xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision df0e68c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/idr.h>
9 #include <linux/io.h>
10 #include <linux/irqreturn.h>
11 #include <linux/log2.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include "qm.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 #define QM_IRQ_NUM_V1			1
26 #define QM_IRQ_NUM_PF_V2		4
27 #define QM_IRQ_NUM_VF_V2		2
28 #define QM_IRQ_NUM_VF_V3		3
29 
30 #define QM_EQ_EVENT_IRQ_VECTOR		0
31 #define QM_AEQ_EVENT_IRQ_VECTOR		1
32 #define QM_CMD_EVENT_IRQ_VECTOR		2
33 #define QM_ABNORMAL_EVENT_IRQ_VECTOR	3
34 
35 /* mailbox */
36 #define QM_MB_CMD_SQC			0x0
37 #define QM_MB_CMD_CQC			0x1
38 #define QM_MB_CMD_EQC			0x2
39 #define QM_MB_CMD_AEQC			0x3
40 #define QM_MB_CMD_SQC_BT		0x4
41 #define QM_MB_CMD_CQC_BT		0x5
42 #define QM_MB_CMD_SQC_VFT_V2		0x6
43 #define QM_MB_CMD_STOP_QP		0x8
44 #define QM_MB_CMD_SRC			0xc
45 #define QM_MB_CMD_DST			0xd
46 
47 #define QM_MB_CMD_SEND_BASE		0x300
48 #define QM_MB_EVENT_SHIFT		8
49 #define QM_MB_BUSY_SHIFT		13
50 #define QM_MB_OP_SHIFT			14
51 #define QM_MB_CMD_DATA_ADDR_L		0x304
52 #define QM_MB_CMD_DATA_ADDR_H		0x308
53 #define QM_MB_PING_ALL_VFS		0xffff
54 #define QM_MB_CMD_DATA_SHIFT		32
55 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
56 
57 /* sqc shift */
58 #define QM_SQ_HOP_NUM_SHIFT		0
59 #define QM_SQ_PAGE_SIZE_SHIFT		4
60 #define QM_SQ_BUF_SIZE_SHIFT		8
61 #define QM_SQ_SQE_SIZE_SHIFT		12
62 #define QM_SQ_PRIORITY_SHIFT		0
63 #define QM_SQ_ORDERS_SHIFT		4
64 #define QM_SQ_TYPE_SHIFT		8
65 #define QM_QC_PASID_ENABLE		0x1
66 #define QM_QC_PASID_ENABLE_SHIFT	7
67 
68 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
69 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
70 
71 /* cqc shift */
72 #define QM_CQ_HOP_NUM_SHIFT		0
73 #define QM_CQ_PAGE_SIZE_SHIFT		4
74 #define QM_CQ_BUF_SIZE_SHIFT		8
75 #define QM_CQ_CQE_SIZE_SHIFT		12
76 #define QM_CQ_PHASE_SHIFT		0
77 #define QM_CQ_FLAG_SHIFT		1
78 
79 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
80 #define QM_QC_CQE_SIZE			4
81 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
82 
83 /* eqc shift */
84 #define QM_EQE_AEQE_SIZE		(2UL << 12)
85 #define QM_EQC_PHASE_SHIFT		16
86 
87 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
88 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
89 
90 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
91 #define QM_AEQE_TYPE_SHIFT		17
92 
93 #define QM_DOORBELL_CMD_SQ		0
94 #define QM_DOORBELL_CMD_CQ		1
95 #define QM_DOORBELL_CMD_EQ		2
96 #define QM_DOORBELL_CMD_AEQ		3
97 
98 #define QM_DOORBELL_BASE_V1		0x340
99 #define QM_DB_CMD_SHIFT_V1		16
100 #define QM_DB_INDEX_SHIFT_V1		32
101 #define QM_DB_PRIORITY_SHIFT_V1		48
102 #define QM_DOORBELL_SQ_CQ_BASE_V2	0x1000
103 #define QM_DOORBELL_EQ_AEQ_BASE_V2	0x2000
104 #define QM_QUE_ISO_CFG_V		0x0030
105 #define QM_PAGE_SIZE			0x0034
106 #define QM_QUE_ISO_EN			0x100154
107 #define QM_CAPBILITY			0x100158
108 #define QM_QP_NUN_MASK			GENMASK(10, 0)
109 #define QM_QP_DB_INTERVAL		0x10000
110 #define QM_QP_MAX_NUM_SHIFT		11
111 #define QM_DB_CMD_SHIFT_V2		12
112 #define QM_DB_RAND_SHIFT_V2		16
113 #define QM_DB_INDEX_SHIFT_V2		32
114 #define QM_DB_PRIORITY_SHIFT_V2		48
115 
116 #define QM_MEM_START_INIT		0x100040
117 #define QM_MEM_INIT_DONE		0x100044
118 #define QM_VFT_CFG_RDY			0x10006c
119 #define QM_VFT_CFG_OP_WR		0x100058
120 #define QM_VFT_CFG_TYPE			0x10005c
121 #define QM_SQC_VFT			0x0
122 #define QM_CQC_VFT			0x1
123 #define QM_VFT_CFG			0x100060
124 #define QM_VFT_CFG_OP_ENABLE		0x100054
125 
126 #define QM_VFT_CFG_DATA_L		0x100064
127 #define QM_VFT_CFG_DATA_H		0x100068
128 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
129 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
130 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
131 #define QM_SQC_VFT_START_SQN_SHIFT	28
132 #define QM_SQC_VFT_VALID		(1ULL << 44)
133 #define QM_SQC_VFT_SQN_SHIFT		45
134 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
135 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
136 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
137 #define QM_CQC_VFT_VALID		(1ULL << 28)
138 
139 #define QM_SQC_VFT_BASE_SHIFT_V2	28
140 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
141 #define QM_SQC_VFT_NUM_SHIFT_V2		45
142 #define QM_SQC_VFT_NUM_MASK_v2		GENMASK(9, 0)
143 
144 #define QM_DFX_CNT_CLR_CE		0x100118
145 
146 #define QM_ABNORMAL_INT_SOURCE		0x100000
147 #define QM_ABNORMAL_INT_SOURCE_CLR	GENMASK(14, 0)
148 #define QM_ABNORMAL_INT_MASK		0x100004
149 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
150 #define QM_ABNORMAL_INT_STATUS		0x100008
151 #define QM_ABNORMAL_INT_SET		0x10000c
152 #define QM_ABNORMAL_INF00		0x100010
153 #define QM_FIFO_OVERFLOW_TYPE		0xc0
154 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
155 #define QM_FIFO_OVERFLOW_VF		0x3f
156 #define QM_ABNORMAL_INF01		0x100014
157 #define QM_DB_TIMEOUT_TYPE		0xc0
158 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
159 #define QM_DB_TIMEOUT_VF		0x3f
160 #define QM_RAS_CE_ENABLE		0x1000ec
161 #define QM_RAS_FE_ENABLE		0x1000f0
162 #define QM_RAS_NFE_ENABLE		0x1000f4
163 #define QM_RAS_CE_THRESHOLD		0x1000f8
164 #define QM_RAS_CE_TIMES_PER_IRQ		1
165 #define QM_RAS_MSI_INT_SEL		0x1040f4
166 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
167 
168 #define QM_RESET_WAIT_TIMEOUT		400
169 #define QM_PEH_VENDOR_ID		0x1000d8
170 #define ACC_VENDOR_ID_VALUE		0x5a5a
171 #define QM_PEH_DFX_INFO0		0x1000fc
172 #define QM_PEH_DFX_INFO1		0x100100
173 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
174 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
175 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
176 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
177 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
178 #define ACC_MASTER_TRANS_RETURN_RW	3
179 #define ACC_MASTER_TRANS_RETURN		0x300150
180 #define ACC_MASTER_GLOBAL_CTRL		0x300000
181 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
182 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
183 #define ACC_AM_ROB_ECC_INT_STS		0x300104
184 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
185 #define QM_MSI_CAP_ENABLE		BIT(16)
186 
187 /* interfunction communication */
188 #define QM_IFC_READY_STATUS		0x100128
189 #define QM_IFC_C_STS_M			0x10012C
190 #define QM_IFC_INT_SET_P		0x100130
191 #define QM_IFC_INT_CFG			0x100134
192 #define QM_IFC_INT_SOURCE_P		0x100138
193 #define QM_IFC_INT_SOURCE_V		0x0020
194 #define QM_IFC_INT_MASK			0x0024
195 #define QM_IFC_INT_STATUS		0x0028
196 #define QM_IFC_INT_SET_V		0x002C
197 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
198 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
199 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
200 #define QM_IFC_INT_DISABLE		BIT(0)
201 #define QM_IFC_INT_STATUS_MASK		BIT(0)
202 #define QM_IFC_INT_SET_MASK		BIT(0)
203 #define QM_WAIT_DST_ACK			10
204 #define QM_MAX_PF_WAIT_COUNT		10
205 #define QM_MAX_VF_WAIT_COUNT		40
206 #define QM_VF_RESET_WAIT_US            20000
207 #define QM_VF_RESET_WAIT_CNT           3000
208 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
209 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
210 
211 #define QM_DFX_MB_CNT_VF		0x104010
212 #define QM_DFX_DB_CNT_VF		0x104020
213 #define QM_DFX_SQE_CNT_VF_SQN		0x104030
214 #define QM_DFX_CQE_CNT_VF_CQN		0x104040
215 #define QM_DFX_QN_SHIFT			16
216 #define CURRENT_FUN_MASK		GENMASK(5, 0)
217 #define CURRENT_Q_MASK			GENMASK(31, 16)
218 
219 #define POLL_PERIOD			10
220 #define POLL_TIMEOUT			1000
221 #define WAIT_PERIOD_US_MAX		200
222 #define WAIT_PERIOD_US_MIN		100
223 #define MAX_WAIT_COUNTS			1000
224 #define QM_CACHE_WB_START		0x204
225 #define QM_CACHE_WB_DONE		0x208
226 
227 #define PCI_BAR_2			2
228 #define PCI_BAR_4			4
229 #define QM_SQE_DATA_ALIGN_MASK		GENMASK(6, 0)
230 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
231 
232 #define QM_DBG_READ_LEN		256
233 #define QM_DBG_WRITE_LEN		1024
234 #define QM_DBG_TMP_BUF_LEN		22
235 #define QM_PCI_COMMAND_INVALID		~0
236 #define QM_RESET_STOP_TX_OFFSET		1
237 #define QM_RESET_STOP_RX_OFFSET		2
238 
239 #define WAIT_PERIOD			20
240 #define REMOVE_WAIT_DELAY		10
241 #define QM_SQE_ADDR_MASK		GENMASK(7, 0)
242 #define QM_EQ_DEPTH			(1024 * 2)
243 
244 #define QM_DRIVER_REMOVING		0
245 #define QM_RST_SCHED			1
246 #define QM_RESETTING			2
247 #define QM_QOS_PARAM_NUM		2
248 #define QM_QOS_VAL_NUM			1
249 #define QM_QOS_BDF_PARAM_NUM		4
250 #define QM_QOS_MAX_VAL			1000
251 #define QM_QOS_RATE			100
252 #define QM_QOS_EXPAND_RATE		1000
253 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
254 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
255 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
256 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
257 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
258 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
259 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
260 #define QM_SHAPER_CBS_B			1
261 #define QM_SHAPER_CBS_S			16
262 #define QM_SHAPER_VFT_OFFSET		6
263 #define WAIT_FOR_QOS_VF			100
264 #define QM_QOS_MIN_ERROR_RATE		5
265 #define QM_QOS_TYPICAL_NUM		8
266 #define QM_SHAPER_MIN_CBS_S		8
267 #define QM_QOS_TICK			0x300U
268 #define QM_QOS_DIVISOR_CLK		0x1f40U
269 #define QM_QOS_MAX_CIR_B		200
270 #define QM_QOS_MIN_CIR_B		100
271 #define QM_QOS_MAX_CIR_U		6
272 #define QM_QOS_MAX_CIR_S		11
273 #define QM_QOS_VAL_MAX_LEN		32
274 
275 #define QM_AUTOSUSPEND_DELAY		3000
276 
277 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
278 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT)	| \
279 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT)	| \
280 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT)	| \
281 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
282 
283 #define QM_MK_CQC_DW3_V2(cqe_sz) \
284 	((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
285 
286 #define QM_MK_SQC_W13(priority, orders, alg_type) \
287 	(((priority) << QM_SQ_PRIORITY_SHIFT)	| \
288 	((orders) << QM_SQ_ORDERS_SHIFT)	| \
289 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
290 
291 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
292 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT)	| \
293 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT)	| \
294 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT)	| \
295 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
296 
297 #define QM_MK_SQC_DW3_V2(sqe_sz) \
298 	((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
299 
300 #define INIT_QC_COMMON(qc, base, pasid) do {			\
301 	(qc)->head = 0;						\
302 	(qc)->tail = 0;						\
303 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
304 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
305 	(qc)->dw3 = 0;						\
306 	(qc)->w8 = 0;						\
307 	(qc)->rsvd0 = 0;					\
308 	(qc)->pasid = cpu_to_le16(pasid);			\
309 	(qc)->w11 = 0;						\
310 	(qc)->rsvd1 = 0;					\
311 } while (0)
312 
313 enum vft_type {
314 	SQC_VFT = 0,
315 	CQC_VFT,
316 	SHAPER_VFT,
317 };
318 
319 enum acc_err_result {
320 	ACC_ERR_NONE,
321 	ACC_ERR_NEED_RESET,
322 	ACC_ERR_RECOVERED,
323 };
324 
325 enum qm_alg_type {
326 	ALG_TYPE_0,
327 	ALG_TYPE_1,
328 };
329 
330 enum qm_mb_cmd {
331 	QM_PF_FLR_PREPARE = 0x01,
332 	QM_PF_SRST_PREPARE,
333 	QM_PF_RESET_DONE,
334 	QM_VF_PREPARE_DONE,
335 	QM_VF_PREPARE_FAIL,
336 	QM_VF_START_DONE,
337 	QM_VF_START_FAIL,
338 	QM_PF_SET_QOS,
339 	QM_VF_GET_QOS,
340 };
341 
342 struct qm_cqe {
343 	__le32 rsvd0;
344 	__le16 cmd_id;
345 	__le16 rsvd1;
346 	__le16 sq_head;
347 	__le16 sq_num;
348 	__le16 rsvd2;
349 	__le16 w7;
350 };
351 
352 struct qm_eqe {
353 	__le32 dw0;
354 };
355 
356 struct qm_aeqe {
357 	__le32 dw0;
358 };
359 
360 struct qm_sqc {
361 	__le16 head;
362 	__le16 tail;
363 	__le32 base_l;
364 	__le32 base_h;
365 	__le32 dw3;
366 	__le16 w8;
367 	__le16 rsvd0;
368 	__le16 pasid;
369 	__le16 w11;
370 	__le16 cq_num;
371 	__le16 w13;
372 	__le32 rsvd1;
373 };
374 
375 struct qm_cqc {
376 	__le16 head;
377 	__le16 tail;
378 	__le32 base_l;
379 	__le32 base_h;
380 	__le32 dw3;
381 	__le16 w8;
382 	__le16 rsvd0;
383 	__le16 pasid;
384 	__le16 w11;
385 	__le32 dw6;
386 	__le32 rsvd1;
387 };
388 
389 struct qm_eqc {
390 	__le16 head;
391 	__le16 tail;
392 	__le32 base_l;
393 	__le32 base_h;
394 	__le32 dw3;
395 	__le32 rsvd[2];
396 	__le32 dw6;
397 };
398 
399 struct qm_aeqc {
400 	__le16 head;
401 	__le16 tail;
402 	__le32 base_l;
403 	__le32 base_h;
404 	__le32 dw3;
405 	__le32 rsvd[2];
406 	__le32 dw6;
407 };
408 
409 struct qm_mailbox {
410 	__le16 w0;
411 	__le16 queue_num;
412 	__le32 base_l;
413 	__le32 base_h;
414 	__le32 rsvd;
415 };
416 
417 struct qm_doorbell {
418 	__le16 queue_num;
419 	__le16 cmd;
420 	__le16 index;
421 	__le16 priority;
422 };
423 
424 struct hisi_qm_resource {
425 	struct hisi_qm *qm;
426 	int distance;
427 	struct list_head list;
428 };
429 
430 struct hisi_qm_hw_ops {
431 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
432 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
433 		      u8 cmd, u16 index, u8 priority);
434 	u32 (*get_irq_num)(struct hisi_qm *qm);
435 	int (*debug_init)(struct hisi_qm *qm);
436 	void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe);
437 	void (*hw_error_uninit)(struct hisi_qm *qm);
438 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
439 	int (*stop_qp)(struct hisi_qp *qp);
440 	int (*set_msi)(struct hisi_qm *qm, bool set);
441 	int (*ping_all_vfs)(struct hisi_qm *qm, u64 cmd);
442 	int (*ping_pf)(struct hisi_qm *qm, u64 cmd);
443 };
444 
445 struct qm_dfx_item {
446 	const char *name;
447 	u32 offset;
448 };
449 
450 static struct qm_dfx_item qm_dfx_files[] = {
451 	{"err_irq", offsetof(struct qm_dfx, err_irq_cnt)},
452 	{"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)},
453 	{"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)},
454 	{"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)},
455 	{"mb_err", offsetof(struct qm_dfx, mb_err_cnt)},
456 };
457 
458 static const char * const qm_debug_file_name[] = {
459 	[CURRENT_QM]   = "current_qm",
460 	[CURRENT_Q]    = "current_q",
461 	[CLEAR_ENABLE] = "clear_enable",
462 };
463 
464 struct hisi_qm_hw_error {
465 	u32 int_msk;
466 	const char *msg;
467 };
468 
469 static const struct hisi_qm_hw_error qm_hw_error[] = {
470 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
471 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
472 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
473 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
474 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
475 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
476 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
477 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
478 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
479 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
480 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
481 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
482 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
483 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
484 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
485 	{ /* sentinel */ }
486 };
487 
488 static const char * const qm_db_timeout[] = {
489 	"sq", "cq", "eq", "aeq",
490 };
491 
492 static const char * const qm_fifo_overflow[] = {
493 	"cq", "eq", "aeq",
494 };
495 
496 static const char * const qm_s[] = {
497 	"init", "start", "close", "stop",
498 };
499 
500 static const char * const qp_s[] = {
501 	"none", "init", "start", "stop", "close",
502 };
503 
504 static const u32 typical_qos_val[QM_QOS_TYPICAL_NUM] = {100, 250, 500, 1000,
505 						10000, 25000, 50000, 100000};
506 static const u32 typical_qos_cbs_s[QM_QOS_TYPICAL_NUM] = {9, 10, 11, 12, 16,
507 							 17, 18, 19};
508 
509 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
510 {
511 	enum qm_state curr = atomic_read(&qm->status.flags);
512 	bool avail = false;
513 
514 	switch (curr) {
515 	case QM_INIT:
516 		if (new == QM_START || new == QM_CLOSE)
517 			avail = true;
518 		break;
519 	case QM_START:
520 		if (new == QM_STOP)
521 			avail = true;
522 		break;
523 	case QM_STOP:
524 		if (new == QM_CLOSE || new == QM_START)
525 			avail = true;
526 		break;
527 	default:
528 		break;
529 	}
530 
531 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
532 		qm_s[curr], qm_s[new]);
533 
534 	if (!avail)
535 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
536 			 qm_s[curr], qm_s[new]);
537 
538 	return avail;
539 }
540 
541 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
542 			      enum qp_state new)
543 {
544 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
545 	enum qp_state qp_curr = 0;
546 	bool avail = false;
547 
548 	if (qp)
549 		qp_curr = atomic_read(&qp->qp_status.flags);
550 
551 	switch (new) {
552 	case QP_INIT:
553 		if (qm_curr == QM_START || qm_curr == QM_INIT)
554 			avail = true;
555 		break;
556 	case QP_START:
557 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
558 		    (qm_curr == QM_START && qp_curr == QP_STOP))
559 			avail = true;
560 		break;
561 	case QP_STOP:
562 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
563 		    (qp_curr == QP_INIT))
564 			avail = true;
565 		break;
566 	case QP_CLOSE:
567 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
568 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
569 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
570 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
571 			avail = true;
572 		break;
573 	default:
574 		break;
575 	}
576 
577 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
578 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
579 
580 	if (!avail)
581 		dev_warn(&qm->pdev->dev,
582 			 "Can not change qp state from %s to %s in QM %s\n",
583 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
584 
585 	return avail;
586 }
587 
588 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
589 			   u64 base, u16 queue, bool op)
590 {
591 	mailbox->w0 = cpu_to_le16((cmd) |
592 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
593 		(0x1 << QM_MB_BUSY_SHIFT));
594 	mailbox->queue_num = cpu_to_le16(queue);
595 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
596 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
597 	mailbox->rsvd = 0;
598 }
599 
600 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
601 static int qm_wait_mb_ready(struct hisi_qm *qm)
602 {
603 	u32 val;
604 
605 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
606 					  val, !((val >> QM_MB_BUSY_SHIFT) &
607 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
608 }
609 
610 /* 128 bit should be written to hardware at one time to trigger a mailbox */
611 static void qm_mb_write(struct hisi_qm *qm, const void *src)
612 {
613 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
614 	unsigned long tmp0 = 0, tmp1 = 0;
615 
616 	if (!IS_ENABLED(CONFIG_ARM64)) {
617 		memcpy_toio(fun_base, src, 16);
618 		wmb();
619 		return;
620 	}
621 
622 	asm volatile("ldp %0, %1, %3\n"
623 		     "stp %0, %1, %2\n"
624 		     "dsb sy\n"
625 		     : "=&r" (tmp0),
626 		       "=&r" (tmp1),
627 		       "+Q" (*((char __iomem *)fun_base))
628 		     : "Q" (*((char *)src))
629 		     : "memory");
630 }
631 
632 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
633 {
634 	if (unlikely(qm_wait_mb_ready(qm))) {
635 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
636 		goto mb_busy;
637 	}
638 
639 	qm_mb_write(qm, mailbox);
640 
641 	if (unlikely(qm_wait_mb_ready(qm))) {
642 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
643 		goto mb_busy;
644 	}
645 
646 	return 0;
647 
648 mb_busy:
649 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
650 	return -EBUSY;
651 }
652 
653 static int qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
654 		 bool op)
655 {
656 	struct qm_mailbox mailbox;
657 	int ret;
658 
659 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
660 		queue, cmd, (unsigned long long)dma_addr);
661 
662 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
663 
664 	mutex_lock(&qm->mailbox_lock);
665 	ret = qm_mb_nolock(qm, &mailbox);
666 	mutex_unlock(&qm->mailbox_lock);
667 
668 	return ret;
669 }
670 
671 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
672 {
673 	u64 doorbell;
674 
675 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
676 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
677 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
678 
679 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
680 }
681 
682 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
683 {
684 	void __iomem *io_base = qm->io_base;
685 	u16 randata = 0;
686 	u64 doorbell;
687 
688 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
689 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
690 			  QM_DOORBELL_SQ_CQ_BASE_V2;
691 	else
