1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/bitmap.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/idr.h> 8 #include <linux/io.h> 9 #include <linux/irqreturn.h> 10 #include <linux/log2.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/uacce.h> 15 #include <linux/uaccess.h> 16 #include <uapi/misc/uacce/hisi_qm.h> 17 #include <linux/hisi_acc_qm.h> 18 #include "qm_common.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 26 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 27 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_SHIFT 16 29 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 30 31 /* mailbox */ 32 #define QM_MB_PING_ALL_VFS 0xffff 33 #define QM_MB_CMD_DATA_SHIFT 32 34 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 35 #define QM_MB_STATUS_MASK GENMASK(12, 9) 36 37 /* sqc shift */ 38 #define QM_SQ_HOP_NUM_SHIFT 0 39 #define QM_SQ_PAGE_SIZE_SHIFT 4 40 #define QM_SQ_BUF_SIZE_SHIFT 8 41 #define QM_SQ_SQE_SIZE_SHIFT 12 42 #define QM_SQ_PRIORITY_SHIFT 0 43 #define QM_SQ_ORDERS_SHIFT 4 44 #define QM_SQ_TYPE_SHIFT 8 45 #define QM_QC_PASID_ENABLE 0x1 46 #define QM_QC_PASID_ENABLE_SHIFT 7 47 48 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 49 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) 50 51 /* cqc shift */ 52 #define QM_CQ_HOP_NUM_SHIFT 0 53 #define QM_CQ_PAGE_SIZE_SHIFT 4 54 #define QM_CQ_BUF_SIZE_SHIFT 8 55 #define QM_CQ_CQE_SIZE_SHIFT 12 56 #define QM_CQ_PHASE_SHIFT 0 57 #define QM_CQ_FLAG_SHIFT 1 58 59 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 60 #define QM_QC_CQE_SIZE 4 61 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) 62 63 /* eqc shift */ 64 #define QM_EQE_AEQE_SIZE (2UL << 12) 65 #define QM_EQC_PHASE_SHIFT 16 66 67 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 68 #define QM_EQE_CQN_MASK GENMASK(15, 0) 69 70 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 71 #define QM_AEQE_TYPE_SHIFT 17 72 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 73 #define QM_CQ_OVERFLOW 0 74 #define QM_EQ_OVERFLOW 1 75 #define QM_CQE_ERROR 2 76 77 #define QM_XQ_DEPTH_SHIFT 16 78 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 79 80 #define QM_DOORBELL_CMD_SQ 0 81 #define QM_DOORBELL_CMD_CQ 1 82 #define QM_DOORBELL_CMD_EQ 2 83 #define QM_DOORBELL_CMD_AEQ 3 84 85 #define QM_DOORBELL_BASE_V1 0x340 86 #define QM_DB_CMD_SHIFT_V1 16 87 #define QM_DB_INDEX_SHIFT_V1 32 88 #define QM_DB_PRIORITY_SHIFT_V1 48 89 #define QM_PAGE_SIZE 0x0034 90 #define QM_QP_DB_INTERVAL 0x10000 91 #define QM_DB_TIMEOUT_CFG 0x100074 92 #define QM_DB_TIMEOUT_SET 0x1fffff 93 94 #define QM_MEM_START_INIT 0x100040 95 #define QM_MEM_INIT_DONE 0x100044 96 #define QM_VFT_CFG_RDY 0x10006c 97 #define QM_VFT_CFG_OP_WR 0x100058 98 #define QM_VFT_CFG_TYPE 0x10005c 99 #define QM_VFT_CFG 0x100060 100 #define QM_VFT_CFG_OP_ENABLE 0x100054 101 #define QM_PM_CTRL 0x100148 102 #define QM_IDLE_DISABLE BIT(9) 103 104 #define QM_VFT_CFG_DATA_L 0x100064 105 #define QM_VFT_CFG_DATA_H 0x100068 106 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 107 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 108 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 109 #define QM_SQC_VFT_START_SQN_SHIFT 28 110 #define QM_SQC_VFT_VALID (1ULL << 44) 111 #define QM_SQC_VFT_SQN_SHIFT 45 112 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 113 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 114 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 115 #define QM_CQC_VFT_VALID (1ULL << 28) 116 117 #define QM_SQC_VFT_BASE_SHIFT_V2 28 118 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 119 #define QM_SQC_VFT_NUM_SHIFT_V2 45 120 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) 121 122 #define QM_ABNORMAL_INT_SOURCE 0x100000 123 #define QM_ABNORMAL_INT_MASK 0x100004 124 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 125 #define QM_ABNORMAL_INT_STATUS 0x100008 126 #define QM_ABNORMAL_INT_SET 0x10000c 127 #define QM_ABNORMAL_INF00 0x100010 128 #define QM_FIFO_OVERFLOW_TYPE 0xc0 129 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 130 #define QM_FIFO_OVERFLOW_VF 0x3f 131 #define QM_ABNORMAL_INF01 0x100014 132 #define QM_DB_TIMEOUT_TYPE 0xc0 133 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 134 #define QM_DB_TIMEOUT_VF 0x3f 135 #define QM_RAS_CE_ENABLE 0x1000ec 136 #define QM_RAS_FE_ENABLE 0x1000f0 137 #define QM_RAS_NFE_ENABLE 0x1000f4 138 #define QM_RAS_CE_THRESHOLD 0x1000f8 139 #define QM_RAS_CE_TIMES_PER_IRQ 1 140 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 141 #define QM_ECC_MBIT BIT(2) 142 #define QM_DB_TIMEOUT BIT(10) 143 #define QM_OF_FIFO_OF BIT(11) 144 145 #define QM_RESET_WAIT_TIMEOUT 400 146 #define QM_PEH_VENDOR_ID 0x1000d8 147 #define ACC_VENDOR_ID_VALUE 0x5a5a 148 #define QM_PEH_DFX_INFO0 0x1000fc 149 #define QM_PEH_DFX_INFO1 0x100100 150 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 151 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 152 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 153 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 154 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 155 #define ACC_MASTER_TRANS_RETURN_RW 3 156 #define ACC_MASTER_TRANS_RETURN 0x300150 157 #define ACC_MASTER_GLOBAL_CTRL 0x300000 158 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 159 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 160 #define ACC_AM_ROB_ECC_INT_STS 0x300104 161 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 162 #define QM_MSI_CAP_ENABLE BIT(16) 163 164 /* interfunction communication */ 165 #define QM_IFC_READY_STATUS 0x100128 166 #define QM_IFC_INT_SET_P 0x100130 167 #define QM_IFC_INT_CFG 0x100134 168 #define QM_IFC_INT_SOURCE_P 0x100138 169 #define QM_IFC_INT_SOURCE_V 0x0020 170 #define QM_IFC_INT_MASK 0x0024 171 #define QM_IFC_INT_STATUS 0x0028 172 #define QM_IFC_INT_SET_V 0x002C 173 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 174 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 175 #define QM_IFC_INT_SOURCE_MASK BIT(0) 176 #define QM_IFC_INT_DISABLE BIT(0) 177 #define QM_IFC_INT_STATUS_MASK BIT(0) 178 #define QM_IFC_INT_SET_MASK BIT(0) 179 #define QM_WAIT_DST_ACK 10 180 #define QM_MAX_PF_WAIT_COUNT 10 181 #define QM_MAX_VF_WAIT_COUNT 40 182 #define QM_VF_RESET_WAIT_US 20000 183 #define QM_VF_RESET_WAIT_CNT 3000 184 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 185 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 186 187 #define POLL_PERIOD 10 188 #define POLL_TIMEOUT 1000 189 #define WAIT_PERIOD_US_MAX 200 190 #define WAIT_PERIOD_US_MIN 100 191 #define MAX_WAIT_COUNTS 1000 192 #define QM_CACHE_WB_START 0x204 193 #define QM_CACHE_WB_DONE 0x208 194 #define QM_FUNC_CAPS_REG 0x3100 195 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 196 197 #define PCI_BAR_2 2 198 #define PCI_BAR_4 4 199 #define QMC_ALIGN(sz) ALIGN(sz, 32) 200 201 #define QM_DBG_READ_LEN 256 202 #define QM_PCI_COMMAND_INVALID ~0 203 #define QM_RESET_STOP_TX_OFFSET 1 204 #define QM_RESET_STOP_RX_OFFSET 2 205 206 #define WAIT_PERIOD 20 207 #define REMOVE_WAIT_DELAY 10 208 209 #define QM_QOS_PARAM_NUM 2 210 #define QM_QOS_MAX_VAL 1000 211 #define QM_QOS_RATE 100 212 #define QM_QOS_EXPAND_RATE 1000 213 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 214 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 215 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 216 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 217 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 218 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 219 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 220 #define QM_SHAPER_CBS_B 1 221 #define QM_SHAPER_VFT_OFFSET 6 222 #define QM_QOS_MIN_ERROR_RATE 5 223 #define QM_SHAPER_MIN_CBS_S 8 224 #define QM_QOS_TICK 0x300U 225 #define QM_QOS_DIVISOR_CLK 0x1f40U 226 #define QM_QOS_MAX_CIR_B 200 227 #define QM_QOS_MIN_CIR_B 100 228 #define QM_QOS_MAX_CIR_U 6 229 #define QM_AUTOSUSPEND_DELAY 3000 230 231 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 232 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 233 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 234 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 235 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 236 237 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 238 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 239 240 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 241 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 242 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 243 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 244 245 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 246 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 247 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 248 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 249 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 250 251 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 252 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 253 254 #define INIT_QC_COMMON(qc, base, pasid) do { \ 255 (qc)->head = 0; \ 256 (qc)->tail = 0; \ 257 (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ 258 (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ 259 (qc)->dw3 = 0; \ 260 (qc)->w8 = 0; \ 261 (qc)->rsvd0 = 0; \ 262 (qc)->pasid = cpu_to_le16(pasid); \ 263 (qc)->w11 = 0; \ 264 (qc)->rsvd1 = 0; \ 265 } while (0) 266 267 enum vft_type { 268 SQC_VFT = 0, 269 CQC_VFT, 270 SHAPER_VFT, 271 }; 272 273 enum acc_err_result { 274 ACC_ERR_NONE, 275 ACC_ERR_NEED_RESET, 276 ACC_ERR_RECOVERED, 277 }; 278 279 enum qm_alg_type { 280 ALG_TYPE_0, 281 ALG_TYPE_1, 282 }; 283 284 enum qm_mb_cmd { 285 QM_PF_FLR_PREPARE = 0x01, 286 QM_PF_SRST_PREPARE, 287 QM_PF_RESET_DONE, 288 QM_VF_PREPARE_DONE, 289 QM_VF_PREPARE_FAIL, 290 QM_VF_START_DONE, 291 QM_VF_START_FAIL, 292 QM_PF_SET_QOS, 293 QM_VF_GET_QOS, 294 }; 295 296 enum qm_basic_type { 297 QM_TOTAL_QP_NUM_CAP = 0x0, 298 QM_FUNC_MAX_QP_CAP, 299 QM_XEQ_DEPTH_CAP, 300 QM_QP_DEPTH_CAP, 301 QM_EQ_IRQ_TYPE_CAP, 302 QM_AEQ_IRQ_TYPE_CAP, 303 QM_ABN_IRQ_TYPE_CAP, 304 QM_PF2VF_IRQ_TYPE_CAP, 305 QM_PF_IRQ_NUM_CAP, 306 QM_VF_IRQ_NUM_CAP, 307 }; 308 309 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 310 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 311 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 312 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 313 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 314 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 315 }; 316 317 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 318 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 319 }; 320 321 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 322 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 323 }; 324 325 static const struct hisi_qm_cap_info qm_basic_info[] = { 326 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 327 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 328 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, 329 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 330 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 331 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 332 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 333 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 334 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 335 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 336 }; 337 338 struct qm_mailbox { 339 __le16 w0; 340 __le16 queue_num; 341 __le32 base_l; 342 __le32 base_h; 343 __le32 rsvd; 344 }; 345 346 struct qm_doorbell { 347 __le16 queue_num; 348 __le16 cmd; 349 __le16 index; 350 __le16 priority; 351 }; 352 353 struct hisi_qm_resource { 354 struct hisi_qm *qm; 355 int distance; 356 struct list_head list; 357 }; 358 359 /** 360 * struct qm_hw_err - Structure describing the device errors 361 * @list: hardware error list 362 * @timestamp: timestamp when the error occurred 363 */ 364 struct qm_hw_err { 365 struct list_head list; 366 unsigned long long timestamp; 367 }; 368 369 struct hisi_qm_hw_ops { 370 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 371 void (*qm_db)(struct hisi_qm *qm, u16 qn, 372 u8 cmd, u16 index, u8 priority); 373 int (*debug_init)(struct hisi_qm *qm); 374 void (*hw_error_init)(struct hisi_qm *qm); 375 void (*hw_error_uninit)(struct hisi_qm *qm); 376 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 377 int (*set_msi)(struct hisi_qm *qm, bool set); 378 }; 379 380 struct hisi_qm_hw_error { 381 u32 int_msk; 382 const char *msg; 383 }; 384 385 static const struct hisi_qm_hw_error qm_hw_error[] = { 386 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 387 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 388 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 389 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 390 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 391 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 392 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 393 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 394 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 395 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 396 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 397 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 398 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 399 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 400 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 401 { /* sentinel */ } 402 }; 403 404 static const char * const qm_db_timeout[] = { 405 "sq", "cq", "eq", "aeq", 406 }; 407 408 static const char * const qm_fifo_overflow[] = { 409 "cq", "eq", "aeq", 410 }; 411 412 static const char * const qp_s[] = { 413 "none", "init", "start", "stop", "close", 414 }; 415 416 struct qm_typical_qos_table { 417 u32 start; 418 u32 end; 419 u32 val; 420 }; 421 422 /* the qos step is 100 */ 423 static struct qm_typical_qos_table shaper_cir_s[] = { 424 {100, 100, 4}, 425 {200, 200, 3}, 426 {300, 500, 2}, 427 {600, 1000, 1}, 428 {1100, 100000, 0}, 429 }; 430 431 static struct qm_typical_qos_table shaper_cbs_s[] = { 432 {100, 200, 9}, 433 {300, 500, 11}, 434 {600, 1000, 12}, 435 {1100, 10000, 16}, 436 {10100, 25000, 17}, 437 {25100, 50000, 18}, 438 {50100, 100000, 19} 439 }; 440 441 static void qm_irqs_unregister(struct hisi_qm *qm); 442 443 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 444 { 445 enum qm_state curr = atomic_read(&qm->status.flags); 446 bool avail = false; 447 448 switch (curr) { 449 case QM_INIT: 450 if (new == QM_START || new == QM_CLOSE) 451 avail = true; 452 break; 453 case QM_START: 454 if (new == QM_STOP) 455 avail = true; 456 break; 457 case QM_STOP: 458 if (new == QM_CLOSE || new == QM_START) 459 avail = true; 460 break; 461 default: 462 break; 463 } 464 465 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 466 qm_s[curr], qm_s[new]); 467 468 if (!avail) 469 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 470 qm_s[curr], qm_s[new]); 471 472 return avail; 473 } 474 475 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 476 enum qp_state new) 477 { 478 enum qm_state qm_curr = atomic_read(&qm->status.flags); 479 enum qp_state qp_curr = 0; 480 bool avail = false; 481 482 if (qp) 483 qp_curr = atomic_read(&qp->qp_status.flags); 484 485 switch (new) { 486 case QP_INIT: 487 if (qm_curr == QM_START || qm_curr == QM_INIT) 488 avail = true; 489 break; 490 case QP_START: 491 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 492 (qm_curr == QM_START && qp_curr == QP_STOP)) 493 avail = true; 494 break; 495 case QP_STOP: 496 if ((qm_curr == QM_START && qp_curr == QP_START) || 497 (qp_curr == QP_INIT)) 498 avail = true; 499 break; 500 case QP_CLOSE: 501 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 502 (qm_curr == QM_START && qp_curr == QP_STOP) || 503 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 504 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 505 avail = true; 506 break; 507 default: 508 break; 509 } 510 511 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 512 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 513 514 if (!avail) 515 dev_warn(&qm->pdev->dev, 516 "Can not change qp state from %s to %s in QM %s\n", 517 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 518 519 return avail; 520 } 521 522 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 523 { 524 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 525 } 526 527 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 528 { 529 return qm->err_ini->get_dev_hw_err_status(qm); 530 } 531 532 /* Check if the error causes the master ooo block */ 533 static bool qm_check_dev_error(struct hisi_qm *qm) 534 { 535 u32 val, dev_val; 536 537 if (qm->fun_type == QM_HW_VF) 538 return false; 539 540 val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask; 541 dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask; 542 543 return val || dev_val; 544 } 545 546 static int qm_wait_reset_finish(struct hisi_qm *qm) 547 { 548 int delay = 0; 549 550 /* All reset requests need to be queued for processing */ 551 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 552 msleep(++delay); 553 if (delay > QM_RESET_WAIT_TIMEOUT) 554 return -EBUSY; 555 } 556 557 return 0; 558 } 559 560 static int qm_reset_prepare_ready(struct hisi_qm *qm) 561 { 562 struct pci_dev *pdev = qm->pdev; 563 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 564 565 /* 566 * PF and VF on host doesnot support resetting at the 567 * same time on Kunpeng920. 568 */ 569 if (qm->ver < QM_HW_V3) 570 return qm_wait_reset_finish(pf_qm); 571 572 return qm_wait_reset_finish(qm); 573 } 574 575 static void qm_reset_bit_clear(struct hisi_qm *qm) 576 { 577 struct pci_dev *pdev = qm->pdev; 578 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 579 580 if (qm->ver < QM_HW_V3) 581 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 582 583 clear_bit(QM_RESETTING, &qm->misc_ctl); 584 } 585 586 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 587 u64 base, u16 queue, bool op) 588 { 589 mailbox->w0 = cpu_to_le16((cmd) | 590 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 591 (0x1 << QM_MB_BUSY_SHIFT)); 592 mailbox->queue_num = cpu_to_le16(queue); 593 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 594 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 595 mailbox->rsvd = 0; 596 } 597 598 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 599 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 600 { 601 u32 val; 602 603 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 604 val, !