xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/debugfs.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/idr.h>
10 #include <linux/io.h>
11 #include <linux/irqreturn.h>
12 #include <linux/log2.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include "qm.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 #define QM_IRQ_NUM_V1			1
26 #define QM_IRQ_NUM_PF_V2		4
27 #define QM_IRQ_NUM_VF_V2		2
28 
29 #define QM_EQ_EVENT_IRQ_VECTOR		0
30 #define QM_AEQ_EVENT_IRQ_VECTOR		1
31 #define QM_ABNORMAL_EVENT_IRQ_VECTOR	3
32 
33 /* mailbox */
34 #define QM_MB_CMD_SQC			0x0
35 #define QM_MB_CMD_CQC			0x1
36 #define QM_MB_CMD_EQC			0x2
37 #define QM_MB_CMD_AEQC			0x3
38 #define QM_MB_CMD_SQC_BT		0x4
39 #define QM_MB_CMD_CQC_BT		0x5
40 #define QM_MB_CMD_SQC_VFT_V2		0x6
41 
42 #define QM_MB_CMD_SEND_BASE		0x300
43 #define QM_MB_EVENT_SHIFT		8
44 #define QM_MB_BUSY_SHIFT		13
45 #define QM_MB_OP_SHIFT			14
46 #define QM_MB_CMD_DATA_ADDR_L		0x304
47 #define QM_MB_CMD_DATA_ADDR_H		0x308
48 
49 /* sqc shift */
50 #define QM_SQ_HOP_NUM_SHIFT		0
51 #define QM_SQ_PAGE_SIZE_SHIFT		4
52 #define QM_SQ_BUF_SIZE_SHIFT		8
53 #define QM_SQ_SQE_SIZE_SHIFT		12
54 #define QM_SQ_PRIORITY_SHIFT		0
55 #define QM_SQ_ORDERS_SHIFT		4
56 #define QM_SQ_TYPE_SHIFT		8
57 
58 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
59 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
60 
61 /* cqc shift */
62 #define QM_CQ_HOP_NUM_SHIFT		0
63 #define QM_CQ_PAGE_SIZE_SHIFT		4
64 #define QM_CQ_BUF_SIZE_SHIFT		8
65 #define QM_CQ_CQE_SIZE_SHIFT		12
66 #define QM_CQ_PHASE_SHIFT		0
67 #define QM_CQ_FLAG_SHIFT		1
68 
69 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
70 #define QM_QC_CQE_SIZE			4
71 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
72 
73 /* eqc shift */
74 #define QM_EQE_AEQE_SIZE		(2UL << 12)
75 #define QM_EQC_PHASE_SHIFT		16
76 
77 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
78 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
79 
80 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
81 #define QM_AEQE_TYPE_SHIFT		17
82 
83 #define QM_DOORBELL_CMD_SQ		0
84 #define QM_DOORBELL_CMD_CQ		1
85 #define QM_DOORBELL_CMD_EQ		2
86 #define QM_DOORBELL_CMD_AEQ		3
87 
88 #define QM_DOORBELL_BASE_V1		0x340
89 #define QM_DB_CMD_SHIFT_V1		16
90 #define QM_DB_INDEX_SHIFT_V1		32
91 #define QM_DB_PRIORITY_SHIFT_V1		48
92 #define QM_DOORBELL_SQ_CQ_BASE_V2	0x1000
93 #define QM_DOORBELL_EQ_AEQ_BASE_V2	0x2000
94 #define QM_DB_CMD_SHIFT_V2		12
95 #define QM_DB_RAND_SHIFT_V2		16
96 #define QM_DB_INDEX_SHIFT_V2		32
97 #define QM_DB_PRIORITY_SHIFT_V2		48
98 
99 #define QM_MEM_START_INIT		0x100040
100 #define QM_MEM_INIT_DONE		0x100044
101 #define QM_VFT_CFG_RDY			0x10006c
102 #define QM_VFT_CFG_OP_WR		0x100058
103 #define QM_VFT_CFG_TYPE			0x10005c
104 #define QM_SQC_VFT			0x0
105 #define QM_CQC_VFT			0x1
106 #define QM_VFT_CFG			0x100060
107 #define QM_VFT_CFG_OP_ENABLE		0x100054
108 
109 #define QM_VFT_CFG_DATA_L		0x100064
110 #define QM_VFT_CFG_DATA_H		0x100068
111 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
112 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
113 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
114 #define QM_SQC_VFT_START_SQN_SHIFT	28
115 #define QM_SQC_VFT_VALID		(1ULL << 44)
116 #define QM_SQC_VFT_SQN_SHIFT		45
117 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
118 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
119 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
120 #define QM_CQC_VFT_VALID		(1ULL << 28)
121 
122 #define QM_SQC_VFT_BASE_SHIFT_V2	28
123 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(5, 0)
124 #define QM_SQC_VFT_NUM_SHIFT_V2		45
125 #define QM_SQC_VFT_NUM_MASK_v2		GENMASK(9, 0)
126 
127 #define QM_DFX_CNT_CLR_CE		0x100118
128 
129 #define QM_ABNORMAL_INT_SOURCE		0x100000
130 #define QM_ABNORMAL_INT_SOURCE_CLR	GENMASK(12, 0)
131 #define QM_ABNORMAL_INT_MASK		0x100004
132 #define QM_ABNORMAL_INT_MASK_VALUE	0x1fff
133 #define QM_ABNORMAL_INT_STATUS		0x100008
134 #define QM_ABNORMAL_INT_SET		0x10000c
135 #define QM_ABNORMAL_INF00		0x100010
136 #define QM_FIFO_OVERFLOW_TYPE		0xc0
137 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
138 #define QM_FIFO_OVERFLOW_VF		0x3f
139 #define QM_ABNORMAL_INF01		0x100014
140 #define QM_DB_TIMEOUT_TYPE		0xc0
141 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
142 #define QM_DB_TIMEOUT_VF		0x3f
143 #define QM_RAS_CE_ENABLE		0x1000ec
144 #define QM_RAS_FE_ENABLE		0x1000f0
145 #define QM_RAS_NFE_ENABLE		0x1000f4
146 #define QM_RAS_CE_THRESHOLD		0x1000f8
147 #define QM_RAS_CE_TIMES_PER_IRQ		1
148 #define QM_RAS_MSI_INT_SEL		0x1040f4
149 
150 #define QM_DEV_RESET_FLAG		0
151 #define QM_RESET_WAIT_TIMEOUT		400
152 #define QM_PEH_VENDOR_ID		0x1000d8
153 #define ACC_VENDOR_ID_VALUE		0x5a5a
154 #define QM_PEH_DFX_INFO0		0x1000fc
155 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
156 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
157 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
158 #define ACC_MASTER_TRANS_RETURN_RW	3
159 #define ACC_MASTER_TRANS_RETURN		0x300150
160 #define ACC_MASTER_GLOBAL_CTRL		0x300000
161 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
162 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
163 #define ACC_AM_ROB_ECC_INT_STS		0x300104
164 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
165 
166 #define POLL_PERIOD			10
167 #define POLL_TIMEOUT			1000
168 #define WAIT_PERIOD_US_MAX		200
169 #define WAIT_PERIOD_US_MIN		100
170 #define MAX_WAIT_COUNTS			1000
171 #define QM_CACHE_WB_START		0x204
172 #define QM_CACHE_WB_DONE		0x208
173 
174 #define PCI_BAR_2			2
175 #define QM_SQE_DATA_ALIGN_MASK		GENMASK(6, 0)
176 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
177 
178 #define QM_DBG_READ_LEN		256
179 #define QM_DBG_WRITE_LEN		1024
180 #define QM_DBG_TMP_BUF_LEN		22
181 #define QM_PCI_COMMAND_INVALID		~0
182 
183 #define QM_SQE_ADDR_MASK		GENMASK(7, 0)
184 
185 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
186 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT)	| \
187 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT)	| \
188 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT)	| \
189 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
190 
191 #define QM_MK_CQC_DW3_V2(cqe_sz) \
192 	((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
193 
194 #define QM_MK_SQC_W13(priority, orders, alg_type) \
195 	(((priority) << QM_SQ_PRIORITY_SHIFT)	| \
196 	((orders) << QM_SQ_ORDERS_SHIFT)	| \
197 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
198 
199 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
200 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT)	| \
201 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT)	| \
202 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT)	| \
203 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
204 
205 #define QM_MK_SQC_DW3_V2(sqe_sz) \
206 	((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
207 
208 #define INIT_QC_COMMON(qc, base, pasid) do {			\
209 	(qc)->head = 0;						\
210 	(qc)->tail = 0;						\
211 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
212 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
213 	(qc)->dw3 = 0;						\
214 	(qc)->w8 = 0;						\
215 	(qc)->rsvd0 = 0;					\
216 	(qc)->pasid = cpu_to_le16(pasid);			\
217 	(qc)->w11 = 0;						\
218 	(qc)->rsvd1 = 0;					\
219 } while (0)
220 
221 enum vft_type {
222 	SQC_VFT = 0,
223 	CQC_VFT,
224 };
225 
226 enum acc_err_result {
227 	ACC_ERR_NONE,
228 	ACC_ERR_NEED_RESET,
229 	ACC_ERR_RECOVERED,
230 };
231 
232 struct qm_cqe {
233 	__le32 rsvd0;
234 	__le16 cmd_id;
235 	__le16 rsvd1;
236 	__le16 sq_head;
237 	__le16 sq_num;
238 	__le16 rsvd2;
239 	__le16 w7;
240 };
241 
242 struct qm_eqe {
243 	__le32 dw0;
244 };
245 
246 struct qm_aeqe {
247 	__le32 dw0;
248 };
249 
250 struct qm_sqc {
251 	__le16 head;
252 	__le16 tail;
253 	__le32 base_l;
254 	__le32 base_h;
255 	__le32 dw3;
256 	__le16 w8;
257 	__le16 rsvd0;
258 	__le16 pasid;
259 	__le16 w11;
260 	__le16 cq_num;
261 	__le16 w13;
262 	__le32 rsvd1;
263 };
264 
265 struct qm_cqc {
266 	__le16 head;
267 	__le16 tail;
268 	__le32 base_l;
269 	__le32 base_h;
270 	__le32 dw3;
271 	__le16 w8;
272 	__le16 rsvd0;
273 	__le16 pasid;
274 	__le16 w11;
275 	__le32 dw6;
276 	__le32 rsvd1;
277 };
278 
279 struct qm_eqc {
280 	__le16 head;
281 	__le16 tail;
282 	__le32 base_l;
283 	__le32 base_h;
284 	__le32 dw3;
285 	__le32 rsvd[2];
286 	__le32 dw6;
287 };
288 
289 struct qm_aeqc {
290 	__le16 head;
291 	__le16 tail;
292 	__le32 base_l;
293 	__le32 base_h;
294 	__le32 dw3;
295 	__le32 rsvd[2];
296 	__le32 dw6;
297 };
298 
299 struct qm_mailbox {
300 	__le16 w0;
301 	__le16 queue_num;
302 	__le32 base_l;
303 	__le32 base_h;
304 	__le32 rsvd;
305 };
306 
307 struct qm_doorbell {
308 	__le16 queue_num;
309 	__le16 cmd;
310 	__le16 index;
311 	__le16 priority;
312 };
313 
314 struct hisi_qm_resource {
315 	struct hisi_qm *qm;
316 	int distance;
317 	struct list_head list;
318 };
319 
320 struct hisi_qm_hw_ops {
321 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
322 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
323 		      u8 cmd, u16 index, u8 priority);
324 	u32 (*get_irq_num)(struct hisi_qm *qm);
325 	int (*debug_init)(struct hisi_qm *qm);
326 	void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe);
327 	void (*hw_error_uninit)(struct hisi_qm *qm);
328 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
329 };
330 
331 struct qm_dfx_item {
332 	const char *name;
333 	u32 offset;
334 };
335 
336 static struct qm_dfx_item qm_dfx_files[] = {
337 	{"err_irq", offsetof(struct qm_dfx, err_irq_cnt)},
338 	{"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)},
339 	{"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)},
340 	{"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)},
341 	{"mb_err", offsetof(struct qm_dfx, mb_err_cnt)},
342 };
343 
344 static const char * const qm_debug_file_name[] = {
345 	[CURRENT_Q]    = "current_q",
346 	[CLEAR_ENABLE] = "clear_enable",
347 };
348 
349 struct hisi_qm_hw_error {
350 	u32 int_msk;
351 	const char *msg;
352 };
353 
354 static const struct hisi_qm_hw_error qm_hw_error[] = {
355 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
356 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
357 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
358 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
359 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
360 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
361 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
362 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
363 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
364 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
365 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
366 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
367 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
368 	{ /* sentinel */ }
369 };
370 
371 static const char * const qm_db_timeout[] = {
372 	"sq", "cq", "eq", "aeq",
373 };
374 
375 static const char * const qm_fifo_overflow[] = {
376 	"cq", "eq", "aeq",
377 };
378 
379 static const char * const qm_s[] = {
380 	"init", "start", "close", "stop",
381 };
382 
383 static const char * const qp_s[] = {
384 	"none", "init", "start", "stop", "close",
385 };
386 
387 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
388 {
389 	enum qm_state curr = atomic_read(&qm->status.flags);
390 	bool avail = false;
391 
392 	switch (curr) {
393 	case QM_INIT:
394 		if (new == QM_START || new == QM_CLOSE)
395 			avail = true;
396 		break;
397 	case QM_START:
398 		if (new == QM_STOP)
399 			avail = true;
400 		break;
401 	case QM_STOP:
402 		if (new == QM_CLOSE || new == QM_START)
403 			avail = true;
404 		break;
405 	default:
406 		break;
407 	}
408 
409 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
410 		qm_s[curr], qm_s[new]);
411 
412 	if (!avail)
413 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
414 			 qm_s[curr], qm_s[new]);
415 
416 	return avail;
417 }
418 
419 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
420 			      enum qp_state new)
421 {
422 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
423 	enum qp_state qp_curr = 0;
424 	bool avail = false;
425 
426 	if (qp)
427 		qp_curr = atomic_read(&qp->qp_status.flags);
428 
429 	switch (new) {
430 	case QP_INIT:
431 		if (qm_curr == QM_START || qm_curr == QM_INIT)
432 			avail = true;
433 		break;
434 	case QP_START:
435 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
436 		    (qm_curr == QM_START && qp_curr == QP_STOP))
437 			avail = true;
438 		break;
439 	case QP_STOP:
440 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
441 		    (qp_curr == QP_INIT))
442 			avail = true;
443 		break;
444 	case QP_CLOSE:
445 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
446 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
447 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
448 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
449 			avail = true;
450 		break;
451 	default:
452 		break;
453 	}
454 
455 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
456 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
457 
458 	if (!avail)
459 		dev_warn(&qm->pdev->dev,
460 			 "Can not change qp state from %s to %s in QM %s\n",
461 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
462 
463 	return avail;
464 }
465 
466 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
467 static int qm_wait_mb_ready(struct hisi_qm *qm)
468 {
469 	u32 val;
470 
471 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
472 					  val, !((val >> QM_MB_BUSY_SHIFT) &
473 					  0x1), 10, 1000);
474 }
475 
476 /* 128 bit should be written to hardware at one time to trigger a mailbox */
477 static void qm_mb_write(struct hisi_qm *qm, const void *src)
478 {
479 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
480 	unsigned long tmp0 = 0, tmp1 = 0;
481 
