1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/bitmap.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/idr.h> 8 #include <linux/io.h> 9 #include <linux/irqreturn.h> 10 #include <linux/log2.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/uacce.h> 15 #include <linux/uaccess.h> 16 #include <uapi/misc/uacce/hisi_qm.h> 17 #include <linux/hisi_acc_qm.h> 18 #include "qm_common.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 26 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 27 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_SHIFT 16 29 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 30 31 /* mailbox */ 32 #define QM_MB_PING_ALL_VFS 0xffff 33 #define QM_MB_CMD_DATA_SHIFT 32 34 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 35 #define QM_MB_STATUS_MASK GENMASK(12, 9) 36 37 /* sqc shift */ 38 #define QM_SQ_HOP_NUM_SHIFT 0 39 #define QM_SQ_PAGE_SIZE_SHIFT 4 40 #define QM_SQ_BUF_SIZE_SHIFT 8 41 #define QM_SQ_SQE_SIZE_SHIFT 12 42 #define QM_SQ_PRIORITY_SHIFT 0 43 #define QM_SQ_ORDERS_SHIFT 4 44 #define QM_SQ_TYPE_SHIFT 8 45 #define QM_QC_PASID_ENABLE 0x1 46 #define QM_QC_PASID_ENABLE_SHIFT 7 47 48 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 49 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) 50 51 /* cqc shift */ 52 #define QM_CQ_HOP_NUM_SHIFT 0 53 #define QM_CQ_PAGE_SIZE_SHIFT 4 54 #define QM_CQ_BUF_SIZE_SHIFT 8 55 #define QM_CQ_CQE_SIZE_SHIFT 12 56 #define QM_CQ_PHASE_SHIFT 0 57 #define QM_CQ_FLAG_SHIFT 1 58 59 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 60 #define QM_QC_CQE_SIZE 4 61 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) 62 63 /* eqc shift */ 64 #define QM_EQE_AEQE_SIZE (2UL << 12) 65 #define QM_EQC_PHASE_SHIFT 16 66 67 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 68 #define QM_EQE_CQN_MASK GENMASK(15, 0) 69 70 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 71 #define QM_AEQE_TYPE_SHIFT 17 72 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 73 #define QM_CQ_OVERFLOW 0 74 #define QM_EQ_OVERFLOW 1 75 #define QM_CQE_ERROR 2 76 77 #define QM_XQ_DEPTH_SHIFT 16 78 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 79 80 #define QM_DOORBELL_CMD_SQ 0 81 #define QM_DOORBELL_CMD_CQ 1 82 #define QM_DOORBELL_CMD_EQ 2 83 #define QM_DOORBELL_CMD_AEQ 3 84 85 #define QM_DOORBELL_BASE_V1 0x340 86 #define QM_DB_CMD_SHIFT_V1 16 87 #define QM_DB_INDEX_SHIFT_V1 32 88 #define QM_DB_PRIORITY_SHIFT_V1 48 89 #define QM_PAGE_SIZE 0x0034 90 #define QM_QP_DB_INTERVAL 0x10000 91 #define QM_DB_TIMEOUT_CFG 0x100074 92 #define QM_DB_TIMEOUT_SET 0x1fffff 93 94 #define QM_MEM_START_INIT 0x100040 95 #define QM_MEM_INIT_DONE 0x100044 96 #define QM_VFT_CFG_RDY 0x10006c 97 #define QM_VFT_CFG_OP_WR 0x100058 98 #define QM_VFT_CFG_TYPE 0x10005c 99 #define QM_VFT_CFG 0x100060 100 #define QM_VFT_CFG_OP_ENABLE 0x100054 101 #define QM_PM_CTRL 0x100148 102 #define QM_IDLE_DISABLE BIT(9) 103 104 #define QM_VFT_CFG_DATA_L 0x100064 105 #define QM_VFT_CFG_DATA_H 0x100068 106 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 107 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 108 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 109 #define QM_SQC_VFT_START_SQN_SHIFT 28 110 #define QM_SQC_VFT_VALID (1ULL << 44) 111 #define QM_SQC_VFT_SQN_SHIFT 45 112 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 113 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 114 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 115 #define QM_CQC_VFT_VALID (1ULL << 28) 116 117 #define QM_SQC_VFT_BASE_SHIFT_V2 28 118 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 119 #define QM_SQC_VFT_NUM_SHIFT_V2 45 120 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) 121 122 #define QM_ABNORMAL_INT_SOURCE 0x100000 123 #define QM_ABNORMAL_INT_MASK 0x100004 124 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 125 #define QM_ABNORMAL_INT_STATUS 0x100008 126 #define QM_ABNORMAL_INT_SET 0x10000c 127 #define QM_ABNORMAL_INF00 0x100010 128 #define QM_FIFO_OVERFLOW_TYPE 0xc0 129 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 130 #define QM_FIFO_OVERFLOW_VF 0x3f 131 #define QM_ABNORMAL_INF01 0x100014 132 #define QM_DB_TIMEOUT_TYPE 0xc0 133 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 134 #define QM_DB_TIMEOUT_VF 0x3f 135 #define QM_RAS_CE_ENABLE 0x1000ec 136 #define QM_RAS_FE_ENABLE 0x1000f0 137 #define QM_RAS_NFE_ENABLE 0x1000f4 138 #define QM_RAS_CE_THRESHOLD 0x1000f8 139 #define QM_RAS_CE_TIMES_PER_IRQ 1 140 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 141 #define QM_ECC_MBIT BIT(2) 142 #define QM_DB_TIMEOUT BIT(10) 143 #define QM_OF_FIFO_OF BIT(11) 144 145 #define QM_RESET_WAIT_TIMEOUT 400 146 #define QM_PEH_VENDOR_ID 0x1000d8 147 #define ACC_VENDOR_ID_VALUE 0x5a5a 148 #define QM_PEH_DFX_INFO0 0x1000fc 149 #define QM_PEH_DFX_INFO1 0x100100 150 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 151 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 152 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 153 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 154 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 155 #define ACC_MASTER_TRANS_RETURN_RW 3 156 #define ACC_MASTER_TRANS_RETURN 0x300150 157 #define ACC_MASTER_GLOBAL_CTRL 0x300000 158 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 159 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 160 #define ACC_AM_ROB_ECC_INT_STS 0x300104 161 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 162 #define QM_MSI_CAP_ENABLE BIT(16) 163 164 /* interfunction communication */ 165 #define QM_IFC_READY_STATUS 0x100128 166 #define QM_IFC_INT_SET_P 0x100130 167 #define QM_IFC_INT_CFG 0x100134 168 #define QM_IFC_INT_SOURCE_P 0x100138 169 #define QM_IFC_INT_SOURCE_V 0x0020 170 #define QM_IFC_INT_MASK 0x0024 171 #define QM_IFC_INT_STATUS 0x0028 172 #define QM_IFC_INT_SET_V 0x002C 173 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 174 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 175 #define QM_IFC_INT_SOURCE_MASK BIT(0) 176 #define QM_IFC_INT_DISABLE BIT(0) 177 #define QM_IFC_INT_STATUS_MASK BIT(0) 178 #define QM_IFC_INT_SET_MASK BIT(0) 179 #define QM_WAIT_DST_ACK 10 180 #define QM_MAX_PF_WAIT_COUNT 10 181 #define QM_MAX_VF_WAIT_COUNT 40 182 #define QM_VF_RESET_WAIT_US 20000 183 #define QM_VF_RESET_WAIT_CNT 3000 184 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 185 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 186 187 #define POLL_PERIOD 10 188 #define POLL_TIMEOUT 1000 189 #define WAIT_PERIOD_US_MAX 200 190 #define WAIT_PERIOD_US_MIN 100 191 #define MAX_WAIT_COUNTS 1000 192 #define QM_CACHE_WB_START 0x204 193 #define QM_CACHE_WB_DONE 0x208 194 #define QM_FUNC_CAPS_REG 0x3100 195 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 196 197 #define PCI_BAR_2 2 198 #define PCI_BAR_4 4 199 #define QMC_ALIGN(sz) ALIGN(sz, 32) 200 201 #define QM_DBG_READ_LEN 256 202 #define QM_PCI_COMMAND_INVALID ~0 203 #define QM_RESET_STOP_TX_OFFSET 1 204 #define QM_RESET_STOP_RX_OFFSET 2 205 206 #define WAIT_PERIOD 20 207 #define REMOVE_WAIT_DELAY 10 208 209 #define QM_QOS_PARAM_NUM 2 210 #define QM_QOS_MAX_VAL 1000 211 #define QM_QOS_RATE 100 212 #define QM_QOS_EXPAND_RATE 1000 213 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 214 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 215 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 216 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 217 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 218 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 219 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 220 #define QM_SHAPER_CBS_B 1 221 #define QM_SHAPER_VFT_OFFSET 6 222 #define QM_QOS_MIN_ERROR_RATE 5 223 #define QM_SHAPER_MIN_CBS_S 8 224 #define QM_QOS_TICK 0x300U 225 #define QM_QOS_DIVISOR_CLK 0x1f40U 226 #define QM_QOS_MAX_CIR_B 200 227 #define QM_QOS_MIN_CIR_B 100 228 #define QM_QOS_MAX_CIR_U 6 229 #define QM_AUTOSUSPEND_DELAY 3000 230 231 #define QM_DEV_ALG_MAX_LEN 256 232 233 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 234 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 235 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 236 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 237 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 238 239 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 240 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 241 242 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 243 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 244 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 245 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 246 247 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 248 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 249 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 250 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 251 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 252 253 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 254 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 255 256 #define INIT_QC_COMMON(qc, base, pasid) do { \ 257 (qc)->head = 0; \ 258 (qc)->tail = 0; \ 259 (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ 260 (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ 261 (qc)->dw3 = 0; \ 262 (qc)->w8 = 0; \ 263 (qc)->rsvd0 = 0; \ 264 (qc)->pasid = cpu_to_le16(pasid); \ 265 (qc)->w11 = 0; \ 266 (qc)->rsvd1 = 0; \ 267 } while (0) 268 269 enum vft_type { 270 SQC_VFT = 0, 271 CQC_VFT, 272 SHAPER_VFT, 273 }; 274 275 enum qm_alg_type { 276 ALG_TYPE_0, 277 ALG_TYPE_1, 278 }; 279 280 enum qm_mb_cmd { 281 QM_PF_FLR_PREPARE = 0x01, 282 QM_PF_SRST_PREPARE, 283 QM_PF_RESET_DONE, 284 QM_VF_PREPARE_DONE, 285 QM_VF_PREPARE_FAIL, 286 QM_VF_START_DONE, 287 QM_VF_START_FAIL, 288 QM_PF_SET_QOS, 289 QM_VF_GET_QOS, 290 }; 291 292 enum qm_basic_type { 293 QM_TOTAL_QP_NUM_CAP = 0x0, 294 QM_FUNC_MAX_QP_CAP, 295 QM_XEQ_DEPTH_CAP, 296 QM_QP_DEPTH_CAP, 297 QM_EQ_IRQ_TYPE_CAP, 298 QM_AEQ_IRQ_TYPE_CAP, 299 QM_ABN_IRQ_TYPE_CAP, 300 QM_PF2VF_IRQ_TYPE_CAP, 301 QM_PF_IRQ_NUM_CAP, 302 QM_VF_IRQ_NUM_CAP, 303 }; 304 305 enum qm_pre_store_cap_idx { 306 QM_EQ_IRQ_TYPE_CAP_IDX = 0x0, 307 QM_AEQ_IRQ_TYPE_CAP_IDX, 308 QM_ABN_IRQ_TYPE_CAP_IDX, 309 QM_PF2VF_IRQ_TYPE_CAP_IDX, 310 }; 311 312 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 313 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 314 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 315 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 316 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 317 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 318 }; 319 320 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 321 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 322 }; 323 324 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 325 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 326 }; 327 328 static const struct hisi_qm_cap_info qm_basic_info[] = { 329 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 330 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 331 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, 332 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 333 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 334 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 335 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 336 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 337 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 338 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 339 }; 340 341 static const u32 qm_pre_store_caps[] = { 342 QM_EQ_IRQ_TYPE_CAP, 343 QM_AEQ_IRQ_TYPE_CAP, 344 QM_ABN_IRQ_TYPE_CAP, 345 QM_PF2VF_IRQ_TYPE_CAP, 346 }; 347 348 struct qm_mailbox { 349 __le16 w0; 350 __le16 queue_num; 351 __le32 base_l; 352 __le32 base_h; 353 __le32 rsvd; 354 }; 355 356 struct qm_doorbell { 357 __le16 queue_num; 358 __le16 cmd; 359 __le16 index; 360 __le16 priority; 361 }; 362 363 struct hisi_qm_resource { 364 struct hisi_qm *qm; 365 int distance; 366 struct list_head list; 367 }; 368 369 /** 370 * struct qm_hw_err - Structure describing the device errors 371 * @list: hardware error list 372 * @timestamp: timestamp when the error occurred 373 */ 374 struct qm_hw_err { 375 struct list_head list; 376 unsigned long long timestamp; 377 }; 378 379 struct hisi_qm_hw_ops { 380 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 381 void (*qm_db)(struct hisi_qm *qm, u16 qn, 382 u8 cmd, u16 index, u8 priority); 383 int (*debug_init)(struct hisi_qm *qm); 384 void (*hw_error_init)(struct hisi_qm *qm); 385 void (*hw_error_uninit)(struct hisi_qm *qm); 386 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 387 int (*set_msi)(struct hisi_qm *qm, bool set); 388 }; 389 390 struct hisi_qm_hw_error { 391 u32 int_msk; 392 const char *msg; 393 }; 394 395 static const struct hisi_qm_hw_error qm_hw_error[] = { 396 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 397 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 398 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 399 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 400 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 401 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 402 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 403 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 404 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 405 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 406 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 407 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 408 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 409 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 410 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 411 { /* sentinel */ } 412 }; 413 414 static const char * const qm_db_timeout[] = { 415 "sq", "cq", "eq", "aeq", 416 }; 417 418 static const char * const qm_fifo_overflow[] = { 419 "cq", "eq", "aeq", 420 }; 421 422 static const char * const qp_s[] = { 423 "none", "init", "start", "stop", "close", 424 }; 425 426 struct qm_typical_qos_table { 427 u32 start; 428 u32 end; 429 u32 val; 430 }; 431 432 /* the qos step is 100 */ 433 static struct qm_typical_qos_table shaper_cir_s[] = { 434 {100, 100, 4}, 435 {200, 200, 3}, 436 {300, 500, 2}, 437 {600, 1000, 1}, 438 {1100, 100000, 0}, 439 }; 440 441 static struct qm_typical_qos_table shaper_cbs_s[] = { 442 {100, 200, 9}, 443 {300, 500, 11}, 444 {600, 1000, 12}, 445 {1100, 10000, 16}, 446 {10100, 25000, 17}, 447 {25100, 50000, 18}, 448 {50100, 100000, 19} 449 }; 450 451 static void qm_irqs_unregister(struct hisi_qm *qm); 452 static int qm_reset_device(struct hisi_qm *qm); 453 454 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 455 { 456 enum qm_state curr = atomic_read(&qm->status.flags); 457 bool avail = false; 458 459 switch (curr) { 460 case QM_INIT: 461 if (new == QM_START || new == QM_CLOSE) 462 avail = true; 463 break; 464 case QM_START: 465 if (new == QM_STOP) 466 avail = true; 467 break; 468 case QM_STOP: 469 if (new == QM_CLOSE || new == QM_START) 470 avail = true; 471 break; 472 default: 473 break; 474 } 475 476 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 477 qm_s[curr], qm_s[new]); 478 479 if (!avail) 480 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 481 qm_s[curr], qm_s[new]); 482 483 return avail; 484 } 485 486 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 487 enum qp_state new) 488 { 489 enum qm_state qm_curr = atomic_read(&qm->status.flags); 490 enum qp_state qp_curr = 0; 491 bool avail = false; 492 493 if (qp) 494 qp_curr = atomic_read(&qp->qp_status.flags); 495 496 switch (new) { 497 case QP_INIT: 498 if (qm_curr == QM_START || qm_curr == QM_INIT) 499 avail = true; 500 break; 501 case QP_START: 502 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 503 (qm_curr == QM_START && qp_curr == QP_STOP)) 504 avail = true; 505 break; 506 case QP_STOP: 507 if ((qm_curr == QM_START && qp_curr == QP_START) || 508 (qp_curr == QP_INIT)) 509 avail = true; 510 break; 511 case QP_CLOSE: 512 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 513 (qm_curr == QM_START && qp_curr == QP_STOP) || 514 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 515 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 516 avail = true; 517 break; 518 default: 519 break; 520 } 521 522 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 523 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 524 525 if (!avail) 526 dev_warn(&qm->pdev->dev, 527 "Can not change qp state from %s to %s in QM %s\n", 528 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 529 530 return avail; 531 } 532 533 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 534 { 535 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 536 } 537 538 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 539 { 540 return qm->err_ini->get_dev_hw_err_status(qm); 541 } 542 543 /* Check if the error causes the master ooo block */ 544 static bool qm_check_dev_error(struct hisi_qm *qm) 545 { 546 u32 val, dev_val; 547 548 if (qm->fun_type == QM_HW_VF) 549 return false; 550 551 val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask; 552 dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask; 553 554 return val || dev_val; 555 } 556 557 static int qm_wait_reset_finish(struct hisi_qm *qm) 558 { 559 int delay = 0; 560 561 /* All reset requests need to be queued for processing */ 562 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 563 msleep(++delay); 564 if (delay > QM_RESET_WAIT_TIMEOUT) 565 return -EBUSY; 566 } 567 568 return 0; 569 } 570 571 static int qm_reset_prepare_ready(struct hisi_qm *qm) 572 { 573 struct pci_dev *pdev = qm->pdev; 574 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 575 576 /* 577 * PF and VF on host doesnot support resetting at the 578 * same time on Kunpeng920. 579 */ 580 if (qm->ver < QM_HW_V3) 581 return qm_wait_reset_finish(pf_qm); 582 583 return qm_wait_reset_finish(qm); 584 } 585 586 static void qm_reset_bit_clear(struct hisi_qm *qm) 587 { 588 struct pci_dev *pdev = qm->pdev; 589 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 590 591 if (qm->ver < QM_HW_V3) 592 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 593 594 clear_bit(QM_RESETTING, &qm->misc_ctl); 595 } 596 597 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 598 u64 base, u16 queue, bool op) 599 { 600 mailbox->w0 = cpu_to_le16((cmd) | 601 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 602 (0x1 << QM_MB_BUSY_SHIFT)); 603 mailbox->queue_num = cpu_to_le16(queue); 604 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 605 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 606 mailbox->rsvd = 0; 607 } 608 609 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 610 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 611 { 612 u32 val; 613 614 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 615 val, !