sgl = SEC_MAX_SGE_NUM;
186 				sgl_current->next_sgl = sgl_next_dma;
187 				sgl_current->next = sgl_next;
188 			}
189 			sgl_current = sgl_next;
190 		}
191 		sgl_current->sge_entries[sge_index].buf = sg_dma_address(sg);
192 		sgl_current->sge_entries[sge_index].len = sg_dma_len(sg);
193 		sgl_current->data_bytes_in_sgl += sg_dma_len(sg);
194 	}
195 	sgl_current->entry_sum_in_sgl = count % SEC_MAX_SGE_NUM;
196 	sgl_current->next_sgl = 0;
197 	(*sec_sgl)->entry_sum_in_chain = count;
198 
199 	return 0;
200 
201 err_free_hw_sgls:
202 	sgl_current = *sec_sgl;
203 	while (sgl_current) {
204 		sgl_next = sgl_current->next;
205 		dma_pool_free(info->hw_sgl_pool, sgl_current,
206 			      sgl_current->next_sgl);
207 		sgl_current = sgl_next;
208 	}
209 	*psec_sgl = 0;
210 
211 	return ret;
212 }
213 
214 static void sec_free_hw_sgl(struct sec_hw_sgl *hw_sgl,
215 			    dma_addr_t psec_sgl, struct sec_dev_info *info)
216 {
217 	struct sec_hw_sgl *sgl_current, *sgl_next;
218 
219 	if (!hw_sgl)
220 		return;
221 	sgl_current = hw_sgl;
222 	while (sgl_current->next) {
223 		sgl_next = sgl_current->next;
224 		dma_pool_free(info->hw_sgl_pool, sgl_current,
225 			      sgl_current->next_sgl);
226 		sgl_current = sgl_next;
227 	}
228 	dma_pool_free(info->hw_sgl_pool, hw_sgl, psec_sgl);
229 }
230 
231 static int sec_alg_skcipher_setkey(struct crypto_skcipher *tfm,
232 				   const u8 *key, unsigned int keylen,
233 				   enum sec_cipher_alg alg)
234 {
235 	struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
236 	struct device *dev = ctx->queue->dev_info->dev;
237 
238 	mutex_lock(&ctx->lock);
239 	if (ctx->key) {
240 		/* rekeying */
241 		memset(ctx->key, 0, SEC_MAX_CIPHER_KEY);
242 	} else {
243 		/* new key */
244 		ctx->key = dma_alloc_coherent(dev, SEC_MAX_CIPHER_KEY,
245 					      &ctx->pkey, GFP_KERNEL);
246 		if (!ctx->key) {
247 			mutex_unlock(&ctx->lock);
248 			return -ENOMEM;
249 		}
250 	}
251 	mutex_unlock(&ctx->lock);
252 	sec_alg_skcipher_init_context(tfm, key, keylen, alg);
253 
254 	return 0;
255 }
256 
257 static int sec_alg_skcipher_setkey_aes_ecb(struct crypto_skcipher *tfm,
258 					   const u8 *key, unsigned int keylen)
259 {
260 	enum sec_cipher_alg alg;
261 
262 	switch (keylen) {
263 	case AES_KEYSIZE_128:
264 		alg = SEC_C_AES_ECB_128;
265 		break;
266 	case AES_KEYSIZE_192:
267 		alg = SEC_C_AES_ECB_192;
268 		break;
269 	case AES_KEYSIZE_256:
270 		alg = SEC_C_AES_ECB_256;
271 		break;
272 	default:
273 		return -EINVAL;
274 	}
275 
276 	return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
277 }
278 
279 static int sec_alg_skcipher_setkey_aes_cbc(struct crypto_skcipher *tfm,
280 					   const u8 *key, unsigned int keylen)
281 {
282 	enum sec_cipher_alg alg;
283 
284 	switch (keylen) {
285 	case AES_KEYSIZE_128:
286 		alg = SEC_C_AES_CBC_128;
287 		break;
288 	case AES_KEYSIZE_192:
289 		alg = SEC_C_AES_CBC_192;
290 		break;
291 	case AES_KEYSIZE_256:
292 		alg = SEC_C_AES_CBC_256;
293 		break;
294 	default:
295 		return -EINVAL;
296 	}
297 
298 	return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
299 }
300 
301 static int sec_alg_skcipher_setkey_aes_ctr(struct crypto_skcipher *tfm,
302 					   const u8 *key, unsigned int keylen)
303 {
304 	enum sec_cipher_alg alg;
305 
306 	switch (keylen) {
307 	case AES_KEYSIZE_128:
308 		alg = SEC_C_AES_CTR_128;
309 		break;
310 	case AES_KEYSIZE_192:
311 		alg = SEC_C_AES_CTR_192;
312 		break;
313 	case AES_KEYSIZE_256:
314 		alg = SEC_C_AES_CTR_256;
315 		break;
316 	default:
317 		return -EINVAL;
318 	}
319 
320 	return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
321 }
322 
323 static int sec_alg_skcipher_setkey_aes_xts(struct crypto_skcipher *tfm,
324 					   const u8 *key, unsigned int keylen)
325 {
326 	enum sec_cipher_alg alg;
327 	int ret;
328 
329 	ret = xts_verify_key(tfm, key, keylen);
330 	if (ret)
331 		return ret;
332 
333 	switch (keylen) {
334 	case AES_KEYSIZE_128 * 2:
335 		alg = SEC_C_AES_XTS_128;
336 		break;
337 	case AES_KEYSIZE_256 * 2:
338 		alg = SEC_C_AES_XTS_256;
339 		break;
340 	default:
341 		return -EINVAL;
342 	}
343 
344 	return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
345 }
346 
347 static int sec_alg_skcipher_setkey_des_ecb(struct crypto_skcipher *tfm,
348 					   const u8 *key, unsigned int keylen)
349 {
350 	return verify_skcipher_des_key(tfm, key) ?:
351 	       sec_alg_skcipher_setkey(tfm, key, keylen, SEC_C_DES_ECB_64);
352 }
353 
354 static int sec_alg_skcipher_setkey_des_cbc(struct crypto_skcipher *tfm,
355 					   const u8 *key, unsigned int keylen)
356 {
357 	return verify_skcipher_des_key(tfm, key) ?:
358 	       sec_alg_skcipher_setkey(tfm, key, keylen, SEC_C_DES_CBC_64);
359 }
360 
361 static int sec_alg_skcipher_setkey_3des_ecb(struct crypto_skcipher *tfm,
362 					    const u8 *key, unsigned int keylen)
363 {
364 	return verify_skcipher_des3_key(tfm, key) ?:
365 	       sec_alg_skcipher_setkey(tfm, key, keylen,
366 				       SEC_C_3DES_ECB_192_3KEY);
367 }
368 
369 static int sec_alg_skcipher_setkey_3des_cbc(struct crypto_skcipher *tfm,
370 					    const u8 *key, unsigned int keylen)
371 {
372 	return verify_skcipher_des3_key(tfm, key) ?:
373 	       sec_alg_skcipher_setkey(tfm, key, keylen,
374 				       SEC_C_3DES_CBC_192_3KEY);
375 }
376 
377 static void sec_alg_free_el(struct sec_request_el *el,
378 			    struct sec_dev_info *info)
379 {
380 	sec_free_hw_sgl(el->out, el->dma_out, info);
381 	sec_free_hw_sgl(el->in, el->dma_in, info);
382 	kfree(el->sgl_in);
383 	kfree(el->sgl_out);
384 	kfree(el);
385 }
386 
387 /* queuelock must be held */
388 static int sec_send_request(struct sec_request *sec_req, struct sec_queue *queue)
389 {
390 	struct sec_request_el *el, *temp;
391 	int ret = 0;
392 
393 	mutex_lock(&sec_req->lock);
394 	list_for_each_entry_safe(el, temp, &sec_req->elements, head) {
395 		/*
396 		 * Add to hardware queue only under following circumstances
397 		 * 1) Software and hardware queue empty so no chain dependencies
398 		 * 2) No dependencies as new IV - (check software queue empty
399 		 *    to maintain order)
400 		 * 3) No dependencies because the mode does no chaining.
401 		 *
402 		 * In other cases first insert onto the software queue which
403 		 * is then emptied as requests complete
404 		 */
405 		if (!queue->havesoftqueue ||
406 		    (kfifo_is_empty(&queue->softqueue) &&
407 		     sec_queue_empty(queue))) {
408 			ret = sec_queue_send(queue, &el->req, sec_req);
409 			if (ret == -EAGAIN) {
410 				/* Wait unti we can send then try again */
411 				/* DEAD if here - should not happen */
412 				ret = -EBUSY;
413 				goto err_unlock;
414 			}
415 		} else {
416 			kfifo_put(&queue->softqueue, el);
417 		}
418 	}
419 err_unlock:
420 	mutex_unlock(&sec_req->lock);
421 
422 	return ret;
423 }
424 
425 static void sec_skcipher_alg_callback(struct sec_bd_info *sec_resp,
426 				      struct crypto_async_request *req_base)
427 {
428 	struct skcipher_request *skreq = container_of(req_base,
429 						      struct skcipher_request,
430 						      base);
431 	struct sec_request *sec_req = skcipher_request_ctx(skreq);
432 	struct sec_request *backlog_req;
433 	struct sec_request_el *sec_req_el, *nextrequest;
434 	struct sec_alg_tfm_ctx *ctx = sec_req->tfm_ctx;
435 	struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(skreq);
436 	struct device *dev = ctx->queue->dev_info->dev;
437 	int icv_or_skey_en, ret;
438 	bool done;
439 
440 	sec_req_el = list_first_entry(&sec_req->elements, struct sec_request_el,
441 				      head);
442 	icv_or_skey_en = (sec_resp->w0 & SEC_BD_W0_ICV_OR_SKEY_EN_M) >>
443 		SEC_BD_W0_ICV_OR_SKEY_EN_S;
444 	if (sec_resp->w1 & SEC_BD_W1_BD_INVALID || icv_or_skey_en == 3) {
445 		dev_err(dev, "Got an invalid answer %lu %d\n",
446 			sec_resp->w1 & SEC_BD_W1_BD_INVALID,
447 			icv_or_skey_en);
448 		sec_req->err = -EINVAL;
449 		/*
450 		 * We need to muddle on to avoid getting stuck with elements
451 		 * on the queue. Error will be reported so requester so
452 		 * it should be able to handle appropriately.