((val >> QM_MB_BUSY_SHIFT) & 605 0x1), POLL_PERIOD, POLL_TIMEOUT); 606 } 607 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 608 609 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 610 static void qm_mb_write(struct hisi_qm *qm, const void *src) 611 { 612 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 613 614 #if IS_ENABLED(CONFIG_ARM64) 615 unsigned long tmp0 = 0, tmp1 = 0; 616 #endif 617 618 if (!IS_ENABLED(CONFIG_ARM64)) { 619 memcpy_toio(fun_base, src, 16); 620 dma_wmb(); 621 return; 622 } 623 624 #if IS_ENABLED(CONFIG_ARM64) 625 asm volatile("ldp %0, %1, %3\n" 626 "stp %0, %1, %2\n" 627 "dmb oshst\n" 628 : "=&r" (tmp0), 629 "=&r" (tmp1), 630 "+Q" (*((char __iomem *)fun_base)) 631 : "Q" (*((char *)src)) 632 : "memory"); 633 #endif 634 } 635 636 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 637 { 638 int ret; 639 u32 val; 640 641 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 642 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 643 ret = -EBUSY; 644 goto mb_busy; 645 } 646 647 qm_mb_write(qm, mailbox); 648 649 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 650 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 651 ret = -ETIMEDOUT; 652 goto mb_busy; 653 } 654 655 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 656 if (val & QM_MB_STATUS_MASK) { 657 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 658 ret = -EIO; 659 goto mb_busy; 660 } 661 662 return 0; 663 664 mb_busy: 665 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 666 return ret; 667 } 668 669 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 670 bool op) 671 { 672 struct qm_mailbox mailbox; 673 int ret; 674 675 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 676 queue, cmd, (unsigned long long)dma_addr); 677 678 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 679 680 mutex_lock(&qm->mailbox_lock); 681 ret = qm_mb_nolock(qm, &mailbox); 682 mutex_unlock(&qm->mailbox_lock); 683 684 return ret; 685 } 686 EXPORT_SYMBOL_GPL(hisi_qm_mb); 687 688 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 689 { 690 u64 doorbell; 691 692 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 693 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 694 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 695 696 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 697 } 698 699 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 700 { 701 void __iomem *io_base = qm->io_base; 702 u16 randata = 0; 703 u64 doorbell; 704 705 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 706 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 707 QM_DOORBELL_SQ_CQ_BASE_V2; 708 else 709 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 710 711 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 712 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 713 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 714 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 715 716 writeq(doorbell, io_base); 717 } 718 719 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 720 { 721 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 722 qn, cmd, index); 723 724 qm->ops->qm_db(qm, qn, cmd, index, priority); 725 } 726 727 static void qm_disable_clock_gate(struct hisi_qm *qm) 728 { 729 u32 val; 730 731 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 732 if (qm->ver < QM_HW_V3) 733 return; 734 735 val = readl(qm->io_base + QM_PM_CTRL); 736 val |= QM_IDLE_DISABLE; 737 writel(val, qm->io_base + QM_PM_CTRL); 738 } 739 740 static int qm_dev_mem_reset(struct hisi_qm *qm) 741 { 742 u32 val; 743 744 writel(0x1, qm->io_base + QM_MEM_START_INIT); 745 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 746 val & BIT(0), POLL_PERIOD, 747 POLL_TIMEOUT); 748 } 749 750 /** 751 * hisi_qm_get_hw_info() - Get device information. 752 * @qm: The qm which want to get information. 753 * @info_table: Array for storing device information. 754 * @index: Index in info_table. 755 * @is_read: Whether read from reg, 0: not support read from reg. 756 * 757 * This function returns device information the caller needs. 758 */ 759 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 760 const struct hisi_qm_cap_info *info_table, 761 u32 index, bool is_read) 762 { 763 u32 val; 764 765 switch (qm->ver) { 766 case QM_HW_V1: 767 return info_table[index].v1_val; 768 case QM_HW_V2: 769 return info_table[index].v2_val; 770 default: 771 if (!is_read) 772 return info_table[index].v3_val; 773 774 val = readl(qm->io_base + info_table[index].offset); 775 return (val >> info_table[index].shift) & info_table[index].mask; 776 } 777 } 778 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 779 780 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 781 u16 *high_bits, enum qm_basic_type type) 782 { 783 u32 depth; 784 785 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 786 *low_bits = depth & QM_XQ_DEPTH_MASK; 787 *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 788 } 789 790 static u32 qm_get_irq_num(struct hisi_qm *qm) 791 { 792 if (qm->fun_type == QM_HW_PF) 793 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 794 795 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 796 } 797 798 static int qm_pm_get_sync(struct hisi_qm *qm) 799 { 800 struct device *dev = &qm->pdev->dev; 801 int ret; 802 803 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 804 return 0; 805 806 ret = pm_runtime_resume_and_get(dev); 807 if (ret < 0) { 808 dev_err(dev, "failed to get_sync(%d).\n", ret); 809 return ret; 810 } 811 812 return 0; 813 } 814 815 static void qm_pm_put_sync(struct hisi_qm *qm) 816 { 817 struct device *dev = &qm->pdev->dev; 818 819 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 820 return; 821 822 pm_runtime_mark_last_busy(dev); 823 pm_runtime_put_autosuspend(dev); 824 } 825 826 static void qm_cq_head_update(struct hisi_qp *qp) 827 { 828 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 829 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 830 qp->qp_status.cq_head = 0; 831 } else { 832 qp->qp_status.cq_head++; 833 } 834 } 835 836 static void qm_poll_req_cb(struct hisi_qp *qp) 837 { 838 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 839 struct hisi_qm *qm = qp->qm; 840 841 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 842 dma_rmb(); 843 qp->req_cb(qp, qp->sqe + qm->sqe_size * 844 le16_to_cpu(cqe->sq_head)); 845 qm_cq_head_update(qp); 846 cqe = qp->cqe + qp->qp_status.cq_head; 847 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 848 qp->qp_status.cq_head, 0); 849 atomic_dec(&qp->qp_status.used); 850 } 851 852 /* set c_flag */ 853 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 854 } 855 856 static int qm_get_complete_eqe_num(struct hisi_qm_poll_data *poll_data) 857 { 858 struct hisi_qm *qm = poll_data->qm; 859 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 860 u16 eq_depth = qm->eq_depth; 861 int eqe_num = 0; 862 u16 cqn; 863 864 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 865 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 866 poll_data->qp_finish_id[eqe_num] = cqn; 867 eqe_num++; 868 869 if (qm->status.eq_head == eq_depth - 1) { 870 qm->status.eqc_phase = !qm->status.eqc_phase; 871 eqe = qm->eqe; 872 qm->status.eq_head = 0; 873 } else { 874 eqe++; 875 qm->status.eq_head++; 876 } 877 878 if (eqe_num == (eq_depth >> 1) - 1) 879 break; 880 } 881 882 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 883 884 return eqe_num; 885 } 886 887 static void qm_work_process(struct work_struct *work) 888 { 889 struct hisi_qm_poll_data *poll_data = 890 container_of(work, struct hisi_qm_poll_data, work); 891 struct hisi_qm *qm = poll_data->qm; 892 struct hisi_qp *qp; 893 int eqe_num, i; 894 895 /* Get qp id of completed tasks and re-enable the interrupt. */ 896 eqe_num = qm_get_complete_eqe_num(poll_data); 897 for (i = eqe_num - 1; i >= 0; i--) { 898 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 899 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 900 continue; 901 902 if (qp->event_cb) { 903 qp->event_cb(qp); 904 continue; 905 } 906 907 if (likely(qp->req_cb)) 908 qm_poll_req_cb(qp); 909 } 910 } 911 912 static bool do_qm_eq_irq(struct hisi_qm *qm) 913 { 914 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 915 struct hisi_qm_poll_data *poll_data; 916 u16 cqn; 917 918 if (!readl(qm->io_base + QM_VF_EQ_INT_SOURCE)) 919 return false; 920 921 if (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 922 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 923 poll_data = &qm->poll_data[cqn]; 924 queue_work(qm->wq, &poll_data->work); 925 926 return true; 927 } 928 929 return false; 930 } 931 932 static irqreturn_t qm_eq_irq(int irq, void *data) 933 { 934 struct hisi_qm *qm = data; 935 bool ret; 936 937 ret = do_qm_eq_irq(qm); 938 if (ret) 939 return IRQ_HANDLED; 940 941 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 942 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 943 944 return IRQ_NONE; 945 } 946 947 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 948 { 949 struct hisi_qm *qm = data; 950 u32 val; 951 952 val = readl(qm->io_base + QM_IFC_INT_STATUS); 953 val &= QM_IFC_INT_STATUS_MASK; 954 if (!val) 955 return IRQ_NONE; 956 957 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) { 958 dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n"); 959 return IRQ_HANDLED; 960 } 961 962 schedule_work(&qm->cmd_process); 963 964 return IRQ_HANDLED; 965 } 966 967 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 968 { 969 u32 *addr; 970 971 if (qp->is_in_kernel) 972 return; 973 974 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 975 *addr = 1; 976 977 /* make sure setup is completed */ 978 smp_wmb(); 979 } 980 981 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 982 { 983 struct hisi_qp *qp = &qm->qp_array[qp_id]; 984 985 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 986 hisi_qm_stop_qp(qp); 987 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 988 } 989 990 static void qm_reset_function(struct hisi_qm *qm) 991 { 992 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 993 struct device *dev = &qm->pdev->dev; 994 int ret; 995 996 if (qm_check_dev_error(pf_qm)) 997 return; 998 999 ret = qm_reset_prepare_ready(qm); 1000 if (ret) { 1001 dev_err(dev, "reset function not ready\n"); 1002 return; 1003 } 1004 1005 ret = hisi_qm_stop(qm, QM_DOWN); 1006 if (ret) { 1007 dev_err(dev, "failed to stop qm when reset function\n"); 1008 goto clear_bit; 1009 } 1010 1011 ret = hisi_qm_start(qm); 1012 if (ret) 1013 dev_err(dev, "failed to start qm when reset function\n"); 1014 1015 clear_bit: 1016 qm_reset_bit_clear(qm); 1017 } 1018 1019 static irqreturn_t qm_aeq_thread(int irq, void *data) 1020 { 1021 struct hisi_qm *qm = data; 1022 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1023 u16 aeq_depth = qm->aeq_depth; 1024 u32 type, qp_id; 1025 1026 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1027 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; 1028 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1029 1030 switch (type) { 1031 case QM_EQ_OVERFLOW: 1032 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1033 qm_reset_function(qm); 1034 return IRQ_HANDLED; 1035 case QM_CQ_OVERFLOW: 1036 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1037 qp_id); 1038 fallthrough; 1039 case QM_CQE_ERROR: 1040 qm_disable_qp(qm, qp_id); 1041 break; 1042 default: 1043 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1044 type); 1045 break; 1046 } 1047 1048 if (qm->status.aeq_head == aeq_depth - 1) { 1049 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1050 aeqe = qm->aeqe; 1051 qm->status.aeq_head = 0; 1052 } else { 1053 aeqe++; 1054 qm->status.aeq_head++; 1055 } 1056 } 1057 1058 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1059 1060 return IRQ_HANDLED; 1061 } 1062 1063 static irqreturn_t qm_aeq_irq(int irq, void *data) 1064 { 1065 struct hisi_qm *qm = data; 1066 1067 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1068 if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE)) 1069 return IRQ_NONE; 1070 1071 return IRQ_WAKE_THREAD; 1072 } 1073 1074 static void qm_init_qp_status(struct hisi_qp *qp) 1075 { 1076 struct hisi_qp_status *qp_status = &qp->qp_status; 1077 1078 qp_status->sq_tail = 0; 1079 qp_status->cq_head = 0; 1080 qp_status->cqc_phase = true; 1081 atomic_set(&qp_status->used, 0); 1082 } 1083 1084 static void qm_init_prefetch(struct hisi_qm *qm) 1085 { 1086 struct device *dev = &qm->pdev->dev; 1087 u32 page_type = 0x0; 1088 1089 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1090 return; 1091 1092 switch (PAGE_SIZE) { 1093 case SZ_4K: 1094 page_type = 0x0; 1095 break; 1096 case SZ_16K: 1097 page_type = 0x1; 1098 break; 1099 case SZ_64K: 1100 page_type = 0x2; 1101 break; 1102 default: 1103 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1104 PAGE_SIZE); 1105 } 1106 1107 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1108 } 1109 1110 /* 1111 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1112 * is the expected qos calculated. 1113 * the formula: 1114 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1115 * 1116 * IR_b * (2 ^ IR_u) * 8000 1117 * IR(Mbps) = ------------------------- 1118 * Tick * (2 ^ IR_s) 1119 */ 1120 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1121 { 1122 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1123 (QM_QOS_TICK * (1 << cir_s)); 1124 } 1125 1126 static u32 acc_shaper_calc_cbs_s(u32 ir) 1127 { 1128 int table_size = ARRAY_SIZE(shaper_cbs_s); 1129 int i; 1130 1131 for (i = 0; i < table_size; i++) { 1132 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1133 return shaper_cbs_s[i].val; 1134 } 1135 1136 return QM_SHAPER_MIN_CBS_S; 1137 } 1138 1139 static u32 acc_shaper_calc_cir_s(u32 ir) 1140 { 1141 int table_size = ARRAY_SIZE(shaper_cir_s); 1142 int i; 1143 1144 for (i = 0; i < table_size; i++) { 1145 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1146 return shaper_cir_s[i].val; 1147 } 1148 1149 return 0; 1150 } 1151 1152 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1153 { 1154 u32 cir_b, cir_u, cir_s, ir_calc; 1155 u32 error_rate; 1156 1157 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1158 cir_s = acc_shaper_calc_cir_s(ir); 1159 1160 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1161 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1162 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1163 1164 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1165 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1166 factor->cir_b = cir_b; 1167 factor->cir_u = cir_u; 1168 factor->cir_s = cir_s; 1169 return 0; 1170 } 1171 } 1172 } 1173 1174 return -EINVAL; 1175 } 1176 1177 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1178 u32 number, struct qm_shaper_factor *factor) 1179 { 1180 u64 tmp = 0; 1181 1182 if (number > 0) { 1183 switch (type) { 1184 case SQC_VFT: 1185 if (qm->ver == QM_HW_V1) { 1186 tmp = QM_SQC_VFT_BUF_SIZE | 1187 QM_SQC_VFT_SQC_SIZE | 1188 QM_SQC_VFT_INDEX_NUMBER | 1189 QM_SQC_VFT_VALID | 1190 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1191 } else { 1192 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1193 QM_SQC_VFT_VALID | 1194 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1195 } 1196 break; 1197 case CQC_VFT: 1198 if (qm->ver == QM_HW_V1) { 1199 tmp = QM_CQC_VFT_BUF_SIZE | 1200 QM_CQC_VFT_SQC_SIZE | 1201 QM_CQC_VFT_INDEX_NUMBER | 1202 QM_CQC_VFT_VALID; 1203 } else { 1204 tmp = QM_CQC_VFT_VALID; 1205 } 1206 break; 1207 case SHAPER_VFT: 1208 if (factor) { 1209 tmp = factor->cir_b | 1210 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1211 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1212 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1213 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1214 } 1215 break; 1216 } 1217 } 1218 1219 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1220 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1221 } 1222 1223 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1224 u32 fun_num, u32 base, u32 number) 1225 { 1226 struct qm_shaper_factor *factor = NULL; 1227 unsigned int val; 1228 int ret; 1229 1230 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1231 factor = &qm->factor[fun_num]; 1232 1233 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1234 val & BIT(0), POLL_PERIOD, 1235 POLL_TIMEOUT); 1236 if (ret) 1237 return ret; 1238 1239 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1240 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1241 if (type == SHAPER_VFT) 1242 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1243 1244 writel(fun_num, qm->io_base + QM_VFT_CFG); 1245 1246 qm_vft_data_cfg(qm, type, base, number, factor); 1247 1248 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1249 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1250 1251 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1252 val & BIT(0), POLL_PERIOD, 1253 POLL_TIMEOUT); 1254 } 1255 1256 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1257 { 1258 u32 qos = qm->factor[fun_num].func_qos; 1259 int ret, i; 1260 1261 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1262 if (ret) { 1263 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1264 return ret; 1265 } 1266 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1267 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1268 /* The base number of queue reuse for different alg type */ 1269 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1270 if (ret) 1271 return ret; 1272 } 1273 1274 return 0; 1275 } 1276 1277 /* The config should be conducted after qm_dev_mem_reset() */ 1278 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1279 u32 number) 1280 { 1281 int ret, i; 1282 1283 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1284 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1285 if (ret) 1286 return ret; 1287 } 1288 1289 /* init default shaper qos val */ 1290 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1291 ret = qm_shaper_init_vft(qm, fun_num); 1292 if (ret) 1293 goto back_sqc_cqc; 1294 } 1295 1296 return 0; 1297 back_sqc_cqc: 1298 for (i = SQC_VFT; i <= CQC_VFT; i++) 1299 qm_set_vft_common(qm, i, fun_num, 0, 0); 1300 1301 return ret; 1302 } 1303 1304 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1305 { 1306 u64 sqc_vft; 1307 int ret; 1308 1309 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1310 if (ret) 1311 return ret; 1312 1313 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1314 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1315 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1316 *number = (QM_SQC_VFT_NUM_MASK_V2 & 1317 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1318 1319 return 0; 1320 } 1321 1322 void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, 1323 dma_addr_t *dma_addr) 1324 { 1325 struct device *dev = &qm->pdev->dev; 1326 void *ctx_addr; 1327 1328 ctx_addr = kzalloc(ctx_size, GFP_KERNEL); 1329 if (!ctx_addr) 1330 return ERR_PTR(-ENOMEM); 1331 1332 *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); 1333 if (dma_mapping_error(dev, *dma_addr)) { 1334 dev_err(dev, "DMA mapping error!