692 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
693 
694 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
695 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
696 		   ((u64)index << QM_DB_INDEX_SHIFT_V2)	 |
697 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
698 
699 	writeq(doorbell, io_base);
700 }
701 
702 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
703 {
704 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
705 		qn, cmd, index);
706 
707 	qm->ops->qm_db(qm, qn, cmd, index, priority);
708 }
709 
710 static int qm_dev_mem_reset(struct hisi_qm *qm)
711 {
712 	u32 val;
713 
714 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
715 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
716 					  val & BIT(0), POLL_PERIOD,
717 					  POLL_TIMEOUT);
718 }
719 
720 static u32 qm_get_irq_num_v1(struct hisi_qm *qm)
721 {
722 	return QM_IRQ_NUM_V1;
723 }
724 
725 static u32 qm_get_irq_num_v2(struct hisi_qm *qm)
726 {
727 	if (qm->fun_type == QM_HW_PF)
728 		return QM_IRQ_NUM_PF_V2;
729 	else
730 		return QM_IRQ_NUM_VF_V2;
731 }
732 
733 static u32 qm_get_irq_num_v3(struct hisi_qm *qm)
734 {
735 	if (qm->fun_type == QM_HW_PF)
736 		return QM_IRQ_NUM_PF_V2;
737 
738 	return QM_IRQ_NUM_VF_V3;
739 }
740 
741 static int qm_pm_get_sync(struct hisi_qm *qm)
742 {
743 	struct device *dev = &qm->pdev->dev;
744 	int ret;
745 
746 	if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3)
747 		return 0;
748 
749 	ret = pm_runtime_resume_and_get(dev);
750 	if (ret < 0) {
751 		dev_err(dev, "failed to get_sync(%d).\n", ret);
752 		return ret;
753 	}
754 
755 	return 0;
756 }
757 
758 static void qm_pm_put_sync(struct hisi_qm *qm)
759 {
760 	struct device *dev = &qm->pdev->dev;
761 
762 	if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3)
763 		return;
764 
765 	pm_runtime_mark_last_busy(dev);
766 	pm_runtime_put_autosuspend(dev);
767 }
768 
769 static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe)
770 {
771 	u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
772 
773 	return &qm->qp_array[cqn];
774 }
775 
776 static void qm_cq_head_update(struct hisi_qp *qp)
777 {
778 	if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) {
779 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
780 		qp->qp_status.cq_head = 0;
781 	} else {
782 		qp->qp_status.cq_head++;
783 	}
784 }
785 
786 static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm)
787 {
788 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
789 		return;
790 
791 	if (qp->event_cb) {
792 		qp->event_cb(qp);
793 		return;
794 	}
795 
796 	if (qp->req_cb) {
797 		struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
798 
799 		while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
800 			dma_rmb();
801 			qp->req_cb(qp, qp->sqe + qm->sqe_size *
802 				   le16_to_cpu(cqe->sq_head));
803 			qm_cq_head_update(qp);
804 			cqe = qp->cqe + qp->qp_status.cq_head;
805 			qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
806 			      qp->qp_status.cq_head, 0);
807 			atomic_dec(&qp->qp_status.used);
808 		}
809 
810 		/* set c_flag */
811 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
812 		      qp->qp_status.cq_head, 1);
813 	}
814 }
815 
816 static void qm_work_process(struct work_struct *work)
817 {
818 	struct hisi_qm *qm = container_of(work, struct hisi_qm, work);
819 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
820 	struct hisi_qp *qp;
821 	int eqe_num = 0;
822 
823 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
824 		eqe_num++;
825 		qp = qm_to_hisi_qp(qm, eqe);
826 		qm_poll_qp(qp, qm);
827 
828 		if (qm->status.eq_head == QM_EQ_DEPTH - 1) {
829 			qm->status.eqc_phase = !qm->status.eqc_phase;
830 			eqe = qm->eqe;
831 			qm->status.eq_head = 0;
832 		} else {
833 			eqe++;
834 			qm->status.eq_head++;
835 		}
836 
837 		if (eqe_num == QM_EQ_DEPTH / 2 - 1) {
838 			eqe_num = 0;
839 			qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
840 		}
841 	}
842 
843 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
844 }
845 
846 static irqreturn_t do_qm_irq(int irq, void *data)
847 {
848 	struct hisi_qm *qm = (struct hisi_qm *)data;
849 
850 	/* the workqueue created by device driver of QM */
851 	if (qm->wq)
852 		queue_work(qm->wq, &qm->work);
853 	else
854 		schedule_work(&qm->work);
855 
856 	return IRQ_HANDLED;
857 }
858 
859 static irqreturn_t qm_irq(int irq, void *data)
860 {
861 	struct hisi_qm *qm = data;
862 
863 	if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
864 		return do_qm_irq(irq, data);
865 
866 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
867 	dev_err(&qm->pdev->dev, "invalid int source\n");
868 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
869 
870 	return IRQ_NONE;
871 }
872 
873 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
874 {
875 	struct hisi_qm *qm = data;
876 	u32 val;
877 
878 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
879 	val &= QM_IFC_INT_STATUS_MASK;
880 	if (!val)
881 		return IRQ_NONE;
882 
883 	schedule_work(&qm->cmd_process);
884 
885 	return IRQ_HANDLED;
886 }
887 
888 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
889 {
890 	u32 *addr;
891 
892 	if (qp->is_in_kernel)
893 		return;
894 
895 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
896 	*addr = 1;
897 
898 	/* make sure setup is completed */
899 	mb();
900 }
901 
902 static irqreturn_t qm_aeq_irq(int irq, void *data)
903 {
904 	struct hisi_qm *qm = data;
905 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
906 	u32 type;
907 
908 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
909 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
910 		return IRQ_NONE;
911 
912 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
913 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
914 		if (type < ARRAY_SIZE(qm_fifo_overflow))
915 			dev_err(&qm->pdev->dev, "%s overflow\n",
916 				qm_fifo_overflow[type]);
917 		else
918 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
919 				type);
920 
921 		if (qm->status.aeq_head == QM_Q_DEPTH - 1) {
922 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
923 			aeqe = qm->aeqe;
924 			qm->status.aeq_head = 0;
925 		} else {
926 			aeqe++;
927 			qm->status.aeq_head++;
928 		}
929 
930 		qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
931 	}
932 
933 	return IRQ_HANDLED;
934 }
935 
936 static void qm_irq_unregister(struct hisi_qm *qm)
937 {
938 	struct pci_dev *pdev = qm->pdev;
939 
940 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
941 
942 	if (qm->ver > QM_HW_V1) {
943 		free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
944 
945 		if (qm->fun_type == QM_HW_PF)
946 			free_irq(pci_irq_vector(pdev,
947 				 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
948 	}
949 
950 	if (qm->ver > QM_HW_V2)
951 		free_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR), qm);
952 }
953 
954 static void qm_init_qp_status(struct hisi_qp *qp)
955 {
956 	struct hisi_qp_status *qp_status = &qp->qp_status;
957 
958 	qp_status->sq_tail = 0;
959 	qp_status->cq_head = 0;
960 	qp_status->cqc_phase = true;
961 	atomic_set(&qp_status->used, 0);
962 }
963 
964 static void qm_init_prefetch(struct hisi_qm *qm)
965 {
966 	struct device *dev = &qm->pdev->dev;
967 	u32 page_type = 0x0;
968 
969 	if (qm->ver < QM_HW_V3)
970 		return;
971 
972 	switch (PAGE_SIZE) {
973 	case SZ_4K:
974 		page_type = 0x0;
975 		break;
976 	case SZ_16K:
977 		page_type = 0x1;
978 		break;
979 	case SZ_64K:
980 		page_type = 0x2;
981 		break;
982 	default:
983 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
984 			PAGE_SIZE);
985 	}
986 
987 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
988 }
989 
990 /*
991  * the formula:
992  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
993  *
994  *		        IR_b * (2 ^ IR_u) * 8
995  * IR(Mbps) * 10 ^ -3 = -------------------------
996  *		        Tick * (2 ^ IR_s)
997  */
998 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
999 {
1000 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1001 					(QM_QOS_TICK * (1 << cir_s));
1002 }
1003 
1004 static u32 acc_shaper_calc_cbs_s(u32 ir)
1005 {
1006 	int i;
1007 
1008 	if (ir < typical_qos_val[0])
1009 		return QM_SHAPER_MIN_CBS_S;
1010 
1011 	for (i = 1; i < QM_QOS_TYPICAL_NUM; i++) {
1012 		if (ir >= typical_qos_val[i - 1] && ir < typical_qos_val[i])
1013 			return typical_qos_cbs_s[i - 1];
1014 	}
1015 
1016 	return typical_qos_cbs_s[QM_QOS_TYPICAL_NUM - 1];
1017 }
1018 
1019 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1020 {
1021 	u32 cir_b, cir_u, cir_s, ir_calc;
1022 	u32 error_rate;
1023 
1024 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1025 
1026 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1027 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1028 			for (cir_s = 0; cir_s <= QM_QOS_MAX_CIR_S; cir_s++) {
1029 				/** the formula is changed to:
1030 				 *	   IR_b * (2 ^ IR_u) * DIVISOR_CLK
1031 				 * IR(Mbps) = -------------------------
1032 				 *	       768 * (2 ^ IR_s)
1033 				 */
1034 				ir_calc = acc_shaper_para_calc(cir_b, cir_u,
1035 							       cir_s);
1036 				error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1037 				if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1038 					factor->cir_b = cir_b;
1039 					factor->cir_u = cir_u;
1040 					factor->cir_s = cir_s;
1041 
1042 					return 0;
1043 				}
1044 			}
1045 		}
1046 	}
1047 
1048 	return -EINVAL;
1049 }
1050 
1051 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1052 			    u32 number, struct qm_shaper_factor *factor)
1053 {
1054 	u64 tmp = 0;
1055 
1056 	if (number > 0) {
1057 		switch (type) {
1058 		case SQC_VFT:
1059 			if (qm->ver == QM_HW_V1) {
1060 				tmp = QM_SQC_VFT_BUF_SIZE	|
1061 				      QM_SQC_VFT_SQC_SIZE	|
1062 				      QM_SQC_VFT_INDEX_NUMBER	|
1063 				      QM_SQC_VFT_VALID		|
1064 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1065 			} else {
1066 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1067 				      QM_SQC_VFT_VALID |
1068 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1069 			}
1070 			break;
1071 		case CQC_VFT:
1072 			if (qm->ver == QM_HW_V1) {
1073 				tmp = QM_CQC_VFT_BUF_SIZE	|
1074 				      QM_CQC_VFT_SQC_SIZE	|
1075 				      QM_CQC_VFT_INDEX_NUMBER	|
1076 				      QM_CQC_VFT_VALID;
1077 			} else {
1078 				tmp = QM_CQC_VFT_VALID;
1079 			}
1080 			break;
1081 		case SHAPER_VFT:
1082 			if (qm->ver >= QM_HW_V3) {
1083 				tmp = factor->cir_b |
1084 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1085 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1086 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1087 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1088 			}
1089 			break;
1090 		}
1091 	}
1092 
1093 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1094 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1095 }
1096 
1097 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1098 			     u32 fun_num, u32 base, u32 number)
1099 {
1100 	struct qm_shaper_factor *factor = &qm->factor[fun_num];
1101 	unsigned int val;
1102 	int ret;
1103 
1104 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1105 					 val & BIT(0), POLL_PERIOD,
1106 					 POLL_TIMEOUT);
1107 	if (ret)
1108 		return ret;
1109 
1110 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1111 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1112 	if (type == SHAPER_VFT)
1113 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1114 
1115 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1116 
1117 	qm_vft_data_cfg(qm, type, base, number, factor);
1118 
1119 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1120 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1121 
1122 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1123 					  val & BIT(0), POLL_PERIOD,
1124 					  POLL_TIMEOUT);
1125 }
1126 
1127 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1128 {
1129 	int ret, i;
1130 
1131 	qm->factor[fun_num].func_qos = QM_QOS_MAX_VAL;
1132 	ret = qm_get_shaper_para(QM_QOS_MAX_VAL * QM_QOS_RATE, &qm->factor[fun_num]);
1133 	if (ret) {
1134 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1135 		return ret;
1136 	}
1137 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1138 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1139 		/* The base number of queue reuse for different alg type */
1140 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1141 		if (ret)
1142 			return ret;
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 /* The config should be conducted after qm_dev_mem_reset() */
1149 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1150 			      u32 number)
1151 {
1152 	int ret, i;
1153 
1154 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1155 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1156 		if (ret)
1157 			return ret;
1158 	}
1159 
1160 	/* init default shaper qos val */
1161 	if (qm->ver >= QM_HW_V3) {
1162 		ret = qm_shaper_init_vft(qm, fun_num);
1163 		if (ret)
1164 			goto back_sqc_cqc;
1165 	}
1166 
1167 	return 0;
1168 back_sqc_cqc:
1169 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1170 		ret = qm_set_vft_common(qm, i, fun_num, 0, 0);
1171 		if (ret)
1172 			return ret;
1173 	}
1174 	return ret;
1175 }
1176 
1177 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1178 {
1179 	u64 sqc_vft;
1180 	int ret;
1181 
1182 	ret = qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1183 	if (ret)
1184 		return ret;
1185 
1186 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1187 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1188 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1189 	*number = (QM_SQC_VFT_NUM_MASK_v2 &
1190 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1191 
1192 	return 0;
1193 }
1194 
1195 static int qm_get_vf_qp_num(struct hisi_qm *qm, u32 fun_num)
1196 {
1197 	u32 remain_q_num, vfq_num;
1198 	u32 num_vfs = qm->vfs_num;
1199 
1200 	vfq_num = (qm->ctrl_qp_num - qm->qp_num) / num_vfs;
1201 	if (vfq_num >= qm->max_qp_num)
1202 		return qm->max_qp_num;
1203 
1204 	remain_q_num = (qm->ctrl_qp_num - qm->qp_num) % num_vfs;
1205 	if (vfq_num + remain_q_num <= qm->max_qp_num)
1206 		return fun_num == num_vfs ? vfq_num + remain_q_num : vfq_num;
1207 
1208 	/*
1209 	 * if vfq_num + remain_q_num > max_qp_num, the last VFs,
1210 	 * each with one more queue.
1211 	 */
1212 	return fun_num + remain_q_num > num_vfs ? vfq_num + 1 : vfq_num;
1213 }
1214 
1215 static struct hisi_qm *file_to_qm(struct debugfs_file *file)
1216 {
1217 	struct qm_debug *debug = file->debug;
1218 
1219 	return container_of(debug, struct hisi_qm, debug);
1220 }
1221 
1222 static u32 current_q_read(struct hisi_qm *qm)
1223 {
1224 	return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT;
1225 }
1226 
1227 static int current_q_write(struct hisi_qm *qm, u32 val)
1228 {
1229 	u32 tmp;
1230 
1231 	if (val >= qm->debug.curr_qm_qp_num)
1232 		return -EINVAL;
1233 
1234 	tmp = val << QM_DFX_QN_SHIFT |
1235 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK);
1236 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
1237 
1238 	tmp = val << QM_DFX_QN_SHIFT |
1239 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK);
1240 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
1241 
1242 	return 0;
1243 }
1244 
1245 static u32 clear_enable_read(struct hisi_qm *qm)
1246 {
1247 	return readl(qm->io_base + QM_DFX_CNT_CLR_CE);
1248 }
1249 
1250 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */
1251 static int clear_enable_write(struct hisi_qm *qm, u32 rd_clr_ctrl)
1252 {
1253 	if (rd_clr_ctrl > 1)
1254 		return -EINVAL;
1255 
1256 	writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE);
1257 
1258 	return 0;
1259 }
1260 
1261 static u32 current_qm_read(struct hisi_qm *qm)
1262 {
1263 	return readl(qm->io_base + QM_DFX_MB_CNT_VF);
1264 }
1265 
1266 static int current_qm_write(struct hisi_qm *qm, u32 val)
1267 {
1268 	u32 tmp;
1269 
1270 	if (val > qm->vfs_num)
1271 		return -EINVAL;
1272 
1273 	/* According PF or VF Dev ID to calculation curr_qm_qp_num and store */
1274 	if (!val)
1275 		qm->debug.curr_qm_qp_num = qm->qp_num;
1276 	else
1277 		qm->debug.curr_qm_qp_num = qm_get_vf_qp_num(qm, val);
1278 
1279 	writel(val, qm->io_base + QM_DFX_MB_CNT_VF);
1280 	writel(val, qm->io_base + QM_DFX_DB_CNT_VF);
1281 
1282 	tmp = val |
1283 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_Q_MASK);
1284 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
1285 
1286 	tmp = val |
1287 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_Q_MASK);
1288 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
1289 
1290 	return 0;
1291 }
1292 
1293 static ssize_t qm_debug_read(struct file *filp, char __user *buf,
1294 			     size_t count, loff_t *pos)
1295 {
1296 	struct debugfs_file *file = filp->private_data;
1297 	enum qm_debug_file index = file->index;
1298 	struct hisi_qm *qm = file_to_qm(file);
1299 	char tbuf[QM_DBG_TMP_BUF_LEN];
1300 	u32 val;
1301 	int ret;
1302 
1303 	ret = hisi_qm_get_dfx_access(qm);
1304 	if (ret)
1305 		return ret;
1306 
1307 	mutex_lock(&file->lock);
1308 	switch (index) {
1309 	case CURRENT_QM:
1310 		val = current_qm_read(qm);
1311 		break;
1312 	case CURRENT_Q:
1313 		val = current_q_read(qm);
1314 		break;
1315 	case CLEAR_ENABLE:
1316 		val = clear_enable_read(qm);
1317 		break;
1318 	default:
1319 		goto err_input;
1320 	}
1321 	mutex_unlock(&file->lock);
1322 
1323 	hisi_qm_put_dfx_access(qm);
1324 	ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val);
1325 	return simple_read_from_buffer(buf, count, pos, tbuf, ret);
1326 
1327 err_input:
1328 	mutex_unlock(&file->lock);
1329 	hisi_qm_put_dfx_access(qm);
1330 	return -EINVAL;
1331 }
1332 
1333 static ssize_t qm_debug_write(struct file *filp, const char __user *buf,
1334 			      size_t count, loff_t *pos)
1335 {
1336 	struct debugfs_file *file = filp->private_data;
1337 	enum qm_debug_file index = file->index;
1338 	struct hisi_qm *qm = file_to_qm(file);
1339 	unsigned long val;
1340 	char tbuf[QM_DBG_TMP_BUF_LEN];
1341 	int len, ret;
1342 
1343 	if (*pos != 0)
1344 		return 0;
1345 
1346 	if (count >= QM_DBG_TMP_BUF_LEN)
1347 		return -ENOSPC;
1348 
1349 	len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf,
1350 				     count);
1351 	if (len < 0)
1352 		return len;
1353 
1354 	tbuf[len] = '\0';
1355 	if (kstrtoul(tbuf, 0, &val))
1356 		return -EFAULT;
1357 
1358 	ret = hisi_qm_get_dfx_access(qm);
1359 	if (ret)
1360 		return ret;
1361 
1362 	mutex_lock(&file->lock);
1363 	switch (index) {
1364 	case CURRENT_QM:
1365 		ret = current_qm_write(qm, val);
1366 		break;
1367 	case CURRENT_Q:
1368 		ret = current_q_write(qm, val);
1369 		break;
1370 	case CLEAR_ENABLE:
1371 		ret = clear_enable_write(qm, val);
1372 		break;
1373 	default:
1374 		ret = -EINVAL;
1375 	}
1376 	mutex_unlock(&file->lock);
1377 
1378 	hisi_qm_put_dfx_access(qm);
1379 
1380 	if (ret)
1381 		return ret;
1382 
1383 	return count;
1384 }
1385 
1386 static const struct file_operations qm_debug_fops = {
1387 	.owner = THIS_MODULE,
1388 	.open = simple_open,
1389 	.read = qm_debug_read,
1390 	.write = qm_debug_write,
1391 };
1392 
1393 #define CNT_CYC_REGS_NUM		10
1394 static const struct debugfs_reg32 qm_dfx_regs[] = {
1395 	/* XXX_CNT are reading clear register */
1396 	{"QM_ECC_1BIT_CNT               ",  0x104000ull},
1397 	{"QM_ECC_MBIT_CNT               ",  0x104008ull},
1398 	{"QM_DFX_MB_CNT                 ",  0x104018ull},
1399 	{"QM_DFX_DB_CNT                 ",  0x104028ull},
1400 	{"QM_DFX_SQE_CNT                ",  0x104038ull},
1401 	{"QM_DFX_CQE_CNT                ",  0x104048ull},
1402 	{"QM_DFX_SEND_SQE_TO_ACC_CNT    ",  0x104050ull},
1403 	{"QM_DFX_WB_SQE_FROM_ACC_CNT    ",  0x104058ull},
1404 	{"QM_DFX_ACC_FINISH_CNT         ",  0x104060ull},
1405 	{"QM_DFX_CQE_ERR_CNT            ",  0x1040b4ull},
1406 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1407 	{"QM_ECC_1BIT_INF               ",  0x104004ull},
1408 	{"QM_ECC_MBIT_INF               ",  0x10400cull},
1409 	{"QM_DFX_ACC_RDY_VLD0           ",  0x1040a0ull},
1410 	{"QM_DFX_ACC_RDY_VLD1           ",  0x1040a4ull},
1411 	{"QM_DFX_AXI_RDY_VLD            ",  0x1040a8ull},
1412 	{"QM_DFX_FF_ST0                 ",  0x1040c8ull},
1413 	{"QM_DFX_FF_ST1                 ",  0x1040ccull},
1414 	{"QM_DFX_FF_ST2                 ",  0x1040d0ull},
1415 	{"QM_DFX_FF_ST3                 ",  0x1040d4ull},
1416 	{"QM_DFX_FF_ST4                 ",  0x1040d8ull},
1417 	{"QM_DFX_FF_ST5                 ",  0x1040dcull},
1418 	{"QM_DFX_FF_ST6                 ",  0x1040e0ull},
1419 	{"QM_IN_IDLE_ST                 ",  0x1040e4ull},
1420 };
1421 
1422 static const struct debugfs_reg32 qm_vf_dfx_regs[] = {
1423 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1424 };
1425 
1426 /**
1427  * hisi_qm_regs_dump() - Dump registers's value.
1428  * @s: debugfs file handle.
1429  * @regset: accelerator registers information.
1430  *
1431  * Dump accelerator registers.