453 		 */
454 	}
455 
456 	mutex_lock(&ctx->queue->queuelock);
457 	/* Put the IV in place for chained cases */
458 	switch (ctx->cipher_alg) {
459 	case SEC_C_AES_CBC_128:
460 	case SEC_C_AES_CBC_192:
461 	case SEC_C_AES_CBC_256:
462 		if (sec_req_el->req.w0 & SEC_BD_W0_DE)
463 			sg_pcopy_to_buffer(sec_req_el->sgl_out,
464 					   sg_nents(sec_req_el->sgl_out),
465 					   skreq->iv,
466 					   crypto_skcipher_ivsize(atfm),
467 					   sec_req_el->el_length -
468 					   crypto_skcipher_ivsize(atfm));
469 		else
470 			sg_pcopy_to_buffer(sec_req_el->sgl_in,
471 					   sg_nents(sec_req_el->sgl_in),
472 					   skreq->iv,
473 					   crypto_skcipher_ivsize(atfm),
474 					   sec_req_el->el_length -
475 					   crypto_skcipher_ivsize(atfm));
476 		/* No need to sync to the device as coherent DMA */
477 		break;
478 	case SEC_C_AES_CTR_128:
479 	case SEC_C_AES_CTR_192:
480 	case SEC_C_AES_CTR_256:
481 		crypto_inc(skreq->iv, 16);
482 		break;
483 	default:
484 		/* Do not update */
485 		break;
486 	}
487 
488 	if (ctx->queue->havesoftqueue &&
489 	    !kfifo_is_empty(&ctx->queue->softqueue) &&
490 	    sec_queue_empty(ctx->queue)) {
491 		ret = kfifo_get(&ctx->queue->softqueue, &nextrequest);
492 		if (ret <= 0)
493 			dev_err(dev,
494 				"Error getting next element from kfifo %d\n",
495 				ret);
496 		else
497 			/* We know there is space so this cannot fail */
498 			sec_queue_send(ctx->queue, &nextrequest->req,
499 				       nextrequest->sec_req);
500 	} else if (!list_empty(&ctx->backlog)) {
501 		/* Need to verify there is room first */
502 		backlog_req = list_first_entry(&ctx->backlog,
503 					       typeof(*backlog_req),
504 					       backlog_head);
505 		if (sec_queue_can_enqueue(ctx->queue,
506 		    backlog_req->num_elements) ||
507 		    (ctx->queue->havesoftqueue &&
508 		     kfifo_avail(&ctx->queue->softqueue) >
509 		     backlog_req->num_elements)) {
510 			sec_send_request(backlog_req, ctx->queue);
511 			backlog_req->req_base->complete(backlog_req->req_base,
512 							-EINPROGRESS);
513 			list_del(&backlog_req->backlog_head);
514 		}
515 	}
516 	mutex_unlock(&ctx->queue->queuelock);
517 
518 	mutex_lock(&sec_req->lock);
519 	list_del(&sec_req_el->head);
520 	mutex_unlock(&sec_req->lock);
521 	sec_alg_free_el(sec_req_el, ctx->queue->dev_info);
522 
523 	/*
524 	 * Request is done.