482 	if (!IS_ENABLED(CONFIG_ARM64)) {
483 		memcpy_toio(fun_base, src, 16);
484 		wmb();
485 		return;
486 	}
487 
488 	asm volatile("ldp %0, %1, %3\n"
489 		     "stp %0, %1, %2\n"
490 		     "dsb sy\n"
491 		     : "=&r" (tmp0),
492 		       "=&r" (tmp1),
493 		       "+Q" (*((char __iomem *)fun_base))
494 		     : "Q" (*((char *)src))
495 		     : "memory");
496 }
497 
498 static int qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
499 		 bool op)
500 {
501 	struct qm_mailbox mailbox;
502 	int ret = 0;
503 
504 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
505 		queue, cmd, (unsigned long long)dma_addr);
506 
507 	mailbox.w0 = cpu_to_le16(cmd |
508 		     (op ? 0x1 << QM_MB_OP_SHIFT : 0) |
509 		     (0x1 << QM_MB_BUSY_SHIFT));
510 	mailbox.queue_num = cpu_to_le16(queue);
511 	mailbox.base_l = cpu_to_le32(lower_32_bits(dma_addr));
512 	mailbox.base_h = cpu_to_le32(upper_32_bits(dma_addr));
513 	mailbox.rsvd = 0;
514 
515 	mutex_lock(&qm->mailbox_lock);
516 
517 	if (unlikely(qm_wait_mb_ready(qm))) {
518 		ret = -EBUSY;
519 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
520 		goto busy_unlock;
521 	}
522 
523 	qm_mb_write(qm, &mailbox);
524 
525 	if (unlikely(qm_wait_mb_ready(qm))) {
526 		ret = -EBUSY;
527 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
528 		goto busy_unlock;
529 	}
530 
531 busy_unlock:
532 	mutex_unlock(&qm->mailbox_lock);
533 
534 	if (ret)
535 		atomic64_inc(&qm->debug.dfx.mb_err_cnt);
536 	return ret;
537 }
538 
539 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
540 {
541 	u64 doorbell;
542 
543 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
544 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
545 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
546 
547 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
548 }
549 
550 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
551 {
552 	u64 doorbell;
553 	u64 dbase;
554 	u16 randata = 0;
555 
556 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
557 		dbase = QM_DOORBELL_SQ_CQ_BASE_V2;
558 	else
559 		dbase = QM_DOORBELL_EQ_AEQ_BASE_V2;
560 
561 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
562 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
563 		   ((u64)index << QM_DB_INDEX_SHIFT_V2)	 |
564 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
565 
566 	writeq(doorbell, qm->io_base + dbase);
567 }
568 
569 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
570 {
571 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
572 		qn, cmd, index);
573 
574 	qm->ops->qm_db(qm, qn, cmd, index, priority);
575 }
576 
577 static int qm_dev_mem_reset(struct hisi_qm *qm)
578 {
579 	u32 val;
580 
581 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
582 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
583 					  val & BIT(0), 10, 1000);
584 }
585 
586 static u32 qm_get_irq_num_v1(struct hisi_qm *qm)
587 {
588 	return QM_IRQ_NUM_V1;
589 }
590 
591 static u32 qm_get_irq_num_v2(struct hisi_qm *qm)
592 {
593 	if (qm->fun_type == QM_HW_PF)
594 		return QM_IRQ_NUM_PF_V2;
595 	else
596 		return QM_IRQ_NUM_VF_V2;
597 }
598 
599 static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe)
600 {
601 	u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
602 
603 	return &qm->qp_array[cqn];
604 }
605 
606 static void qm_cq_head_update(struct hisi_qp *qp)
607 {
608 	if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) {
609 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
610 		qp->qp_status.cq_head = 0;
611 	} else {
612 		qp->qp_status.cq_head++;
613 	}
614 }
615 
616 static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm)
617 {
618 	if (qp->event_cb) {
619 		qp->event_cb(qp);
620 		return;
621 	}
622 
623 	if (qp->req_cb) {
624 		struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
625 
626 		while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
627 			dma_rmb();
628 			qp->req_cb(qp, qp->sqe + qm->sqe_size *
629 				   le16_to_cpu(cqe->sq_head));
630 			qm_cq_head_update(qp);
631 			cqe = qp->cqe + qp->qp_status.cq_head;
632 			qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
633 			      qp->qp_status.cq_head, 0);
634 			atomic_dec(&qp->qp_status.used);
635 		}
636 
637 		/* set c_flag */
638 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
639 		      qp->qp_status.cq_head, 1);
640 	}
641 }
642 
643 static void qm_work_process(struct work_struct *work)
644 {
645 	struct hisi_qm *qm = container_of(work, struct hisi_qm, work);
646 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
647 	struct hisi_qp *qp;
648 	int eqe_num = 0;
649 
650 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
651 		eqe_num++;
652 		qp = qm_to_hisi_qp(qm, eqe);
653 		qm_poll_qp(qp, qm);
654 
655 		if (qm->status.eq_head == QM_Q_DEPTH - 1) {
656 			qm->status.eqc_phase = !qm->status.eqc_phase;
657 			eqe = qm->eqe;
658 			qm->status.eq_head = 0;
659 		} else {
660 			eqe++;
661 			qm->status.eq_head++;
662 		}
663 
664 		if (eqe_num == QM_Q_DEPTH / 2 - 1) {
665 			eqe_num = 0;
666 			qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
667 		}
668 	}
669 
670 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
671 }
672 
673 static irqreturn_t do_qm_irq(int irq, void *data)
674 {
675 	struct hisi_qm *qm = (struct hisi_qm *)data;
676 
677 	/* the workqueue created by device driver of QM */
678 	if (qm->wq)
679 		queue_work(qm->wq, &qm->work);
680 	else
681 		schedule_work(&qm->work);
682 
683 	return IRQ_HANDLED;
684 }
685 
686 static irqreturn_t qm_irq(int irq, void *data)
687 {
688 	struct hisi_qm *qm = data;
689 
690 	if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
691 		return do_qm_irq(irq, data);
692 
693 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
694 	dev_err(&qm->pdev->dev, "invalid int source\n");
695 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
696 
697 	return IRQ_NONE;
698 }
699 
700 static irqreturn_t qm_aeq_irq(int irq, void *data)
701 {
702 	struct hisi_qm *qm = data;
703 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
704 	u32 type;
705 
706 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
707 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
708 		return IRQ_NONE;
709 
710 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
711 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
712 		if (type < ARRAY_SIZE(qm_fifo_overflow))
713 			dev_err(&qm->pdev->dev, "%s overflow\n",
714 				qm_fifo_overflow[type]);
715 		else
716 			dev_err(&qm->pdev->dev, "unknown error type %d\n",
717 				type);
718 
719 		if (qm->status.aeq_head == QM_Q_DEPTH - 1) {
720 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
721 			aeqe = qm->aeqe;
722 			qm->status.aeq_head = 0;
723 		} else {
724 			aeqe++;
725 			qm->status.aeq_head++;
726 		}
727 
728 		qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
729 	}
730 
731 	return IRQ_HANDLED;
732 }
733 
734 static void qm_irq_unregister(struct hisi_qm *qm)
735 {
736 	struct pci_dev *pdev = qm->pdev;
737 
738 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
739 
740 	if (qm->ver == QM_HW_V1)
741 		return;
742 
743 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
744 
745 	if (qm->fun_type == QM_HW_PF)
746 		free_irq(pci_irq_vector(pdev,
747 			 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
748 }
749 
750 static void qm_init_qp_status(struct hisi_qp *qp)
751 {
752 	struct hisi_qp_status *qp_status = &qp->qp_status;
753 
754 	qp_status->sq_tail = 0;
755 	qp_status->cq_head = 0;
756 	qp_status->cqc_phase = true;
757 	atomic_set(&qp_status->flags, 0);
758 }
759 
760 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
761 			    u32 number)
762 {
763 	u64 tmp = 0;
764 
765 	if (number > 0) {
766 		switch (type) {
767 		case SQC_VFT:
768 			if (qm->ver == QM_HW_V1) {
769 				tmp = QM_SQC_VFT_BUF_SIZE	|
770 				      QM_SQC_VFT_SQC_SIZE	|
771 				      QM_SQC_VFT_INDEX_NUMBER	|
772 				      QM_SQC_VFT_VALID		|
773 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
774 			} else {
775 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
776 				      QM_SQC_VFT_VALID |
777 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
778 			}
779 			break;
780 		case CQC_VFT:
781 			if (qm->ver == QM_HW_V1) {
782 				tmp = QM_CQC_VFT_BUF_SIZE	|
783 				      QM_CQC_VFT_SQC_SIZE	|
784 				      QM_CQC_VFT_INDEX_NUMBER	|
785 				      QM_CQC_VFT_VALID;
786 			} else {
787 				tmp = QM_CQC_VFT_VALID;
788 			}
789 			break;
790 		}
791 	}
792 
793 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
794 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
795 }
796 
797 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
798 			     u32 fun_num, u32 base, u32 number)
799 {
800 	unsigned int val;
801 	int ret;
802 
803 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
804 					 val & BIT(0), 10, 1000);
805 	if (ret)
806 		return ret;
807 
808 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
809 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
810 	writel(fun_num, qm->io_base + QM_VFT_CFG);
811 
812 	qm_vft_data_cfg(qm, type, base, number);
813 
814 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
815 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
816 
817 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
818 					  val & BIT(0), 10, 1000);
819 }
820 
821 /* The config should be conducted after qm_dev_mem_reset() */
822 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
823 			      u32 number)
824 {
825 	int ret, i;
826 
827 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
828 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
829 		if (ret)
830 			return ret;
831 	}
832 
833 	return 0;
834 }
835 
836 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
837 {
838 	u64 sqc_vft;
839 	int ret;
840 
841 	ret = qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
842 	if (ret)
843 		return ret;
844 
845 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
846 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
847 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
848 	*number = (QM_SQC_VFT_NUM_MASK_v2 &
849 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
850 
851 	return 0;
852 }
853 
854 static struct hisi_qm *file_to_qm(struct debugfs_file *file)
855 {
856 	struct qm_debug *debug = file->debug;
857 
858 	return container_of(debug, struct hisi_qm, debug);
859 }
860 
861 static u32 current_q_read(struct debugfs_file *file)
862 {
863 	struct hisi_qm *qm = file_to_qm(file);
864 
865 	return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT;
866 }
867 
868 static int current_q_write(struct debugfs_file *file, u32 val)
869 {
870 	struct hisi_qm *qm = file_to_qm(file);
871 	u32 tmp;
872 
873 	if (val >= qm->debug.curr_qm_qp_num)
874 		return -EINVAL;
875 
876 	tmp = val << QM_DFX_QN_SHIFT |
877 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK);
878 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
879 
880 	tmp = val << QM_DFX_QN_SHIFT |
881 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK);
882 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
883 
884 	return 0;
885 }
886 
887 static u32 clear_enable_read(struct debugfs_file *file)
888 {
889 	struct hisi_qm *qm = file_to_qm(file);
890 
891 	return readl(qm->io_base + QM_DFX_CNT_CLR_CE);
892 }
893 
894 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */
895 static int clear_enable_write(struct debugfs_file *file, u32 rd_clr_ctrl)
896 {
897 	struct hisi_qm *qm = file_to_qm(file);
898 
899 	if (rd_clr_ctrl > 1)
900 		return -EINVAL;
901 
902 	writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE);
903 
904 	return 0;
905 }
906 
907 static ssize_t qm_debug_read(struct file *filp, char __user *buf,
908 			     size_t count, loff_t *pos)
909 {
910 	struct debugfs_file *file = filp->private_data;
911 	enum qm_debug_file index = file->index;
912 	char tbuf[QM_DBG_TMP_BUF_LEN];
913 	u32 val;
914 	int ret;
915 
916 	mutex_lock(&file->lock);
917 	switch (index) {
918 	case CURRENT_Q:
919 		val = current_q_read(file);
920 		break;
921 	case CLEAR_ENABLE:
922 		val = clear_enable_read(file);
923 		break;
924 	default:
925 		mutex_unlock(&file->lock);
926 		return -EINVAL;
927 	}
928 	mutex_unlock(&file->lock);
929 	ret = sprintf(tbuf, "%u\n", val);
930 	return simple_read_from_buffer(buf, count, pos, tbuf, ret);
931 }
932 
933 static ssize_t qm_debug_write(struct file *filp, const char __user *buf,
934 			      size_t count, loff_t *pos)
935 {
936 	struct debugfs_file *file = filp->private_data;
937 	enum qm_debug_file index = file->index;
938 	unsigned long val;
939 	char tbuf[QM_DBG_TMP_BUF_LEN];
940 	int len, ret;
941 
942 	if (*pos != 0)
943 		return 0;
944 
945 	if (count >= QM_DBG_TMP_BUF_LEN)
946 		return -ENOSPC;
947 
948 	len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf,
949 				     count);
950 	if (len < 0)
951 		return len;
952 
953 	tbuf[len] = '\0';
954 	if (kstrtoul(tbuf, 0, &val))
955 		return -EFAULT;
956 
957 	mutex_lock(&file->lock);
958 	switch (index) {
959 	case CURRENT_Q:
960 		ret = current_q_write(file, val);
961 		if (ret)
962 			goto err_input;
963 		break;
964 	case CLEAR_ENABLE:
965 		ret = clear_enable_write(file, val);
966 		if (ret)
967 			goto err_input;
968 		break;
969 	default:
970 		ret = -EINVAL;
971 		goto err_input;
972 	}
973 	mutex_unlock(&file->lock);
974 
975 	return count;
976 
977 err_input:
978 	mutex_unlock(&file->lock);
979 	return ret;
980 }
981 
982 static const struct file_operations qm_debug_fops = {
983 	.owner = THIS_MODULE,
984 	.open = simple_open,
985 	.read = qm_debug_read,
986 	.write = qm_debug_write,
987 };
988 
989 struct qm_dfx_registers {
990 	char  *reg_name;
991 	u64   reg_offset;
992 };
993 
994 #define CNT_CYC_REGS_NUM		10
995 static struct qm_dfx_registers qm_dfx_regs[] = {
996 	/* XXX_CNT are reading clear register */
997 	{"QM_ECC_1BIT_CNT               ",  0x104000ull},
998 	{"QM_ECC_MBIT_CNT               ",  0x104008ull},
999 	{"QM_DFX_MB_CNT                 ",  0x104018ull},