1432  */
1433 void hisi_qm_regs_dump(struct seq_file *s, struct debugfs_regset32 *regset)
1434 {
1435 	struct pci_dev *pdev = to_pci_dev(regset->dev);
1436 	struct hisi_qm *qm = pci_get_drvdata(pdev);
1437 	const struct debugfs_reg32 *regs = regset->regs;
1438 	int regs_len = regset->nregs;
1439 	int i, ret;
1440 	u32 val;
1441 
1442 	ret = hisi_qm_get_dfx_access(qm);
1443 	if (ret)
1444 		return;
1445 
1446 	for (i = 0; i < regs_len; i++) {
1447 		val = readl(regset->base + regs[i].offset);
1448 		seq_printf(s, "%s= 0x%08x\n", regs[i].name, val);
1449 	}
1450 
1451 	hisi_qm_put_dfx_access(qm);
1452 }
1453 EXPORT_SYMBOL_GPL(hisi_qm_regs_dump);
1454 
1455 static int qm_regs_show(struct seq_file *s, void *unused)
1456 {
1457 	struct hisi_qm *qm = s->private;
1458 	struct debugfs_regset32 regset;
1459 
1460 	if (qm->fun_type == QM_HW_PF) {
1461 		regset.regs = qm_dfx_regs;
1462 		regset.nregs = ARRAY_SIZE(qm_dfx_regs);
1463 	} else {
1464 		regset.regs = qm_vf_dfx_regs;
1465 		regset.nregs = ARRAY_SIZE(qm_vf_dfx_regs);
1466 	}
1467 
1468 	regset.base = qm->io_base;
1469 	regset.dev = &qm->pdev->dev;
1470 
1471 	hisi_qm_regs_dump(s, &regset);
1472 
1473 	return 0;
1474 }
1475 
1476 DEFINE_SHOW_ATTRIBUTE(qm_regs);
1477 
1478 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer,
1479 			   size_t count, loff_t *pos)
1480 {
1481 	char buf[QM_DBG_READ_LEN];
1482 	int len;
1483 
1484 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n",
1485 			"Please echo help to cmd to get help information");
1486 
1487 	return simple_read_from_buffer(buffer, count, pos, buf, len);
1488 }
1489 
1490 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1491 			  dma_addr_t *dma_addr)
1492 {
1493 	struct device *dev = &qm->pdev->dev;
1494 	void *ctx_addr;
1495 
1496 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1497 	if (!ctx_addr)
1498 		return ERR_PTR(-ENOMEM);
1499 
1500 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1501 	if (dma_mapping_error(dev, *dma_addr)) {
1502 		dev_err(dev, "DMA mapping error!\n");
1503 		kfree(ctx_addr);
1504 		return ERR_PTR(-ENOMEM);
1505 	}
1506 
1507 	return ctx_addr;
1508 }
1509 
1510 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1511 			const void *ctx_addr, dma_addr_t *dma_addr)
1512 {
1513 	struct device *dev = &qm->pdev->dev;
1514 
1515 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1516 	kfree(ctx_addr);
1517 }
1518 
1519 static int dump_show(struct hisi_qm *qm, void *info,
1520 		     unsigned int info_size, char *info_name)
1521 {
1522 	struct device *dev = &qm->pdev->dev;
1523 	u8 *info_buf, *info_curr = info;
1524 	u32 i;
1525 #define BYTE_PER_DW	4
1526 
1527 	info_buf = kzalloc(info_size, GFP_KERNEL);
1528 	if (!info_buf)
1529 		return -ENOMEM;
1530 
1531 	for (i = 0; i < info_size; i++, info_curr++) {
1532 		if (i % BYTE_PER_DW == 0)
1533 			info_buf[i + 3UL] = *info_curr;
1534 		else if (i % BYTE_PER_DW == 1)
1535 			info_buf[i + 1UL] = *info_curr;
1536 		else if (i % BYTE_PER_DW == 2)
1537 			info_buf[i - 1] = *info_curr;
1538 		else if (i % BYTE_PER_DW == 3)
1539 			info_buf[i - 3] = *info_curr;
1540 	}
1541 
1542 	dev_info(dev, "%s DUMP\n", info_name);
1543 	for (i = 0; i < info_size; i += BYTE_PER_DW) {
1544 		pr_info("DW%u: %02X%02X %02X%02X\n", i / BYTE_PER_DW,
1545 			info_buf[i], info_buf[i + 1UL],
1546 			info_buf[i + 2UL], info_buf[i + 3UL]);
1547 	}
1548 
1549 	kfree(info_buf);
1550 
1551 	return 0;
1552 }
1553 
1554 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1555 {
1556 	return qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1557 }
1558 
1559 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1560 {
1561 	return qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1562 }
1563 
1564 static int qm_sqc_dump(struct hisi_qm *qm, const char *s)
1565 {
1566 	struct device *dev = &qm->pdev->dev;
1567 	struct qm_sqc *sqc, *sqc_curr;
1568 	dma_addr_t sqc_dma;
1569 	u32 qp_id;
1570 	int ret;
1571 
1572 	if (!s)
1573 		return -EINVAL;
1574 
1575 	ret = kstrtou32(s, 0, &qp_id);
1576 	if (ret || qp_id >= qm->qp_num) {
1577 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1578 		return -EINVAL;
1579 	}
1580 
1581 	sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma);
1582 	if (IS_ERR(sqc))
1583 		return PTR_ERR(sqc);
1584 
1585 	ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id);
1586 	if (ret) {
1587 		down_read(&qm->qps_lock);
1588 		if (qm->sqc) {
1589 			sqc_curr = qm->sqc + qp_id;
1590 
1591 			ret = dump_show(qm, sqc_curr, sizeof(*sqc),
1592 					"SOFT SQC");
1593 			if (ret)
1594 				dev_info(dev, "Show soft sqc failed!\n");
1595 		}
1596 		up_read(&qm->qps_lock);
1597 
1598 		goto err_free_ctx;
1599 	}
1600 
1601 	ret = dump_show(qm, sqc, sizeof(*sqc), "SQC");
1602 	if (ret)
1603 		dev_info(dev, "Show hw sqc failed!\n");
1604 
1605 err_free_ctx:
1606 	qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma);
1607 	return ret;
1608 }
1609 
1610 static int qm_cqc_dump(struct hisi_qm *qm, const char *s)
1611 {
1612 	struct device *dev = &qm->pdev->dev;
1613 	struct qm_cqc *cqc, *cqc_curr;
1614 	dma_addr_t cqc_dma;
1615 	u32 qp_id;
1616 	int ret;
1617 
1618 	if (!s)
1619 		return -EINVAL;
1620 
1621 	ret = kstrtou32(s, 0, &qp_id);
1622 	if (ret || qp_id >= qm->qp_num) {
1623 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1624 		return -EINVAL;
1625 	}
1626 
1627 	cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma);
1628 	if (IS_ERR(cqc))
1629 		return PTR_ERR(cqc);
1630 
1631 	ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id);
1632 	if (ret) {
1633 		down_read(&qm->qps_lock);
1634 		if (qm->cqc) {
1635 			cqc_curr = qm->cqc + qp_id;
1636 
1637 			ret = dump_show(qm, cqc_curr, sizeof(*cqc),
1638 					"SOFT CQC");
1639 			if (ret)
1640 				dev_info(dev, "Show soft cqc failed!\n");
1641 		}
1642 		up_read(&qm->qps_lock);
1643 
1644 		goto err_free_ctx;
1645 	}
1646 
1647 	ret = dump_show(qm, cqc, sizeof(*cqc), "CQC");
1648 	if (ret)
1649 		dev_info(dev, "Show hw cqc failed!\n");
1650 
1651 err_free_ctx:
1652 	qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma);
1653 	return ret;
1654 }
1655 
1656 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size,
1657 			    int cmd, char *name)
1658 {
1659 	struct device *dev = &qm->pdev->dev;
1660 	dma_addr_t xeqc_dma;
1661 	void *xeqc;
1662 	int ret;
1663 
1664 	if (strsep(&s, " ")) {
1665 		dev_err(dev, "Please do not input extra characters!\n");
1666 		return -EINVAL;
1667 	}
1668 
1669 	xeqc = qm_ctx_alloc(qm, size, &xeqc_dma);
1670 	if (IS_ERR(xeqc))
1671 		return PTR_ERR(xeqc);
1672 
1673 	ret = qm_mb(qm, cmd, xeqc_dma, 0, 1);
1674 	if (ret)
1675 		goto err_free_ctx;
1676 
1677 	ret = dump_show(qm, xeqc, size, name);
1678 	if (ret)
1679 		dev_info(dev, "Show hw %s failed!\n", name);
1680 
1681 err_free_ctx:
1682 	qm_ctx_free(qm, size, xeqc, &xeqc_dma);
1683 	return ret;
1684 }
1685 
1686 static int q_dump_param_parse(struct hisi_qm *qm, char *s,
1687 			      u32 *e_id, u32 *q_id)
1688 {
1689 	struct device *dev = &qm->pdev->dev;
1690 	unsigned int qp_num = qm->qp_num;
1691 	char *presult;
1692 	int ret;
1693 
1694 	presult = strsep(&s, " ");
1695 	if (!presult) {
1696 		dev_err(dev, "Please input qp number!\n");
1697 		return -EINVAL;
1698 	}
1699 
1700 	ret = kstrtou32(presult, 0, q_id);
1701 	if (ret || *q_id >= qp_num) {
1702 		dev_err(dev, "Please input qp num (0-%u)", qp_num - 1);
1703 		return -EINVAL;
1704 	}
1705 
1706 	presult = strsep(&s, " ");
1707 	if (!presult) {
1708 		dev_err(dev, "Please input sqe number!\n");
1709 		return -EINVAL;
1710 	}
1711 
1712 	ret = kstrtou32(presult, 0, e_id);
1713 	if (ret || *e_id >= QM_Q_DEPTH) {
1714 		dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1);
1715 		return -EINVAL;
1716 	}
1717 
1718 	if (strsep(&s, " ")) {
1719 		dev_err(dev, "Please do not input extra characters!\n");
1720 		return -EINVAL;
1721 	}
1722 
1723 	return 0;
1724 }
1725 
1726 static int qm_sq_dump(struct hisi_qm *qm, char *s)
1727 {
1728 	struct device *dev = &qm->pdev->dev;
1729 	void *sqe, *sqe_curr;
1730 	struct hisi_qp *qp;
1731 	u32 qp_id, sqe_id;
1732 	int ret;
1733 
1734 	ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id);
1735 	if (ret)
1736 		return ret;
1737 
1738 	sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL);
1739 	if (!sqe)
1740 		return -ENOMEM;
1741 
1742 	qp = &qm->qp_array[qp_id];
1743 	memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH);
1744 	sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size);
1745 	memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK,
1746 	       qm->debug.sqe_mask_len);
1747 
1748 	ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE");
1749 	if (ret)
1750 		dev_info(dev, "Show sqe failed!\n");
1751 
1752 	kfree(sqe);
1753 
1754 	return ret;
1755 }
1756 
1757 static int qm_cq_dump(struct hisi_qm *qm, char *s)
1758 {
1759 	struct device *dev = &qm->pdev->dev;
1760 	struct qm_cqe *cqe_curr;
1761 	struct hisi_qp *qp;
1762 	u32 qp_id, cqe_id;
1763 	int ret;
1764 
1765 	ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id);
1766 	if (ret)
1767 		return ret;
1768 
1769 	qp = &qm->qp_array[qp_id];
1770 	cqe_curr = qp->cqe + cqe_id;
1771 	ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE");
1772 	if (ret)
1773 		dev_info(dev, "Show cqe failed!\n");
1774 
1775 	return ret;
1776 }
1777 
1778 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s,
1779 			  size_t size, char *name)
1780 {
1781 	struct device *dev = &qm->pdev->dev;
1782 	void *xeqe;
1783 	u32 xeqe_id;
1784 	int ret;
1785 
1786 	if (!s)
1787 		return -EINVAL;
1788 
1789 	ret = kstrtou32(s, 0, &xeqe_id);
1790 	if (ret)
1791 		return -EINVAL;
1792 
1793 	if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) {
1794 		dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1);
1795 		return -EINVAL;
1796 	} else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) {
1797 		dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1);
1798 		return -EINVAL;
1799 	}
1800 
1801 	down_read(&qm->qps_lock);
1802 
1803 	if (qm->eqe && !strcmp(name, "EQE")) {
1804 		xeqe = qm->eqe + xeqe_id;
1805 	} else if (qm->aeqe && !strcmp(name, "AEQE")) {
1806 		xeqe = qm->aeqe + xeqe_id;
1807 	} else {
1808 		ret = -EINVAL;
1809 		goto err_unlock;
1810 	}
1811 
1812 	ret = dump_show(qm, xeqe, size, name);
1813 	if (ret)
1814 		dev_info(dev, "Show %s failed!\n", name);
1815 
1816 err_unlock:
1817 	up_read(&qm->qps_lock);
1818 	return ret;
1819 }
1820 
1821 static int qm_dbg_help(struct hisi_qm *qm, char *s)
1822 {
1823 	struct device *dev = &qm->pdev->dev;
1824 
1825 	if (strsep(&s, " ")) {
1826 		dev_err(dev, "Please do not input extra characters!\n");
1827 		return -EINVAL;
1828 	}
1829 
1830 	dev_info(dev, "available commands:\n");
1831 	dev_info(dev, "sqc <num>\n");
1832 	dev_info(dev, "cqc <num>\n");
1833 	dev_info(dev, "eqc\n");
1834 	dev_info(dev, "aeqc\n");
1835 	dev_info(dev, "sq <num> <e>\n");
1836 	dev_info(dev, "cq <num> <e>\n");
1837 	dev_info(dev, "eq <e>\n");
1838 	dev_info(dev, "aeq <e>\n");
1839 
1840 	return 0;
1841 }
1842 
1843 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf)
1844 {
1845 	struct device *dev = &qm->pdev->dev;
1846 	char *presult, *s, *s_tmp;
1847 	int ret;
1848 
1849 	s = kstrdup(cmd_buf, GFP_KERNEL);
1850 	if (!s)
1851 		return -ENOMEM;
1852 
1853 	s_tmp = s;
1854 	presult = strsep(&s, " ");
1855 	if (!presult) {
1856 		ret = -EINVAL;
1857 		goto err_buffer_free;
1858 	}
1859 
1860 	if (!strcmp(presult, "sqc"))
1861 		ret = qm_sqc_dump(qm, s);
1862 	else if (!strcmp(presult, "cqc"))
1863 		ret = qm_cqc_dump(qm, s);
1864 	else if (!strcmp(presult, "eqc"))
1865 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc),
1866 				       QM_MB_CMD_EQC, "EQC");
1867 	else if (!strcmp(presult, "aeqc"))
1868 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc),
1869 				       QM_MB_CMD_AEQC, "AEQC");
1870 	else if (!strcmp(presult, "sq"))
1871 		ret = qm_sq_dump(qm, s);
1872 	else if (!strcmp(presult, "cq"))
1873 		ret = qm_cq_dump(qm, s);
1874 	else if (!strcmp(presult, "eq"))
1875 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE");
1876 	else if (!strcmp(presult, "aeq"))
1877 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE");
1878 	else if (!strcmp(presult, "help"))
1879 		ret = qm_dbg_help(qm, s);
1880 	else
1881 		ret = -EINVAL;
1882 
1883 	if (ret)
1884 		dev_info(dev, "Please echo help\n");
1885 
1886 err_buffer_free:
1887 	kfree(s_tmp);
1888 
1889 	return ret;
1890 }
1891 
1892 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer,
1893 			    size_t count, loff_t *pos)
1894 {
1895 	struct hisi_qm *qm = filp->private_data;
1896 	char *cmd_buf, *cmd_buf_tmp;
1897 	int ret;
1898 
1899 	if (*pos)
1900 		return 0;
1901 
1902 	ret = hisi_qm_get_dfx_access(qm);
1903 	if (ret)
1904 		return ret;
1905 
1906 	/* Judge if the instance is being reset. */
1907 	if (unlikely(atomic_read(&qm->status.flags) == QM_STOP))
1908 		return 0;
1909 
1910 	if (count > QM_DBG_WRITE_LEN) {
1911 		ret = -ENOSPC;
1912 		goto put_dfx_access;
1913 	}
1914 
1915 	cmd_buf = memdup_user_nul(buffer, count);
1916 	if (IS_ERR(cmd_buf)) {
1917 		ret = PTR_ERR(cmd_buf);
1918 		goto put_dfx_access;
1919 	}
1920 
1921 	cmd_buf_tmp = strchr(cmd_buf, '\n');
1922 	if (cmd_buf_tmp) {
1923 		*cmd_buf_tmp = '\0';
1924 		count = cmd_buf_tmp - cmd_buf + 1;
1925 	}
1926 
1927 	ret = qm_cmd_write_dump(qm, cmd_buf);
1928 	if (ret) {
1929 		kfree(cmd_buf);
1930 		goto put_dfx_access;
1931 	}
1932 
1933 	kfree(cmd_buf);
1934 
1935 	ret = count;
1936 
1937 put_dfx_access:
1938 	hisi_qm_put_dfx_access(qm);
1939 	return ret;
1940 }
1941 
1942 static const struct file_operations qm_cmd_fops = {
1943 	.owner = THIS_MODULE,
1944 	.open = simple_open,
1945 	.read = qm_cmd_read,
1946 	.write = qm_cmd_write,
1947 };
1948 
1949 static void qm_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir,
1950 				   enum qm_debug_file index)
1951 {
1952 	struct debugfs_file *file = qm->debug.files + index;
1953 
1954 	debugfs_create_file(qm_debug_file_name[index], 0600, dir, file,
1955 			    &qm_debug_fops);
1956 
1957 	file->index = index;
1958 	mutex_init(&file->lock);
1959 	file->debug = &qm->debug;
1960 }
1961 
1962 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1963 {
1964 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1965 }
1966 
1967 static void qm_hw_error_cfg(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1968 {
1969 	qm->error_mask = ce | nfe | fe;
1970 	/* clear QM hw residual error source */
1971 	writel(QM_ABNORMAL_INT_SOURCE_CLR,
1972 	       qm->io_base + QM_ABNORMAL_INT_SOURCE);
1973 
1974 	/* configure error type */
1975 	writel(ce, qm->io_base + QM_RAS_CE_ENABLE);
1976 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1977 	writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1978 	writel(fe, qm->io_base + QM_RAS_FE_ENABLE);
1979 }
1980 
1981 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1982 {
1983 	u32 irq_enable = ce | nfe | fe;
1984 	u32 irq_unmask = ~irq_enable;
1985 
1986 	qm_hw_error_cfg(qm, ce, nfe, fe);
1987 
1988 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1989 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1990 }
1991 
1992 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1993 {
1994 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1995 }
1996 
1997 static void qm_hw_error_init_v3(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1998 {
1999 	u32 irq_enable = ce | nfe | fe;
2000 	u32 irq_unmask = ~irq_enable;
2001 
2002 	qm_hw_error_cfg(qm, ce, nfe, fe);
2003 
2004 	/* enable close master ooo when hardware error happened */
2005 	writel(nfe & (~QM_DB_RANDOM_INVALID), qm->io_base + QM_OOO_SHUTDOWN_SEL);
2006 
2007 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
2008 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
2009 }
2010 
2011 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
2012 {
2013 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
2014 
2015 	/* disable close master ooo when hardware error happened */
2016 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
2017 }
2018 
2019 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
2020 {
2021 	const struct hisi_qm_hw_error *err;
2022 	struct device *dev = &qm->pdev->dev;
2023 	u32 reg_val, type, vf_num;
2024 	int i;
2025 
2026 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
2027 		err = &qm_hw_error[i];
2028 		if (!(err->int_msk & error_status))
2029 			continue;
2030 
2031 		dev_err(dev, "%s [error status=0x%x] found\n",
2032 			err->msg, err->int_msk);
2033 
2034 		if (err->int_msk & QM_DB_TIMEOUT) {
2035 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
2036 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
2037 			       QM_DB_TIMEOUT_TYPE_SHIFT;
2038 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
2039 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
2040 				qm_db_timeout[type], vf_num);
2041 		} else if (err->int_msk & QM_OF_FIFO_OF) {
2042 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
2043 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
2044 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
2045 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
2046 
2047 			if (type < ARRAY_SIZE(qm_fifo_overflow))
2048 				dev_err(dev, "qm %s fifo overflow in function %u\n",
2049 					qm_fifo_overflow[type], vf_num);
2050 			else
2051 				dev_err(dev, "unknown error type\n");
2052 		}
2053 	}
2054 }
2055 
2056 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
2057 {
2058 	u32 error_status, tmp, val;
2059 
2060 	/* read err sts */
2061 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
2062 	error_status = qm->error_mask & tmp;
2063 
2064 	if (error_status) {
2065 		if (error_status & QM_ECC_MBIT)
2066 			qm->err_status.is_qm_ecc_mbit = true;
2067 
2068 		qm_log_hw_error(qm, error_status);
2069 		val = error_status | QM_DB_RANDOM_INVALID | QM_BASE_CE;
2070 		/* ce error does not need to be reset */
2071 		if (val == (QM_DB_RANDOM_INVALID | QM_BASE_CE)) {
2072 			writel(error_status, qm->io_base +
2073 			       QM_ABNORMAL_INT_SOURCE);
2074 			writel(qm->err_info.nfe,
2075 			       qm->io_base + QM_RAS_NFE_ENABLE);
2076 			return ACC_ERR_RECOVERED;
2077 		}
2078 
2079 		return ACC_ERR_NEED_RESET;
2080 	}
2081 
2082 	return ACC_ERR_RECOVERED;
2083 }
2084 
2085 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
2086 {
2087 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
2088 }
2089 
2090 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
2091 {
2092 	return qm->err_ini->get_dev_hw_err_status(qm);
2093 }
2094 
2095 /* Check if the error causes the master ooo block */
2096 static int qm_check_dev_error(struct hisi_qm *qm)
2097 {
2098 	u32 val, dev_val;
2099 
2100 	if (qm->fun_type == QM_HW_VF)
2101 		return 0;
2102 
2103 	val = qm_get_hw_error_status(qm);
2104 	dev_val = qm_get_dev_err_status(qm);
2105 
2106 	if (qm->ver < QM_HW_V3)
2107 		return (val & QM_ECC_MBIT) ||
2108 		       (dev_val & qm->err_info.ecc_2bits_mask);
2109 
2110 	return (val & readl(qm->io_base + QM_OOO_SHUTDOWN_SEL)) ||
2111 	       (dev_val & (~qm->err_info.dev_ce_mask));
2112 }
2113 
2114 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
2115 {
2116 	struct qm_mailbox mailbox;
2117 	int ret;
2118 
2119 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
2120 	mutex_lock(&qm->mailbox_lock);
2121 	ret = qm_mb_nolock(qm, &mailbox);
2122 	if (ret)
2123 		goto err_unlock;
2124 
2125 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
2126 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
2127 
2128 err_unlock:
2129 	mutex_unlock(&qm->mailbox_lock);
2130 	return ret;
2131 }
2132 
2133 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
2134 {
2135 	u32 val;
2136 
2137 	if (qm->fun_type == QM_HW_PF)
2138 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
2139 
2140 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
2141 	val |= QM_IFC_INT_SOURCE_MASK;
2142 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
2143 }
2144 
2145 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
2146 {
2147 	struct device *dev = &qm->pdev->dev;
2148 	u32 cmd;
2149 	u64 msg;
2150 	int ret;
2151 
2152 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
2153 	if (ret) {
2154 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
2155 		return;
2156 	}
2157 
2158 	cmd = msg & QM_MB_CMD_DATA_MASK;