525 	 * The dance is needed as the lock is freed in the completion
526 	 */
527 	mutex_lock(&sec_req->lock);
528 	done = list_empty(&sec_req->elements);
529 	mutex_unlock(&sec_req->lock);
530 	if (done) {
531 		if (crypto_skcipher_ivsize(atfm)) {
532 			dma_unmap_single(dev, sec_req->dma_iv,
533 					 crypto_skcipher_ivsize(atfm),
534 					 DMA_TO_DEVICE);
535 		}
536 		dma_unmap_sg(dev, skreq->src, sec_req->len_in,
537 			     DMA_BIDIRECTIONAL);
538 		if (skreq->src != skreq->dst)
539 			dma_unmap_sg(dev, skreq->dst, sec_req->len_out,
540 				     DMA_BIDIRECTIONAL);
541 		skreq->base.complete(&skreq->base, sec_req->err);
542 	}
543 }
544 
545 void sec_alg_callback(struct sec_bd_info *resp, void *shadow)
546 {
547 	struct sec_request *sec_req = shadow;
548 
549 	sec_req->cb(resp, sec_req->req_base);
550 }
551 
552 static int sec_alg_alloc_and_calc_split_sizes(int length, size_t **split_sizes,
553 					      int *steps)
554 {
555 	size_t *sizes;
556 	int i;
557 
558 	/* Split into suitable sized blocks */
559 	*steps = roundup(length, SEC_REQ_LIMIT) / SEC_REQ_LIMIT;
560 	sizes = kcalloc(*steps, sizeof(*sizes), GFP_KERNEL);
561 	if (!sizes)
562 		return -ENOMEM;
563 
564 	for (i = 0; i < *steps - 1; i++)
565 		sizes[i] = SEC_REQ_LIMIT;
566 	sizes[*steps - 1] = length - SEC_REQ_LIMIT * (*steps - 1);
567 	*split_sizes = sizes;
568 
569 	return 0;
570 }
571 
572 static int sec_map_and_split_sg(struct scatterlist *sgl, size_t *split_sizes,
573 				int steps, struct scatterlist ***splits,
574 				int **splits_nents,
575 				int sgl_len_in,
576 				struct device *dev)
577 {
578 	int ret, count;
579 
580 	count = dma_map_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
581 	if (!count)
582 		return -EINVAL;
583 
584 	*splits = kcalloc(steps, sizeof(struct scatterlist *), GFP_KERNEL);
585 	if (!*splits) {
586 		ret = -ENOMEM;
587 		goto err_unmap_sg;
588 	}
589 	*splits_nents = kcalloc(steps, sizeof(int), GFP_KERNEL);
590 	if (!*splits_nents) {
591 		ret = -ENOMEM;
592 		goto err_free_splits;
593 	}
594 
595 	/* output the scatter list before and after this */
596 	ret = sg_split(sgl, count, 0, steps, split_sizes,
597 		       *splits, *splits_nents, GFP_KERNEL);
598 	if (ret) {
599 		ret = -ENOMEM;
600 		goto err_free_splits_nents;
601 	}
602 
603 	return 0;
604 
605 err_free_splits_nents:
606 	kfree(*splits_nents);
607 err_free_splits:
608 	kfree(*splits);
609 err_unmap_sg:
610 	dma_unmap_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
611 
612 	return ret;
613 }
614 
615 /*
616  * Reverses the sec_map_and_split_sg call for messages not yet added to
617  * the queues.
618  */
619 static void sec_unmap_sg_on_err(struct scatterlist *sgl, int steps,
620 				struct scatterlist **splits, int *splits_nents,
621 				int sgl_len_in, struct device *dev)
622 {
623 	int i;
624 
625 	for (i = 0; i < steps; i++)
626 		kfree(splits[i]);
627 	kfree(splits_nents);
628 	kfree(splits);
629 
630 	dma_unmap_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
631 }
632 
633 static struct sec_request_el
634 *sec_alg_alloc_and_fill_el(struct sec_bd_info *template, int encrypt,
635 			   int el_size, bool different_dest,
636 			   struct scatterlist *sgl_in, int n_ents_in,
637 			   struct scatterlist *sgl_out, int n_ents_out,
638 			   struct sec_dev_info *info)
639 {
640 	struct sec_request_el *el;
641 	struct sec_bd_info *req;
642 	int ret;
643 
644 	el = kzalloc(sizeof(*el), GFP_KERNEL);
645 	if (!el)
646 		return ERR_PTR(-ENOMEM);
647 	el->el_length = el_size;
648 	req = &el->req;
649 	memcpy(req, template, sizeof(*req));
650 
651 	req->w0 &= ~SEC_BD_W0_CIPHER_M;