1000 	{"QM_DFX_DB_CNT                 ",  0x104028ull},
1001 	{"QM_DFX_SQE_CNT                ",  0x104038ull},
1002 	{"QM_DFX_CQE_CNT                ",  0x104048ull},
1003 	{"QM_DFX_SEND_SQE_TO_ACC_CNT    ",  0x104050ull},
1004 	{"QM_DFX_WB_SQE_FROM_ACC_CNT    ",  0x104058ull},
1005 	{"QM_DFX_ACC_FINISH_CNT         ",  0x104060ull},
1006 	{"QM_DFX_CQE_ERR_CNT            ",  0x1040b4ull},
1007 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1008 	{"QM_ECC_1BIT_INF               ",  0x104004ull},
1009 	{"QM_ECC_MBIT_INF               ",  0x10400cull},
1010 	{"QM_DFX_ACC_RDY_VLD0           ",  0x1040a0ull},
1011 	{"QM_DFX_ACC_RDY_VLD1           ",  0x1040a4ull},
1012 	{"QM_DFX_AXI_RDY_VLD            ",  0x1040a8ull},
1013 	{"QM_DFX_FF_ST0                 ",  0x1040c8ull},
1014 	{"QM_DFX_FF_ST1                 ",  0x1040ccull},
1015 	{"QM_DFX_FF_ST2                 ",  0x1040d0ull},
1016 	{"QM_DFX_FF_ST3                 ",  0x1040d4ull},
1017 	{"QM_DFX_FF_ST4                 ",  0x1040d8ull},
1018 	{"QM_DFX_FF_ST5                 ",  0x1040dcull},
1019 	{"QM_DFX_FF_ST6                 ",  0x1040e0ull},
1020 	{"QM_IN_IDLE_ST                 ",  0x1040e4ull},
1021 	{ NULL, 0}
1022 };
1023 
1024 static struct qm_dfx_registers qm_vf_dfx_regs[] = {
1025 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1026 	{ NULL, 0}
1027 };
1028 
1029 static int qm_regs_show(struct seq_file *s, void *unused)
1030 {
1031 	struct hisi_qm *qm = s->private;
1032 	struct qm_dfx_registers *regs;
1033 	u32 val;
1034 
1035 	if (qm->fun_type == QM_HW_PF)
1036 		regs = qm_dfx_regs;
1037 	else
1038 		regs = qm_vf_dfx_regs;
1039 
1040 	while (regs->reg_name) {
1041 		val = readl(qm->io_base + regs->reg_offset);
1042 		seq_printf(s, "%s= 0x%08x\n", regs->reg_name, val);
1043 		regs++;
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 static int qm_regs_open(struct inode *inode, struct file *file)
1050 {
1051 	return single_open(file, qm_regs_show, inode->i_private);
1052 }
1053 
1054 static const struct file_operations qm_regs_fops = {
1055 	.owner = THIS_MODULE,
1056 	.open = qm_regs_open,
1057 	.read = seq_read,
1058 	.release = single_release,
1059 };
1060 
1061 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer,
1062 			   size_t count, loff_t *pos)
1063 {
1064 	char buf[QM_DBG_READ_LEN];
1065 	int len;
1066 
1067 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n",
1068 			"Please echo help to cmd to get help information");
1069 
1070 	return simple_read_from_buffer(buffer, count, pos, buf, len);
1071 }
1072 
1073 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1074 			  dma_addr_t *dma_addr)
1075 {
1076 	struct device *dev = &qm->pdev->dev;
1077 	void *ctx_addr;
1078 
1079 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1080 	if (!ctx_addr)
1081 		return ERR_PTR(-ENOMEM);
1082 
1083 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1084 	if (dma_mapping_error(dev, *dma_addr)) {
1085 		dev_err(dev, "DMA mapping error!\n");
1086 		kfree(ctx_addr);
1087 		return ERR_PTR(-ENOMEM);
1088 	}
1089 
1090 	return ctx_addr;
1091 }
1092 
1093 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1094 			const void *ctx_addr, dma_addr_t *dma_addr)
1095 {
1096 	struct device *dev = &qm->pdev->dev;
1097 
1098 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1099 	kfree(ctx_addr);
1100 }
1101 
1102 static int dump_show(struct hisi_qm *qm, void *info,
1103 		     unsigned int info_size, char *info_name)
1104 {
1105 	struct device *dev = &qm->pdev->dev;
1106 	u8 *info_buf, *info_curr = info;
1107 	u32 i;
1108 #define BYTE_PER_DW	4
1109 
1110 	info_buf = kzalloc(info_size, GFP_KERNEL);
1111 	if (!info_buf)
1112 		return -ENOMEM;
1113 
1114 	for (i = 0; i < info_size; i++, info_curr++) {
1115 		if (i % BYTE_PER_DW == 0)
1116 			info_buf[i + 3UL] = *info_curr;
1117 		else if (i % BYTE_PER_DW == 1)
1118 			info_buf[i + 1UL] = *info_curr;
1119 		else if (i % BYTE_PER_DW == 2)
1120 			info_buf[i - 1] = *info_curr;
1121 		else if (i % BYTE_PER_DW == 3)
1122 			info_buf[i - 3] = *info_curr;
1123 	}
1124 
1125 	dev_info(dev, "%s DUMP\n", info_name);
1126 	for (i = 0; i < info_size; i += BYTE_PER_DW) {
1127 		pr_info("DW%d: %02X%02X %02X%02X\n", i / BYTE_PER_DW,
1128 			info_buf[i], info_buf[i + 1UL],
1129 			info_buf[i + 2UL], info_buf[i + 3UL]);
1130 	}
1131 
1132 	kfree(info_buf);
1133 
1134 	return 0;
1135 }
1136 
1137 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1138 {
1139 	return qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1140 }
1141 
1142 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1143 {
1144 	return qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1145 }
1146 
1147 static int qm_sqc_dump(struct hisi_qm *qm, const char *s)
1148 {
1149 	struct device *dev = &qm->pdev->dev;
1150 	struct qm_sqc *sqc, *sqc_curr;
1151 	dma_addr_t sqc_dma;
1152 	u32 qp_id;
1153 	int ret;
1154 
1155 	if (!s)
1156 		return -EINVAL;
1157 
1158 	ret = kstrtou32(s, 0, &qp_id);
1159 	if (ret || qp_id >= qm->qp_num) {
1160 		dev_err(dev, "Please input qp num (0-%d)", qm->qp_num - 1);
1161 		return -EINVAL;
1162 	}
1163 
1164 	sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma);
1165 	if (IS_ERR(sqc))
1166 		return PTR_ERR(sqc);
1167 
1168 	ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id);
1169 	if (ret) {
1170 		down_read(&qm->qps_lock);
1171 		if (qm->sqc) {
1172 			sqc_curr = qm->sqc + qp_id;
1173 
1174 			ret = dump_show(qm, sqc_curr, sizeof(*sqc),
1175 					"SOFT SQC");
1176 			if (ret)
1177 				dev_info(dev, "Show soft sqc failed!\n");
1178 		}
1179 		up_read(&qm->qps_lock);
1180 
1181 		goto err_free_ctx;
1182 	}
1183 
1184 	ret = dump_show(qm, sqc, sizeof(*sqc), "SQC");
1185 	if (ret)
1186 		dev_info(dev, "Show hw sqc failed!\n");
1187 
1188 err_free_ctx:
1189 	qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma);
1190 	return ret;
1191 }
1192 
1193 static int qm_cqc_dump(struct hisi_qm *qm, const char *s)
1194 {
1195 	struct device *dev = &qm->pdev->dev;
1196 	struct qm_cqc *cqc, *cqc_curr;
1197 	dma_addr_t cqc_dma;
1198 	u32 qp_id;
1199 	int ret;
1200 
1201 	if (!s)
1202 		return -EINVAL;
1203 
1204 	ret = kstrtou32(s, 0, &qp_id);
1205 	if (ret || qp_id >= qm->qp_num) {
1206 		dev_err(dev, "Please input qp num (0-%d)", qm->qp_num - 1);
1207 		return -EINVAL;
1208 	}
1209 
1210 	cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma);
1211 	if (IS_ERR(cqc))
1212 		return PTR_ERR(cqc);
1213 
1214 	ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id);
1215 	if (ret) {
1216 		down_read(&qm->qps_lock);
1217 		if (qm->cqc) {
1218 			cqc_curr = qm->cqc + qp_id;
1219 
1220 			ret = dump_show(qm, cqc_curr, sizeof(*cqc),
1221 					"SOFT CQC");
1222 			if (ret)
1223 				dev_info(dev, "Show soft cqc failed!\n");
1224 		}
1225 		up_read(&qm->qps_lock);
1226 
1227 		goto err_free_ctx;
1228 	}
1229 
1230 	ret = dump_show(qm, cqc, sizeof(*cqc), "CQC");
1231 	if (ret)
1232 		dev_info(dev, "Show hw cqc failed!\n");
1233 
1234 err_free_ctx:
1235 	qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma);
1236 	return ret;
1237 }
1238 
1239 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size,
1240 			    int cmd, char *name)
1241 {
1242 	struct device *dev = &qm->pdev->dev;
1243 	dma_addr_t xeqc_dma;
1244 	void *xeqc;
1245 	int ret;
1246 
1247 	if (strsep(&s, " ")) {
1248 		dev_err(dev, "Please do not input extra characters!\n");
1249 		return -EINVAL;
1250 	}
1251 
1252 	xeqc = qm_ctx_alloc(qm, size, &xeqc_dma);
1253 	if (IS_ERR(xeqc))
1254 		return PTR_ERR(xeqc);
1255 
1256 	ret = qm_mb(qm, cmd, xeqc_dma, 0, 1);
1257 	if (ret)
1258 		goto err_free_ctx;
1259 
1260 	ret = dump_show(qm, xeqc, size, name);
1261 	if (ret)
1262 		dev_info(dev, "Show hw %s failed!\n", name);
1263 
1264 err_free_ctx:
1265 	qm_ctx_free(qm, size, xeqc, &xeqc_dma);
1266 	return ret;
1267 }
1268 
1269 static int q_dump_param_parse(struct hisi_qm *qm, char *s,
1270 			      u32 *e_id, u32 *q_id)
1271 {
1272 	struct device *dev = &qm->pdev->dev;
1273 	unsigned int qp_num = qm->qp_num;
1274 	char *presult;
1275 	int ret;
1276 
1277 	presult = strsep(&s, " ");
1278 	if (!presult) {
1279 		dev_err(dev, "Please input qp number!\n");
1280 		return -EINVAL;
1281 	}
1282 
1283 	ret = kstrtou32(presult, 0, q_id);
1284 	if (ret || *q_id >= qp_num) {
1285 		dev_err(dev, "Please input qp num (0-%d)", qp_num - 1);
1286 		return -EINVAL;
1287 	}
1288 
1289 	presult = strsep(&s, " ");
1290 	if (!presult) {
1291 		dev_err(dev, "Please input sqe number!\n");
1292 		return -EINVAL;
1293 	}
1294 
1295 	ret = kstrtou32(presult, 0, e_id);
1296 	if (ret || *e_id >= QM_Q_DEPTH) {
1297 		dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1);
1298 		return -EINVAL;
1299 	}
1300 
1301 	if (strsep(&s, " ")) {
1302 		dev_err(dev, "Please do not input extra characters!\n");
1303 		return -EINVAL;
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 static int qm_sq_dump(struct hisi_qm *qm, char *s)
1310 {
1311 	struct device *dev = &qm->pdev->dev;
1312 	void *sqe, *sqe_curr;
1313 	struct hisi_qp *qp;
1314 	u32 qp_id, sqe_id;
1315 	int ret;
1316 
1317 	ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id);
1318 	if (ret)
1319 		return ret;
1320 
1321 	sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL);
1322 	if (!sqe)
1323 		return -ENOMEM;
1324 
1325 	qp = &qm->qp_array[qp_id];
1326 	memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH);
1327 	sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size);
1328 	memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK,
1329 	       qm->debug.sqe_mask_len);
1330 
1331 	ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE");
1332 	if (ret)
1333 		dev_info(dev, "Show sqe failed!\n");
1334 
1335 	kfree(sqe);
1336 
1337 	return ret;
1338 }
1339 
1340 static int qm_cq_dump(struct hisi_qm *qm, char *s)
1341 {
1342 	struct device *dev = &qm->pdev->dev;
1343 	struct qm_cqe *cqe_curr;
1344 	struct hisi_qp *qp;
1345 	u32 qp_id, cqe_id;
1346 	int ret;
1347 
1348 	ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id);
1349 	if (ret)
1350 		return ret;
1351 
1352 	qp = &qm->qp_array[qp_id];
1353 	cqe_curr = qp->cqe + cqe_id;
1354 	ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE");
1355 	if (ret)
1356 		dev_info(dev, "Show cqe failed!\n");
1357 
1358 	return ret;
1359 }
1360 
1361 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s,
1362 			  size_t size, char *name)
1363 {
1364 	struct device *dev = &qm->pdev->dev;
1365 	void *xeqe;
1366 	u32 xeqe_id;
1367 	int ret;
1368 
1369 	if (!s)
1370 		return -EINVAL;
1371 
1372 	ret = kstrtou32(s, 0, &xeqe_id);
1373 	if (ret || xeqe_id >= QM_Q_DEPTH) {
1374 		dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1);
1375 		return -EINVAL;
1376 	}
1377 
1378 	down_read(&qm->qps_lock);
1379 
1380 	if (qm->eqe && !strcmp(name, "EQE")) {
1381 		xeqe = qm->eqe + xeqe_id;
1382 	} else if (qm->aeqe && !strcmp(name, "AEQE")) {
1383 		xeqe = qm->aeqe + xeqe_id;
1384 	} else {
1385 		ret = -EINVAL;
1386 		goto err_unlock;
1387 	}
1388 
1389 	ret = dump_show(qm, xeqe, size, name);
1390 	if (ret)
1391 		dev_info(dev, "Show %s failed!\n", name);
1392 
1393 err_unlock:
1394 	up_read(&qm->qps_lock);
1395 	return ret;
1396 }
1397 
1398 static int qm_dbg_help(struct hisi_qm *qm, char *s)
1399 {
1400 	struct device *dev = &qm->pdev->dev;
1401 
1402 	if (strsep(&s, " ")) {
1403 		dev_err(dev, "Please do not input extra characters!\n");
1404 		return -EINVAL;
1405 	}
1406 
1407 	dev_info(dev, "available commands:\n");
1408 	dev_info(dev, "sqc <num>\n");
1409 	dev_info(dev, "cqc <num>\n");
1410 	dev_info(dev, "eqc\n");
1411 	dev_info(dev, "aeqc\n");
1412 	dev_info(dev, "sq <num> <e>\n");
1413 	dev_info(dev, "cq <num> <e>\n");
1414 	dev_info(dev, "eq <e>\n");
1415 	dev_info(dev, "aeq <e>\n");
1416 
1417 	return 0;
1418 }
1419 
1420 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf)
1421 {
1422 	struct device *dev = &qm->pdev->dev;
1423 	char *presult, *s;
1424 	int ret;
1425 
1426 	s = kstrdup(cmd_buf, GFP_KERNEL);
1427 	if (!s)
1428 		return -ENOMEM;
1429 
1430 	presult = strsep(&s, " ");
1431 	if (!presult) {
1432 		kfree(s);
1433 		return -EINVAL;
1434 	}
1435 
1436 	if (!strcmp(presult, "sqc"))
1437 		ret = qm_sqc_dump(qm, s);
1438 	else if (!strcmp(presult, "cqc"))
1439 		ret = qm_cqc_dump(qm, s);
1440 	else if (!strcmp(presult, "eqc"))
1441 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc),
1442 				       QM_MB_CMD_EQC, "EQC");
1443 	else if (!strcmp(presult, "aeqc"))
1444 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc),
1445 				       QM_MB_CMD_AEQC, "AEQC");
1446 	else if (!strcmp(presult, "sq"))
1447 		ret = qm_sq_dump(qm, s);
1448 	else if (!strcmp(presult, "cq"))
1449 		ret = qm_cq_dump(qm, s);
1450 	else if (!strcmp(presult, "eq"))
1451 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE");
1452 	else if (!strcmp(presult, "aeq"))
1453 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE");
1454 	else if (!strcmp(presult, "help"))
1455 		ret = qm_dbg_help(qm, s);
1456 	else
1457 		ret = -EINVAL;
1458 
1459 	if (ret)
1460 		dev_info(dev, "Please echo help\n");
1461 
1462 	kfree(s);
1463 
1464 	return ret;
1465 }
1466 
1467 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer,
1468 			    size_t count, loff_t *pos)
1469 {
1470 	struct hisi_qm *qm = filp->private_data;
1471 	char *cmd_buf, *cmd_buf_tmp;
1472 	int ret;
1473 
1474 	if (*pos)
1475 		return 0;
1476 
1477 	/* Judge if the instance is being reset. */
1478 	if (unlikely(atomic_read(&qm->status.flags) == QM_STOP))
1479 		return 0;
1480 
1481 	if (count > QM_DBG_WRITE_LEN)
1482 		return -ENOSPC;
1483 
1484 	cmd_buf = kzalloc(count + 1, GFP_KERNEL);
1485 	if (!cmd_buf)
1486 		return -ENOMEM;
1487 
1488 	if (copy_from_user(cmd_buf, buffer, count)) {
1489 		kfree(cmd_buf);
1490 		return -EFAULT;
1491 	}
1492 
1493 	cmd_buf[count] = '\0';
1494 
1495 	cmd_buf_tmp = strchr(cmd_buf, '\n');
1496 	if (cmd_buf_tmp) {
1497 		*cmd_buf_tmp = '\0';
1498 		count = cmd_buf_tmp - cmd_buf + 1;