((val >> QM_MB_BUSY_SHIFT) & 616 0x1), POLL_PERIOD, POLL_TIMEOUT); 617 } 618 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 619 620 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 621 static void qm_mb_write(struct hisi_qm *qm, const void *src) 622 { 623 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 624 625 #if IS_ENABLED(CONFIG_ARM64) 626 unsigned long tmp0 = 0, tmp1 = 0; 627 #endif 628 629 if (!IS_ENABLED(CONFIG_ARM64)) { 630 memcpy_toio(fun_base, src, 16); 631 dma_wmb(); 632 return; 633 } 634 635 #if IS_ENABLED(CONFIG_ARM64) 636 asm volatile("ldp %0, %1, %3\n" 637 "stp %0, %1, %2\n" 638 "dmb oshst\n" 639 : "=&r" (tmp0), 640 "=&r" (tmp1), 641 "+Q" (*((char __iomem *)fun_base)) 642 : "Q" (*((char *)src)) 643 : "memory"); 644 #endif 645 } 646 647 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 648 { 649 int ret; 650 u32 val; 651 652 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 653 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 654 ret = -EBUSY; 655 goto mb_busy; 656 } 657 658 qm_mb_write(qm, mailbox); 659 660 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 661 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 662 ret = -ETIMEDOUT; 663 goto mb_busy; 664 } 665 666 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 667 if (val & QM_MB_STATUS_MASK) { 668 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 669 ret = -EIO; 670 goto mb_busy; 671 } 672 673 return 0; 674 675 mb_busy: 676 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 677 return ret; 678 } 679 680 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 681 bool op) 682 { 683 struct qm_mailbox mailbox; 684 int ret; 685 686 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 687 queue, cmd, (unsigned long long)dma_addr); 688 689 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 690 691 mutex_lock(&qm->mailbox_lock); 692 ret = qm_mb_nolock(qm, &mailbox); 693 mutex_unlock(&qm->mailbox_lock); 694 695 return ret; 696 } 697 EXPORT_SYMBOL_GPL(hisi_qm_mb); 698 699 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 700 { 701 u64 doorbell; 702 703 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 704 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 705 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 706 707 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 708 } 709 710 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 711 { 712 void __iomem *io_base = qm->io_base; 713 u16 randata = 0; 714 u64 doorbell; 715 716 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 717 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 718 QM_DOORBELL_SQ_CQ_BASE_V2; 719 else 720 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 721 722 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 723 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 724 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 725 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 726 727 writeq(doorbell, io_base); 728 } 729 730 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 731 { 732 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 733 qn, cmd, index); 734 735 qm->ops->qm_db(qm, qn, cmd, index, priority); 736 } 737 738 static void qm_disable_clock_gate(struct hisi_qm *qm) 739 { 740 u32 val; 741 742 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 743 if (qm->ver < QM_HW_V3) 744 return; 745 746 val = readl(qm->io_base + QM_PM_CTRL); 747 val |= QM_IDLE_DISABLE; 748 writel(val, qm->io_base + QM_PM_CTRL); 749 } 750 751 static int qm_dev_mem_reset(struct hisi_qm *qm) 752 { 753 u32 val; 754 755 writel(0x1, qm->io_base + QM_MEM_START_INIT); 756 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 757 val & BIT(0), POLL_PERIOD, 758 POLL_TIMEOUT); 759 } 760 761 /** 762 * hisi_qm_get_hw_info() - Get device information. 763 * @qm: The qm which want to get information. 764 * @info_table: Array for storing device information. 765 * @index: Index in info_table. 766 * @is_read: Whether read from reg, 0: not support read from reg. 767 * 768 * This function returns device information the caller needs. 769 */ 770 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 771 const struct hisi_qm_cap_info *info_table, 772 u32 index, bool is_read) 773 { 774 u32 val; 775 776 switch (qm->ver) { 777 case QM_HW_V1: 778 return info_table[index].v1_val; 779 case QM_HW_V2: 780 return info_table[index].v2_val; 781 default: 782 if (!is_read) 783 return info_table[index].v3_val; 784 785 val = readl(qm->io_base + info_table[index].offset); 786 return (val >> info_table[index].shift) & info_table[index].mask; 787 } 788 } 789 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 790 791 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 792 u16 *high_bits, enum qm_basic_type type) 793 { 794 u32 depth; 795 796 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 797 *low_bits = depth & QM_XQ_DEPTH_MASK; 798 *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 799 } 800 801 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs, 802 u32 dev_algs_size) 803 { 804 struct device *dev = &qm->pdev->dev; 805 char *algs, *ptr; 806 int i; 807 808 if (!qm->uacce) 809 return 0; 810 811 if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) { 812 dev_err(dev, "algs size %u is equal or larger than %d.\n", 813 dev_algs_size, QM_DEV_ALG_MAX_LEN); 814 return -EINVAL; 815 } 816 817 algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN * sizeof(char), GFP_KERNEL); 818 if (!algs) 819 return -ENOMEM; 820 821 for (i = 0; i < dev_algs_size; i++) 822 if (alg_msk & dev_algs[i].alg_msk) 823 strcat(algs, dev_algs[i].alg); 824 825 ptr = strrchr(algs, '\n'); 826 if (ptr) { 827 *ptr = '\0'; 828 qm->uacce->algs = algs; 829 } 830 831 return 0; 832 } 833 EXPORT_SYMBOL_GPL(hisi_qm_set_algs); 834 835 static u32 qm_get_irq_num(struct hisi_qm *qm) 836 { 837 if (qm->fun_type == QM_HW_PF) 838 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 839 840 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 841 } 842 843 static int qm_pm_get_sync(struct hisi_qm *qm) 844 { 845 struct device *dev = &qm->pdev->dev; 846 int ret; 847 848 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 849 return 0; 850 851 ret = pm_runtime_resume_and_get(dev); 852 if (ret < 0) { 853 dev_err(dev, "failed to get_sync(%d).\n", ret); 854 return ret; 855 } 856 857 return 0; 858 } 859 860 static void qm_pm_put_sync(struct hisi_qm *qm) 861 { 862 struct device *dev = &qm->pdev->dev; 863 864 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 865 return; 866 867 pm_runtime_mark_last_busy(dev); 868 pm_runtime_put_autosuspend(dev); 869 } 870 871 static void qm_cq_head_update(struct hisi_qp *qp) 872 { 873 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 874 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 875 qp->qp_status.cq_head = 0; 876 } else { 877 qp->qp_status.cq_head++; 878 } 879 } 880 881 static void qm_poll_req_cb(struct hisi_qp *qp) 882 { 883 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 884 struct hisi_qm *qm = qp->qm; 885 886 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 887 dma_rmb(); 888 qp->req_cb(qp, qp->sqe + qm->sqe_size * 889 le16_to_cpu(cqe->sq_head)); 890 qm_cq_head_update(qp); 891 cqe = qp->cqe + qp->qp_status.cq_head; 892 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 893 qp->qp_status.cq_head, 0); 894 atomic_dec(&qp->qp_status.used); 895 896 cond_resched(); 897 } 898 899 /* set c_flag */ 900 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 901 } 902 903 static void qm_work_process(struct work_struct *work) 904 { 905 struct hisi_qm_poll_data *poll_data = 906 container_of(work, struct hisi_qm_poll_data, work); 907 struct hisi_qm *qm = poll_data->qm; 908 u16 eqe_num = poll_data->eqe_num; 909 struct hisi_qp *qp; 910 int i; 911 912 for (i = eqe_num - 1; i >= 0; i--) { 913 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 914 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 915 continue; 916 917 if (qp->event_cb) { 918 qp->event_cb(qp); 919 continue; 920 } 921 922 if (likely(qp->req_cb)) 923 qm_poll_req_cb(qp); 924 } 925 } 926 927 static void qm_get_complete_eqe_num(struct hisi_qm *qm) 928 { 929 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 930 struct hisi_qm_poll_data *poll_data = NULL; 931 u16 eq_depth = qm->eq_depth; 932 u16 cqn, eqe_num = 0; 933 934 if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) { 935 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 936 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 937 return; 938 } 939 940 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 941 if (unlikely(cqn >= qm->qp_num)) 942 return; 943 poll_data = &qm->poll_data[cqn]; 944 945 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 946 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 947 poll_data->qp_finish_id[eqe_num] = cqn; 948 eqe_num++; 949 950 if (qm->status.eq_head == eq_depth - 1) { 951 qm->status.eqc_phase = !qm->status.eqc_phase; 952 eqe = qm->eqe; 953 qm->status.eq_head = 0; 954 } else { 955 eqe++; 956 qm->status.eq_head++; 957 } 958 959 if (eqe_num == (eq_depth >> 1) - 1) 960 break; 961 } 962 963 poll_data->eqe_num = eqe_num; 964 queue_work(qm->wq, &poll_data->work); 965 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 966 } 967 968 static irqreturn_t qm_eq_irq(int irq, void *data) 969 { 970 struct hisi_qm *qm = data; 971 972 /* Get qp id of completed tasks and re-enable the interrupt */ 973 qm_get_complete_eqe_num(qm); 974 975 return IRQ_HANDLED; 976 } 977 978 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 979 { 980 struct hisi_qm *qm = data; 981 u32 val; 982 983 val = readl(qm->io_base + QM_IFC_INT_STATUS); 984 val &= QM_IFC_INT_STATUS_MASK; 985 if (!val) 986 return IRQ_NONE; 987 988 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) { 989 dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n"); 990 return IRQ_HANDLED; 991 } 992 993 schedule_work(&qm->cmd_process); 994 995 return IRQ_HANDLED; 996 } 997 998 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 999 { 1000 u32 *addr; 1001 1002 if (qp->is_in_kernel) 1003 return; 1004 1005 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 1006 *addr = 1; 1007 1008 /* make sure setup is completed */ 1009 smp_wmb(); 1010 } 1011 1012 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 1013 { 1014 struct hisi_qp *qp = &qm->qp_array[qp_id]; 1015 1016 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 1017 hisi_qm_stop_qp(qp); 1018 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 1019 } 1020 1021 static void qm_reset_function(struct hisi_qm *qm) 1022 { 1023 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 1024 struct device *dev = &qm->pdev->dev; 1025 int ret; 1026 1027 if (qm_check_dev_error(pf_qm)) 1028 return; 1029 1030 ret = qm_reset_prepare_ready(qm); 1031 if (ret) { 1032 dev_err(dev, "reset function not ready\n"); 1033 return; 1034 } 1035 1036 ret = hisi_qm_stop(qm, QM_DOWN); 1037 if (ret) { 1038 dev_err(dev, "failed to stop qm when reset function\n"); 1039 goto clear_bit; 1040 } 1041 1042 ret = hisi_qm_start(qm); 1043 if (ret) 1044 dev_err(dev, "failed to start qm when reset function\n"); 1045 1046 clear_bit: 1047 qm_reset_bit_clear(qm); 1048 } 1049 1050 static irqreturn_t qm_aeq_thread(int irq, void *data) 1051 { 1052 struct hisi_qm *qm = data; 1053 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1054 u16 aeq_depth = qm->aeq_depth; 1055 u32 type, qp_id; 1056 1057 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1058 1059 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1060 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; 1061 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1062 1063 switch (type) { 1064 case QM_EQ_OVERFLOW: 1065 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1066 qm_reset_function(qm); 1067 return IRQ_HANDLED; 1068 case QM_CQ_OVERFLOW: 1069 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1070 qp_id); 1071 fallthrough; 1072 case QM_CQE_ERROR: 1073 qm_disable_qp(qm, qp_id); 1074 break; 1075 default: 1076 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1077 type); 1078 break; 1079 } 1080 1081 if (qm->status.aeq_head == aeq_depth - 1) { 1082 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1083 aeqe = qm->aeqe; 1084 qm->status.aeq_head = 0; 1085 } else { 1086 aeqe++; 1087 qm->status.aeq_head++; 1088 } 1089 } 1090 1091 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1092 1093 return IRQ_HANDLED; 1094 } 1095 1096 static void qm_init_qp_status(struct hisi_qp *qp) 1097 { 1098 struct hisi_qp_status *qp_status = &qp->qp_status; 1099 1100 qp_status->sq_tail = 0; 1101 qp_status->cq_head = 0; 1102 qp_status->cqc_phase = true; 1103 atomic_set(&qp_status->used, 0); 1104 } 1105 1106 static void qm_init_prefetch(struct hisi_qm *qm) 1107 { 1108 struct device *dev = &qm->pdev->dev; 1109 u32 page_type = 0x0; 1110 1111 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1112 return; 1113 1114 switch (PAGE_SIZE) { 1115 case SZ_4K: 1116 page_type = 0x0; 1117 break; 1118 case SZ_16K: 1119 page_type = 0x1; 1120 break; 1121 case SZ_64K: 1122 page_type = 0x2; 1123 break; 1124 default: 1125 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1126 PAGE_SIZE); 1127 } 1128 1129 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1130 } 1131 1132 /* 1133 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1134 * is the expected qos calculated. 1135 * the formula: 1136 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1137 * 1138 * IR_b * (2 ^ IR_u) * 8000 1139 * IR(Mbps) = ------------------------- 1140 * Tick * (2 ^ IR_s) 1141 */ 1142 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1143 { 1144 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1145 (QM_QOS_TICK * (1 << cir_s)); 1146 } 1147 1148 static u32 acc_shaper_calc_cbs_s(u32 ir) 1149 { 1150 int table_size = ARRAY_SIZE(shaper_cbs_s); 1151 int i; 1152 1153 for (i = 0; i < table_size; i++) { 1154 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1155 return shaper_cbs_s[i].val; 1156 } 1157 1158 return QM_SHAPER_MIN_CBS_S; 1159 } 1160 1161 static u32 acc_shaper_calc_cir_s(u32 ir) 1162 { 1163 int table_size = ARRAY_SIZE(shaper_cir_s); 1164 int i; 1165 1166 for (i = 0; i < table_size; i++) { 1167 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1168 return shaper_cir_s[i].val; 1169 } 1170 1171 return 0; 1172 } 1173 1174 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1175 { 1176 u32 cir_b, cir_u, cir_s, ir_calc; 1177 u32 error_rate; 1178 1179 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1180 cir_s = acc_shaper_calc_cir_s(ir); 1181 1182 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1183 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1184 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1185 1186 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1187 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1188 factor->cir_b = cir_b; 1189 factor->cir_u = cir_u; 1190 factor->cir_s = cir_s; 1191 return 0; 1192 } 1193 } 1194 } 1195 1196 return -EINVAL; 1197 } 1198 1199 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1200 u32 number, struct qm_shaper_factor *factor) 1201 { 1202 u64 tmp = 0; 1203 1204 if (number > 0) { 1205 switch (type) { 1206 case SQC_VFT: 1207 if (qm->ver == QM_HW_V1) { 1208 tmp = QM_SQC_VFT_BUF_SIZE | 1209 QM_SQC_VFT_SQC_SIZE | 1210 QM_SQC_VFT_INDEX_NUMBER | 1211 QM_SQC_VFT_VALID | 1212 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1213 } else { 1214 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1215 QM_SQC_VFT_VALID | 1216 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1217 } 1218 break; 1219 case CQC_VFT: 1220 if (qm->ver == QM_HW_V1) { 1221 tmp = QM_CQC_VFT_BUF_SIZE | 1222 QM_CQC_VFT_SQC_SIZE | 1223 QM_CQC_VFT_INDEX_NUMBER | 1224 QM_CQC_VFT_VALID; 1225 } else { 1226 tmp = QM_CQC_VFT_VALID; 1227 } 1228 break; 1229 case SHAPER_VFT: 1230 if (factor) { 1231 tmp = factor->cir_b | 1232 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1233 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1234 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1235 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1236 } 1237 break; 1238 } 1239 } 1240 1241 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1242 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1243 } 1244 1245 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1246 u32 fun_num, u32 base, u32 number) 1247 { 1248 struct qm_shaper_factor *factor = NULL; 1249 unsigned int val; 1250 int ret; 1251 1252 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1253 factor = &qm->factor[fun_num]; 1254 1255 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1256 val & BIT(0), POLL_PERIOD, 1257 POLL_TIMEOUT); 1258 if (ret) 1259 return ret; 1260 1261 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1262 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1263 if (type == SHAPER_VFT) 1264 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1265 1266 writel(fun_num, qm->io_base + QM_VFT_CFG); 1267 1268 qm_vft_data_cfg(qm, type, base, number, factor); 1269 1270 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1271 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1272 1273 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1274 val & BIT(0), POLL_PERIOD, 1275 POLL_TIMEOUT); 1276 } 1277 1278 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1279 { 1280 u32 qos = qm->factor[fun_num].func_qos; 1281 int ret, i; 1282 1283 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1284 if (ret) { 1285 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1286 return ret; 1287 } 1288 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1289 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1290 /* The base number of queue reuse for different alg type */ 1291 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1292 if (ret) 1293 return ret; 1294 } 1295 1296 return 0; 1297 } 1298 1299 /* The config should be conducted after qm_dev_mem_reset() */ 1300 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1301 u32 number) 1302 { 1303 int ret, i; 1304 1305 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1306 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1307 if (ret) 1308 return ret; 1309 } 1310 1311 /* init default shaper qos val */ 1312 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1313 ret = qm_shaper_init_vft(qm, fun_num); 1314 if (ret) 1315 goto back_sqc_cqc; 1316 } 1317 1318 return 0; 1319 back_sqc_cqc: 1320 for (i = SQC_VFT; i <= CQC_VFT; i++) 1321 qm_set_vft_common(qm, i, fun_num, 0, 0); 1322 1323 return ret; 1324 } 1325 1326 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1327 { 1328 u64 sqc_vft; 1329 int ret; 1330 1331 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1332 if (ret) 1333 return ret; 1334 1335 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1336 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1337 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1338 *number = (QM_SQC_VFT_NUM_MASK_V2 & 1339 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1340 1341 return 0; 1342 } 1343 1344 void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, 1345 dma_addr_t *dma_addr) 1346 { 1347 struct device *dev = &qm->pdev->dev; 1348 void *ctx_addr; 1349 1350 ctx_addr = kzalloc(ctx_size, GFP_KERNEL); 1351 if (!ctx_addr) 1352 return ERR_PTR(-ENOMEM); 1353 1354 *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); 1355 if (dma_mapping_error(dev, *dma_addr)) { 1356 dev_err(dev, "DMA mapping error!