652 	if (encrypt)
653 		req->w0 |= SEC_CIPHER_ENCRYPT << SEC_BD_W0_CIPHER_S;
654 	else
655 		req->w0 |= SEC_CIPHER_DECRYPT << SEC_BD_W0_CIPHER_S;
656 
657 	req->w0 &= ~SEC_BD_W0_C_GRAN_SIZE_19_16_M;
658 	req->w0 |= ((el_size >> 16) << SEC_BD_W0_C_GRAN_SIZE_19_16_S) &
659 		SEC_BD_W0_C_GRAN_SIZE_19_16_M;
660 
661 	req->w0 &= ~SEC_BD_W0_C_GRAN_SIZE_21_20_M;
662 	req->w0 |= ((el_size >> 20) << SEC_BD_W0_C_GRAN_SIZE_21_20_S) &
663 		SEC_BD_W0_C_GRAN_SIZE_21_20_M;
664 
665 	/* Writing whole u32 so no need to take care of masking */
666 	req->w2 = ((1 << SEC_BD_W2_GRAN_NUM_S) & SEC_BD_W2_GRAN_NUM_M) |
667 		((el_size << SEC_BD_W2_C_GRAN_SIZE_15_0_S) &
668 		 SEC_BD_W2_C_GRAN_SIZE_15_0_M);
669 
670 	req->w3 &= ~SEC_BD_W3_CIPHER_LEN_OFFSET_M;
671 	req->w1 |= SEC_BD_W1_ADDR_TYPE;
672 
673 	el->sgl_in = sgl_in;
674 
675 	ret = sec_alloc_and_fill_hw_sgl(&el->in, &el->dma_in, el->sgl_in,
676 					n_ents_in, info);
677 	if (ret)
678 		goto err_free_el;
679 
680 	req->data_addr_lo = lower_32_bits(el->dma_in);
681 	req->data_addr_hi = upper_32_bits(el->dma_in);
682 
683 	if (different_dest) {
684 		el->sgl_out = sgl_out;
685 		ret = sec_alloc_and_fill_hw_sgl(&el->out, &el->dma_out,
686 						el->sgl_out,
687 						n_ents_out, info);
688 		if (ret)
689 			goto err_free_hw_sgl_in;
690 
691 		req->w0 |= SEC_BD_W0_DE;
692 		req->cipher_destin_addr_lo = lower_32_bits(el->dma_out);
693 		req->cipher_destin_addr_hi = upper_32_bits(el->dma_out);
694 
695 	} else {
696 		req->w0 &= ~SEC_BD_W0_DE;
697 		req->cipher_destin_addr_lo = lower_32_bits(el->dma_in);
698 		req->cipher_destin_addr_hi = upper_32_bits(el->dma_in);
699 	}
700 
701 	return el;
702 
703 err_free_hw_sgl_in:
704 	sec_free_hw_sgl(el->in, el->dma_in, info);
705 err_free_el:
706 	kfree(el);
707 
708 	return ERR_PTR(ret);
709 }
710 
711 static int sec_alg_skcipher_crypto(struct skcipher_request *skreq,
712 				   bool encrypt)
713 {
714 	struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(skreq);
715 	struct crypto_tfm *tfm = crypto_skcipher_tfm(atfm);
716 	struct sec_alg_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
717 	struct sec_queue *queue = ctx->queue;
718 	struct sec_request *sec_req = skcipher_request_ctx(skreq);
719 	struct sec_dev_info *info = queue->dev_info;
720 	int i, ret, steps;
721 	size_t *split_sizes;
722 	struct scatterlist **splits_in;
723 	struct scatterlist **splits_out = NULL;
724 	int *splits_in_nents;
725 	int *splits_out_nents = NULL;
726 	struct sec_request_el *el, *temp;
727 	bool split = skreq->src != skreq->dst;
728 
729 	mutex_init(&sec_req->lock);
730 	sec_req->req_base = &skreq->base;
731 	sec_req->err = 0;
732 	/* SGL mapping out here to allow us to break it up as necessary */
733 	sec_req->len_in = sg_nents(skreq->src);
734 
735 	ret = sec_alg_alloc_and_calc_split_sizes(skreq->cryptlen, &split_sizes,
736 						 &steps);
737 	if (ret)
738 		return ret;
739 	sec_req->num_elements = steps;
740 	ret = sec_map_and_split_sg(skreq->src, split_sizes, steps, &splits_in,
741 				   &splits_in_nents, sec_req->len_in,
742 				   info->dev);
743 	if (ret)
744 		goto err_free_split_sizes;
745 
746 	if (split) {
747 		sec_req->len_out = sg_nents(skreq->dst);
748 		ret = sec_map_and_split_sg(skreq->dst, split_sizes, steps,
749 					   &splits_out, &splits_out_nents,
750 					   sec_req->len_out, info->dev);
751 		if (ret)
752 			goto err_unmap_in_sg;
753 	}
754 	/* Shared info stored in seq_req - applies to all BDs */
755 	sec_req->tfm_ctx = ctx;
756 	sec_req->cb = sec_skcipher_alg_callback;
757 	INIT_LIST_HEAD(&sec_req->elements);
758 
759 	/*
760 	 * Future optimization.