2159 	switch (cmd) {
2160 	case QM_VF_PREPARE_FAIL:
2161 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
2162 		break;
2163 	case QM_VF_START_FAIL:
2164 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
2165 		break;
2166 	case QM_VF_PREPARE_DONE:
2167 	case QM_VF_START_DONE:
2168 		break;
2169 	default:
2170 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
2171 		break;
2172 	}
2173 }
2174 
2175 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
2176 {
2177 	struct device *dev = &qm->pdev->dev;
2178 	u32 vfs_num = qm->vfs_num;
2179 	int cnt = 0;
2180 	int ret = 0;
2181 	u64 val;
2182 	u32 i;
2183 
2184 	if (!qm->vfs_num || qm->ver < QM_HW_V3)
2185 		return 0;
2186 
2187 	while (true) {
2188 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
2189 		/* All VFs send command to PF, break */
2190 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
2191 			break;
2192 
2193 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
2194 			ret = -EBUSY;
2195 			break;
2196 		}
2197 
2198 		msleep(QM_WAIT_DST_ACK);
2199 	}
2200 
2201 	/* PF check VFs msg */
2202 	for (i = 1; i <= vfs_num; i++) {
2203 		if (val & BIT(i))
2204 			qm_handle_vf_msg(qm, i);
2205 		else
2206 			dev_err(dev, "VF(%u) not ping PF!\n", i);
2207 	}
2208 
2209 	/* PF clear interrupt to ack VFs */
2210 	qm_clear_cmd_interrupt(qm, val);
2211 
2212 	return ret;
2213 }
2214 
2215 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
2216 {
2217 	u32 val;
2218 
2219 	val = readl(qm->io_base + QM_IFC_INT_CFG);
2220 	val &= ~QM_IFC_SEND_ALL_VFS;
2221 	val |= fun_num;
2222 	writel(val, qm->io_base + QM_IFC_INT_CFG);
2223 
2224 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
2225 	val |= QM_IFC_INT_SET_MASK;
2226 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
2227 }
2228 
2229 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
2230 {
2231 	u32 val;
2232 
2233 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
2234 	val |= QM_IFC_INT_SET_MASK;
2235 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
2236 }
2237 
2238 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
2239 {
2240 	struct device *dev = &qm->pdev->dev;
2241 	struct qm_mailbox mailbox;
2242 	int cnt = 0;
2243 	u64 val;
2244 	int ret;
2245 
2246 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
2247 	mutex_lock(&qm->mailbox_lock);
2248 	ret = qm_mb_nolock(qm, &mailbox);
2249 	if (ret) {
2250 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
2251 		goto err_unlock;
2252 	}
2253 
2254 	qm_trigger_vf_interrupt(qm, fun_num);
2255 	while (true) {
2256 		msleep(QM_WAIT_DST_ACK);
2257 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
2258 		/* if VF respond, PF notifies VF successfully. */
2259 		if (!(val & BIT(fun_num)))
2260 			goto err_unlock;
2261 
2262 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
2263 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
2264 			ret = -ETIMEDOUT;
2265 			break;
2266 		}
2267 	}
2268 
2269 err_unlock:
2270 	mutex_unlock(&qm->mailbox_lock);
2271 	return ret;
2272 }
2273 
2274 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
2275 {
2276 	struct device *dev = &qm->pdev->dev;
2277 	u32 vfs_num = qm->vfs_num;
2278 	struct qm_mailbox mailbox;
2279 	u64 val = 0;
2280 	int cnt = 0;
2281 	int ret;
2282 	u32 i;
2283 
2284 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
2285 	mutex_lock(&qm->mailbox_lock);
2286 	/* PF sends command to all VFs by mailbox */
2287 	ret = qm_mb_nolock(qm, &mailbox);
2288 	if (ret) {
2289 		dev_err(dev, "failed to send command to VFs!\n");
2290 		mutex_unlock(&qm->mailbox_lock);
2291 		return ret;
2292 	}
2293 
2294 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
2295 	while (true) {
2296 		msleep(QM_WAIT_DST_ACK);
2297 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
2298 		/* If all VFs acked, PF notifies VFs successfully. */
2299 		if (!(val & GENMASK(vfs_num, 1))) {
2300 			mutex_unlock(&qm->mailbox_lock);
2301 			return 0;
2302 		}
2303 
2304 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
2305 			break;
2306 	}
2307 
2308 	mutex_unlock(&qm->mailbox_lock);
2309 
2310 	/* Check which vf respond timeout. */
2311 	for (i = 1; i <= vfs_num; i++) {
2312 		if (val & BIT(i))
2313 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
2314 	}
2315 
2316 	return -ETIMEDOUT;
2317 }
2318 
2319 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
2320 {
2321 	struct qm_mailbox mailbox;
2322 	int cnt = 0;
2323 	u32 val;
2324 	int ret;
2325 
2326 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
2327 	mutex_lock(&qm->mailbox_lock);
2328 	ret = qm_mb_nolock(qm, &mailbox);
2329 	if (ret) {
2330 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
2331 		goto unlock;
2332 	}
2333 
2334 	qm_trigger_pf_interrupt(qm);
2335 	/* Waiting for PF response */
2336 	while (true) {
2337 		msleep(QM_WAIT_DST_ACK);
2338 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
2339 		if (!(val & QM_IFC_INT_STATUS_MASK))
2340 			break;
2341 
2342 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
2343 			ret = -ETIMEDOUT;
2344 			break;
2345 		}
2346 	}
2347 
2348 unlock:
2349 	mutex_unlock(&qm->mailbox_lock);
2350 	return ret;
2351 }
2352 
2353 static int qm_stop_qp(struct hisi_qp *qp)
2354 {
2355 	return qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
2356 }
2357 
2358 static int qm_set_msi(struct hisi_qm *qm, bool set)
2359 {
2360 	struct pci_dev *pdev = qm->pdev;
2361 
2362 	if (set) {
2363 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
2364 				       0);
2365 	} else {
2366 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
2367 				       ACC_PEH_MSI_DISABLE);
2368 		if (qm->err_status.is_qm_ecc_mbit ||
2369 		    qm->err_status.is_dev_ecc_mbit)
2370 			return 0;
2371 
2372 		mdelay(1);
2373 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
2374 			return -EFAULT;
2375 	}
2376 
2377 	return 0;
2378 }
2379 
2380 static void qm_wait_msi_finish(struct hisi_qm *qm)
2381 {
2382 	struct pci_dev *pdev = qm->pdev;
2383 	u32 cmd = ~0;
2384 	int cnt = 0;
2385 	u32 val;
2386 	int ret;
2387 
2388 	while (true) {
2389 		pci_read_config_dword(pdev, pdev->msi_cap +
2390 				      PCI_MSI_PENDING_64, &cmd);
2391 		if (!cmd)
2392 			break;
2393 
2394 		if (++cnt > MAX_WAIT_COUNTS) {
2395 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
2396 			break;
2397 		}
2398 
2399 		udelay(1);
2400 	}
2401 
2402 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
2403 					 val, !(val & QM_PEH_DFX_MASK),
2404 					 POLL_PERIOD, POLL_TIMEOUT);
2405 	if (ret)
2406 		pci_warn(pdev, "failed to empty PEH MSI!\n");
2407 
2408 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
2409 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
2410 					 POLL_PERIOD, POLL_TIMEOUT);
2411 	if (ret)
2412 		pci_warn(pdev, "failed to finish MSI operation!\n");
2413 }
2414 
2415 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
2416 {
2417 	struct pci_dev *pdev = qm->pdev;
2418 	int ret = -ETIMEDOUT;
2419 	u32 cmd, i;
2420 
2421 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
2422 	if (set)
2423 		cmd |= QM_MSI_CAP_ENABLE;
2424 	else
2425 		cmd &= ~QM_MSI_CAP_ENABLE;
2426 
2427 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
2428 	if (set) {
2429 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
2430 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
2431 			if (cmd & QM_MSI_CAP_ENABLE)
2432 				return 0;
2433 
2434 			udelay(1);
2435 		}
2436 	} else {
2437 		udelay(WAIT_PERIOD_US_MIN);
2438 		qm_wait_msi_finish(qm);
2439 		ret = 0;
2440 	}
2441 
2442 	return ret;
2443 }
2444 
2445 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
2446 	.qm_db = qm_db_v1,
2447 	.get_irq_num = qm_get_irq_num_v1,
2448 	.hw_error_init = qm_hw_error_init_v1,
2449 	.set_msi = qm_set_msi,
2450 };
2451 
2452 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
2453 	.get_vft = qm_get_vft_v2,
2454 	.qm_db = qm_db_v2,
2455 	.get_irq_num = qm_get_irq_num_v2,
2456 	.hw_error_init = qm_hw_error_init_v2,
2457 	.hw_error_uninit = qm_hw_error_uninit_v2,
2458 	.hw_error_handle = qm_hw_error_handle_v2,
2459 	.set_msi = qm_set_msi,
2460 };
2461 
2462 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
2463 	.get_vft = qm_get_vft_v2,
2464 	.qm_db = qm_db_v2,
2465 	.get_irq_num = qm_get_irq_num_v3,
2466 	.hw_error_init = qm_hw_error_init_v3,
2467 	.hw_error_uninit = qm_hw_error_uninit_v3,
2468 	.hw_error_handle = qm_hw_error_handle_v2,
2469 	.stop_qp = qm_stop_qp,
2470 	.set_msi = qm_set_msi_v3,
2471 	.ping_all_vfs = qm_ping_all_vfs,
2472 	.ping_pf = qm_ping_pf,
2473 };
2474 
2475 static void *qm_get_avail_sqe(struct hisi_qp *qp)
2476 {
2477 	struct hisi_qp_status *qp_status = &qp->qp_status;
2478 	u16 sq_tail = qp_status->sq_tail;
2479 
2480 	if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1))
2481 		return NULL;
2482 
2483 	return qp->sqe + sq_tail * qp->qm->sqe_size;
2484 }
2485 
2486 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
2487 {
2488 	u64 *addr;
2489 
2490 	/* Use last 64 bits of DUS to reset status. */
2491 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
2492 	*addr = 0;
2493 }
2494 
2495 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
2496 {
2497 	struct device *dev = &qm->pdev->dev;
2498 	struct hisi_qp *qp;
2499 	int qp_id;
2500 
2501 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
2502 		return ERR_PTR(-EPERM);
2503 
2504 	if (qm->qp_in_used == qm->qp_num) {
2505 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2506 				     qm->qp_num);
2507 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2508 		return ERR_PTR(-EBUSY);
2509 	}
2510 
2511 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
2512 	if (qp_id < 0) {
2513 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2514 				    qm->qp_num);
2515 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2516 		return ERR_PTR(-EBUSY);
2517 	}
2518 
2519 	qp = &qm->qp_array[qp_id];
2520 	hisi_qm_unset_hw_reset(qp);
2521 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH);
2522 
2523 	qp->event_cb = NULL;
2524 	qp->req_cb = NULL;
2525 	qp->qp_id = qp_id;
2526 	qp->alg_type = alg_type;
2527 	qp->is_in_kernel = true;
2528 	qm->qp_in_used++;
2529 	atomic_set(&qp->qp_status.flags, QP_INIT);
2530 
2531 	return qp;
2532 }
2533 
2534 /**
2535  * hisi_qm_create_qp() - Create a queue pair from qm.
2536  * @qm: The qm we create a qp from.
2537  * @alg_type: Accelerator specific algorithm type in sqc.
2538  *
2539  * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating
2540  * qp memory fails.
2541  */
2542 struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
2543 {
2544 	struct hisi_qp *qp;
2545 	int ret;
2546 
2547 	ret = qm_pm_get_sync(qm);
2548 	if (ret)
2549 		return ERR_PTR(ret);
2550 
2551 	down_write(&qm->qps_lock);
2552 	qp = qm_create_qp_nolock(qm, alg_type);
2553 	up_write(&qm->qps_lock);
2554 
2555 	if (IS_ERR(qp))
2556 		qm_pm_put_sync(qm);
2557 
2558 	return qp;
2559 }
2560 EXPORT_SYMBOL_GPL(hisi_qm_create_qp);
2561 
2562 /**
2563  * hisi_qm_release_qp() - Release a qp back to its qm.
2564  * @qp: The qp we want to release.
2565  *
2566  * This function releases the resource of a qp.
2567  */
2568 void hisi_qm_release_qp(struct hisi_qp *qp)
2569 {
2570 	struct hisi_qm *qm = qp->qm;
2571 
2572 	down_write(&qm->qps_lock);
2573 
2574 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
2575 		up_write(&qm->qps_lock);
2576 		return;
2577 	}
2578 
2579 	qm->qp_in_used--;
2580 	idr_remove(&qm->qp_idr, qp->qp_id);
2581 
2582 	up_write(&qm->qps_lock);
2583 
2584 	qm_pm_put_sync(qm);
2585 }
2586 EXPORT_SYMBOL_GPL(hisi_qm_release_qp);
2587 
2588 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2589 {
2590 	struct hisi_qm *qm = qp->qm;
2591 	struct device *dev = &qm->pdev->dev;
2592 	enum qm_hw_ver ver = qm->ver;
2593 	struct qm_sqc *sqc;
2594 	dma_addr_t sqc_dma;
2595 	int ret;
2596 
2597 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
2598 	if (!sqc)
2599 		return -ENOMEM;
2600 
2601 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
2602 	if (ver == QM_HW_V1) {
2603 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
2604 		sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
2605 	} else {
2606 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size));
2607 		sqc->w8 = 0; /* rand_qc */
2608 	}
2609 	sqc->cq_num = cpu_to_le16(qp_id);
2610 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
2611 
2612 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2613 		sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
2614 				       QM_QC_PASID_ENABLE_SHIFT);
2615 
2616 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
2617 				 DMA_TO_DEVICE);
2618 	if (dma_mapping_error(dev, sqc_dma)) {
2619 		kfree(sqc);
2620 		return -ENOMEM;
2621 	}
2622 
2623 	ret = qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
2624 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
2625 	kfree(sqc);
2626 
2627 	return ret;
2628 }
2629 
2630 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2631 {
2632 	struct hisi_qm *qm = qp->qm;
2633 	struct device *dev = &qm->pdev->dev;
2634 	enum qm_hw_ver ver = qm->ver;
2635 	struct qm_cqc *cqc;
2636 	dma_addr_t cqc_dma;
2637 	int ret;
2638 
2639 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
2640 	if (!cqc)
2641 		return -ENOMEM;
2642 
2643 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
2644 	if (ver == QM_HW_V1) {
2645 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
2646 							QM_QC_CQE_SIZE));
2647 		cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
2648 	} else {
2649 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE));
2650 		cqc->w8 = 0; /* rand_qc */
2651 	}
2652 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2653 
2654 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2655 		cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2656 
2657 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
2658 				 DMA_TO_DEVICE);
2659 	if (dma_mapping_error(dev, cqc_dma)) {
2660 		kfree(cqc);
2661 		return -ENOMEM;
2662 	}
2663 
2664 	ret = qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
2665 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
2666 	kfree(cqc);
2667 
2668 	return ret;
2669 }
2670 
2671 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2672 {
2673 	int ret;
2674 
2675 	qm_init_qp_status(qp);
2676 
2677 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2678 	if (ret)
2679 		return ret;
2680 
2681 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
2682 }
2683 
2684 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2685 {
2686 	struct hisi_qm *qm = qp->qm;
2687 	struct device *dev = &qm->pdev->dev;
2688 	int qp_id = qp->qp_id;
2689 	u32 pasid = arg;
2690 	int ret;
2691 
2692 	if (!qm_qp_avail_state(qm, qp, QP_START))
2693 		return -EPERM;
2694 
2695 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2696 	if (ret)
2697 		return ret;
2698 
2699 	atomic_set(&qp->qp_status.flags, QP_START);
2700 	dev_dbg(dev, "queue %d started\n", qp_id);
2701 
2702 	return 0;
2703 }
2704 
2705 /**
2706  * hisi_qm_start_qp() - Start a qp into running.
2707  * @qp: The qp we want to start to run.
2708  * @arg: Accelerator specific argument.
2709  *
2710  * After this function, qp can receive request from user. Return 0 if
2711  * successful, Return -EBUSY if failed.
2712  */
2713 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2714 {
2715 	struct hisi_qm *qm = qp->qm;
2716 	int ret;
2717 
2718 	down_write(&qm->qps_lock);
2719 	ret = qm_start_qp_nolock(qp, arg);
2720 	up_write(&qm->qps_lock);
2721 
2722 	return ret;
2723 }
2724 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2725 
2726 /**
2727  * qp_stop_fail_cb() - call request cb.
2728  * @qp: stopped failed qp.
2729  *
2730  * Callback function should be called whether task completed or not.
2731  */
2732 static void qp_stop_fail_cb(struct hisi_qp *qp)
2733 {
2734 	int qp_used = atomic_read(&qp->qp_status.used);
2735 	u16 cur_tail = qp->qp_status.sq_tail;
2736 	u16 cur_head = (cur_tail + QM_Q_DEPTH - qp_used) % QM_Q_DEPTH;
2737 	struct hisi_qm *qm = qp->qm;
2738 	u16 pos;
2739 	int i;
2740 
2741 	for (i = 0; i < qp_used; i++) {
2742 		pos = (i + cur_head) % QM_Q_DEPTH;
2743 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2744 		atomic_dec(&qp->qp_status.used);
2745 	}
2746 }
2747 
2748 /**
2749  * qm_drain_qp() - Drain a qp.
2750  * @qp: The qp we want to drain.
2751  *
2752  * Determine whether the queue is cleared by judging the tail pointers of
2753  * sq and cq.
2754  */
2755 static int qm_drain_qp(struct hisi_qp *qp)
2756 {
2757 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
2758 	struct hisi_qm *qm = qp->qm;
2759 	struct device *dev = &qm->pdev->dev;
2760 	struct qm_sqc *sqc;
2761 	struct qm_cqc *cqc;
2762 	dma_addr_t dma_addr;
2763 	int ret = 0, i = 0;
2764 	void *addr;
2765 
2766 	/* No need to judge if master OOO is blocked. */
2767 	if (qm_check_dev_error(qm))
2768 		return 0;
2769 
2770 	/* Kunpeng930 supports drain qp by device */
2771 	if (qm->ops->stop_qp) {
2772 		ret = qm->ops->stop_qp(qp);
2773 		if (ret)
2774 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
2775 		return ret;
2776 	}
2777 
2778 	addr = qm_ctx_alloc(qm, size, &dma_addr);
2779 	if (IS_ERR(addr)) {
2780 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
2781 		return -ENOMEM;
2782 	}
2783 
2784 	while (++i) {
2785 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
2786 		if (ret) {
2787 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2788 			break;
2789 		}
2790 		sqc = addr;
2791 
2792 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
2793 				      qp->qp_id);
2794 		if (ret) {
2795 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2796 			break;
2797 		}
2798 		cqc = addr + sizeof(struct qm_sqc);
2799 
2800 		if ((sqc->tail == cqc->tail) &&
2801 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2802 			break;
2803 
2804 		if (i == MAX_WAIT_COUNTS) {
2805 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
2806 			ret = -EBUSY;
2807 			break;
2808 		}
2809 
2810 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2811 	}
2812 
2813 	qm_ctx_free(qm, size, addr, &dma_addr);
2814 
2815 	return ret;
2816 }
2817 
2818 static int qm_stop_qp_nolock(struct hisi_qp *qp)
2819 {
2820 	struct device *dev = &qp->qm->pdev->dev;
2821 	int ret;
2822 
2823 	/*
2824 	 * It is allowed to stop and release qp when reset, If the qp is
2825 	 * stopped when reset but still want to be released then, the
2826 	 * is_resetting flag should be set negative so that this qp will not
2827 	 * be restarted after reset.
2828 	 */
2829 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
2830 		qp->is_resetting = false;
2831 		return 0;
2832 	}
2833 
2834 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
2835 		return -EPERM;
2836 
2837 	atomic_set(&qp->qp_status.flags, QP_STOP);
2838 
2839 	ret = qm_drain_qp(qp);
2840 	if (ret)
2841 		dev_err(dev, "Failed to drain out data for stopping!\n");
2842 
2843 	if (qp->qm->wq)
2844 		flush_workqueue(qp->qm->wq);
2845 	else
2846 		flush_work(&qp->qm->work);
2847 
2848 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2849 		qp_stop_fail_cb(qp);
2850 
2851 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2852 
2853 	return 0;
2854 }
2855 
2856 /**
2857  * hisi_qm_stop_qp() - Stop a qp in qm.
2858  * @qp: The qp we want to stop.
2859  *
2860  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
2861  */
2862 int hisi_qm_stop_qp(struct hisi_qp *qp)
2863 {
2864 	int ret;
2865 
2866 	down_write(&qp->qm->qps_lock);
2867 	ret = qm_stop_qp_nolock(qp);
2868 	up_write(&qp->qm->qps_lock);
2869 
2870 	return ret;
2871 }
2872 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2873 
2874 /**
2875  * hisi_qp_send() - Queue up a task in the hardware queue.
2876  * @qp: The qp in which to put the message.
2877  * @msg: The message.
2878  *
2879  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2880  * if qp related qm is resetting.
2881  *
2882  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2883  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2884  *       reset may happen, we have no lock here considering performance. This
2885  *       causes current qm_db sending fail or can not receive sended sqe. QM
2886  *       sync/async receive function should handle the error sqe. ACC reset
2887  *       done function should clear used sqe to 0.