\n"); 1357 kfree(ctx_addr); 1358 return ERR_PTR(-ENOMEM); 1359 } 1360 1361 return ctx_addr; 1362 } 1363 1364 void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, 1365 const void *ctx_addr, dma_addr_t *dma_addr) 1366 { 1367 struct device *dev = &qm->pdev->dev; 1368 1369 dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); 1370 kfree(ctx_addr); 1371 } 1372 1373 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1374 { 1375 return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); 1376 } 1377 1378 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1379 { 1380 return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); 1381 } 1382 1383 static void qm_hw_error_init_v1(struct hisi_qm *qm) 1384 { 1385 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1386 } 1387 1388 static void qm_hw_error_cfg(struct hisi_qm *qm) 1389 { 1390 struct hisi_qm_err_info *err_info = &qm->err_info; 1391 1392 qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; 1393 /* clear QM hw residual error source */ 1394 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1395 1396 /* configure error type */ 1397 writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); 1398 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1399 writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1400 writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); 1401 } 1402 1403 static void qm_hw_error_init_v2(struct hisi_qm *qm) 1404 { 1405 u32 irq_unmask; 1406 1407 qm_hw_error_cfg(qm); 1408 1409 irq_unmask = ~qm->error_mask; 1410 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1411 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1412 } 1413 1414 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1415 { 1416 u32 irq_mask = qm->error_mask; 1417 1418 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1419 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1420 } 1421 1422 static void qm_hw_error_init_v3(struct hisi_qm *qm) 1423 { 1424 u32 irq_unmask; 1425 1426 qm_hw_error_cfg(qm); 1427 1428 /* enable close master ooo when hardware error happened */ 1429 writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1430 1431 irq_unmask = ~qm->error_mask; 1432 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1433 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1434 } 1435 1436 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1437 { 1438 u32 irq_mask = qm->error_mask; 1439 1440 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1441 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1442 1443 /* disable close master ooo when hardware error happened */ 1444 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1445 } 1446 1447 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1448 { 1449 const struct hisi_qm_hw_error *err; 1450 struct device *dev = &qm->pdev->dev; 1451 u32 reg_val, type, vf_num; 1452 int i; 1453 1454 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1455 err = &qm_hw_error[i]; 1456 if (!(err->int_msk & error_status)) 1457 continue; 1458 1459 dev_err(dev, "%s [error status=0x%x] found\n", 1460 err->msg, err->int_msk); 1461 1462 if (err->int_msk & QM_DB_TIMEOUT) { 1463 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1464 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1465 QM_DB_TIMEOUT_TYPE_SHIFT; 1466 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1467 dev_err(dev, "qm %s doorbell timeout in function %u\n", 1468 qm_db_timeout[type], vf_num); 1469 } else if (err->int_msk & QM_OF_FIFO_OF) { 1470 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1471 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1472 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1473 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1474 1475 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1476 dev_err(dev, "qm %s fifo overflow in function %u\n", 1477 qm_fifo_overflow[type], vf_num); 1478 else 1479 dev_err(dev, "unknown error type\n"); 1480 } 1481 } 1482 } 1483 1484 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1485 { 1486 u32 error_status; 1487 1488 error_status = qm_get_hw_error_status(qm); 1489 if (error_status & qm->error_mask) { 1490 if (error_status & QM_ECC_MBIT) 1491 qm->err_status.is_qm_ecc_mbit = true; 1492 1493 qm_log_hw_error(qm, error_status); 1494 if (error_status & qm->err_info.qm_reset_mask) { 1495 /* Disable the same error reporting until device is recovered. */ 1496 writel(qm->err_info.nfe & (~error_status), 1497 qm->io_base + QM_RAS_NFE_ENABLE); 1498 return ACC_ERR_NEED_RESET; 1499 } 1500 1501 /* Clear error source if not need reset. */ 1502 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1503 writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1504 writel(qm->err_info.ce, qm->io_base + QM_RAS_CE_ENABLE); 1505 } 1506 1507 return ACC_ERR_RECOVERED; 1508 } 1509 1510 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 1511 { 1512 struct qm_mailbox mailbox; 1513 int ret; 1514 1515 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 1516 mutex_lock(&qm->mailbox_lock); 1517 ret = qm_mb_nolock(qm, &mailbox); 1518 if (ret) 1519 goto err_unlock; 1520 1521 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1522 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1523 1524 err_unlock: 1525 mutex_unlock(&qm->mailbox_lock); 1526 return ret; 1527 } 1528 1529 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 1530 { 1531 u32 val; 1532 1533 if (qm->fun_type == QM_HW_PF) 1534 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 1535 1536 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 1537 val |= QM_IFC_INT_SOURCE_MASK; 1538 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 1539 } 1540 1541 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 1542 { 1543 struct device *dev = &qm->pdev->dev; 1544 u32 cmd; 1545 u64 msg; 1546 int ret; 1547 1548 ret = qm_get_mb_cmd(qm, &msg, vf_id); 1549 if (ret) { 1550 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 1551 return; 1552 } 1553 1554 cmd = msg & QM_MB_CMD_DATA_MASK; 1555 switch (cmd) { 1556 case QM_VF_PREPARE_FAIL: 1557 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 1558 break; 1559 case QM_VF_START_FAIL: 1560 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 1561 break; 1562 case QM_VF_PREPARE_DONE: 1563 case QM_VF_START_DONE: 1564 break; 1565 default: 1566 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 1567 break; 1568 } 1569 } 1570 1571 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 1572 { 1573 struct device *dev = &qm->pdev->dev; 1574 u32 vfs_num = qm->vfs_num; 1575 int cnt = 0; 1576 int ret = 0; 1577 u64 val; 1578 u32 i; 1579 1580 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 1581 return 0; 1582 1583 while (true) { 1584 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 1585 /* All VFs send command to PF, break */ 1586 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 1587 break; 1588 1589 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1590 ret = -EBUSY; 1591 break; 1592 } 1593 1594 msleep(QM_WAIT_DST_ACK); 1595 } 1596 1597 /* PF check VFs msg */ 1598 for (i = 1; i <= vfs_num; i++) { 1599 if (val & BIT(i)) 1600 qm_handle_vf_msg(qm, i); 1601 else 1602 dev_err(dev, "VF(%u) not ping PF!\n", i); 1603 } 1604 1605 /* PF clear interrupt to ack VFs */ 1606 qm_clear_cmd_interrupt(qm, val); 1607 1608 return ret; 1609 } 1610 1611 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 1612 { 1613 u32 val; 1614 1615 val = readl(qm->io_base + QM_IFC_INT_CFG); 1616 val &= ~QM_IFC_SEND_ALL_VFS; 1617 val |= fun_num; 1618 writel(val, qm->io_base + QM_IFC_INT_CFG); 1619 1620 val = readl(qm->io_base + QM_IFC_INT_SET_P); 1621 val |= QM_IFC_INT_SET_MASK; 1622 writel(val, qm->io_base + QM_IFC_INT_SET_P); 1623 } 1624 1625 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 1626 { 1627 u32 val; 1628 1629 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1630 val |= QM_IFC_INT_SET_MASK; 1631 writel(val, qm->io_base + QM_IFC_INT_SET_V); 1632 } 1633 1634 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 1635 { 1636 struct device *dev = &qm->pdev->dev; 1637 struct qm_mailbox mailbox; 1638 int cnt = 0; 1639 u64 val; 1640 int ret; 1641 1642 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 1643 mutex_lock(&qm->mailbox_lock); 1644 ret = qm_mb_nolock(qm, &mailbox); 1645 if (ret) { 1646 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 1647 goto err_unlock; 1648 } 1649 1650 qm_trigger_vf_interrupt(qm, fun_num); 1651 while (true) { 1652 msleep(QM_WAIT_DST_ACK); 1653 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1654 /* if VF respond, PF notifies VF successfully. */ 1655 if (!(val & BIT(fun_num))) 1656 goto err_unlock; 1657 1658 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1659 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 1660 ret = -ETIMEDOUT; 1661 break; 1662 } 1663 } 1664 1665 err_unlock: 1666 mutex_unlock(&qm->mailbox_lock); 1667 return ret; 1668 } 1669 1670 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 1671 { 1672 struct device *dev = &qm->pdev->dev; 1673 u32 vfs_num = qm->vfs_num; 1674 struct qm_mailbox mailbox; 1675 u64 val = 0; 1676 int cnt = 0; 1677 int ret; 1678 u32 i; 1679 1680 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 1681 mutex_lock(&qm->mailbox_lock); 1682 /* PF sends command to all VFs by mailbox */ 1683 ret = qm_mb_nolock(qm, &mailbox); 1684 if (ret) { 1685 dev_err(dev, "failed to send command to VFs!\n"); 1686 mutex_unlock(&qm->mailbox_lock); 1687 return ret; 1688 } 1689 1690 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 1691 while (true) { 1692 msleep(QM_WAIT_DST_ACK); 1693 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1694 /* If all VFs acked, PF notifies VFs successfully. */ 1695 if (!(val & GENMASK(vfs_num, 1))) { 1696 mutex_unlock(&qm->mailbox_lock); 1697 return 0; 1698 } 1699 1700 if (++cnt > QM_MAX_PF_WAIT_COUNT) 1701 break; 1702 } 1703 1704 mutex_unlock(&qm->mailbox_lock); 1705 1706 /* Check which vf respond timeout. */ 1707 for (i = 1; i <= vfs_num; i++) { 1708 if (val & BIT(i)) 1709 dev_err(dev, "failed to get response from VF(%u)!\n", i); 1710 } 1711 1712 return -ETIMEDOUT; 1713 } 1714 1715 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 1716 { 1717 struct qm_mailbox mailbox; 1718 int cnt = 0; 1719 u32 val; 1720 int ret; 1721 1722 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 1723 mutex_lock(&qm->mailbox_lock); 1724 ret = qm_mb_nolock(qm, &mailbox); 1725 if (ret) { 1726 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 1727 goto unlock; 1728 } 1729 1730 qm_trigger_pf_interrupt(qm); 1731 /* Waiting for PF response */ 1732 while (true) { 1733 msleep(QM_WAIT_DST_ACK); 1734 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1735 if (!(val & QM_IFC_INT_STATUS_MASK)) 1736 break; 1737 1738 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 1739 ret = -ETIMEDOUT; 1740 break; 1741 } 1742 } 1743 1744 unlock: 1745 mutex_unlock(&qm->mailbox_lock); 1746 return ret; 1747 } 1748 1749 static int qm_stop_qp(struct hisi_qp *qp) 1750 { 1751 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1752 } 1753 1754 static int qm_set_msi(struct hisi_qm *qm, bool set) 1755 { 1756 struct pci_dev *pdev = qm->pdev; 1757 1758 if (set) { 1759 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1760 0); 1761 } else { 1762 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1763 ACC_PEH_MSI_DISABLE); 1764 if (qm->err_status.is_qm_ecc_mbit || 1765 qm->err_status.is_dev_ecc_mbit) 1766 return 0; 1767 1768 mdelay(1); 1769 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 1770 return -EFAULT; 1771 } 1772 1773 return 0; 1774 } 1775 1776 static void qm_wait_msi_finish(struct hisi_qm *qm) 1777 { 1778 struct pci_dev *pdev = qm->pdev; 1779 u32 cmd = ~0; 1780 int cnt = 0; 1781 u32 val; 1782 int ret; 1783 1784 while (true) { 1785 pci_read_config_dword(pdev, pdev->msi_cap + 1786 PCI_MSI_PENDING_64, &cmd); 1787 if (!cmd) 1788 break; 1789 1790 if (++cnt > MAX_WAIT_COUNTS) { 1791 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 1792 break; 1793 } 1794 1795 udelay(1); 1796 } 1797 1798 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 1799 val, !(val & QM_PEH_DFX_MASK), 1800 POLL_PERIOD, POLL_TIMEOUT); 1801 if (ret) 1802 pci_warn(pdev, "failed to empty PEH MSI!\n"); 1803 1804 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 1805 val, !(val & QM_PEH_MSI_FINISH_MASK), 1806 POLL_PERIOD, POLL_TIMEOUT); 1807 if (ret) 1808 pci_warn(pdev, "failed to finish MSI operation!\n"); 1809 } 1810 1811 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 1812 { 1813 struct pci_dev *pdev = qm->pdev; 1814 int ret = -ETIMEDOUT; 1815 u32 cmd, i; 1816 1817 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1818 if (set) 1819 cmd |= QM_MSI_CAP_ENABLE; 1820 else 1821 cmd &= ~QM_MSI_CAP_ENABLE; 1822 1823 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 1824 if (set) { 1825 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 1826 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1827 if (cmd & QM_MSI_CAP_ENABLE) 1828 return 0; 1829 1830 udelay(1); 1831 } 1832 } else { 1833 udelay(WAIT_PERIOD_US_MIN); 1834 qm_wait_msi_finish(qm); 1835 ret = 0; 1836 } 1837 1838 return ret; 1839 } 1840 1841 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1842 .qm_db = qm_db_v1, 1843 .hw_error_init = qm_hw_error_init_v1, 1844 .set_msi = qm_set_msi, 1845 }; 1846 1847 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1848 .get_vft = qm_get_vft_v2, 1849 .qm_db = qm_db_v2, 1850 .hw_error_init = qm_hw_error_init_v2, 1851 .hw_error_uninit = qm_hw_error_uninit_v2, 1852 .hw_error_handle = qm_hw_error_handle_v2, 1853 .set_msi = qm_set_msi, 1854 }; 1855 1856 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1857 .get_vft = qm_get_vft_v2, 1858 .qm_db = qm_db_v2, 1859 .hw_error_init = qm_hw_error_init_v3, 1860 .hw_error_uninit = qm_hw_error_uninit_v3, 1861 .hw_error_handle = qm_hw_error_handle_v2, 1862 .set_msi = qm_set_msi_v3, 1863 }; 1864 1865 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1866 { 1867 struct hisi_qp_status *qp_status = &qp->qp_status; 1868 u16 sq_tail = qp_status->sq_tail; 1869 1870 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 1871 return NULL; 1872 1873 return qp->sqe + sq_tail * qp->qm->sqe_size; 1874 } 1875 1876 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 1877 { 1878 u64 *addr; 1879 1880 /* Use last 64 bits of DUS to reset status. */ 1881 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 1882 *addr = 0; 1883 } 1884 1885 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1886 { 1887 struct device *dev = &qm->pdev->dev; 1888 struct hisi_qp *qp; 1889 int qp_id; 1890 1891 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 1892 return ERR_PTR(-EPERM); 1893 1894 if (qm->qp_in_used == qm->qp_num) { 1895 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1896 qm->qp_num); 1897 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1898 return ERR_PTR(-EBUSY); 1899 } 1900 1901 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 1902 if (qp_id < 0) { 1903 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1904 qm->qp_num); 1905 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1906 return ERR_PTR(-EBUSY); 1907 } 1908 1909 qp = &qm->qp_array[qp_id]; 1910 hisi_qm_unset_hw_reset(qp); 1911 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 1912 1913 qp->event_cb = NULL; 1914 qp->req_cb = NULL; 1915 qp->qp_id = qp_id; 1916 qp->alg_type = alg_type; 1917 qp->is_in_kernel = true; 1918 qm->qp_in_used++; 1919 atomic_set(&qp->qp_status.flags, QP_INIT); 1920 1921 return qp; 1922 } 1923 1924 /** 1925 * hisi_qm_create_qp() - Create a queue pair from qm. 1926 * @qm: The qm we create a qp from. 1927 * @alg_type: Accelerator specific algorithm type in sqc. 1928 * 1929 * Return created qp, negative error code if failed. 1930 */ 1931 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 1932 { 1933 struct hisi_qp *qp; 1934 int ret; 1935 1936 ret = qm_pm_get_sync(qm); 1937 if (ret) 1938 return ERR_PTR(ret); 1939 1940 down_write(&qm->qps_lock); 1941 qp = qm_create_qp_nolock(qm, alg_type); 1942 up_write(&qm->qps_lock); 1943 1944 if (IS_ERR(qp)) 1945 qm_pm_put_sync(qm); 1946 1947 return qp; 1948 } 1949 1950 /** 1951 * hisi_qm_release_qp() - Release a qp back to its qm. 1952 * @qp: The qp we want to release. 1953 * 1954 * This function releases the resource of a qp. 1955 */ 1956 static void hisi_qm_release_qp(struct hisi_qp *qp) 1957 { 1958 struct hisi_qm *qm = qp->qm; 1959 1960 down_write(&qm->qps_lock); 1961 1962 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 1963 up_write(&qm->qps_lock); 1964 return; 1965 } 1966 1967 qm->qp_in_used--; 1968 idr_remove(&qm->qp_idr, qp->qp_id); 1969 1970 up_write(&qm->qps_lock); 1971 1972 qm_pm_put_sync(qm); 1973 } 1974 1975 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1976 { 1977 struct hisi_qm *qm = qp->qm; 1978 struct device *dev = &qm->pdev->dev; 1979 enum qm_hw_ver ver = qm->ver; 1980 struct qm_sqc *sqc; 1981 dma_addr_t sqc_dma; 1982 int ret; 1983 1984 sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); 1985 if (!sqc) 1986 return -ENOMEM; 1987 1988 INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); 1989 if (ver == QM_HW_V1) { 1990 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 1991 sqc->w8 = cpu_to_le16(qp->sq_depth - 1); 1992 } else { 1993 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 1994 sqc->w8 = 0; /* rand_qc */ 1995 } 1996 sqc->cq_num = cpu_to_le16(qp_id); 1997 sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 1998 1999 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2000 sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 2001 QM_QC_PASID_ENABLE_SHIFT); 2002 2003 sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), 2004 DMA_TO_DEVICE); 2005 if (dma_mapping_error(dev, sqc_dma)) { 2006 kfree(sqc); 2007 return -ENOMEM; 2008 } 2009 2010 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); 2011 dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); 2012 kfree(sqc); 2013 2014 return ret; 2015 } 2016 2017 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2018 { 2019 struct hisi_qm *qm = qp->qm; 2020 struct device *dev = &qm->pdev->dev; 2021 enum qm_hw_ver ver = qm->ver; 2022 struct qm_cqc *cqc; 2023 dma_addr_t cqc_dma; 2024 int ret; 2025 2026 cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); 2027 if (!cqc) 2028 return -ENOMEM; 2029 2030 INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); 2031 if (ver == QM_HW_V1) { 2032 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 2033 QM_QC_CQE_SIZE)); 2034 cqc->w8 = cpu_to_le16(qp->cq_depth - 1); 2035 } else { 2036 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 2037 cqc->w8 = 0; /* rand_qc */ 2038 } 2039 cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 2040 2041 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2042 cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 2043 2044 cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), 2045 DMA_TO_DEVICE); 2046 if (dma_mapping_error(dev, cqc_dma)) { 2047 kfree(cqc); 2048 return -ENOMEM; 2049 } 2050 2051 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); 2052 dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); 2053 kfree(cqc); 2054 2055 return ret; 2056 } 2057 2058 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2059 { 2060 int ret; 2061 2062 qm_init_qp_status(qp); 2063 2064 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2065 if (ret) 2066 return ret; 2067 2068 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2069 } 2070 2071 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2072 { 2073 struct hisi_qm *qm = qp->qm; 2074 struct device *dev = &qm->pdev->dev; 2075 int qp_id = qp->qp_id; 2076 u32 pasid = arg; 2077 int ret; 2078 2079 if (!qm_qp_avail_state(qm, qp, QP_START)) 2080 return -EPERM; 2081 2082 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2083 if (ret) 2084 return ret; 2085 2086 atomic_set(&qp->qp_status.flags, QP_START); 2087 dev_dbg(dev, "queue %d started\n", qp_id); 2088 2089 return 0; 2090 } 2091 2092 /** 2093 * hisi_qm_start_qp() - Start a qp into running. 