761 	 * In the chaining case we can't use a dma pool bounce buffer
762 	 * but in the case where we know there is no chaining we can
763 	 */
764 	if (crypto_skcipher_ivsize(atfm)) {
765 		sec_req->dma_iv = dma_map_single(info->dev, skreq->iv,
766 						 crypto_skcipher_ivsize(atfm),
767 						 DMA_TO_DEVICE);
768 		if (dma_mapping_error(info->dev, sec_req->dma_iv)) {
769 			ret = -ENOMEM;
770 			goto err_unmap_out_sg;
771 		}
772 	}
773 
774 	/* Set them all up then queue - cleaner error handling. */
775 	for (i = 0; i < steps; i++) {
776 		el = sec_alg_alloc_and_fill_el(&ctx->req_template,
777 					       encrypt ? 1 : 0,
778 					       split_sizes[i],
779 					       skreq->src != skreq->dst,
780 					       splits_in[i], splits_in_nents[i],
781 					       split ? splits_out[i] : NULL,
782 					       split ? splits_out_nents[i] : 0,
783 					       info);
784 		if (IS_ERR(el)) {
785 			ret = PTR_ERR(el);
786 			goto err_free_elements;
787 		}
788 		el->req.cipher_iv_addr_lo = lower_32_bits(sec_req->dma_iv);
789 		el->req.cipher_iv_addr_hi = upper_32_bits(sec_req->dma_iv);
790 		el->sec_req = sec_req;
791 		list_add_tail(&el->head, &sec_req->elements);
792 	}
793 
794 	/*
795 	 * Only attempt to queue if the whole lot can fit in the queue -
796 	 * we can't successfully cleanup after a partial queing so this
797 	 * must succeed or fail atomically.
798 	 *
799 	 * Big hammer test of both software and hardware queues - could be
800 	 * more refined but this is unlikely to happen so no need.
801 	 */
802 
803 	/* Grab a big lock for a long time to avoid concurrency issues */
804 	mutex_lock(&queue->queuelock);
805 
806 	/*
807 	 * Can go on to queue if we have space in either:
808 	 * 1) The hardware queue and no software queue
809 	 * 2) The software queue
810 	 * AND there is nothing in the backlog.  If there is backlog we
811 	 * have to only queue to the backlog queue and return busy.
812 	 */
813 	if ((!sec_queue_can_enqueue(queue, steps) &&
814 	     (!queue->havesoftqueue ||
815 	      kfifo_avail(&queue->softqueue) > steps)) ||
816 	    !list_empty(&ctx->backlog)) {
817 		ret = -EBUSY;
818 		if ((skreq->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
819 			list_add_tail(&sec_req->backlog_head, &ctx->backlog);
820 			mutex_unlock(&queue->queuelock);
821 			goto out;
822 		}
823 
824 		mutex_unlock(&queue->queuelock);
825 		goto err_free_elements;
826 	}
827 	ret = sec_send_request(sec_req, queue);
828 	mutex_unlock(&queue->queuelock);
829 	if (ret)
830 		goto err_free_elements;
831 
832 	ret = -EINPROGRESS;
833 out:
834 	/* Cleanup - all elements in pointer arrays have been copied */
835 	kfree(splits_in_nents);
836 	kfree(splits_in);
837 	kfree(splits_out_nents);
838 	kfree(splits_out);
839 	kfree(split_sizes);
840 	return ret;
841 
842 err_free_elements:
843 	list_for_each_entry_safe(el, temp, &sec_req->elements, head) {
844 		list_del(&el->head);
845 		sec_alg_free_el(el, info);
846 	}
847 	if (crypto_skcipher_ivsize(atfm))
848 		dma_unmap_single(info->dev, sec_req->dma_iv,
849 				 crypto_skcipher_ivsize(atfm),
850 				 DMA_BIDIRECTIONAL);
851 err_unmap_out_sg:
852 	if (split)
853 		sec_unmap_sg_on_err(skreq->dst, steps, splits_out,
854 				    splits_out_nents, sec_req->len_out,
855 				    info->dev);
856 err_unmap_in_sg:
857 	sec_unmap_sg_on_err(skreq->src, steps, splits_in, splits_in_nents,
858 			    sec_req->len_in, info->dev);
859 err_free_split_sizes:
860 	kfree(split_sizes);
861 
862 	return ret;
863 }
864 
865 static int sec_alg_skcipher_encrypt(struct skcipher_request *req)
866 {
867 	return sec_alg_skcipher_crypto(req, true);
868 }
869 
870 static int sec_alg_skcipher_decrypt(struct skcipher_request *req)
871 {
872 	return sec_alg_skcipher_crypto(req, false);
873 }
874 
875 static int sec_alg_skcipher_init(struct crypto_skcipher *tfm)
876 {