2888  */
2889 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2890 {
2891 	struct hisi_qp_status *qp_status = &qp->qp_status;
2892 	u16 sq_tail = qp_status->sq_tail;
2893 	u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH;
2894 	void *sqe = qm_get_avail_sqe(qp);
2895 
2896 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2897 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2898 		     qp->is_resetting)) {
2899 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2900 		return -EAGAIN;
2901 	}
2902 
2903 	if (!sqe)
2904 		return -EBUSY;
2905 
2906 	memcpy(sqe, msg, qp->qm->sqe_size);
2907 
2908 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2909 	atomic_inc(&qp->qp_status.used);
2910 	qp_status->sq_tail = sq_tail_next;
2911 
2912 	return 0;
2913 }
2914 EXPORT_SYMBOL_GPL(hisi_qp_send);
2915 
2916 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2917 {
2918 	unsigned int val;
2919 
2920 	if (qm->ver == QM_HW_V1)
2921 		return;
2922 
2923 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2924 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2925 				       val, val & BIT(0), POLL_PERIOD,
2926 				       POLL_TIMEOUT))
2927 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2928 }
2929 
2930 static void qm_qp_event_notifier(struct hisi_qp *qp)
2931 {
2932 	wake_up_interruptible(&qp->uacce_q->wait);
2933 }
2934 
2935 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2936 {
2937 	return hisi_qm_get_free_qp_num(uacce->priv);
2938 }
2939 
2940 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2941 {
2942 	int i;
2943 
2944 	for (i = 0; i < qm->qp_num; i++)
2945 		qm_set_qp_disable(&qm->qp_array[i], offset);
2946 }
2947 
2948 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2949 				   unsigned long arg,
2950 				   struct uacce_queue *q)
2951 {
2952 	struct hisi_qm *qm = uacce->priv;
2953 	struct hisi_qp *qp;
2954 	u8 alg_type = 0;
2955 
2956 	qp = hisi_qm_create_qp(qm, alg_type);
2957 	if (IS_ERR(qp))
2958 		return PTR_ERR(qp);
2959 
2960 	q->priv = qp;
2961 	q->uacce = uacce;
2962 	qp->uacce_q = q;
2963 	qp->event_cb = qm_qp_event_notifier;
2964 	qp->pasid = arg;
2965 	qp->is_in_kernel = false;
2966 
2967 	return 0;
2968 }
2969 
2970 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2971 {
2972 	struct hisi_qp *qp = q->priv;
2973 
2974 	hisi_qm_cache_wb(qp->qm);
2975 	hisi_qm_release_qp(qp);
2976 }
2977 
2978 /* map sq/cq/doorbell to user space */
2979 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2980 			      struct vm_area_struct *vma,
2981 			      struct uacce_qfile_region *qfr)
2982 {
2983 	struct hisi_qp *qp = q->priv;
2984 	struct hisi_qm *qm = qp->qm;
2985 	resource_size_t phys_base = qm->db_phys_base +
2986 				    qp->qp_id * qm->db_interval;
2987 	size_t sz = vma->vm_end - vma->vm_start;
2988 	struct pci_dev *pdev = qm->pdev;
2989 	struct device *dev = &pdev->dev;
2990 	unsigned long vm_pgoff;
2991 	int ret;
2992 
2993 	switch (qfr->type) {
2994 	case UACCE_QFRT_MMIO:
2995 		if (qm->ver == QM_HW_V1) {
2996 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2997 				return -EINVAL;
2998 		} else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) {
2999 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
3000 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
3001 				return -EINVAL;
3002 		} else {
3003 			if (sz > qm->db_interval)
3004 				return -EINVAL;
3005 		}
3006 
3007 		vma->vm_flags |= VM_IO;
3008 
3009 		return remap_pfn_range(vma, vma->vm_start,
3010 				       phys_base >> PAGE_SHIFT,
3011 				       sz, pgprot_noncached(vma->vm_page_prot));
3012 	case UACCE_QFRT_DUS:
3013 		if (sz != qp->qdma.size)
3014 			return -EINVAL;
3015 
3016 		/*
3017 		 * dma_mmap_coherent() requires vm_pgoff as 0
3018 		 * restore vm_pfoff to initial value for mmap()
3019 		 */
3020 		vm_pgoff = vma->vm_pgoff;
3021 		vma->vm_pgoff = 0;
3022 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
3023 					qp->qdma.dma, sz);
3024 		vma->vm_pgoff = vm_pgoff;
3025 		return ret;
3026 
3027 	default:
3028 		return -EINVAL;
3029 	}
3030 }
3031 
3032 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
3033 {
3034 	struct hisi_qp *qp = q->priv;
3035 
3036 	return hisi_qm_start_qp(qp, qp->pasid);
3037 }
3038 
3039 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
3040 {
3041 	hisi_qm_stop_qp(q->priv);
3042 }
3043 
3044 static int hisi_qm_is_q_updated(struct uacce_queue *q)
3045 {
3046 	struct hisi_qp *qp = q->priv;
3047 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
3048 	int updated = 0;
3049 
3050 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
3051 		/* make sure to read data from memory */
3052 		dma_rmb();
3053 		qm_cq_head_update(qp);
3054 		cqe = qp->cqe + qp->qp_status.cq_head;
3055 		updated = 1;
3056 	}
3057 
3058 	return updated;
3059 }
3060 
3061 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
3062 {
3063 	struct hisi_qm *qm = q->uacce->priv;
3064 	struct hisi_qp *qp = q->priv;
3065 
3066 	down_write(&qm->qps_lock);
3067 	qp->alg_type = type;
3068 	up_write(&qm->qps_lock);
3069 }
3070 
3071 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
3072 				unsigned long arg)
3073 {
3074 	struct hisi_qp *qp = q->priv;
3075 	struct hisi_qp_ctx qp_ctx;
3076 
3077 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
3078 		if (copy_from_user(&qp_ctx, (void __user *)arg,
3079 				   sizeof(struct hisi_qp_ctx)))
3080 			return -EFAULT;
3081 
3082 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
3083 			return -EINVAL;
3084 
3085 		qm_set_sqctype(q, qp_ctx.qc_type);
3086 		qp_ctx.id = qp->qp_id;
3087 
3088 		if (copy_to_user((void __user *)arg, &qp_ctx,
3089 				 sizeof(struct hisi_qp_ctx)))
3090 			return -EFAULT;
3091 	} else {
3092 		return -EINVAL;
3093 	}
3094 
3095 	return 0;
3096 }
3097 
3098 static const struct uacce_ops uacce_qm_ops = {
3099 	.get_available_instances = hisi_qm_get_available_instances,
3100 	.get_queue = hisi_qm_uacce_get_queue,
3101 	.put_queue = hisi_qm_uacce_put_queue,
3102 	.start_queue = hisi_qm_uacce_start_queue,
3103 	.stop_queue = hisi_qm_uacce_stop_queue,
3104 	.mmap = hisi_qm_uacce_mmap,
3105 	.ioctl = hisi_qm_uacce_ioctl,
3106 	.is_q_updated = hisi_qm_is_q_updated,
3107 };
3108 
3109 static int qm_alloc_uacce(struct hisi_qm *qm)
3110 {
3111 	struct pci_dev *pdev = qm->pdev;
3112 	struct uacce_device *uacce;
3113 	unsigned long mmio_page_nr;
3114 	unsigned long dus_page_nr;
3115 	struct uacce_interface interface = {
3116 		.flags = UACCE_DEV_SVA,
3117 		.ops = &uacce_qm_ops,
3118 	};
3119 	int ret;
3120 
3121 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
3122 		      sizeof(interface.name));
3123 	if (ret < 0)
3124 		return -ENAMETOOLONG;
3125 
3126 	uacce = uacce_alloc(&pdev->dev, &interface);
3127 	if (IS_ERR(uacce))
3128 		return PTR_ERR(uacce);
3129 
3130 	if (uacce->flags & UACCE_DEV_SVA) {
3131 		qm->use_sva = true;
3132 	} else {
3133 		/* only consider sva case */
3134 		uacce_remove(uacce);
3135 		qm->uacce = NULL;
3136 		return -EINVAL;
3137 	}
3138 
3139 	uacce->is_vf = pdev->is_virtfn;
3140 	uacce->priv = qm;
3141 	uacce->algs = qm->algs;
3142 
3143 	if (qm->ver == QM_HW_V1)
3144 		uacce->api_ver = HISI_QM_API_VER_BASE;
3145 	else if (qm->ver == QM_HW_V2)
3146 		uacce->api_ver = HISI_QM_API_VER2_BASE;
3147 	else
3148 		uacce->api_ver = HISI_QM_API_VER3_BASE;
3149 
3150 	if (qm->ver == QM_HW_V1)
3151 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
3152 	else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation)
3153 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
3154 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
3155 	else
3156 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
3157 
3158 	/* Add one more page for device or qp status */
3159 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH +
3160 		       sizeof(struct qm_cqe) * QM_Q_DEPTH  + PAGE_SIZE) >>
3161 					 PAGE_SHIFT;
3162 
3163 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
3164 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
3165 
3166 	qm->uacce = uacce;
3167 
3168 	return 0;
3169 }
3170 
3171 /**
3172  * qm_frozen() - Try to froze QM to cut continuous queue request. If
3173  * there is user on the QM, return failure without doing anything.
3174  * @qm: The qm needed to be fronzen.
3175  *
3176  * This function frozes QM, then we can do SRIOV disabling.
3177  */
3178 static int qm_frozen(struct hisi_qm *qm)
3179 {
3180 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
3181 		return 0;
3182 
3183 	down_write(&qm->qps_lock);
3184 
3185 	if (!qm->qp_in_used) {
3186 		qm->qp_in_used = qm->qp_num;
3187 		up_write(&qm->qps_lock);
3188 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
3189 		return 0;
3190 	}
3191 
3192 	up_write(&qm->qps_lock);
3193 
3194 	return -EBUSY;
3195 }
3196 
3197 static int qm_try_frozen_vfs(struct pci_dev *pdev,
3198 			     struct hisi_qm_list *qm_list)
3199 {
3200 	struct hisi_qm *qm, *vf_qm;
3201 	struct pci_dev *dev;
3202 	int ret = 0;
3203 
3204 	if (!qm_list || !pdev)
3205 		return -EINVAL;
3206 
3207 	/* Try to frozen all the VFs as disable SRIOV */
3208 	mutex_lock(&qm_list->lock);
3209 	list_for_each_entry(qm, &qm_list->list, list) {
3210 		dev = qm->pdev;
3211 		if (dev == pdev)
3212 			continue;
3213 		if (pci_physfn(dev) == pdev) {
3214 			vf_qm = pci_get_drvdata(dev);
3215 			ret = qm_frozen(vf_qm);
3216 			if (ret)
3217 				goto frozen_fail;
3218 		}
3219 	}
3220 
3221 frozen_fail:
3222 	mutex_unlock(&qm_list->lock);
3223 
3224 	return ret;
3225 }
3226 
3227 /**
3228  * hisi_qm_wait_task_finish() - Wait until the task is finished
3229  * when removing the driver.
3230  * @qm: The qm needed to wait for the task to finish.
3231  * @qm_list: The list of all available devices.
3232  */
3233 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
3234 {
3235 	while (qm_frozen(qm) ||
3236 	       ((qm->fun_type == QM_HW_PF) &&
3237 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
3238 		msleep(WAIT_PERIOD);
3239 	}
3240 
3241 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
3242 	       test_bit(QM_RESETTING, &qm->misc_ctl))
3243 		msleep(WAIT_PERIOD);
3244 
3245 	udelay(REMOVE_WAIT_DELAY);
3246 }
3247 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
3248 
3249 /**
3250  * hisi_qm_get_free_qp_num() - Get free number of qp in qm.
3251  * @qm: The qm which want to get free qp.
3252  *
3253  * This function return free number of qp in qm.
3254  */
3255 int hisi_qm_get_free_qp_num(struct hisi_qm *qm)
3256 {
3257 	int ret;
3258 
3259 	down_read(&qm->qps_lock);
3260 	ret = qm->qp_num - qm->qp_in_used;
3261 	up_read(&qm->qps_lock);
3262 
3263 	return ret;
3264 }
3265 EXPORT_SYMBOL_GPL(hisi_qm_get_free_qp_num);
3266 
3267 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
3268 {
3269 	struct device *dev = &qm->pdev->dev;
3270 	struct qm_dma *qdma;
3271 	int i;
3272 
3273 	for (i = num - 1; i >= 0; i--) {
3274 		qdma = &qm->qp_array[i].qdma;
3275 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
3276 	}
3277 
3278 	kfree(qm->qp_array);
3279 }
3280 
3281 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id)
3282 {
3283 	struct device *dev = &qm->pdev->dev;
3284 	size_t off = qm->sqe_size * QM_Q_DEPTH;
3285 	struct hisi_qp *qp;
3286 
3287 	qp = &qm->qp_array[id];
3288 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
3289 					 GFP_KERNEL);
3290 	if (!qp->qdma.va)
3291 		return -ENOMEM;
3292 
3293 	qp->sqe = qp->qdma.va;
3294 	qp->sqe_dma = qp->qdma.dma;
3295 	qp->cqe = qp->qdma.va + off;
3296 	qp->cqe_dma = qp->qdma.dma + off;
3297 	qp->qdma.size = dma_size;
3298 	qp->qm = qm;
3299 	qp->qp_id = id;
3300 
3301 	return 0;
3302 }
3303 
3304 static void hisi_qm_pre_init(struct hisi_qm *qm)
3305 {
3306 	struct pci_dev *pdev = qm->pdev;
3307 
3308 	if (qm->ver == QM_HW_V1)
3309 		qm->ops = &qm_hw_ops_v1;
3310 	else if (qm->ver == QM_HW_V2)
3311 		qm->ops = &qm_hw_ops_v2;
3312 	else
3313 		qm->ops = &qm_hw_ops_v3;
3314 
3315 	pci_set_drvdata(pdev, qm);
3316 	mutex_init(&qm->mailbox_lock);
3317 	init_rwsem(&qm->qps_lock);
3318 	qm->qp_in_used = 0;
3319 	qm->misc_ctl = false;
3320 	if (qm->fun_type == QM_HW_PF && qm->ver > QM_HW_V2) {
3321 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
3322 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
3323 	}
3324 }
3325 
3326 static void qm_cmd_uninit(struct hisi_qm *qm)
3327 {
3328 	u32 val;
3329 
3330 	if (qm->ver < QM_HW_V3)
3331 		return;
3332 
3333 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3334 	val |= QM_IFC_INT_DISABLE;
3335 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3336 }
3337 
3338 static void qm_cmd_init(struct hisi_qm *qm)
3339 {
3340 	u32 val;
3341 
3342 	if (qm->ver < QM_HW_V3)
3343 		return;
3344 
3345 	/* Clear communication interrupt source */
3346 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
3347 
3348 	/* Enable pf to vf communication reg. */
3349 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3350 	val &= ~QM_IFC_INT_DISABLE;
3351 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3352 }
3353 
3354 static void qm_put_pci_res(struct hisi_qm *qm)
3355 {
3356 	struct pci_dev *pdev = qm->pdev;
3357 
3358 	if (qm->use_db_isolation)
3359 		iounmap(qm->db_io_base);
3360 
3361 	iounmap(qm->io_base);
3362 	pci_release_mem_regions(pdev);
3363 }
3364 
3365 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
3366 {
3367 	struct pci_dev *pdev = qm->pdev;
3368 
3369 	pci_free_irq_vectors(pdev);
3370 	qm_put_pci_res(qm);
3371 	pci_disable_device(pdev);
3372 }
3373 
3374 /**
3375  * hisi_qm_uninit() - Uninitialize qm.
3376  * @qm: The qm needed uninit.
3377  *
3378  * This function uninits qm related device resources.
3379  */
3380 void hisi_qm_uninit(struct hisi_qm *qm)
3381 {
3382 	struct pci_dev *pdev = qm->pdev;
3383 	struct device *dev = &pdev->dev;
3384 
3385 	qm_cmd_uninit(qm);
3386 	kfree(qm->factor);
3387 	down_write(&qm->qps_lock);
3388 
3389 	if (!qm_avail_state(qm, QM_CLOSE)) {
3390 		up_write(&qm->qps_lock);
3391 		return;
3392 	}
3393 
3394 	hisi_qp_memory_uninit(qm, qm->qp_num);
3395 	idr_destroy(&qm->qp_idr);
3396 
3397 	if (qm->qdma.va) {
3398 		hisi_qm_cache_wb(qm);
3399 		dma_free_coherent(dev, qm->qdma.size,
3400 				  qm->qdma.va, qm->qdma.dma);
3401 	}
3402 
3403 	qm_irq_unregister(qm);
3404 	hisi_qm_pci_uninit(qm);
3405 	if (qm->use_sva) {
3406 		uacce_remove(qm->uacce);
3407 		qm->uacce = NULL;
3408 	}
3409 
3410 	up_write(&qm->qps_lock);
3411 }
3412 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
3413 
3414 /**
3415  * hisi_qm_get_vft() - Get vft from a qm.
3416  * @qm: The qm we want to get its vft.
3417  * @base: The base number of queue in vft.
3418  * @number: The number of queues in vft.
3419  *
3420  * We can allocate multiple queues to a qm by configuring virtual function
3421  * table. We get related configures by this function. Normally, we call this
3422  * function in VF driver to get the queue information.
3423  *
3424  * qm hw v1 does not support this interface.
3425  */
3426 int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
3427 {
3428 	if (!base || !number)
3429 		return -EINVAL;
3430 
3431 	if (!qm->ops->get_vft) {
3432 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
3433 		return -EINVAL;
3434 	}
3435 
3436 	return qm->ops->get_vft(qm, base, number);
3437 }
3438 EXPORT_SYMBOL_GPL(hisi_qm_get_vft);
3439 
3440 /**
3441  * hisi_qm_set_vft() - Set vft to a qm.
3442  * @qm: The qm we want to set its vft.
3443  * @fun_num: The function number.
3444  * @base: The base number of queue in vft.
3445  * @number: The number of queues in vft.
3446  *
3447  * This function is alway called in PF driver, it is used to assign queues
3448  * among PF and VFs.
3449  *
3450  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
3451  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
3452  * (VF function number 0x2)
3453  */
3454 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
3455 		    u32 number)
3456 {
3457 	u32 max_q_num = qm->ctrl_qp_num;
3458 
3459 	if (base >= max_q_num || number > max_q_num ||
3460 	    (base + number) > max_q_num)
3461 		return -EINVAL;
3462 
3463 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
3464 }
3465 
3466 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
3467 {
3468 	struct hisi_qm_status *status = &qm->status;
3469 
3470 	status->eq_head = 0;
3471 	status->aeq_head = 0;
3472 	status->eqc_phase = true;
3473 	status->aeqc_phase = true;
3474 }
3475 
3476 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3477 {
3478 	struct device *dev = &qm->pdev->dev;
3479 	struct qm_eqc *eqc;
3480 	dma_addr_t eqc_dma;
3481 	int ret;
3482 
3483 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
3484 	if (!eqc)
3485 		return -ENOMEM;
3486 
3487 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3488 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3489 	if (qm->ver == QM_HW_V1)
3490 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3491 	eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
3492 
3493 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
3494 				 DMA_TO_DEVICE);
3495 	if (dma_mapping_error(dev, eqc_dma)) {
3496 		kfree(eqc);
3497 		return -ENOMEM;
3498 	}
3499 
3500 	ret = qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
3501 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
3502 	kfree(eqc);
3503 
3504 	return ret;
3505 }
3506 
3507 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3508 {
3509 	struct device *dev = &qm->pdev->dev;
3510 	struct qm_aeqc *aeqc;
3511 	dma_addr_t aeqc_dma;
3512 	int ret;
3513 
3514 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
3515 	if (!aeqc)
3516 		return -ENOMEM;
3517 
3518 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3519 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3520 	aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
3521 
3522 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
3523 				  DMA_TO_DEVICE);
3524 	if (dma_mapping_error(dev, aeqc_dma)) {
3525 		kfree(aeqc);
3526 		return -ENOMEM;
3527 	}
3528 
3529 	ret = qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
3530 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
3531 	kfree(aeqc);
3532 
3533 	return ret;
3534 }
3535 
3536 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3537 {
3538 	struct device *dev = &qm->pdev->dev;
3539 	int ret;
3540 
3541 	qm_init_eq_aeq_status(qm);
3542 
3543 	ret = qm_eq_ctx_cfg(qm);
3544 	if (ret) {
3545 		dev_err(dev, "Set eqc failed!\n");
3546 		return ret;
3547 	}
3548 
3549 	return qm_aeq_ctx_cfg(qm);
3550 }
3551 
3552 static int __hisi_qm_start(struct hisi_qm *qm)
3553 {
3554 	int ret;
3555 
3556 	WARN_ON(!qm->qdma.va);
3557 
3558 	if (qm->fun_type == QM_HW_PF) {
3559 		ret = qm_dev_mem_reset(qm);
3560 		if (ret)
3561 			return ret;
3562 
3563 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3564 		if (ret)
3565 			return ret;
3566 	}
3567 
3568 	ret = qm_eq_aeq_ctx_cfg(qm);
3569 	if (ret)
3570 		return ret;
3571 
3572 	ret = qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3573 	if (ret)
3574 		return ret;
3575 
3576 	ret = qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3577 	if (ret)
3578 		return ret;
3579 
3580 	qm_init_prefetch(qm);
3581 
3582 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
3583 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
3584 
3585 	return 0;
3586 }
3587 
3588 /**
3589  * hisi_qm_start() - start qm
3590  * @qm: The qm to be started.
3591  *
3592  * This function starts a qm, then we can allocate qp from this qm.
3593  */
3594 int hisi_qm_start(struct hisi_qm *qm)
3595 {
3596 	struct device *dev = &qm->pdev->dev;
3597 	int ret = 0;
3598 
3599 	down_write(&qm->qps_lock);
3600 
3601 	if (!qm_avail_state(qm, QM_START)) {
3602 		up_write(&qm->qps_lock);
3603 		return -EPERM;
3604 	}
3605 
3606 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3607 
3608 	if (!qm->qp_num) {
3609 		dev_err(dev, "qp_num should not be 0\n");
3610 		ret = -EINVAL;
3611 		goto err_unlock;
3612 	}
3613 
3614 	ret = __hisi_qm_start(qm);
3615 	if (!ret)
3616 		atomic_set(&qm->status.flags, QM_START);
3617 
3618 err_unlock:
3619 	up_write(&qm->qps_lock);
3620 	return ret;
3621 }
3622 EXPORT_SYMBOL_GPL(hisi_qm_start);
3623 
3624 static int qm_restart(struct hisi_qm *qm)
3625 {
3626 	struct device *dev = &qm->pdev->dev;
3627 	struct hisi_qp *qp;
3628 	int ret, i;
3629 
3630 	ret = hisi_qm_start(qm);
3631 	if (ret < 0)
3632 		return ret;
3633 
3634 	down_write(&qm->qps_lock);
3635 	for (i = 0; i < qm->qp_num; i++) {
3636 		qp = &qm->qp_array[i];
3637 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3638 		    qp->is_resetting == true) {
3639 			ret = qm_start_qp_nolock(qp, 0);
3640 			if (ret < 0) {
3641 				dev_err(dev, "Failed to start qp%d!\n", i);
3642 
3643 				up_write(&qm->qps_lock);
3644 				return ret;
3645 			}
3646 			qp->is_resetting = false;
3647 		}
3648 	}
3649 	up_write(&qm->qps_lock);
3650 
3651 	return 0;
3652 }
3653 
3654 /* Stop started qps in reset flow */
3655 static int qm_stop_started_qp(struct hisi_qm *qm)
3656 {
3657 	struct device *dev = &qm->pdev->dev;
3658 	struct hisi_qp *qp;
3659 	int i, ret;
3660 
3661 	for (i = 0; i < qm->qp_num; i++) {
3662 		qp = &qm->qp_array[i];
3663 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
3664 			qp->is_resetting = true;
3665 			ret = qm_stop_qp_nolock(qp);
3666 			if (ret < 0) {
3667 				dev_err(dev, "Failed to stop qp%d!\n", i);
3668 				return ret;
3669 			}
3670 		}
3671 	}
3672 
3673 	return 0;
3674 }
3675 
3676 
3677 /**
3678  * qm_clear_queues() - Clear all queues memory in a qm.
3679  * @qm: The qm in which the queues will be cleared.
3680  *
3681  * This function clears all queues memory in a qm. Reset of accelerator can
3682  * use this to clear queues.
3683  */
3684 static void qm_clear_queues(struct hisi_qm *qm)
3685 {
3686 	struct hisi_qp *qp;
3687 	int i;
3688 
3689 	for (i = 0; i < qm->qp_num; i++) {
3690 		qp = &qm->qp_array[i];
3691 		if (qp->is_resetting)
3692 			memset(qp->qdma.va, 0, qp->qdma.size);
3693 	}
3694 
3695 	memset(qm->qdma.va, 0, qm->qdma.size);
3696 }
3697 
3698 /**
3699  * hisi_qm_stop() - Stop a qm.