2094 * @qp: The qp we want to start to run. 2095 * @arg: Accelerator specific argument. 2096 * 2097 * After this function, qp can receive request from user. Return 0 if 2098 * successful, negative error code if failed. 2099 */ 2100 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2101 { 2102 struct hisi_qm *qm = qp->qm; 2103 int ret; 2104 2105 down_write(&qm->qps_lock); 2106 ret = qm_start_qp_nolock(qp, arg); 2107 up_write(&qm->qps_lock); 2108 2109 return ret; 2110 } 2111 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2112 2113 /** 2114 * qp_stop_fail_cb() - call request cb. 2115 * @qp: stopped failed qp. 2116 * 2117 * Callback function should be called whether task completed or not. 2118 */ 2119 static void qp_stop_fail_cb(struct hisi_qp *qp) 2120 { 2121 int qp_used = atomic_read(&qp->qp_status.used); 2122 u16 cur_tail = qp->qp_status.sq_tail; 2123 u16 sq_depth = qp->sq_depth; 2124 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 2125 struct hisi_qm *qm = qp->qm; 2126 u16 pos; 2127 int i; 2128 2129 for (i = 0; i < qp_used; i++) { 2130 pos = (i + cur_head) % sq_depth; 2131 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2132 atomic_dec(&qp->qp_status.used); 2133 } 2134 } 2135 2136 /** 2137 * qm_drain_qp() - Drain a qp. 2138 * @qp: The qp we want to drain. 2139 * 2140 * Determine whether the queue is cleared by judging the tail pointers of 2141 * sq and cq. 2142 */ 2143 static int qm_drain_qp(struct hisi_qp *qp) 2144 { 2145 size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); 2146 struct hisi_qm *qm = qp->qm; 2147 struct device *dev = &qm->pdev->dev; 2148 struct qm_sqc *sqc; 2149 struct qm_cqc *cqc; 2150 dma_addr_t dma_addr; 2151 int ret = 0, i = 0; 2152 void *addr; 2153 2154 /* No need to judge if master OOO is blocked. */ 2155 if (qm_check_dev_error(qm)) 2156 return 0; 2157 2158 /* Kunpeng930 supports drain qp by device */ 2159 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 2160 ret = qm_stop_qp(qp); 2161 if (ret) 2162 dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); 2163 return ret; 2164 } 2165 2166 addr = hisi_qm_ctx_alloc(qm, size, &dma_addr); 2167 if (IS_ERR(addr)) { 2168 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); 2169 return -ENOMEM; 2170 } 2171 2172 while (++i) { 2173 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); 2174 if (ret) { 2175 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2176 break; 2177 } 2178 sqc = addr; 2179 2180 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), 2181 qp->qp_id); 2182 if (ret) { 2183 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2184 break; 2185 } 2186 cqc = addr + sizeof(struct qm_sqc); 2187 2188 if ((sqc->tail == cqc->tail) && 2189 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2190 break; 2191 2192 if (i == MAX_WAIT_COUNTS) { 2193 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 2194 ret = -EBUSY; 2195 break; 2196 } 2197 2198 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2199 } 2200 2201 hisi_qm_ctx_free(qm, size, addr, &dma_addr); 2202 2203 return ret; 2204 } 2205 2206 static int qm_stop_qp_nolock(struct hisi_qp *qp) 2207 { 2208 struct device *dev = &qp->qm->pdev->dev; 2209 int ret; 2210 2211 /* 2212 * It is allowed to stop and release qp when reset, If the qp is 2213 * stopped when reset but still want to be released then, the 2214 * is_resetting flag should be set negative so that this qp will not 2215 * be restarted after reset. 2216 */ 2217 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 2218 qp->is_resetting = false; 2219 return 0; 2220 } 2221 2222 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 2223 return -EPERM; 2224 2225 atomic_set(&qp->qp_status.flags, QP_STOP); 2226 2227 ret = qm_drain_qp(qp); 2228 if (ret) 2229 dev_err(dev, "Failed to drain out data for stopping!\n"); 2230 2231 2232 flush_workqueue(qp->qm->wq); 2233 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2234 qp_stop_fail_cb(qp); 2235 2236 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2237 2238 return 0; 2239 } 2240 2241 /** 2242 * hisi_qm_stop_qp() - Stop a qp in qm. 2243 * @qp: The qp we want to stop. 2244 * 2245 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 2246 */ 2247 int hisi_qm_stop_qp(struct hisi_qp *qp) 2248 { 2249 int ret; 2250 2251 down_write(&qp->qm->qps_lock); 2252 ret = qm_stop_qp_nolock(qp); 2253 up_write(&qp->qm->qps_lock); 2254 2255 return ret; 2256 } 2257 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2258 2259 /** 2260 * hisi_qp_send() - Queue up a task in the hardware queue. 2261 * @qp: The qp in which to put the message. 2262 * @msg: The message. 2263 * 2264 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2265 * if qp related qm is resetting. 2266 * 2267 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2268 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2269 * reset may happen, we have no lock here considering performance. This 2270 * causes current qm_db sending fail or can not receive sended sqe. QM 2271 * sync/async receive function should handle the error sqe. ACC reset 2272 * done function should clear used sqe to 0. 2273 */ 2274 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2275 { 2276 struct hisi_qp_status *qp_status = &qp->qp_status; 2277 u16 sq_tail = qp_status->sq_tail; 2278 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 2279 void *sqe = qm_get_avail_sqe(qp); 2280 2281 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2282 atomic_read(&qp->qm->status.flags) == QM_STOP || 2283 qp->is_resetting)) { 2284 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2285 return -EAGAIN; 2286 } 2287 2288 if (!sqe) 2289 return -EBUSY; 2290 2291 memcpy(sqe, msg, qp->qm->sqe_size); 2292 2293 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2294 atomic_inc(&qp->qp_status.used); 2295 qp_status->sq_tail = sq_tail_next; 2296 2297 return 0; 2298 } 2299 EXPORT_SYMBOL_GPL(hisi_qp_send); 2300 2301 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2302 { 2303 unsigned int val; 2304 2305 if (qm->ver == QM_HW_V1) 2306 return; 2307 2308 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2309 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2310 val, val & BIT(0), POLL_PERIOD, 2311 POLL_TIMEOUT)) 2312 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2313 } 2314 2315 static void qm_qp_event_notifier(struct hisi_qp *qp) 2316 { 2317 wake_up_interruptible(&qp->uacce_q->wait); 2318 } 2319 2320 /* This function returns free number of qp in qm. */ 2321 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2322 { 2323 struct hisi_qm *qm = uacce->priv; 2324 int ret; 2325 2326 down_read(&qm->qps_lock); 2327 ret = qm->qp_num - qm->qp_in_used; 2328 up_read(&qm->qps_lock); 2329 2330 return ret; 2331 } 2332 2333 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 2334 { 2335 int i; 2336 2337 for (i = 0; i < qm->qp_num; i++) 2338 qm_set_qp_disable(&qm->qp_array[i], offset); 2339 } 2340 2341 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2342 unsigned long arg, 2343 struct uacce_queue *q) 2344 { 2345 struct hisi_qm *qm = uacce->priv; 2346 struct hisi_qp *qp; 2347 u8 alg_type = 0; 2348 2349 qp = hisi_qm_create_qp(qm, alg_type); 2350 if (IS_ERR(qp)) 2351 return PTR_ERR(qp); 2352 2353 q->priv = qp; 2354 q->uacce = uacce; 2355 qp->uacce_q = q; 2356 qp->event_cb = qm_qp_event_notifier; 2357 qp->pasid = arg; 2358 qp->is_in_kernel = false; 2359 2360 return 0; 2361 } 2362 2363 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2364 { 2365 struct hisi_qp *qp = q->priv; 2366 2367 hisi_qm_release_qp(qp); 2368 } 2369 2370 /* map sq/cq/doorbell to user space */ 2371 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2372 struct vm_area_struct *vma, 2373 struct uacce_qfile_region *qfr) 2374 { 2375 struct hisi_qp *qp = q->priv; 2376 struct hisi_qm *qm = qp->qm; 2377 resource_size_t phys_base = qm->db_phys_base + 2378 qp->qp_id * qm->db_interval; 2379 size_t sz = vma->vm_end - vma->vm_start; 2380 struct pci_dev *pdev = qm->pdev; 2381 struct device *dev = &pdev->dev; 2382 unsigned long vm_pgoff; 2383 int ret; 2384 2385 switch (qfr->type) { 2386 case UACCE_QFRT_MMIO: 2387 if (qm->ver == QM_HW_V1) { 2388 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2389 return -EINVAL; 2390 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 2391 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2392 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2393 return -EINVAL; 2394 } else { 2395 if (sz > qm->db_interval) 2396 return -EINVAL; 2397 } 2398 2399 vm_flags_set(vma, VM_IO); 2400 2401 return remap_pfn_range(vma, vma->vm_start, 2402 phys_base >> PAGE_SHIFT, 2403 sz, pgprot_noncached(vma->vm_page_prot)); 2404 case UACCE_QFRT_DUS: 2405 if (sz != qp->qdma.size) 2406 return -EINVAL; 2407 2408 /* 2409 * dma_mmap_coherent() requires vm_pgoff as 0 2410 * restore vm_pfoff to initial value for mmap() 2411 */ 2412 vm_pgoff = vma->vm_pgoff; 2413 vma->vm_pgoff = 0; 2414 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2415 qp->qdma.dma, sz); 2416 vma->vm_pgoff = vm_pgoff; 2417 return ret; 2418 2419 default: 2420 return -EINVAL; 2421 } 2422 } 2423 2424 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2425 { 2426 struct hisi_qp *qp = q->priv; 2427 2428 return hisi_qm_start_qp(qp, qp->pasid); 2429 } 2430 2431 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2432 { 2433 hisi_qm_stop_qp(q->priv); 2434 } 2435 2436 static int hisi_qm_is_q_updated(struct uacce_queue *q) 2437 { 2438 struct hisi_qp *qp = q->priv; 2439 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 2440 int updated = 0; 2441 2442 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 2443 /* make sure to read data from memory */ 2444 dma_rmb(); 2445 qm_cq_head_update(qp); 2446 cqe = qp->cqe + qp->qp_status.cq_head; 2447 updated = 1; 2448 } 2449 2450 return updated; 2451 } 2452 2453 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2454 { 2455 struct hisi_qm *qm = q->uacce->priv; 2456 struct hisi_qp *qp = q->priv; 2457 2458 down_write(&qm->qps_lock); 2459 qp->alg_type = type; 2460 up_write(&qm->qps_lock); 2461 } 2462 2463 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2464 unsigned long arg) 2465 { 2466 struct hisi_qp *qp = q->priv; 2467 struct hisi_qp_info qp_info; 2468 struct hisi_qp_ctx qp_ctx; 2469 2470 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2471 if (copy_from_user(&qp_ctx, (void __user *)arg, 2472 sizeof(struct hisi_qp_ctx))) 2473 return -EFAULT; 2474 2475 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 2476 return -EINVAL; 2477 2478 qm_set_sqctype(q, qp_ctx.qc_type); 2479 qp_ctx.id = qp->qp_id; 2480 2481 if (copy_to_user((void __user *)arg, &qp_ctx, 2482 sizeof(struct hisi_qp_ctx))) 2483 return -EFAULT; 2484 2485 return 0; 2486 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 2487 if (copy_from_user(&qp_info, (void __user *)arg, 2488 sizeof(struct hisi_qp_info))) 2489 return -EFAULT; 2490 2491 qp_info.sqe_size = qp->qm->sqe_size; 2492 qp_info.sq_depth = qp->sq_depth; 2493 qp_info.cq_depth = qp->cq_depth; 2494 2495 if (copy_to_user((void __user *)arg, &qp_info, 2496 sizeof(struct hisi_qp_info))) 2497 return -EFAULT; 2498 2499 return 0; 2500 } 2501 2502 return -EINVAL; 2503 } 2504 2505 /** 2506 * qm_hw_err_isolate() - Try to set the isolation status of the uacce device 2507 * according to user's configuration of error threshold. 2508 * @qm: the uacce device 2509 */ 2510 static int qm_hw_err_isolate(struct hisi_qm *qm) 2511 { 2512 struct qm_hw_err *err, *tmp, *hw_err; 2513 struct qm_err_isolate *isolate; 2514 u32 count = 0; 2515 2516 isolate = &qm->isolate_data; 2517 2518 #define SECONDS_PER_HOUR 3600 2519 2520 /* All the hw errs are processed by PF driver */ 2521 if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold) 2522 return 0; 2523 2524 hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL); 2525 if (!hw_err) 2526 return -ENOMEM; 2527 2528 /* 2529 * Time-stamp every slot AER error. Then check the AER error log when the 2530 * next device AER error occurred. if the device slot AER error count exceeds 2531 * the setting error threshold in one hour, the isolated state will be set 2532 * to true. And the AER error logs that exceed one hour will be cleared. 2533 */ 2534 mutex_lock(&isolate->isolate_lock); 2535 hw_err->timestamp = jiffies; 2536 list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) { 2537 if ((hw_err->timestamp - err->timestamp) / HZ > 2538 SECONDS_PER_HOUR) { 2539 list_del(&err->list); 2540 kfree(err); 2541 } else { 2542 count++; 2543 } 2544 } 2545 list_add(&hw_err->list, &isolate->qm_hw_errs); 2546 mutex_unlock(&isolate->isolate_lock); 2547 2548 if (count >= isolate->err_threshold) 2549 isolate->is_isolate = true; 2550 2551 return 0; 2552 } 2553 2554 static void qm_hw_err_destroy(struct hisi_qm *qm) 2555 { 2556 struct qm_hw_err *err, *tmp; 2557 2558 mutex_lock(&qm->isolate_data.isolate_lock); 2559 list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) { 2560 list_del(&err->list); 2561 kfree(err); 2562 } 2563 mutex_unlock(&qm->isolate_data.isolate_lock); 2564 } 2565 2566 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce) 2567 { 2568 struct hisi_qm *qm = uacce->priv; 2569 struct hisi_qm *pf_qm; 2570 2571 if (uacce->is_vf) 2572 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2573 else 2574 pf_qm = qm; 2575 2576 return pf_qm->isolate_data.is_isolate ? 2577 UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL; 2578 } 2579 2580 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num) 2581 { 2582 struct hisi_qm *qm = uacce->priv; 2583 2584 /* Must be set by PF */ 2585 if (uacce->is_vf) 2586 return -EPERM; 2587 2588 if (qm->isolate_data.is_isolate) 2589 return -EPERM; 2590 2591 qm->isolate_data.err_threshold = num; 2592 2593 /* After the policy is updated, need to reset the hardware err list */ 2594 qm_hw_err_destroy(qm); 2595 2596 return 0; 2597 } 2598 2599 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce) 2600 { 2601 struct hisi_qm *qm = uacce->priv; 2602 struct hisi_qm *pf_qm; 2603 2604 if (uacce->is_vf) { 2605 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2606 return pf_qm->isolate_data.err_threshold; 2607 } 2608 2609 return qm->isolate_data.err_threshold; 2610 } 2611 2612 static const struct uacce_ops uacce_qm_ops = { 2613 .get_available_instances = hisi_qm_get_available_instances, 2614 .get_queue = hisi_qm_uacce_get_queue, 2615 .put_queue = hisi_qm_uacce_put_queue, 2616 .start_queue = hisi_qm_uacce_start_queue, 2617 .stop_queue = hisi_qm_uacce_stop_queue, 2618 .mmap = hisi_qm_uacce_mmap, 2619 .ioctl = hisi_qm_uacce_ioctl, 2620 .is_q_updated = hisi_qm_is_q_updated, 2621 .get_isolate_state = hisi_qm_get_isolate_state, 2622 .isolate_err_threshold_write = hisi_qm_isolate_threshold_write, 2623 .isolate_err_threshold_read = hisi_qm_isolate_threshold_read, 2624 }; 2625 2626 static void qm_remove_uacce(struct hisi_qm *qm) 2627 { 2628 struct uacce_device *uacce = qm->uacce; 2629 2630 if (qm->use_sva) { 2631 qm_hw_err_destroy(qm); 2632 uacce_remove(uacce); 2633 qm->uacce = NULL; 2634 } 2635 } 2636 2637 static int qm_alloc_uacce(struct hisi_qm *qm) 2638 { 2639 struct pci_dev *pdev = qm->pdev; 2640 struct uacce_device *uacce; 2641 unsigned long mmio_page_nr; 2642 unsigned long dus_page_nr; 2643 u16 sq_depth, cq_depth; 2644 struct uacce_interface interface = { 2645 .flags = UACCE_DEV_SVA, 2646 .ops = &uacce_qm_ops, 2647 }; 2648 int ret; 2649 2650 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 2651 sizeof(interface.name)); 2652 if (ret < 0) 2653 return -ENAMETOOLONG; 2654 2655 uacce = uacce_alloc(&pdev->dev, &interface); 2656 if (IS_ERR(uacce)) 2657 return PTR_ERR(uacce); 2658 2659 if (uacce->flags & UACCE_DEV_SVA) { 2660 qm->use_sva = true; 2661 } else { 2662 /* only consider sva case */ 2663 qm_remove_uacce(qm); 2664 return -EINVAL; 2665 } 2666 2667 uacce->is_vf = pdev->is_virtfn; 2668 uacce->priv = qm; 2669 2670 if (qm->ver == QM_HW_V1) 2671 uacce->api_ver = HISI_QM_API_VER_BASE; 2672 else if (qm->ver == QM_HW_V2) 2673 uacce->api_ver = HISI_QM_API_VER2_BASE; 2674 else 2675 uacce->api_ver = HISI_QM_API_VER3_BASE; 2676 2677 if (qm->ver == QM_HW_V1) 2678 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2679 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2680 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2681 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2682 else 2683 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2684 2685 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 2686 2687 /* Add one more page for device or qp status */ 2688 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 2689 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 2690 PAGE_SHIFT; 2691 2692 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2693 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2694 2695 qm->uacce = uacce; 2696 INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs); 2697 mutex_init(&qm->isolate_data.isolate_lock); 2698 2699 return 0; 2700 } 2701 2702 /** 2703 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2704 * there is user on the QM, return failure without doing anything. 2705 * @qm: The qm needed to be fronzen. 2706 * 2707 * This function frozes QM, then we can do SRIOV disabling. 2708 */ 2709 static int qm_frozen(struct hisi_qm *qm) 2710 { 2711 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2712 return 0; 2713 2714 down_write(&qm->qps_lock); 2715 2716 if (!qm->qp_in_used) { 2717 qm->qp_in_used = qm->qp_num; 2718 up_write(&qm->qps_lock); 2719 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2720 return 0; 2721 } 2722 2723 up_write(&qm->qps_lock); 2724 2725 return -EBUSY; 2726 } 2727 2728 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2729 struct hisi_qm_list *qm_list) 2730 { 2731 struct hisi_qm *qm, *vf_qm; 2732 struct pci_dev *dev; 2733 int ret = 0; 2734 2735 if (!qm_list || !pdev) 2736 return -EINVAL; 2737 2738 /* Try to frozen all the VFs as disable SRIOV */ 2739 mutex_lock(&qm_list->lock); 2740 list_for_each_entry(qm, &qm_list->list, list) { 2741 dev = qm->pdev; 2742 if (dev == pdev) 2743 continue; 2744 if (pci_physfn(dev) == pdev) { 2745 vf_qm = pci_get_drvdata(dev); 2746 ret = qm_frozen(vf_qm); 2747 if (ret) 2748 goto frozen_fail; 2749 } 2750 } 2751 2752 frozen_fail: 2753 mutex_unlock(&qm_list->lock); 2754 2755 return ret; 2756 } 2757 2758 /** 2759 * hisi_qm_wait_task_finish() - Wait until the task is finished 2760 * when removing the driver. 2761 * @qm: The qm needed to wait for the task to finish. 2762 * @qm_list: The list of all available devices. 