xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision dbb153c0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/debugfs.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/idr.h>
10 #include <linux/io.h>
11 #include <linux/irqreturn.h>
12 #include <linux/log2.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include "qm.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 #define QM_IRQ_NUM_V1			1
26 #define QM_IRQ_NUM_PF_V2		4
27 #define QM_IRQ_NUM_VF_V2		2
28 
29 #define QM_EQ_EVENT_IRQ_VECTOR		0
30 #define QM_AEQ_EVENT_IRQ_VECTOR		1
31 #define QM_ABNORMAL_EVENT_IRQ_VECTOR	3
32 
33 /* mailbox */
34 #define QM_MB_CMD_SQC			0x0
35 #define QM_MB_CMD_CQC			0x1
36 #define QM_MB_CMD_EQC			0x2
37 #define QM_MB_CMD_AEQC			0x3
38 #define QM_MB_CMD_SQC_BT		0x4
39 #define QM_MB_CMD_CQC_BT		0x5
40 #define QM_MB_CMD_SQC_VFT_V2		0x6
41 
42 #define QM_MB_CMD_SEND_BASE		0x300
43 #define QM_MB_EVENT_SHIFT		8
44 #define QM_MB_BUSY_SHIFT		13
45 #define QM_MB_OP_SHIFT			14
46 #define QM_MB_CMD_DATA_ADDR_L		0x304
47 #define QM_MB_CMD_DATA_ADDR_H		0x308
48 
49 /* sqc shift */
50 #define QM_SQ_HOP_NUM_SHIFT		0
51 #define QM_SQ_PAGE_SIZE_SHIFT		4
52 #define QM_SQ_BUF_SIZE_SHIFT		8
53 #define QM_SQ_SQE_SIZE_SHIFT		12
54 #define QM_SQ_PRIORITY_SHIFT		0
55 #define QM_SQ_ORDERS_SHIFT		4
56 #define QM_SQ_TYPE_SHIFT		8
57 #define QM_QC_PASID_ENABLE		0x1
58 #define QM_QC_PASID_ENABLE_SHIFT	7
59 
60 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
61 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
62 
63 /* cqc shift */
64 #define QM_CQ_HOP_NUM_SHIFT		0
65 #define QM_CQ_PAGE_SIZE_SHIFT		4
66 #define QM_CQ_BUF_SIZE_SHIFT		8
67 #define QM_CQ_CQE_SIZE_SHIFT		12
68 #define QM_CQ_PHASE_SHIFT		0
69 #define QM_CQ_FLAG_SHIFT		1
70 
71 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
72 #define QM_QC_CQE_SIZE			4
73 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
74 
75 /* eqc shift */
76 #define QM_EQE_AEQE_SIZE		(2UL << 12)
77 #define QM_EQC_PHASE_SHIFT		16
78 
79 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
80 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
81 
82 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
83 #define QM_AEQE_TYPE_SHIFT		17
84 
85 #define QM_DOORBELL_CMD_SQ		0
86 #define QM_DOORBELL_CMD_CQ		1
87 #define QM_DOORBELL_CMD_EQ		2
88 #define QM_DOORBELL_CMD_AEQ		3
89 
90 #define QM_DOORBELL_BASE_V1		0x340
91 #define QM_DB_CMD_SHIFT_V1		16
92 #define QM_DB_INDEX_SHIFT_V1		32
93 #define QM_DB_PRIORITY_SHIFT_V1		48
94 #define QM_DOORBELL_SQ_CQ_BASE_V2	0x1000
95 #define QM_DOORBELL_EQ_AEQ_BASE_V2	0x2000
96 #define QM_QUE_ISO_CFG_V		0x0030
97 #define QM_QUE_ISO_EN			0x100154
98 #define QM_CAPBILITY			0x100158
99 #define QM_QP_NUN_MASK			GENMASK(10, 0)
100 #define QM_QP_DB_INTERVAL		0x10000
101 #define QM_QP_MAX_NUM_SHIFT		11
102 #define QM_DB_CMD_SHIFT_V2		12
103 #define QM_DB_RAND_SHIFT_V2		16
104 #define QM_DB_INDEX_SHIFT_V2		32
105 #define QM_DB_PRIORITY_SHIFT_V2		48
106 
107 #define QM_MEM_START_INIT		0x100040
108 #define QM_MEM_INIT_DONE		0x100044
109 #define QM_VFT_CFG_RDY			0x10006c
110 #define QM_VFT_CFG_OP_WR		0x100058
111 #define QM_VFT_CFG_TYPE			0x10005c
112 #define QM_SQC_VFT			0x0
113 #define QM_CQC_VFT			0x1
114 #define QM_VFT_CFG			0x100060
115 #define QM_VFT_CFG_OP_ENABLE		0x100054
116 
117 #define QM_VFT_CFG_DATA_L		0x100064
118 #define QM_VFT_CFG_DATA_H		0x100068
119 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
120 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
121 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
122 #define QM_SQC_VFT_START_SQN_SHIFT	28
123 #define QM_SQC_VFT_VALID		(1ULL << 44)
124 #define QM_SQC_VFT_SQN_SHIFT		45
125 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
126 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
127 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
128 #define QM_CQC_VFT_VALID		(1ULL << 28)
129 
130 #define QM_SQC_VFT_BASE_SHIFT_V2	28
131 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
132 #define QM_SQC_VFT_NUM_SHIFT_V2		45
133 #define QM_SQC_VFT_NUM_MASK_v2		GENMASK(9, 0)
134 
135 #define QM_DFX_CNT_CLR_CE		0x100118
136 
137 #define QM_ABNORMAL_INT_SOURCE		0x100000
138 #define QM_ABNORMAL_INT_SOURCE_CLR	GENMASK(12, 0)
139 #define QM_ABNORMAL_INT_MASK		0x100004
140 #define QM_ABNORMAL_INT_MASK_VALUE	0x1fff
141 #define QM_ABNORMAL_INT_STATUS		0x100008
142 #define QM_ABNORMAL_INT_SET		0x10000c
143 #define QM_ABNORMAL_INF00		0x100010
144 #define QM_FIFO_OVERFLOW_TYPE		0xc0
145 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
146 #define QM_FIFO_OVERFLOW_VF		0x3f
147 #define QM_ABNORMAL_INF01		0x100014
148 #define QM_DB_TIMEOUT_TYPE		0xc0
149 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
150 #define QM_DB_TIMEOUT_VF		0x3f
151 #define QM_RAS_CE_ENABLE		0x1000ec
152 #define QM_RAS_FE_ENABLE		0x1000f0
153 #define QM_RAS_NFE_ENABLE		0x1000f4
154 #define QM_RAS_CE_THRESHOLD		0x1000f8
155 #define QM_RAS_CE_TIMES_PER_IRQ		1
156 #define QM_RAS_MSI_INT_SEL		0x1040f4
157 
158 #define QM_RESET_WAIT_TIMEOUT		400
159 #define QM_PEH_VENDOR_ID		0x1000d8
160 #define ACC_VENDOR_ID_VALUE		0x5a5a
161 #define QM_PEH_DFX_INFO0		0x1000fc
162 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
163 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
164 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
165 #define ACC_MASTER_TRANS_RETURN_RW	3
166 #define ACC_MASTER_TRANS_RETURN		0x300150
167 #define ACC_MASTER_GLOBAL_CTRL		0x300000
168 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
169 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
170 #define ACC_AM_ROB_ECC_INT_STS		0x300104
171 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
172 
173 #define QM_DFX_MB_CNT_VF		0x104010
174 #define QM_DFX_DB_CNT_VF		0x104020
175 #define QM_DFX_SQE_CNT_VF_SQN		0x104030
176 #define QM_DFX_CQE_CNT_VF_CQN		0x104040
177 #define QM_DFX_QN_SHIFT			16
178 #define CURRENT_FUN_MASK		GENMASK(5, 0)
179 #define CURRENT_Q_MASK			GENMASK(31, 16)
180 
181 #define POLL_PERIOD			10
182 #define POLL_TIMEOUT			1000
183 #define WAIT_PERIOD_US_MAX		200
184 #define WAIT_PERIOD_US_MIN		100
185 #define MAX_WAIT_COUNTS			1000
186 #define QM_CACHE_WB_START		0x204
187 #define QM_CACHE_WB_DONE		0x208
188 
189 #define PCI_BAR_2			2
190 #define PCI_BAR_4			4
191 #define QM_SQE_DATA_ALIGN_MASK		GENMASK(6, 0)
192 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
193 
194 #define QM_DBG_READ_LEN		256
195 #define QM_DBG_WRITE_LEN		1024
196 #define QM_DBG_TMP_BUF_LEN		22
197 #define QM_PCI_COMMAND_INVALID		~0
198 
199 #define WAIT_PERIOD			20
200 #define REMOVE_WAIT_DELAY		10
201 #define QM_SQE_ADDR_MASK		GENMASK(7, 0)
202 #define QM_EQ_DEPTH			(1024 * 2)
203 
204 #define QM_DRIVER_REMOVING		0
205 #define QM_RST_SCHED			1
206 #define QM_RESETTING			2
207 
208 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
209 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT)	| \
210 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT)	| \
211 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT)	| \
212 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
213 
214 #define QM_MK_CQC_DW3_V2(cqe_sz) \
215 	((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
216 
217 #define QM_MK_SQC_W13(priority, orders, alg_type) \
218 	(((priority) << QM_SQ_PRIORITY_SHIFT)	| \
219 	((orders) << QM_SQ_ORDERS_SHIFT)	| \
220 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
221 
222 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
223 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT)	| \
224 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT)	| \
225 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT)	| \
226 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
227 
228 #define QM_MK_SQC_DW3_V2(sqe_sz) \
229 	((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
230 
231 #define INIT_QC_COMMON(qc, base, pasid) do {			\
232 	(qc)->head = 0;						\
233 	(qc)->tail = 0;						\
234 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
235 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
236 	(qc)->dw3 = 0;						\
237 	(qc)->w8 = 0;						\
238 	(qc)->rsvd0 = 0;					\
239 	(qc)->pasid = cpu_to_le16(pasid);			\
240 	(qc)->w11 = 0;						\
241 	(qc)->rsvd1 = 0;					\
242 } while (0)
243 
244 enum vft_type {
245 	SQC_VFT = 0,
246 	CQC_VFT,
247 };
248 
249 enum acc_err_result {
250 	ACC_ERR_NONE,
251 	ACC_ERR_NEED_RESET,
252 	ACC_ERR_RECOVERED,
253 };
254 
255 struct qm_cqe {
256 	__le32 rsvd0;
257 	__le16 cmd_id;
258 	__le16 rsvd1;
259 	__le16 sq_head;
260 	__le16 sq_num;
261 	__le16 rsvd2;
262 	__le16 w7;
263 };
264 
265 struct qm_eqe {
266 	__le32 dw0;
267 };