3700  * @qm: The qm which will be stopped.
3701  * @r: The reason to stop qm.
3702  *
3703  * This function stops qm and its qps, then qm can not accept request.
3704  * Related resources are not released at this state, we can use hisi_qm_start
3705  * to let qm start again.
3706  */
3707 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3708 {
3709 	struct device *dev = &qm->pdev->dev;
3710 	int ret = 0;
3711 
3712 	down_write(&qm->qps_lock);
3713 
3714 	qm->status.stop_reason = r;
3715 	if (!qm_avail_state(qm, QM_STOP)) {
3716 		ret = -EPERM;
3717 		goto err_unlock;
3718 	}
3719 
3720 	if (qm->status.stop_reason == QM_SOFT_RESET ||
3721 	    qm->status.stop_reason == QM_FLR) {
3722 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3723 		ret = qm_stop_started_qp(qm);
3724 		if (ret < 0) {
3725 			dev_err(dev, "Failed to stop started qp!\n");
3726 			goto err_unlock;
3727 		}
3728 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3729 	}
3730 
3731 	/* Mask eq and aeq irq */
3732 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
3733 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3734 
3735 	if (qm->fun_type == QM_HW_PF) {
3736 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3737 		if (ret < 0) {
3738 			dev_err(dev, "Failed to set vft!\n");
3739 			ret = -EBUSY;
3740 			goto err_unlock;
3741 		}
3742 	}
3743 
3744 	qm_clear_queues(qm);
3745 	atomic_set(&qm->status.flags, QM_STOP);
3746 
3747 err_unlock:
3748 	up_write(&qm->qps_lock);
3749 	return ret;
3750 }
3751 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3752 
3753 static ssize_t qm_status_read(struct file *filp, char __user *buffer,
3754 			      size_t count, loff_t *pos)
3755 {
3756 	struct hisi_qm *qm = filp->private_data;
3757 	char buf[QM_DBG_READ_LEN];
3758 	int val, len;
3759 
3760 	val = atomic_read(&qm->status.flags);
3761 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]);
3762 
3763 	return simple_read_from_buffer(buffer, count, pos, buf, len);
3764 }
3765 
3766 static const struct file_operations qm_status_fops = {
3767 	.owner = THIS_MODULE,
3768 	.open = simple_open,
3769 	.read = qm_status_read,
3770 };
3771 
3772 static int qm_debugfs_atomic64_set(void *data, u64 val)
3773 {
3774 	if (val)
3775 		return -EINVAL;
3776 
3777 	atomic64_set((atomic64_t *)data, 0);
3778 
3779 	return 0;
3780 }
3781 
3782 static int qm_debugfs_atomic64_get(void *data, u64 *val)
3783 {
3784 	*val = atomic64_read((atomic64_t *)data);
3785 
3786 	return 0;
3787 }
3788 
3789 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get,
3790 			 qm_debugfs_atomic64_set, "%llu\n");
3791 
3792 static void qm_hw_error_init(struct hisi_qm *qm)
3793 {
3794 	struct hisi_qm_err_info *err_info = &qm->err_info;
3795 
3796 	if (!qm->ops->hw_error_init) {
3797 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3798 		return;
3799 	}
3800 
3801 	qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe);
3802 }
3803 
3804 static void qm_hw_error_uninit(struct hisi_qm *qm)
3805 {
3806 	if (!qm->ops->hw_error_uninit) {
3807 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3808 		return;
3809 	}
3810 
3811 	qm->ops->hw_error_uninit(qm);
3812 }
3813 
3814 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3815 {
3816 	if (!qm->ops->hw_error_handle) {
3817 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3818 		return ACC_ERR_NONE;
3819 	}
3820 
3821 	return qm->ops->hw_error_handle(qm);
3822 }
3823 
3824 /**
3825  * hisi_qm_dev_err_init() - Initialize device error configuration.
3826  * @qm: The qm for which we want to do error initialization.
3827  *
3828  * Initialize QM and device error related configuration.
3829  */
3830 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3831 {
3832 	if (qm->fun_type == QM_HW_VF)
3833 		return;
3834 
3835 	qm_hw_error_init(qm);
3836 
3837 	if (!qm->err_ini->hw_err_enable) {
3838 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3839 		return;
3840 	}
3841 	qm->err_ini->hw_err_enable(qm);
3842 }
3843 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3844 
3845 /**
3846  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3847  * @qm: The qm for which we want to do error uninitialization.
3848  *
3849  * Uninitialize QM and device error related configuration.
3850  */
3851 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3852 {
3853 	if (qm->fun_type == QM_HW_VF)
3854 		return;
3855 
3856 	qm_hw_error_uninit(qm);
3857 
3858 	if (!qm->err_ini->hw_err_disable) {
3859 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3860 		return;
3861 	}
3862 	qm->err_ini->hw_err_disable(qm);
3863 }
3864 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3865 
3866 /**
3867  * hisi_qm_free_qps() - free multiple queue pairs.
3868  * @qps: The queue pairs need to be freed.
3869  * @qp_num: The num of queue pairs.
3870  */
3871 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3872 {
3873 	int i;
3874 
3875 	if (!qps || qp_num <= 0)
3876 		return;
3877 
3878 	for (i = qp_num - 1; i >= 0; i--)
3879 		hisi_qm_release_qp(qps[i]);
3880 }
3881 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3882 
3883 static void free_list(struct list_head *head)
3884 {
3885 	struct hisi_qm_resource *res, *tmp;
3886 
3887 	list_for_each_entry_safe(res, tmp, head, list) {
3888 		list_del(&res->list);
3889 		kfree(res);
3890 	}
3891 }
3892 
3893 static int hisi_qm_sort_devices(int node, struct list_head *head,
3894 				struct hisi_qm_list *qm_list)
3895 {
3896 	struct hisi_qm_resource *res, *tmp;
3897 	struct hisi_qm *qm;
3898 	struct list_head *n;
3899 	struct device *dev;
3900 	int dev_node = 0;
3901 
3902 	list_for_each_entry(qm, &qm_list->list, list) {
3903 		dev = &qm->pdev->dev;
3904 
3905 		if (IS_ENABLED(CONFIG_NUMA)) {
3906 			dev_node = dev_to_node(dev);
3907 			if (dev_node < 0)
3908 				dev_node = 0;
3909 		}
3910 
3911 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3912 		if (!res)
3913 			return -ENOMEM;
3914 
3915 		res->qm = qm;
3916 		res->distance = node_distance(dev_node, node);
3917 		n = head;
3918 		list_for_each_entry(tmp, head, list) {
3919 			if (res->distance < tmp->distance) {
3920 				n = &tmp->list;
3921 				break;
3922 			}
3923 		}
3924 		list_add_tail(&res->list, n);
3925 	}
3926 
3927 	return 0;
3928 }
3929 
3930 /**
3931  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3932  * @qm_list: The list of all available devices.
3933  * @qp_num: The number of queue pairs need created.
3934  * @alg_type: The algorithm type.
3935  * @node: The numa node.
3936  * @qps: The queue pairs need created.
3937  *
3938  * This function will sort all available device according to numa distance.
3939  * Then try to create all queue pairs from one device, if all devices do
3940  * not meet the requirements will return error.
3941  */
3942 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3943 			   u8 alg_type, int node, struct hisi_qp **qps)
3944 {
3945 	struct hisi_qm_resource *tmp;
3946 	int ret = -ENODEV;
3947 	LIST_HEAD(head);
3948 	int i;
3949 
3950 	if (!qps || !qm_list || qp_num <= 0)
3951 		return -EINVAL;
3952 
3953 	mutex_lock(&qm_list->lock);
3954 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3955 		mutex_unlock(&qm_list->lock);
3956 		goto err;
3957 	}
3958 
3959 	list_for_each_entry(tmp, &head, list) {
3960 		for (i = 0; i < qp_num; i++) {
3961 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3962 			if (IS_ERR(qps[i])) {
3963 				hisi_qm_free_qps(qps, i);
3964 				break;
3965 			}
3966 		}
3967 
3968 		if (i == qp_num) {
3969 			ret = 0;
3970 			break;
3971 		}
3972 	}
3973 
3974 	mutex_unlock(&qm_list->lock);
3975 	if (ret)
3976 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3977 			node, alg_type, qp_num);
3978 
3979 err:
3980 	free_list(&head);
3981 	return ret;
3982 }
3983 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3984 
3985 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3986 {
3987 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3988 	u32 max_qp_num = qm->max_qp_num;
3989 	u32 q_base = qm->qp_num;
3990 	int ret;
3991 
3992 	if (!num_vfs)
3993 		return -EINVAL;
3994 
3995 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3996 
3997 	/* If vfs_q_num is less than num_vfs, return error. */
3998 	if (vfs_q_num < num_vfs)
3999 		return -EINVAL;
4000 
4001 	q_num = vfs_q_num / num_vfs;
4002 	remain_q_num = vfs_q_num % num_vfs;
4003 
4004 	for (i = num_vfs; i > 0; i--) {
4005 		/*
4006 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
4007 		 * remaining queues equally.
4008 		 */
4009 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
4010 			act_q_num = q_num + remain_q_num;
4011 			remain_q_num = 0;
4012 		} else if (remain_q_num > 0) {
4013 			act_q_num = q_num + 1;
4014 			remain_q_num--;
4015 		} else {
4016 			act_q_num = q_num;
4017 		}
4018 
4019 		act_q_num = min_t(int, act_q_num, max_qp_num);
4020 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
4021 		if (ret) {
4022 			for (j = num_vfs; j > i; j--)
4023 				hisi_qm_set_vft(qm, j, 0, 0);
4024 			return ret;
4025 		}
4026 		q_base += act_q_num;
4027 	}
4028 
4029 	return 0;
4030 }
4031 
4032 static int qm_clear_vft_config(struct hisi_qm *qm)
4033 {
4034 	int ret;
4035 	u32 i;
4036 
4037 	for (i = 1; i <= qm->vfs_num; i++) {
4038 		ret = hisi_qm_set_vft(qm, i, 0, 0);
4039 		if (ret)
4040 			return ret;
4041 	}
4042 	qm->vfs_num = 0;
4043 
4044 	return 0;
4045 }
4046 
4047 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
4048 {
4049 	struct device *dev = &qm->pdev->dev;
4050 	u32 ir = qos * QM_QOS_RATE;
4051 	int ret, total_vfs, i;
4052 
4053 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
4054 	if (fun_index > total_vfs)
4055 		return -EINVAL;
4056 
4057 	qm->factor[fun_index].func_qos = qos;
4058 
4059 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
4060 	if (ret) {
4061 		dev_err(dev, "failed to calculate shaper parameter!\n");
4062 		return -EINVAL;
4063 	}
4064 
4065 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
4066 		/* The base number of queue reuse for different alg type */
4067 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
4068 		if (ret) {
4069 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
4070 			return -EINVAL;
4071 		}
4072 	}
4073 
4074 	return 0;
4075 }
4076 
4077 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
4078 {
4079 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
4080 	u64 shaper_vft, ir_calc, ir;
4081 	unsigned int val;
4082 	u32 error_rate;
4083 	int ret;
4084 
4085 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
4086 					 val & BIT(0), POLL_PERIOD,
4087 					 POLL_TIMEOUT);
4088 	if (ret)
4089 		return 0;
4090 
4091 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
4092 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
4093 	writel(fun_index, qm->io_base + QM_VFT_CFG);
4094 
4095 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
4096 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
4097 
4098 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
4099 					 val & BIT(0), POLL_PERIOD,
4100 					 POLL_TIMEOUT);
4101 	if (ret)
4102 		return 0;
4103 
4104 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
4105 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
4106 
4107 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
4108 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
4109 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
4110 
4111 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
4112 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
4113 
4114 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
4115 
4116 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
4117 
4118 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
4119 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
4120 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
4121 		return 0;
4122 	}
4123 
4124 	return ir;
4125 }
4126 
4127 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
4128 {
4129 	struct device *dev = &qm->pdev->dev;
4130 	u64 mb_cmd;
4131 	u32 qos;
4132 	int ret;
4133 
4134 	qos = qm_get_shaper_vft_qos(qm, fun_num);
4135 	if (!qos) {
4136 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
4137 		return;
4138 	}
4139 
4140 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
4141 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
4142 	if (ret)
4143 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
4144 }
4145 
4146 static int qm_vf_read_qos(struct hisi_qm *qm)
4147 {
4148 	int cnt = 0;
4149 	int ret;
4150 
4151 	/* reset mailbox qos val */
4152 	qm->mb_qos = 0;
4153 
4154 	/* vf ping pf to get function qos */
4155 	if (qm->ops->ping_pf) {
4156 		ret = qm->ops->ping_pf(qm, QM_VF_GET_QOS);
4157 		if (ret) {
4158 			pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
4159 			return ret;
4160 		}
4161 	}
4162 
4163 	while (true) {
4164 		msleep(QM_WAIT_DST_ACK);
4165 		if (qm->mb_qos)
4166 			break;
4167 
4168 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
4169 			pci_err(qm->pdev, "PF ping VF timeout!\n");
4170 			return  -ETIMEDOUT;
4171 		}
4172 	}
4173 
4174 	return ret;
4175 }
4176 
4177 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
4178 			       size_t count, loff_t *pos)
4179 {
4180 	struct hisi_qm *qm = filp->private_data;
4181 	char tbuf[QM_DBG_READ_LEN];
4182 	u32 qos_val, ir;
4183 	int ret;
4184 
4185 	ret = hisi_qm_get_dfx_access(qm);
4186 	if (ret)
4187 		return ret;
4188 
4189 	/* Mailbox and reset cannot be operated at the same time */
4190 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4191 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
4192 		ret = -EAGAIN;
4193 		goto err_put_dfx_access;
4194 	}
4195 
4196 	if (qm->fun_type == QM_HW_PF) {
4197 		ir = qm_get_shaper_vft_qos(qm, 0);
4198 	} else {
4199 		ret = qm_vf_read_qos(qm);
4200 		if (ret)
4201 			goto err_get_status;
4202 		ir = qm->mb_qos;
4203 	}
4204 
4205 	qos_val = ir / QM_QOS_RATE;
4206 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
4207 
4208 	ret =  simple_read_from_buffer(buf, count, pos, tbuf, ret);
4209 
4210 err_get_status:
4211 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4212 err_put_dfx_access:
4213 	hisi_qm_put_dfx_access(qm);
4214 	return ret;
4215 }
4216 
4217 static ssize_t qm_qos_value_init(const char *buf, unsigned long *val)
4218 {
4219 	int buflen = strlen(buf);
4220 	int ret, i;
4221 
4222 	for (i = 0; i < buflen; i++) {
4223 		if (!isdigit(buf[i]))
4224 			return -EINVAL;
4225 	}
4226 
4227 	ret = sscanf(buf, "%lu", val);
4228 	if (ret != QM_QOS_VAL_NUM)
4229 		return -EINVAL;
4230 
4231 	return 0;
4232 }
4233 
4234 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
4235 			       size_t count, loff_t *pos)
4236 {
4237 	struct hisi_qm *qm = filp->private_data;
4238 	char tbuf[QM_DBG_READ_LEN];
4239 	int tmp1, bus, device, function;
4240 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
4241 	char val_buf[QM_QOS_VAL_MAX_LEN] = {0};
4242 	unsigned int fun_index;
4243 	unsigned long val = 0;
4244 	int len, ret;
4245 
4246 	if (qm->fun_type == QM_HW_VF)
4247 		return -EINVAL;
4248 
4249 	/* Mailbox and reset cannot be operated at the same time */
4250 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4251 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
4252 		return -EAGAIN;
4253 	}
4254 
4255 	if (*pos != 0) {
4256 		ret = 0;
4257 		goto err_get_status;
4258 	}
4259 
4260 	if (count >= QM_DBG_READ_LEN) {
4261 		ret = -ENOSPC;
4262 		goto err_get_status;
4263 	}
4264 
4265 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
4266 	if (len < 0) {
4267 		ret = len;
4268 		goto err_get_status;
4269 	}
4270 
4271 	tbuf[len] = '\0';
4272 	ret = sscanf(tbuf, "%s %s", tbuf_bdf, val_buf);
4273 	if (ret != QM_QOS_PARAM_NUM) {
4274 		ret = -EINVAL;
4275 		goto err_get_status;
4276 	}
4277 
4278 	ret = qm_qos_value_init(val_buf, &val);
4279 	if (val == 0 || val > QM_QOS_MAX_VAL || ret) {
4280 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
4281 		ret = -EINVAL;
4282 		goto err_get_status;
4283 	}
4284 
4285 	ret = sscanf(tbuf_bdf, "%d:%x:%d.%d", &tmp1, &bus, &device, &function);
4286 	if (ret != QM_QOS_BDF_PARAM_NUM) {
4287 		pci_err(qm->pdev, "input pci bdf value is error!\n");
4288 		ret = -EINVAL;
4289 		goto err_get_status;
4290 	}
4291 
4292 	fun_index = device * 8 + function;
4293 
4294 	ret = qm_pm_get_sync(qm);
4295 	if (ret) {
4296 		ret = -EINVAL;
4297 		goto err_get_status;
4298 	}
4299 
4300 	ret = qm_func_shaper_enable(qm, fun_index, val);
4301 	if (ret) {
4302 		pci_err(qm->pdev, "failed to enable function shaper!\n");
4303 		ret = -EINVAL;
4304 		goto err_put_sync;
4305 	}
4306 
4307 	ret = count;
4308 
4309 err_put_sync:
4310 	qm_pm_put_sync(qm);
4311 err_get_status:
4312 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4313 	return ret;
4314 }
4315 
4316 static const struct file_operations qm_algqos_fops = {
4317 	.owner = THIS_MODULE,
4318 	.open = simple_open,
4319 	.read = qm_algqos_read,
4320 	.write = qm_algqos_write,
4321 };
4322 
4323 /**
4324  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
4325  * @qm: The qm for which we want to add debugfs files.
4326  *
4327  * Create function qos debugfs files.
4328  */
4329 static void hisi_qm_set_algqos_init(struct hisi_qm *qm)
4330 {
4331 	if (qm->fun_type == QM_HW_PF)
4332 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
4333 				    qm, &qm_algqos_fops);
4334 	else
4335 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
4336 				    qm, &qm_algqos_fops);
4337 }
4338 
4339 /**
4340  * hisi_qm_debug_init() - Initialize qm related debugfs files.
4341  * @qm: The qm for which we want to add debugfs files.
4342  *
4343  * Create qm related debugfs files.
4344  */
4345 void hisi_qm_debug_init(struct hisi_qm *qm)
4346 {
4347 	struct qm_dfx *dfx = &qm->debug.dfx;
4348 	struct dentry *qm_d;
4349 	void *data;
4350 	int i;
4351 
4352 	qm_d = debugfs_create_dir("qm", qm->debug.debug_root);
4353 	qm->debug.qm_d = qm_d;
4354 
4355 	/* only show this in PF */
4356 	if (qm->fun_type == QM_HW_PF) {
4357 		qm_create_debugfs_file(qm, qm->debug.debug_root, CURRENT_QM);
4358 		for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++)
4359 			qm_create_debugfs_file(qm, qm->debug.qm_d, i);
4360 	}
4361 
4362 	debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops);
4363 
4364 	debugfs_create_file("cmd", 0600, qm->debug.qm_d, qm, &qm_cmd_fops);
4365 
4366 	debugfs_create_file("status", 0444, qm->debug.qm_d, qm,
4367 			&qm_status_fops);
4368 	for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) {
4369 		data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset);
4370 		debugfs_create_file(qm_dfx_files[i].name,
4371 			0644,
4372 			qm_d,
4373 			data,
4374 			&qm_atomic64_ops);
4375 	}
4376 
4377 	if (qm->ver >= QM_HW_V3)
4378 		hisi_qm_set_algqos_init(qm);
4379 }
4380 EXPORT_SYMBOL_GPL(hisi_qm_debug_init);
4381 
4382 /**
4383  * hisi_qm_debug_regs_clear() - clear qm debug related registers.
4384  * @qm: The qm for which we want to clear its debug registers.
4385  */
4386 void hisi_qm_debug_regs_clear(struct hisi_qm *qm)
4387 {
4388 	const struct debugfs_reg32 *regs;
4389 	int i;
4390 
4391 	/* clear current_qm */
4392 	writel(0x0, qm->io_base + QM_DFX_MB_CNT_VF);
4393 	writel(0x0, qm->io_base + QM_DFX_DB_CNT_VF);
4394 
4395 	/* clear current_q */
4396 	writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
4397 	writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
4398 
4399 	/*
4400 	 * these registers are reading and clearing, so clear them after
4401 	 * reading them.
4402 	 */
4403 	writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE);
4404 
4405 	regs = qm_dfx_regs;
4406 	for (i = 0; i < CNT_CYC_REGS_NUM; i++) {
4407 		readl(qm->io_base + regs->offset);
4408 		regs++;
4409 	}
4410 
4411 	/* clear clear_enable */
4412 	writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE);
4413 }
4414 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear);
4415 
4416 /**
4417  * hisi_qm_sriov_enable() - enable virtual functions
4418  * @pdev: the PCIe device
4419  * @max_vfs: the number of virtual functions to enable
4420  *
4421  * Returns the number of enabled VFs. If there are VFs enabled already or
4422  * max_vfs is more than the total number of device can be enabled, returns
4423  * failure.
4424  */
4425 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
4426 {
4427 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4428 	int pre_existing_vfs, num_vfs, total_vfs, ret;
4429 
4430 	ret = qm_pm_get_sync(qm);
4431 	if (ret)
4432 		return ret;
4433 
4434 	total_vfs = pci_sriov_get_totalvfs(pdev);
4435 	pre_existing_vfs = pci_num_vf(pdev);
4436 	if (pre_existing_vfs) {
4437 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
4438 			pre_existing_vfs);
4439 		goto err_put_sync;
4440 	}
4441 
4442 	num_vfs = min_t(int, max_vfs, total_vfs);
4443 	ret = qm_vf_q_assign(qm, num_vfs);
4444 	if (ret) {
4445 		pci_err(pdev, "Can't assign queues for VF!\n");
4446 		goto err_put_sync;
4447 	}
4448 
4449 	qm->vfs_num = num_vfs;
4450 
4451 	ret = pci_enable_sriov(pdev, num_vfs);
4452 	if (ret) {
4453 		pci_err(pdev, "Can't enable VF!\n");
4454 		qm_clear_vft_config(qm);
4455 		goto err_put_sync;
4456 	}
4457 
4458 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
4459 
4460 	return num_vfs;
4461 
4462 err_put_sync:
4463 	qm_pm_put_sync(qm);
4464 	return ret;
4465 }
4466 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
4467 
4468 /**
4469  * hisi_qm_sriov_disable - disable virtual functions
4470  * @pdev: the PCI device.
4471  * @is_frozen: true when all the VFs are frozen.
4472  *
4473  * Return failure if there are VFs assigned already or VF is in used.