1499 	}
1500 
1501 	ret = qm_cmd_write_dump(qm, cmd_buf);
1502 	if (ret) {
1503 		kfree(cmd_buf);
1504 		return ret;
1505 	}
1506 
1507 	kfree(cmd_buf);
1508 
1509 	return count;
1510 }
1511 
1512 static const struct file_operations qm_cmd_fops = {
1513 	.owner = THIS_MODULE,
1514 	.open = simple_open,
1515 	.read = qm_cmd_read,
1516 	.write = qm_cmd_write,
1517 };
1518 
1519 static int qm_create_debugfs_file(struct hisi_qm *qm, enum qm_debug_file index)
1520 {
1521 	struct dentry *qm_d = qm->debug.qm_d;
1522 	struct debugfs_file *file = qm->debug.files + index;
1523 
1524 	debugfs_create_file(qm_debug_file_name[index], 0600, qm_d, file,
1525 			    &qm_debug_fops);
1526 
1527 	file->index = index;
1528 	mutex_init(&file->lock);
1529 	file->debug = &qm->debug;
1530 
1531 	return 0;
1532 }
1533 
1534 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1535 {
1536 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1537 }
1538 
1539 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1540 {
1541 	u32 irq_enable = ce | nfe | fe;
1542 	u32 irq_unmask = ~irq_enable;
1543 
1544 	qm->error_mask = ce | nfe | fe;
1545 
1546 	/* clear QM hw residual error source */
1547 	writel(QM_ABNORMAL_INT_SOURCE_CLR,
1548 	       qm->io_base + QM_ABNORMAL_INT_SOURCE);
1549 
1550 	/* configure error type */
1551 	writel(ce, qm->io_base + QM_RAS_CE_ENABLE);
1552 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1553 	writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1554 	writel(fe, qm->io_base + QM_RAS_FE_ENABLE);
1555 
1556 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1557 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1558 }
1559 
1560 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1561 {
1562 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1563 }
1564 
1565 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1566 {
1567 	const struct hisi_qm_hw_error *err;
1568 	struct device *dev = &qm->pdev->dev;
1569 	u32 reg_val, type, vf_num;
1570 	int i;
1571 
1572 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1573 		err = &qm_hw_error[i];
1574 		if (!(err->int_msk & error_status))
1575 			continue;
1576 
1577 		dev_err(dev, "%s [error status=0x%x] found\n",
1578 			err->msg, err->int_msk);
1579 
1580 		if (err->int_msk & QM_DB_TIMEOUT) {
1581 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1582 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1583 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1584 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1585 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
1586 				qm_db_timeout[type], vf_num);
1587 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1588 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1589 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1590 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1591 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1592 
1593 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1594 				dev_err(dev, "qm %s fifo overflow in function %u\n",
1595 					qm_fifo_overflow[type], vf_num);
1596 			else
1597 				dev_err(dev, "unknown error type\n");
1598 		}
1599 	}
1600 }
1601 
1602 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1603 {
1604 	u32 error_status, tmp;
1605 
1606 	/* read err sts */
1607 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1608 	error_status = qm->error_mask & tmp;
1609 
1610 	if (error_status) {
1611 		if (error_status & QM_ECC_MBIT)
1612 			qm->err_status.is_qm_ecc_mbit = true;
1613 
1614 		qm_log_hw_error(qm, error_status);
1615 		if (error_status == QM_DB_RANDOM_INVALID) {
1616 			writel(error_status, qm->io_base +
1617 			       QM_ABNORMAL_INT_SOURCE);
1618 			return ACC_ERR_RECOVERED;
1619 		}
1620 
1621 		return ACC_ERR_NEED_RESET;
1622 	}
1623 
1624 	return ACC_ERR_RECOVERED;
1625 }
1626 
1627 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1628 	.qm_db = qm_db_v1,
1629 	.get_irq_num = qm_get_irq_num_v1,
1630 	.hw_error_init = qm_hw_error_init_v1,
1631 };
1632 
1633 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1634 	.get_vft = qm_get_vft_v2,
1635 	.qm_db = qm_db_v2,
1636 	.get_irq_num = qm_get_irq_num_v2,
1637 	.hw_error_init = qm_hw_error_init_v2,
1638 	.hw_error_uninit = qm_hw_error_uninit_v2,
1639 	.hw_error_handle = qm_hw_error_handle_v2,
1640 };
1641 
1642 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1643 {
1644 	struct hisi_qp_status *qp_status = &qp->qp_status;
1645 	u16 sq_tail = qp_status->sq_tail;
1646 
1647 	if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH))
1648 		return NULL;
1649 
1650 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1651 }
1652 
1653 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1654 {
1655 	struct device *dev = &qm->pdev->dev;
1656 	struct hisi_qp *qp;
1657 	int qp_id;
1658 
1659 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
1660 		return ERR_PTR(-EPERM);
1661 
1662 	if (qm->qp_in_used == qm->qp_num) {
1663 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1664 				     qm->qp_num);
1665 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1666 		return ERR_PTR(-EBUSY);
1667 	}
1668 
1669 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1670 	if (qp_id < 0) {
1671 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1672 				    qm->qp_num);
1673 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1674 		return ERR_PTR(-EBUSY);
1675 	}
1676 
1677 	qp = &qm->qp_array[qp_id];
1678 
1679 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH);
1680 
1681 	qp->event_cb = NULL;
1682 	qp->req_cb = NULL;
1683 	qp->qp_id = qp_id;
1684 	qp->alg_type = alg_type;
1685 	qm->qp_in_used++;
1686 	atomic_set(&qp->qp_status.flags, QP_INIT);
1687 
1688 	return qp;
1689 }
1690 
1691 /**
1692  * hisi_qm_create_qp() - Create a queue pair from qm.
1693  * @qm: The qm we create a qp from.
1694  * @alg_type: Accelerator specific algorithm type in sqc.
1695  *
1696  * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating
1697  * qp memory fails.
1698  */
1699 struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1700 {
1701 	struct hisi_qp *qp;
1702 
1703 	down_write(&qm->qps_lock);
1704 	qp = qm_create_qp_nolock(qm, alg_type);
1705 	up_write(&qm->qps_lock);
1706 
1707 	return qp;
1708 }
1709 EXPORT_SYMBOL_GPL(hisi_qm_create_qp);
1710 
1711 /**
1712  * hisi_qm_release_qp() - Release a qp back to its qm.
1713  * @qp: The qp we want to release.
1714  *
1715  * This function releases the resource of a qp.
1716  */
1717 void hisi_qm_release_qp(struct hisi_qp *qp)
1718 {
1719 	struct hisi_qm *qm = qp->qm;
1720 
1721 	down_write(&qm->qps_lock);
1722 
1723 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
1724 		up_write(&qm->qps_lock);
1725 		return;
1726 	}
1727 
1728 	qm->qp_in_used--;
1729 	idr_remove(&qm->qp_idr, qp->qp_id);
1730 
1731 	up_write(&qm->qps_lock);
1732 }
1733 EXPORT_SYMBOL_GPL(hisi_qm_release_qp);
1734 
1735 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1736 {
1737 	struct hisi_qm *qm = qp->qm;
1738 	struct device *dev = &qm->pdev->dev;
1739 	enum qm_hw_ver ver = qm->ver;
1740 	struct qm_sqc *sqc;
1741 	struct qm_cqc *cqc;
1742 	dma_addr_t sqc_dma;
1743 	dma_addr_t cqc_dma;
1744 	int ret;
1745 
1746 	qm_init_qp_status(qp);
1747 
1748 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
1749 	if (!sqc)
1750 		return -ENOMEM;
1751 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
1752 				 DMA_TO_DEVICE);
1753 	if (dma_mapping_error(dev, sqc_dma)) {
1754 		kfree(sqc);
1755 		return -ENOMEM;
1756 	}
1757 
1758 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
1759 	if (ver == QM_HW_V1) {
1760 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1761 		sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
1762 	} else {
1763 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size));
1764 		sqc->w8 = 0; /* rand_qc */
1765 	}
1766 	sqc->cq_num = cpu_to_le16(qp_id);
1767 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1768 
1769 	ret = qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
1770 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
1771 	kfree(sqc);
1772 	if (ret)
1773 		return ret;
1774 
1775 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
1776 	if (!cqc)
1777 		return -ENOMEM;
1778 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
1779 				 DMA_TO_DEVICE);
1780 	if (dma_mapping_error(dev, cqc_dma)) {
1781 		kfree(cqc);
1782 		return -ENOMEM;
1783 	}
1784 
1785 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
1786 	if (ver == QM_HW_V1) {
1787 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 4));
1788 		cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
1789 	} else {
1790 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(4));
1791 		cqc->w8 = 0;
1792 	}
1793 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
1794 
1795 	ret = qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
1796 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
1797 	kfree(cqc);
1798 
1799 	return ret;
1800 }
1801 
1802 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
1803 {
1804 	struct hisi_qm *qm = qp->qm;
1805 	struct device *dev = &qm->pdev->dev;
1806 	int qp_id = qp->qp_id;
1807 	u32 pasid = arg;
1808 	int ret;
1809 
1810 	if (!qm_qp_avail_state(qm, qp, QP_START))
1811 		return -EPERM;
1812 
1813 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
1814 	if (ret)
1815 		return ret;
1816 
1817 	atomic_set(&qp->qp_status.flags, QP_START);
1818 	dev_dbg(dev, "queue %d started\n", qp_id);
1819 
1820 	return 0;
1821 }
1822 
1823 /**
1824  * hisi_qm_start_qp() - Start a qp into running.
1825  * @qp: The qp we want to start to run.
1826  * @arg: Accelerator specific argument.
1827  *
1828  * After this function, qp can receive request from user. Return 0 if
1829  * successful, Return -EBUSY if failed.
1830  */
1831 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
1832 {
1833 	struct hisi_qm *qm = qp->qm;
1834 	int ret;
1835 
1836 	down_write(&qm->qps_lock);
1837 	ret = qm_start_qp_nolock(qp, arg);
1838 	up_write(&qm->qps_lock);
1839 
1840 	return ret;
1841 }
1842 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
1843 
1844 /**
1845  * Determine whether the queue is cleared by judging the tail pointers of
1846  * sq and cq.
1847  */
1848 static int qm_drain_qp(struct hisi_qp *qp)
1849 {
1850 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
1851 	struct hisi_qm *qm = qp->qm;
1852 	struct device *dev = &qm->pdev->dev;
1853 	struct qm_sqc *sqc;
1854 	struct qm_cqc *cqc;
1855 	dma_addr_t dma_addr;
1856 	int ret = 0, i = 0;
1857 	void *addr;
1858 
1859 	/*
1860 	 * No need to judge if ECC multi-bit error occurs because the
1861 	 * master OOO will be blocked.
1862 	 */
1863 	if (qm->err_status.is_qm_ecc_mbit || qm->err_status.is_dev_ecc_mbit)
1864 		return 0;
1865 
1866 	addr = qm_ctx_alloc(qm, size, &dma_addr);
1867 	if (IS_ERR(addr)) {
1868 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
1869 		return -ENOMEM;
1870 	}
1871 
1872 	while (++i) {
1873 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
1874 		if (ret) {
1875 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
1876 			break;
1877 		}
1878 		sqc = addr;
1879 
1880 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
1881 				      qp->qp_id);
1882 		if (ret) {
1883 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
1884 			break;
1885 		}
1886 		cqc = addr + sizeof(struct qm_sqc);
1887 
1888 		if ((sqc->tail == cqc->tail) &&
1889 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
1890 			break;
1891 
1892 		if (i == MAX_WAIT_COUNTS) {
1893 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
1894 			ret = -EBUSY;
1895 			break;
1896 		}
1897 
1898 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
1899 	}
1900 
1901 	qm_ctx_free(qm, size, addr, &dma_addr);
1902 
1903 	return ret;
1904 }
1905 
1906 static int qm_stop_qp_nolock(struct hisi_qp *qp)
1907 {
1908 	struct device *dev = &qp->qm->pdev->dev;
1909 	int ret;
1910 
1911 	/*
1912 	 * It is allowed to stop and release qp when reset, If the qp is
1913 	 * stopped when reset but still want to be released then, the
1914 	 * is_resetting flag should be set negative so that this qp will not
1915 	 * be restarted after reset.
1916 	 */
1917 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
1918 		qp->is_resetting = false;
1919 		return 0;
1920 	}
1921 
1922 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
1923 		return -EPERM;
1924 
1925 	atomic_set(&qp->qp_status.flags, QP_STOP);
1926 
1927 	ret = qm_drain_qp(qp);
1928 	if (ret)
1929 		dev_err(dev, "Failed to drain out data for stopping!\n");
1930 
1931 	if (qp->qm->wq)
1932 		flush_workqueue(qp->qm->wq);
1933 	else
1934 		flush_work(&qp->qm->work);
1935 
1936 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
1937 
1938 	return 0;
1939 }
1940 
1941 /**
1942  * hisi_qm_stop_qp() - Stop a qp in qm.
1943  * @qp: The qp we want to stop.
1944  *
1945  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
1946  */
1947 int hisi_qm_stop_qp(struct hisi_qp *qp)
1948 {
1949 	int ret;
1950 
1951 	down_write(&qp->qm->qps_lock);
1952 	ret = qm_stop_qp_nolock(qp);
1953 	up_write(&qp->qm->qps_lock);
1954 
1955 	return ret;
1956 }
1957 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
1958 
1959 /**
1960  * hisi_qp_send() - Queue up a task in the hardware queue.
1961  * @qp: The qp in which to put the message.
1962  * @msg: The message.
1963  *
1964  * This function will return -EBUSY if qp is currently full, and -EAGAIN
1965  * if qp related qm is resetting.
1966  *
1967  * Note: This function may run with qm_irq_thread and ACC reset at same time.
1968  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
1969  *       reset may happen, we have no lock here considering performance. This
1970  *       causes current qm_db sending fail or can not receive sended sqe. QM
1971  *       sync/async receive function should handle the error sqe. ACC reset
1972  *       done function should clear used sqe to 0.