2763 */ 2764 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2765 { 2766 while (qm_frozen(qm) || 2767 ((qm->fun_type == QM_HW_PF) && 2768 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2769 msleep(WAIT_PERIOD); 2770 } 2771 2772 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2773 test_bit(QM_RESETTING, &qm->misc_ctl)) 2774 msleep(WAIT_PERIOD); 2775 2776 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2777 flush_work(&qm->cmd_process); 2778 2779 udelay(REMOVE_WAIT_DELAY); 2780 } 2781 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2782 2783 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2784 { 2785 struct device *dev = &qm->pdev->dev; 2786 struct qm_dma *qdma; 2787 int i; 2788 2789 for (i = num - 1; i >= 0; i--) { 2790 qdma = &qm->qp_array[i].qdma; 2791 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2792 kfree(qm->poll_data[i].qp_finish_id); 2793 } 2794 2795 kfree(qm->poll_data); 2796 kfree(qm->qp_array); 2797 } 2798 2799 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 2800 u16 sq_depth, u16 cq_depth) 2801 { 2802 struct device *dev = &qm->pdev->dev; 2803 size_t off = qm->sqe_size * sq_depth; 2804 struct hisi_qp *qp; 2805 int ret = -ENOMEM; 2806 2807 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 2808 GFP_KERNEL); 2809 if (!qm->poll_data[id].qp_finish_id) 2810 return -ENOMEM; 2811 2812 qp = &qm->qp_array[id]; 2813 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2814 GFP_KERNEL); 2815 if (!qp->qdma.va) 2816 goto err_free_qp_finish_id; 2817 2818 qp->sqe = qp->qdma.va; 2819 qp->sqe_dma = qp->qdma.dma; 2820 qp->cqe = qp->qdma.va + off; 2821 qp->cqe_dma = qp->qdma.dma + off; 2822 qp->qdma.size = dma_size; 2823 qp->sq_depth = sq_depth; 2824 qp->cq_depth = cq_depth; 2825 qp->qm = qm; 2826 qp->qp_id = id; 2827 2828 return 0; 2829 2830 err_free_qp_finish_id: 2831 kfree(qm->poll_data[id].qp_finish_id); 2832 return ret; 2833 } 2834 2835 static void hisi_qm_pre_init(struct hisi_qm *qm) 2836 { 2837 struct pci_dev *pdev = qm->pdev; 2838 2839 if (qm->ver == QM_HW_V1) 2840 qm->ops = &qm_hw_ops_v1; 2841 else if (qm->ver == QM_HW_V2) 2842 qm->ops = &qm_hw_ops_v2; 2843 else 2844 qm->ops = &qm_hw_ops_v3; 2845 2846 pci_set_drvdata(pdev, qm); 2847 mutex_init(&qm->mailbox_lock); 2848 init_rwsem(&qm->qps_lock); 2849 qm->qp_in_used = 0; 2850 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 2851 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 2852 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 2853 } 2854 } 2855 2856 static void qm_cmd_uninit(struct hisi_qm *qm) 2857 { 2858 u32 val; 2859 2860 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2861 return; 2862 2863 val = readl(qm->io_base + QM_IFC_INT_MASK); 2864 val |= QM_IFC_INT_DISABLE; 2865 writel(val, qm->io_base + QM_IFC_INT_MASK); 2866 } 2867 2868 static void qm_cmd_init(struct hisi_qm *qm) 2869 { 2870 u32 val; 2871 2872 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2873 return; 2874 2875 /* Clear communication interrupt source */ 2876 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 2877 2878 /* Enable pf to vf communication reg. */ 2879 val = readl(qm->io_base + QM_IFC_INT_MASK); 2880 val &= ~QM_IFC_INT_DISABLE; 2881 writel(val, qm->io_base + QM_IFC_INT_MASK); 2882 } 2883 2884 static void qm_put_pci_res(struct hisi_qm *qm) 2885 { 2886 struct pci_dev *pdev = qm->pdev; 2887 2888 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2889 iounmap(qm->db_io_base); 2890 2891 iounmap(qm->io_base); 2892 pci_release_mem_regions(pdev); 2893 } 2894 2895 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 2896 { 2897 struct pci_dev *pdev = qm->pdev; 2898 2899 pci_free_irq_vectors(pdev); 2900 qm_put_pci_res(qm); 2901 pci_disable_device(pdev); 2902 } 2903 2904 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 2905 { 2906 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 2907 writel(state, qm->io_base + QM_VF_STATE); 2908 } 2909 2910 static void hisi_qm_unint_work(struct hisi_qm *qm) 2911 { 2912 destroy_workqueue(qm->wq); 2913 } 2914 2915 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 2916 { 2917 struct device *dev = &qm->pdev->dev; 2918 2919 hisi_qp_memory_uninit(qm, qm->qp_num); 2920 if (qm->qdma.va) { 2921 hisi_qm_cache_wb(qm); 2922 dma_free_coherent(dev, qm->qdma.size, 2923 qm->qdma.va, qm->qdma.dma); 2924 } 2925 2926 idr_destroy(&qm->qp_idr); 2927 2928 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 2929 kfree(qm->factor); 2930 } 2931 2932 /** 2933 * hisi_qm_uninit() - Uninitialize qm. 2934 * @qm: The qm needed uninit. 2935 * 2936 * This function uninits qm related device resources. 2937 */ 2938 void hisi_qm_uninit(struct hisi_qm *qm) 2939 { 2940 qm_cmd_uninit(qm); 2941 hisi_qm_unint_work(qm); 2942 down_write(&qm->qps_lock); 2943 2944 if (!qm_avail_state(qm, QM_CLOSE)) { 2945 up_write(&qm->qps_lock); 2946 return; 2947 } 2948 2949 hisi_qm_memory_uninit(qm); 2950 hisi_qm_set_state(qm, QM_NOT_READY); 2951 up_write(&qm->qps_lock); 2952 2953 qm_remove_uacce(qm); 2954 qm_irqs_unregister(qm); 2955 hisi_qm_pci_uninit(qm); 2956 } 2957 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 2958 2959 /** 2960 * hisi_qm_get_vft() - Get vft from a qm. 2961 * @qm: The qm we want to get its vft. 2962 * @base: The base number of queue in vft. 2963 * @number: The number of queues in vft. 2964 * 2965 * We can allocate multiple queues to a qm by configuring virtual function 2966 * table. We get related configures by this function. Normally, we call this 2967 * function in VF driver to get the queue information. 2968 * 2969 * qm hw v1 does not support this interface. 2970 */ 2971 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 2972 { 2973 if (!base || !number) 2974 return -EINVAL; 2975 2976 if (!qm->ops->get_vft) { 2977 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 2978 return -EINVAL; 2979 } 2980 2981 return qm->ops->get_vft(qm, base, number); 2982 } 2983 2984 /** 2985 * hisi_qm_set_vft() - Set vft to a qm. 2986 * @qm: The qm we want to set its vft. 2987 * @fun_num: The function number. 2988 * @base: The base number of queue in vft. 2989 * @number: The number of queues in vft. 2990 * 2991 * This function is alway called in PF driver, it is used to assign queues 2992 * among PF and VFs. 2993 * 2994 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 2995 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 2996 * (VF function number 0x2) 2997 */ 2998 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 2999 u32 number) 3000 { 3001 u32 max_q_num = qm->ctrl_qp_num; 3002 3003 if (base >= max_q_num || number > max_q_num || 3004 (base + number) > max_q_num) 3005 return -EINVAL; 3006 3007 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 3008 } 3009 3010 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 3011 { 3012 struct hisi_qm_status *status = &qm->status; 3013 3014 status->eq_head = 0; 3015 status->aeq_head = 0; 3016 status->eqc_phase = true; 3017 status->aeqc_phase = true; 3018 } 3019 3020 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 3021 { 3022 /* Clear eq/aeq interrupt source */ 3023 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 3024 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 3025 3026 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 3027 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 3028 } 3029 3030 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 3031 { 3032 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 3033 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 3034 } 3035 3036 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 3037 { 3038 struct device *dev = &qm->pdev->dev; 3039 struct qm_eqc *eqc; 3040 dma_addr_t eqc_dma; 3041 int ret; 3042 3043 eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); 3044 if (!eqc) 3045 return -ENOMEM; 3046 3047 eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3048 eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3049 if (qm->ver == QM_HW_V1) 3050 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3051 eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3052 3053 eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), 3054 DMA_TO_DEVICE); 3055 if (dma_mapping_error(dev, eqc_dma)) { 3056 kfree(eqc); 3057 return -ENOMEM; 3058 } 3059 3060 ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); 3061 dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); 3062 kfree(eqc); 3063 3064 return ret; 3065 } 3066 3067 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3068 { 3069 struct device *dev = &qm->pdev->dev; 3070 struct qm_aeqc *aeqc; 3071 dma_addr_t aeqc_dma; 3072 int ret; 3073 3074 aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); 3075 if (!aeqc) 3076 return -ENOMEM; 3077 3078 aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3079 aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3080 aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3081 3082 aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), 3083 DMA_TO_DEVICE); 3084 if (dma_mapping_error(dev, aeqc_dma)) { 3085 kfree(aeqc); 3086 return -ENOMEM; 3087 } 3088 3089 ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); 3090 dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); 3091 kfree(aeqc); 3092 3093 return ret; 3094 } 3095 3096 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3097 { 3098 struct device *dev = &qm->pdev->dev; 3099 int ret; 3100 3101 qm_init_eq_aeq_status(qm); 3102 3103 ret = qm_eq_ctx_cfg(qm); 3104 if (ret) { 3105 dev_err(dev, "Set eqc failed!\n"); 3106 return ret; 3107 } 3108 3109 return qm_aeq_ctx_cfg(qm); 3110 } 3111 3112 static int __hisi_qm_start(struct hisi_qm *qm) 3113 { 3114 int ret; 3115 3116 WARN_ON(!qm->qdma.va); 3117 3118 if (qm->fun_type == QM_HW_PF) { 3119 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3120 if (ret) 3121 return ret; 3122 } 3123 3124 ret = qm_eq_aeq_ctx_cfg(qm); 3125 if (ret) 3126 return ret; 3127 3128 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3129 if (ret) 3130 return ret; 3131 3132 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3133 if (ret) 3134 return ret; 3135 3136 qm_init_prefetch(qm); 3137 qm_enable_eq_aeq_interrupts(qm); 3138 3139 return 0; 3140 } 3141 3142 /** 3143 * hisi_qm_start() - start qm 3144 * @qm: The qm to be started. 3145 * 3146 * This function starts a qm, then we can allocate qp from this qm. 3147 */ 3148 int hisi_qm_start(struct hisi_qm *qm) 3149 { 3150 struct device *dev = &qm->pdev->dev; 3151 int ret = 0; 3152 3153 down_write(&qm->qps_lock); 3154 3155 if (!qm_avail_state(qm, QM_START)) { 3156 up_write(&qm->qps_lock); 3157 return -EPERM; 3158 } 3159 3160 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3161 3162 if (!qm->qp_num) { 3163 dev_err(dev, "qp_num should not be 0\n"); 3164 ret = -EINVAL; 3165 goto err_unlock; 3166 } 3167 3168 ret = __hisi_qm_start(qm); 3169 if (!ret) 3170 atomic_set(&qm->status.flags, QM_START); 3171 3172 hisi_qm_set_state(qm, QM_READY); 3173 err_unlock: 3174 up_write(&qm->qps_lock); 3175 return ret; 3176 } 3177 EXPORT_SYMBOL_GPL(hisi_qm_start); 3178 3179 static int qm_restart(struct hisi_qm *qm) 3180 { 3181 struct device *dev = &qm->pdev->dev; 3182 struct hisi_qp *qp; 3183 int ret, i; 3184 3185 ret = hisi_qm_start(qm); 3186 if (ret < 0) 3187 return ret; 3188 3189 down_write(&qm->qps_lock); 3190 for (i = 0; i < qm->qp_num; i++) { 3191 qp = &qm->qp_array[i]; 3192 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3193 qp->is_resetting == true) { 3194 ret = qm_start_qp_nolock(qp, 0); 3195 if (ret < 0) { 3196 dev_err(dev, "Failed to start qp%d!\n", i); 3197 3198 up_write(&qm->qps_lock); 3199 return ret; 3200 } 3201 qp->is_resetting = false; 3202 } 3203 } 3204 up_write(&qm->qps_lock); 3205 3206 return 0; 3207 } 3208 3209 /* Stop started qps in reset flow */ 3210 static int qm_stop_started_qp(struct hisi_qm *qm) 3211 { 3212 struct device *dev = &qm->pdev->dev; 3213 struct hisi_qp *qp; 3214 int i, ret; 3215 3216 for (i = 0; i < qm->qp_num; i++) { 3217 qp = &qm->qp_array[i]; 3218 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 3219 qp->is_resetting = true; 3220 ret = qm_stop_qp_nolock(qp); 3221 if (ret < 0) { 3222 dev_err(dev, "Failed to stop qp%d!\n", i); 3223 return ret; 3224 } 3225 } 3226 } 3227 3228 return 0; 3229 } 3230 3231 /** 3232 * qm_clear_queues() - Clear all queues memory in a qm. 3233 * @qm: The qm in which the queues will be cleared. 3234 * 3235 * This function clears all queues memory in a qm. Reset of accelerator can 3236 * use this to clear queues. 3237 */ 3238 static void qm_clear_queues(struct hisi_qm *qm) 3239 { 3240 struct hisi_qp *qp; 3241 int i; 3242 3243 for (i = 0; i < qm->qp_num; i++) { 3244 qp = &qm->qp_array[i]; 3245 if (qp->is_in_kernel && qp->is_resetting) 3246 memset(qp->qdma.va, 0, qp->qdma.size); 3247 } 3248 3249 memset(qm->qdma.va, 0, qm->qdma.size); 3250 } 3251 3252 /** 3253 * hisi_qm_stop() - Stop a qm. 3254 * @qm: The qm which will be stopped. 3255 * @r: The reason to stop qm. 3256 * 3257 * This function stops qm and its qps, then qm can not accept request. 3258 * Related resources are not released at this state, we can use hisi_qm_start 3259 * to let qm start again. 3260 */ 3261 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3262 { 3263 struct device *dev = &qm->pdev->dev; 3264 int ret = 0; 3265 3266 down_write(&qm->qps_lock); 3267 3268 qm->status.stop_reason = r; 3269 if (!qm_avail_state(qm, QM_STOP)) { 3270 ret = -EPERM; 3271 goto err_unlock; 3272 } 3273 3274 if (qm->status.stop_reason == QM_SOFT_RESET || 3275 qm->status.stop_reason == QM_DOWN) { 3276 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3277 ret = qm_stop_started_qp(qm); 3278 if (ret < 0) { 3279 dev_err(dev, "Failed to stop started qp!\n"); 3280 goto err_unlock; 3281 } 3282 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3283 } 3284 3285 qm_disable_eq_aeq_interrupts(qm); 3286 if (qm->fun_type == QM_HW_PF) { 3287 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3288 if (ret < 0) { 3289 dev_err(dev, "Failed to set vft!\n"); 3290 ret = -EBUSY; 3291 goto err_unlock; 3292 } 3293 } 3294 3295 qm_clear_queues(qm); 3296 atomic_set(&qm->status.flags, QM_STOP); 3297 3298 err_unlock: 3299 up_write(&qm->qps_lock); 3300 return ret; 3301 } 3302 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3303 3304 static void qm_hw_error_init(struct hisi_qm *qm) 3305 { 3306 if (!qm->ops->hw_error_init) { 3307 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3308 return; 3309 } 3310 3311 qm->ops->hw_error_init(qm); 3312 } 3313 3314 static void qm_hw_error_uninit(struct hisi_qm *qm) 3315 { 3316 if (!qm->ops->hw_error_uninit) { 3317 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3318 return; 3319 } 3320 3321 qm->ops->hw_error_uninit(qm); 3322 } 3323 3324 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3325 { 3326 if (!qm->ops->hw_error_handle) { 3327 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3328 return ACC_ERR_NONE; 3329 } 3330 3331 return qm->ops->hw_error_handle(qm); 3332 } 3333 3334 /** 3335 * hisi_qm_dev_err_init() - Initialize device error configuration. 3336 * @qm: The qm for which we want to do error initialization. 3337 * 3338 * Initialize QM and device error related configuration. 3339 */ 3340 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3341 { 3342 if (qm->fun_type == QM_HW_VF) 3343 return; 3344 3345 qm_hw_error_init(qm); 3346 3347 if (!qm->err_ini->hw_err_enable) { 3348 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3349 return; 3350 } 3351 qm->err_ini->hw_err_enable(qm); 3352 } 3353 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3354 3355 /** 3356 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3357 * @qm: The qm for which we want to do error uninitialization. 3358 * 3359 * Uninitialize QM and device error related configuration. 3360 */ 3361 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3362 { 3363 if (qm->fun_type == QM_HW_VF) 3364 return; 3365 3366 qm_hw_error_uninit(qm); 3367 3368 if (!qm->err_ini->hw_err_disable) { 3369 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3370 return; 3371 } 3372 qm->err_ini->hw_err_disable(qm); 3373 } 3374 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3375 3376 /** 3377 * hisi_qm_free_qps() - free multiple queue pairs. 3378 * @qps: The queue pairs need to be freed. 3379 * @qp_num: The num of queue pairs. 3380 */ 3381 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3382 { 3383 int i; 3384 3385 if (!qps || qp_num <= 0) 3386 return; 3387 3388 for (i = qp_num - 1; i >= 0; i--) 3389 hisi_qm_release_qp(qps[i]); 3390 } 3391 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3392 3393 static void free_list(struct list_head *head) 3394 { 3395 struct hisi_qm_resource *res, *tmp; 3396 3397 list_for_each_entry_safe(res, tmp, head, list) { 3398 list_del(&res->list); 3399 kfree(res); 3400 } 3401 } 3402 3403 static int hisi_qm_sort_devices(int node, struct list_head *head, 3404 struct hisi_qm_list *qm_list) 3405 { 3406 struct hisi_qm_resource *res, *tmp; 3407 struct hisi_qm *qm; 3408 struct list_head *n; 3409 struct device *dev; 3410 int dev_node; 3411 3412 list_for_each_entry(qm, &qm_list->list, list) { 3413 dev = &qm->pdev->dev; 3414 3415 dev_node = dev_to_node(dev); 3416 if (dev_node < 0) 3417 dev_node = 0; 3418 3419 res = kzalloc(sizeof(*res), GFP_KERNEL); 3420 if (!res) 3421 return -ENOMEM; 3422 3423 res->qm = qm; 3424 res->distance = node_distance(dev_node, node); 3425 n = head; 3426 list_for_each_entry(tmp, head, list) { 3427 if (res->distance < tmp->distance) { 3428 n = &tmp->list; 3429 break; 3430 } 3431 } 3432 list_add_tail(&res->list, n); 3433 } 3434 3435 return 0; 3436 } 3437 3438 /** 3439 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3440 * @qm_list: The list of all available devices. 3441 * @qp_num: The number of queue pairs need created. 3442 * @alg_type: The algorithm type. 3443 * @node: The numa node. 3444 * @qps: The queue pairs need created. 3445 * 3446 * This function will sort all available device according to numa distance. 3447 * Then try to create all queue pairs from one device, if all devices do 3448 * not meet the requirements will return error. 3449 */ 3450 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3451 u8 alg_type, int node, struct hisi_qp **qps) 3452 { 3453 struct hisi_qm_resource *tmp; 3454 int ret = -ENODEV; 3455 LIST_HEAD(head); 3456 int i; 3457 3458 if (!qps || !qm_list || qp_num <= 0) 3459 return -EINVAL; 3460 3461 mutex_lock(&qm_list->lock); 3462 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3463 mutex_unlock(&qm_list->lock); 3464 goto err; 3465 } 3466 3467 list_for_each_entry(tmp, &head, list) { 3468 for (i = 0; i < qp_num; i++) { 3469 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3470 if (IS_ERR(qps[i])) { 3471 hisi_qm_free_qps(qps, i); 3472 break; 3473 } 3474 } 3475 3476 if (i == qp_num) { 3477 ret = 0; 3478 break; 3479 } 3480 } 3481 3482 mutex_unlock(&qm_list->lock); 3483 if (ret) 3484 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3485 node, alg_type, qp_num); 3486 3487 err: 3488 free_list(&head); 3489 return ret; 3490 } 3491 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3492 3493 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3494 { 3495 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3496 u32 max_qp_num = qm->max_qp_num; 3497 u32 q_base = qm->qp_num; 3498 int ret; 3499 3500 if (!num_vfs) 3501 return -EINVAL; 3502 3503 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3504 3505 /* If vfs_q_num is less than num_vfs, return error. */ 3506 if (vfs_q_num < num_vfs) 3507 return -EINVAL; 3508 3509 q_num = vfs_q_num / num_vfs; 3510 remain_q_num = vfs_q_num % num_vfs; 3511 3512 for (i = num_vfs; i > 0; i--) { 3513 /* 3514 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3515 * remaining queues equally. 