877 	struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
878 
879 	mutex_init(&ctx->lock);
880 	INIT_LIST_HEAD(&ctx->backlog);
881 	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_request));
882 
883 	ctx->queue = sec_queue_alloc_start_safe();
884 	if (IS_ERR(ctx->queue))
885 		return PTR_ERR(ctx->queue);
886 
887 	mutex_init(&ctx->queue->queuelock);
888 	ctx->queue->havesoftqueue = false;
889 
890 	return 0;
891 }
892 
893 static void sec_alg_skcipher_exit(struct crypto_skcipher *tfm)
894 {
895 	struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
896 	struct device *dev = ctx->queue->dev_info->dev;
897 
898 	if (ctx->key) {
899 		memzero_explicit(ctx->key, SEC_MAX_CIPHER_KEY);
900 		dma_free_coherent(dev, SEC_MAX_CIPHER_KEY, ctx->key,
901 				  ctx->pkey);
902 	}
903 	sec_queue_stop_release(ctx->queue);
904 }
905 
906 static int sec_alg_skcipher_init_with_queue(struct crypto_skcipher *tfm)
907 {
908 	struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
909 	int ret;
910 
911 	ret = sec_alg_skcipher_init(tfm);
912 	if (ret)
913 		return ret;
914 
915 	INIT_KFIFO(ctx->queue->softqueue);
916 	ret = kfifo_alloc(&ctx->queue->softqueue, 512, GFP_KERNEL);
917 	if (ret) {
918 		sec_alg_skcipher_exit(tfm);
919 		return ret;
920 	}
921 	ctx->queue->havesoftqueue = true;
922 
923 	return 0;
924 }
925 
926 static void sec_alg_skcipher_exit_with_queue(struct crypto_skcipher *tfm)
927 {
928 	struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
929 
930 	kfifo_free(&ctx->queue->softqueue);
931 	sec_alg_skcipher_exit(tfm);
932 }
933 
934 static struct skcipher_alg sec_algs[] = {
935 	{
936 		.base = {
937 			.cra_name = "ecb(aes)",
938 			.cra_driver_name = "hisi_sec_aes_ecb",
939 			.cra_priority = 4001,
940 			.cra_flags = CRYPTO_ALG_ASYNC,
941 			.cra_blocksize = AES_BLOCK_SIZE,
942 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
943 			.cra_alignmask = 0,
944 			.cra_module = THIS_MODULE,
945 		},
946 		.init = sec_alg_skcipher_init,
947 		.exit = sec_alg_skcipher_exit,
948 		.setkey = sec_alg_skcipher_setkey_aes_ecb,
949 		.decrypt = sec_alg_skcipher_decrypt,
950 		.encrypt = sec_alg_skcipher_encrypt,
951 		.min_keysize = AES_MIN_KEY_SIZE,
952 		.max_keysize = AES_MAX_KEY_SIZE,
953 		.ivsize = 0,
954 	}, {
955 		.base = {
956 			.cra_name = "cbc(aes)",
957 			.cra_driver_name = "hisi_sec_aes_cbc",
958 			.cra_priority = 4001,
959 			.cra_flags = CRYPTO_ALG_ASYNC,
960 			.cra_blocksize = AES_BLOCK_SIZE,
961 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
962 			.cra_alignmask = 0,
963 			.cra_module = THIS_MODULE,
964 		},
965 		.init = sec_alg_skcipher_init_with_queue,
966 		.exit = sec_alg_skcipher_exit_with_queue,
967 		.setkey = sec_alg_skcipher_setkey_aes_cbc,
968 		.decrypt = sec_alg_skcipher_decrypt,
969 		.encrypt = sec_alg_skcipher_encrypt,
970 		.min_keysize = AES_MIN_KEY_SIZE,
971 		.max_keysize = AES_MAX_KEY_SIZE,
972 		.ivsize = AES_BLOCK_SIZE,
973 	}, {
974 		.base = {
975 			.cra_name = "ctr(aes)",
976 			.cra_driver_name = "hisi_sec_aes_ctr",
977 			.cra_priority = 4001,
978 			.cra_flags = CRYPTO_ALG_ASYNC,
979 			.cra_blocksize = AES_BLOCK_SIZE,
980 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
981 			.cra_alignmask = 0,
982 			.cra_module = THIS_MODULE,
983 		},
984 		.init = sec_alg_skcipher_init_with_queue,
985 		.exit = sec_alg_skcipher_exit_with_queue,
986 		.setkey = sec_alg_skcipher_setkey_aes_ctr,
987 		.decrypt = sec_alg_skcipher_decrypt,
988 		.encrypt = sec_alg_skcipher_encrypt,
989 		.min_keysize = AES_MIN_KEY_SIZE,
990 		.max_keysize = AES_MAX_KEY_SIZE,
991 		.ivsize = AES_BLOCK_SIZE,
992 	}, {
993 		.base = {
994 			.cra_name = "xts(aes)",
995 			.cra_driver_name = "hisi_sec_aes_xts",
996 			.cra_priority = 4001,
997 			.cra_flags = CRYPTO_ALG_ASYNC,
998 			.cra_blocksize = AES_BLOCK_SIZE,
999 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1000 			.cra_alignmask = 0,