1973  */
1974 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
1975 {
1976 	struct hisi_qp_status *qp_status = &qp->qp_status;
1977 	u16 sq_tail = qp_status->sq_tail;
1978 	u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH;
1979 	void *sqe = qm_get_avail_sqe(qp);
1980 
1981 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
1982 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
1983 		     qp->is_resetting)) {
1984 		dev_info(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
1985 		return -EAGAIN;
1986 	}
1987 
1988 	if (!sqe)
1989 		return -EBUSY;
1990 
1991 	memcpy(sqe, msg, qp->qm->sqe_size);
1992 
1993 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
1994 	atomic_inc(&qp->qp_status.used);
1995 	qp_status->sq_tail = sq_tail_next;
1996 
1997 	return 0;
1998 }
1999 EXPORT_SYMBOL_GPL(hisi_qp_send);
2000 
2001 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2002 {
2003 	unsigned int val;
2004 
2005 	if (qm->ver == QM_HW_V1)
2006 		return;
2007 
2008 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2009 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2010 					    val, val & BIT(0), 10, 1000))
2011 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2012 }
2013 
2014 static void qm_qp_event_notifier(struct hisi_qp *qp)
2015 {
2016 	wake_up_interruptible(&qp->uacce_q->wait);
2017 }
2018 
2019 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2020 {
2021 	return hisi_qm_get_free_qp_num(uacce->priv);
2022 }
2023 
2024 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2025 				   unsigned long arg,
2026 				   struct uacce_queue *q)
2027 {
2028 	struct hisi_qm *qm = uacce->priv;
2029 	struct hisi_qp *qp;
2030 	u8 alg_type = 0;
2031 
2032 	qp = hisi_qm_create_qp(qm, alg_type);
2033 	if (IS_ERR(qp))
2034 		return PTR_ERR(qp);
2035 
2036 	q->priv = qp;
2037 	q->uacce = uacce;
2038 	qp->uacce_q = q;
2039 	qp->event_cb = qm_qp_event_notifier;
2040 	qp->pasid = arg;
2041 
2042 	return 0;
2043 }
2044 
2045 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2046 {
2047 	struct hisi_qp *qp = q->priv;
2048 
2049 	hisi_qm_cache_wb(qp->qm);
2050 	hisi_qm_release_qp(qp);
2051 }
2052 
2053 /* map sq/cq/doorbell to user space */
2054 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2055 			      struct vm_area_struct *vma,
2056 			      struct uacce_qfile_region *qfr)
2057 {
2058 	struct hisi_qp *qp = q->priv;
2059 	struct hisi_qm *qm = qp->qm;
2060 	size_t sz = vma->vm_end - vma->vm_start;
2061 	struct pci_dev *pdev = qm->pdev;
2062 	struct device *dev = &pdev->dev;
2063 	unsigned long vm_pgoff;
2064 	int ret;
2065 
2066 	switch (qfr->type) {
2067 	case UACCE_QFRT_MMIO:
2068 		if (qm->ver == QM_HW_V1) {
2069 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2070 				return -EINVAL;
2071 		} else {
2072 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2073 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2074 				return -EINVAL;
2075 		}
2076 
2077 		vma->vm_flags |= VM_IO;
2078 
2079 		return remap_pfn_range(vma, vma->vm_start,
2080 				       qm->phys_base >> PAGE_SHIFT,
2081 				       sz, pgprot_noncached(vma->vm_page_prot));
2082 	case UACCE_QFRT_DUS:
2083 		if (sz != qp->qdma.size)
2084 			return -EINVAL;
2085 
2086 		/*
2087 		 * dma_mmap_coherent() requires vm_pgoff as 0
2088 		 * restore vm_pfoff to initial value for mmap()
2089 		 */
2090 		vm_pgoff = vma->vm_pgoff;
2091 		vma->vm_pgoff = 0;
2092 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2093 					qp->qdma.dma, sz);
2094 		vma->vm_pgoff = vm_pgoff;
2095 		return ret;
2096 
2097 	default:
2098 		return -EINVAL;
2099 	}
2100 }
2101 
2102 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2103 {
2104 	struct hisi_qp *qp = q->priv;
2105 
2106 	return hisi_qm_start_qp(qp, qp->pasid);
2107 }
2108 
2109 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2110 {
2111 	hisi_qm_stop_qp(q->priv);
2112 }
2113 
2114 static int qm_set_sqctype(struct uacce_queue *q, u16 type)
2115 {
2116 	struct hisi_qm *qm = q->uacce->priv;
2117 	struct hisi_qp *qp = q->priv;
2118 
2119 	down_write(&qm->qps_lock);
2120 	qp->alg_type = type;
2121 	up_write(&qm->qps_lock);
2122 
2123 	return 0;
2124 }
2125 
2126 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2127 				unsigned long arg)
2128 {
2129 	struct hisi_qp *qp = q->priv;
2130 	struct hisi_qp_ctx qp_ctx;
2131 
2132 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2133 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2134 				   sizeof(struct hisi_qp_ctx)))
2135 			return -EFAULT;
2136 
2137 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2138 			return -EINVAL;
2139 
2140 		qm_set_sqctype(q, qp_ctx.qc_type);
2141 		qp_ctx.id = qp->qp_id;
2142 
2143 		if (copy_to_user((void __user *)arg, &qp_ctx,
2144 				 sizeof(struct hisi_qp_ctx)))
2145 			return -EFAULT;
2146 	} else {
2147 		return -EINVAL;
2148 	}
2149 
2150 	return 0;
2151 }
2152 
2153 static const struct uacce_ops uacce_qm_ops = {
2154 	.get_available_instances = hisi_qm_get_available_instances,
2155 	.get_queue = hisi_qm_uacce_get_queue,
2156 	.put_queue = hisi_qm_uacce_put_queue,
2157 	.start_queue = hisi_qm_uacce_start_queue,
2158 	.stop_queue = hisi_qm_uacce_stop_queue,
2159 	.mmap = hisi_qm_uacce_mmap,
2160 	.ioctl = hisi_qm_uacce_ioctl,
2161 };
2162 
2163 static int qm_alloc_uacce(struct hisi_qm *qm)
2164 {
2165 	struct pci_dev *pdev = qm->pdev;
2166 	struct uacce_device *uacce;
2167 	unsigned long mmio_page_nr;
2168 	unsigned long dus_page_nr;
2169 	struct uacce_interface interface = {
2170 		.flags = UACCE_DEV_SVA,
2171 		.ops = &uacce_qm_ops,
2172 	};
2173 	int ret;
2174 
2175 	ret = strscpy(interface.name, pdev->driver->name,
2176 		      sizeof(interface.name));
2177 	if (ret < 0)
2178 		return -ENAMETOOLONG;
2179 
2180 	uacce = uacce_alloc(&pdev->dev, &interface);
2181 	if (IS_ERR(uacce))
2182 		return PTR_ERR(uacce);
2183 
2184 	if (uacce->flags & UACCE_DEV_SVA) {
2185 		qm->use_sva = true;
2186 	} else {
2187 		/* only consider sva case */
2188 		uacce_remove(uacce);
2189 		qm->uacce = NULL;
2190 		return -EINVAL;
2191 	}
2192 
2193 	uacce->is_vf = pdev->is_virtfn;
2194 	uacce->priv = qm;
2195 	uacce->algs = qm->algs;
2196 
2197 	if (qm->ver == QM_HW_V1) {
2198 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2199 		uacce->api_ver = HISI_QM_API_VER_BASE;
2200 	} else {
2201 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2202 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2203 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2204 	}
2205 
2206 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH +
2207 		       sizeof(struct qm_cqe) * QM_Q_DEPTH) >> PAGE_SHIFT;
2208 
2209 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2210 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2211 
2212 	qm->uacce = uacce;
2213 
2214 	return 0;
2215 }
2216 
2217 /**
2218  * hisi_qm_get_free_qp_num() - Get free number of qp in qm.
2219  * @qm: The qm which want to get free qp.
2220  *
2221  * This function return free number of qp in qm.
2222  */
2223 int hisi_qm_get_free_qp_num(struct hisi_qm *qm)
2224 {
2225 	int ret;
2226 
2227 	down_read(&qm->qps_lock);
2228 	ret = qm->qp_num - qm->qp_in_used;
2229 	up_read(&qm->qps_lock);
2230 
2231 	return ret;
2232 }
2233 EXPORT_SYMBOL_GPL(hisi_qm_get_free_qp_num);
2234 
2235 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2236 {
2237 	struct device *dev = &qm->pdev->dev;
2238 	struct qm_dma *qdma;
2239 	int i;
2240 
2241 	for (i = num - 1; i >= 0; i--) {
2242 		qdma = &qm->qp_array[i].qdma;
2243 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2244 	}
2245 
2246 	kfree(qm->qp_array);
2247 }
2248 
2249 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id)
2250 {
2251 	struct device *dev = &qm->pdev->dev;
2252 	size_t off = qm->sqe_size * QM_Q_DEPTH;
2253 	struct hisi_qp *qp;
2254 
2255 	qp = &qm->qp_array[id];
2256 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2257 					 GFP_KERNEL);
2258 	if (!qp->qdma.va)
2259 		return -ENOMEM;
2260 
2261 	qp->sqe = qp->qdma.va;
2262 	qp->sqe_dma = qp->qdma.dma;
2263 	qp->cqe = qp->qdma.va + off;
2264 	qp->cqe_dma = qp->qdma.dma + off;
2265 	qp->qdma.size = dma_size;
2266 	qp->qm = qm;
2267 	qp->qp_id = id;
2268 
2269 	return 0;
2270 }
2271 
2272 static int hisi_qm_memory_init(struct hisi_qm *qm)
2273 {
2274 	struct device *dev = &qm->pdev->dev;
2275 	size_t qp_dma_size, off = 0;
2276 	int i, ret = 0;
2277 
2278 #define QM_INIT_BUF(qm, type, num) do { \
2279 	(qm)->type = ((qm)->qdma.va + (off)); \
2280 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
2281 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
2282 } while (0)
2283 
2284 	idr_init(&qm->qp_idr);
2285 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_Q_DEPTH) +
2286 			QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) +
2287 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
2288 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
2289 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
2290 					 GFP_ATOMIC);
2291 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
2292 	if (!qm->qdma.va)
2293 		return -ENOMEM;
2294 
2295 	QM_INIT_BUF(qm, eqe, QM_Q_DEPTH);
2296 	QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH);
2297 	QM_INIT_BUF(qm, sqc, qm->qp_num);
2298 	QM_INIT_BUF(qm, cqc, qm->qp_num);
2299 
2300 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
2301 	if (!qm->qp_array) {
2302 		ret = -ENOMEM;
2303 		goto err_alloc_qp_array;
2304 	}
2305 
2306 	/* one more page for device or qp statuses */
2307 	qp_dma_size = qm->sqe_size * QM_Q_DEPTH +
2308 		      sizeof(struct qm_cqe) * QM_Q_DEPTH;
2309 	qp_dma_size = PAGE_ALIGN(qp_dma_size);
2310 	for (i = 0; i < qm->qp_num; i++) {
2311 		ret = hisi_qp_memory_init(qm, qp_dma_size, i);
2312 		if (ret)
2313 			goto err_init_qp_mem;
2314 
2315 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
2316 	}
2317 
2318 	return ret;
2319 
2320 err_init_qp_mem:
2321 	hisi_qp_memory_uninit(qm, i);
2322 err_alloc_qp_array:
2323 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
2324 
2325 	return ret;
2326 }
2327 
2328 static void hisi_qm_pre_init(struct hisi_qm *qm)
2329 {
2330 	struct pci_dev *pdev = qm->pdev;
2331 
2332 	if (qm->ver == QM_HW_V1)
2333 		qm->ops = &qm_hw_ops_v1;
2334 	else
2335 		qm->ops = &qm_hw_ops_v2;
2336 
2337 	pci_set_drvdata(pdev, qm);
2338 	mutex_init(&qm->mailbox_lock);
2339 	init_rwsem(&qm->qps_lock);
2340 	qm->qp_in_used = 0;
2341 }
2342 
2343 /**
2344  * hisi_qm_uninit() - Uninitialize qm.
2345  * @qm: The qm needed uninit.
2346  *
2347  * This function uninits qm related device resources.
2348  */
2349 void hisi_qm_uninit(struct hisi_qm *qm)
2350 {
2351 	struct pci_dev *pdev = qm->pdev;
2352 	struct device *dev = &pdev->dev;
2353 
2354 	down_write(&qm->qps_lock);
2355 
2356 	if (!qm_avail_state(qm, QM_CLOSE)) {
2357 		up_write(&qm->qps_lock);
2358 		return;
2359 	}
2360 
2361 	uacce_remove(qm->uacce);
2362 	qm->uacce = NULL;
2363 
2364 	hisi_qp_memory_uninit(qm, qm->qp_num);
2365 	idr_destroy(&qm->qp_idr);
2366 
2367 	if (qm->qdma.va) {
2368 		hisi_qm_cache_wb(qm);
2369 		dma_free_coherent(dev, qm->qdma.size,
2370 				  qm->qdma.va, qm->qdma.dma);
2371 		memset(&qm->qdma, 0, sizeof(qm->qdma));
2372 	}
2373 
2374 	qm_irq_unregister(qm);
2375 	pci_free_irq_vectors(pdev);
2376 	iounmap(qm->io_base);
2377 	pci_release_mem_regions(pdev);
2378 	pci_disable_device(pdev);
2379 
2380 	up_write(&qm->qps_lock);
2381 }
2382 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2383 
2384 /**
2385  * hisi_qm_get_vft() - Get vft from a qm.
2386  * @qm: The qm we want to get its vft.
2387  * @base: The base number of queue in vft.
2388  * @number: The number of queues in vft.
2389  *
2390  * We can allocate multiple queues to a qm by configuring virtual function
2391  * table. We get related configures by this function. Normally, we call this
2392  * function in VF driver to get the queue information.
2393  *
2394  * qm hw v1 does not support this interface.
2395  */
2396 int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2397 {
2398 	if (!base || !number)
2399 		return -EINVAL;
2400 
2401 	if (!qm->ops->get_vft) {
2402 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2403 		return -EINVAL;
2404 	}
2405 
2406 	return qm->ops->get_vft(qm, base, number);
2407 }
2408 EXPORT_SYMBOL_GPL(hisi_qm_get_vft);
2409 
2410 /**
2411  * This function is alway called in PF driver, it is used to assign queues
2412  * among PF and VFs.