\n"); 1335 kfree(ctx_addr); 1336 return ERR_PTR(-ENOMEM); 1337 } 1338 1339 return ctx_addr; 1340 } 1341 1342 void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, 1343 const void *ctx_addr, dma_addr_t *dma_addr) 1344 { 1345 struct device *dev = &qm->pdev->dev; 1346 1347 dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); 1348 kfree(ctx_addr); 1349 } 1350 1351 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1352 { 1353 return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); 1354 } 1355 1356 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1357 { 1358 return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); 1359 } 1360 1361 static void qm_hw_error_init_v1(struct hisi_qm *qm) 1362 { 1363 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1364 } 1365 1366 static void qm_hw_error_cfg(struct hisi_qm *qm) 1367 { 1368 struct hisi_qm_err_info *err_info = &qm->err_info; 1369 1370 qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; 1371 /* clear QM hw residual error source */ 1372 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1373 1374 /* configure error type */ 1375 writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); 1376 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1377 writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1378 writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); 1379 } 1380 1381 static void qm_hw_error_init_v2(struct hisi_qm *qm) 1382 { 1383 u32 irq_unmask; 1384 1385 qm_hw_error_cfg(qm); 1386 1387 irq_unmask = ~qm->error_mask; 1388 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1389 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1390 } 1391 1392 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1393 { 1394 u32 irq_mask = qm->error_mask; 1395 1396 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1397 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1398 } 1399 1400 static void qm_hw_error_init_v3(struct hisi_qm *qm) 1401 { 1402 u32 irq_unmask; 1403 1404 qm_hw_error_cfg(qm); 1405 1406 /* enable close master ooo when hardware error happened */ 1407 writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1408 1409 irq_unmask = ~qm->error_mask; 1410 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1411 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1412 } 1413 1414 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1415 { 1416 u32 irq_mask = qm->error_mask; 1417 1418 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1419 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1420 1421 /* disable close master ooo when hardware error happened */ 1422 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1423 } 1424 1425 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1426 { 1427 const struct hisi_qm_hw_error *err; 1428 struct device *dev = &qm->pdev->dev; 1429 u32 reg_val, type, vf_num; 1430 int i; 1431 1432 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1433 err = &qm_hw_error[i]; 1434 if (!(err->int_msk & error_status)) 1435 continue; 1436 1437 dev_err(dev, "%s [error status=0x%x] found\n", 1438 err->msg, err->int_msk); 1439 1440 if (err->int_msk & QM_DB_TIMEOUT) { 1441 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1442 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1443 QM_DB_TIMEOUT_TYPE_SHIFT; 1444 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1445 dev_err(dev, "qm %s doorbell timeout in function %u\n", 1446 qm_db_timeout[type], vf_num); 1447 } else if (err->int_msk & QM_OF_FIFO_OF) { 1448 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1449 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1450 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1451 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1452 1453 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1454 dev_err(dev, "qm %s fifo overflow in function %u\n", 1455 qm_fifo_overflow[type], vf_num); 1456 else 1457 dev_err(dev, "unknown error type\n"); 1458 } 1459 } 1460 } 1461 1462 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1463 { 1464 u32 error_status, tmp; 1465 1466 /* read err sts */ 1467 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 1468 error_status = qm->error_mask & tmp; 1469 1470 if (error_status) { 1471 if (error_status & QM_ECC_MBIT) 1472 qm->err_status.is_qm_ecc_mbit = true; 1473 1474 qm_log_hw_error(qm, error_status); 1475 if (error_status & qm->err_info.qm_reset_mask) 1476 return ACC_ERR_NEED_RESET; 1477 1478 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1479 writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1480 } 1481 1482 return ACC_ERR_RECOVERED; 1483 } 1484 1485 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 1486 { 1487 struct qm_mailbox mailbox; 1488 int ret; 1489 1490 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 1491 mutex_lock(&qm->mailbox_lock); 1492 ret = qm_mb_nolock(qm, &mailbox); 1493 if (ret) 1494 goto err_unlock; 1495 1496 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1497 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1498 1499 err_unlock: 1500 mutex_unlock(&qm->mailbox_lock); 1501 return ret; 1502 } 1503 1504 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 1505 { 1506 u32 val; 1507 1508 if (qm->fun_type == QM_HW_PF) 1509 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 1510 1511 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 1512 val |= QM_IFC_INT_SOURCE_MASK; 1513 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 1514 } 1515 1516 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 1517 { 1518 struct device *dev = &qm->pdev->dev; 1519 u32 cmd; 1520 u64 msg; 1521 int ret; 1522 1523 ret = qm_get_mb_cmd(qm, &msg, vf_id); 1524 if (ret) { 1525 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 1526 return; 1527 } 1528 1529 cmd = msg & QM_MB_CMD_DATA_MASK; 1530 switch (cmd) { 1531 case QM_VF_PREPARE_FAIL: 1532 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 1533 break; 1534 case QM_VF_START_FAIL: 1535 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 1536 break; 1537 case QM_VF_PREPARE_DONE: 1538 case QM_VF_START_DONE: 1539 break; 1540 default: 1541 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 1542 break; 1543 } 1544 } 1545 1546 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 1547 { 1548 struct device *dev = &qm->pdev->dev; 1549 u32 vfs_num = qm->vfs_num; 1550 int cnt = 0; 1551 int ret = 0; 1552 u64 val; 1553 u32 i; 1554 1555 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 1556 return 0; 1557 1558 while (true) { 1559 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 1560 /* All VFs send command to PF, break */ 1561 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 1562 break; 1563 1564 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1565 ret = -EBUSY; 1566 break; 1567 } 1568 1569 msleep(QM_WAIT_DST_ACK); 1570 } 1571 1572 /* PF check VFs msg */ 1573 for (i = 1; i <= vfs_num; i++) { 1574 if (val & BIT(i)) 1575 qm_handle_vf_msg(qm, i); 1576 else 1577 dev_err(dev, "VF(%u) not ping PF!\n", i); 1578 } 1579 1580 /* PF clear interrupt to ack VFs */ 1581 qm_clear_cmd_interrupt(qm, val); 1582 1583 return ret; 1584 } 1585 1586 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 1587 { 1588 u32 val; 1589 1590 val = readl(qm->io_base + QM_IFC_INT_CFG); 1591 val &= ~QM_IFC_SEND_ALL_VFS; 1592 val |= fun_num; 1593 writel(val, qm->io_base + QM_IFC_INT_CFG); 1594 1595 val = readl(qm->io_base + QM_IFC_INT_SET_P); 1596 val |= QM_IFC_INT_SET_MASK; 1597 writel(val, qm->io_base + QM_IFC_INT_SET_P); 1598 } 1599 1600 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 1601 { 1602 u32 val; 1603 1604 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1605 val |= QM_IFC_INT_SET_MASK; 1606 writel(val, qm->io_base + QM_IFC_INT_SET_V); 1607 } 1608 1609 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 1610 { 1611 struct device *dev = &qm->pdev->dev; 1612 struct qm_mailbox mailbox; 1613 int cnt = 0; 1614 u64 val; 1615 int ret; 1616 1617 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 1618 mutex_lock(&qm->mailbox_lock); 1619 ret = qm_mb_nolock(qm, &mailbox); 1620 if (ret) { 1621 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 1622 goto err_unlock; 1623 } 1624 1625 qm_trigger_vf_interrupt(qm, fun_num); 1626 while (true) { 1627 msleep(QM_WAIT_DST_ACK); 1628 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1629 /* if VF respond, PF notifies VF successfully. */ 1630 if (!(val & BIT(fun_num))) 1631 goto err_unlock; 1632 1633 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1634 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 1635 ret = -ETIMEDOUT; 1636 break; 1637 } 1638 } 1639 1640 err_unlock: 1641 mutex_unlock(&qm->mailbox_lock); 1642 return ret; 1643 } 1644 1645 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 1646 { 1647 struct device *dev = &qm->pdev->dev; 1648 u32 vfs_num = qm->vfs_num; 1649 struct qm_mailbox mailbox; 1650 u64 val = 0; 1651 int cnt = 0; 1652 int ret; 1653 u32 i; 1654 1655 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 1656 mutex_lock(&qm->mailbox_lock); 1657 /* PF sends command to all VFs by mailbox */ 1658 ret = qm_mb_nolock(qm, &mailbox); 1659 if (ret) { 1660 dev_err(dev, "failed to send command to VFs!\n"); 1661 mutex_unlock(&qm->mailbox_lock); 1662 return ret; 1663 } 1664 1665 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 1666 while (true) { 1667 msleep(QM_WAIT_DST_ACK); 1668 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1669 /* If all VFs acked, PF notifies VFs successfully. */ 1670 if (!(val & GENMASK(vfs_num, 1))) { 1671 mutex_unlock(&qm->mailbox_lock); 1672 return 0; 1673 } 1674 1675 if (++cnt > QM_MAX_PF_WAIT_COUNT) 1676 break; 1677 } 1678 1679 mutex_unlock(&qm->mailbox_lock); 1680 1681 /* Check which vf respond timeout. */ 1682 for (i = 1; i <= vfs_num; i++) { 1683 if (val & BIT(i)) 1684 dev_err(dev, "failed to get response from VF(%u)!\n", i); 1685 } 1686 1687 return -ETIMEDOUT; 1688 } 1689 1690 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 1691 { 1692 struct qm_mailbox mailbox; 1693 int cnt = 0; 1694 u32 val; 1695 int ret; 1696 1697 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 1698 mutex_lock(&qm->mailbox_lock); 1699 ret = qm_mb_nolock(qm, &mailbox); 1700 if (ret) { 1701 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 1702 goto unlock; 1703 } 1704 1705 qm_trigger_pf_interrupt(qm); 1706 /* Waiting for PF response */ 1707 while (true) { 1708 msleep(QM_WAIT_DST_ACK); 1709 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1710 if (!(val & QM_IFC_INT_STATUS_MASK)) 1711 break; 1712 1713 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 1714 ret = -ETIMEDOUT; 1715 break; 1716 } 1717 } 1718 1719 unlock: 1720 mutex_unlock(&qm->mailbox_lock); 1721 return ret; 1722 } 1723 1724 static int qm_stop_qp(struct hisi_qp *qp) 1725 { 1726 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1727 } 1728 1729 static int qm_set_msi(struct hisi_qm *qm, bool set) 1730 { 1731 struct pci_dev *pdev = qm->pdev; 1732 1733 if (set) { 1734 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1735 0); 1736 } else { 1737 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1738 ACC_PEH_MSI_DISABLE); 1739 if (qm->err_status.is_qm_ecc_mbit || 1740 qm->err_status.is_dev_ecc_mbit) 1741 return 0; 1742 1743 mdelay(1); 1744 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 1745 return -EFAULT; 1746 } 1747 1748 return 0; 1749 } 1750 1751 static void qm_wait_msi_finish(struct hisi_qm *qm) 1752 { 1753 struct pci_dev *pdev = qm->pdev; 1754 u32 cmd = ~0; 1755 int cnt = 0; 1756 u32 val; 1757 int ret; 1758 1759 while (true) { 1760 pci_read_config_dword(pdev, pdev->msi_cap + 1761 PCI_MSI_PENDING_64, &cmd); 1762 if (!cmd) 1763 break; 1764 1765 if (++cnt > MAX_WAIT_COUNTS) { 1766 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 1767 break; 1768 } 1769 1770 udelay(1); 1771 } 1772 1773 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 1774 val, !(val & QM_PEH_DFX_MASK), 1775 POLL_PERIOD, POLL_TIMEOUT); 1776 if (ret) 1777 pci_warn(pdev, "failed to empty PEH MSI!\n"); 1778 1779 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 1780 val, !(val & QM_PEH_MSI_FINISH_MASK), 1781 POLL_PERIOD, POLL_TIMEOUT); 1782 if (ret) 1783 pci_warn(pdev, "failed to finish MSI operation!\n"); 1784 } 1785 1786 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 1787 { 1788 struct pci_dev *pdev = qm->pdev; 1789 int ret = -ETIMEDOUT; 1790 u32 cmd, i; 1791 1792 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1793 if (set) 1794 cmd |= QM_MSI_CAP_ENABLE; 1795 else 1796 cmd &= ~QM_MSI_CAP_ENABLE; 1797 1798 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 1799 if (set) { 1800 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 1801 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1802 if (cmd & QM_MSI_CAP_ENABLE) 1803 return 0; 1804 1805 udelay(1); 1806 } 1807 } else { 1808 udelay(WAIT_PERIOD_US_MIN); 1809 qm_wait_msi_finish(qm); 1810 ret = 0; 1811 } 1812 1813 return ret; 1814 } 1815 1816 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1817 .qm_db = qm_db_v1, 1818 .hw_error_init = qm_hw_error_init_v1, 1819 .set_msi = qm_set_msi, 1820 }; 1821 1822 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1823 .get_vft = qm_get_vft_v2, 1824 .qm_db = qm_db_v2, 1825 .hw_error_init = qm_hw_error_init_v2, 1826 .hw_error_uninit = qm_hw_error_uninit_v2, 1827 .hw_error_handle = qm_hw_error_handle_v2, 1828 .set_msi = qm_set_msi, 1829 }; 1830 1831 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1832 .get_vft = qm_get_vft_v2, 1833 .qm_db = qm_db_v2, 1834 .hw_error_init = qm_hw_error_init_v3, 1835 .hw_error_uninit = qm_hw_error_uninit_v3, 1836 .hw_error_handle = qm_hw_error_handle_v2, 1837 .set_msi = qm_set_msi_v3, 1838 }; 1839 1840 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1841 { 1842 struct hisi_qp_status *qp_status = &qp->qp_status; 1843 u16 sq_tail = qp_status->sq_tail; 1844 1845 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 1846 return NULL; 1847 1848 return qp->sqe + sq_tail * qp->qm->sqe_size; 1849 } 1850 1851 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 1852 { 1853 u64 *addr; 1854 1855 /* Use last 64 bits of DUS to reset status. */ 1856 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 1857 *addr = 0; 1858 } 1859 1860 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1861 { 1862 struct device *dev = &qm->pdev->dev; 1863 struct hisi_qp *qp; 1864 int qp_id; 1865 1866 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 1867 return ERR_PTR(-EPERM); 1868 1869 if (qm->qp_in_used == qm->qp_num) { 1870 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1871 qm->qp_num); 1872 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1873 return ERR_PTR(-EBUSY); 1874 } 1875 1876 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 1877 if (qp_id < 0) { 1878 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1879 qm->qp_num); 1880 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1881 return ERR_PTR(-EBUSY); 1882 } 1883 1884 qp = &qm->qp_array[qp_id]; 1885 hisi_qm_unset_hw_reset(qp); 1886 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 1887 1888 qp->event_cb = NULL; 1889 qp->req_cb = NULL; 1890 qp->qp_id = qp_id; 1891 qp->alg_type = alg_type; 1892 qp->is_in_kernel = true; 1893 qm->qp_in_used++; 1894 atomic_set(&qp->qp_status.flags, QP_INIT); 1895 1896 return qp; 1897 } 1898 1899 /** 1900 * hisi_qm_create_qp() - Create a queue pair from qm. 1901 * @qm: The qm we create a qp from. 1902 * @alg_type: Accelerator specific algorithm type in sqc. 1903 * 1904 * Return created qp, negative error code if failed. 1905 */ 1906 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 1907 { 1908 struct hisi_qp *qp; 1909 int ret; 1910 1911 ret = qm_pm_get_sync(qm); 1912 if (ret) 1913 return ERR_PTR(ret); 1914 1915 down_write(&qm->qps_lock); 1916 qp = qm_create_qp_nolock(qm, alg_type); 1917 up_write(&qm->qps_lock); 1918 1919 if (IS_ERR(qp)) 1920 qm_pm_put_sync(qm); 1921 1922 return qp; 1923 } 1924 1925 /** 1926 * hisi_qm_release_qp() - Release a qp back to its qm. 1927 * @qp: The qp we want to release. 1928 * 1929 * This function releases the resource of a qp. 1930 */ 1931 static void hisi_qm_release_qp(struct hisi_qp *qp) 1932 { 1933 struct hisi_qm *qm = qp->qm; 1934 1935 down_write(&qm->qps_lock); 1936 1937 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 1938 up_write(&qm->qps_lock); 1939 return; 1940 } 1941 1942 qm->qp_in_used--; 1943 idr_remove(&qm->qp_idr, qp->qp_id); 1944 1945 up_write(&qm->qps_lock); 1946 1947 qm_pm_put_sync(qm); 1948 } 1949 1950 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1951 { 1952 struct hisi_qm *qm = qp->qm; 1953 struct device *dev = &qm->pdev->dev; 1954 enum qm_hw_ver ver = qm->ver; 1955 struct qm_sqc *sqc; 1956 dma_addr_t sqc_dma; 1957 int ret; 1958 1959 sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); 1960 if (!sqc) 1961 return -ENOMEM; 1962 1963 INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); 1964 if (ver == QM_HW_V1) { 1965 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 1966 sqc->w8 = cpu_to_le16(qp->sq_depth - 1); 1967 } else { 1968 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 1969 sqc->w8 = 0; /* rand_qc */ 1970 } 1971 sqc->cq_num = cpu_to_le16(qp_id); 1972 sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 1973 1974 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1975 sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 1976 QM_QC_PASID_ENABLE_SHIFT); 1977 1978 sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), 1979 DMA_TO_DEVICE); 1980 if (dma_mapping_error(dev, sqc_dma)) { 1981 kfree(sqc); 1982 return -ENOMEM; 1983 } 1984 1985 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); 1986 dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); 1987 kfree(sqc); 1988 1989 return ret; 1990 } 1991 1992 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1993 { 1994 struct hisi_qm *qm = qp->qm; 1995 struct device *dev = &qm->pdev->dev; 1996 enum qm_hw_ver ver = qm->ver; 1997 struct qm_cqc *cqc; 1998 dma_addr_t cqc_dma; 1999 int ret; 2000 2001 cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); 2002 if (!cqc) 2003 return -ENOMEM; 2004 2005 INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); 2006 if (ver == QM_HW_V1) { 2007 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 2008 QM_QC_CQE_SIZE)); 2009 cqc->w8 = cpu_to_le16(qp->cq_depth - 1); 2010 } else { 2011 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 2012 cqc->w8 = 0; /* rand_qc */ 2013 } 2014 cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 2015 2016 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2017 cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 2018 2019 cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), 2020 DMA_TO_DEVICE); 2021 if (dma_mapping_error(dev, cqc_dma)) { 2022 kfree(cqc); 2023 return -ENOMEM; 2024 } 2025 2026 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); 2027 dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); 2028 kfree(cqc); 2029 2030 return ret; 2031 } 2032 2033 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2034 { 2035 int ret; 2036 2037 qm_init_qp_status(qp); 2038 2039 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2040 if (ret) 2041 return ret; 2042 2043 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2044 } 2045 2046 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2047 { 2048 struct hisi_qm *qm = qp->qm; 2049 struct device *dev = &qm->pdev->dev; 2050 int qp_id = qp->qp_id; 2051 u32 pasid = arg; 2052 int ret; 2053 2054 if (!qm_qp_avail_state(qm, qp, QP_START)) 2055 return -EPERM; 2056 2057 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2058 if (ret) 2059 return ret; 2060 2061 atomic_set(&qp->qp_status.flags, QP_START); 2062 dev_dbg(dev, "queue %d started\n", qp_id); 2063 2064 return 0; 2065 } 2066 2067 /** 2068 * hisi_qm_start_qp() - Start a qp into running. 