1001 			.cra_module = THIS_MODULE,
1002 		},
1003 		.init = sec_alg_skcipher_init,
1004 		.exit = sec_alg_skcipher_exit,
1005 		.setkey = sec_alg_skcipher_setkey_aes_xts,
1006 		.decrypt = sec_alg_skcipher_decrypt,
1007 		.encrypt = sec_alg_skcipher_encrypt,
1008 		.min_keysize = 2 * AES_MIN_KEY_SIZE,
1009 		.max_keysize = 2 * AES_MAX_KEY_SIZE,
1010 		.ivsize = AES_BLOCK_SIZE,
1011 	}, {
1012 	/* Unable to find any test vectors so untested */
1013 		.base = {
1014 			.cra_name = "ecb(des)",
1015 			.cra_driver_name = "hisi_sec_des_ecb",
1016 			.cra_priority = 4001,
1017 			.cra_flags = CRYPTO_ALG_ASYNC,
1018 			.cra_blocksize = DES_BLOCK_SIZE,
1019 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1020 			.cra_alignmask = 0,
1021 			.cra_module = THIS_MODULE,
1022 		},
1023 		.init = sec_alg_skcipher_init,
1024 		.exit = sec_alg_skcipher_exit,
1025 		.setkey = sec_alg_skcipher_setkey_des_ecb,
1026 		.decrypt = sec_alg_skcipher_decrypt,
1027 		.encrypt = sec_alg_skcipher_encrypt,
1028 		.min_keysize = DES_KEY_SIZE,
1029 		.max_keysize = DES_KEY_SIZE,
1030 		.ivsize = 0,
1031 	}, {
1032 		.base = {
1033 			.cra_name = "cbc(des)",
1034 			.cra_driver_name = "hisi_sec_des_cbc",
1035 			.cra_priority = 4001,
1036 			.cra_flags = CRYPTO_ALG_ASYNC,
1037 			.cra_blocksize = DES_BLOCK_SIZE,
1038 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1039 			.cra_alignmask = 0,
1040 			.cra_module = THIS_MODULE,
1041 		},
1042 		.init = sec_alg_skcipher_init_with_queue,
1043 		.exit = sec_alg_skcipher_exit_with_queue,
1044 		.setkey = sec_alg_skcipher_setkey_des_cbc,
1045 		.decrypt = sec_alg_skcipher_decrypt,
1046 		.encrypt = sec_alg_skcipher_encrypt,
1047 		.min_keysize = DES_KEY_SIZE,
1048 		.max_keysize = DES_KEY_SIZE,
1049 		.ivsize = DES_BLOCK_SIZE,
1050 	}, {
1051 		.base = {
1052 			.cra_name = "cbc(des3_ede)",
1053 			.cra_driver_name = "hisi_sec_3des_cbc",
1054 			.cra_priority = 4001,
1055 			.cra_flags = CRYPTO_ALG_ASYNC,
1056 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1057 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1058 			.cra_alignmask = 0,
1059 			.cra_module = THIS_MODULE,
1060 		},
1061 		.init = sec_alg_skcipher_init_with_queue,
1062 		.exit = sec_alg_skcipher_exit_with_queue,
1063 		.setkey = sec_alg_skcipher_setkey_3des_cbc,
1064 		.decrypt = sec_alg_skcipher_decrypt,
1065 		.encrypt = sec_alg_skcipher_encrypt,
1066 		.min_keysize = DES3_EDE_KEY_SIZE,
1067 		.max_keysize = DES3_EDE_KEY_SIZE,
1068 		.ivsize = DES3_EDE_BLOCK_SIZE,
1069 	}, {
1070 		.base = {
1071 			.cra_name = "ecb(des3_ede)",
1072 			.cra_driver_name = "hisi_sec_3des_ecb",
1073 			.cra_priority = 4001,
1074 			.cra_flags = CRYPTO_ALG_ASYNC,
1075 			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1076 			.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
1077 			.cra_alignmask = 0,
1078 			.cra_module = THIS_MODULE,
1079 		},
1080 		.init = sec_alg_skcipher_init,
1081 		.exit = sec_alg_skcipher_exit,
1082 		.setkey = sec_alg_skcipher_setkey_3des_ecb,
1083 		.decrypt = sec_alg_skcipher_decrypt,
1084 		.encrypt = sec_alg_skcipher_encrypt,
1085 		.min_keysize = DES3_EDE_KEY_SIZE,
1086 		.max_keysize = DES3_EDE_KEY_SIZE,
1087 		.ivsize = 0,
1088 	}
1089 };
1090 
1091 int sec_algs_register(void)
1092 {
1093 	int ret = 0;
1094 
1095 	mutex_lock(&algs_lock);
1096 	if (++active_devs != 1)
1097 		goto unlock;
1098 
1099 	ret = crypto_register_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
1100 	if (ret)
1101 		--active_devs;
1102 unlock:
1103 	mutex_unlock(&algs_lock);
1104 
1105 	return ret;
1106 }
1107 
1108 void sec_algs_unregister(void)
1109 {
1110 	mutex_lock(&algs_lock);
1111 	if (--active_devs != 0)
1112 		goto unlock;
1113 	crypto_unregister_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
1114 
1115 unlock:
1116 	mutex_unlock(&algs_lock);
1117 }
1118