3516 */ 3517 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3518 act_q_num = q_num + remain_q_num; 3519 remain_q_num = 0; 3520 } else if (remain_q_num > 0) { 3521 act_q_num = q_num + 1; 3522 remain_q_num--; 3523 } else { 3524 act_q_num = q_num; 3525 } 3526 3527 act_q_num = min(act_q_num, max_qp_num); 3528 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3529 if (ret) { 3530 for (j = num_vfs; j > i; j--) 3531 hisi_qm_set_vft(qm, j, 0, 0); 3532 return ret; 3533 } 3534 q_base += act_q_num; 3535 } 3536 3537 return 0; 3538 } 3539 3540 static int qm_clear_vft_config(struct hisi_qm *qm) 3541 { 3542 int ret; 3543 u32 i; 3544 3545 for (i = 1; i <= qm->vfs_num; i++) { 3546 ret = hisi_qm_set_vft(qm, i, 0, 0); 3547 if (ret) 3548 return ret; 3549 } 3550 qm->vfs_num = 0; 3551 3552 return 0; 3553 } 3554 3555 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 3556 { 3557 struct device *dev = &qm->pdev->dev; 3558 u32 ir = qos * QM_QOS_RATE; 3559 int ret, total_vfs, i; 3560 3561 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 3562 if (fun_index > total_vfs) 3563 return -EINVAL; 3564 3565 qm->factor[fun_index].func_qos = qos; 3566 3567 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 3568 if (ret) { 3569 dev_err(dev, "failed to calculate shaper parameter!\n"); 3570 return -EINVAL; 3571 } 3572 3573 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 3574 /* The base number of queue reuse for different alg type */ 3575 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 3576 if (ret) { 3577 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 3578 return -EINVAL; 3579 } 3580 } 3581 3582 return 0; 3583 } 3584 3585 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 3586 { 3587 u64 cir_u = 0, cir_b = 0, cir_s = 0; 3588 u64 shaper_vft, ir_calc, ir; 3589 unsigned int val; 3590 u32 error_rate; 3591 int ret; 3592 3593 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3594 val & BIT(0), POLL_PERIOD, 3595 POLL_TIMEOUT); 3596 if (ret) 3597 return 0; 3598 3599 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 3600 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 3601 writel(fun_index, qm->io_base + QM_VFT_CFG); 3602 3603 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 3604 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 3605 3606 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3607 val & BIT(0), POLL_PERIOD, 3608 POLL_TIMEOUT); 3609 if (ret) 3610 return 0; 3611 3612 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 3613 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 3614 3615 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 3616 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 3617 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 3618 3619 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 3620 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 3621 3622 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 3623 3624 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 3625 3626 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 3627 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 3628 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 3629 return 0; 3630 } 3631 3632 return ir; 3633 } 3634 3635 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 3636 { 3637 struct device *dev = &qm->pdev->dev; 3638 u64 mb_cmd; 3639 u32 qos; 3640 int ret; 3641 3642 qos = qm_get_shaper_vft_qos(qm, fun_num); 3643 if (!qos) { 3644 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 3645 return; 3646 } 3647 3648 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 3649 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 3650 if (ret) 3651 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 3652 } 3653 3654 static int qm_vf_read_qos(struct hisi_qm *qm) 3655 { 3656 int cnt = 0; 3657 int ret = -EINVAL; 3658 3659 /* reset mailbox qos val */ 3660 qm->mb_qos = 0; 3661 3662 /* vf ping pf to get function qos */ 3663 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 3664 if (ret) { 3665 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 3666 return ret; 3667 } 3668 3669 while (true) { 3670 msleep(QM_WAIT_DST_ACK); 3671 if (qm->mb_qos) 3672 break; 3673 3674 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 3675 pci_err(qm->pdev, "PF ping VF timeout!\n"); 3676 return -ETIMEDOUT; 3677 } 3678 } 3679 3680 return ret; 3681 } 3682 3683 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 3684 size_t count, loff_t *pos) 3685 { 3686 struct hisi_qm *qm = filp->private_data; 3687 char tbuf[QM_DBG_READ_LEN]; 3688 u32 qos_val, ir; 3689 int ret; 3690 3691 ret = hisi_qm_get_dfx_access(qm); 3692 if (ret) 3693 return ret; 3694 3695 /* Mailbox and reset cannot be operated at the same time */ 3696 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3697 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 3698 ret = -EAGAIN; 3699 goto err_put_dfx_access; 3700 } 3701 3702 if (qm->fun_type == QM_HW_PF) { 3703 ir = qm_get_shaper_vft_qos(qm, 0); 3704 } else { 3705 ret = qm_vf_read_qos(qm); 3706 if (ret) 3707 goto err_get_status; 3708 ir = qm->mb_qos; 3709 } 3710 3711 qos_val = ir / QM_QOS_RATE; 3712 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 3713 3714 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 3715 3716 err_get_status: 3717 clear_bit(QM_RESETTING, &qm->misc_ctl); 3718 err_put_dfx_access: 3719 hisi_qm_put_dfx_access(qm); 3720 return ret; 3721 } 3722 3723 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 3724 unsigned long *val, 3725 unsigned int *fun_index) 3726 { 3727 const struct bus_type *bus_type = qm->pdev->dev.bus; 3728 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 3729 char val_buf[QM_DBG_READ_LEN] = {0}; 3730 struct pci_dev *pdev; 3731 struct device *dev; 3732 int ret; 3733 3734 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 3735 if (ret != QM_QOS_PARAM_NUM) 3736 return -EINVAL; 3737 3738 ret = kstrtoul(val_buf, 10, val); 3739 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 3740 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 3741 return -EINVAL; 3742 } 3743 3744 dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); 3745 if (!dev) { 3746 pci_err(qm->pdev, "input pci bdf number is error!\n"); 3747 return -ENODEV; 3748 } 3749 3750 pdev = container_of(dev, struct pci_dev, dev); 3751 3752 *fun_index = pdev->devfn; 3753 3754 return 0; 3755 } 3756 3757 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 3758 size_t count, loff_t *pos) 3759 { 3760 struct hisi_qm *qm = filp->private_data; 3761 char tbuf[QM_DBG_READ_LEN]; 3762 unsigned int fun_index; 3763 unsigned long val; 3764 int len, ret; 3765 3766 if (*pos != 0) 3767 return 0; 3768 3769 if (count >= QM_DBG_READ_LEN) 3770 return -ENOSPC; 3771 3772 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 3773 if (len < 0) 3774 return len; 3775 3776 tbuf[len] = '\0'; 3777 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 3778 if (ret) 3779 return ret; 3780 3781 /* Mailbox and reset cannot be operated at the same time */ 3782 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3783 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 3784 return -EAGAIN; 3785 } 3786 3787 ret = qm_pm_get_sync(qm); 3788 if (ret) { 3789 ret = -EINVAL; 3790 goto err_get_status; 3791 } 3792 3793 ret = qm_func_shaper_enable(qm, fun_index, val); 3794 if (ret) { 3795 pci_err(qm->pdev, "failed to enable function shaper!\n"); 3796 ret = -EINVAL; 3797 goto err_put_sync; 3798 } 3799 3800 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 3801 fun_index, val); 3802 ret = count; 3803 3804 err_put_sync: 3805 qm_pm_put_sync(qm); 3806 err_get_status: 3807 clear_bit(QM_RESETTING, &qm->misc_ctl); 3808 return ret; 3809 } 3810 3811 static const struct file_operations qm_algqos_fops = { 3812 .owner = THIS_MODULE, 3813 .open = simple_open, 3814 .read = qm_algqos_read, 3815 .write = qm_algqos_write, 3816 }; 3817 3818 /** 3819 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 3820 * @qm: The qm for which we want to add debugfs files. 3821 * 3822 * Create function qos debugfs files, VF ping PF to get function qos. 3823 */ 3824 void hisi_qm_set_algqos_init(struct hisi_qm *qm) 3825 { 3826 if (qm->fun_type == QM_HW_PF) 3827 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 3828 qm, &qm_algqos_fops); 3829 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3830 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 3831 qm, &qm_algqos_fops); 3832 } 3833 3834 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 3835 { 3836 int i; 3837 3838 for (i = 1; i <= total_func; i++) 3839 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 3840 } 3841 3842 /** 3843 * hisi_qm_sriov_enable() - enable virtual functions 3844 * @pdev: the PCIe device 3845 * @max_vfs: the number of virtual functions to enable 3846 * 3847 * Returns the number of enabled VFs. If there are VFs enabled already or 3848 * max_vfs is more than the total number of device can be enabled, returns 3849 * failure. 3850 */ 3851 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3852 { 3853 struct hisi_qm *qm = pci_get_drvdata(pdev); 3854 int pre_existing_vfs, num_vfs, total_vfs, ret; 3855 3856 ret = qm_pm_get_sync(qm); 3857 if (ret) 3858 return ret; 3859 3860 total_vfs = pci_sriov_get_totalvfs(pdev); 3861 pre_existing_vfs = pci_num_vf(pdev); 3862 if (pre_existing_vfs) { 3863 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3864 pre_existing_vfs); 3865 goto err_put_sync; 3866 } 3867 3868 if (max_vfs > total_vfs) { 3869 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 3870 ret = -ERANGE; 3871 goto err_put_sync; 3872 } 3873 3874 num_vfs = max_vfs; 3875 3876 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3877 hisi_qm_init_vf_qos(qm, num_vfs); 3878 3879 ret = qm_vf_q_assign(qm, num_vfs); 3880 if (ret) { 3881 pci_err(pdev, "Can't assign queues for VF!\n"); 3882 goto err_put_sync; 3883 } 3884 3885 qm->vfs_num = num_vfs; 3886 3887 ret = pci_enable_sriov(pdev, num_vfs); 3888 if (ret) { 3889 pci_err(pdev, "Can't enable VF!\n"); 3890 qm_clear_vft_config(qm); 3891 goto err_put_sync; 3892 } 3893 3894 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3895 3896 return num_vfs; 3897 3898 err_put_sync: 3899 qm_pm_put_sync(qm); 3900 return ret; 3901 } 3902 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3903 3904 /** 3905 * hisi_qm_sriov_disable - disable virtual functions 3906 * @pdev: the PCI device. 3907 * @is_frozen: true when all the VFs are frozen. 3908 * 3909 * Return failure if there are VFs assigned already or VF is in used. 3910 */ 3911 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3912 { 3913 struct hisi_qm *qm = pci_get_drvdata(pdev); 3914 int ret; 3915 3916 if (pci_vfs_assigned(pdev)) { 3917 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3918 return -EPERM; 3919 } 3920 3921 /* While VF is in used, SRIOV cannot be disabled. */ 3922 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 3923 pci_err(pdev, "Task is using its VF!\n"); 3924 return -EBUSY; 3925 } 3926 3927 pci_disable_sriov(pdev); 3928 3929 ret = qm_clear_vft_config(qm); 3930 if (ret) 3931 return ret; 3932 3933 qm_pm_put_sync(qm); 3934 3935 return 0; 3936 } 3937 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 3938 3939 /** 3940 * hisi_qm_sriov_configure - configure the number of VFs 3941 * @pdev: The PCI device 3942 * @num_vfs: The number of VFs need enabled 3943 * 3944 * Enable SR-IOV according to num_vfs, 0 means disable. 3945 */ 3946 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 3947 { 3948 if (num_vfs == 0) 3949 return hisi_qm_sriov_disable(pdev, false); 3950 else 3951 return hisi_qm_sriov_enable(pdev, num_vfs); 3952 } 3953 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 3954 3955 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 3956 { 3957 if (!qm->err_ini->get_err_result) { 3958 dev_err(&qm->pdev->dev, "Device doesn't support reset!\n"); 3959 return ACC_ERR_NONE; 3960 } 3961 3962 return qm->err_ini->get_err_result(qm); 3963 } 3964 3965 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 3966 { 3967 enum acc_err_result qm_ret, dev_ret; 3968 3969 /* log qm error */ 3970 qm_ret = qm_hw_error_handle(qm); 3971 3972 /* log device error */ 3973 dev_ret = qm_dev_err_handle(qm); 3974 3975 return (qm_ret == ACC_ERR_NEED_RESET || 3976 dev_ret == ACC_ERR_NEED_RESET) ? 3977 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 3978 } 3979 3980 /** 3981 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 3982 * @pdev: The PCI device which need report error. 3983 * @state: The connectivity between CPU and device. 3984 * 3985 * We register this function into PCIe AER handlers, It will report device or 3986 * qm hardware error status when error occur. 3987 */ 3988 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 3989 pci_channel_state_t state) 3990 { 3991 struct hisi_qm *qm = pci_get_drvdata(pdev); 3992 enum acc_err_result ret; 3993 3994 if (pdev->is_virtfn) 3995 return PCI_ERS_RESULT_NONE; 3996 3997 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 3998 if (state == pci_channel_io_perm_failure) 3999 return PCI_ERS_RESULT_DISCONNECT; 4000 4001 ret = qm_process_dev_error(qm); 4002 if (ret == ACC_ERR_NEED_RESET) 4003 return PCI_ERS_RESULT_NEED_RESET; 4004 4005 return PCI_ERS_RESULT_RECOVERED; 4006 } 4007 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 4008 4009 static int qm_check_req_recv(struct hisi_qm *qm) 4010 { 4011 struct pci_dev *pdev = qm->pdev; 4012 int ret; 4013 u32 val; 4014 4015 if (qm->ver >= QM_HW_V3) 4016 return 0; 4017 4018 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 4019 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4020 (val == ACC_VENDOR_ID_VALUE), 4021 POLL_PERIOD, POLL_TIMEOUT); 4022 if (ret) { 4023 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 4024 return ret; 4025 } 4026 4027 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 4028 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4029 (val == PCI_VENDOR_ID_HUAWEI), 4030 POLL_PERIOD, POLL_TIMEOUT); 4031 if (ret) 4032 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 4033 4034 return ret; 4035 } 4036 4037 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 4038 { 4039 struct pci_dev *pdev = qm->pdev; 4040 u16 cmd; 4041 int i; 4042 4043 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4044 if (set) 4045 cmd |= PCI_COMMAND_MEMORY; 4046 else 4047 cmd &= ~PCI_COMMAND_MEMORY; 4048 4049 pci_write_config_word(pdev, PCI_COMMAND, cmd); 4050 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4051 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4052 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 4053 return 0; 4054 4055 udelay(1); 4056 } 4057 4058 return -ETIMEDOUT; 4059 } 4060 4061 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 4062 { 4063 struct pci_dev *pdev = qm->pdev; 4064 u16 sriov_ctrl; 4065 int pos; 4066 int i; 4067 4068 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 4069 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4070 if (set) 4071 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4072 else 4073 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4074 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4075 4076 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4077 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4078 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4079 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4080 return 0; 4081 4082 udelay(1); 4083 } 4084 4085 return -ETIMEDOUT; 4086 } 4087 4088 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4089 { 4090 u32 nfe_enb = 0; 4091 4092 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4093 if (qm->ver >= QM_HW_V3) 4094 return; 4095 4096 if (!qm->err_status.is_dev_ecc_mbit && 4097 qm->err_status.is_qm_ecc_mbit && 4098 qm->err_ini->close_axi_master_ooo) { 4099 qm->err_ini->close_axi_master_ooo(qm); 4100 } else if (qm->err_status.is_dev_ecc_mbit && 4101 !qm->err_status.is_qm_ecc_mbit && 4102 !qm->err_ini->close_axi_master_ooo) { 4103 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4104 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4105 qm->io_base + QM_RAS_NFE_ENABLE); 4106 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4107 } 4108 } 4109 4110 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4111 enum qm_stop_reason stop_reason) 4112 { 4113 struct hisi_qm_list *qm_list = qm->qm_list; 4114 struct pci_dev *pdev = qm->pdev; 4115 struct pci_dev *virtfn; 4116 struct hisi_qm *vf_qm; 4117 int ret = 0; 4118 4119 mutex_lock(&qm_list->lock); 4120 list_for_each_entry(vf_qm, &qm_list->list, list) { 4121 virtfn = vf_qm->pdev; 4122 if (virtfn == pdev) 4123 continue; 4124 4125 if (pci_physfn(virtfn) == pdev) { 4126 /* save VFs PCIE BAR configuration */ 4127 pci_save_state(virtfn); 4128 4129 ret = hisi_qm_stop(vf_qm, stop_reason); 4130 if (ret) 4131 goto stop_fail; 4132 } 4133 } 4134 4135 stop_fail: 4136 mutex_unlock(&qm_list->lock); 4137 return ret; 4138 } 4139 4140 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 4141 enum qm_stop_reason stop_reason) 4142 { 4143 struct pci_dev *pdev = qm->pdev; 4144 int ret; 4145 4146 if (!qm->vfs_num) 4147 return 0; 4148 4149 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4150 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4151 ret = qm_ping_all_vfs(qm, cmd); 4152 if (ret) 4153 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 4154 } else { 4155 ret = qm_vf_reset_prepare(qm, stop_reason); 4156 if (ret) 4157 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4158 } 4159 4160 return ret; 4161 } 4162 4163 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4164 { 4165 struct pci_dev *pdev = qm->pdev; 4166 int ret; 4167 4168 ret = qm_reset_prepare_ready(qm); 4169 if (ret) { 4170 pci_err(pdev, "Controller reset not ready!\n"); 4171 return ret; 4172 } 4173 4174 qm_dev_ecc_mbit_handle(qm); 4175 4176 /* PF obtains the information of VF by querying the register. */ 4177 qm_cmd_uninit(qm); 4178 4179 /* Whether VFs stop successfully, soft reset will continue. */ 4180 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4181 if (ret) 4182 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4183 4184 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4185 if (ret) { 4186 pci_err(pdev, "Fails to stop QM!\n"); 4187 qm_reset_bit_clear(qm); 4188 return ret; 4189 } 4190 4191 if (qm->use_sva) { 4192 ret = qm_hw_err_isolate(qm); 4193 if (ret) 4194 pci_err(pdev, "failed to isolate hw err!\n"); 4195 } 4196 4197 ret = qm_wait_vf_prepare_finish(qm); 4198 if (ret) 4199 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4200 4201 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4202 4203 return 0; 4204 } 4205 4206 static int qm_master_ooo_check(struct hisi_qm *qm) 4207 { 4208 u32 val; 4209 int ret; 4210 4211 /* Check the ooo register of the device before resetting the device. */ 4212 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4213 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4214 val, (val == ACC_MASTER_TRANS_RETURN_RW), 4215 POLL_PERIOD, POLL_TIMEOUT); 4216 if (ret) 4217 pci_warn(qm->pdev, "Bus lock! Please reset system.\n"); 4218 4219 return ret; 4220 } 4221 4222 static int qm_soft_reset_prepare(struct hisi_qm *qm) 4223 { 4224 struct pci_dev *pdev = qm->pdev; 4225 int ret; 4226 4227 /* Ensure all doorbells and mailboxes received by QM */ 4228 ret = qm_check_req_recv(qm); 4229 if (ret) 4230 return ret; 4231 4232 if (qm->vfs_num) { 4233 ret = qm_set_vf_mse(qm, false); 4234 if (ret) { 4235 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4236 return ret; 4237 } 4238 } 4239 4240 ret = qm->ops->set_msi(qm, false); 4241 if (ret) { 4242 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4243 return ret; 4244 } 4245 4246 ret = qm_master_ooo_check(qm); 4247 if (ret) 4248 return ret; 4249 4250 if (qm->err_ini->close_sva_prefetch) 4251 qm->err_ini->close_sva_prefetch(qm); 4252 4253 ret = qm_set_pf_mse(qm, false); 4254 if (ret) 4255 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4256 4257 return ret; 4258 } 4259 4260 static int qm_reset_device(struct hisi_qm *qm) 4261 { 4262 struct pci_dev *pdev = qm->pdev; 4263 4264 /* The reset related sub-control registers are not in PCI BAR */ 4265 if (ACPI_HANDLE(&pdev->dev)) { 4266 unsigned long long value = 0; 4267 acpi_status s; 4268 4269 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4270 qm->err_info.acpi_rst, 4271 NULL, &value); 4272 if (ACPI_FAILURE(s)) { 4273 pci_err(pdev, "NO controller reset method!