2069 * @qp: The qp we want to start to run. 2070 * @arg: Accelerator specific argument. 2071 * 2072 * After this function, qp can receive request from user. Return 0 if 2073 * successful, negative error code if failed. 2074 */ 2075 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2076 { 2077 struct hisi_qm *qm = qp->qm; 2078 int ret; 2079 2080 down_write(&qm->qps_lock); 2081 ret = qm_start_qp_nolock(qp, arg); 2082 up_write(&qm->qps_lock); 2083 2084 return ret; 2085 } 2086 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2087 2088 /** 2089 * qp_stop_fail_cb() - call request cb. 2090 * @qp: stopped failed qp. 2091 * 2092 * Callback function should be called whether task completed or not. 2093 */ 2094 static void qp_stop_fail_cb(struct hisi_qp *qp) 2095 { 2096 int qp_used = atomic_read(&qp->qp_status.used); 2097 u16 cur_tail = qp->qp_status.sq_tail; 2098 u16 sq_depth = qp->sq_depth; 2099 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 2100 struct hisi_qm *qm = qp->qm; 2101 u16 pos; 2102 int i; 2103 2104 for (i = 0; i < qp_used; i++) { 2105 pos = (i + cur_head) % sq_depth; 2106 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2107 atomic_dec(&qp->qp_status.used); 2108 } 2109 } 2110 2111 /** 2112 * qm_drain_qp() - Drain a qp. 2113 * @qp: The qp we want to drain. 2114 * 2115 * Determine whether the queue is cleared by judging the tail pointers of 2116 * sq and cq. 2117 */ 2118 static int qm_drain_qp(struct hisi_qp *qp) 2119 { 2120 size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); 2121 struct hisi_qm *qm = qp->qm; 2122 struct device *dev = &qm->pdev->dev; 2123 struct qm_sqc *sqc; 2124 struct qm_cqc *cqc; 2125 dma_addr_t dma_addr; 2126 int ret = 0, i = 0; 2127 void *addr; 2128 2129 /* No need to judge if master OOO is blocked. */ 2130 if (qm_check_dev_error(qm)) 2131 return 0; 2132 2133 /* Kunpeng930 supports drain qp by device */ 2134 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 2135 ret = qm_stop_qp(qp); 2136 if (ret) 2137 dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); 2138 return ret; 2139 } 2140 2141 addr = hisi_qm_ctx_alloc(qm, size, &dma_addr); 2142 if (IS_ERR(addr)) { 2143 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); 2144 return -ENOMEM; 2145 } 2146 2147 while (++i) { 2148 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); 2149 if (ret) { 2150 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2151 break; 2152 } 2153 sqc = addr; 2154 2155 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), 2156 qp->qp_id); 2157 if (ret) { 2158 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2159 break; 2160 } 2161 cqc = addr + sizeof(struct qm_sqc); 2162 2163 if ((sqc->tail == cqc->tail) && 2164 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2165 break; 2166 2167 if (i == MAX_WAIT_COUNTS) { 2168 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 2169 ret = -EBUSY; 2170 break; 2171 } 2172 2173 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2174 } 2175 2176 hisi_qm_ctx_free(qm, size, addr, &dma_addr); 2177 2178 return ret; 2179 } 2180 2181 static int qm_stop_qp_nolock(struct hisi_qp *qp) 2182 { 2183 struct device *dev = &qp->qm->pdev->dev; 2184 int ret; 2185 2186 /* 2187 * It is allowed to stop and release qp when reset, If the qp is 2188 * stopped when reset but still want to be released then, the 2189 * is_resetting flag should be set negative so that this qp will not 2190 * be restarted after reset. 2191 */ 2192 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 2193 qp->is_resetting = false; 2194 return 0; 2195 } 2196 2197 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 2198 return -EPERM; 2199 2200 atomic_set(&qp->qp_status.flags, QP_STOP); 2201 2202 ret = qm_drain_qp(qp); 2203 if (ret) 2204 dev_err(dev, "Failed to drain out data for stopping!\n"); 2205 2206 2207 flush_workqueue(qp->qm->wq); 2208 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2209 qp_stop_fail_cb(qp); 2210 2211 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2212 2213 return 0; 2214 } 2215 2216 /** 2217 * hisi_qm_stop_qp() - Stop a qp in qm. 2218 * @qp: The qp we want to stop. 2219 * 2220 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 2221 */ 2222 int hisi_qm_stop_qp(struct hisi_qp *qp) 2223 { 2224 int ret; 2225 2226 down_write(&qp->qm->qps_lock); 2227 ret = qm_stop_qp_nolock(qp); 2228 up_write(&qp->qm->qps_lock); 2229 2230 return ret; 2231 } 2232 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2233 2234 /** 2235 * hisi_qp_send() - Queue up a task in the hardware queue. 2236 * @qp: The qp in which to put the message. 2237 * @msg: The message. 2238 * 2239 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2240 * if qp related qm is resetting. 2241 * 2242 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2243 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2244 * reset may happen, we have no lock here considering performance. This 2245 * causes current qm_db sending fail or can not receive sended sqe. QM 2246 * sync/async receive function should handle the error sqe. ACC reset 2247 * done function should clear used sqe to 0. 2248 */ 2249 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2250 { 2251 struct hisi_qp_status *qp_status = &qp->qp_status; 2252 u16 sq_tail = qp_status->sq_tail; 2253 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 2254 void *sqe = qm_get_avail_sqe(qp); 2255 2256 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2257 atomic_read(&qp->qm->status.flags) == QM_STOP || 2258 qp->is_resetting)) { 2259 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2260 return -EAGAIN; 2261 } 2262 2263 if (!sqe) 2264 return -EBUSY; 2265 2266 memcpy(sqe, msg, qp->qm->sqe_size); 2267 2268 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2269 atomic_inc(&qp->qp_status.used); 2270 qp_status->sq_tail = sq_tail_next; 2271 2272 return 0; 2273 } 2274 EXPORT_SYMBOL_GPL(hisi_qp_send); 2275 2276 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2277 { 2278 unsigned int val; 2279 2280 if (qm->ver == QM_HW_V1) 2281 return; 2282 2283 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2284 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2285 val, val & BIT(0), POLL_PERIOD, 2286 POLL_TIMEOUT)) 2287 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2288 } 2289 2290 static void qm_qp_event_notifier(struct hisi_qp *qp) 2291 { 2292 wake_up_interruptible(&qp->uacce_q->wait); 2293 } 2294 2295 /* This function returns free number of qp in qm. */ 2296 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2297 { 2298 struct hisi_qm *qm = uacce->priv; 2299 int ret; 2300 2301 down_read(&qm->qps_lock); 2302 ret = qm->qp_num - qm->qp_in_used; 2303 up_read(&qm->qps_lock); 2304 2305 return ret; 2306 } 2307 2308 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 2309 { 2310 int i; 2311 2312 for (i = 0; i < qm->qp_num; i++) 2313 qm_set_qp_disable(&qm->qp_array[i], offset); 2314 } 2315 2316 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2317 unsigned long arg, 2318 struct uacce_queue *q) 2319 { 2320 struct hisi_qm *qm = uacce->priv; 2321 struct hisi_qp *qp; 2322 u8 alg_type = 0; 2323 2324 qp = hisi_qm_create_qp(qm, alg_type); 2325 if (IS_ERR(qp)) 2326 return PTR_ERR(qp); 2327 2328 q->priv = qp; 2329 q->uacce = uacce; 2330 qp->uacce_q = q; 2331 qp->event_cb = qm_qp_event_notifier; 2332 qp->pasid = arg; 2333 qp->is_in_kernel = false; 2334 2335 return 0; 2336 } 2337 2338 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2339 { 2340 struct hisi_qp *qp = q->priv; 2341 2342 hisi_qm_release_qp(qp); 2343 } 2344 2345 /* map sq/cq/doorbell to user space */ 2346 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2347 struct vm_area_struct *vma, 2348 struct uacce_qfile_region *qfr) 2349 { 2350 struct hisi_qp *qp = q->priv; 2351 struct hisi_qm *qm = qp->qm; 2352 resource_size_t phys_base = qm->db_phys_base + 2353 qp->qp_id * qm->db_interval; 2354 size_t sz = vma->vm_end - vma->vm_start; 2355 struct pci_dev *pdev = qm->pdev; 2356 struct device *dev = &pdev->dev; 2357 unsigned long vm_pgoff; 2358 int ret; 2359 2360 switch (qfr->type) { 2361 case UACCE_QFRT_MMIO: 2362 if (qm->ver == QM_HW_V1) { 2363 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2364 return -EINVAL; 2365 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 2366 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2367 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2368 return -EINVAL; 2369 } else { 2370 if (sz > qm->db_interval) 2371 return -EINVAL; 2372 } 2373 2374 vm_flags_set(vma, VM_IO); 2375 2376 return remap_pfn_range(vma, vma->vm_start, 2377 phys_base >> PAGE_SHIFT, 2378 sz, pgprot_noncached(vma->vm_page_prot)); 2379 case UACCE_QFRT_DUS: 2380 if (sz != qp->qdma.size) 2381 return -EINVAL; 2382 2383 /* 2384 * dma_mmap_coherent() requires vm_pgoff as 0 2385 * restore vm_pfoff to initial value for mmap() 2386 */ 2387 vm_pgoff = vma->vm_pgoff; 2388 vma->vm_pgoff = 0; 2389 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2390 qp->qdma.dma, sz); 2391 vma->vm_pgoff = vm_pgoff; 2392 return ret; 2393 2394 default: 2395 return -EINVAL; 2396 } 2397 } 2398 2399 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2400 { 2401 struct hisi_qp *qp = q->priv; 2402 2403 return hisi_qm_start_qp(qp, qp->pasid); 2404 } 2405 2406 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2407 { 2408 hisi_qm_stop_qp(q->priv); 2409 } 2410 2411 static int hisi_qm_is_q_updated(struct uacce_queue *q) 2412 { 2413 struct hisi_qp *qp = q->priv; 2414 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 2415 int updated = 0; 2416 2417 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 2418 /* make sure to read data from memory */ 2419 dma_rmb(); 2420 qm_cq_head_update(qp); 2421 cqe = qp->cqe + qp->qp_status.cq_head; 2422 updated = 1; 2423 } 2424 2425 return updated; 2426 } 2427 2428 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2429 { 2430 struct hisi_qm *qm = q->uacce->priv; 2431 struct hisi_qp *qp = q->priv; 2432 2433 down_write(&qm->qps_lock); 2434 qp->alg_type = type; 2435 up_write(&qm->qps_lock); 2436 } 2437 2438 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2439 unsigned long arg) 2440 { 2441 struct hisi_qp *qp = q->priv; 2442 struct hisi_qp_info qp_info; 2443 struct hisi_qp_ctx qp_ctx; 2444 2445 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2446 if (copy_from_user(&qp_ctx, (void __user *)arg, 2447 sizeof(struct hisi_qp_ctx))) 2448 return -EFAULT; 2449 2450 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 2451 return -EINVAL; 2452 2453 qm_set_sqctype(q, qp_ctx.qc_type); 2454 qp_ctx.id = qp->qp_id; 2455 2456 if (copy_to_user((void __user *)arg, &qp_ctx, 2457 sizeof(struct hisi_qp_ctx))) 2458 return -EFAULT; 2459 2460 return 0; 2461 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 2462 if (copy_from_user(&qp_info, (void __user *)arg, 2463 sizeof(struct hisi_qp_info))) 2464 return -EFAULT; 2465 2466 qp_info.sqe_size = qp->qm->sqe_size; 2467 qp_info.sq_depth = qp->sq_depth; 2468 qp_info.cq_depth = qp->cq_depth; 2469 2470 if (copy_to_user((void __user *)arg, &qp_info, 2471 sizeof(struct hisi_qp_info))) 2472 return -EFAULT; 2473 2474 return 0; 2475 } 2476 2477 return -EINVAL; 2478 } 2479 2480 /** 2481 * qm_hw_err_isolate() - Try to set the isolation status of the uacce device 2482 * according to user's configuration of error threshold. 2483 * @qm: the uacce device 2484 */ 2485 static int qm_hw_err_isolate(struct hisi_qm *qm) 2486 { 2487 struct qm_hw_err *err, *tmp, *hw_err; 2488 struct qm_err_isolate *isolate; 2489 u32 count = 0; 2490 2491 isolate = &qm->isolate_data; 2492 2493 #define SECONDS_PER_HOUR 3600 2494 2495 /* All the hw errs are processed by PF driver */ 2496 if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold) 2497 return 0; 2498 2499 hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL); 2500 if (!hw_err) 2501 return -ENOMEM; 2502 2503 /* 2504 * Time-stamp every slot AER error. Then check the AER error log when the 2505 * next device AER error occurred. if the device slot AER error count exceeds 2506 * the setting error threshold in one hour, the isolated state will be set 2507 * to true. And the AER error logs that exceed one hour will be cleared. 2508 */ 2509 mutex_lock(&isolate->isolate_lock); 2510 hw_err->timestamp = jiffies; 2511 list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) { 2512 if ((hw_err->timestamp - err->timestamp) / HZ > 2513 SECONDS_PER_HOUR) { 2514 list_del(&err->list); 2515 kfree(err); 2516 } else { 2517 count++; 2518 } 2519 } 2520 list_add(&hw_err->list, &isolate->qm_hw_errs); 2521 mutex_unlock(&isolate->isolate_lock); 2522 2523 if (count >= isolate->err_threshold) 2524 isolate->is_isolate = true; 2525 2526 return 0; 2527 } 2528 2529 static void qm_hw_err_destroy(struct hisi_qm *qm) 2530 { 2531 struct qm_hw_err *err, *tmp; 2532 2533 mutex_lock(&qm->isolate_data.isolate_lock); 2534 list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) { 2535 list_del(&err->list); 2536 kfree(err); 2537 } 2538 mutex_unlock(&qm->isolate_data.isolate_lock); 2539 } 2540 2541 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce) 2542 { 2543 struct hisi_qm *qm = uacce->priv; 2544 struct hisi_qm *pf_qm; 2545 2546 if (uacce->is_vf) 2547 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2548 else 2549 pf_qm = qm; 2550 2551 return pf_qm->isolate_data.is_isolate ? 2552 UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL; 2553 } 2554 2555 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num) 2556 { 2557 struct hisi_qm *qm = uacce->priv; 2558 2559 /* Must be set by PF */ 2560 if (uacce->is_vf) 2561 return -EPERM; 2562 2563 if (qm->isolate_data.is_isolate) 2564 return -EPERM; 2565 2566 qm->isolate_data.err_threshold = num; 2567 2568 /* After the policy is updated, need to reset the hardware err list */ 2569 qm_hw_err_destroy(qm); 2570 2571 return 0; 2572 } 2573 2574 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce) 2575 { 2576 struct hisi_qm *qm = uacce->priv; 2577 struct hisi_qm *pf_qm; 2578 2579 if (uacce->is_vf) { 2580 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2581 return pf_qm->isolate_data.err_threshold; 2582 } 2583 2584 return qm->isolate_data.err_threshold; 2585 } 2586 2587 static const struct uacce_ops uacce_qm_ops = { 2588 .get_available_instances = hisi_qm_get_available_instances, 2589 .get_queue = hisi_qm_uacce_get_queue, 2590 .put_queue = hisi_qm_uacce_put_queue, 2591 .start_queue = hisi_qm_uacce_start_queue, 2592 .stop_queue = hisi_qm_uacce_stop_queue, 2593 .mmap = hisi_qm_uacce_mmap, 2594 .ioctl = hisi_qm_uacce_ioctl, 2595 .is_q_updated = hisi_qm_is_q_updated, 2596 .get_isolate_state = hisi_qm_get_isolate_state, 2597 .isolate_err_threshold_write = hisi_qm_isolate_threshold_write, 2598 .isolate_err_threshold_read = hisi_qm_isolate_threshold_read, 2599 }; 2600 2601 static void qm_remove_uacce(struct hisi_qm *qm) 2602 { 2603 struct uacce_device *uacce = qm->uacce; 2604 2605 if (qm->use_sva) { 2606 qm_hw_err_destroy(qm); 2607 uacce_remove(uacce); 2608 qm->uacce = NULL; 2609 } 2610 } 2611 2612 static int qm_alloc_uacce(struct hisi_qm *qm) 2613 { 2614 struct pci_dev *pdev = qm->pdev; 2615 struct uacce_device *uacce; 2616 unsigned long mmio_page_nr; 2617 unsigned long dus_page_nr; 2618 u16 sq_depth, cq_depth; 2619 struct uacce_interface interface = { 2620 .flags = UACCE_DEV_SVA, 2621 .ops = &uacce_qm_ops, 2622 }; 2623 int ret; 2624 2625 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 2626 sizeof(interface.name)); 2627 if (ret < 0) 2628 return -ENAMETOOLONG; 2629 2630 uacce = uacce_alloc(&pdev->dev, &interface); 2631 if (IS_ERR(uacce)) 2632 return PTR_ERR(uacce); 2633 2634 if (uacce->flags & UACCE_DEV_SVA) { 2635 qm->use_sva = true; 2636 } else { 2637 /* only consider sva case */ 2638 qm_remove_uacce(qm); 2639 return -EINVAL; 2640 } 2641 2642 uacce->is_vf = pdev->is_virtfn; 2643 uacce->priv = qm; 2644 2645 if (qm->ver == QM_HW_V1) 2646 uacce->api_ver = HISI_QM_API_VER_BASE; 2647 else if (qm->ver == QM_HW_V2) 2648 uacce->api_ver = HISI_QM_API_VER2_BASE; 2649 else 2650 uacce->api_ver = HISI_QM_API_VER3_BASE; 2651 2652 if (qm->ver == QM_HW_V1) 2653 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2654 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2655 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2656 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2657 else 2658 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2659 2660 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 2661 2662 /* Add one more page for device or qp status */ 2663 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 2664 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 2665 PAGE_SHIFT; 2666 2667 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2668 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2669 2670 qm->uacce = uacce; 2671 INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs); 2672 mutex_init(&qm->isolate_data.isolate_lock); 2673 2674 return 0; 2675 } 2676 2677 /** 2678 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2679 * there is user on the QM, return failure without doing anything. 2680 * @qm: The qm needed to be fronzen. 2681 * 2682 * This function frozes QM, then we can do SRIOV disabling. 2683 */ 2684 static int qm_frozen(struct hisi_qm *qm) 2685 { 2686 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2687 return 0; 2688 2689 down_write(&qm->qps_lock); 2690 2691 if (!qm->qp_in_used) { 2692 qm->qp_in_used = qm->qp_num; 2693 up_write(&qm->qps_lock); 2694 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2695 return 0; 2696 } 2697 2698 up_write(&qm->qps_lock); 2699 2700 return -EBUSY; 2701 } 2702 2703 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2704 struct hisi_qm_list *qm_list) 2705 { 2706 struct hisi_qm *qm, *vf_qm; 2707 struct pci_dev *dev; 2708 int ret = 0; 2709 2710 if (!qm_list || !pdev) 2711 return -EINVAL; 2712 2713 /* Try to frozen all the VFs as disable SRIOV */ 2714 mutex_lock(&qm_list->lock); 2715 list_for_each_entry(qm, &qm_list->list, list) { 2716 dev = qm->pdev; 2717 if (dev == pdev) 2718 continue; 2719 if (pci_physfn(dev) == pdev) { 2720 vf_qm = pci_get_drvdata(dev); 2721 ret = qm_frozen(vf_qm); 2722 if (ret) 2723 goto frozen_fail; 2724 } 2725 } 2726 2727 frozen_fail: 2728 mutex_unlock(&qm_list->lock); 2729 2730 return ret; 2731 } 2732 2733 /** 2734 * hisi_qm_wait_task_finish() - Wait until the task is finished 2735 * when removing the driver. 2736 * @qm: The qm needed to wait for the task to finish. 2737 * @qm_list: The list of all available devices. 