268 
269 struct qm_aeqe {
270 	__le32 dw0;
271 };
272 
273 struct qm_sqc {
274 	__le16 head;
275 	__le16 tail;
276 	__le32 base_l;
277 	__le32 base_h;
278 	__le32 dw3;
279 	__le16 w8;
280 	__le16 rsvd0;
281 	__le16 pasid;
282 	__le16 w11;
283 	__le16 cq_num;
284 	__le16 w13;
285 	__le32 rsvd1;
286 };
287 
288 struct qm_cqc {
289 	__le16 head;
290 	__le16 tail;
291 	__le32 base_l;
292 	__le32 base_h;
293 	__le32 dw3;
294 	__le16 w8;
295 	__le16 rsvd0;
296 	__le16 pasid;
297 	__le16 w11;
298 	__le32 dw6;
299 	__le32 rsvd1;
300 };
301 
302 struct qm_eqc {
303 	__le16 head;
304 	__le16 tail;
305 	__le32 base_l;
306 	__le32 base_h;
307 	__le32 dw3;
308 	__le32 rsvd[2];
309 	__le32 dw6;
310 };
311 
312 struct qm_aeqc {
313 	__le16 head;
314 	__le16 tail;
315 	__le32 base_l;
316 	__le32 base_h;
317 	__le32 dw3;
318 	__le32 rsvd[2];
319 	__le32 dw6;
320 };
321 
322 struct qm_mailbox {
323 	__le16 w0;
324 	__le16 queue_num;
325 	__le32 base_l;
326 	__le32 base_h;
327 	__le32 rsvd;
328 };
329 
330 struct qm_doorbell {
331 	__le16 queue_num;
332 	__le16 cmd;
333 	__le16 index;
334 	__le16 priority;
335 };
336 
337 struct hisi_qm_resource {
338 	struct hisi_qm *qm;
339 	int distance;
340 	struct list_head list;
341 };
342 
343 struct hisi_qm_hw_ops {
344 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
345 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
346 		      u8 cmd, u16 index, u8 priority);
347 	u32 (*get_irq_num)(struct hisi_qm *qm);
348 	int (*debug_init)(struct hisi_qm *qm);
349 	void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe);
350 	void (*hw_error_uninit)(struct hisi_qm *qm);
351 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
352 };
353 
354 struct qm_dfx_item {
355 	const char *name;
356 	u32 offset;
357 };
358 
359 static struct qm_dfx_item qm_dfx_files[] = {
360 	{"err_irq", offsetof(struct qm_dfx, err_irq_cnt)},
361 	{"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)},
362 	{"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)},
363 	{"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)},
364 	{"mb_err", offsetof(struct qm_dfx, mb_err_cnt)},
365 };
366 
367 static const char * const qm_debug_file_name[] = {
368 	[CURRENT_QM]   = "current_qm",
369 	[CURRENT_Q]    = "current_q",
370 	[CLEAR_ENABLE] = "clear_enable",
371 };
372 
373 struct hisi_qm_hw_error {
374 	u32 int_msk;
375 	const char *msg;
376 };
377 
378 static const struct hisi_qm_hw_error qm_hw_error[] = {
379 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
380 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
381 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
382 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
383 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
384 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
385 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
386 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
387 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
388 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
389 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
390 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
391 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
392 	{ /* sentinel */ }
393 };
394 
395 static const char * const qm_db_timeout[] = {
396 	"sq", "cq", "eq", "aeq",
397 };
398 
399 static const char * const qm_fifo_overflow[] = {
400 	"cq", "eq", "aeq",
401 };
402 
403 static const char * const qm_s[] = {
404 	"init", "start", "close", "stop",
405 };
406 
407 static const char * const qp_s[] = {
408 	"none", "init", "start", "stop", "close",
409 };
410 
411 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
412 {
413 	enum qm_state curr = atomic_read(&qm->status.flags);
414 	bool avail = false;
415 
416 	switch (curr) {
417 	case QM_INIT:
418 		if (new == QM_START || new == QM_CLOSE)
419 			avail = true;
420 		break;
421 	case QM_START:
422 		if (new == QM_STOP)
423 			avail = true;
424 		break;
425 	case QM_STOP:
426 		if (new == QM_CLOSE || new == QM_START)
427 			avail = true;
428 		break;
429 	default:
430 		break;
431 	}
432 
433 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
434 		qm_s[curr], qm_s[new]);
435 
436 	if (!avail)
437 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
438 			 qm_s[curr], qm_s[new]);
439 
440 	return avail;
441 }
442 
443 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
444 			      enum qp_state new)
445 {
446 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
447 	enum qp_state qp_curr = 0;
448 	bool avail = false;
449 
450 	if (qp)
451 		qp_curr = atomic_read(&qp->qp_status.flags);
452 
453 	switch (new) {
454 	case QP_INIT:
455 		if (qm_curr == QM_START || qm_curr == QM_INIT)
456 			avail = true;
457 		break;
458 	case QP_START:
459 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
460 		    (qm_curr == QM_START && qp_curr == QP_STOP))
461 			avail = true;
462 		break;
463 	case QP_STOP:
464 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
465 		    (qp_curr == QP_INIT))
466 			avail = true;
467 		break;
468 	case QP_CLOSE:
469 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
470 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
471 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
472 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
473 			avail = true;
474 		break;
475 	default:
476 		break;
477 	}
478 
479 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
480 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
481 
482 	if (!avail)
483 		dev_warn(&qm->pdev->dev,
484 			 "Can not change qp state from %s to %s in QM %s\n",
485 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
486 
487 	return avail;
488 }
489 
490 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
491 static int qm_wait_mb_ready(struct hisi_qm *qm)
492 {
493 	u32 val;
494 
495 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
496 					  val, !((val >> QM_MB_BUSY_SHIFT) &
497 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
498 }
499 
500 /* 128 bit should be written to hardware at one time to trigger a mailbox */
501 static void qm_mb_write(struct hisi_qm *qm, const void *src)
502 {
503 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
504 	unsigned long tmp0 = 0, tmp1 = 0;
505 
506 	if (!IS_ENABLED(CONFIG_ARM64)) {
507 		memcpy_toio(fun_base, src, 16);
508 		wmb();
509 		return;
510 	}
511 
512 	asm volatile("ldp %0, %1, %3\n"
513 		     "stp %0, %1, %2\n"
514 		     "dsb sy\n"
515 		     : "=&r" (tmp0),
516 		       "=&r" (tmp1),
517 		       "+Q" (*((char __iomem *)fun_base))
518 		     : "Q" (*((char *)src))
519 		     : "memory");
520 }
521 
522 static int qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
523 		 bool op)
524 {
525 	struct qm_mailbox mailbox;
526 	int ret = 0;
527 
528 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
529 		queue, cmd, (unsigned long long)dma_addr);
530 
531 	mailbox.w0 = cpu_to_le16(cmd |
532 		     (op ? 0x1 << QM_MB_OP_SHIFT : 0) |
533 		     (0x1 << QM_MB_BUSY_SHIFT));
534 	mailbox.queue_num = cpu_to_le16(queue);
535 	mailbox.base_l = cpu_to_le32(lower_32_bits(dma_addr));
536 	mailbox.base_h = cpu_to_le32(upper_32_bits(dma_addr));
537 	mailbox.rsvd = 0;
538 
539 	mutex_lock(&qm->mailbox_lock);
540 
541 	if (unlikely(qm_wait_mb_ready(qm))) {
542 		ret = -EBUSY;
543 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
544 		goto busy_unlock;
545 	}
546 
547 	qm_mb_write(qm, &mailbox);
548 
549 	if (unlikely(qm_wait_mb_ready(qm))) {
550 		ret = -EBUSY;
551 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
552 		goto busy_unlock;
553 	}
554 
555 busy_unlock:
556 	mutex_unlock(&qm->mailbox_lock);
557 
558 	if (ret)
559 		atomic64_inc(&qm->debug.dfx.mb_err_cnt);
560 	return ret;
561 }
562 
563 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
564 {
565 	u64 doorbell;
566 
567 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
568 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
569 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
570 
571 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
572 }
573 
574 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
575 {
576 	void __iomem *io_base = qm->io_base;
577 	u16 randata = 0;
578 	u64 doorbell;
579 
580 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
581 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
582 			  QM_DOORBELL_SQ_CQ_BASE_V2;
583 	else
584 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
585 
586 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
587 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
588 		   ((u64)index << QM_DB_INDEX_SHIFT_V2)	 |