\n"); 4274 return -EIO; 4275 } 4276 4277 if (value) { 4278 pci_err(pdev, "Reset step %llu failed!\n", value); 4279 return -EIO; 4280 } 4281 4282 return 0; 4283 } 4284 4285 pci_err(pdev, "No reset method!\n"); 4286 return -EINVAL; 4287 } 4288 4289 static int qm_soft_reset(struct hisi_qm *qm) 4290 { 4291 int ret; 4292 4293 ret = qm_soft_reset_prepare(qm); 4294 if (ret) 4295 return ret; 4296 4297 return qm_reset_device(qm); 4298 } 4299 4300 static int qm_vf_reset_done(struct hisi_qm *qm) 4301 { 4302 struct hisi_qm_list *qm_list = qm->qm_list; 4303 struct pci_dev *pdev = qm->pdev; 4304 struct pci_dev *virtfn; 4305 struct hisi_qm *vf_qm; 4306 int ret = 0; 4307 4308 mutex_lock(&qm_list->lock); 4309 list_for_each_entry(vf_qm, &qm_list->list, list) { 4310 virtfn = vf_qm->pdev; 4311 if (virtfn == pdev) 4312 continue; 4313 4314 if (pci_physfn(virtfn) == pdev) { 4315 /* enable VFs PCIE BAR configuration */ 4316 pci_restore_state(virtfn); 4317 4318 ret = qm_restart(vf_qm); 4319 if (ret) 4320 goto restart_fail; 4321 } 4322 } 4323 4324 restart_fail: 4325 mutex_unlock(&qm_list->lock); 4326 return ret; 4327 } 4328 4329 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 4330 { 4331 struct pci_dev *pdev = qm->pdev; 4332 int ret; 4333 4334 if (!qm->vfs_num) 4335 return 0; 4336 4337 ret = qm_vf_q_assign(qm, qm->vfs_num); 4338 if (ret) { 4339 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4340 return ret; 4341 } 4342 4343 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4344 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4345 ret = qm_ping_all_vfs(qm, cmd); 4346 if (ret) 4347 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4348 } else { 4349 ret = qm_vf_reset_done(qm); 4350 if (ret) 4351 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4352 } 4353 4354 return ret; 4355 } 4356 4357 static int qm_dev_hw_init(struct hisi_qm *qm) 4358 { 4359 return qm->err_ini->hw_init(qm); 4360 } 4361 4362 static void qm_restart_prepare(struct hisi_qm *qm) 4363 { 4364 u32 value; 4365 4366 if (qm->err_ini->open_sva_prefetch) 4367 qm->err_ini->open_sva_prefetch(qm); 4368 4369 if (qm->ver >= QM_HW_V3) 4370 return; 4371 4372 if (!qm->err_status.is_qm_ecc_mbit && 4373 !qm->err_status.is_dev_ecc_mbit) 4374 return; 4375 4376 /* temporarily close the OOO port used for PEH to write out MSI */ 4377 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4378 writel(value & ~qm->err_info.msi_wr_port, 4379 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4380 4381 /* clear dev ecc 2bit error source if having */ 4382 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 4383 if (value && qm->err_ini->clear_dev_hw_err_status) 4384 qm->err_ini->clear_dev_hw_err_status(qm, value); 4385 4386 /* clear QM ecc mbit error source */ 4387 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4388 4389 /* clear AM Reorder Buffer ecc mbit source */ 4390 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4391 } 4392 4393 static void qm_restart_done(struct hisi_qm *qm) 4394 { 4395 u32 value; 4396 4397 if (qm->ver >= QM_HW_V3) 4398 goto clear_flags; 4399 4400 if (!qm->err_status.is_qm_ecc_mbit && 4401 !qm->err_status.is_dev_ecc_mbit) 4402 return; 4403 4404 /* open the OOO port for PEH to write out MSI */ 4405 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4406 value |= qm->err_info.msi_wr_port; 4407 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4408 4409 clear_flags: 4410 qm->err_status.is_qm_ecc_mbit = false; 4411 qm->err_status.is_dev_ecc_mbit = false; 4412 } 4413 4414 static int qm_controller_reset_done(struct hisi_qm *qm) 4415 { 4416 struct pci_dev *pdev = qm->pdev; 4417 int ret; 4418 4419 ret = qm->ops->set_msi(qm, true); 4420 if (ret) { 4421 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4422 return ret; 4423 } 4424 4425 ret = qm_set_pf_mse(qm, true); 4426 if (ret) { 4427 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4428 return ret; 4429 } 4430 4431 if (qm->vfs_num) { 4432 ret = qm_set_vf_mse(qm, true); 4433 if (ret) { 4434 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 4435 return ret; 4436 } 4437 } 4438 4439 ret = qm_dev_hw_init(qm); 4440 if (ret) { 4441 pci_err(pdev, "Failed to init device\n"); 4442 return ret; 4443 } 4444 4445 qm_restart_prepare(qm); 4446 hisi_qm_dev_err_init(qm); 4447 if (qm->err_ini->open_axi_master_ooo) 4448 qm->err_ini->open_axi_master_ooo(qm); 4449 4450 ret = qm_dev_mem_reset(qm); 4451 if (ret) { 4452 pci_err(pdev, "failed to reset device memory\n"); 4453 return ret; 4454 } 4455 4456 ret = qm_restart(qm); 4457 if (ret) { 4458 pci_err(pdev, "Failed to start QM!\n"); 4459 return ret; 4460 } 4461 4462 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4463 if (ret) 4464 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 4465 4466 ret = qm_wait_vf_prepare_finish(qm); 4467 if (ret) 4468 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 4469 4470 qm_cmd_init(qm); 4471 qm_restart_done(qm); 4472 4473 qm_reset_bit_clear(qm); 4474 4475 return 0; 4476 } 4477 4478 static int qm_controller_reset(struct hisi_qm *qm) 4479 { 4480 struct pci_dev *pdev = qm->pdev; 4481 int ret; 4482 4483 pci_info(pdev, "Controller resetting...\n"); 4484 4485 ret = qm_controller_reset_prepare(qm); 4486 if (ret) { 4487 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4488 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4489 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4490 return ret; 4491 } 4492 4493 hisi_qm_show_last_dfx_regs(qm); 4494 if (qm->err_ini->show_last_dfx_regs) 4495 qm->err_ini->show_last_dfx_regs(qm); 4496 4497 ret = qm_soft_reset(qm); 4498 if (ret) 4499 goto err_reset; 4500 4501 ret = qm_controller_reset_done(qm); 4502 if (ret) 4503 goto err_reset; 4504 4505 pci_info(pdev, "Controller reset complete\n"); 4506 4507 return 0; 4508 4509 err_reset: 4510 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4511 qm_reset_bit_clear(qm); 4512 4513 /* if resetting fails, isolate the device */ 4514 if (qm->use_sva) 4515 qm->isolate_data.is_isolate = true; 4516 return ret; 4517 } 4518 4519 /** 4520 * hisi_qm_dev_slot_reset() - slot reset 4521 * @pdev: the PCIe device 4522 * 4523 * This function offers QM relate PCIe device reset interface. Drivers which 4524 * use QM can use this function as slot_reset in its struct pci_error_handlers. 4525 */ 4526 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 4527 { 4528 struct hisi_qm *qm = pci_get_drvdata(pdev); 4529 int ret; 4530 4531 if (pdev->is_virtfn) 4532 return PCI_ERS_RESULT_RECOVERED; 4533 4534 /* reset pcie device controller */ 4535 ret = qm_controller_reset(qm); 4536 if (ret) { 4537 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4538 return PCI_ERS_RESULT_DISCONNECT; 4539 } 4540 4541 return PCI_ERS_RESULT_RECOVERED; 4542 } 4543 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4544 4545 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4546 { 4547 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4548 struct hisi_qm *qm = pci_get_drvdata(pdev); 4549 u32 delay = 0; 4550 int ret; 4551 4552 hisi_qm_dev_err_uninit(pf_qm); 4553 4554 /* 4555 * Check whether there is an ECC mbit error, If it occurs, need to 4556 * wait for soft reset to fix it. 4557 */ 4558 while (qm_check_dev_error(pf_qm)) { 4559 msleep(++delay); 4560 if (delay > QM_RESET_WAIT_TIMEOUT) 4561 return; 4562 } 4563 4564 ret = qm_reset_prepare_ready(qm); 4565 if (ret) { 4566 pci_err(pdev, "FLR not ready!\n"); 4567 return; 4568 } 4569 4570 /* PF obtains the information of VF by querying the register. */ 4571 if (qm->fun_type == QM_HW_PF) 4572 qm_cmd_uninit(qm); 4573 4574 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN); 4575 if (ret) 4576 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 4577 4578 ret = hisi_qm_stop(qm, QM_DOWN); 4579 if (ret) { 4580 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4581 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4582 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4583 return; 4584 } 4585 4586 ret = qm_wait_vf_prepare_finish(qm); 4587 if (ret) 4588 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 4589 4590 pci_info(pdev, "FLR resetting...\n"); 4591 } 4592 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4593 4594 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4595 { 4596 struct pci_dev *pf_pdev = pci_physfn(pdev); 4597 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4598 u32 id; 4599 4600 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4601 if (id == QM_PCI_COMMAND_INVALID) { 4602 pci_err(pdev, "Device can not be used!\n"); 4603 return false; 4604 } 4605 4606 return true; 4607 } 4608 4609 void hisi_qm_reset_done(struct pci_dev *pdev) 4610 { 4611 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4612 struct hisi_qm *qm = pci_get_drvdata(pdev); 4613 int ret; 4614 4615 if (qm->fun_type == QM_HW_PF) { 4616 ret = qm_dev_hw_init(qm); 4617 if (ret) { 4618 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4619 goto flr_done; 4620 } 4621 } 4622 4623 hisi_qm_dev_err_init(pf_qm); 4624 4625 ret = qm_restart(qm); 4626 if (ret) { 4627 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4628 goto flr_done; 4629 } 4630 4631 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4632 if (ret) 4633 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 4634 4635 ret = qm_wait_vf_prepare_finish(qm); 4636 if (ret) 4637 pci_err(pdev, "failed to start by vfs in FLR!\n"); 4638 4639 flr_done: 4640 if (qm->fun_type == QM_HW_PF) 4641 qm_cmd_init(qm); 4642 4643 if (qm_flr_reset_complete(pdev)) 4644 pci_info(pdev, "FLR reset complete\n"); 4645 4646 qm_reset_bit_clear(qm); 4647 } 4648 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4649 4650 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4651 { 4652 struct hisi_qm *qm = data; 4653 enum acc_err_result ret; 4654 4655 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4656 ret = qm_process_dev_error(qm); 4657 if (ret == ACC_ERR_NEED_RESET && 4658 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4659 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4660 schedule_work(&qm->rst_work); 4661 4662 return IRQ_HANDLED; 4663 } 4664 4665 /** 4666 * hisi_qm_dev_shutdown() - Shutdown device. 4667 * @pdev: The device will be shutdown. 4668 * 4669 * This function will stop qm when OS shutdown or rebooting. 4670 */ 4671 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4672 { 4673 struct hisi_qm *qm = pci_get_drvdata(pdev); 4674 int ret; 4675 4676 ret = hisi_qm_stop(qm, QM_DOWN); 4677 if (ret) 4678 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4679 4680 hisi_qm_cache_wb(qm); 4681 } 4682 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4683 4684 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4685 { 4686 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4687 int ret; 4688 4689 ret = qm_pm_get_sync(qm); 4690 if (ret) { 4691 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4692 return; 4693 } 4694 4695 /* reset pcie device controller */ 4696 ret = qm_controller_reset(qm); 4697 if (ret) 4698 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4699 4700 qm_pm_put_sync(qm); 4701 } 4702 4703 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 4704 enum qm_stop_reason stop_reason) 4705 { 4706 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 4707 struct pci_dev *pdev = qm->pdev; 4708 int ret; 4709 4710 ret = qm_reset_prepare_ready(qm); 4711 if (ret) { 4712 dev_err(&pdev->dev, "reset prepare not ready!\n"); 4713 atomic_set(&qm->status.flags, QM_STOP); 4714 cmd = QM_VF_PREPARE_FAIL; 4715 goto err_prepare; 4716 } 4717 4718 ret = hisi_qm_stop(qm, stop_reason); 4719 if (ret) { 4720 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 4721 atomic_set(&qm->status.flags, QM_STOP); 4722 cmd = QM_VF_PREPARE_FAIL; 4723 goto err_prepare; 4724 } else { 4725 goto out; 4726 } 4727 4728 err_prepare: 4729 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4730 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4731 out: 4732 pci_save_state(pdev); 4733 ret = qm_ping_pf(qm, cmd); 4734 if (ret) 4735 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 4736 } 4737 4738 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 4739 { 4740 enum qm_mb_cmd cmd = QM_VF_START_DONE; 4741 struct pci_dev *pdev = qm->pdev; 4742 int ret; 4743 4744 pci_restore_state(pdev); 4745 ret = hisi_qm_start(qm); 4746 if (ret) { 4747 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 4748 cmd = QM_VF_START_FAIL; 4749 } 4750 4751 qm_cmd_init(qm); 4752 ret = qm_ping_pf(qm, cmd); 4753 if (ret) 4754 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 4755 4756 qm_reset_bit_clear(qm); 4757 } 4758 4759 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 4760 { 4761 struct device *dev = &qm->pdev->dev; 4762 u32 val, cmd; 4763 u64 msg; 4764 int ret; 4765 4766 /* Wait for reset to finish */ 4767 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 4768 val == BIT(0), QM_VF_RESET_WAIT_US, 4769 QM_VF_RESET_WAIT_TIMEOUT_US); 4770 /* hardware completion status should be available by this time */ 4771 if (ret) { 4772 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 4773 return -ETIMEDOUT; 4774 } 4775 4776 /* 4777 * Whether message is got successfully, 4778 * VF needs to ack PF by clearing the interrupt. 4779 */ 4780 ret = qm_get_mb_cmd(qm, &msg, 0); 4781 qm_clear_cmd_interrupt(qm, 0); 4782 if (ret) { 4783 dev_err(dev, "failed to get msg from PF in reset done!\n"); 4784 return ret; 4785 } 4786 4787 cmd = msg & QM_MB_CMD_DATA_MASK; 4788 if (cmd != QM_PF_RESET_DONE) { 4789 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 4790 ret = -EINVAL; 4791 } 4792 4793 return ret; 4794 } 4795 4796 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 4797 enum qm_stop_reason stop_reason) 4798 { 4799 struct device *dev = &qm->pdev->dev; 4800 int ret; 4801 4802 dev_info(dev, "device reset start...\n"); 4803 4804 /* The message is obtained by querying the register during resetting */ 4805 qm_cmd_uninit(qm); 4806 qm_pf_reset_vf_prepare(qm, stop_reason); 4807 4808 ret = qm_wait_pf_reset_finish(qm); 4809 if (ret) 4810 goto err_get_status; 4811 4812 qm_pf_reset_vf_done(qm); 4813 4814 dev_info(dev, "device reset done.\n"); 4815 4816 return; 4817 4818 err_get_status: 4819 qm_cmd_init(qm); 4820 qm_reset_bit_clear(qm); 4821 } 4822 4823 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 4824 { 4825 struct device *dev = &qm->pdev->dev; 4826 u64 msg; 4827 u32 cmd; 4828 int ret; 4829 4830 /* 4831 * Get the msg from source by sending mailbox. Whether message is got 4832 * successfully, destination needs to ack source by clearing the interrupt. 4833 */ 4834 ret = qm_get_mb_cmd(qm, &msg, fun_num); 4835 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 4836 if (ret) { 4837 dev_err(dev, "failed to get msg from source!\n"); 4838 return; 4839 } 4840 4841 cmd = msg & QM_MB_CMD_DATA_MASK; 4842 switch (cmd) { 4843 case QM_PF_FLR_PREPARE: 4844 qm_pf_reset_vf_process(qm, QM_DOWN); 4845 break; 4846 case QM_PF_SRST_PREPARE: 4847 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 4848 break; 4849 case QM_VF_GET_QOS: 4850 qm_vf_get_qos(qm, fun_num); 4851 break; 4852 case QM_PF_SET_QOS: 4853 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 4854 break; 4855 default: 4856 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 4857 break; 4858 } 4859 } 4860 4861 static void qm_cmd_process(struct work_struct *cmd_process) 4862 { 4863 struct hisi_qm *qm = container_of(cmd_process, 4864 struct hisi_qm, cmd_process); 4865 u32 vfs_num = qm->vfs_num; 4866 u64 val; 4867 u32 i; 4868 4869 if (qm->fun_type == QM_HW_PF) { 4870 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 4871 if (!val) 4872 return; 4873 4874 for (i = 1; i <= vfs_num; i++) { 4875 if (val & BIT(i)) 4876 qm_handle_cmd_msg(qm, i); 4877 } 4878 4879 return; 4880 } 4881 4882 qm_handle_cmd_msg(qm, 0); 4883 } 4884 4885 /** 4886 * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. 4887 * @qm: The qm needs add. 4888 * @qm_list: The qm list. 4889 * 4890 * This function adds qm to qm list, and will register algorithm to 4891 * crypto when the qm list is empty. 4892 */ 4893 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4894 { 4895 struct device *dev = &qm->pdev->dev; 4896 int flag = 0; 4897 int ret = 0; 4898 4899 mutex_lock(&qm_list->lock); 4900 if (list_empty(&qm_list->list)) 4901 flag = 1; 4902 list_add_tail(&qm->list, &qm_list->list); 4903 mutex_unlock(&qm_list->lock); 4904 4905 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 4906 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 4907 return 0; 4908 } 4909 4910 if (flag) { 4911 ret = qm_list->register_to_crypto(qm); 4912 if (ret) { 4913 mutex_lock(&qm_list->lock); 4914 list_del(&qm->list); 4915 mutex_unlock(&qm_list->lock); 4916 } 4917 } 4918 4919 return ret; 4920 } 4921 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4922 4923 /** 4924 * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from 4925 * qm list. 4926 * @qm: The qm needs delete. 4927 * @qm_list: The qm list. 4928 * 4929 * This function deletes qm from qm list, and will unregister algorithm 4930 * from crypto when the qm list is empty. 