2413  *
2414  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2415  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2416  * (VF function number 0x2)
2417  */
2418 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2419 		    u32 number)
2420 {
2421 	u32 max_q_num = qm->ctrl_qp_num;
2422 
2423 	if (base >= max_q_num || number > max_q_num ||
2424 	    (base + number) > max_q_num)
2425 		return -EINVAL;
2426 
2427 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2428 }
2429 
2430 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2431 {
2432 	struct hisi_qm_status *status = &qm->status;
2433 
2434 	status->eq_head = 0;
2435 	status->aeq_head = 0;
2436 	status->eqc_phase = true;
2437 	status->aeqc_phase = true;
2438 }
2439 
2440 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
2441 {
2442 	struct device *dev = &qm->pdev->dev;
2443 	struct qm_eqc *eqc;
2444 	struct qm_aeqc *aeqc;
2445 	dma_addr_t eqc_dma;
2446 	dma_addr_t aeqc_dma;
2447 	int ret;
2448 
2449 	qm_init_eq_aeq_status(qm);
2450 
2451 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
2452 	if (!eqc)
2453 		return -ENOMEM;
2454 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
2455 				 DMA_TO_DEVICE);
2456 	if (dma_mapping_error(dev, eqc_dma)) {
2457 		kfree(eqc);
2458 		return -ENOMEM;
2459 	}
2460 
2461 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
2462 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
2463 	if (qm->ver == QM_HW_V1)
2464 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
2465 	eqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
2466 	ret = qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
2467 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
2468 	kfree(eqc);
2469 	if (ret)
2470 		return ret;
2471 
2472 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
2473 	if (!aeqc)
2474 		return -ENOMEM;
2475 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
2476 				  DMA_TO_DEVICE);
2477 	if (dma_mapping_error(dev, aeqc_dma)) {
2478 		kfree(aeqc);
2479 		return -ENOMEM;
2480 	}
2481 
2482 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
2483 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
2484 	aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
2485 
2486 	ret = qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
2487 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
2488 	kfree(aeqc);
2489 
2490 	return ret;
2491 }
2492 
2493 static int __hisi_qm_start(struct hisi_qm *qm)
2494 {
2495 	int ret;
2496 
2497 	WARN_ON(!qm->qdma.dma);
2498 
2499 	if (qm->fun_type == QM_HW_PF) {
2500 		ret = qm_dev_mem_reset(qm);
2501 		if (ret)
2502 			return ret;
2503 
2504 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
2505 		if (ret)
2506 			return ret;
2507 	}
2508 
2509 	ret = qm_eq_ctx_cfg(qm);
2510 	if (ret)
2511 		return ret;
2512 
2513 	ret = qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
2514 	if (ret)
2515 		return ret;
2516 
2517 	ret = qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
2518 	if (ret)
2519 		return ret;
2520 
2521 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
2522 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
2523 
2524 	return 0;
2525 }
2526 
2527 /**
2528  * hisi_qm_start() - start qm
2529  * @qm: The qm to be started.
2530  *
2531  * This function starts a qm, then we can allocate qp from this qm.
2532  */
2533 int hisi_qm_start(struct hisi_qm *qm)
2534 {
2535 	struct device *dev = &qm->pdev->dev;
2536 	int ret = 0;
2537 
2538 	down_write(&qm->qps_lock);
2539 
2540 	if (!qm_avail_state(qm, QM_START)) {
2541 		up_write(&qm->qps_lock);
2542 		return -EPERM;
2543 	}
2544 
2545 	dev_dbg(dev, "qm start with %d queue pairs\n", qm->qp_num);
2546 
2547 	if (!qm->qp_num) {
2548 		dev_err(dev, "qp_num should not be 0\n");
2549 		ret = -EINVAL;
2550 		goto err_unlock;
2551 	}
2552 
2553 	ret = __hisi_qm_start(qm);
2554 	if (!ret)
2555 		atomic_set(&qm->status.flags, QM_START);
2556 
2557 err_unlock:
2558 	up_write(&qm->qps_lock);
2559 	return ret;
2560 }
2561 EXPORT_SYMBOL_GPL(hisi_qm_start);
2562 
2563 static int qm_restart(struct hisi_qm *qm)
2564 {
2565 	struct device *dev = &qm->pdev->dev;
2566 	struct hisi_qp *qp;
2567 	int ret, i;
2568 
2569 	ret = hisi_qm_start(qm);
2570 	if (ret < 0)
2571 		return ret;
2572 
2573 	down_write(&qm->qps_lock);
2574 	for (i = 0; i < qm->qp_num; i++) {
2575 		qp = &qm->qp_array[i];
2576 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
2577 		    qp->is_resetting == true) {
2578 			ret = qm_start_qp_nolock(qp, 0);
2579 			if (ret < 0) {
2580 				dev_err(dev, "Failed to start qp%d!\n", i);
2581 
2582 				up_write(&qm->qps_lock);
2583 				return ret;
2584 			}
2585 			qp->is_resetting = false;
2586 		}
2587 	}
2588 	up_write(&qm->qps_lock);
2589 
2590 	return 0;
2591 }
2592 
2593 /* Stop started qps in reset flow */
2594 static int qm_stop_started_qp(struct hisi_qm *qm)
2595 {
2596 	struct device *dev = &qm->pdev->dev;
2597 	struct hisi_qp *qp;
2598 	int i, ret;
2599 
2600 	for (i = 0; i < qm->qp_num; i++) {
2601 		qp = &qm->qp_array[i];
2602 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
2603 			qp->is_resetting = true;
2604 			ret = qm_stop_qp_nolock(qp);
2605 			if (ret < 0) {
2606 				dev_err(dev, "Failed to stop qp%d!\n", i);
2607 				return ret;
2608 			}
2609 		}
2610 	}
2611 
2612 	return 0;
2613 }
2614 
2615 /**
2616  * This function clears all queues memory in a qm. Reset of accelerator can
2617  * use this to clear queues.
2618  */
2619 static void qm_clear_queues(struct hisi_qm *qm)
2620 {
2621 	struct hisi_qp *qp;
2622 	int i;
2623 
2624 	for (i = 0; i < qm->qp_num; i++) {
2625 		qp = &qm->qp_array[i];
2626 		if (qp->is_resetting)
2627 			memset(qp->qdma.va, 0, qp->qdma.size);
2628 	}
2629 
2630 	memset(qm->qdma.va, 0, qm->qdma.size);
2631 }
2632 
2633 /**
2634  * hisi_qm_stop() - Stop a qm.
2635  * @qm: The qm which will be stopped.
2636  *
2637  * This function stops qm and its qps, then qm can not accept request.
2638  * Related resources are not released at this state, we can use hisi_qm_start
2639  * to let qm start again.
2640  */
2641 int hisi_qm_stop(struct hisi_qm *qm)
2642 {
2643 	struct device *dev = &qm->pdev->dev;
2644 	int ret = 0;
2645 
2646 	down_write(&qm->qps_lock);
2647 
2648 	if (!qm_avail_state(qm, QM_STOP)) {
2649 		ret = -EPERM;
2650 		goto err_unlock;
2651 	}
2652 
2653 	if (qm->status.stop_reason == QM_SOFT_RESET ||
2654 	    qm->status.stop_reason == QM_FLR) {
2655 		ret = qm_stop_started_qp(qm);
2656 		if (ret < 0) {
2657 			dev_err(dev, "Failed to stop started qp!\n");
2658 			goto err_unlock;
2659 		}
2660 	}
2661 
2662 	/* Mask eq and aeq irq */
2663 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
2664 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
2665 
2666 	if (qm->fun_type == QM_HW_PF) {
2667 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
2668 		if (ret < 0) {
2669 			dev_err(dev, "Failed to set vft!\n");
2670 			ret = -EBUSY;
2671 			goto err_unlock;
2672 		}
2673 	}
2674 
2675 	qm_clear_queues(qm);
2676 	atomic_set(&qm->status.flags, QM_STOP);
2677 
2678 err_unlock:
2679 	up_write(&qm->qps_lock);
2680 	return ret;
2681 }
2682 EXPORT_SYMBOL_GPL(hisi_qm_stop);
2683 
2684 static ssize_t qm_status_read(struct file *filp, char __user *buffer,
2685 			      size_t count, loff_t *pos)
2686 {
2687 	struct hisi_qm *qm = filp->private_data;
2688 	char buf[QM_DBG_READ_LEN];
2689 	int val, len;
2690 
2691 	val = atomic_read(&qm->status.flags);
2692 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]);
2693 
2694 	return simple_read_from_buffer(buffer, count, pos, buf, len);
2695 }
2696 
2697 static const struct file_operations qm_status_fops = {
2698 	.owner = THIS_MODULE,
2699 	.open = simple_open,
2700 	.read = qm_status_read,
2701 };
2702 
2703 static int qm_debugfs_atomic64_set(void *data, u64 val)
2704 {
2705 	if (val)
2706 		return -EINVAL;
2707 
2708 	atomic64_set((atomic64_t *)data, 0);
2709 
2710 	return 0;
2711 }
2712 
2713 static int qm_debugfs_atomic64_get(void *data, u64 *val)
2714 {
2715 	*val = atomic64_read((atomic64_t *)data);
2716 
2717 	return 0;
2718 }
2719 
2720 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get,
2721 			 qm_debugfs_atomic64_set, "%llu\n");
2722 
2723 /**
2724  * hisi_qm_debug_init() - Initialize qm related debugfs files.
2725  * @qm: The qm for which we want to add debugfs files.
2726  *
2727  * Create qm related debugfs files.
2728  */
2729 int hisi_qm_debug_init(struct hisi_qm *qm)
2730 {
2731 	struct qm_dfx *dfx = &qm->debug.dfx;
2732 	struct dentry *qm_d;
2733 	void *data;
2734 	int i, ret;
2735 
2736 	qm_d = debugfs_create_dir("qm", qm->debug.debug_root);
2737 	qm->debug.qm_d = qm_d;
2738 
2739 	/* only show this in PF */
2740 	if (qm->fun_type == QM_HW_PF)
2741 		for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++)
2742 			if (qm_create_debugfs_file(qm, i)) {
2743 				ret = -ENOENT;
2744 				goto failed_to_create;
2745 			}
2746 
2747 	debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops);
2748 
2749 	debugfs_create_file("cmd", 0444, qm->debug.qm_d, qm, &qm_cmd_fops);
2750 
2751 	debugfs_create_file("status", 0444, qm->debug.qm_d, qm,
2752 			&qm_status_fops);
2753 	for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) {
2754 		data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset);
2755 		debugfs_create_file(qm_dfx_files[i].name,
2756 			0644,
2757 			qm_d,
2758 			data,
2759 			&qm_atomic64_ops);
2760 	}
2761 
2762 	return 0;
2763 
2764 failed_to_create:
2765 	debugfs_remove_recursive(qm_d);
2766 	return ret;
2767 }
2768 EXPORT_SYMBOL_GPL(hisi_qm_debug_init);
2769 
2770 /**
2771  * hisi_qm_debug_regs_clear() - clear qm debug related registers.
2772  * @qm: The qm for which we want to clear its debug registers.
2773  */
2774 void hisi_qm_debug_regs_clear(struct hisi_qm *qm)
2775 {
2776 	struct qm_dfx_registers *regs;
2777 	int i;
2778 
2779 	/* clear current_q */
2780 	writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
2781 	writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
2782 
2783 	/*
2784 	 * these registers are reading and clearing, so clear them after
2785 	 * reading them.
2786 	 */
2787 	writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE);
2788 
2789 	regs = qm_dfx_regs;
2790 	for (i = 0; i < CNT_CYC_REGS_NUM; i++) {
2791 		readl(qm->io_base + regs->reg_offset);
2792 		regs++;
2793 	}
2794 
2795 	writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE);
2796 }
2797 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear);
2798 
2799 static void qm_hw_error_init(struct hisi_qm *qm)
2800 {
2801 	const struct hisi_qm_err_info *err_info = &qm->err_ini->err_info;
2802 
2803 	if (!qm->ops->hw_error_init) {
2804 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
2805 		return;
2806 	}
2807 
2808 	qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe);
2809 }
2810 
2811 static void qm_hw_error_uninit(struct hisi_qm *qm)
2812 {
2813 	if (!qm->ops->hw_error_uninit) {
2814 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
2815 		return;
2816 	}
2817 
2818 	qm->ops->hw_error_uninit(qm);
2819 }
2820 
2821 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
2822 {
2823 	if (!qm->ops->hw_error_handle) {
2824 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
2825 		return ACC_ERR_NONE;
2826 	}
2827 
2828 	return qm->ops->hw_error_handle(qm);
2829 }
2830 
2831 /**
2832  * hisi_qm_dev_err_init() - Initialize device error configuration.
2833  * @qm: The qm for which we want to do error initialization.
2834  *
2835  * Initialize QM and device error related configuration.
2836  */
2837 void hisi_qm_dev_err_init(struct hisi_qm *qm)
2838 {
2839 	if (qm->fun_type == QM_HW_VF)
2840 		return;
2841 
2842 	qm_hw_error_init(qm);
2843 
2844 	if (!qm->err_ini->hw_err_enable) {
2845 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
2846 		return;
2847 	}
2848 	qm->err_ini->hw_err_enable(qm);
2849 }
2850 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
2851 
2852 /**
2853  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
2854  * @qm: The qm for which we want to do error uninitialization.
2855  *
2856  * Uninitialize QM and device error related configuration.
2857  */
2858 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
2859 {
2860 	if (qm->fun_type == QM_HW_VF)
2861 		return;
2862 
2863 	qm_hw_error_uninit(qm);
2864 
2865 	if (!qm->err_ini->hw_err_disable) {
2866 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
2867 		return;
2868 	}
2869 	qm->err_ini->hw_err_disable(qm);
2870 }
2871 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
2872 
2873 /**
2874  * hisi_qm_free_qps() - free multiple queue pairs.
2875  * @qps: The queue pairs need to be freed.
2876  * @qp_num: The num of queue pairs.
2877  */
2878 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
2879 {
2880 	int i;
2881 
2882 	if (!qps || qp_num <= 0)
2883 		return;
2884 
2885 	for (i = qp_num - 1; i >= 0; i--)
2886 		hisi_qm_release_qp(qps[i]);
2887 }
2888 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
2889 
2890 static void free_list(struct list_head *head)
2891 {
2892 	struct hisi_qm_resource *res, *tmp;
2893 
2894 	list_for_each_entry_safe(res, tmp, head, list) {
2895 		list_del(&res->list);
2896 		kfree(res);
2897 	}
2898 }
2899 
2900 static int hisi_qm_sort_devices(int node, struct list_head *head,
2901 				struct hisi_qm_list *qm_list)
2902 {
2903 	struct hisi_qm_resource *res, *tmp;
2904 	struct hisi_qm *qm;
2905 	struct list_head *n;
2906 	struct device *dev;
2907 	int dev_node = 0;
2908 
2909 	list_for_each_entry(qm, &qm_list->list, list) {
2910 		dev = &qm->pdev->dev;
2911 
2912 		if (IS_ENABLED(CONFIG_NUMA)) {
2913 			dev_node = dev_to_node(dev);
2914 			if (dev_node < 0)
2915 				dev_node = 0;
2916 		}
2917 
2918 		res = kzalloc(sizeof(*res), GFP_KERNEL);
2919 		if (!res)
2920 			return -ENOMEM;
2921 
2922 		res->qm = qm;
2923 		res->distance = node_distance(dev_node, node);
2924 		n = head;
2925 		list_for_each_entry(tmp, head, list) {
2926 			if (res->distance < tmp->distance) {
2927 				n = &tmp->list;
2928 				break;
2929 			}
2930 		}
2931 		list_add_tail(&res->list, n);
2932 	}
2933 
2934 	return 0;
2935 }
2936 
2937 /**
2938  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
2939  * @qm_list: The list of all available devices.
2940  * @qp_num: The number of queue pairs need created.
2941  * @alg_type: The algorithm type.
2942  * @node: The numa node.
2943  * @qps: The queue pairs need created.
2944  *
2945  * This function will sort all available device according to numa distance.
2946  * Then try to create all queue pairs from one device, if all devices do
2947  * not meet the requirements will return error.