589 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
590 
591 	writeq(doorbell, io_base);
592 }
593 
594 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
595 {
596 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
597 		qn, cmd, index);
598 
599 	qm->ops->qm_db(qm, qn, cmd, index, priority);
600 }
601 
602 static int qm_dev_mem_reset(struct hisi_qm *qm)
603 {
604 	u32 val;
605 
606 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
607 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
608 					  val & BIT(0), POLL_PERIOD,
609 					  POLL_TIMEOUT);
610 }
611 
612 static u32 qm_get_irq_num_v1(struct hisi_qm *qm)
613 {
614 	return QM_IRQ_NUM_V1;
615 }
616 
617 static u32 qm_get_irq_num_v2(struct hisi_qm *qm)
618 {
619 	if (qm->fun_type == QM_HW_PF)
620 		return QM_IRQ_NUM_PF_V2;
621 	else
622 		return QM_IRQ_NUM_VF_V2;
623 }
624 
625 static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe)
626 {
627 	u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
628 
629 	return &qm->qp_array[cqn];
630 }
631 
632 static void qm_cq_head_update(struct hisi_qp *qp)
633 {
634 	if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) {
635 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
636 		qp->qp_status.cq_head = 0;
637 	} else {
638 		qp->qp_status.cq_head++;
639 	}
640 }
641 
642 static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm)
643 {
644 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
645 		return;
646 
647 	if (qp->event_cb) {
648 		qp->event_cb(qp);
649 		return;
650 	}
651 
652 	if (qp->req_cb) {
653 		struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
654 
655 		while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
656 			dma_rmb();
657 			qp->req_cb(qp, qp->sqe + qm->sqe_size *
658 				   le16_to_cpu(cqe->sq_head));
659 			qm_cq_head_update(qp);
660 			cqe = qp->cqe + qp->qp_status.cq_head;
661 			qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
662 			      qp->qp_status.cq_head, 0);
663 			atomic_dec(&qp->qp_status.used);
664 		}
665 
666 		/* set c_flag */
667 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
668 		      qp->qp_status.cq_head, 1);
669 	}
670 }
671 
672 static void qm_work_process(struct work_struct *work)
673 {
674 	struct hisi_qm *qm = container_of(work, struct hisi_qm, work);
675 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
676 	struct hisi_qp *qp;
677 	int eqe_num = 0;
678 
679 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
680 		eqe_num++;
681 		qp = qm_to_hisi_qp(qm, eqe);
682 		qm_poll_qp(qp, qm);
683 
684 		if (qm->status.eq_head == QM_EQ_DEPTH - 1) {
685 			qm->status.eqc_phase = !qm->status.eqc_phase;
686 			eqe = qm->eqe;
687 			qm->status.eq_head = 0;
688 		} else {
689 			eqe++;
690 			qm->status.eq_head++;
691 		}
692 
693 		if (eqe_num == QM_EQ_DEPTH / 2 - 1) {
694 			eqe_num = 0;
695 			qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
696 		}
697 	}
698 
699 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
700 }
701 
702 static irqreturn_t do_qm_irq(int irq, void *data)
703 {
704 	struct hisi_qm *qm = (struct hisi_qm *)data;
705 
706 	/* the workqueue created by device driver of QM */
707 	if (qm->wq)
708 		queue_work(qm->wq, &qm->work);
709 	else
710 		schedule_work(&qm->work);
711 
712 	return IRQ_HANDLED;
713 }
714 
715 static irqreturn_t qm_irq(int irq, void *data)
716 {
717 	struct hisi_qm *qm = data;
718 
719 	if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
720 		return do_qm_irq(irq, data);
721 
722 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
723 	dev_err(&qm->pdev->dev, "invalid int source\n");
724 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
725 
726 	return IRQ_NONE;
727 }
728 
729 static irqreturn_t qm_aeq_irq(int irq, void *data)
730 {
731 	struct hisi_qm *qm = data;
732 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
733 	u32 type;
734 
735 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
736 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
737 		return IRQ_NONE;
738 
739 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
740 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
741 		if (type < ARRAY_SIZE(qm_fifo_overflow))
742 			dev_err(&qm->pdev->dev, "%s overflow\n",
743 				qm_fifo_overflow[type]);
744 		else
745 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
746 				type);
747 
748 		if (qm->status.aeq_head == QM_Q_DEPTH - 1) {
749 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
750 			aeqe = qm->aeqe;
751 			qm->status.aeq_head = 0;
752 		} else {
753 			aeqe++;
754 			qm->status.aeq_head++;
755 		}
756 
757 		qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
758 	}
759 
760 	return IRQ_HANDLED;
761 }
762 
763 static void qm_irq_unregister(struct hisi_qm *qm)
764 {
765 	struct pci_dev *pdev = qm->pdev;
766 
767 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
768 
769 	if (qm->ver == QM_HW_V1)
770 		return;
771 
772 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
773 
774 	if (qm->fun_type == QM_HW_PF)
775 		free_irq(pci_irq_vector(pdev,
776 			 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
777 }
778 
779 static void qm_init_qp_status(struct hisi_qp *qp)
780 {
781 	struct hisi_qp_status *qp_status = &qp->qp_status;
782 
783 	qp_status->sq_tail = 0;
784 	qp_status->cq_head = 0;
785 	qp_status->cqc_phase = true;
786 	atomic_set(&qp_status->used, 0);
787 }
788 
789 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
790 			    u32 number)
791 {
792 	u64 tmp = 0;
793 
794 	if (number > 0) {
795 		switch (type) {
796 		case SQC_VFT:
797 			if (qm->ver == QM_HW_V1) {
798 				tmp = QM_SQC_VFT_BUF_SIZE	|
799 				      QM_SQC_VFT_SQC_SIZE	|
800 				      QM_SQC_VFT_INDEX_NUMBER	|
801 				      QM_SQC_VFT_VALID		|
802 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
803 			} else {
804 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
805 				      QM_SQC_VFT_VALID |
806 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
807 			}
808 			break;
809 		case CQC_VFT:
810 			if (qm->ver == QM_HW_V1) {
811 				tmp = QM_CQC_VFT_BUF_SIZE	|
812 				      QM_CQC_VFT_SQC_SIZE	|
813 				      QM_CQC_VFT_INDEX_NUMBER	|
814 				      QM_CQC_VFT_VALID;
815 			} else {
816 				tmp = QM_CQC_VFT_VALID;
817 			}
818 			break;
819 		}
820 	}
821 
822 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
823 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
824 }
825 
826 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
827 			     u32 fun_num, u32 base, u32 number)
828 {
829 	unsigned int val;
830 	int ret;
831 
832 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
833 					 val & BIT(0), POLL_PERIOD,
834 					 POLL_TIMEOUT);
835 	if (ret)
836 		return ret;
837 
838 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
839 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
840 	writel(fun_num, qm->io_base + QM_VFT_CFG);
841 
842 	qm_vft_data_cfg(qm, type, base, number);
843 
844 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
845 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
846 
847 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
848 					  val & BIT(0), POLL_PERIOD,
849 					  POLL_TIMEOUT);
850 }
851 
852 /* The config should be conducted after qm_dev_mem_reset() */
853 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
854 			      u32 number)
855 {
856 	int ret, i;
857 
858 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
859 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
860 		if (ret)
861 			return ret;
862 	}
863 
864 	return 0;
865 }
866 
867 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
868 {
869 	u64 sqc_vft;
870 	int ret;
871 
872 	ret = qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
873 	if (ret)
874 		return ret;
875 
876 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
877 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
878 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
879 	*number = (QM_SQC_VFT_NUM_MASK_v2 &
880 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
881 
882 	return 0;
883 }
884 
885 static int qm_get_vf_qp_num(struct hisi_qm *qm, u32 fun_num)
886 {
887 	u32 remain_q_num, vfq_num;
888 	u32 num_vfs = qm->vfs_num;
889 
890 	vfq_num = (qm->ctrl_qp_num - qm->qp_num) / num_vfs;
891 	if (vfq_num >= qm->max_qp_num)
892 		return qm->max_qp_num;
893 
894 	remain_q_num = (qm->ctrl_qp_num - qm->qp_num) % num_vfs;
895 	if (vfq_num + remain_q_num <= qm->max_qp_num)
896 		return fun_num == num_vfs ? vfq_num + remain_q_num : vfq_num;
897 
898 	/*
899 	 * if vfq_num + remain_q_num > max_qp_num, the last VFs,
900 	 * each with one more queue.