2738 */ 2739 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2740 { 2741 while (qm_frozen(qm) || 2742 ((qm->fun_type == QM_HW_PF) && 2743 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2744 msleep(WAIT_PERIOD); 2745 } 2746 2747 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2748 test_bit(QM_RESETTING, &qm->misc_ctl)) 2749 msleep(WAIT_PERIOD); 2750 2751 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2752 flush_work(&qm->cmd_process); 2753 2754 udelay(REMOVE_WAIT_DELAY); 2755 } 2756 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2757 2758 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2759 { 2760 struct device *dev = &qm->pdev->dev; 2761 struct qm_dma *qdma; 2762 int i; 2763 2764 for (i = num - 1; i >= 0; i--) { 2765 qdma = &qm->qp_array[i].qdma; 2766 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2767 kfree(qm->poll_data[i].qp_finish_id); 2768 } 2769 2770 kfree(qm->poll_data); 2771 kfree(qm->qp_array); 2772 } 2773 2774 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 2775 u16 sq_depth, u16 cq_depth) 2776 { 2777 struct device *dev = &qm->pdev->dev; 2778 size_t off = qm->sqe_size * sq_depth; 2779 struct hisi_qp *qp; 2780 int ret = -ENOMEM; 2781 2782 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 2783 GFP_KERNEL); 2784 if (!qm->poll_data[id].qp_finish_id) 2785 return -ENOMEM; 2786 2787 qp = &qm->qp_array[id]; 2788 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2789 GFP_KERNEL); 2790 if (!qp->qdma.va) 2791 goto err_free_qp_finish_id; 2792 2793 qp->sqe = qp->qdma.va; 2794 qp->sqe_dma = qp->qdma.dma; 2795 qp->cqe = qp->qdma.va + off; 2796 qp->cqe_dma = qp->qdma.dma + off; 2797 qp->qdma.size = dma_size; 2798 qp->sq_depth = sq_depth; 2799 qp->cq_depth = cq_depth; 2800 qp->qm = qm; 2801 qp->qp_id = id; 2802 2803 return 0; 2804 2805 err_free_qp_finish_id: 2806 kfree(qm->poll_data[id].qp_finish_id); 2807 return ret; 2808 } 2809 2810 static void hisi_qm_pre_init(struct hisi_qm *qm) 2811 { 2812 struct pci_dev *pdev = qm->pdev; 2813 2814 if (qm->ver == QM_HW_V1) 2815 qm->ops = &qm_hw_ops_v1; 2816 else if (qm->ver == QM_HW_V2) 2817 qm->ops = &qm_hw_ops_v2; 2818 else 2819 qm->ops = &qm_hw_ops_v3; 2820 2821 pci_set_drvdata(pdev, qm); 2822 mutex_init(&qm->mailbox_lock); 2823 init_rwsem(&qm->qps_lock); 2824 qm->qp_in_used = 0; 2825 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 2826 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 2827 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 2828 } 2829 } 2830 2831 static void qm_cmd_uninit(struct hisi_qm *qm) 2832 { 2833 u32 val; 2834 2835 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2836 return; 2837 2838 val = readl(qm->io_base + QM_IFC_INT_MASK); 2839 val |= QM_IFC_INT_DISABLE; 2840 writel(val, qm->io_base + QM_IFC_INT_MASK); 2841 } 2842 2843 static void qm_cmd_init(struct hisi_qm *qm) 2844 { 2845 u32 val; 2846 2847 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2848 return; 2849 2850 /* Clear communication interrupt source */ 2851 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 2852 2853 /* Enable pf to vf communication reg. */ 2854 val = readl(qm->io_base + QM_IFC_INT_MASK); 2855 val &= ~QM_IFC_INT_DISABLE; 2856 writel(val, qm->io_base + QM_IFC_INT_MASK); 2857 } 2858 2859 static void qm_put_pci_res(struct hisi_qm *qm) 2860 { 2861 struct pci_dev *pdev = qm->pdev; 2862 2863 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2864 iounmap(qm->db_io_base); 2865 2866 iounmap(qm->io_base); 2867 pci_release_mem_regions(pdev); 2868 } 2869 2870 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 2871 { 2872 struct pci_dev *pdev = qm->pdev; 2873 2874 pci_free_irq_vectors(pdev); 2875 qm_put_pci_res(qm); 2876 pci_disable_device(pdev); 2877 } 2878 2879 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 2880 { 2881 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 2882 writel(state, qm->io_base + QM_VF_STATE); 2883 } 2884 2885 static void hisi_qm_unint_work(struct hisi_qm *qm) 2886 { 2887 destroy_workqueue(qm->wq); 2888 } 2889 2890 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 2891 { 2892 struct device *dev = &qm->pdev->dev; 2893 2894 hisi_qp_memory_uninit(qm, qm->qp_num); 2895 if (qm->qdma.va) { 2896 hisi_qm_cache_wb(qm); 2897 dma_free_coherent(dev, qm->qdma.size, 2898 qm->qdma.va, qm->qdma.dma); 2899 } 2900 2901 idr_destroy(&qm->qp_idr); 2902 2903 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 2904 kfree(qm->factor); 2905 } 2906 2907 /** 2908 * hisi_qm_uninit() - Uninitialize qm. 2909 * @qm: The qm needed uninit. 2910 * 2911 * This function uninits qm related device resources. 2912 */ 2913 void hisi_qm_uninit(struct hisi_qm *qm) 2914 { 2915 qm_cmd_uninit(qm); 2916 hisi_qm_unint_work(qm); 2917 down_write(&qm->qps_lock); 2918 2919 if (!qm_avail_state(qm, QM_CLOSE)) { 2920 up_write(&qm->qps_lock); 2921 return; 2922 } 2923 2924 hisi_qm_memory_uninit(qm); 2925 hisi_qm_set_state(qm, QM_NOT_READY); 2926 up_write(&qm->qps_lock); 2927 2928 qm_irqs_unregister(qm); 2929 hisi_qm_pci_uninit(qm); 2930 if (qm->use_sva) { 2931 uacce_remove(qm->uacce); 2932 qm->uacce = NULL; 2933 } 2934 } 2935 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 2936 2937 /** 2938 * hisi_qm_get_vft() - Get vft from a qm. 2939 * @qm: The qm we want to get its vft. 2940 * @base: The base number of queue in vft. 2941 * @number: The number of queues in vft. 2942 * 2943 * We can allocate multiple queues to a qm by configuring virtual function 2944 * table. We get related configures by this function. Normally, we call this 2945 * function in VF driver to get the queue information. 2946 * 2947 * qm hw v1 does not support this interface. 2948 */ 2949 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 2950 { 2951 if (!base || !number) 2952 return -EINVAL; 2953 2954 if (!qm->ops->get_vft) { 2955 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 2956 return -EINVAL; 2957 } 2958 2959 return qm->ops->get_vft(qm, base, number); 2960 } 2961 2962 /** 2963 * hisi_qm_set_vft() - Set vft to a qm. 2964 * @qm: The qm we want to set its vft. 2965 * @fun_num: The function number. 2966 * @base: The base number of queue in vft. 2967 * @number: The number of queues in vft. 2968 * 2969 * This function is alway called in PF driver, it is used to assign queues 2970 * among PF and VFs. 2971 * 2972 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 2973 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 2974 * (VF function number 0x2) 2975 */ 2976 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 2977 u32 number) 2978 { 2979 u32 max_q_num = qm->ctrl_qp_num; 2980 2981 if (base >= max_q_num || number > max_q_num || 2982 (base + number) > max_q_num) 2983 return -EINVAL; 2984 2985 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 2986 } 2987 2988 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 2989 { 2990 struct hisi_qm_status *status = &qm->status; 2991 2992 status->eq_head = 0; 2993 status->aeq_head = 0; 2994 status->eqc_phase = true; 2995 status->aeqc_phase = true; 2996 } 2997 2998 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 2999 { 3000 /* Clear eq/aeq interrupt source */ 3001 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 3002 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 3003 3004 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 3005 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 3006 } 3007 3008 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 3009 { 3010 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 3011 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 3012 } 3013 3014 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 3015 { 3016 struct device *dev = &qm->pdev->dev; 3017 struct qm_eqc *eqc; 3018 dma_addr_t eqc_dma; 3019 int ret; 3020 3021 eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); 3022 if (!eqc) 3023 return -ENOMEM; 3024 3025 eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3026 eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3027 if (qm->ver == QM_HW_V1) 3028 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3029 eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3030 3031 eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), 3032 DMA_TO_DEVICE); 3033 if (dma_mapping_error(dev, eqc_dma)) { 3034 kfree(eqc); 3035 return -ENOMEM; 3036 } 3037 3038 ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); 3039 dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); 3040 kfree(eqc); 3041 3042 return ret; 3043 } 3044 3045 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3046 { 3047 struct device *dev = &qm->pdev->dev; 3048 struct qm_aeqc *aeqc; 3049 dma_addr_t aeqc_dma; 3050 int ret; 3051 3052 aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); 3053 if (!aeqc) 3054 return -ENOMEM; 3055 3056 aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3057 aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3058 aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3059 3060 aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), 3061 DMA_TO_DEVICE); 3062 if (dma_mapping_error(dev, aeqc_dma)) { 3063 kfree(aeqc); 3064 return -ENOMEM; 3065 } 3066 3067 ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); 3068 dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); 3069 kfree(aeqc); 3070 3071 return ret; 3072 } 3073 3074 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3075 { 3076 struct device *dev = &qm->pdev->dev; 3077 int ret; 3078 3079 qm_init_eq_aeq_status(qm); 3080 3081 ret = qm_eq_ctx_cfg(qm); 3082 if (ret) { 3083 dev_err(dev, "Set eqc failed!\n"); 3084 return ret; 3085 } 3086 3087 return qm_aeq_ctx_cfg(qm); 3088 } 3089 3090 static int __hisi_qm_start(struct hisi_qm *qm) 3091 { 3092 int ret; 3093 3094 WARN_ON(!qm->qdma.va); 3095 3096 if (qm->fun_type == QM_HW_PF) { 3097 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3098 if (ret) 3099 return ret; 3100 } 3101 3102 ret = qm_eq_aeq_ctx_cfg(qm); 3103 if (ret) 3104 return ret; 3105 3106 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3107 if (ret) 3108 return ret; 3109 3110 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3111 if (ret) 3112 return ret; 3113 3114 qm_init_prefetch(qm); 3115 qm_enable_eq_aeq_interrupts(qm); 3116 3117 return 0; 3118 } 3119 3120 /** 3121 * hisi_qm_start() - start qm 3122 * @qm: The qm to be started. 3123 * 3124 * This function starts a qm, then we can allocate qp from this qm. 3125 */ 3126 int hisi_qm_start(struct hisi_qm *qm) 3127 { 3128 struct device *dev = &qm->pdev->dev; 3129 int ret = 0; 3130 3131 down_write(&qm->qps_lock); 3132 3133 if (!qm_avail_state(qm, QM_START)) { 3134 up_write(&qm->qps_lock); 3135 return -EPERM; 3136 } 3137 3138 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3139 3140 if (!qm->qp_num) { 3141 dev_err(dev, "qp_num should not be 0\n"); 3142 ret = -EINVAL; 3143 goto err_unlock; 3144 } 3145 3146 ret = __hisi_qm_start(qm); 3147 if (!ret) 3148 atomic_set(&qm->status.flags, QM_START); 3149 3150 hisi_qm_set_state(qm, QM_READY); 3151 err_unlock: 3152 up_write(&qm->qps_lock); 3153 return ret; 3154 } 3155 EXPORT_SYMBOL_GPL(hisi_qm_start); 3156 3157 static int qm_restart(struct hisi_qm *qm) 3158 { 3159 struct device *dev = &qm->pdev->dev; 3160 struct hisi_qp *qp; 3161 int ret, i; 3162 3163 ret = hisi_qm_start(qm); 3164 if (ret < 0) 3165 return ret; 3166 3167 down_write(&qm->qps_lock); 3168 for (i = 0; i < qm->qp_num; i++) { 3169 qp = &qm->qp_array[i]; 3170 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3171 qp->is_resetting == true) { 3172 ret = qm_start_qp_nolock(qp, 0); 3173 if (ret < 0) { 3174 dev_err(dev, "Failed to start qp%d!\n", i); 3175 3176 up_write(&qm->qps_lock); 3177 return ret; 3178 } 3179 qp->is_resetting = false; 3180 } 3181 } 3182 up_write(&qm->qps_lock); 3183 3184 return 0; 3185 } 3186 3187 /* Stop started qps in reset flow */ 3188 static int qm_stop_started_qp(struct hisi_qm *qm) 3189 { 3190 struct device *dev = &qm->pdev->dev; 3191 struct hisi_qp *qp; 3192 int i, ret; 3193 3194 for (i = 0; i < qm->qp_num; i++) { 3195 qp = &qm->qp_array[i]; 3196 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 3197 qp->is_resetting = true; 3198 ret = qm_stop_qp_nolock(qp); 3199 if (ret < 0) { 3200 dev_err(dev, "Failed to stop qp%d!\n", i); 3201 return ret; 3202 } 3203 } 3204 } 3205 3206 return 0; 3207 } 3208 3209 /** 3210 * qm_clear_queues() - Clear all queues memory in a qm. 3211 * @qm: The qm in which the queues will be cleared. 3212 * 3213 * This function clears all queues memory in a qm. Reset of accelerator can 3214 * use this to clear queues. 3215 */ 3216 static void qm_clear_queues(struct hisi_qm *qm) 3217 { 3218 struct hisi_qp *qp; 3219 int i; 3220 3221 for (i = 0; i < qm->qp_num; i++) { 3222 qp = &qm->qp_array[i]; 3223 if (qp->is_in_kernel && qp->is_resetting) 3224 memset(qp->qdma.va, 0, qp->qdma.size); 3225 } 3226 3227 memset(qm->qdma.va, 0, qm->qdma.size); 3228 } 3229 3230 /** 3231 * hisi_qm_stop() - Stop a qm. 3232 * @qm: The qm which will be stopped. 3233 * @r: The reason to stop qm. 3234 * 3235 * This function stops qm and its qps, then qm can not accept request. 3236 * Related resources are not released at this state, we can use hisi_qm_start 3237 * to let qm start again. 3238 */ 3239 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3240 { 3241 struct device *dev = &qm->pdev->dev; 3242 int ret = 0; 3243 3244 down_write(&qm->qps_lock); 3245 3246 qm->status.stop_reason = r; 3247 if (!qm_avail_state(qm, QM_STOP)) { 3248 ret = -EPERM; 3249 goto err_unlock; 3250 } 3251 3252 if (qm->status.stop_reason == QM_SOFT_RESET || 3253 qm->status.stop_reason == QM_DOWN) { 3254 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3255 ret = qm_stop_started_qp(qm); 3256 if (ret < 0) { 3257 dev_err(dev, "Failed to stop started qp!\n"); 3258 goto err_unlock; 3259 } 3260 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3261 } 3262 3263 qm_disable_eq_aeq_interrupts(qm); 3264 if (qm->fun_type == QM_HW_PF) { 3265 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3266 if (ret < 0) { 3267 dev_err(dev, "Failed to set vft!\n"); 3268 ret = -EBUSY; 3269 goto err_unlock; 3270 } 3271 } 3272 3273 qm_clear_queues(qm); 3274 atomic_set(&qm->status.flags, QM_STOP); 3275 3276 err_unlock: 3277 up_write(&qm->qps_lock); 3278 return ret; 3279 } 3280 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3281 3282 static void qm_hw_error_init(struct hisi_qm *qm) 3283 { 3284 if (!qm->ops->hw_error_init) { 3285 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3286 return; 3287 } 3288 3289 qm->ops->hw_error_init(qm); 3290 } 3291 3292 static void qm_hw_error_uninit(struct hisi_qm *qm) 3293 { 3294 if (!qm->ops->hw_error_uninit) { 3295 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3296 return; 3297 } 3298 3299 qm->ops->hw_error_uninit(qm); 3300 } 3301 3302 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3303 { 3304 if (!qm->ops->hw_error_handle) { 3305 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3306 return ACC_ERR_NONE; 3307 } 3308 3309 return qm->ops->hw_error_handle(qm); 3310 } 3311 3312 /** 3313 * hisi_qm_dev_err_init() - Initialize device error configuration. 3314 * @qm: The qm for which we want to do error initialization. 3315 * 3316 * Initialize QM and device error related configuration. 3317 */ 3318 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3319 { 3320 if (qm->fun_type == QM_HW_VF) 3321 return; 3322 3323 qm_hw_error_init(qm); 3324 3325 if (!qm->err_ini->hw_err_enable) { 3326 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3327 return; 3328 } 3329 qm->err_ini->hw_err_enable(qm); 3330 } 3331 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3332 3333 /** 3334 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3335 * @qm: The qm for which we want to do error uninitialization. 3336 * 3337 * Uninitialize QM and device error related configuration. 3338 */ 3339 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3340 { 3341 if (qm->fun_type == QM_HW_VF) 3342 return; 3343 3344 qm_hw_error_uninit(qm); 3345 3346 if (!qm->err_ini->hw_err_disable) { 3347 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3348 return; 3349 } 3350 qm->err_ini->hw_err_disable(qm); 3351 } 3352 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3353 3354 /** 3355 * hisi_qm_free_qps() - free multiple queue pairs. 3356 * @qps: The queue pairs need to be freed. 3357 * @qp_num: The num of queue pairs. 3358 */ 3359 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3360 { 3361 int i; 3362 3363 if (!qps || qp_num <= 0) 3364 return; 3365 3366 for (i = qp_num - 1; i >= 0; i--) 3367 hisi_qm_release_qp(qps[i]); 3368 } 3369 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3370 3371 static void free_list(struct list_head *head) 3372 { 3373 struct hisi_qm_resource *res, *tmp; 3374 3375 list_for_each_entry_safe(res, tmp, head, list) { 3376 list_del(&res->list); 3377 kfree(res); 3378 } 3379 } 3380 3381 static int hisi_qm_sort_devices(int node, struct list_head *head, 3382 struct hisi_qm_list *qm_list) 3383 { 3384 struct hisi_qm_resource *res, *tmp; 3385 struct hisi_qm *qm; 3386 struct list_head *n; 3387 struct device *dev; 3388 int dev_node; 3389 3390 list_for_each_entry(qm, &qm_list->list, list) { 3391 dev = &qm->pdev->dev; 3392 3393 dev_node = dev_to_node(dev); 3394 if (dev_node < 0) 3395 dev_node = 0; 3396 3397 res = kzalloc(sizeof(*res), GFP_KERNEL); 3398 if (!res) 3399 return -ENOMEM; 3400 3401 res->qm = qm; 3402 res->distance = node_distance(dev_node, node); 3403 n = head; 3404 list_for_each_entry(tmp, head, list) { 3405 if (res->distance < tmp->distance) { 3406 n = &tmp->list; 3407 break; 3408 } 3409 } 3410 list_add_tail(&res->list, n); 3411 } 3412 3413 return 0; 3414 } 3415 3416 /** 3417 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3418 * @qm_list: The list of all available devices. 3419 * @qp_num: The number of queue pairs need created. 3420 * @alg_type: The algorithm type. 3421 * @node: The numa node. 3422 * @qps: The queue pairs need created. 3423 * 3424 * This function will sort all available device according to numa distance. 3425 * Then try to create all queue pairs from one device, if all devices do 3426 * not meet the requirements will return error. 3427 */ 3428 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3429 u8 alg_type, int node, struct hisi_qp **qps) 3430 { 3431 struct hisi_qm_resource *tmp; 3432 int ret = -ENODEV; 3433 LIST_HEAD(head); 3434 int i; 3435 3436 if (!qps || !qm_list || qp_num <= 0) 3437 return -EINVAL; 3438 3439 mutex_lock(&qm_list->lock); 3440 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3441 mutex_unlock(&qm_list->lock); 3442 goto err; 3443 } 3444 3445 list_for_each_entry(tmp, &head, list) { 3446 for (i = 0; i < qp_num; i++) { 3447 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3448 if (IS_ERR(qps[i])) { 3449 hisi_qm_free_qps(qps, i); 3450 break; 3451 } 3452 } 3453 3454 if (i == qp_num) { 3455 ret = 0; 3456 break; 3457 } 3458 } 3459 3460 mutex_unlock(&qm_list->lock); 3461 if (ret) 3462 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3463 node, alg_type, qp_num); 3464 3465 err: 3466 free_list(&head); 3467 return ret; 3468 } 3469 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3470 3471 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3472 { 3473 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3474 u32 max_qp_num = qm->max_qp_num; 3475 u32 q_base = qm->qp_num; 3476 int ret; 3477 3478 if (!num_vfs) 3479 return -EINVAL; 3480 3481 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3482 3483 /* If vfs_q_num is less than num_vfs, return error. */ 3484 if (vfs_q_num < num_vfs) 3485 return -EINVAL; 3486 3487 q_num = vfs_q_num / num_vfs; 3488 remain_q_num = vfs_q_num % num_vfs; 3489 3490 for (i = num_vfs; i > 0; i--) { 3491 /* 3492 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3493 * remaining queues equally. 