2948  */
2949 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
2950 			   u8 alg_type, int node, struct hisi_qp **qps)
2951 {
2952 	struct hisi_qm_resource *tmp;
2953 	int ret = -ENODEV;
2954 	LIST_HEAD(head);
2955 	int i;
2956 
2957 	if (!qps || !qm_list || qp_num <= 0)
2958 		return -EINVAL;
2959 
2960 	mutex_lock(&qm_list->lock);
2961 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
2962 		mutex_unlock(&qm_list->lock);
2963 		goto err;
2964 	}
2965 
2966 	list_for_each_entry(tmp, &head, list) {
2967 		for (i = 0; i < qp_num; i++) {
2968 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
2969 			if (IS_ERR(qps[i])) {
2970 				hisi_qm_free_qps(qps, i);
2971 				break;
2972 			}
2973 		}
2974 
2975 		if (i == qp_num) {
2976 			ret = 0;
2977 			break;
2978 		}
2979 	}
2980 
2981 	mutex_unlock(&qm_list->lock);
2982 	if (ret)
2983 		pr_info("Failed to create qps, node[%d], alg[%d], qp[%d]!\n",
2984 			node, alg_type, qp_num);
2985 
2986 err:
2987 	free_list(&head);
2988 	return ret;
2989 }
2990 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
2991 
2992 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
2993 {
2994 	u32 remain_q_num, q_num, i, j;
2995 	u32 q_base = qm->qp_num;
2996 	int ret;
2997 
2998 	if (!num_vfs)
2999 		return -EINVAL;
3000 
3001 	remain_q_num = qm->ctrl_qp_num - qm->qp_num;
3002 
3003 	/* If remain queues not enough, return error. */
3004 	if (qm->ctrl_qp_num < qm->qp_num || remain_q_num < num_vfs)
3005 		return -EINVAL;
3006 
3007 	q_num = remain_q_num / num_vfs;
3008 	for (i = 1; i <= num_vfs; i++) {
3009 		if (i == num_vfs)
3010 			q_num += remain_q_num % num_vfs;
3011 		ret = hisi_qm_set_vft(qm, i, q_base, q_num);
3012 		if (ret) {
3013 			for (j = i; j > 0; j--)
3014 				hisi_qm_set_vft(qm, j, 0, 0);
3015 			return ret;
3016 		}
3017 		q_base += q_num;
3018 	}
3019 
3020 	return 0;
3021 }
3022 
3023 static int qm_clear_vft_config(struct hisi_qm *qm)
3024 {
3025 	int ret;
3026 	u32 i;
3027 
3028 	for (i = 1; i <= qm->vfs_num; i++) {
3029 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3030 		if (ret)
3031 			return ret;
3032 	}
3033 	qm->vfs_num = 0;
3034 
3035 	return 0;
3036 }
3037 
3038 /**
3039  * hisi_qm_sriov_enable() - enable virtual functions
3040  * @pdev: the PCIe device
3041  * @max_vfs: the number of virtual functions to enable
3042  *
3043  * Returns the number of enabled VFs. If there are VFs enabled already or
3044  * max_vfs is more than the total number of device can be enabled, returns
3045  * failure.
3046  */
3047 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3048 {
3049 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3050 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3051 
3052 	total_vfs = pci_sriov_get_totalvfs(pdev);
3053 	pre_existing_vfs = pci_num_vf(pdev);
3054 	if (pre_existing_vfs) {
3055 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3056 			pre_existing_vfs);
3057 		return 0;
3058 	}
3059 
3060 	num_vfs = min_t(int, max_vfs, total_vfs);
3061 	ret = qm_vf_q_assign(qm, num_vfs);
3062 	if (ret) {
3063 		pci_err(pdev, "Can't assign queues for VF!\n");
3064 		return ret;
3065 	}
3066 
3067 	qm->vfs_num = num_vfs;
3068 
3069 	ret = pci_enable_sriov(pdev, num_vfs);
3070 	if (ret) {
3071 		pci_err(pdev, "Can't enable VF!\n");
3072 		qm_clear_vft_config(qm);
3073 		return ret;
3074 	}
3075 
3076 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3077 
3078 	return num_vfs;
3079 }
3080 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3081 
3082 /**
3083  * hisi_qm_sriov_disable - disable virtual functions
3084  * @pdev: the PCI device
3085  *
3086  * Return failure if there are VFs assigned already.
3087  */
3088 int hisi_qm_sriov_disable(struct pci_dev *pdev)
3089 {
3090 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3091 
3092 	if (pci_vfs_assigned(pdev)) {
3093 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3094 		return -EPERM;
3095 	}
3096 
3097 	/* remove in hpre_pci_driver will be called to free VF resources */
3098 	pci_disable_sriov(pdev);
3099 	return qm_clear_vft_config(qm);
3100 }
3101 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3102 
3103 /**
3104  * hisi_qm_sriov_configure - configure the number of VFs
3105  * @pdev: The PCI device
3106  * @num_vfs: The number of VFs need enabled
3107  *
3108  * Enable SR-IOV according to num_vfs, 0 means disable.
3109  */
3110 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3111 {
3112 	if (num_vfs == 0)
3113 		return hisi_qm_sriov_disable(pdev);
3114 	else
3115 		return hisi_qm_sriov_enable(pdev, num_vfs);
3116 }
3117 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3118 
3119 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3120 {
3121 	u32 err_sts;
3122 
3123 	if (!qm->err_ini->get_dev_hw_err_status) {
3124 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3125 		return ACC_ERR_NONE;
3126 	}
3127 
3128 	/* get device hardware error status */
3129 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3130 	if (err_sts) {
3131 		if (err_sts & qm->err_ini->err_info.ecc_2bits_mask)
3132 			qm->err_status.is_dev_ecc_mbit = true;
3133 
3134 		if (!qm->err_ini->log_dev_hw_err) {
3135 			dev_err(&qm->pdev->dev, "Device doesn't support log hw error!\n");
3136 			return ACC_ERR_NEED_RESET;
3137 		}
3138 
3139 		qm->err_ini->log_dev_hw_err(qm, err_sts);
3140 		return ACC_ERR_NEED_RESET;
3141 	}
3142 
3143 	return ACC_ERR_RECOVERED;
3144 }
3145 
3146 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3147 {
3148 	enum acc_err_result qm_ret, dev_ret;
3149 
3150 	/* log qm error */
3151 	qm_ret = qm_hw_error_handle(qm);
3152 
3153 	/* log device error */
3154 	dev_ret = qm_dev_err_handle(qm);
3155 
3156 	return (qm_ret == ACC_ERR_NEED_RESET ||
3157 		dev_ret == ACC_ERR_NEED_RESET) ?
3158 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3159 }
3160 
3161 /**
3162  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3163  * @pdev: The PCI device which need report error.
3164  * @state: The connectivity between CPU and device.
3165  *
3166  * We register this function into PCIe AER handlers, It will report device or
3167  * qm hardware error status when error occur.
3168  */
3169 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3170 					  pci_channel_state_t state)
3171 {
3172 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3173 	enum acc_err_result ret;
3174 
3175 	if (pdev->is_virtfn)
3176 		return PCI_ERS_RESULT_NONE;
3177 
3178 	pci_info(pdev, "PCI error detected, state(=%d)!!\n", state);
3179 	if (state == pci_channel_io_perm_failure)
3180 		return PCI_ERS_RESULT_DISCONNECT;
3181 
3182 	ret = qm_process_dev_error(qm);
3183 	if (ret == ACC_ERR_NEED_RESET)
3184 		return PCI_ERS_RESULT_NEED_RESET;
3185 
3186 	return PCI_ERS_RESULT_RECOVERED;
3187 }
3188 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3189 
3190 static int qm_get_hw_error_status(struct hisi_qm *qm)
3191 {
3192 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
3193 }
3194 
3195 static int qm_check_req_recv(struct hisi_qm *qm)
3196 {
3197 	struct pci_dev *pdev = qm->pdev;
3198 	int ret;
3199 	u32 val;
3200 
3201 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
3202 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3203 					 (val == ACC_VENDOR_ID_VALUE),
3204 					 POLL_PERIOD, POLL_TIMEOUT);
3205 	if (ret) {
3206 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
3207 		return ret;
3208 	}
3209 
3210 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
3211 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3212 					 (val == PCI_VENDOR_ID_HUAWEI),
3213 					 POLL_PERIOD, POLL_TIMEOUT);
3214 	if (ret)
3215 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
3216 
3217 	return ret;
3218 }
3219 
3220 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
3221 {
3222 	struct pci_dev *pdev = qm->pdev;
3223 	u16 cmd;
3224 	int i;
3225 
3226 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3227 	if (set)
3228 		cmd |= PCI_COMMAND_MEMORY;
3229 	else
3230 		cmd &= ~PCI_COMMAND_MEMORY;
3231 
3232 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
3233 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3234 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3235 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
3236 			return 0;
3237 
3238 		udelay(1);
3239 	}
3240 
3241 	return -ETIMEDOUT;
3242 }
3243 
3244 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
3245 {
3246 	struct pci_dev *pdev = qm->pdev;
3247 	u16 sriov_ctrl;
3248 	int pos;
3249 	int i;
3250 
3251 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3252 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3253 	if (set)
3254 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
3255 	else
3256 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
3257 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
3258 
3259 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3260 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3261 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
3262 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
3263 			return 0;
3264 
3265 		udelay(1);
3266 	}
3267 
3268 	return -ETIMEDOUT;
3269 }
3270 
3271 static int qm_set_msi(struct hisi_qm *qm, bool set)
3272 {
3273 	struct pci_dev *pdev = qm->pdev;
3274 
3275 	if (set) {
3276 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
3277 				       0);
3278 	} else {
3279 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
3280 				       ACC_PEH_MSI_DISABLE);
3281 		if (qm->err_status.is_qm_ecc_mbit ||
3282 		    qm->err_status.is_dev_ecc_mbit)
3283 			return 0;
3284 
3285 		mdelay(1);
3286 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
3287 			return -EFAULT;
3288 	}
3289 
3290 	return 0;
3291 }
3292 
3293 static int qm_vf_reset_prepare(struct hisi_qm *qm)
3294 {
3295 	struct hisi_qm_list *qm_list = qm->qm_list;
3296 	int stop_reason = qm->status.stop_reason;
3297 	struct pci_dev *pdev = qm->pdev;
3298 	struct pci_dev *virtfn;
3299 	struct hisi_qm *vf_qm;
3300 	int ret = 0;
3301 
3302 	mutex_lock(&qm_list->lock);
3303 	list_for_each_entry(vf_qm, &qm_list->list, list) {
3304 		virtfn = vf_qm->pdev;
3305 		if (virtfn == pdev)
3306 			continue;
3307 
3308 		if (pci_physfn(virtfn) == pdev) {
3309 			vf_qm->status.stop_reason = stop_reason;
3310 			ret = hisi_qm_stop(vf_qm);
3311 			if (ret)
3312 				goto stop_fail;
3313 		}
3314 	}
3315 
3316 stop_fail:
3317 	mutex_unlock(&qm_list->lock);
3318 	return ret;
3319 }
3320 
3321 static int qm_reset_prepare_ready(struct hisi_qm *qm)
3322 {
3323 	struct pci_dev *pdev = qm->pdev;
3324 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3325 	int delay = 0;
3326 
3327 	/* All reset requests need to be queued for processing */
3328 	while (test_and_set_bit(QM_DEV_RESET_FLAG, &pf_qm->reset_flag)) {
3329 		msleep(++delay);
3330 		if (delay > QM_RESET_WAIT_TIMEOUT)
3331 			return -EBUSY;
3332 	}
3333 
3334 	return 0;
3335 }
3336 
3337 static int qm_controller_reset_prepare(struct hisi_qm *qm)
3338 {
3339 	struct pci_dev *pdev = qm->pdev;
3340 	int ret;
3341 
3342 	ret = qm_reset_prepare_ready(qm);
3343 	if (ret) {
3344 		pci_err(pdev, "Controller reset not ready!\n");
3345 		return ret;
3346 	}
3347 
3348 	if (qm->vfs_num) {
3349 		ret = qm_vf_reset_prepare(qm);
3350 		if (ret) {
3351 			pci_err(pdev, "Fails to stop VFs!\n");
3352 			return ret;
3353 		}
3354 	}
3355 
3356 	qm->status.stop_reason = QM_SOFT_RESET;
3357 	ret = hisi_qm_stop(qm);
3358 	if (ret) {
3359 		pci_err(pdev, "Fails to stop QM!\n");
3360 		return ret;
3361 	}
3362 
3363 	return 0;
3364 }
3365 
3366 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
3367 {
3368 	u32 nfe_enb = 0;
3369 
3370 	if (!qm->err_status.is_dev_ecc_mbit &&
3371 	    qm->err_status.is_qm_ecc_mbit &&
3372 	    qm->err_ini->close_axi_master_ooo) {
3373 
3374 		qm->err_ini->close_axi_master_ooo(qm);
3375 
3376 	} else if (qm->err_status.is_dev_ecc_mbit &&
3377 		   !qm->err_status.is_qm_ecc_mbit &&
3378 		   !qm->err_ini->close_axi_master_ooo) {
3379 
3380 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
3381 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
3382 		       qm->io_base + QM_RAS_NFE_ENABLE);
3383 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
3384 	}
3385 }
3386 
3387 static int qm_soft_reset(struct hisi_qm *qm)
3388 {
3389 	struct pci_dev *pdev = qm->pdev;
3390 	int ret;
3391 	u32 val;
3392 
3393 	/* Ensure all doorbells and mailboxes received by QM */
3394 	ret = qm_check_req_recv(qm);
3395 	if (ret)
3396 		return ret;
3397 
3398 	if (qm->vfs_num) {
3399 		ret = qm_set_vf_mse(qm, false);
3400 		if (ret) {
3401 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
3402 			return ret;
3403 		}
3404 	}
3405 
3406 	ret = qm_set_msi(qm, false);
3407 	if (ret) {
3408 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
3409 		return ret;
3410 	}
3411 
3412 	qm_dev_ecc_mbit_handle(qm);
3413 
3414 	/* OOO register set and check */
3415 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
3416 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
3417 
3418 	/* If bus lock, reset chip */
3419 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
3420 					 val,
3421 					 (val == ACC_MASTER_TRANS_RETURN_RW),
3422 					 POLL_PERIOD, POLL_TIMEOUT);
3423 	if (ret) {
3424 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
3425 		return ret;
3426 	}
3427 
3428 	ret = qm_set_pf_mse(qm, false);
3429 	if (ret) {
3430 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
3431 		return ret;