901 	 */
902 	return fun_num + remain_q_num > num_vfs ? vfq_num + 1 : vfq_num;
903 }
904 
905 static struct hisi_qm *file_to_qm(struct debugfs_file *file)
906 {
907 	struct qm_debug *debug = file->debug;
908 
909 	return container_of(debug, struct hisi_qm, debug);
910 }
911 
912 static u32 current_q_read(struct debugfs_file *file)
913 {
914 	struct hisi_qm *qm = file_to_qm(file);
915 
916 	return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT;
917 }
918 
919 static int current_q_write(struct debugfs_file *file, u32 val)
920 {
921 	struct hisi_qm *qm = file_to_qm(file);
922 	u32 tmp;
923 
924 	if (val >= qm->debug.curr_qm_qp_num)
925 		return -EINVAL;
926 
927 	tmp = val << QM_DFX_QN_SHIFT |
928 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK);
929 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
930 
931 	tmp = val << QM_DFX_QN_SHIFT |
932 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK);
933 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
934 
935 	return 0;
936 }
937 
938 static u32 clear_enable_read(struct debugfs_file *file)
939 {
940 	struct hisi_qm *qm = file_to_qm(file);
941 
942 	return readl(qm->io_base + QM_DFX_CNT_CLR_CE);
943 }
944 
945 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */
946 static int clear_enable_write(struct debugfs_file *file, u32 rd_clr_ctrl)
947 {
948 	struct hisi_qm *qm = file_to_qm(file);
949 
950 	if (rd_clr_ctrl > 1)
951 		return -EINVAL;
952 
953 	writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE);
954 
955 	return 0;
956 }
957 
958 static u32 current_qm_read(struct debugfs_file *file)
959 {
960 	struct hisi_qm *qm = file_to_qm(file);
961 
962 	return readl(qm->io_base + QM_DFX_MB_CNT_VF);
963 }
964 
965 static int current_qm_write(struct debugfs_file *file, u32 val)
966 {
967 	struct hisi_qm *qm = file_to_qm(file);
968 	u32 tmp;
969 
970 	if (val > qm->vfs_num)
971 		return -EINVAL;
972 
973 	/* According PF or VF Dev ID to calculation curr_qm_qp_num and store */
974 	if (!val)
975 		qm->debug.curr_qm_qp_num = qm->qp_num;
976 	else
977 		qm->debug.curr_qm_qp_num = qm_get_vf_qp_num(qm, val);
978 
979 	writel(val, qm->io_base + QM_DFX_MB_CNT_VF);
980 	writel(val, qm->io_base + QM_DFX_DB_CNT_VF);
981 
982 	tmp = val |
983 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_Q_MASK);
984 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
985 
986 	tmp = val |
987 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_Q_MASK);
988 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
989 
990 	return 0;
991 }
992 
993 static ssize_t qm_debug_read(struct file *filp, char __user *buf,
994 			     size_t count, loff_t *pos)
995 {
996 	struct debugfs_file *file = filp->private_data;
997 	enum qm_debug_file index = file->index;
998 	char tbuf[QM_DBG_TMP_BUF_LEN];
999 	u32 val;
1000 	int ret;
1001 
1002 	mutex_lock(&file->lock);
1003 	switch (index) {
1004 	case CURRENT_QM:
1005 		val = current_qm_read(file);
1006 		break;
1007 	case CURRENT_Q:
1008 		val = current_q_read(file);
1009 		break;
1010 	case CLEAR_ENABLE:
1011 		val = clear_enable_read(file);
1012 		break;
1013 	default:
1014 		mutex_unlock(&file->lock);
1015 		return -EINVAL;
1016 	}
1017 	mutex_unlock(&file->lock);
1018 
1019 	ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val);
1020 	return simple_read_from_buffer(buf, count, pos, tbuf, ret);
1021 }
1022 
1023 static ssize_t qm_debug_write(struct file *filp, const char __user *buf,
1024 			      size_t count, loff_t *pos)
1025 {
1026 	struct debugfs_file *file = filp->private_data;
1027 	enum qm_debug_file index = file->index;
1028 	unsigned long val;
1029 	char tbuf[QM_DBG_TMP_BUF_LEN];
1030 	int len, ret;
1031 
1032 	if (*pos != 0)
1033 		return 0;
1034 
1035 	if (count >= QM_DBG_TMP_BUF_LEN)
1036 		return -ENOSPC;
1037 
1038 	len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf,
1039 				     count);
1040 	if (len < 0)
1041 		return len;
1042 
1043 	tbuf[len] = '\0';
1044 	if (kstrtoul(tbuf, 0, &val))
1045 		return -EFAULT;
1046 
1047 	mutex_lock(&file->lock);
1048 	switch (index) {
1049 	case CURRENT_QM:
1050 		ret = current_qm_write(file, val);
1051 		break;
1052 	case CURRENT_Q:
1053 		ret = current_q_write(file, val);
1054 		break;
1055 	case CLEAR_ENABLE:
1056 		ret = clear_enable_write(file, val);
1057 		break;
1058 	default:
1059 		ret = -EINVAL;
1060 	}
1061 	mutex_unlock(&file->lock);
1062 
1063 	if (ret)
1064 		return ret;
1065 
1066 	return count;
1067 }
1068 
1069 static const struct file_operations qm_debug_fops = {
1070 	.owner = THIS_MODULE,
1071 	.open = simple_open,
1072 	.read = qm_debug_read,
1073 	.write = qm_debug_write,
1074 };
1075 
1076 struct qm_dfx_registers {
1077 	char  *reg_name;
1078 	u64   reg_offset;
1079 };
1080 
1081 #define CNT_CYC_REGS_NUM		10
1082 static struct qm_dfx_registers qm_dfx_regs[] = {
1083 	/* XXX_CNT are reading clear register */
1084 	{"QM_ECC_1BIT_CNT               ",  0x104000ull},
1085 	{"QM_ECC_MBIT_CNT               ",  0x104008ull},
1086 	{"QM_DFX_MB_CNT                 ",  0x104018ull},
1087 	{"QM_DFX_DB_CNT                 ",  0x104028ull},
1088 	{"QM_DFX_SQE_CNT                ",  0x104038ull},
1089 	{"QM_DFX_CQE_CNT                ",  0x104048ull},
1090 	{"QM_DFX_SEND_SQE_TO_ACC_CNT    ",  0x104050ull},
1091 	{"QM_DFX_WB_SQE_FROM_ACC_CNT    ",  0x104058ull},
1092 	{"QM_DFX_ACC_FINISH_CNT         ",  0x104060ull},
1093 	{"QM_DFX_CQE_ERR_CNT            ",  0x1040b4ull},
1094 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1095 	{"QM_ECC_1BIT_INF               ",  0x104004ull},
1096 	{"QM_ECC_MBIT_INF               ",  0x10400cull},
1097 	{"QM_DFX_ACC_RDY_VLD0           ",  0x1040a0ull},
1098 	{"QM_DFX_ACC_RDY_VLD1           ",  0x1040a4ull},
1099 	{"QM_DFX_AXI_RDY_VLD            ",  0x1040a8ull},
1100 	{"QM_DFX_FF_ST0                 ",  0x1040c8ull},
1101 	{"QM_DFX_FF_ST1                 ",  0x1040ccull},
1102 	{"QM_DFX_FF_ST2                 ",  0x1040d0ull},
1103 	{"QM_DFX_FF_ST3                 ",  0x1040d4ull},
1104 	{"QM_DFX_FF_ST4                 ",  0x1040d8ull},
1105 	{"QM_DFX_FF_ST5                 ",  0x1040dcull},
1106 	{"QM_DFX_FF_ST6                 ",  0x1040e0ull},
1107 	{"QM_IN_IDLE_ST                 ",  0x1040e4ull},
1108 	{ NULL, 0}
1109 };
1110 
1111 static struct qm_dfx_registers qm_vf_dfx_regs[] = {
1112 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1113 	{ NULL, 0}
1114 };
1115 
1116 static int qm_regs_show(struct seq_file *s, void *unused)
1117 {
1118 	struct hisi_qm *qm = s->private;
1119 	struct qm_dfx_registers *regs;
1120 	u32 val;
1121 
1122 	if (qm->fun_type == QM_HW_PF)
1123 		regs = qm_dfx_regs;
1124 	else
1125 		regs = qm_vf_dfx_regs;
1126 
1127 	while (regs->reg_name) {
1128 		val = readl(qm->io_base + regs->reg_offset);
1129 		seq_printf(s, "%s= 0x%08x\n", regs->reg_name, val);
1130 		regs++;
1131 	}
1132 
1133 	return 0;
1134 }
1135 
1136 DEFINE_SHOW_ATTRIBUTE(qm_regs);
1137 
1138 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer,
1139 			   size_t count, loff_t *pos)
1140 {
1141 	char buf[QM_DBG_READ_LEN];
1142 	int len;
1143 
1144 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n",
1145 			"Please echo help to cmd to get help information");
1146 
1147 	return simple_read_from_buffer(buffer, count, pos, buf, len);
1148 }
1149 
1150 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1151 			  dma_addr_t *dma_addr)
1152 {
1153 	struct device *dev = &qm->pdev->dev;
1154 	void *ctx_addr;
1155 
1156 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1157 	if (!ctx_addr)
1158 		return ERR_PTR(-ENOMEM);
1159 