3494 */ 3495 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3496 act_q_num = q_num + remain_q_num; 3497 remain_q_num = 0; 3498 } else if (remain_q_num > 0) { 3499 act_q_num = q_num + 1; 3500 remain_q_num--; 3501 } else { 3502 act_q_num = q_num; 3503 } 3504 3505 act_q_num = min(act_q_num, max_qp_num); 3506 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3507 if (ret) { 3508 for (j = num_vfs; j > i; j--) 3509 hisi_qm_set_vft(qm, j, 0, 0); 3510 return ret; 3511 } 3512 q_base += act_q_num; 3513 } 3514 3515 return 0; 3516 } 3517 3518 static int qm_clear_vft_config(struct hisi_qm *qm) 3519 { 3520 int ret; 3521 u32 i; 3522 3523 for (i = 1; i <= qm->vfs_num; i++) { 3524 ret = hisi_qm_set_vft(qm, i, 0, 0); 3525 if (ret) 3526 return ret; 3527 } 3528 qm->vfs_num = 0; 3529 3530 return 0; 3531 } 3532 3533 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 3534 { 3535 struct device *dev = &qm->pdev->dev; 3536 u32 ir = qos * QM_QOS_RATE; 3537 int ret, total_vfs, i; 3538 3539 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 3540 if (fun_index > total_vfs) 3541 return -EINVAL; 3542 3543 qm->factor[fun_index].func_qos = qos; 3544 3545 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 3546 if (ret) { 3547 dev_err(dev, "failed to calculate shaper parameter!\n"); 3548 return -EINVAL; 3549 } 3550 3551 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 3552 /* The base number of queue reuse for different alg type */ 3553 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 3554 if (ret) { 3555 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 3556 return -EINVAL; 3557 } 3558 } 3559 3560 return 0; 3561 } 3562 3563 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 3564 { 3565 u64 cir_u = 0, cir_b = 0, cir_s = 0; 3566 u64 shaper_vft, ir_calc, ir; 3567 unsigned int val; 3568 u32 error_rate; 3569 int ret; 3570 3571 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3572 val & BIT(0), POLL_PERIOD, 3573 POLL_TIMEOUT); 3574 if (ret) 3575 return 0; 3576 3577 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 3578 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 3579 writel(fun_index, qm->io_base + QM_VFT_CFG); 3580 3581 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 3582 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 3583 3584 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3585 val & BIT(0), POLL_PERIOD, 3586 POLL_TIMEOUT); 3587 if (ret) 3588 return 0; 3589 3590 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 3591 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 3592 3593 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 3594 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 3595 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 3596 3597 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 3598 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 3599 3600 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 3601 3602 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 3603 3604 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 3605 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 3606 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 3607 return 0; 3608 } 3609 3610 return ir; 3611 } 3612 3613 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 3614 { 3615 struct device *dev = &qm->pdev->dev; 3616 u64 mb_cmd; 3617 u32 qos; 3618 int ret; 3619 3620 qos = qm_get_shaper_vft_qos(qm, fun_num); 3621 if (!qos) { 3622 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 3623 return; 3624 } 3625 3626 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 3627 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 3628 if (ret) 3629 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 3630 } 3631 3632 static int qm_vf_read_qos(struct hisi_qm *qm) 3633 { 3634 int cnt = 0; 3635 int ret = -EINVAL; 3636 3637 /* reset mailbox qos val */ 3638 qm->mb_qos = 0; 3639 3640 /* vf ping pf to get function qos */ 3641 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 3642 if (ret) { 3643 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 3644 return ret; 3645 } 3646 3647 while (true) { 3648 msleep(QM_WAIT_DST_ACK); 3649 if (qm->mb_qos) 3650 break; 3651 3652 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 3653 pci_err(qm->pdev, "PF ping VF timeout!\n"); 3654 return -ETIMEDOUT; 3655 } 3656 } 3657 3658 return ret; 3659 } 3660 3661 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 3662 size_t count, loff_t *pos) 3663 { 3664 struct hisi_qm *qm = filp->private_data; 3665 char tbuf[QM_DBG_READ_LEN]; 3666 u32 qos_val, ir; 3667 int ret; 3668 3669 ret = hisi_qm_get_dfx_access(qm); 3670 if (ret) 3671 return ret; 3672 3673 /* Mailbox and reset cannot be operated at the same time */ 3674 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3675 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 3676 ret = -EAGAIN; 3677 goto err_put_dfx_access; 3678 } 3679 3680 if (qm->fun_type == QM_HW_PF) { 3681 ir = qm_get_shaper_vft_qos(qm, 0); 3682 } else { 3683 ret = qm_vf_read_qos(qm); 3684 if (ret) 3685 goto err_get_status; 3686 ir = qm->mb_qos; 3687 } 3688 3689 qos_val = ir / QM_QOS_RATE; 3690 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 3691 3692 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 3693 3694 err_get_status: 3695 clear_bit(QM_RESETTING, &qm->misc_ctl); 3696 err_put_dfx_access: 3697 hisi_qm_put_dfx_access(qm); 3698 return ret; 3699 } 3700 3701 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 3702 unsigned long *val, 3703 unsigned int *fun_index) 3704 { 3705 const struct bus_type *bus_type = qm->pdev->dev.bus; 3706 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 3707 char val_buf[QM_DBG_READ_LEN] = {0}; 3708 struct pci_dev *pdev; 3709 struct device *dev; 3710 int ret; 3711 3712 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 3713 if (ret != QM_QOS_PARAM_NUM) 3714 return -EINVAL; 3715 3716 ret = kstrtoul(val_buf, 10, val); 3717 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 3718 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 3719 return -EINVAL; 3720 } 3721 3722 dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); 3723 if (!dev) { 3724 pci_err(qm->pdev, "input pci bdf number is error!\n"); 3725 return -ENODEV; 3726 } 3727 3728 pdev = container_of(dev, struct pci_dev, dev); 3729 3730 *fun_index = pdev->devfn; 3731 3732 return 0; 3733 } 3734 3735 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 3736 size_t count, loff_t *pos) 3737 { 3738 struct hisi_qm *qm = filp->private_data; 3739 char tbuf[QM_DBG_READ_LEN]; 3740 unsigned int fun_index; 3741 unsigned long val; 3742 int len, ret; 3743 3744 if (*pos != 0) 3745 return 0; 3746 3747 if (count >= QM_DBG_READ_LEN) 3748 return -ENOSPC; 3749 3750 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 3751 if (len < 0) 3752 return len; 3753 3754 tbuf[len] = '\0'; 3755 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 3756 if (ret) 3757 return ret; 3758 3759 /* Mailbox and reset cannot be operated at the same time */ 3760 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3761 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 3762 return -EAGAIN; 3763 } 3764 3765 ret = qm_pm_get_sync(qm); 3766 if (ret) { 3767 ret = -EINVAL; 3768 goto err_get_status; 3769 } 3770 3771 ret = qm_func_shaper_enable(qm, fun_index, val); 3772 if (ret) { 3773 pci_err(qm->pdev, "failed to enable function shaper!\n"); 3774 ret = -EINVAL; 3775 goto err_put_sync; 3776 } 3777 3778 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 3779 fun_index, val); 3780 ret = count; 3781 3782 err_put_sync: 3783 qm_pm_put_sync(qm); 3784 err_get_status: 3785 clear_bit(QM_RESETTING, &qm->misc_ctl); 3786 return ret; 3787 } 3788 3789 static const struct file_operations qm_algqos_fops = { 3790 .owner = THIS_MODULE, 3791 .open = simple_open, 3792 .read = qm_algqos_read, 3793 .write = qm_algqos_write, 3794 }; 3795 3796 /** 3797 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 3798 * @qm: The qm for which we want to add debugfs files. 3799 * 3800 * Create function qos debugfs files, VF ping PF to get function qos. 3801 */ 3802 void hisi_qm_set_algqos_init(struct hisi_qm *qm) 3803 { 3804 if (qm->fun_type == QM_HW_PF) 3805 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 3806 qm, &qm_algqos_fops); 3807 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3808 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 3809 qm, &qm_algqos_fops); 3810 } 3811 3812 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 3813 { 3814 int i; 3815 3816 for (i = 1; i <= total_func; i++) 3817 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 3818 } 3819 3820 /** 3821 * hisi_qm_sriov_enable() - enable virtual functions 3822 * @pdev: the PCIe device 3823 * @max_vfs: the number of virtual functions to enable 3824 * 3825 * Returns the number of enabled VFs. If there are VFs enabled already or 3826 * max_vfs is more than the total number of device can be enabled, returns 3827 * failure. 3828 */ 3829 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3830 { 3831 struct hisi_qm *qm = pci_get_drvdata(pdev); 3832 int pre_existing_vfs, num_vfs, total_vfs, ret; 3833 3834 ret = qm_pm_get_sync(qm); 3835 if (ret) 3836 return ret; 3837 3838 total_vfs = pci_sriov_get_totalvfs(pdev); 3839 pre_existing_vfs = pci_num_vf(pdev); 3840 if (pre_existing_vfs) { 3841 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3842 pre_existing_vfs); 3843 goto err_put_sync; 3844 } 3845 3846 if (max_vfs > total_vfs) { 3847 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 3848 ret = -ERANGE; 3849 goto err_put_sync; 3850 } 3851 3852 num_vfs = max_vfs; 3853 3854 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3855 hisi_qm_init_vf_qos(qm, num_vfs); 3856 3857 ret = qm_vf_q_assign(qm, num_vfs); 3858 if (ret) { 3859 pci_err(pdev, "Can't assign queues for VF!\n"); 3860 goto err_put_sync; 3861 } 3862 3863 qm->vfs_num = num_vfs; 3864 3865 ret = pci_enable_sriov(pdev, num_vfs); 3866 if (ret) { 3867 pci_err(pdev, "Can't enable VF!\n"); 3868 qm_clear_vft_config(qm); 3869 goto err_put_sync; 3870 } 3871 3872 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3873 3874 return num_vfs; 3875 3876 err_put_sync: 3877 qm_pm_put_sync(qm); 3878 return ret; 3879 } 3880 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3881 3882 /** 3883 * hisi_qm_sriov_disable - disable virtual functions 3884 * @pdev: the PCI device. 3885 * @is_frozen: true when all the VFs are frozen. 3886 * 3887 * Return failure if there are VFs assigned already or VF is in used. 3888 */ 3889 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3890 { 3891 struct hisi_qm *qm = pci_get_drvdata(pdev); 3892 int ret; 3893 3894 if (pci_vfs_assigned(pdev)) { 3895 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3896 return -EPERM; 3897 } 3898 3899 /* While VF is in used, SRIOV cannot be disabled. */ 3900 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 3901 pci_err(pdev, "Task is using its VF!\n"); 3902 return -EBUSY; 3903 } 3904 3905 pci_disable_sriov(pdev); 3906 3907 ret = qm_clear_vft_config(qm); 3908 if (ret) 3909 return ret; 3910 3911 qm_pm_put_sync(qm); 3912 3913 return 0; 3914 } 3915 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 3916 3917 /** 3918 * hisi_qm_sriov_configure - configure the number of VFs 3919 * @pdev: The PCI device 3920 * @num_vfs: The number of VFs need enabled 3921 * 3922 * Enable SR-IOV according to num_vfs, 0 means disable. 3923 */ 3924 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 3925 { 3926 if (num_vfs == 0) 3927 return hisi_qm_sriov_disable(pdev, false); 3928 else 3929 return hisi_qm_sriov_enable(pdev, num_vfs); 3930 } 3931 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 3932 3933 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 3934 { 3935 u32 err_sts; 3936 3937 if (!qm->err_ini->get_dev_hw_err_status) { 3938 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 3939 return ACC_ERR_NONE; 3940 } 3941 3942 /* get device hardware error status */ 3943 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 3944 if (err_sts) { 3945 if (err_sts & qm->err_info.ecc_2bits_mask) 3946 qm->err_status.is_dev_ecc_mbit = true; 3947 3948 if (qm->err_ini->log_dev_hw_err) 3949 qm->err_ini->log_dev_hw_err(qm, err_sts); 3950 3951 if (err_sts & qm->err_info.dev_reset_mask) 3952 return ACC_ERR_NEED_RESET; 3953 3954 if (qm->err_ini->clear_dev_hw_err_status) 3955 qm->err_ini->clear_dev_hw_err_status(qm, err_sts); 3956 } 3957 3958 return ACC_ERR_RECOVERED; 3959 } 3960 3961 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 3962 { 3963 enum acc_err_result qm_ret, dev_ret; 3964 3965 /* log qm error */ 3966 qm_ret = qm_hw_error_handle(qm); 3967 3968 /* log device error */ 3969 dev_ret = qm_dev_err_handle(qm); 3970 3971 return (qm_ret == ACC_ERR_NEED_RESET || 3972 dev_ret == ACC_ERR_NEED_RESET) ? 3973 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 3974 } 3975 3976 /** 3977 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 3978 * @pdev: The PCI device which need report error. 3979 * @state: The connectivity between CPU and device. 3980 * 3981 * We register this function into PCIe AER handlers, It will report device or 3982 * qm hardware error status when error occur. 3983 */ 3984 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 3985 pci_channel_state_t state) 3986 { 3987 struct hisi_qm *qm = pci_get_drvdata(pdev); 3988 enum acc_err_result ret; 3989 3990 if (pdev->is_virtfn) 3991 return PCI_ERS_RESULT_NONE; 3992 3993 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 3994 if (state == pci_channel_io_perm_failure) 3995 return PCI_ERS_RESULT_DISCONNECT; 3996 3997 ret = qm_process_dev_error(qm); 3998 if (ret == ACC_ERR_NEED_RESET) 3999 return PCI_ERS_RESULT_NEED_RESET; 4000 4001 return PCI_ERS_RESULT_RECOVERED; 4002 } 4003 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 4004 4005 static int qm_check_req_recv(struct hisi_qm *qm) 4006 { 4007 struct pci_dev *pdev = qm->pdev; 4008 int ret; 4009 u32 val; 4010 4011 if (qm->ver >= QM_HW_V3) 4012 return 0; 4013 4014 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 4015 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4016 (val == ACC_VENDOR_ID_VALUE), 4017 POLL_PERIOD, POLL_TIMEOUT); 4018 if (ret) { 4019 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 4020 return ret; 4021 } 4022 4023 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 4024 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4025 (val == PCI_VENDOR_ID_HUAWEI), 4026 POLL_PERIOD, POLL_TIMEOUT); 4027 if (ret) 4028 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 4029 4030 return ret; 4031 } 4032 4033 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 4034 { 4035 struct pci_dev *pdev = qm->pdev; 4036 u16 cmd; 4037 int i; 4038 4039 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4040 if (set) 4041 cmd |= PCI_COMMAND_MEMORY; 4042 else 4043 cmd &= ~PCI_COMMAND_MEMORY; 4044 4045 pci_write_config_word(pdev, PCI_COMMAND, cmd); 4046 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4047 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4048 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 4049 return 0; 4050 4051 udelay(1); 4052 } 4053 4054 return -ETIMEDOUT; 4055 } 4056 4057 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 4058 { 4059 struct pci_dev *pdev = qm->pdev; 4060 u16 sriov_ctrl; 4061 int pos; 4062 int i; 4063 4064 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 4065 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4066 if (set) 4067 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4068 else 4069 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4070 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4071 4072 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4073 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4074 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4075 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4076 return 0; 4077 4078 udelay(1); 4079 } 4080 4081 return -ETIMEDOUT; 4082 } 4083 4084 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4085 enum qm_stop_reason stop_reason) 4086 { 4087 struct hisi_qm_list *qm_list = qm->qm_list; 4088 struct pci_dev *pdev = qm->pdev; 4089 struct pci_dev *virtfn; 4090 struct hisi_qm *vf_qm; 4091 int ret = 0; 4092 4093 mutex_lock(&qm_list->lock); 4094 list_for_each_entry(vf_qm, &qm_list->list, list) { 4095 virtfn = vf_qm->pdev; 4096 if (virtfn == pdev) 4097 continue; 4098 4099 if (pci_physfn(virtfn) == pdev) { 4100 /* save VFs PCIE BAR configuration */ 4101 pci_save_state(virtfn); 4102 4103 ret = hisi_qm_stop(vf_qm, stop_reason); 4104 if (ret) 4105 goto stop_fail; 4106 } 4107 } 4108 4109 stop_fail: 4110 mutex_unlock(&qm_list->lock); 4111 return ret; 4112 } 4113 4114 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 4115 enum qm_stop_reason stop_reason) 4116 { 4117 struct pci_dev *pdev = qm->pdev; 4118 int ret; 4119 4120 if (!qm->vfs_num) 4121 return 0; 4122 4123 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4124 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4125 ret = qm_ping_all_vfs(qm, cmd); 4126 if (ret) 4127 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 4128 } else { 4129 ret = qm_vf_reset_prepare(qm, stop_reason); 4130 if (ret) 4131 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4132 } 4133 4134 return ret; 4135 } 4136 4137 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4138 { 4139 struct pci_dev *pdev = qm->pdev; 4140 int ret; 4141 4142 ret = qm_reset_prepare_ready(qm); 4143 if (ret) { 4144 pci_err(pdev, "Controller reset not ready!\n"); 4145 return ret; 4146 } 4147 4148 /* PF obtains the information of VF by querying the register. */ 4149 qm_cmd_uninit(qm); 4150 4151 /* Whether VFs stop successfully, soft reset will continue. */ 4152 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4153 if (ret) 4154 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4155 4156 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4157 if (ret) { 4158 pci_err(pdev, "Fails to stop QM!\n"); 4159 qm_reset_bit_clear(qm); 4160 return ret; 4161 } 4162 4163 if (qm->use_sva) { 4164 ret = qm_hw_err_isolate(qm); 4165 if (ret) 4166 pci_err(pdev, "failed to isolate hw err!