4474  */
4475 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
4476 {
4477 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4478 	int total_vfs = pci_sriov_get_totalvfs(qm->pdev);
4479 	int ret;
4480 
4481 	if (pci_vfs_assigned(pdev)) {
4482 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
4483 		return -EPERM;
4484 	}
4485 
4486 	/* While VF is in used, SRIOV cannot be disabled. */
4487 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
4488 		pci_err(pdev, "Task is using its VF!\n");
4489 		return -EBUSY;
4490 	}
4491 
4492 	pci_disable_sriov(pdev);
4493 	/* clear vf function shaper configure array */
4494 	memset(qm->factor + 1, 0, sizeof(struct qm_shaper_factor) * total_vfs);
4495 	ret = qm_clear_vft_config(qm);
4496 	if (ret)
4497 		return ret;
4498 
4499 	qm_pm_put_sync(qm);
4500 
4501 	return 0;
4502 }
4503 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
4504 
4505 /**
4506  * hisi_qm_sriov_configure - configure the number of VFs
4507  * @pdev: The PCI device
4508  * @num_vfs: The number of VFs need enabled
4509  *
4510  * Enable SR-IOV according to num_vfs, 0 means disable.
4511  */
4512 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
4513 {
4514 	if (num_vfs == 0)
4515 		return hisi_qm_sriov_disable(pdev, false);
4516 	else
4517 		return hisi_qm_sriov_enable(pdev, num_vfs);
4518 }
4519 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
4520 
4521 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
4522 {
4523 	u32 err_sts;
4524 
4525 	if (!qm->err_ini->get_dev_hw_err_status) {
4526 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
4527 		return ACC_ERR_NONE;
4528 	}
4529 
4530 	/* get device hardware error status */
4531 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
4532 	if (err_sts) {
4533 		if (err_sts & qm->err_info.ecc_2bits_mask)
4534 			qm->err_status.is_dev_ecc_mbit = true;
4535 
4536 		if (qm->err_ini->log_dev_hw_err)
4537 			qm->err_ini->log_dev_hw_err(qm, err_sts);
4538 
4539 		/* ce error does not need to be reset */
4540 		if ((err_sts | qm->err_info.dev_ce_mask) ==
4541 		     qm->err_info.dev_ce_mask) {
4542 			if (qm->err_ini->clear_dev_hw_err_status)
4543 				qm->err_ini->clear_dev_hw_err_status(qm,
4544 								err_sts);
4545 
4546 			return ACC_ERR_RECOVERED;
4547 		}
4548 
4549 		return ACC_ERR_NEED_RESET;
4550 	}
4551 
4552 	return ACC_ERR_RECOVERED;
4553 }
4554 
4555 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
4556 {
4557 	enum acc_err_result qm_ret, dev_ret;
4558 
4559 	/* log qm error */
4560 	qm_ret = qm_hw_error_handle(qm);
4561 
4562 	/* log device error */
4563 	dev_ret = qm_dev_err_handle(qm);
4564 
4565 	return (qm_ret == ACC_ERR_NEED_RESET ||
4566 		dev_ret == ACC_ERR_NEED_RESET) ?
4567 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
4568 }
4569 
4570 /**
4571  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
4572  * @pdev: The PCI device which need report error.
4573  * @state: The connectivity between CPU and device.
4574  *
4575  * We register this function into PCIe AER handlers, It will report device or
4576  * qm hardware error status when error occur.
4577  */
4578 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
4579 					  pci_channel_state_t state)
4580 {
4581 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4582 	enum acc_err_result ret;
4583 
4584 	if (pdev->is_virtfn)
4585 		return PCI_ERS_RESULT_NONE;
4586 
4587 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
4588 	if (state == pci_channel_io_perm_failure)
4589 		return PCI_ERS_RESULT_DISCONNECT;
4590 
4591 	ret = qm_process_dev_error(qm);
4592 	if (ret == ACC_ERR_NEED_RESET)
4593 		return PCI_ERS_RESULT_NEED_RESET;
4594 
4595 	return PCI_ERS_RESULT_RECOVERED;
4596 }
4597 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
4598 
4599 static int qm_check_req_recv(struct hisi_qm *qm)
4600 {
4601 	struct pci_dev *pdev = qm->pdev;
4602 	int ret;
4603 	u32 val;
4604 
4605 	if (qm->ver >= QM_HW_V3)
4606 		return 0;
4607 
4608 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
4609 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4610 					 (val == ACC_VENDOR_ID_VALUE),
4611 					 POLL_PERIOD, POLL_TIMEOUT);
4612 	if (ret) {
4613 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
4614 		return ret;
4615 	}
4616 
4617 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
4618 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4619 					 (val == PCI_VENDOR_ID_HUAWEI),
4620 					 POLL_PERIOD, POLL_TIMEOUT);
4621 	if (ret)
4622 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
4623 
4624 	return ret;
4625 }
4626 
4627 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
4628 {
4629 	struct pci_dev *pdev = qm->pdev;
4630 	u16 cmd;
4631 	int i;
4632 
4633 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4634 	if (set)
4635 		cmd |= PCI_COMMAND_MEMORY;
4636 	else
4637 		cmd &= ~PCI_COMMAND_MEMORY;
4638 
4639 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
4640 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4641 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4642 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
4643 			return 0;
4644 
4645 		udelay(1);
4646 	}
4647 
4648 	return -ETIMEDOUT;
4649 }
4650 
4651 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
4652 {
4653 	struct pci_dev *pdev = qm->pdev;
4654 	u16 sriov_ctrl;
4655 	int pos;
4656 	int i;
4657 
4658 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4659 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4660 	if (set)
4661 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
4662 	else
4663 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
4664 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
4665 
4666 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4667 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4668 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
4669 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
4670 			return 0;
4671 
4672 		udelay(1);
4673 	}
4674 
4675 	return -ETIMEDOUT;
4676 }
4677 
4678 static int qm_vf_reset_prepare(struct hisi_qm *qm,
4679 			       enum qm_stop_reason stop_reason)
4680 {
4681 	struct hisi_qm_list *qm_list = qm->qm_list;
4682 	struct pci_dev *pdev = qm->pdev;
4683 	struct pci_dev *virtfn;
4684 	struct hisi_qm *vf_qm;
4685 	int ret = 0;
4686 
4687 	mutex_lock(&qm_list->lock);
4688 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4689 		virtfn = vf_qm->pdev;
4690 		if (virtfn == pdev)
4691 			continue;
4692 
4693 		if (pci_physfn(virtfn) == pdev) {
4694 			/* save VFs PCIE BAR configuration */
4695 			pci_save_state(virtfn);
4696 
4697 			ret = hisi_qm_stop(vf_qm, stop_reason);
4698 			if (ret)
4699 				goto stop_fail;
4700 		}
4701 	}
4702 
4703 stop_fail:
4704 	mutex_unlock(&qm_list->lock);
4705 	return ret;
4706 }
4707 
4708 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
4709 			   enum qm_stop_reason stop_reason)
4710 {
4711 	struct pci_dev *pdev = qm->pdev;
4712 	int ret;
4713 
4714 	if (!qm->vfs_num)
4715 		return 0;
4716 
4717 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
4718 	if (qm->ops->ping_all_vfs) {
4719 		ret = qm->ops->ping_all_vfs(qm, cmd);
4720 		if (ret)
4721 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
4722 	} else {
4723 		ret = qm_vf_reset_prepare(qm, stop_reason);
4724 		if (ret)
4725 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4726 	}
4727 
4728 	return ret;
4729 }
4730 
4731 static int qm_wait_reset_finish(struct hisi_qm *qm)
4732 {
4733 	int delay = 0;
4734 
4735 	/* All reset requests need to be queued for processing */
4736 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4737 		msleep(++delay);
4738 		if (delay > QM_RESET_WAIT_TIMEOUT)
4739 			return -EBUSY;
4740 	}
4741 
4742 	return 0;
4743 }
4744 
4745 static int qm_reset_prepare_ready(struct hisi_qm *qm)
4746 {
4747 	struct pci_dev *pdev = qm->pdev;
4748 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4749 
4750 	/*
4751 	 * PF and VF on host doesnot support resetting at the
4752 	 * same time on Kunpeng920.
4753 	 */
4754 	if (qm->ver < QM_HW_V3)
4755 		return qm_wait_reset_finish(pf_qm);
4756 
4757 	return qm_wait_reset_finish(qm);
4758 }
4759 
4760 static void qm_reset_bit_clear(struct hisi_qm *qm)
4761 {
4762 	struct pci_dev *pdev = qm->pdev;
4763 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4764 
4765 	if (qm->ver < QM_HW_V3)
4766 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
4767 
4768 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4769 }
4770 
4771 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4772 {
4773 	struct pci_dev *pdev = qm->pdev;
4774 	int ret;
4775 
4776 	ret = qm_reset_prepare_ready(qm);
4777 	if (ret) {
4778 		pci_err(pdev, "Controller reset not ready!\n");
4779 		return ret;
4780 	}
4781 
4782 	/* PF obtains the information of VF by querying the register. */
4783 	qm_cmd_uninit(qm);
4784 
4785 	/* Whether VFs stop successfully, soft reset will continue. */
4786 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4787 	if (ret)
4788 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4789 
4790 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4791 	if (ret) {
4792 		pci_err(pdev, "Fails to stop QM!\n");
4793 		qm_reset_bit_clear(qm);
4794 		return ret;
4795 	}
4796 
4797 	ret = qm_wait_vf_prepare_finish(qm);
4798 	if (ret)
4799 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4800 
4801 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4802 
4803 	return 0;
4804 }
4805 
4806 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4807 {
4808 	u32 nfe_enb = 0;
4809 
4810 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4811 	if (qm->ver >= QM_HW_V3)
4812 		return;
4813 
4814 	if (!qm->err_status.is_dev_ecc_mbit &&
4815 	    qm->err_status.is_qm_ecc_mbit &&
4816 	    qm->err_ini->close_axi_master_ooo) {
4817 
4818 		qm->err_ini->close_axi_master_ooo(qm);
4819 
4820 	} else if (qm->err_status.is_dev_ecc_mbit &&
4821 		   !qm->err_status.is_qm_ecc_mbit &&
4822 		   !qm->err_ini->close_axi_master_ooo) {
4823 
4824 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4825 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4826 		       qm->io_base + QM_RAS_NFE_ENABLE);
4827 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4828 	}
4829 }
4830 
4831 static int qm_soft_reset(struct hisi_qm *qm)
4832 {
4833 	struct pci_dev *pdev = qm->pdev;
4834 	int ret;
4835 	u32 val;
4836 
4837 	/* Ensure all doorbells and mailboxes received by QM */
4838 	ret = qm_check_req_recv(qm);
4839 	if (ret)
4840 		return ret;
4841 
4842 	if (qm->vfs_num) {
4843 		ret = qm_set_vf_mse(qm, false);
4844 		if (ret) {
4845 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4846 			return ret;
4847 		}
4848 	}
4849 
4850 	ret = qm->ops->set_msi(qm, false);
4851 	if (ret) {
4852 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4853 		return ret;
4854 	}
4855 
4856 	qm_dev_ecc_mbit_handle(qm);
4857 
4858 	/* OOO register set and check */
4859 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
4860 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4861 
4862 	/* If bus lock, reset chip */
4863 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4864 					 val,
4865 					 (val == ACC_MASTER_TRANS_RETURN_RW),
4866 					 POLL_PERIOD, POLL_TIMEOUT);
4867 	if (ret) {
4868 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
4869 		return ret;
4870 	}
4871 
4872 	if (qm->err_ini->close_sva_prefetch)
4873 		qm->err_ini->close_sva_prefetch(qm);
4874 
4875 	ret = qm_set_pf_mse(qm, false);
4876 	if (ret) {
4877 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4878 		return ret;
4879 	}
4880 
4881 	/* The reset related sub-control registers are not in PCI BAR */
4882 	if (ACPI_HANDLE(&pdev->dev)) {
4883 		unsigned long long value = 0;
4884 		acpi_status s;
4885 
4886 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4887 					  qm->err_info.acpi_rst,
4888 					  NULL, &value);
4889 		if (ACPI_FAILURE(s)) {
4890 			pci_err(pdev, "NO controller reset method!\n");
4891 			return -EIO;
4892 		}
4893 
4894 		if (value) {
4895 			pci_err(pdev, "Reset step %llu failed!\n", value);
4896 			return -EIO;
4897 		}
4898 	} else {
4899 		pci_err(pdev, "No reset method!\n");
4900 		return -EINVAL;
4901 	}
4902 
4903 	return 0;
4904 }
4905 
4906 static int qm_vf_reset_done(struct hisi_qm *qm)
4907 {
4908 	struct hisi_qm_list *qm_list = qm->qm_list;
4909 	struct pci_dev *pdev = qm->pdev;
4910 	struct pci_dev *virtfn;
4911 	struct hisi_qm *vf_qm;
4912 	int ret = 0;
4913 
4914 	mutex_lock(&qm_list->lock);
4915 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4916 		virtfn = vf_qm->pdev;
4917 		if (virtfn == pdev)
4918 			continue;
4919 
4920 		if (pci_physfn(virtfn) == pdev) {
4921 			/* enable VFs PCIE BAR configuration */
4922 			pci_restore_state(virtfn);
4923 
4924 			ret = qm_restart(vf_qm);
4925 			if (ret)
4926 				goto restart_fail;
4927 		}
4928 	}
4929 
4930 restart_fail:
4931 	mutex_unlock(&qm_list->lock);
4932 	return ret;
4933 }
4934 
4935 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
4936 {
4937 	struct pci_dev *pdev = qm->pdev;
4938 	int ret;
4939 
4940 	if (!qm->vfs_num)
4941 		return 0;
4942 
4943 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4944 	if (ret) {
4945 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4946 		return ret;
4947 	}
4948 
4949 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4950 	if (qm->ops->ping_all_vfs) {
4951 		ret = qm->ops->ping_all_vfs(qm, cmd);
4952 		if (ret)
4953 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4954 	} else {
4955 		ret = qm_vf_reset_done(qm);
4956 		if (ret)
4957 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4958 	}
4959 
4960 	return ret;
4961 }
4962 
4963 static int qm_dev_hw_init(struct hisi_qm *qm)
4964 {
4965 	return qm->err_ini->hw_init(qm);
4966 }
4967 
4968 static void qm_restart_prepare(struct hisi_qm *qm)
4969 {
4970 	u32 value;
4971 
4972 	if (qm->err_ini->open_sva_prefetch)
4973 		qm->err_ini->open_sva_prefetch(qm);
4974 
4975 	if (qm->ver >= QM_HW_V3)
4976 		return;
4977 
4978 	if (!qm->err_status.is_qm_ecc_mbit &&
4979 	    !qm->err_status.is_dev_ecc_mbit)
4980 		return;
4981 
4982 	/* temporarily close the OOO port used for PEH to write out MSI */
4983 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4984 	writel(value & ~qm->err_info.msi_wr_port,
4985 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4986 
4987 	/* clear dev ecc 2bit error source if having */
4988 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4989 	if (value && qm->err_ini->clear_dev_hw_err_status)
4990 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4991 
4992 	/* clear QM ecc mbit error source */
4993 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4994 
4995 	/* clear AM Reorder Buffer ecc mbit source */
4996 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4997 }
4998 
4999 static void qm_restart_done(struct hisi_qm *qm)
5000 {
5001 	u32 value;
5002 
5003 	if (qm->ver >= QM_HW_V3)
5004 		goto clear_flags;
5005 
5006 	if (!qm->err_status.is_qm_ecc_mbit &&
5007 	    !qm->err_status.is_dev_ecc_mbit)
5008 		return;
5009 
5010 	/* open the OOO port for PEH to write out MSI */
5011 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5012 	value |= qm->err_info.msi_wr_port;
5013 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5014 
5015 clear_flags:
5016 	qm->err_status.is_qm_ecc_mbit = false;
5017 	qm->err_status.is_dev_ecc_mbit = false;
5018 }
5019 
5020 static int qm_controller_reset_done(struct hisi_qm *qm)
5021 {
5022 	struct pci_dev *pdev = qm->pdev;
5023 	int ret;
5024 
5025 	ret = qm->ops->set_msi(qm, true);
5026 	if (ret) {
5027 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
5028 		return ret;
5029 	}
5030 
5031 	ret = qm_set_pf_mse(qm, true);
5032 	if (ret) {
5033 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
5034 		return ret;
5035 	}
5036 
5037 	if (qm->vfs_num) {
5038 		ret = qm_set_vf_mse(qm, true);
5039 		if (ret) {
5040 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
5041 			return ret;
5042 		}
5043 	}
5044 
5045 	ret = qm_dev_hw_init(qm);
5046 	if (ret) {
5047 		pci_err(pdev, "Failed to init device\n");
5048 		return ret;
5049 	}
5050 
5051 	qm_restart_prepare(qm);
5052 	hisi_qm_dev_err_init(qm);
5053 	if (qm->err_ini->open_axi_master_ooo)
5054 		qm->err_ini->open_axi_master_ooo(qm);
5055 
5056 	ret = qm_restart(qm);
5057 	if (ret) {
5058 		pci_err(pdev, "Failed to start QM!\n");
5059 		return ret;
5060 	}
5061 
5062 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
5063 	if (ret)
5064 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
5065 
5066 	ret = qm_wait_vf_prepare_finish(qm);
5067 	if (ret)
5068 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
5069 
5070 	qm_cmd_init(qm);
5071 	qm_restart_done(qm);
5072 
5073 	qm_reset_bit_clear(qm);
5074 
5075 	return 0;
5076 }
5077 
5078 static int qm_controller_reset(struct hisi_qm *qm)
5079 {
5080 	struct pci_dev *pdev = qm->pdev;
5081 	int ret;
5082 
5083 	pci_info(pdev, "Controller resetting...\n");
5084 
5085 	ret = qm_controller_reset_prepare(qm);
5086 	if (ret) {
5087 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
5088 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
5089 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
5090 		return ret;
5091 	}
5092 
5093 	ret = qm_soft_reset(qm);
5094 	if (ret) {
5095 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
5096 		qm_reset_bit_clear(qm);
5097 		return ret;
5098 	}
5099 
5100 	ret = qm_controller_reset_done(qm);
5101 	if (ret) {
5102 		qm_reset_bit_clear(qm);
5103 		return ret;
5104 	}
5105 
5106 	pci_info(pdev, "Controller reset complete\n");
5107 
5108 	return 0;
5109 }
5110 
5111 /**
5112  * hisi_qm_dev_slot_reset() - slot reset
5113  * @pdev: the PCIe device
5114  *
5115  * This function offers QM relate PCIe device reset interface. Drivers which
5116  * use QM can use this function as slot_reset in its struct pci_error_handlers.
5117  */
5118 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
5119 {
5120 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5121 	int ret;
5122 
5123 	if (pdev->is_virtfn)
5124 		return PCI_ERS_RESULT_RECOVERED;
5125 
5126 	pci_aer_clear_nonfatal_status(pdev);
5127 
5128 	/* reset pcie device controller */
5129 	ret = qm_controller_reset(qm);
5130 	if (ret) {
5131 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
5132 		return PCI_ERS_RESULT_DISCONNECT;
5133 	}
5134 
5135 	return PCI_ERS_RESULT_RECOVERED;
5136 }
5137 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
5138 
5139 void hisi_qm_reset_prepare(struct pci_dev *pdev)
5140 {
5141 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
5142 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5143 	u32 delay = 0;
5144 	int ret;
5145 
5146 	hisi_qm_dev_err_uninit(pf_qm);
5147 
5148 	/*
5149 	 * Check whether there is an ECC mbit error, If it occurs, need to
5150 	 * wait for soft reset to fix it.
5151 	 */
5152 	while (qm_check_dev_error(pf_qm)) {
5153 		msleep(++delay);
5154 		if (delay > QM_RESET_WAIT_TIMEOUT)
5155 			return;
5156 	}
5157 
5158 	ret = qm_reset_prepare_ready(qm);
5159 	if (ret) {
5160 		pci_err(pdev, "FLR not ready!\n");
5161 		return;
5162 	}
5163 
5164 	/* PF obtains the information of VF by querying the register. */
5165 	if (qm->fun_type == QM_HW_PF)
5166 		qm_cmd_uninit(qm);
5167 
5168 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR);
5169 	if (ret)
5170 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
5171 
5172 	ret = hisi_qm_stop(qm, QM_FLR);
5173 	if (ret) {
5174 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
5175 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
5176 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
5177 		return;
5178 	}
5179 
5180 	ret = qm_wait_vf_prepare_finish(qm);
5181 	if (ret)
5182 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
5183 
5184 	pci_info(pdev, "FLR resetting...\n");
5185 }
5186 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
5187 
5188 static bool qm_flr_reset_complete(struct pci_dev *pdev)
5189 {
5190 	struct pci_dev *pf_pdev = pci_physfn(pdev);
5191 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
5192 	u32 id;
5193 
5194 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
5195 	if (id == QM_PCI_COMMAND_INVALID) {
5196 		pci_err(pdev, "Device can not be used!\n");
5197 		return false;
5198 	}
5199 
5200 	return true;
5201 }
5202 
5203 void hisi_qm_reset_done(struct pci_dev *pdev)
5204 {
5205 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
5206 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5207 	int ret;
5208 
5209 	if (qm->fun_type == QM_HW_PF) {
5210 		ret = qm_dev_hw_init(qm);
5211 		if (ret) {
5212 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
5213 			goto flr_done;
5214 		}
5215 	}
5216 
5217 	hisi_qm_dev_err_init(pf_qm);
5218 
5219 	ret = qm_restart(qm);
5220 	if (ret) {
5221 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
5222 		goto flr_done;
5223 	}
5224 
5225 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
5226 	if (ret)
5227 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
5228 
5229 	ret = qm_wait_vf_prepare_finish(qm);
5230 	if (ret)
5231 		pci_err(pdev, "failed to start by vfs in FLR!\n");
5232 
5233 flr_done:
5234 	if (qm->fun_type == QM_HW_PF)
5235 		qm_cmd_init(qm);
5236 
5237 	if (qm_flr_reset_complete(pdev))
5238 		pci_info(pdev, "FLR reset complete\n");
5239 
5240 	qm_reset_bit_clear(qm);
5241 }
5242 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
5243 
5244 static irqreturn_t qm_abnormal_irq(int irq, void *data)
5245 {
5246 	struct hisi_qm *qm = data;
5247 	enum acc_err_result ret;
5248 
5249 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
5250 	ret = qm_process_dev_error(qm);
5251 	if (ret == ACC_ERR_NEED_RESET &&
5252 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
5253 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
5254 		schedule_work(&qm->rst_work);
5255 
5256 	return IRQ_HANDLED;
5257 }
5258 
5259 static int qm_irq_register(struct hisi_qm *qm)
5260 {
5261 	struct pci_dev *pdev = qm->pdev;
5262 	int ret;
5263 
5264 	ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR),
5265 			  qm_irq, 0, qm->dev_name, qm);
5266 	if (ret)
5267 		return ret;
5268 
5269 	if (qm->ver > QM_HW_V1) {
5270 		ret = request_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR),
5271 				  qm_aeq_irq, 0, qm->dev_name, qm);
5272 		if (ret)
5273 			goto err_aeq_irq;
5274 
5275 		if (qm->fun_type == QM_HW_PF) {
5276 			ret = request_irq(pci_irq_vector(pdev,
5277 					  QM_ABNORMAL_EVENT_IRQ_VECTOR),
5278 					  qm_abnormal_irq, 0, qm->dev_name, qm);
5279 			if (ret)
5280 				goto err_abonormal_irq;
5281 		}
5282 	}
5283 
5284 	if (qm->ver > QM_HW_V2) {
5285 		ret = request_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR),
5286 				qm_mb_cmd_irq, 0, qm->dev_name, qm);
5287 		if (ret)
5288 			goto err_mb_cmd_irq;
5289 	}
5290 
5291 	return 0;
5292 
5293 err_mb_cmd_irq:
5294 	if (qm->fun_type == QM_HW_PF)
5295 		free_irq(pci_irq_vector(pdev, QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
5296 err_abonormal_irq:
5297 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
5298 err_aeq_irq:
5299 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
5300 	return ret;
5301 }
5302 
5303 /**
5304  * hisi_qm_dev_shutdown() - Shutdown device.