1160 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1161 	if (dma_mapping_error(dev, *dma_addr)) {
1162 		dev_err(dev, "DMA mapping error!\n");
1163 		kfree(ctx_addr);
1164 		return ERR_PTR(-ENOMEM);
1165 	}
1166 
1167 	return ctx_addr;
1168 }
1169 
1170 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1171 			const void *ctx_addr, dma_addr_t *dma_addr)
1172 {
1173 	struct device *dev = &qm->pdev->dev;
1174 
1175 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1176 	kfree(ctx_addr);
1177 }
1178 
1179 static int dump_show(struct hisi_qm *qm, void *info,
1180 		     unsigned int info_size, char *info_name)
1181 {
1182 	struct device *dev = &qm->pdev->dev;
1183 	u8 *info_buf, *info_curr = info;
1184 	u32 i;
1185 #define BYTE_PER_DW	4
1186 
1187 	info_buf = kzalloc(info_size, GFP_KERNEL);
1188 	if (!info_buf)
1189 		return -ENOMEM;
1190 
1191 	for (i = 0; i < info_size; i++, info_curr++) {
1192 		if (i % BYTE_PER_DW == 0)
1193 			info_buf[i + 3UL] = *info_curr;
1194 		else if (i % BYTE_PER_DW == 1)
1195 			info_buf[i + 1UL] = *info_curr;
1196 		else if (i % BYTE_PER_DW == 2)
1197 			info_buf[i - 1] = *info_curr;
1198 		else if (i % BYTE_PER_DW == 3)
1199 			info_buf[i - 3] = *info_curr;
1200 	}
1201 
1202 	dev_info(dev, "%s DUMP\n", info_name);
1203 	for (i = 0; i < info_size; i += BYTE_PER_DW) {
1204 		pr_info("DW%u: %02X%02X %02X%02X\n", i / BYTE_PER_DW,
1205 			info_buf[i], info_buf[i + 1UL],
1206 			info_buf[i + 2UL], info_buf[i + 3UL]);
1207 	}
1208 
1209 	kfree(info_buf);
1210 
1211 	return 0;
1212 }
1213 
1214 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1215 {
1216 	return qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1217 }
1218 
1219 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1220 {
1221 	return qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1222 }
1223 
1224 static int qm_sqc_dump(struct hisi_qm *qm, const char *s)
1225 {
1226 	struct device *dev = &qm->pdev->dev;
1227 	struct qm_sqc *sqc, *sqc_curr;
1228 	dma_addr_t sqc_dma;
1229 	u32 qp_id;
1230 	int ret;
1231 
1232 	if (!s)
1233 		return -EINVAL;
1234 
1235 	ret = kstrtou32(s, 0, &qp_id);
1236 	if (ret || qp_id >= qm->qp_num) {
1237 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1238 		return -EINVAL;
1239 	}
1240 
1241 	sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma);
1242 	if (IS_ERR(sqc))
1243 		return PTR_ERR(sqc);
1244 
1245 	ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id);
1246 	if (ret) {
1247 		down_read(&qm->qps_lock);
1248 		if (qm->sqc) {
1249 			sqc_curr = qm->sqc + qp_id;
1250 
1251 			ret = dump_show(qm, sqc_curr, sizeof(*sqc),
1252 					"SOFT SQC");
1253 			if (ret)
1254 				dev_info(dev, "Show soft sqc failed!\n");
1255 		}
1256 		up_read(&qm->qps_lock);
1257 
1258 		goto err_free_ctx;
1259 	}
1260 
1261 	ret = dump_show(qm, sqc, sizeof(*sqc), "SQC");
1262 	if (ret)
1263 		dev_info(dev, "Show hw sqc failed!\n");
1264 
1265 err_free_ctx:
1266 	qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma);
1267 	return ret;
1268 }
1269 
1270 static int qm_cqc_dump(struct hisi_qm *qm, const char *s)
1271 {
1272 	struct device *dev = &qm->pdev->dev;
1273 	struct qm_cqc *cqc, *cqc_curr;
1274 	dma_addr_t cqc_dma;
1275 	u32 qp_id;
1276 	int ret;
1277 
1278 	if (!s)
1279 		return -EINVAL;
1280 
1281 	ret = kstrtou32(s, 0, &qp_id);
1282 	if (ret || qp_id >= qm->qp_num) {
1283 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1284 		return -EINVAL;
1285 	}
1286 
1287 	cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma);
1288 	if (IS_ERR(cqc))
1289 		return PTR_ERR(cqc);
1290 
1291 	ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id);
1292 	if (ret) {
1293 		down_read(&qm->qps_lock);
1294 		if (qm->cqc) {
1295 			cqc_curr = qm->cqc + qp_id;
1296 
1297 			ret = dump_show(qm, cqc_curr, sizeof(*cqc),
1298 					"SOFT CQC");
1299 			if (ret)
1300 				dev_info(dev, "Show soft cqc failed!\n");
1301 		}
1302 		up_read(&qm->qps_lock);
1303 
1304 		goto err_free_ctx;
1305 	}
1306 
1307 	ret = dump_show(qm, cqc, sizeof(*cqc), "CQC");
1308 	if (ret)
1309 		dev_info(dev, "Show hw cqc failed!\n");
1310 
1311 err_free_ctx:
1312 	qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma);
1313 	return ret;
1314 }
1315 
1316 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size,
1317 			    int cmd, char *name)
1318 {
1319 	struct device *dev = &qm->pdev->dev;
1320 	dma_addr_t xeqc_dma;
1321 	void *xeqc;
1322 	int ret;
1323 
1324 	if (strsep(&s, " ")) {
1325 		dev_err(dev, "Please do not input extra characters!\n");
1326 		return -EINVAL;
1327 	}
1328 
1329 	xeqc = qm_ctx_alloc(qm, size, &xeqc_dma);
1330 	if (IS_ERR(xeqc))
1331 		return PTR_ERR(xeqc);
1332 
1333 	ret = qm_mb(qm, cmd, xeqc_dma, 0, 1);
1334 	if (ret)
1335 		goto err_free_ctx;
1336 
1337 	ret = dump_show(qm, xeqc, size, name);
1338 	if (ret)
1339 		dev_info(dev, "Show hw %s failed!\n", name);
1340 
1341 err_free_ctx:
1342 	qm_ctx_free(qm, size, xeqc, &xeqc_dma);
1343 	return ret;
1344 }
1345 
1346 static int q_dump_param_parse(struct hisi_qm *qm, char *s,
1347 			      u32 *e_id, u32 *q_id)
1348 {
1349 	struct device *dev = &qm->pdev->dev;
1350 	unsigned int qp_num = qm->qp_num;
1351 	char *presult;
1352 	int ret;
1353 
1354 	presult = strsep(&s, " ");
1355 	if (!presult) {
1356 		dev_err(dev, "Please input qp number!\n");
1357 		return -EINVAL;
1358 	}
1359 
1360 	ret = kstrtou32(presult, 0, q_id);
1361 	if (ret || *q_id >= qp_num) {
1362 		dev_err(dev, "Please input qp num (0-%u)", qp_num - 1);
1363 		return -EINVAL;
1364 	}
1365 
1366 	presult = strsep(&s, " ");
1367 	if (!presult) {
1368 		dev_err(dev, "Please input sqe number!\n");
1369 		return -EINVAL;
1370 	}
1371 
1372 	ret = kstrtou32(presult, 0, e_id);
1373 	if (ret || *e_id >= QM_Q_DEPTH) {
1374 		dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1);
1375 		return -EINVAL;
1376 	}
1377 
1378 	if (strsep(&s, " ")) {
1379 		dev_err(dev, "Please do not input extra characters!\n");
1380 		return -EINVAL;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 static int qm_sq_dump(struct hisi_qm *qm, char *s)
1387 {
1388 	struct device *dev = &qm->pdev->dev;
1389 	void *sqe, *sqe_curr;
1390 	struct hisi_qp *qp;
1391 	u32 qp_id, sqe_id;
1392 	int ret;
1393 
1394 	ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id);
1395 	if (ret)
1396 		return ret;
1397 
1398 	sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL);
1399 	if (!sqe)
1400 		return -ENOMEM;
1401 
1402 	qp = &qm->qp_array[qp_id];
1403 	memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH);
1404 	sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size);
1405 	memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK,
1406 	       qm->debug.sqe_mask_len);
1407 
1408 	ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE");
1409 	if (ret)
1410 		dev_info(dev, "Show sqe failed!\n");
1411 
1412 	kfree(sqe);
1413 
1414 	return ret;
1415 }
1416 
1417 static int qm_cq_dump(struct hisi_qm *qm, char *s)
1418 {
1419 	struct device *dev = &qm->pdev->dev;
1420 	struct qm_cqe *cqe_curr;
1421 	struct hisi_qp *qp;
1422 	u32 qp_id, cqe_id;
1423 	int ret;
1424 
1425 	ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id);
1426 	if (ret)
1427 		return ret;
1428 
1429 	qp = &qm->qp_array[qp_id];
1430 	cqe_curr = qp->cqe + cqe_id;
1431 	ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE");
1432 	if (ret)
1433 		dev_info(dev, "Show cqe failed!\n");
1434 
1435 	return ret;
1436 }
1437 
1438 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s,
1439 			  size_t size, char *name)
1440 {
1441 	struct device *dev = &qm->pdev->dev;