\n"); 4167 } 4168 4169 ret = qm_wait_vf_prepare_finish(qm); 4170 if (ret) 4171 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4172 4173 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4174 4175 return 0; 4176 } 4177 4178 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4179 { 4180 u32 nfe_enb = 0; 4181 4182 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4183 if (qm->ver >= QM_HW_V3) 4184 return; 4185 4186 if (!qm->err_status.is_dev_ecc_mbit && 4187 qm->err_status.is_qm_ecc_mbit && 4188 qm->err_ini->close_axi_master_ooo) { 4189 qm->err_ini->close_axi_master_ooo(qm); 4190 } else if (qm->err_status.is_dev_ecc_mbit && 4191 !qm->err_status.is_qm_ecc_mbit && 4192 !qm->err_ini->close_axi_master_ooo) { 4193 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4194 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4195 qm->io_base + QM_RAS_NFE_ENABLE); 4196 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4197 } 4198 } 4199 4200 static int qm_soft_reset(struct hisi_qm *qm) 4201 { 4202 struct pci_dev *pdev = qm->pdev; 4203 int ret; 4204 u32 val; 4205 4206 /* Ensure all doorbells and mailboxes received by QM */ 4207 ret = qm_check_req_recv(qm); 4208 if (ret) 4209 return ret; 4210 4211 if (qm->vfs_num) { 4212 ret = qm_set_vf_mse(qm, false); 4213 if (ret) { 4214 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4215 return ret; 4216 } 4217 } 4218 4219 ret = qm->ops->set_msi(qm, false); 4220 if (ret) { 4221 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4222 return ret; 4223 } 4224 4225 qm_dev_ecc_mbit_handle(qm); 4226 4227 /* OOO register set and check */ 4228 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 4229 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4230 4231 /* If bus lock, reset chip */ 4232 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4233 val, 4234 (val == ACC_MASTER_TRANS_RETURN_RW), 4235 POLL_PERIOD, POLL_TIMEOUT); 4236 if (ret) { 4237 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 4238 return ret; 4239 } 4240 4241 if (qm->err_ini->close_sva_prefetch) 4242 qm->err_ini->close_sva_prefetch(qm); 4243 4244 ret = qm_set_pf_mse(qm, false); 4245 if (ret) { 4246 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4247 return ret; 4248 } 4249 4250 /* The reset related sub-control registers are not in PCI BAR */ 4251 if (ACPI_HANDLE(&pdev->dev)) { 4252 unsigned long long value = 0; 4253 acpi_status s; 4254 4255 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4256 qm->err_info.acpi_rst, 4257 NULL, &value); 4258 if (ACPI_FAILURE(s)) { 4259 pci_err(pdev, "NO controller reset method!\n"); 4260 return -EIO; 4261 } 4262 4263 if (value) { 4264 pci_err(pdev, "Reset step %llu failed!\n", value); 4265 return -EIO; 4266 } 4267 } else { 4268 pci_err(pdev, "No reset method!\n"); 4269 return -EINVAL; 4270 } 4271 4272 return 0; 4273 } 4274 4275 static int qm_vf_reset_done(struct hisi_qm *qm) 4276 { 4277 struct hisi_qm_list *qm_list = qm->qm_list; 4278 struct pci_dev *pdev = qm->pdev; 4279 struct pci_dev *virtfn; 4280 struct hisi_qm *vf_qm; 4281 int ret = 0; 4282 4283 mutex_lock(&qm_list->lock); 4284 list_for_each_entry(vf_qm, &qm_list->list, list) { 4285 virtfn = vf_qm->pdev; 4286 if (virtfn == pdev) 4287 continue; 4288 4289 if (pci_physfn(virtfn) == pdev) { 4290 /* enable VFs PCIE BAR configuration */ 4291 pci_restore_state(virtfn); 4292 4293 ret = qm_restart(vf_qm); 4294 if (ret) 4295 goto restart_fail; 4296 } 4297 } 4298 4299 restart_fail: 4300 mutex_unlock(&qm_list->lock); 4301 return ret; 4302 } 4303 4304 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 4305 { 4306 struct pci_dev *pdev = qm->pdev; 4307 int ret; 4308 4309 if (!qm->vfs_num) 4310 return 0; 4311 4312 ret = qm_vf_q_assign(qm, qm->vfs_num); 4313 if (ret) { 4314 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4315 return ret; 4316 } 4317 4318 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4319 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4320 ret = qm_ping_all_vfs(qm, cmd); 4321 if (ret) 4322 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4323 } else { 4324 ret = qm_vf_reset_done(qm); 4325 if (ret) 4326 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4327 } 4328 4329 return ret; 4330 } 4331 4332 static int qm_dev_hw_init(struct hisi_qm *qm) 4333 { 4334 return qm->err_ini->hw_init(qm); 4335 } 4336 4337 static void qm_restart_prepare(struct hisi_qm *qm) 4338 { 4339 u32 value; 4340 4341 if (qm->err_ini->open_sva_prefetch) 4342 qm->err_ini->open_sva_prefetch(qm); 4343 4344 if (qm->ver >= QM_HW_V3) 4345 return; 4346 4347 if (!qm->err_status.is_qm_ecc_mbit && 4348 !qm->err_status.is_dev_ecc_mbit) 4349 return; 4350 4351 /* temporarily close the OOO port used for PEH to write out MSI */ 4352 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4353 writel(value & ~qm->err_info.msi_wr_port, 4354 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4355 4356 /* clear dev ecc 2bit error source if having */ 4357 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 4358 if (value && qm->err_ini->clear_dev_hw_err_status) 4359 qm->err_ini->clear_dev_hw_err_status(qm, value); 4360 4361 /* clear QM ecc mbit error source */ 4362 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4363 4364 /* clear AM Reorder Buffer ecc mbit source */ 4365 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4366 } 4367 4368 static void qm_restart_done(struct hisi_qm *qm) 4369 { 4370 u32 value; 4371 4372 if (qm->ver >= QM_HW_V3) 4373 goto clear_flags; 4374 4375 if (!qm->err_status.is_qm_ecc_mbit && 4376 !qm->err_status.is_dev_ecc_mbit) 4377 return; 4378 4379 /* open the OOO port for PEH to write out MSI */ 4380 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4381 value |= qm->err_info.msi_wr_port; 4382 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4383 4384 clear_flags: 4385 qm->err_status.is_qm_ecc_mbit = false; 4386 qm->err_status.is_dev_ecc_mbit = false; 4387 } 4388 4389 static int qm_controller_reset_done(struct hisi_qm *qm) 4390 { 4391 struct pci_dev *pdev = qm->pdev; 4392 int ret; 4393 4394 ret = qm->ops->set_msi(qm, true); 4395 if (ret) { 4396 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4397 return ret; 4398 } 4399 4400 ret = qm_set_pf_mse(qm, true); 4401 if (ret) { 4402 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4403 return ret; 4404 } 4405 4406 if (qm->vfs_num) { 4407 ret = qm_set_vf_mse(qm, true); 4408 if (ret) { 4409 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 4410 return ret; 4411 } 4412 } 4413 4414 ret = qm_dev_hw_init(qm); 4415 if (ret) { 4416 pci_err(pdev, "Failed to init device\n"); 4417 return ret; 4418 } 4419 4420 qm_restart_prepare(qm); 4421 hisi_qm_dev_err_init(qm); 4422 if (qm->err_ini->open_axi_master_ooo) 4423 qm->err_ini->open_axi_master_ooo(qm); 4424 4425 ret = qm_dev_mem_reset(qm); 4426 if (ret) { 4427 pci_err(pdev, "failed to reset device memory\n"); 4428 return ret; 4429 } 4430 4431 ret = qm_restart(qm); 4432 if (ret) { 4433 pci_err(pdev, "Failed to start QM!\n"); 4434 return ret; 4435 } 4436 4437 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4438 if (ret) 4439 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 4440 4441 ret = qm_wait_vf_prepare_finish(qm); 4442 if (ret) 4443 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 4444 4445 qm_cmd_init(qm); 4446 qm_restart_done(qm); 4447 4448 qm_reset_bit_clear(qm); 4449 4450 return 0; 4451 } 4452 4453 static int qm_controller_reset(struct hisi_qm *qm) 4454 { 4455 struct pci_dev *pdev = qm->pdev; 4456 int ret; 4457 4458 pci_info(pdev, "Controller resetting...\n"); 4459 4460 ret = qm_controller_reset_prepare(qm); 4461 if (ret) { 4462 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4463 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4464 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4465 return ret; 4466 } 4467 4468 hisi_qm_show_last_dfx_regs(qm); 4469 if (qm->err_ini->show_last_dfx_regs) 4470 qm->err_ini->show_last_dfx_regs(qm); 4471 4472 ret = qm_soft_reset(qm); 4473 if (ret) 4474 goto err_reset; 4475 4476 ret = qm_controller_reset_done(qm); 4477 if (ret) 4478 goto err_reset; 4479 4480 pci_info(pdev, "Controller reset complete\n"); 4481 4482 return 0; 4483 4484 err_reset: 4485 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4486 qm_reset_bit_clear(qm); 4487 4488 /* if resetting fails, isolate the device */ 4489 if (qm->use_sva) 4490 qm->isolate_data.is_isolate = true; 4491 return ret; 4492 } 4493 4494 /** 4495 * hisi_qm_dev_slot_reset() - slot reset 4496 * @pdev: the PCIe device 4497 * 4498 * This function offers QM relate PCIe device reset interface. Drivers which 4499 * use QM can use this function as slot_reset in its struct pci_error_handlers. 4500 */ 4501 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 4502 { 4503 struct hisi_qm *qm = pci_get_drvdata(pdev); 4504 int ret; 4505 4506 if (pdev->is_virtfn) 4507 return PCI_ERS_RESULT_RECOVERED; 4508 4509 /* reset pcie device controller */ 4510 ret = qm_controller_reset(qm); 4511 if (ret) { 4512 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4513 return PCI_ERS_RESULT_DISCONNECT; 4514 } 4515 4516 return PCI_ERS_RESULT_RECOVERED; 4517 } 4518 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4519 4520 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4521 { 4522 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4523 struct hisi_qm *qm = pci_get_drvdata(pdev); 4524 u32 delay = 0; 4525 int ret; 4526 4527 hisi_qm_dev_err_uninit(pf_qm); 4528 4529 /* 4530 * Check whether there is an ECC mbit error, If it occurs, need to 4531 * wait for soft reset to fix it. 4532 */ 4533 while (qm_check_dev_error(pf_qm)) { 4534 msleep(++delay); 4535 if (delay > QM_RESET_WAIT_TIMEOUT) 4536 return; 4537 } 4538 4539 ret = qm_reset_prepare_ready(qm); 4540 if (ret) { 4541 pci_err(pdev, "FLR not ready!\n"); 4542 return; 4543 } 4544 4545 /* PF obtains the information of VF by querying the register. */ 4546 if (qm->fun_type == QM_HW_PF) 4547 qm_cmd_uninit(qm); 4548 4549 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN); 4550 if (ret) 4551 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 4552 4553 ret = hisi_qm_stop(qm, QM_DOWN); 4554 if (ret) { 4555 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4556 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4557 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4558 return; 4559 } 4560 4561 ret = qm_wait_vf_prepare_finish(qm); 4562 if (ret) 4563 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 4564 4565 pci_info(pdev, "FLR resetting...\n"); 4566 } 4567 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4568 4569 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4570 { 4571 struct pci_dev *pf_pdev = pci_physfn(pdev); 4572 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4573 u32 id; 4574 4575 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4576 if (id == QM_PCI_COMMAND_INVALID) { 4577 pci_err(pdev, "Device can not be used!\n"); 4578 return false; 4579 } 4580 4581 return true; 4582 } 4583 4584 void hisi_qm_reset_done(struct pci_dev *pdev) 4585 { 4586 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4587 struct hisi_qm *qm = pci_get_drvdata(pdev); 4588 int ret; 4589 4590 if (qm->fun_type == QM_HW_PF) { 4591 ret = qm_dev_hw_init(qm); 4592 if (ret) { 4593 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4594 goto flr_done; 4595 } 4596 } 4597 4598 hisi_qm_dev_err_init(pf_qm); 4599 4600 ret = qm_restart(qm); 4601 if (ret) { 4602 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4603 goto flr_done; 4604 } 4605 4606 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4607 if (ret) 4608 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 4609 4610 ret = qm_wait_vf_prepare_finish(qm); 4611 if (ret) 4612 pci_err(pdev, "failed to start by vfs in FLR!\n"); 4613 4614 flr_done: 4615 if (qm->fun_type == QM_HW_PF) 4616 qm_cmd_init(qm); 4617 4618 if (qm_flr_reset_complete(pdev)) 4619 pci_info(pdev, "FLR reset complete\n"); 4620 4621 qm_reset_bit_clear(qm); 4622 } 4623 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4624 4625 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4626 { 4627 struct hisi_qm *qm = data; 4628 enum acc_err_result ret; 4629 4630 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4631 ret = qm_process_dev_error(qm); 4632 if (ret == ACC_ERR_NEED_RESET && 4633 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4634 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4635 schedule_work(&qm->rst_work); 4636 4637 return IRQ_HANDLED; 4638 } 4639 4640 /** 4641 * hisi_qm_dev_shutdown() - Shutdown device. 4642 * @pdev: The device will be shutdown. 4643 * 4644 * This function will stop qm when OS shutdown or rebooting. 4645 */ 4646 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4647 { 4648 struct hisi_qm *qm = pci_get_drvdata(pdev); 4649 int ret; 4650 4651 ret = hisi_qm_stop(qm, QM_DOWN); 4652 if (ret) 4653 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4654 4655 hisi_qm_cache_wb(qm); 4656 } 4657 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4658 4659 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4660 { 4661 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4662 int ret; 4663 4664 ret = qm_pm_get_sync(qm); 4665 if (ret) { 4666 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4667 return; 4668 } 4669 4670 /* reset pcie device controller */ 4671 ret = qm_controller_reset(qm); 4672 if (ret) 4673 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4674 4675 qm_pm_put_sync(qm); 4676 } 4677 4678 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 4679 enum qm_stop_reason stop_reason) 4680 { 4681 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 4682 struct pci_dev *pdev = qm->pdev; 4683 int ret; 4684 4685 ret = qm_reset_prepare_ready(qm); 4686 if (ret) { 4687 dev_err(&pdev->dev, "reset prepare not ready!\n"); 4688 atomic_set(&qm->status.flags, QM_STOP); 4689 cmd = QM_VF_PREPARE_FAIL; 4690 goto err_prepare; 4691 } 4692 4693 ret = hisi_qm_stop(qm, stop_reason); 4694 if (ret) { 4695 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 4696 atomic_set(&qm->status.flags, QM_STOP); 4697 cmd = QM_VF_PREPARE_FAIL; 4698 goto err_prepare; 4699 } else { 4700 goto out; 4701 } 4702 4703 err_prepare: 4704 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4705 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4706 out: 4707 pci_save_state(pdev); 4708 ret = qm_ping_pf(qm, cmd); 4709 if (ret) 4710 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 4711 } 4712 4713 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 4714 { 4715 enum qm_mb_cmd cmd = QM_VF_START_DONE; 4716 struct pci_dev *pdev = qm->pdev; 4717 int ret; 4718 4719 pci_restore_state(pdev); 4720 ret = hisi_qm_start(qm); 4721 if (ret) { 4722 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 4723 cmd = QM_VF_START_FAIL; 4724 } 4725 4726 qm_cmd_init(qm); 4727 ret = qm_ping_pf(qm, cmd); 4728 if (ret) 4729 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 4730 4731 qm_reset_bit_clear(qm); 4732 } 4733 4734 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 4735 { 4736 struct device *dev = &qm->pdev->dev; 4737 u32 val, cmd; 4738 u64 msg; 4739 int ret; 4740 4741 /* Wait for reset to finish */ 4742 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 4743 val == BIT(0), QM_VF_RESET_WAIT_US, 4744 QM_VF_RESET_WAIT_TIMEOUT_US); 4745 /* hardware completion status should be available by this time */ 4746 if (ret) { 4747 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 4748 return -ETIMEDOUT; 4749 } 4750 4751 /* 4752 * Whether message is got successfully, 4753 * VF needs to ack PF by clearing the interrupt. 4754 */ 4755 ret = qm_get_mb_cmd(qm, &msg, 0); 4756 qm_clear_cmd_interrupt(qm, 0); 4757 if (ret) { 4758 dev_err(dev, "failed to get msg from PF in reset done!\n"); 4759 return ret; 4760 } 4761 4762 cmd = msg & QM_MB_CMD_DATA_MASK; 4763 if (cmd != QM_PF_RESET_DONE) { 4764 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 4765 ret = -EINVAL; 4766 } 4767 4768 return ret; 4769 } 4770 4771 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 4772 enum qm_stop_reason stop_reason) 4773 { 4774 struct device *dev = &qm->pdev->dev; 4775 int ret; 4776 4777 dev_info(dev, "device reset start...\n"); 4778 4779 /* The message is obtained by querying the register during resetting */ 4780 qm_cmd_uninit(qm); 4781 qm_pf_reset_vf_prepare(qm, stop_reason); 4782 4783 ret = qm_wait_pf_reset_finish(qm); 4784 if (ret) 4785 goto err_get_status; 4786 4787 qm_pf_reset_vf_done(qm); 4788 4789 dev_info(dev, "device reset done.\n"); 4790 4791 return; 4792 4793 err_get_status: 4794 qm_cmd_init(qm); 4795 qm_reset_bit_clear(qm); 4796 } 4797 4798 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 4799 { 4800 struct device *dev = &qm->pdev->dev; 4801 u64 msg; 4802 u32 cmd; 4803 int ret; 4804 4805 /* 4806 * Get the msg from source by sending mailbox. Whether message is got 4807 * successfully, destination needs to ack source by clearing the interrupt. 4808 */ 4809 ret = qm_get_mb_cmd(qm, &msg, fun_num); 4810 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 4811 if (ret) { 4812 dev_err(dev, "failed to get msg from source!\n"); 4813 return; 4814 } 4815 4816 cmd = msg & QM_MB_CMD_DATA_MASK; 4817 switch (cmd) { 4818 case QM_PF_FLR_PREPARE: 4819 qm_pf_reset_vf_process(qm, QM_DOWN); 4820 break; 4821 case QM_PF_SRST_PREPARE: 4822 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 4823 break; 4824 case QM_VF_GET_QOS: 4825 qm_vf_get_qos(qm, fun_num); 4826 break; 4827 case QM_PF_SET_QOS: 4828 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 4829 break; 4830 default: 4831 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 4832 break; 4833 } 4834 } 4835 4836 static void qm_cmd_process(struct work_struct *cmd_process) 4837 { 4838 struct hisi_qm *qm = container_of(cmd_process, 4839 struct hisi_qm, cmd_process); 4840 u32 vfs_num = qm->vfs_num; 4841 u64 val; 4842 u32 i; 4843 4844 if (qm->fun_type == QM_HW_PF) { 4845 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 4846 if (!val) 4847 return; 4848 4849 for (i = 1; i <= vfs_num; i++) { 4850 if (val & BIT(i)) 4851 qm_handle_cmd_msg(qm, i); 4852 } 4853 4854 return; 4855 } 4856 4857 qm_handle_cmd_msg(qm, 0); 4858 } 4859 4860 /** 4861 * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. 4862 * @qm: The qm needs add. 4863 * @qm_list: The qm list. 4864 * 4865 * This function adds qm to qm list, and will register algorithm to 4866 * crypto when the qm list is empty. 4867 */ 4868 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4869 { 4870 struct device *dev = &qm->pdev->dev; 4871 int flag = 0; 4872 int ret = 0; 4873 4874 mutex_lock(&qm_list->lock); 4875 if (list_empty(&qm_list->list)) 4876 flag = 1; 4877 list_add_tail(&qm->list, &qm_list->list); 4878 mutex_unlock(&qm_list->lock); 4879 4880 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 4881 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 4882 return 0; 4883 } 4884 4885 if (flag) { 4886 ret = qm_list->register_to_crypto(qm); 4887 if (ret) { 4888 mutex_lock(&qm_list->lock); 4889 list_del(&qm->list); 4890 mutex_unlock(&qm_list->lock); 4891 } 4892 } 4893 4894 return ret; 4895 } 4896 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4897 4898 /** 4899 * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from 4900 * qm list. 4901 * @qm: The qm needs delete. 4902 * @qm_list: The qm list. 4903 * 4904 * This function deletes qm from qm list, and will unregister algorithm 4905 * from crypto when the qm list is empty. 