4931 */ 4932 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4933 { 4934 mutex_lock(&qm_list->lock); 4935 list_del(&qm->list); 4936 mutex_unlock(&qm_list->lock); 4937 4938 if (qm->ver <= QM_HW_V2 && qm->use_sva) 4939 return; 4940 4941 if (list_empty(&qm_list->list)) 4942 qm_list->unregister_from_crypto(qm); 4943 } 4944 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 4945 4946 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 4947 { 4948 struct pci_dev *pdev = qm->pdev; 4949 u32 irq_vector, val; 4950 4951 if (qm->fun_type == QM_HW_VF) 4952 return; 4953 4954 val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val; 4955 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4956 return; 4957 4958 irq_vector = val & QM_IRQ_VECTOR_MASK; 4959 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4960 } 4961 4962 static int qm_register_abnormal_irq(struct hisi_qm *qm) 4963 { 4964 struct pci_dev *pdev = qm->pdev; 4965 u32 irq_vector, val; 4966 int ret; 4967 4968 if (qm->fun_type == QM_HW_VF) 4969 return 0; 4970 4971 val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val; 4972 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4973 return 0; 4974 4975 irq_vector = val & QM_IRQ_VECTOR_MASK; 4976 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 4977 if (ret) 4978 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); 4979 4980 return ret; 4981 } 4982 4983 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 4984 { 4985 struct pci_dev *pdev = qm->pdev; 4986 u32 irq_vector, val; 4987 4988 val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val; 4989 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4990 return; 4991 4992 irq_vector = val & QM_IRQ_VECTOR_MASK; 4993 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4994 } 4995 4996 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 4997 { 4998 struct pci_dev *pdev = qm->pdev; 4999 u32 irq_vector, val; 5000 int ret; 5001 5002 val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val; 5003 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5004 return 0; 5005 5006 irq_vector = val & QM_IRQ_VECTOR_MASK; 5007 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 5008 if (ret) 5009 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 5010 5011 return ret; 5012 } 5013 5014 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 5015 { 5016 struct pci_dev *pdev = qm->pdev; 5017 u32 irq_vector, val; 5018 5019 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val; 5020 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5021 return; 5022 5023 irq_vector = val & QM_IRQ_VECTOR_MASK; 5024 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5025 } 5026 5027 static int qm_register_aeq_irq(struct hisi_qm *qm) 5028 { 5029 struct pci_dev *pdev = qm->pdev; 5030 u32 irq_vector, val; 5031 int ret; 5032 5033 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val; 5034 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5035 return 0; 5036 5037 irq_vector = val & QM_IRQ_VECTOR_MASK; 5038 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL, 5039 qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm); 5040 if (ret) 5041 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5042 5043 return ret; 5044 } 5045 5046 static void qm_unregister_eq_irq(struct hisi_qm *qm) 5047 { 5048 struct pci_dev *pdev = qm->pdev; 5049 u32 irq_vector, val; 5050 5051 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val; 5052 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5053 return; 5054 5055 irq_vector = val & QM_IRQ_VECTOR_MASK; 5056 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5057 } 5058 5059 static int qm_register_eq_irq(struct hisi_qm *qm) 5060 { 5061 struct pci_dev *pdev = qm->pdev; 5062 u32 irq_vector, val; 5063 int ret; 5064 5065 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val; 5066 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5067 return 0; 5068 5069 irq_vector = val & QM_IRQ_VECTOR_MASK; 5070 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); 5071 if (ret) 5072 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5073 5074 return ret; 5075 } 5076 5077 static void qm_irqs_unregister(struct hisi_qm *qm) 5078 { 5079 qm_unregister_mb_cmd_irq(qm); 5080 qm_unregister_abnormal_irq(qm); 5081 qm_unregister_aeq_irq(qm); 5082 qm_unregister_eq_irq(qm); 5083 } 5084 5085 static int qm_irqs_register(struct hisi_qm *qm) 5086 { 5087 int ret; 5088 5089 ret = qm_register_eq_irq(qm); 5090 if (ret) 5091 return ret; 5092 5093 ret = qm_register_aeq_irq(qm); 5094 if (ret) 5095 goto free_eq_irq; 5096 5097 ret = qm_register_abnormal_irq(qm); 5098 if (ret) 5099 goto free_aeq_irq; 5100 5101 ret = qm_register_mb_cmd_irq(qm); 5102 if (ret) 5103 goto free_abnormal_irq; 5104 5105 return 0; 5106 5107 free_abnormal_irq: 5108 qm_unregister_abnormal_irq(qm); 5109 free_aeq_irq: 5110 qm_unregister_aeq_irq(qm); 5111 free_eq_irq: 5112 qm_unregister_eq_irq(qm); 5113 return ret; 5114 } 5115 5116 static int qm_get_qp_num(struct hisi_qm *qm) 5117 { 5118 struct device *dev = &qm->pdev->dev; 5119 bool is_db_isolation; 5120 5121 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 5122 if (qm->fun_type == QM_HW_VF) { 5123 if (qm->ver != QM_HW_V1) 5124 /* v2 starts to support get vft by mailbox */ 5125 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 5126 5127 return 0; 5128 } 5129 5130 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5131 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 5132 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 5133 QM_FUNC_MAX_QP_CAP, is_db_isolation); 5134 5135 if (qm->qp_num <= qm->max_qp_num) 5136 return 0; 5137 5138 if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) { 5139 /* Check whether the set qp number is valid */ 5140 dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n", 5141 qm->qp_num, qm->max_qp_num); 5142 return -EINVAL; 5143 } 5144 5145 dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n", 5146 qm->qp_num, qm->max_qp_num); 5147 qm->qp_num = qm->max_qp_num; 5148 qm->debug.curr_qm_qp_num = qm->qp_num; 5149 5150 return 0; 5151 } 5152 5153 static int qm_pre_store_irq_type_caps(struct hisi_qm *qm) 5154 { 5155 struct hisi_qm_cap_record *qm_cap; 5156 struct pci_dev *pdev = qm->pdev; 5157 size_t i, size; 5158 5159 size = ARRAY_SIZE(qm_pre_store_caps); 5160 qm_cap = devm_kzalloc(&pdev->dev, sizeof(*qm_cap) * size, GFP_KERNEL); 5161 if (!qm_cap) 5162 return -ENOMEM; 5163 5164 for (i = 0; i < size; i++) { 5165 qm_cap[i].type = qm_pre_store_caps[i]; 5166 qm_cap[i].cap_val = hisi_qm_get_hw_info(qm, qm_basic_info, 5167 qm_pre_store_caps[i], qm->cap_ver); 5168 } 5169 5170 qm->cap_tables.qm_cap_table = qm_cap; 5171 5172 return 0; 5173 } 5174 5175 static int qm_get_hw_caps(struct hisi_qm *qm) 5176 { 5177 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 5178 qm_cap_info_pf : qm_cap_info_vf; 5179 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 5180 ARRAY_SIZE(qm_cap_info_vf); 5181 u32 val, i; 5182 5183 /* Doorbell isolate register is a independent register. */ 5184 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 5185 if (val) 5186 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5187 5188 if (qm->ver >= QM_HW_V3) { 5189 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 5190 qm->cap_ver = val & QM_CAPBILITY_VERSION; 5191 } 5192 5193 /* Get PF/VF common capbility */ 5194 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 5195 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 5196 if (val) 5197 set_bit(qm_cap_info_comm[i].type, &qm->caps); 5198 } 5199 5200 /* Get PF/VF different capbility */ 5201 for (i = 0; i < size; i++) { 5202 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 5203 if (val) 5204 set_bit(cap_info[i].type, &qm->caps); 5205 } 5206 5207 /* Fetch and save the value of irq type related capability registers */ 5208 return qm_pre_store_irq_type_caps(qm); 5209 } 5210 5211 static int qm_get_pci_res(struct hisi_qm *qm) 5212 { 5213 struct pci_dev *pdev = qm->pdev; 5214 struct device *dev = &pdev->dev; 5215 int ret; 5216 5217 ret = pci_request_mem_regions(pdev, qm->dev_name); 5218 if (ret < 0) { 5219 dev_err(dev, "Failed to request mem regions!\n"); 5220 return ret; 5221 } 5222 5223 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5224 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5225 if (!qm->io_base) { 5226 ret = -EIO; 5227 goto err_request_mem_regions; 5228 } 5229 5230 ret = qm_get_hw_caps(qm); 5231 if (ret) 5232 goto err_ioremap; 5233 5234 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 5235 qm->db_interval = QM_QP_DB_INTERVAL; 5236 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5237 qm->db_io_base = ioremap(qm->db_phys_base, 5238 pci_resource_len(pdev, PCI_BAR_4)); 5239 if (!qm->db_io_base) { 5240 ret = -EIO; 5241 goto err_ioremap; 5242 } 5243 } else { 5244 qm->db_phys_base = qm->phys_base; 5245 qm->db_io_base = qm->io_base; 5246 qm->db_interval = 0; 5247 } 5248 5249 ret = qm_get_qp_num(qm); 5250 if (ret) 5251 goto err_db_ioremap; 5252 5253 return 0; 5254 5255 err_db_ioremap: 5256 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 5257 iounmap(qm->db_io_base); 5258 err_ioremap: 5259 iounmap(qm->io_base); 5260 err_request_mem_regions: 5261 pci_release_mem_regions(pdev); 5262 return ret; 5263 } 5264 5265 static int qm_clear_device(struct hisi_qm *qm) 5266 { 5267 acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev); 5268 int ret; 5269 5270 if (qm->fun_type == QM_HW_VF) 5271 return 0; 5272 5273 /* Device does not support reset, return */ 5274 if (!qm->err_ini->err_info_init) 5275 return 0; 5276 qm->err_ini->err_info_init(qm); 5277 5278 if (!handle) 5279 return 0; 5280 5281 /* No reset method, return */ 5282 if (!acpi_has_method(handle, qm->err_info.acpi_rst)) 5283 return 0; 5284 5285 ret = qm_master_ooo_check(qm); 5286 if (ret) { 5287 writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5288 return ret; 5289 } 5290 5291 return qm_reset_device(qm); 5292 } 5293 5294 static int hisi_qm_pci_init(struct hisi_qm *qm) 5295 { 5296 struct pci_dev *pdev = qm->pdev; 5297 struct device *dev = &pdev->dev; 5298 unsigned int num_vec; 5299 int ret; 5300 5301 ret = pci_enable_device_mem(pdev); 5302 if (ret < 0) { 5303 dev_err(dev, "Failed to enable device mem!\n"); 5304 return ret; 5305 } 5306 5307 ret = qm_get_pci_res(qm); 5308 if (ret) 5309 goto err_disable_pcidev; 5310 5311 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5312 if (ret < 0) 5313 goto err_get_pci_res; 5314 pci_set_master(pdev); 5315 5316 num_vec = qm_get_irq_num(qm); 5317 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5318 if (ret < 0) { 5319 dev_err(dev, "Failed to enable MSI vectors!\n"); 5320 goto err_get_pci_res; 5321 } 5322 5323 ret = qm_clear_device(qm); 5324 if (ret) 5325 goto err_free_vectors; 5326 5327 return 0; 5328 5329 err_free_vectors: 5330 pci_free_irq_vectors(pdev); 5331 err_get_pci_res: 5332 qm_put_pci_res(qm); 5333 err_disable_pcidev: 5334 pci_disable_device(pdev); 5335 return ret; 5336 } 5337 5338 static int hisi_qm_init_work(struct hisi_qm *qm) 5339 { 5340 int i; 5341 5342 for (i = 0; i < qm->qp_num; i++) 5343 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 5344 5345 if (qm->fun_type == QM_HW_PF) 5346 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5347 5348 if (qm->ver > QM_HW_V2) 5349 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5350 5351 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 5352 WQ_UNBOUND, num_online_cpus(), 5353 pci_name(qm->pdev)); 5354 if (!qm->wq) { 5355 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 5356 return -ENOMEM; 5357 } 5358 5359 return 0; 5360 } 5361 5362 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5363 { 5364 struct device *dev = &qm->pdev->dev; 5365 u16 sq_depth, cq_depth; 5366 size_t qp_dma_size; 5367 int i, ret; 5368 5369 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5370 if (!qm->qp_array) 5371 return -ENOMEM; 5372 5373 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 5374 if (!qm->poll_data) { 5375 kfree(qm->qp_array); 5376 return -ENOMEM; 5377 } 5378 5379 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 5380 5381 /* one more page for device or qp statuses */ 5382 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 5383 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5384 for (i = 0; i < qm->qp_num; i++) { 5385 qm->poll_data[i].qm = qm; 5386 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 5387 if (ret) 5388 goto err_init_qp_mem; 5389 5390 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5391 } 5392 5393 return 0; 5394 err_init_qp_mem: 5395 hisi_qp_memory_uninit(qm, i); 5396 5397 return ret; 5398 } 5399 5400 static int hisi_qm_memory_init(struct hisi_qm *qm) 5401 { 5402 struct device *dev = &qm->pdev->dev; 5403 int ret, total_func; 5404 size_t off = 0; 5405 5406 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 5407 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5408 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5409 if (!qm->factor) 5410 return -ENOMEM; 5411 5412 /* Only the PF value needs to be initialized */ 5413 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 5414 } 5415 5416 #define QM_INIT_BUF(qm, type, num) do { \ 5417 (qm)->type = ((qm)->qdma.va + (off)); \ 5418 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5419 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5420 } while (0) 5421 5422 idr_init(&qm->qp_idr); 5423 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 5424 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 5425 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 5426 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5427 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5428 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5429 GFP_ATOMIC); 5430 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5431 if (!qm->qdma.va) { 5432 ret = -ENOMEM; 5433 goto err_destroy_idr; 5434 } 5435 5436 QM_INIT_BUF(qm, eqe, qm->eq_depth); 5437 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 5438 QM_INIT_BUF(qm, sqc, qm->qp_num); 5439 QM_INIT_BUF(qm, cqc, qm->qp_num); 5440 5441 ret = hisi_qp_alloc_memory(qm); 5442 if (ret) 5443 goto err_alloc_qp_array; 5444 5445 return 0; 5446 5447 err_alloc_qp_array: 5448 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5449 err_destroy_idr: 5450 idr_destroy(&qm->qp_idr); 5451 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 5452 kfree(qm->factor); 5453 5454 return ret; 5455 } 5456 5457 /** 5458 * hisi_qm_init() - Initialize configures about qm. 5459 * @qm: The qm needing init. 5460 * 5461 * This function init qm, then we can call hisi_qm_start to put qm into work. 5462 */ 5463 int hisi_qm_init(struct hisi_qm *qm) 5464 { 5465 struct pci_dev *pdev = qm->pdev; 5466 struct device *dev = &pdev->dev; 5467 int ret; 5468 5469 hisi_qm_pre_init(qm); 5470 5471 ret = hisi_qm_pci_init(qm); 5472 if (ret) 5473 return ret; 5474 5475 ret = qm_irqs_register(qm); 5476 if (ret) 5477 goto err_pci_init; 5478 5479 if (qm->fun_type == QM_HW_PF) { 5480 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5481 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5482 qm_disable_clock_gate(qm); 5483 ret = qm_dev_mem_reset(qm); 5484 if (ret) { 5485 dev_err(dev, "failed to reset device memory\n"); 5486 goto err_irq_register; 5487 } 5488 } 5489 5490 if (qm->mode == UACCE_MODE_SVA) { 5491 ret = qm_alloc_uacce(qm); 5492 if (ret < 0) 5493 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5494 } 5495 5496 ret = hisi_qm_memory_init(qm); 5497 if (ret) 5498 goto err_alloc_uacce; 5499 5500 ret = hisi_qm_init_work(qm); 5501 if (ret) 5502 goto err_free_qm_memory; 5503 5504 qm_cmd_init(qm); 5505 atomic_set(&qm->status.flags, QM_INIT); 5506 5507 return 0; 5508 5509 err_free_qm_memory: 5510 hisi_qm_memory_uninit(qm); 5511 err_alloc_uacce: 5512 qm_remove_uacce(qm); 5513 err_irq_register: 5514 qm_irqs_unregister(qm); 5515 err_pci_init: 5516 hisi_qm_pci_uninit(qm); 5517 return ret; 5518 } 5519 EXPORT_SYMBOL_GPL(hisi_qm_init); 5520 5521 /** 5522 * hisi_qm_get_dfx_access() - Try to get dfx access. 5523 * @qm: pointer to accelerator device. 5524 * 5525 * Try to get dfx access, then user can get message. 5526 * 5527 * If device is in suspended, return failure, otherwise 5528 * bump up the runtime PM usage counter. 5529 */ 5530 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5531 { 5532 struct device *dev = &qm->pdev->dev; 5533 5534 if (pm_runtime_suspended(dev)) { 5535 dev_info(dev, "can not read/write - device in suspended.\n"); 5536 return -EAGAIN; 5537 } 5538 5539 return qm_pm_get_sync(qm); 5540 } 5541 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5542 5543 /** 5544 * hisi_qm_put_dfx_access() - Put dfx access. 5545 * @qm: pointer to accelerator device. 5546 * 5547 * Put dfx access, drop runtime PM usage counter. 5548 */ 5549 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5550 { 5551 qm_pm_put_sync(qm); 5552 } 5553 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5554 5555 /** 5556 * hisi_qm_pm_init() - Initialize qm runtime PM. 5557 * @qm: pointer to accelerator device. 5558 * 5559 * Function that initialize qm runtime PM. 5560 */ 5561 void hisi_qm_pm_init(struct hisi_qm *qm) 5562 { 5563 struct device *dev = &qm->pdev->dev; 5564 5565 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5566 return; 5567 5568 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5569 pm_runtime_use_autosuspend(dev); 5570 pm_runtime_put_noidle(dev); 5571 } 5572 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5573 5574 /** 5575 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5576 * @qm: pointer to accelerator device. 5577 * 5578 * Function that uninitialize qm runtime PM. 5579 */ 5580 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5581 { 5582 struct device *dev = &qm->pdev->dev; 5583 5584 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5585 return; 5586 5587 pm_runtime_get_noresume(dev); 5588 pm_runtime_dont_use_autosuspend(dev); 5589 } 5590 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5591 5592 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5593 { 5594 struct pci_dev *pdev = qm->pdev; 5595 int ret; 5596 5597 ret = qm->ops->set_msi(qm, false); 5598 if (ret) { 5599 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5600 return ret; 5601 } 5602 5603 ret = qm_master_ooo_check(qm); 5604 if (ret) 5605 return ret; 5606 5607 ret = qm_set_pf_mse(qm, false); 5608 if (ret) 5609 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5610 5611 return ret; 5612 } 5613 5614 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5615 { 5616 struct pci_dev *pdev = qm->pdev; 5617 int ret; 5618 5619 ret = qm_set_pf_mse(qm, true); 5620 if (ret) { 5621 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5622 return ret; 5623 } 5624 5625 ret = qm->ops->set_msi(qm, true); 5626 if (ret) { 5627 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5628 return ret; 5629 } 5630 5631 ret = qm_dev_hw_init(qm); 5632 if (ret) { 5633 pci_err(pdev, "failed to init device after resuming\n"); 5634 return ret; 5635 } 5636 5637 qm_cmd_init(qm); 5638 hisi_qm_dev_err_init(qm); 5639 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5640 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5641 qm_disable_clock_gate(qm); 5642 ret = qm_dev_mem_reset(qm); 5643 if (ret) 5644 pci_err(pdev, "failed to reset device memory\n"); 5645 5646 return ret; 5647 } 5648 5649 /** 5650 * hisi_qm_suspend() - Runtime suspend of given device. 5651 * @dev: device to suspend. 5652 * 5653 * Function that suspend the device. 5654 */ 5655 int hisi_qm_suspend(struct device *dev) 5656 { 5657 struct pci_dev *pdev = to_pci_dev(dev); 5658 struct hisi_qm *qm = pci_get_drvdata(pdev); 5659 int ret; 5660 5661 pci_info(pdev, "entering suspended state\n"); 5662 5663 ret = hisi_qm_stop(qm, QM_NORMAL); 5664 if (ret) { 5665 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5666 return ret; 5667 } 5668 5669 ret = qm_prepare_for_suspend(qm); 5670 if (ret) 5671 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5672 5673 return ret; 5674 } 5675 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5676 5677 /** 5678 * hisi_qm_resume() - Runtime resume of given device. 5679 * @dev: device to resume. 5680 * 5681 * Function that resume the device. 5682 */ 5683 int hisi_qm_resume(struct device *dev) 5684 { 5685 struct pci_dev *pdev = to_pci_dev(dev); 5686 struct hisi_qm *qm = pci_get_drvdata(pdev); 5687 int ret; 5688 5689 pci_info(pdev, "resuming from suspend state\n"); 5690 5691 ret = qm_rebuild_for_resume(qm); 5692 if (ret) { 5693 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5694 return ret; 5695 } 5696 5697 ret = hisi_qm_start(qm); 5698 if (ret) { 5699 if (qm_check_dev_error(qm)) { 5700 pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); 5701 return 0; 5702 } 5703 5704 pci_err(pdev, "failed to start qm(%d)!\n", ret); 5705 } 5706 5707 return ret; 5708 } 5709 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5710 5711 MODULE_LICENSE("GPL v2"); 5712 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5713 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5714