1442 	void *xeqe;
1443 	u32 xeqe_id;
1444 	int ret;
1445 
1446 	if (!s)
1447 		return -EINVAL;
1448 
1449 	ret = kstrtou32(s, 0, &xeqe_id);
1450 	if (ret)
1451 		return -EINVAL;
1452 
1453 	if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) {
1454 		dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1);
1455 		return -EINVAL;
1456 	} else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) {
1457 		dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1);
1458 		return -EINVAL;
1459 	}
1460 
1461 	down_read(&qm->qps_lock);
1462 
1463 	if (qm->eqe && !strcmp(name, "EQE")) {
1464 		xeqe = qm->eqe + xeqe_id;
1465 	} else if (qm->aeqe && !strcmp(name, "AEQE")) {
1466 		xeqe = qm->aeqe + xeqe_id;
1467 	} else {
1468 		ret = -EINVAL;
1469 		goto err_unlock;
1470 	}
1471 
1472 	ret = dump_show(qm, xeqe, size, name);
1473 	if (ret)
1474 		dev_info(dev, "Show %s failed!\n", name);
1475 
1476 err_unlock:
1477 	up_read(&qm->qps_lock);
1478 	return ret;
1479 }
1480 
1481 static int qm_dbg_help(struct hisi_qm *qm, char *s)
1482 {
1483 	struct device *dev = &qm->pdev->dev;
1484 
1485 	if (strsep(&s, " ")) {
1486 		dev_err(dev, "Please do not input extra characters!\n");
1487 		return -EINVAL;
1488 	}
1489 
1490 	dev_info(dev, "available commands:\n");
1491 	dev_info(dev, "sqc <num>\n");
1492 	dev_info(dev, "cqc <num>\n");
1493 	dev_info(dev, "eqc\n");
1494 	dev_info(dev, "aeqc\n");
1495 	dev_info(dev, "sq <num> <e>\n");
1496 	dev_info(dev, "cq <num> <e>\n");
1497 	dev_info(dev, "eq <e>\n");
1498 	dev_info(dev, "aeq <e>\n");
1499 
1500 	return 0;
1501 }
1502 
1503 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf)
1504 {
1505 	struct device *dev = &qm->pdev->dev;
1506 	char *presult, *s, *s_tmp;
1507 	int ret;
1508 
1509 	s = kstrdup(cmd_buf, GFP_KERNEL);
1510 	if (!s)
1511 		return -ENOMEM;
1512 
1513 	s_tmp = s;
1514 	presult = strsep(&s, " ");
1515 	if (!presult) {
1516 		ret = -EINVAL;
1517 		goto err_buffer_free;
1518 	}
1519 
1520 	if (!strcmp(presult, "sqc"))
1521 		ret = qm_sqc_dump(qm, s);
1522 	else if (!strcmp(presult, "cqc"))
1523 		ret = qm_cqc_dump(qm, s);
1524 	else if (!strcmp(presult, "eqc"))
1525 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc),
1526 				       QM_MB_CMD_EQC, "EQC");
1527 	else if (!strcmp(presult, "aeqc"))
1528 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc),
1529 				       QM_MB_CMD_AEQC, "AEQC");
1530 	else if (!strcmp(presult, "sq"))
1531 		ret = qm_sq_dump(qm, s);
1532 	else if (!strcmp(presult, "cq"))
1533 		ret = qm_cq_dump(qm, s);
1534 	else if (!strcmp(presult, "eq"))
1535 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE");
1536 	else if (!strcmp(presult, "aeq"))
1537 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE");
1538 	else if (!strcmp(presult, "help"))
1539 		ret = qm_dbg_help(qm, s);
1540 	else
1541 		ret = -EINVAL;
1542 
1543 	if (ret)
1544 		dev_info(dev, "Please echo help\n");
1545 
1546 err_buffer_free:
1547 	kfree(s_tmp);
1548 
1549 	return ret;
1550 }
1551 
1552 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer,
1553 			    size_t count, loff_t *pos)
1554 {
1555 	struct hisi_qm *qm = filp->private_data;
1556 	char *cmd_buf, *cmd_buf_tmp;
1557 	int ret;
1558 
1559 	if (*pos)
1560 		return 0;
1561 
1562 	/* Judge if the instance is being reset. */
1563 	if (unlikely(atomic_read(&qm->status.flags) == QM_STOP))
1564 		return 0;
1565 
1566 	if (count > QM_DBG_WRITE_LEN)
1567 		return -ENOSPC;
1568 
1569 	cmd_buf = kzalloc(count + 1, GFP_KERNEL);
1570 	if (!cmd_buf)
1571 		return -ENOMEM;
1572 
1573 	if (copy_from_user(cmd_buf, buffer, count)) {
1574 		kfree(cmd_buf);
1575 		return -EFAULT;
1576 	}
1577 
1578 	cmd_buf[count] = '\0';
1579 
1580 	cmd_buf_tmp = strchr(cmd_buf, '\n');
1581 	if (cmd_buf_tmp) {
1582 		*cmd_buf_tmp = '\0';
1583 		count = cmd_buf_tmp - cmd_buf + 1;
1584 	}
1585 
1586 	ret = qm_cmd_write_dump(qm, cmd_buf);
1587 	if (ret) {
1588 		kfree(cmd_buf);
1589 		return ret;
1590 	}
1591 
1592 	kfree(cmd_buf);
1593 
1594 	return count;
1595 }
1596 
1597 static const struct file_operations qm_cmd_fops = {
1598 	.owner = THIS_MODULE,
1599 	.open = simple_open,
1600 	.read = qm_cmd_read,
1601 	.write = qm_cmd_write,
1602 };
1603 
1604 static void qm_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir,
1605 				   enum qm_debug_file index)
1606 {
1607 	struct debugfs_file *file = qm->debug.files + index;
1608 
1609 	debugfs_create_file(qm_debug_file_name[index], 0600, dir, file,
1610 			    &qm_debug_fops);
1611 
1612 	file->index = index;
1613 	mutex_init(&file->lock);
1614 	file->debug = &qm->debug;
1615 }
1616 
1617 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1618 {
1619 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1620 }
1621 
1622 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1623 {
1624 	u32 irq_enable = ce | nfe | fe;
1625 	u32 irq_unmask = ~irq_enable;
1626 
1627 	qm->error_mask = ce | nfe | fe;
1628 
1629 	/* clear QM hw residual error source */
1630 	writel(QM_ABNORMAL_INT_SOURCE_CLR,
1631 	       qm->io_base + QM_ABNORMAL_INT_SOURCE);
1632 
1633 	/* configure error type */
1634 	writel(ce, qm->io_base + QM_RAS_CE_ENABLE);
1635 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1636 	writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1637 	writel(fe, qm->io_base + QM_RAS_FE_ENABLE);
1638 
1639 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1640 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1641 }
1642 
1643 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1644 {
1645 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1646 }
1647 
1648 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1649 {
1650 	const struct hisi_qm_hw_error *err;
1651 	struct device *dev = &qm->pdev->dev;
1652 	u32 reg_val, type, vf_num;
1653 	int i;
1654 
1655 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1656 		err = &qm_hw_error[i];
1657 		if (!(err->int_msk & error_status))
1658 			continue;
1659 
1660 		dev_err(dev, "%s [error status=0x%x] found\n",
1661 			err->msg, err->int_msk);
1662 
1663 		if (err->int_msk & QM_DB_TIMEOUT) {
1664 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1665 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1666 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1667 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1668 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
1669 				qm_db_timeout[type], vf_num);
1670 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1671 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1672 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1673 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1674 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1675 
1676 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1677 				dev_err(dev, "qm %s fifo overflow in function %u\n",
1678 					qm_fifo_overflow[type], vf_num);
1679 			else
1680 				dev_err(dev, "unknown error type\n");
1681 		}
1682 	}
1683 }
1684 
1685 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1686 {
1687 	u32 error_status, tmp, val;
1688 
1689 	/* read err sts */
1690 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1691 	error_status = qm->error_mask & tmp;
1692 
1693 	if (error_status) {
1694 		if (error_status & QM_ECC_MBIT)
1695 			qm->err_status.is_qm_ecc_mbit = true;
1696 
1697 		qm_log_hw_error(qm, error_status);
1698 		val = error_status | QM_DB_RANDOM_INVALID | QM_BASE_CE;
1699 		/* ce error does not need to be reset */
1700 		if (val == (QM_DB_RANDOM_INVALID | QM_BASE_CE)) {
1701 			writel(error_status, qm->io_base +