5305  * @pdev: The device will be shutdown.
5306  *
5307  * This function will stop qm when OS shutdown or rebooting.
5308  */
5309 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
5310 {
5311 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5312 	int ret;
5313 
5314 	ret = hisi_qm_stop(qm, QM_NORMAL);
5315 	if (ret)
5316 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
5317 }
5318 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
5319 
5320 static void hisi_qm_controller_reset(struct work_struct *rst_work)
5321 {
5322 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
5323 	int ret;
5324 
5325 	ret = qm_pm_get_sync(qm);
5326 	if (ret) {
5327 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
5328 		return;
5329 	}
5330 
5331 	/* reset pcie device controller */
5332 	ret = qm_controller_reset(qm);
5333 	if (ret)
5334 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
5335 
5336 	qm_pm_put_sync(qm);
5337 }
5338 
5339 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
5340 				   enum qm_stop_reason stop_reason)
5341 {
5342 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
5343 	struct pci_dev *pdev = qm->pdev;
5344 	int ret;
5345 
5346 	ret = qm_reset_prepare_ready(qm);
5347 	if (ret) {
5348 		dev_err(&pdev->dev, "reset prepare not ready!\n");
5349 		atomic_set(&qm->status.flags, QM_STOP);
5350 		cmd = QM_VF_PREPARE_FAIL;
5351 		goto err_prepare;
5352 	}
5353 
5354 	ret = hisi_qm_stop(qm, stop_reason);
5355 	if (ret) {
5356 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
5357 		atomic_set(&qm->status.flags, QM_STOP);
5358 		cmd = QM_VF_PREPARE_FAIL;
5359 		goto err_prepare;
5360 	} else {
5361 		goto out;
5362 	}
5363 
5364 err_prepare:
5365 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
5366 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
5367 out:
5368 	pci_save_state(pdev);
5369 	ret = qm->ops->ping_pf(qm, cmd);
5370 	if (ret)
5371 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
5372 }
5373 
5374 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
5375 {
5376 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
5377 	struct pci_dev *pdev = qm->pdev;
5378 	int ret;
5379 
5380 	pci_restore_state(pdev);
5381 	ret = hisi_qm_start(qm);
5382 	if (ret) {
5383 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
5384 		cmd = QM_VF_START_FAIL;
5385 	}
5386 
5387 	ret = qm->ops->ping_pf(qm, cmd);
5388 	if (ret)
5389 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
5390 
5391 	qm_reset_bit_clear(qm);
5392 }
5393 
5394 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
5395 {
5396 	struct device *dev = &qm->pdev->dev;
5397 	u32 val, cmd;
5398 	u64 msg;
5399 	int ret;
5400 
5401 	/* Wait for reset to finish */
5402 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
5403 					 val == BIT(0), QM_VF_RESET_WAIT_US,
5404 					 QM_VF_RESET_WAIT_TIMEOUT_US);
5405 	/* hardware completion status should be available by this time */
5406 	if (ret) {
5407 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
5408 		return -ETIMEDOUT;
5409 	}
5410 
5411 	/*
5412 	 * Whether message is got successfully,
5413 	 * VF needs to ack PF by clearing the interrupt.
5414 	 */
5415 	ret = qm_get_mb_cmd(qm, &msg, 0);
5416 	qm_clear_cmd_interrupt(qm, 0);
5417 	if (ret) {
5418 		dev_err(dev, "failed to get msg from PF in reset done!\n");
5419 		return ret;
5420 	}
5421 
5422 	cmd = msg & QM_MB_CMD_DATA_MASK;
5423 	if (cmd != QM_PF_RESET_DONE) {
5424 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
5425 		ret = -EINVAL;
5426 	}
5427 
5428 	return ret;
5429 }
5430 
5431 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
5432 				   enum qm_stop_reason stop_reason)
5433 {
5434 	struct device *dev = &qm->pdev->dev;
5435 	int ret;
5436 
5437 	dev_info(dev, "device reset start...\n");
5438 
5439 	/* The message is obtained by querying the register during resetting */
5440 	qm_cmd_uninit(qm);
5441 	qm_pf_reset_vf_prepare(qm, stop_reason);
5442 
5443 	ret = qm_wait_pf_reset_finish(qm);
5444 	if (ret)
5445 		goto err_get_status;
5446 
5447 	qm_pf_reset_vf_done(qm);
5448 	qm_cmd_init(qm);
5449 
5450 	dev_info(dev, "device reset done.\n");
5451 
5452 	return;
5453 
5454 err_get_status:
5455 	qm_cmd_init(qm);
5456 	qm_reset_bit_clear(qm);
5457 }
5458 
5459 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
5460 {
5461 	struct device *dev = &qm->pdev->dev;
5462 	u64 msg;
5463 	u32 cmd;
5464 	int ret;
5465 
5466 	/*
5467 	 * Get the msg from source by sending mailbox. Whether message is got
5468 	 * successfully, destination needs to ack source by clearing the interrupt.
5469 	 */
5470 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
5471 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
5472 	if (ret) {
5473 		dev_err(dev, "failed to get msg from source!\n");
5474 		return;
5475 	}
5476 
5477 	cmd = msg & QM_MB_CMD_DATA_MASK;
5478 	switch (cmd) {
5479 	case QM_PF_FLR_PREPARE:
5480 		qm_pf_reset_vf_process(qm, QM_FLR);
5481 		break;
5482 	case QM_PF_SRST_PREPARE:
5483 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
5484 		break;
5485 	case QM_VF_GET_QOS:
5486 		qm_vf_get_qos(qm, fun_num);
5487 		break;
5488 	case QM_PF_SET_QOS:
5489 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
5490 		break;
5491 	default:
5492 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
5493 		break;
5494 	}
5495 }
5496 
5497 static void qm_cmd_process(struct work_struct *cmd_process)
5498 {
5499 	struct hisi_qm *qm = container_of(cmd_process,
5500 					struct hisi_qm, cmd_process);
5501 	u32 vfs_num = qm->vfs_num;
5502 	u64 val;
5503 	u32 i;
5504 
5505 	if (qm->fun_type == QM_HW_PF) {
5506 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
5507 		if (!val)
5508 			return;
5509 
5510 		for (i = 1; i <= vfs_num; i++) {
5511 			if (val & BIT(i))
5512 				qm_handle_cmd_msg(qm, i);
5513 		}
5514 
5515 		return;
5516 	}
5517 
5518 	qm_handle_cmd_msg(qm, 0);
5519 }
5520 
5521 /**
5522  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
5523  * @qm: The qm needs add.
5524  * @qm_list: The qm list.
5525  *
5526  * This function adds qm to qm list, and will register algorithm to
5527  * crypto when the qm list is empty.
5528  */
5529 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
5530 {
5531 	struct device *dev = &qm->pdev->dev;
5532 	int flag = 0;
5533 	int ret = 0;
5534 
5535 	mutex_lock(&qm_list->lock);
5536 	if (list_empty(&qm_list->list))
5537 		flag = 1;
5538 	list_add_tail(&qm->list, &qm_list->list);
5539 	mutex_unlock(&qm_list->lock);
5540 
5541 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
5542 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
5543 		return 0;
5544 	}
5545 
5546 	if (flag) {
5547 		ret = qm_list->register_to_crypto(qm);
5548 		if (ret) {
5549 			mutex_lock(&qm_list->lock);
5550 			list_del(&qm->list);
5551 			mutex_unlock(&qm_list->lock);
5552 		}
5553 	}
5554 
5555 	return ret;
5556 }
5557 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
5558 
5559 /**
5560  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
5561  * qm list.
5562  * @qm: The qm needs delete.
5563  * @qm_list: The qm list.
5564  *
5565  * This function deletes qm from qm list, and will unregister algorithm
5566  * from crypto when the qm list is empty.
5567  */
5568 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
5569 {
5570 	mutex_lock(&qm_list->lock);
5571 	list_del(&qm->list);
5572 	mutex_unlock(&qm_list->lock);
5573 
5574 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
5575 		return;
5576 
5577 	if (list_empty(&qm_list->list))
5578 		qm_list->unregister_from_crypto(qm);
5579 }
5580 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
5581 
5582 static int qm_get_qp_num(struct hisi_qm *qm)
5583 {
5584 	if (qm->ver == QM_HW_V1)
5585 		qm->ctrl_qp_num = QM_QNUM_V1;
5586 	else if (qm->ver == QM_HW_V2)
5587 		qm->ctrl_qp_num = QM_QNUM_V2;
5588 	else
5589 		qm->ctrl_qp_num = readl(qm->io_base + QM_CAPBILITY) &
5590 					QM_QP_NUN_MASK;
5591 
5592 	if (qm->use_db_isolation)
5593 		qm->max_qp_num = (readl(qm->io_base + QM_CAPBILITY) >>
5594 				  QM_QP_MAX_NUM_SHIFT) & QM_QP_NUN_MASK;
5595 	else
5596 		qm->max_qp_num = qm->ctrl_qp_num;
5597 
5598 	/* check if qp number is valid */
5599 	if (qm->qp_num > qm->max_qp_num) {
5600 		dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n",
5601 			qm->qp_num, qm->max_qp_num);
5602 		return -EINVAL;
5603 	}
5604 
5605 	return 0;
5606 }
5607 
5608 static int qm_get_pci_res(struct hisi_qm *qm)
5609 {
5610 	struct pci_dev *pdev = qm->pdev;
5611 	struct device *dev = &pdev->dev;
5612 	int ret;
5613 
5614 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5615 	if (ret < 0) {
5616 		dev_err(dev, "Failed to request mem regions!\n");
5617 		return ret;
5618 	}
5619 
5620 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5621 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5622 	if (!qm->io_base) {
5623 		ret = -EIO;
5624 		goto err_request_mem_regions;
5625 	}
5626 
5627 	if (qm->ver > QM_HW_V2) {
5628 		if (qm->fun_type == QM_HW_PF)
5629 			qm->use_db_isolation = readl(qm->io_base +
5630 						     QM_QUE_ISO_EN) & BIT(0);
5631 		else
5632 			qm->use_db_isolation = readl(qm->io_base +
5633 						     QM_QUE_ISO_CFG_V) & BIT(0);
5634 	}
5635 
5636 	if (qm->use_db_isolation) {
5637 		qm->db_interval = QM_QP_DB_INTERVAL;
5638 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5639 		qm->db_io_base = ioremap(qm->db_phys_base,
5640 					 pci_resource_len(pdev, PCI_BAR_4));
5641 		if (!qm->db_io_base) {
5642 			ret = -EIO;
5643 			goto err_ioremap;
5644 		}
5645 	} else {
5646 		qm->db_phys_base = qm->phys_base;
5647 		qm->db_io_base = qm->io_base;
5648 		qm->db_interval = 0;
5649 	}
5650 
5651 	if (qm->fun_type == QM_HW_PF) {
5652 		ret = qm_get_qp_num(qm);
5653 		if (ret)
5654 			goto err_db_ioremap;
5655 	}
5656 
5657 	return 0;
5658 
5659 err_db_ioremap:
5660 	if (qm->use_db_isolation)
5661 		iounmap(qm->db_io_base);
5662 err_ioremap:
5663 	iounmap(qm->io_base);
5664 err_request_mem_regions:
5665 	pci_release_mem_regions(pdev);
5666 	return ret;
5667 }
5668 
5669 static int hisi_qm_pci_init(struct hisi_qm *qm)
5670 {
5671 	struct pci_dev *pdev = qm->pdev;
5672 	struct device *dev = &pdev->dev;
5673 	unsigned int num_vec;
5674 	int ret;
5675 
5676 	ret = pci_enable_device_mem(pdev);
5677 	if (ret < 0) {
5678 		dev_err(dev, "Failed to enable device mem!\n");
5679 		return ret;
5680 	}
5681 
5682 	ret = qm_get_pci_res(qm);
5683 	if (ret)
5684 		goto err_disable_pcidev;
5685 
5686 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5687 	if (ret < 0)
5688 		goto err_get_pci_res;
5689 	pci_set_master(pdev);
5690 
5691 	if (!qm->ops->get_irq_num) {
5692 		ret = -EOPNOTSUPP;
5693 		goto err_get_pci_res;
5694 	}
5695 	num_vec = qm->ops->get_irq_num(qm);
5696 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5697 	if (ret < 0) {
5698 		dev_err(dev, "Failed to enable MSI vectors!\n");
5699 		goto err_get_pci_res;
5700 	}
5701 
5702 	return 0;
5703 
5704 err_get_pci_res:
5705 	qm_put_pci_res(qm);
5706 err_disable_pcidev:
5707 	pci_disable_device(pdev);
5708 	return ret;
5709 }
5710 
5711 static void hisi_qm_init_work(struct hisi_qm *qm)
5712 {
5713 	INIT_WORK(&qm->work, qm_work_process);
5714 	if (qm->fun_type == QM_HW_PF)
5715 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5716 
5717 	if (qm->ver > QM_HW_V2)
5718 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5719 }
5720 
5721 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5722 {
5723 	struct device *dev = &qm->pdev->dev;
5724 	size_t qp_dma_size;
5725 	int i, ret;
5726 
5727 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5728 	if (!qm->qp_array)
5729 		return -ENOMEM;
5730 
5731 	/* one more page for device or qp statuses */
5732 	qp_dma_size = qm->sqe_size * QM_Q_DEPTH +
5733 		      sizeof(struct qm_cqe) * QM_Q_DEPTH;
5734 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5735 	for (i = 0; i < qm->qp_num; i++) {
5736 		ret = hisi_qp_memory_init(qm, qp_dma_size, i);
5737 		if (ret)
5738 			goto err_init_qp_mem;
5739 
5740 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5741 	}
5742 
5743 	return 0;
5744 err_init_qp_mem:
5745 	hisi_qp_memory_uninit(qm, i);
5746 
5747 	return ret;
5748 }
5749 
5750 static int hisi_qm_memory_init(struct hisi_qm *qm)
5751 {
5752 	struct device *dev = &qm->pdev->dev;
5753 	int ret, total_vfs;
5754 	size_t off = 0;
5755 
5756 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
5757 	qm->factor = kcalloc(total_vfs + 1, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5758 	if (!qm->factor)
5759 		return -ENOMEM;
5760 
5761 #define QM_INIT_BUF(qm, type, num) do { \
5762 	(qm)->type = ((qm)->qdma.va + (off)); \
5763 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5764 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5765 } while (0)
5766 
5767 	idr_init(&qm->qp_idr);
5768 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) +
5769 			QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) +
5770 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5771 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5772 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5773 					 GFP_ATOMIC);
5774 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5775 	if (!qm->qdma.va) {
5776 		ret =  -ENOMEM;
5777 		goto err_alloc_qdma;
5778 	}
5779 
5780 	QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH);
5781 	QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH);
5782 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5783 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5784 
5785 	ret = hisi_qp_alloc_memory(qm);
5786 	if (ret)
5787 		goto err_alloc_qp_array;
5788 
5789 	return 0;
5790 
5791 err_alloc_qp_array:
5792 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5793 err_alloc_qdma:
5794 	kfree(qm->factor);
5795 
5796 	return ret;
5797 }
5798 
5799 /**
5800  * hisi_qm_init() - Initialize configures about qm.
5801  * @qm: The qm needing init.
5802  *
5803  * This function init qm, then we can call hisi_qm_start to put qm into work.
5804  */
5805 int hisi_qm_init(struct hisi_qm *qm)
5806 {
5807 	struct pci_dev *pdev = qm->pdev;
5808 	struct device *dev = &pdev->dev;
5809 	int ret;
5810 
5811 	hisi_qm_pre_init(qm);
5812 
5813 	ret = hisi_qm_pci_init(qm);
5814 	if (ret)
5815 		return ret;
5816 
5817 	ret = qm_irq_register(qm);
5818 	if (ret)
5819 		goto err_pci_init;
5820 
5821 	if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) {
5822 		/* v2 starts to support get vft by mailbox */
5823 		ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
5824 		if (ret)
5825 			goto err_irq_register;
5826 	}
5827 
5828 	if (qm->mode == UACCE_MODE_SVA) {
5829 		ret = qm_alloc_uacce(qm);
5830 		if (ret < 0)
5831 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5832 	}
5833 
5834 	ret = hisi_qm_memory_init(qm);
5835 	if (ret)
5836 		goto err_alloc_uacce;
5837 
5838 	hisi_qm_init_work(qm);
5839 	qm_cmd_init(qm);
5840 	atomic_set(&qm->status.flags, QM_INIT);
5841 
5842 	return 0;
5843 
5844 err_alloc_uacce:
5845 	if (qm->use_sva) {
5846 		uacce_remove(qm->uacce);
5847 		qm->uacce = NULL;
5848 	}
5849 err_irq_register:
5850 	qm_irq_unregister(qm);
5851 err_pci_init:
5852 	hisi_qm_pci_uninit(qm);
5853 	return ret;
5854 }
5855 EXPORT_SYMBOL_GPL(hisi_qm_init);
5856 
5857 /**
5858  * hisi_qm_get_dfx_access() - Try to get dfx access.
5859  * @qm: pointer to accelerator device.
5860  *
5861  * Try to get dfx access, then user can get message.
5862  *
5863  * If device is in suspended, return failure, otherwise
5864  * bump up the runtime PM usage counter.
5865  */
5866 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5867 {
5868 	struct device *dev = &qm->pdev->dev;
5869 
5870 	if (pm_runtime_suspended(dev)) {
5871 		dev_info(dev, "can not read/write - device in suspended.\n");
5872 		return -EAGAIN;
5873 	}
5874 
5875 	return qm_pm_get_sync(qm);
5876 }
5877 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5878 
5879 /**
5880  * hisi_qm_put_dfx_access() - Put dfx access.
5881  * @qm: pointer to accelerator device.
5882  *
5883  * Put dfx access, drop runtime PM usage counter.
5884  */
5885 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5886 {
5887 	qm_pm_put_sync(qm);
5888 }
5889 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5890 
5891 /**
5892  * hisi_qm_pm_init() - Initialize qm runtime PM.
5893  * @qm: pointer to accelerator device.
5894  *
5895  * Function that initialize qm runtime PM.
5896  */
5897 void hisi_qm_pm_init(struct hisi_qm *qm)
5898 {
5899 	struct device *dev = &qm->pdev->dev;
5900 
5901 	if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3)
5902 		return;
5903 
5904 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5905 	pm_runtime_use_autosuspend(dev);
5906 	pm_runtime_put_noidle(dev);
5907 }
5908 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5909 
5910 /**
5911  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5912  * @qm: pointer to accelerator device.
5913  *
5914  * Function that uninitialize qm runtime PM.
5915  */
5916 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5917 {
5918 	struct device *dev = &qm->pdev->dev;
5919 
5920 	if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3)
5921 		return;
5922 
5923 	pm_runtime_get_noresume(dev);
5924 	pm_runtime_dont_use_autosuspend(dev);
5925 }
5926 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5927 
5928 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5929 {
5930 	struct pci_dev *pdev = qm->pdev;
5931 	int ret;
5932 	u32 val;
5933 
5934 	ret = qm->ops->set_msi(qm, false);
5935 	if (ret) {
5936 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5937 		return ret;
5938 	}
5939 
5940 	/* shutdown OOO register */
5941 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
5942 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5943 
5944 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
5945 					 val,
5946 					 (val == ACC_MASTER_TRANS_RETURN_RW),
5947 					 POLL_PERIOD, POLL_TIMEOUT);
5948 	if (ret) {
5949 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
5950 		return ret;
5951 	}
5952 
5953 	ret = qm_set_pf_mse(qm, false);
5954 	if (ret)
5955 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5956 
5957 	return ret;
5958 }
5959 
5960 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5961 {
5962 	struct pci_dev *pdev = qm->pdev;
5963 	int ret;
5964 
5965 	ret = qm_set_pf_mse(qm, true);
5966 	if (ret) {
5967 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5968 		return ret;
5969 	}
5970 
5971 	ret = qm->ops->set_msi(qm, true);
5972 	if (ret) {
5973 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5974 		return ret;
5975 	}
5976 
5977 	ret = qm_dev_hw_init(qm);
5978 	if (ret) {
5979 		pci_err(pdev, "failed to init device after resuming\n");
5980 		return ret;
5981 	}
5982 
5983 	qm_cmd_init(qm);
5984 	hisi_qm_dev_err_init(qm);
5985 
5986 	return 0;
5987 }
5988 
5989 /**
5990  * hisi_qm_suspend() - Runtime suspend of given device.
5991  * @dev: device to suspend.
5992  *
5993  * Function that suspend the device.
5994  */
5995 int hisi_qm_suspend(struct device *dev)
5996 {
5997 	struct pci_dev *pdev = to_pci_dev(dev);
5998 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5999 	int ret;
6000 
6001 	pci_info(pdev, "entering suspended state\n");
6002 
6003 	ret = hisi_qm_stop(qm, QM_NORMAL);
6004 	if (ret) {
6005 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
6006 		return ret;
6007 	}
6008 
6009 	ret = qm_prepare_for_suspend(qm);
6010 	if (ret)
6011 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
6012 
6013 	return ret;
6014 }
6015 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
6016 
6017 /**
6018  * hisi_qm_resume() - Runtime resume of given device.
6019  * @dev: device to resume.
6020  *
6021  * Function that resume the device.
6022  */
6023 int hisi_qm_resume(struct device *dev)
6024 {
6025 	struct pci_dev *pdev = to_pci_dev(dev);
6026 	struct hisi_qm *qm = pci_get_drvdata(pdev);
6027 	int ret;
6028 
6029 	pci_info(pdev, "resuming from suspend state\n");
6030 
6031 	ret = qm_rebuild_for_resume(qm);
6032 	if (ret) {
6033 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
6034 		return ret;
6035 	}
6036 
6037 	ret = hisi_qm_start(qm);
6038 	if (ret)
6039 		pci_err(pdev, "failed to start qm(%d)\n", ret);
6040 
6041 	return 0;
6042 }
6043 EXPORT_SYMBOL_GPL(hisi_qm_resume);
6044 
6045 MODULE_LICENSE("GPL v2");
6046 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
6047 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
6048