4906 */ 4907 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4908 { 4909 mutex_lock(&qm_list->lock); 4910 list_del(&qm->list); 4911 mutex_unlock(&qm_list->lock); 4912 4913 if (qm->ver <= QM_HW_V2 && qm->use_sva) 4914 return; 4915 4916 if (list_empty(&qm_list->list)) 4917 qm_list->unregister_from_crypto(qm); 4918 } 4919 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 4920 4921 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 4922 { 4923 struct pci_dev *pdev = qm->pdev; 4924 u32 irq_vector, val; 4925 4926 if (qm->fun_type == QM_HW_VF) 4927 return; 4928 4929 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver); 4930 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4931 return; 4932 4933 irq_vector = val & QM_IRQ_VECTOR_MASK; 4934 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4935 } 4936 4937 static int qm_register_abnormal_irq(struct hisi_qm *qm) 4938 { 4939 struct pci_dev *pdev = qm->pdev; 4940 u32 irq_vector, val; 4941 int ret; 4942 4943 if (qm->fun_type == QM_HW_VF) 4944 return 0; 4945 4946 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver); 4947 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4948 return 0; 4949 4950 irq_vector = val & QM_IRQ_VECTOR_MASK; 4951 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 4952 if (ret) 4953 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); 4954 4955 return ret; 4956 } 4957 4958 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 4959 { 4960 struct pci_dev *pdev = qm->pdev; 4961 u32 irq_vector, val; 4962 4963 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver); 4964 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4965 return; 4966 4967 irq_vector = val & QM_IRQ_VECTOR_MASK; 4968 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4969 } 4970 4971 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 4972 { 4973 struct pci_dev *pdev = qm->pdev; 4974 u32 irq_vector, val; 4975 int ret; 4976 4977 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver); 4978 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4979 return 0; 4980 4981 irq_vector = val & QM_IRQ_VECTOR_MASK; 4982 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 4983 if (ret) 4984 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 4985 4986 return ret; 4987 } 4988 4989 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 4990 { 4991 struct pci_dev *pdev = qm->pdev; 4992 u32 irq_vector, val; 4993 4994 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver); 4995 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4996 return; 4997 4998 irq_vector = val & QM_IRQ_VECTOR_MASK; 4999 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5000 } 5001 5002 static int qm_register_aeq_irq(struct hisi_qm *qm) 5003 { 5004 struct pci_dev *pdev = qm->pdev; 5005 u32 irq_vector, val; 5006 int ret; 5007 5008 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver); 5009 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5010 return 0; 5011 5012 irq_vector = val & QM_IRQ_VECTOR_MASK; 5013 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), qm_aeq_irq, 5014 qm_aeq_thread, 0, qm->dev_name, qm); 5015 if (ret) 5016 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5017 5018 return ret; 5019 } 5020 5021 static void qm_unregister_eq_irq(struct hisi_qm *qm) 5022 { 5023 struct pci_dev *pdev = qm->pdev; 5024 u32 irq_vector, val; 5025 5026 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver); 5027 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5028 return; 5029 5030 irq_vector = val & QM_IRQ_VECTOR_MASK; 5031 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5032 } 5033 5034 static int qm_register_eq_irq(struct hisi_qm *qm) 5035 { 5036 struct pci_dev *pdev = qm->pdev; 5037 u32 irq_vector, val; 5038 int ret; 5039 5040 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver); 5041 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5042 return 0; 5043 5044 irq_vector = val & QM_IRQ_VECTOR_MASK; 5045 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); 5046 if (ret) 5047 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5048 5049 return ret; 5050 } 5051 5052 static void qm_irqs_unregister(struct hisi_qm *qm) 5053 { 5054 qm_unregister_mb_cmd_irq(qm); 5055 qm_unregister_abnormal_irq(qm); 5056 qm_unregister_aeq_irq(qm); 5057 qm_unregister_eq_irq(qm); 5058 } 5059 5060 static int qm_irqs_register(struct hisi_qm *qm) 5061 { 5062 int ret; 5063 5064 ret = qm_register_eq_irq(qm); 5065 if (ret) 5066 return ret; 5067 5068 ret = qm_register_aeq_irq(qm); 5069 if (ret) 5070 goto free_eq_irq; 5071 5072 ret = qm_register_abnormal_irq(qm); 5073 if (ret) 5074 goto free_aeq_irq; 5075 5076 ret = qm_register_mb_cmd_irq(qm); 5077 if (ret) 5078 goto free_abnormal_irq; 5079 5080 return 0; 5081 5082 free_abnormal_irq: 5083 qm_unregister_abnormal_irq(qm); 5084 free_aeq_irq: 5085 qm_unregister_aeq_irq(qm); 5086 free_eq_irq: 5087 qm_unregister_eq_irq(qm); 5088 return ret; 5089 } 5090 5091 static int qm_get_qp_num(struct hisi_qm *qm) 5092 { 5093 struct device *dev = &qm->pdev->dev; 5094 bool is_db_isolation; 5095 5096 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 5097 if (qm->fun_type == QM_HW_VF) { 5098 if (qm->ver != QM_HW_V1) 5099 /* v2 starts to support get vft by mailbox */ 5100 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 5101 5102 return 0; 5103 } 5104 5105 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5106 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 5107 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 5108 QM_FUNC_MAX_QP_CAP, is_db_isolation); 5109 5110 if (qm->qp_num <= qm->max_qp_num) 5111 return 0; 5112 5113 if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) { 5114 /* Check whether the set qp number is valid */ 5115 dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n", 5116 qm->qp_num, qm->max_qp_num); 5117 return -EINVAL; 5118 } 5119 5120 dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n", 5121 qm->qp_num, qm->max_qp_num); 5122 qm->qp_num = qm->max_qp_num; 5123 qm->debug.curr_qm_qp_num = qm->qp_num; 5124 5125 return 0; 5126 } 5127 5128 static void qm_get_hw_caps(struct hisi_qm *qm) 5129 { 5130 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 5131 qm_cap_info_pf : qm_cap_info_vf; 5132 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 5133 ARRAY_SIZE(qm_cap_info_vf); 5134 u32 val, i; 5135 5136 /* Doorbell isolate register is a independent register. */ 5137 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 5138 if (val) 5139 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5140 5141 if (qm->ver >= QM_HW_V3) { 5142 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 5143 qm->cap_ver = val & QM_CAPBILITY_VERSION; 5144 } 5145 5146 /* Get PF/VF common capbility */ 5147 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 5148 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 5149 if (val) 5150 set_bit(qm_cap_info_comm[i].type, &qm->caps); 5151 } 5152 5153 /* Get PF/VF different capbility */ 5154 for (i = 0; i < size; i++) { 5155 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 5156 if (val) 5157 set_bit(cap_info[i].type, &qm->caps); 5158 } 5159 } 5160 5161 static int qm_get_pci_res(struct hisi_qm *qm) 5162 { 5163 struct pci_dev *pdev = qm->pdev; 5164 struct device *dev = &pdev->dev; 5165 int ret; 5166 5167 ret = pci_request_mem_regions(pdev, qm->dev_name); 5168 if (ret < 0) { 5169 dev_err(dev, "Failed to request mem regions!\n"); 5170 return ret; 5171 } 5172 5173 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5174 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5175 if (!qm->io_base) { 5176 ret = -EIO; 5177 goto err_request_mem_regions; 5178 } 5179 5180 qm_get_hw_caps(qm); 5181 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 5182 qm->db_interval = QM_QP_DB_INTERVAL; 5183 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5184 qm->db_io_base = ioremap(qm->db_phys_base, 5185 pci_resource_len(pdev, PCI_BAR_4)); 5186 if (!qm->db_io_base) { 5187 ret = -EIO; 5188 goto err_ioremap; 5189 } 5190 } else { 5191 qm->db_phys_base = qm->phys_base; 5192 qm->db_io_base = qm->io_base; 5193 qm->db_interval = 0; 5194 } 5195 5196 ret = qm_get_qp_num(qm); 5197 if (ret) 5198 goto err_db_ioremap; 5199 5200 return 0; 5201 5202 err_db_ioremap: 5203 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 5204 iounmap(qm->db_io_base); 5205 err_ioremap: 5206 iounmap(qm->io_base); 5207 err_request_mem_regions: 5208 pci_release_mem_regions(pdev); 5209 return ret; 5210 } 5211 5212 static int hisi_qm_pci_init(struct hisi_qm *qm) 5213 { 5214 struct pci_dev *pdev = qm->pdev; 5215 struct device *dev = &pdev->dev; 5216 unsigned int num_vec; 5217 int ret; 5218 5219 ret = pci_enable_device_mem(pdev); 5220 if (ret < 0) { 5221 dev_err(dev, "Failed to enable device mem!\n"); 5222 return ret; 5223 } 5224 5225 ret = qm_get_pci_res(qm); 5226 if (ret) 5227 goto err_disable_pcidev; 5228 5229 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5230 if (ret < 0) 5231 goto err_get_pci_res; 5232 pci_set_master(pdev); 5233 5234 num_vec = qm_get_irq_num(qm); 5235 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5236 if (ret < 0) { 5237 dev_err(dev, "Failed to enable MSI vectors!\n"); 5238 goto err_get_pci_res; 5239 } 5240 5241 return 0; 5242 5243 err_get_pci_res: 5244 qm_put_pci_res(qm); 5245 err_disable_pcidev: 5246 pci_disable_device(pdev); 5247 return ret; 5248 } 5249 5250 static int hisi_qm_init_work(struct hisi_qm *qm) 5251 { 5252 int i; 5253 5254 for (i = 0; i < qm->qp_num; i++) 5255 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 5256 5257 if (qm->fun_type == QM_HW_PF) 5258 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5259 5260 if (qm->ver > QM_HW_V2) 5261 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5262 5263 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 5264 WQ_UNBOUND, num_online_cpus(), 5265 pci_name(qm->pdev)); 5266 if (!qm->wq) { 5267 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 5268 return -ENOMEM; 5269 } 5270 5271 return 0; 5272 } 5273 5274 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5275 { 5276 struct device *dev = &qm->pdev->dev; 5277 u16 sq_depth, cq_depth; 5278 size_t qp_dma_size; 5279 int i, ret; 5280 5281 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5282 if (!qm->qp_array) 5283 return -ENOMEM; 5284 5285 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 5286 if (!qm->poll_data) { 5287 kfree(qm->qp_array); 5288 return -ENOMEM; 5289 } 5290 5291 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 5292 5293 /* one more page for device or qp statuses */ 5294 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 5295 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5296 for (i = 0; i < qm->qp_num; i++) { 5297 qm->poll_data[i].qm = qm; 5298 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 5299 if (ret) 5300 goto err_init_qp_mem; 5301 5302 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5303 } 5304 5305 return 0; 5306 err_init_qp_mem: 5307 hisi_qp_memory_uninit(qm, i); 5308 5309 return ret; 5310 } 5311 5312 static int hisi_qm_memory_init(struct hisi_qm *qm) 5313 { 5314 struct device *dev = &qm->pdev->dev; 5315 int ret, total_func; 5316 size_t off = 0; 5317 5318 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 5319 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5320 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5321 if (!qm->factor) 5322 return -ENOMEM; 5323 5324 /* Only the PF value needs to be initialized */ 5325 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 5326 } 5327 5328 #define QM_INIT_BUF(qm, type, num) do { \ 5329 (qm)->type = ((qm)->qdma.va + (off)); \ 5330 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5331 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5332 } while (0) 5333 5334 idr_init(&qm->qp_idr); 5335 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 5336 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 5337 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 5338 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5339 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5340 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5341 GFP_ATOMIC); 5342 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5343 if (!qm->qdma.va) { 5344 ret = -ENOMEM; 5345 goto err_destroy_idr; 5346 } 5347 5348 QM_INIT_BUF(qm, eqe, qm->eq_depth); 5349 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 5350 QM_INIT_BUF(qm, sqc, qm->qp_num); 5351 QM_INIT_BUF(qm, cqc, qm->qp_num); 5352 5353 ret = hisi_qp_alloc_memory(qm); 5354 if (ret) 5355 goto err_alloc_qp_array; 5356 5357 return 0; 5358 5359 err_alloc_qp_array: 5360 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5361 err_destroy_idr: 5362 idr_destroy(&qm->qp_idr); 5363 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 5364 kfree(qm->factor); 5365 5366 return ret; 5367 } 5368 5369 /** 5370 * hisi_qm_init() - Initialize configures about qm. 5371 * @qm: The qm needing init. 5372 * 5373 * This function init qm, then we can call hisi_qm_start to put qm into work. 5374 */ 5375 int hisi_qm_init(struct hisi_qm *qm) 5376 { 5377 struct pci_dev *pdev = qm->pdev; 5378 struct device *dev = &pdev->dev; 5379 int ret; 5380 5381 hisi_qm_pre_init(qm); 5382 5383 ret = hisi_qm_pci_init(qm); 5384 if (ret) 5385 return ret; 5386 5387 ret = qm_irqs_register(qm); 5388 if (ret) 5389 goto err_pci_init; 5390 5391 if (qm->fun_type == QM_HW_PF) { 5392 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5393 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5394 qm_disable_clock_gate(qm); 5395 ret = qm_dev_mem_reset(qm); 5396 if (ret) { 5397 dev_err(dev, "failed to reset device memory\n"); 5398 goto err_irq_register; 5399 } 5400 } 5401 5402 if (qm->mode == UACCE_MODE_SVA) { 5403 ret = qm_alloc_uacce(qm); 5404 if (ret < 0) 5405 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5406 } 5407 5408 ret = hisi_qm_memory_init(qm); 5409 if (ret) 5410 goto err_alloc_uacce; 5411 5412 ret = hisi_qm_init_work(qm); 5413 if (ret) 5414 goto err_free_qm_memory; 5415 5416 qm_cmd_init(qm); 5417 atomic_set(&qm->status.flags, QM_INIT); 5418 5419 return 0; 5420 5421 err_free_qm_memory: 5422 hisi_qm_memory_uninit(qm); 5423 err_alloc_uacce: 5424 qm_remove_uacce(qm); 5425 err_irq_register: 5426 qm_irqs_unregister(qm); 5427 err_pci_init: 5428 hisi_qm_pci_uninit(qm); 5429 return ret; 5430 } 5431 EXPORT_SYMBOL_GPL(hisi_qm_init); 5432 5433 /** 5434 * hisi_qm_get_dfx_access() - Try to get dfx access. 5435 * @qm: pointer to accelerator device. 5436 * 5437 * Try to get dfx access, then user can get message. 5438 * 5439 * If device is in suspended, return failure, otherwise 5440 * bump up the runtime PM usage counter. 5441 */ 5442 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5443 { 5444 struct device *dev = &qm->pdev->dev; 5445 5446 if (pm_runtime_suspended(dev)) { 5447 dev_info(dev, "can not read/write - device in suspended.\n"); 5448 return -EAGAIN; 5449 } 5450 5451 return qm_pm_get_sync(qm); 5452 } 5453 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5454 5455 /** 5456 * hisi_qm_put_dfx_access() - Put dfx access. 5457 * @qm: pointer to accelerator device. 5458 * 5459 * Put dfx access, drop runtime PM usage counter. 5460 */ 5461 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5462 { 5463 qm_pm_put_sync(qm); 5464 } 5465 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5466 5467 /** 5468 * hisi_qm_pm_init() - Initialize qm runtime PM. 5469 * @qm: pointer to accelerator device. 5470 * 5471 * Function that initialize qm runtime PM. 5472 */ 5473 void hisi_qm_pm_init(struct hisi_qm *qm) 5474 { 5475 struct device *dev = &qm->pdev->dev; 5476 5477 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5478 return; 5479 5480 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5481 pm_runtime_use_autosuspend(dev); 5482 pm_runtime_put_noidle(dev); 5483 } 5484 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5485 5486 /** 5487 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5488 * @qm: pointer to accelerator device. 5489 * 5490 * Function that uninitialize qm runtime PM. 5491 */ 5492 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5493 { 5494 struct device *dev = &qm->pdev->dev; 5495 5496 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5497 return; 5498 5499 pm_runtime_get_noresume(dev); 5500 pm_runtime_dont_use_autosuspend(dev); 5501 } 5502 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5503 5504 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5505 { 5506 struct pci_dev *pdev = qm->pdev; 5507 int ret; 5508 u32 val; 5509 5510 ret = qm->ops->set_msi(qm, false); 5511 if (ret) { 5512 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5513 return ret; 5514 } 5515 5516 /* shutdown OOO register */ 5517 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 5518 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5519 5520 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 5521 val, 5522 (val == ACC_MASTER_TRANS_RETURN_RW), 5523 POLL_PERIOD, POLL_TIMEOUT); 5524 if (ret) { 5525 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 5526 return ret; 5527 } 5528 5529 ret = qm_set_pf_mse(qm, false); 5530 if (ret) 5531 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5532 5533 return ret; 5534 } 5535 5536 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5537 { 5538 struct pci_dev *pdev = qm->pdev; 5539 int ret; 5540 5541 ret = qm_set_pf_mse(qm, true); 5542 if (ret) { 5543 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5544 return ret; 5545 } 5546 5547 ret = qm->ops->set_msi(qm, true); 5548 if (ret) { 5549 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5550 return ret; 5551 } 5552 5553 ret = qm_dev_hw_init(qm); 5554 if (ret) { 5555 pci_err(pdev, "failed to init device after resuming\n"); 5556 return ret; 5557 } 5558 5559 qm_cmd_init(qm); 5560 hisi_qm_dev_err_init(qm); 5561 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5562 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5563 qm_disable_clock_gate(qm); 5564 ret = qm_dev_mem_reset(qm); 5565 if (ret) 5566 pci_err(pdev, "failed to reset device memory\n"); 5567 5568 return ret; 5569 } 5570 5571 /** 5572 * hisi_qm_suspend() - Runtime suspend of given device. 5573 * @dev: device to suspend. 5574 * 5575 * Function that suspend the device. 5576 */ 5577 int hisi_qm_suspend(struct device *dev) 5578 { 5579 struct pci_dev *pdev = to_pci_dev(dev); 5580 struct hisi_qm *qm = pci_get_drvdata(pdev); 5581 int ret; 5582 5583 pci_info(pdev, "entering suspended state\n"); 5584 5585 ret = hisi_qm_stop(qm, QM_NORMAL); 5586 if (ret) { 5587 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5588 return ret; 5589 } 5590 5591 ret = qm_prepare_for_suspend(qm); 5592 if (ret) 5593 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5594 5595 return ret; 5596 } 5597 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5598 5599 /** 5600 * hisi_qm_resume() - Runtime resume of given device. 5601 * @dev: device to resume. 5602 * 5603 * Function that resume the device. 5604 */ 5605 int hisi_qm_resume(struct device *dev) 5606 { 5607 struct pci_dev *pdev = to_pci_dev(dev); 5608 struct hisi_qm *qm = pci_get_drvdata(pdev); 5609 int ret; 5610 5611 pci_info(pdev, "resuming from suspend state\n"); 5612 5613 ret = qm_rebuild_for_resume(qm); 5614 if (ret) { 5615 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5616 return ret; 5617 } 5618 5619 ret = hisi_qm_start(qm); 5620 if (ret) { 5621 if (qm_check_dev_error(qm)) { 5622 pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); 5623 return 0; 5624 } 5625 5626 pci_err(pdev, "failed to start qm(%d)!\n", ret); 5627 } 5628 5629 return ret; 5630 } 5631 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5632 5633 MODULE_LICENSE("GPL v2"); 5634 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5635 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5636