1702 			       QM_ABNORMAL_INT_SOURCE);
1703 			writel(qm->err_ini->err_info.nfe,
1704 			       qm->io_base + QM_RAS_NFE_ENABLE);
1705 			return ACC_ERR_RECOVERED;
1706 		}
1707 
1708 		return ACC_ERR_NEED_RESET;
1709 	}
1710 
1711 	return ACC_ERR_RECOVERED;
1712 }
1713 
1714 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1715 	.qm_db = qm_db_v1,
1716 	.get_irq_num = qm_get_irq_num_v1,
1717 	.hw_error_init = qm_hw_error_init_v1,
1718 };
1719 
1720 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1721 	.get_vft = qm_get_vft_v2,
1722 	.qm_db = qm_db_v2,
1723 	.get_irq_num = qm_get_irq_num_v2,
1724 	.hw_error_init = qm_hw_error_init_v2,
1725 	.hw_error_uninit = qm_hw_error_uninit_v2,
1726 	.hw_error_handle = qm_hw_error_handle_v2,
1727 };
1728 
1729 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1730 {
1731 	struct hisi_qp_status *qp_status = &qp->qp_status;
1732 	u16 sq_tail = qp_status->sq_tail;
1733 
1734 	if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1))
1735 		return NULL;
1736 
1737 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1738 }
1739 
1740 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1741 {
1742 	struct device *dev = &qm->pdev->dev;
1743 	struct hisi_qp *qp;
1744 	int qp_id;
1745 
1746 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
1747 		return ERR_PTR(-EPERM);
1748 
1749 	if (qm->qp_in_used == qm->qp_num) {
1750 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1751 				     qm->qp_num);
1752 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1753 		return ERR_PTR(-EBUSY);
1754 	}
1755 
1756 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1757 	if (qp_id < 0) {
1758 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1759 				    qm->qp_num);
1760 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1761 		return ERR_PTR(-EBUSY);
1762 	}
1763 
1764 	qp = &qm->qp_array[qp_id];
1765 
1766 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH);
1767 
1768 	qp->event_cb = NULL;
1769 	qp->req_cb = NULL;
1770 	qp->qp_id = qp_id;
1771 	qp->alg_type = alg_type;
1772 	qp->is_in_kernel = true;
1773 	qm->qp_in_used++;
1774 	atomic_set(&qp->qp_status.flags, QP_INIT);
1775 
1776 	return qp;
1777 }
1778 
1779 /**
1780  * hisi_qm_create_qp() - Create a queue pair from qm.
1781  * @qm: The qm we create a qp from.
1782  * @alg_type: Accelerator specific algorithm type in sqc.
1783  *
1784  * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating
1785  * qp memory fails.
1786  */
1787 struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1788 {
1789 	struct hisi_qp *qp;
1790 
1791 	down_write(&qm->qps_lock);
1792 	qp = qm_create_qp_nolock(qm, alg_type);
1793 	up_write(&qm->qps_lock);
1794 
1795 	return qp;
1796 }
1797 EXPORT_SYMBOL_GPL(hisi_qm_create_qp);
1798 
1799 /**
1800  * hisi_qm_release_qp() - Release a qp back to its qm.
1801  * @qp: The qp we want to release.
1802  *
1803  * This function releases the resource of a qp.
1804  */
1805 void hisi_qm_release_qp(struct hisi_qp *qp)
1806 {
1807 	struct hisi_qm *qm = qp->qm;
1808 
1809 	down_write(&qm->qps_lock);
1810 
1811 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
1812 		up_write(&qm->qps_lock);
1813 		return;
1814 	}
1815 
1816 	qm->qp_in_used--;
1817 	idr_remove(&qm->qp_idr, qp->qp_id);
1818 
1819 	up_write(&qm->qps_lock);
1820 }
1821 EXPORT_SYMBOL_GPL(hisi_qm_release_qp);
1822 
1823 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1824 {
1825 	struct hisi_qm *qm = qp->qm;
1826 	struct device *dev = &qm->pdev->dev;
1827 	enum qm_hw_ver ver = qm->ver;
1828 	struct qm_sqc *sqc;
1829 	dma_addr_t sqc_dma;
1830 	int ret;
1831 
1832 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
1833 	if (!sqc)
1834 		return -ENOMEM;
1835 
1836 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
1837 	if (ver == QM_HW_V1) {
1838 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1839 		sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
1840 	} else {
1841 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size));
1842 		sqc->w8 = 0; /* rand_qc */
1843 	}
1844 	sqc->cq_num = cpu_to_le16(qp_id);
1845 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1846 
1847 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1848 		sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
1849 				       QM_QC_PASID_ENABLE_SHIFT);
1850 
1851 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
1852 				 DMA_TO_DEVICE);
1853 	if (dma_mapping_error(dev, sqc_dma)) {
1854 		kfree(sqc);
1855 		return -ENOMEM;
1856 	}
1857 
1858 	ret = qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
1859 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
1860 	kfree(sqc);
1861 
1862 	return ret;
1863 }
1864 
1865 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1866 {
1867 	struct hisi_qm *qm = qp->qm;
1868 	struct device *dev = &qm->pdev->dev;
1869 	enum qm_hw_ver ver = qm->ver;
1870 	struct qm_cqc *cqc;
1871 	dma_addr_t cqc_dma;
1872 	int ret;
1873 
1874 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
1875 	if (!cqc)
1876 		return -ENOMEM;
1877 
1878 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
1879 	if (ver == QM_HW_V1) {
1880 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
1881 							QM_QC_CQE_SIZE));
1882 		cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
1883 	} else {
1884 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE));
1885 		cqc->w8 = 0; /* rand_qc */
1886 	}
1887 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
1888 
1889 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1890 		cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
1891 
1892 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
1893 				 DMA_TO_DEVICE);
1894 	if (dma_mapping_error(dev, cqc_dma)) {
1895 		kfree(cqc);
1896 		return -ENOMEM;
1897 	}
1898 
1899 	ret = qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
1900 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
1901 	kfree(cqc);
1902 
1903 	return ret;
1904 }
1905 
1906 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1907 {
1908 	int ret;
1909 
1910 	qm_init_qp_status(qp);
1911 
1912 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
1913 	if (ret)
1914 		return ret;
1915 
1916 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
1917 }
1918 
1919 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
1920 {
1921 	struct hisi_qm *qm = qp->qm;
1922 	struct device *dev = &qm->pdev->dev;
1923 	int qp_id = qp->qp_id;
1924 	u32 pasid = arg;
1925 	int ret;
1926 
1927 	if (!qm_qp_avail_state(qm, qp, QP_START))
1928 		return -EPERM;
1929 
1930 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
1931 	if (ret)
1932 		return ret;
1933 
1934 	atomic_set(&qp->qp_status.flags, QP_START);
1935 	dev_dbg(dev, "queue %d started\n", qp_id);
1936 
1937 	return 0;
1938 }
1939 
1940 /**
1941  * hisi_qm_start_qp() - Start a qp into running.
1942  * @qp: The qp we want to start to run.
1943  * @arg: Accelerator specific argument.
1944  *
1945  * After this function, qp can receive request from user. Return 0 if
1946  * successful, Return -EBUSY if failed.
1947  */
1948 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
1949 {
1950 	struct hisi_qm *qm = qp->qm;
1951 	int ret;
1952 
1953 	down_write(&qm->qps_lock);
1954 	ret = qm_start_qp_nolock(qp, arg);
1955 	up_write(&qm->qps_lock);
1956 
1957 	return ret;
1958 }
1959 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
1960 
1961 /**
1962  * qp_stop_fail_cb() - call request cb.
1963  * @qp: stopped failed qp.
1964  *
1965  * Callback function should be called whether task completed or not.