3432 	}
3433 
3434 	/* The reset related sub-control registers are not in PCI BAR */
3435 	if (ACPI_HANDLE(&pdev->dev)) {
3436 		unsigned long long value = 0;
3437 		acpi_status s;
3438 
3439 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
3440 					  qm->err_ini->err_info.acpi_rst,
3441 					  NULL, &value);
3442 		if (ACPI_FAILURE(s)) {
3443 			pci_err(pdev, "NO controller reset method!\n");
3444 			return -EIO;
3445 		}
3446 
3447 		if (value) {
3448 			pci_err(pdev, "Reset step %llu failed!\n", value);
3449 			return -EIO;
3450 		}
3451 	} else {
3452 		pci_err(pdev, "No reset method!\n");
3453 		return -EINVAL;
3454 	}
3455 
3456 	return 0;
3457 }
3458 
3459 static int qm_vf_reset_done(struct hisi_qm *qm)
3460 {
3461 	struct hisi_qm_list *qm_list = qm->qm_list;
3462 	struct pci_dev *pdev = qm->pdev;
3463 	struct pci_dev *virtfn;
3464 	struct hisi_qm *vf_qm;
3465 	int ret = 0;
3466 
3467 	mutex_lock(&qm_list->lock);
3468 	list_for_each_entry(vf_qm, &qm_list->list, list) {
3469 		virtfn = vf_qm->pdev;
3470 		if (virtfn == pdev)
3471 			continue;
3472 
3473 		if (pci_physfn(virtfn) == pdev) {
3474 			ret = qm_restart(vf_qm);
3475 			if (ret)
3476 				goto restart_fail;
3477 		}
3478 	}
3479 
3480 restart_fail:
3481 	mutex_unlock(&qm_list->lock);
3482 	return ret;
3483 }
3484 
3485 static int qm_get_dev_err_status(struct hisi_qm *qm)
3486 {
3487 	return qm->err_ini->get_dev_hw_err_status(qm);
3488 }
3489 
3490 static int qm_dev_hw_init(struct hisi_qm *qm)
3491 {
3492 	return qm->err_ini->hw_init(qm);
3493 }
3494 
3495 static void qm_restart_prepare(struct hisi_qm *qm)
3496 {
3497 	u32 value;
3498 
3499 	if (!qm->err_status.is_qm_ecc_mbit &&
3500 	    !qm->err_status.is_dev_ecc_mbit)
3501 		return;
3502 
3503 	/* temporarily close the OOO port used for PEH to write out MSI */
3504 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3505 	writel(value & ~qm->err_ini->err_info.msi_wr_port,
3506 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3507 
3508 	/* clear dev ecc 2bit error source if having */
3509 	value = qm_get_dev_err_status(qm) &
3510 		qm->err_ini->err_info.ecc_2bits_mask;
3511 	if (value && qm->err_ini->clear_dev_hw_err_status)
3512 		qm->err_ini->clear_dev_hw_err_status(qm, value);
3513 
3514 	/* clear QM ecc mbit error source */
3515 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
3516 
3517 	/* clear AM Reorder Buffer ecc mbit source */
3518 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
3519 
3520 	if (qm->err_ini->open_axi_master_ooo)
3521 		qm->err_ini->open_axi_master_ooo(qm);
3522 }
3523 
3524 static void qm_restart_done(struct hisi_qm *qm)
3525 {
3526 	u32 value;
3527 
3528 	if (!qm->err_status.is_qm_ecc_mbit &&
3529 	    !qm->err_status.is_dev_ecc_mbit)
3530 		return;
3531 
3532 	/* open the OOO port for PEH to write out MSI */
3533 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3534 	value |= qm->err_ini->err_info.msi_wr_port;
3535 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3536 
3537 	qm->err_status.is_qm_ecc_mbit = false;
3538 	qm->err_status.is_dev_ecc_mbit = false;
3539 }
3540 
3541 static int qm_controller_reset_done(struct hisi_qm *qm)
3542 {
3543 	struct pci_dev *pdev = qm->pdev;
3544 	int ret;
3545 
3546 	ret = qm_set_msi(qm, true);
3547 	if (ret) {
3548 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
3549 		return ret;
3550 	}
3551 
3552 	ret = qm_set_pf_mse(qm, true);
3553 	if (ret) {
3554 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
3555 		return ret;
3556 	}
3557 
3558 	if (qm->vfs_num) {
3559 		ret = qm_set_vf_mse(qm, true);
3560 		if (ret) {
3561 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
3562 			return ret;
3563 		}
3564 	}
3565 
3566 	ret = qm_dev_hw_init(qm);
3567 	if (ret) {
3568 		pci_err(pdev, "Failed to init device\n");
3569 		return ret;
3570 	}
3571 
3572 	qm_restart_prepare(qm);
3573 
3574 	ret = qm_restart(qm);
3575 	if (ret) {
3576 		pci_err(pdev, "Failed to start QM!\n");
3577 		return ret;
3578 	}
3579 
3580 	if (qm->vfs_num) {
3581 		ret = qm_vf_q_assign(qm, qm->vfs_num);
3582 		if (ret) {
3583 			pci_err(pdev, "Failed to assign queue!\n");
3584 			return ret;
3585 		}
3586 	}
3587 
3588 	ret = qm_vf_reset_done(qm);
3589 	if (ret) {
3590 		pci_err(pdev, "Failed to start VFs!\n");
3591 		return -EPERM;
3592 	}
3593 
3594 	hisi_qm_dev_err_init(qm);
3595 	qm_restart_done(qm);
3596 
3597 	clear_bit(QM_DEV_RESET_FLAG, &qm->reset_flag);
3598 
3599 	return 0;
3600 }
3601 
3602 static int qm_controller_reset(struct hisi_qm *qm)
3603 {
3604 	struct pci_dev *pdev = qm->pdev;
3605 	int ret;
3606 
3607 	pci_info(pdev, "Controller resetting...\n");
3608 
3609 	ret = qm_controller_reset_prepare(qm);
3610 	if (ret)
3611 		return ret;
3612 
3613 	ret = qm_soft_reset(qm);
3614 	if (ret) {
3615 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
3616 		return ret;
3617 	}
3618 
3619 	ret = qm_controller_reset_done(qm);
3620 	if (ret)
3621 		return ret;
3622 
3623 	pci_info(pdev, "Controller reset complete\n");
3624 
3625 	return 0;
3626 }
3627 
3628 /**
3629  * hisi_qm_dev_slot_reset() - slot reset
3630  * @pdev: the PCIe device
3631  *
3632  * This function offers QM relate PCIe device reset interface. Drivers which
3633  * use QM can use this function as slot_reset in its struct pci_error_handlers.
3634  */
3635 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
3636 {
3637 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3638 	int ret;
3639 
3640 	if (pdev->is_virtfn)
3641 		return PCI_ERS_RESULT_RECOVERED;
3642 
3643 	pci_aer_clear_nonfatal_status(pdev);
3644 
3645 	/* reset pcie device controller */
3646 	ret = qm_controller_reset(qm);
3647 	if (ret) {
3648 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
3649 		return PCI_ERS_RESULT_DISCONNECT;
3650 	}
3651 
3652 	return PCI_ERS_RESULT_RECOVERED;
3653 }
3654 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
3655 
3656 /* check the interrupt is ecc-mbit error or not */
3657 static int qm_check_dev_error(struct hisi_qm *qm)
3658 {
3659 	int ret;
3660 
3661 	if (qm->fun_type == QM_HW_VF)
3662 		return 0;
3663 
3664 	ret = qm_get_hw_error_status(qm) & QM_ECC_MBIT;
3665 	if (ret)
3666 		return ret;
3667 
3668 	return (qm_get_dev_err_status(qm) &
3669 		qm->err_ini->err_info.ecc_2bits_mask);
3670 }
3671 
3672 void hisi_qm_reset_prepare(struct pci_dev *pdev)
3673 {
3674 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3675 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3676 	u32 delay = 0;
3677 	int ret;
3678 
3679 	hisi_qm_dev_err_uninit(pf_qm);
3680 
3681 	/*
3682 	 * Check whether there is an ECC mbit error, If it occurs, need to
3683 	 * wait for soft reset to fix it.
3684 	 */
3685 	while (qm_check_dev_error(pf_qm)) {
3686 		msleep(++delay);
3687 		if (delay > QM_RESET_WAIT_TIMEOUT)
3688 			return;
3689 	}
3690 
3691 	ret = qm_reset_prepare_ready(qm);
3692 	if (ret) {
3693 		pci_err(pdev, "FLR not ready!\n");
3694 		return;
3695 	}
3696 
3697 	if (qm->vfs_num) {
3698 		ret = qm_vf_reset_prepare(qm);
3699 		if (ret) {
3700 			pci_err(pdev, "Failed to prepare reset, ret = %d.\n",
3701 				ret);
3702 			return;
3703 		}
3704 	}
3705 
3706 	ret = hisi_qm_stop(qm);
3707 	if (ret) {
3708 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
3709 		return;
3710 	}
3711 
3712 	pci_info(pdev, "FLR resetting...\n");
3713 }
3714 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
3715 
3716 static bool qm_flr_reset_complete(struct pci_dev *pdev)
3717 {
3718 	struct pci_dev *pf_pdev = pci_physfn(pdev);
3719 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
3720 	u32 id;
3721 
3722 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
3723 	if (id == QM_PCI_COMMAND_INVALID) {
3724 		pci_err(pdev, "Device can not be used!\n");
3725 		return false;
3726 	}
3727 
3728 	clear_bit(QM_DEV_RESET_FLAG, &qm->reset_flag);
3729 
3730 	return true;
3731 }
3732 
3733 void hisi_qm_reset_done(struct pci_dev *pdev)
3734 {
3735 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3736 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3737 	int ret;
3738 
3739 	hisi_qm_dev_err_init(pf_qm);
3740 
3741 	ret = qm_restart(qm);
3742 	if (ret) {
3743 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
3744 		goto flr_done;
3745 	}
3746 
3747 	if (qm->fun_type == QM_HW_PF) {
3748 		ret = qm_dev_hw_init(qm);
3749 		if (ret) {
3750 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
3751 			goto flr_done;
3752 		}
3753 
3754 		if (!qm->vfs_num)
3755 			goto flr_done;
3756 
3757 		ret = qm_vf_q_assign(qm, qm->vfs_num);
3758 		if (ret) {
3759 			pci_err(pdev, "Failed to assign VFs, ret = %d.\n", ret);
3760 			goto flr_done;
3761 		}
3762 
3763 		ret = qm_vf_reset_done(qm);
3764 		if (ret) {
3765 			pci_err(pdev, "Failed to start VFs, ret = %d.\n", ret);
3766 			goto flr_done;
3767 		}
3768 	}
3769 
3770 flr_done:
3771 	if (qm_flr_reset_complete(pdev))
3772 		pci_info(pdev, "FLR reset complete\n");
3773 }
3774 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
3775 
3776 static irqreturn_t qm_abnormal_irq(int irq, void *data)
3777 {
3778 	struct hisi_qm *qm = data;
3779 	enum acc_err_result ret;
3780 
3781 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
3782 	ret = qm_process_dev_error(qm);
3783 	if (ret == ACC_ERR_NEED_RESET)
3784 		schedule_work(&qm->rst_work);
3785 
3786 	return IRQ_HANDLED;
3787 }
3788 
3789 static int qm_irq_register(struct hisi_qm *qm)
3790 {
3791 	struct pci_dev *pdev = qm->pdev;
3792 	int ret;
3793 
3794 	ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR),
3795 			  qm_irq, IRQF_SHARED, qm->dev_name, qm);
3796 	if (ret)
3797 		return ret;
3798 
3799 	if (qm->ver != QM_HW_V1) {
3800 		ret = request_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR),
3801 				  qm_aeq_irq, IRQF_SHARED, qm->dev_name, qm);
3802 		if (ret)
3803 			goto err_aeq_irq;
3804 
3805 		if (qm->fun_type == QM_HW_PF) {
3806 			ret = request_irq(pci_irq_vector(pdev,
3807 					  QM_ABNORMAL_EVENT_IRQ_VECTOR),
3808 					  qm_abnormal_irq, IRQF_SHARED,
3809 					  qm->dev_name, qm);
3810 			if (ret)
3811 				goto err_abonormal_irq;
3812 		}
3813 	}
3814 
3815 	return 0;
3816 
3817 err_abonormal_irq:
3818 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
3819 err_aeq_irq:
3820 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
3821 	return ret;
3822 }
3823 
3824 static void hisi_qm_controller_reset(struct work_struct *rst_work)
3825 {
3826 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
3827 	int ret;
3828 
3829 	/* reset pcie device controller */
3830 	ret = qm_controller_reset(qm);
3831 	if (ret)
3832 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
3833 
3834 }
3835 
3836 /**
3837  * hisi_qm_init() - Initialize configures about qm.
3838  * @qm: The qm needing init.
3839  *
3840  * This function init qm, then we can call hisi_qm_start to put qm into work.
3841  */
3842 int hisi_qm_init(struct hisi_qm *qm)
3843 {
3844 	struct pci_dev *pdev = qm->pdev;
3845 	struct device *dev = &pdev->dev;
3846 	unsigned int num_vec;
3847 	int ret;
3848 
3849 	hisi_qm_pre_init(qm);
3850 
3851 	ret = qm_alloc_uacce(qm);
3852 	if (ret < 0)
3853 		dev_warn(&pdev->dev, "fail to alloc uacce (%d)\n", ret);
3854 
3855 	ret = pci_enable_device_mem(pdev);
3856 	if (ret < 0) {
3857 		dev_err(&pdev->dev, "Failed to enable device mem!\n");
3858 		goto err_remove_uacce;
3859 	}
3860 
3861 	ret = pci_request_mem_regions(pdev, qm->dev_name);
3862 	if (ret < 0) {
3863 		dev_err(&pdev->dev, "Failed to request mem regions!\n");
3864 		goto err_disable_pcidev;
3865 	}
3866 
3867 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
3868 	qm->phys_size = pci_resource_len(qm->pdev, PCI_BAR_2);
3869 	qm->io_base = ioremap(qm->phys_base, qm->phys_size);
3870 	if (!qm->io_base) {
3871 		ret = -EIO;
3872 		goto err_release_mem_regions;
3873 	}
3874 
3875 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
3876 	if (ret < 0)
3877 		goto err_iounmap;
3878 	pci_set_master(pdev);
3879 
3880 	if (!qm->ops->get_irq_num) {
3881 		ret = -EOPNOTSUPP;
3882 		goto err_iounmap;
3883 	}
3884 	num_vec = qm->ops->get_irq_num(qm);
3885 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
3886 	if (ret < 0) {
3887 		dev_err(dev, "Failed to enable MSI vectors!\n");
3888 		goto err_iounmap;
3889 	}
3890 
3891 	ret = qm_irq_register(qm);
3892 	if (ret)
3893 		goto err_free_irq_vectors;
3894 
3895 	if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) {
3896 		/* v2 starts to support get vft by mailbox */
3897 		ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
3898 		if (ret)
3899 			goto err_irq_unregister;
3900 	}
3901 
3902 	ret = hisi_qm_memory_init(qm);
3903 	if (ret)
3904 		goto err_irq_unregister;
3905 
3906 	INIT_WORK(&qm->work, qm_work_process);
3907 	if (qm->fun_type == QM_HW_PF)
3908 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
3909 
3910 	atomic_set(&qm->status.flags, QM_INIT);
3911 
3912 	return 0;
3913 
3914 err_irq_unregister:
3915 	qm_irq_unregister(qm);
3916 err_free_irq_vectors:
3917 	pci_free_irq_vectors(pdev);
3918 err_iounmap:
3919 	iounmap(qm->io_base);
3920 err_release_mem_regions:
3921 	pci_release_mem_regions(pdev);
3922 err_disable_pcidev:
3923 	pci_disable_device(pdev);
3924 err_remove_uacce:
3925 	uacce_remove(qm->uacce);
3926 	qm->uacce = NULL;
3927 	return ret;
3928 }
3929 EXPORT_SYMBOL_GPL(hisi_qm_init);
3930 
3931 
3932 MODULE_LICENSE("GPL v2");
3933 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
3934 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
3935