1966  */
1967 static void qp_stop_fail_cb(struct hisi_qp *qp)
1968 {
1969 	int qp_used = atomic_read(&qp->qp_status.used);
1970 	u16 cur_tail = qp->qp_status.sq_tail;
1971 	u16 cur_head = (cur_tail + QM_Q_DEPTH - qp_used) % QM_Q_DEPTH;
1972 	struct hisi_qm *qm = qp->qm;
1973 	u16 pos;
1974 	int i;
1975 
1976 	for (i = 0; i < qp_used; i++) {
1977 		pos = (i + cur_head) % QM_Q_DEPTH;
1978 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
1979 		atomic_dec(&qp->qp_status.used);
1980 	}
1981 }
1982 
1983 /**
1984  * qm_drain_qp() - Drain a qp.
1985  * @qp: The qp we want to drain.
1986  *
1987  * Determine whether the queue is cleared by judging the tail pointers of
1988  * sq and cq.
1989  */
1990 static int qm_drain_qp(struct hisi_qp *qp)
1991 {
1992 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
1993 	struct hisi_qm *qm = qp->qm;
1994 	struct device *dev = &qm->pdev->dev;
1995 	struct qm_sqc *sqc;
1996 	struct qm_cqc *cqc;
1997 	dma_addr_t dma_addr;
1998 	int ret = 0, i = 0;
1999 	void *addr;
2000 
2001 	/*
2002 	 * No need to judge if ECC multi-bit error occurs because the
2003 	 * master OOO will be blocked.
2004 	 */
2005 	if (qm->err_status.is_qm_ecc_mbit || qm->err_status.is_dev_ecc_mbit)
2006 		return 0;
2007 
2008 	addr = qm_ctx_alloc(qm, size, &dma_addr);
2009 	if (IS_ERR(addr)) {
2010 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
2011 		return -ENOMEM;
2012 	}
2013 
2014 	while (++i) {
2015 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
2016 		if (ret) {
2017 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2018 			break;
2019 		}
2020 		sqc = addr;
2021 
2022 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
2023 				      qp->qp_id);
2024 		if (ret) {
2025 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2026 			break;
2027 		}
2028 		cqc = addr + sizeof(struct qm_sqc);
2029 
2030 		if ((sqc->tail == cqc->tail) &&
2031 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2032 			break;
2033 
2034 		if (i == MAX_WAIT_COUNTS) {
2035 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
2036 			ret = -EBUSY;
2037 			break;
2038 		}
2039 
2040 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2041 	}
2042 
2043 	qm_ctx_free(qm, size, addr, &dma_addr);
2044 
2045 	return ret;
2046 }
2047 
2048 static int qm_stop_qp_nolock(struct hisi_qp *qp)
2049 {
2050 	struct device *dev = &qp->qm->pdev->dev;
2051 	int ret;
2052 
2053 	/*
2054 	 * It is allowed to stop and release qp when reset, If the qp is
2055 	 * stopped when reset but still want to be released then, the
2056 	 * is_resetting flag should be set negative so that this qp will not
2057 	 * be restarted after reset.
2058 	 */
2059 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
2060 		qp->is_resetting = false;
2061 		return 0;
2062 	}
2063 
2064 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
2065 		return -EPERM;
2066 
2067 	atomic_set(&qp->qp_status.flags, QP_STOP);
2068 
2069 	ret = qm_drain_qp(qp);
2070 	if (ret)
2071 		dev_err(dev, "Failed to drain out data for stopping!\n");
2072 
2073 	if (qp->qm->wq)
2074 		flush_workqueue(qp->qm->wq);
2075 	else
2076 		flush_work(&qp->qm->work);
2077 
2078 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2079 		qp_stop_fail_cb(qp);
2080 
2081 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2082 
2083 	return 0;
2084 }
2085 
2086 /**
2087  * hisi_qm_stop_qp() - Stop a qp in qm.
2088  * @qp: The qp we want to stop.
2089  *
2090  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
2091  */
2092 int hisi_qm_stop_qp(struct hisi_qp *qp)
2093 {
2094 	int ret;
2095 
2096 	down_write(&qp->qm->qps_lock);
2097 	ret = qm_stop_qp_nolock(qp);
2098 	up_write(&qp->qm->qps_lock);
2099 
2100 	return ret;
2101 }
2102 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2103 
2104 /**
2105  * hisi_qp_send() - Queue up a task in the hardware queue.
2106  * @qp: The qp in which to put the message.
2107  * @msg: The message.
2108  *
2109  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2110  * if qp related qm is resetting.
2111  *
2112  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2113  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2114  *       reset may happen, we have no lock here considering performance. This
2115  *       causes current qm_db sending fail or can not receive sended sqe. QM
2116  *       sync/async receive function should handle the error sqe. ACC reset
2117  *       done function should clear used sqe to 0.
2118  */
2119 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2120 {
2121 	struct hisi_qp_status *qp_status = &qp->qp_status;
2122 	u16 sq_tail = qp_status->sq_tail;
2123 	u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH;
2124 	void *sqe = qm_get_avail_sqe(qp);
2125 
2126 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2127 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2128 		     qp->is_resetting)) {
2129 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2130 		return -EAGAIN;
2131 	}
2132 
2133 	if (!sqe)
2134 		return -EBUSY;
2135 
2136 	memcpy(sqe, msg, qp->qm->sqe_size);
2137 
2138 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2139 	atomic_inc(&qp->qp_status.used);
2140 	qp_status->sq_tail = sq_tail_next;
2141 
2142 	return 0;
2143 }
2144 EXPORT_SYMBOL_GPL(hisi_qp_send);
2145 
2146 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2147 {
2148 	unsigned int val;
2149 
2150 	if (qm->ver == QM_HW_V1)
2151 		return;
2152 
2153 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2154 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2155 				       val, val & BIT(0), POLL_PERIOD,
2156 				       POLL_TIMEOUT))
2157 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2158 }
2159 
2160 static void qm_qp_event_notifier(struct hisi_qp *qp)
2161 {
2162 	wake_up_interruptible(&qp->uacce_q->wait);
2163 }
2164 
2165 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2166 {
2167 	return hisi_qm_get_free_qp_num(uacce->priv);
2168 }
2169 
2170 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2171 				   unsigned long arg,
2172 				   struct uacce_queue *q)
2173 {
2174 	struct hisi_qm *qm = uacce->priv;
2175 	struct hisi_qp *qp;
2176 	u8 alg_type = 0;
2177 
2178 	qp = hisi_qm_create_qp(qm, alg_type);
2179 	if (IS_ERR(qp))
2180 		return PTR_ERR(qp);
2181 
2182 	q->priv = qp;
2183 	q->uacce = uacce;
2184 	qp->uacce_q = q;
2185 	qp->event_cb = qm_qp_event_notifier;
2186 	qp->pasid = arg;
2187 	qp->is_in_kernel = false;
2188 
2189 	return 0;
2190 }
2191 
2192 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2193 {
2194 	struct hisi_qp *qp = q->priv;
2195 
2196 	hisi_qm_cache_wb(qp->qm);
2197 	hisi_qm_release_qp(qp);
2198 }
2199 
2200 /* map sq/cq/doorbell to user space */
2201 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2202 			      struct vm_area_struct *vma,
2203 			      struct uacce_qfile_region *qfr)
2204 {
2205 	struct hisi_qp *qp = q->priv;
2206 	struct hisi_qm *qm = qp->qm;
2207 	resource_size_t phys_base = qm->db_phys_base +
2208 				    qp->qp_id * qm->db_interval;
2209 	size_t sz = vma->vm_end - vma->vm_start;
2210 	struct pci_dev *pdev = qm->pdev;
2211 	struct device *dev = &pdev->dev;
2212 	unsigned long vm_pgoff;
2213 	int ret;
2214 
2215 	switch (qfr->type) {
2216 	case UACCE_QFRT_MMIO:
2217 		if (qm->ver == QM_HW_V1) {
2218 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2219 				return -EINVAL;
2220 		} else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) {
2221 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2222 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2223 				return -EINVAL;
2224 		} else {
2225 			if (sz > qm->db_interval)
2226 				return -EINVAL;
2227 		}
2228 
2229 		vma->vm_flags |= VM_IO;
2230 
2231 		return remap_pfn_range(vma, vma->vm_start,
2232 				       phys_base >> PAGE_SHIFT,
2233 				       sz, pgprot_noncached(vma->vm_page_prot));
2234 	case UACCE_QFRT_DUS:
2235 		if (sz != qp->qdma.size)
2236 			return -EINVAL;
2237 
2238 		/*
2239 		 * dma_mmap_coherent() requires vm_pgoff as 0
2240 		 * restore vm_pfoff to initial value for mmap()
2241 		 */
2242 		vm_pgoff = vma->vm_pgoff;
2243 		vma->vm_pgoff = 0;
2244 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2245 					qp->qdma.dma, sz);
2246 		vma->vm_pgoff = vm_pgoff;
2247 		return ret;
2248 
2249 	default:
2250 		return -EINVAL;
2251 	}
2252 }
2253 
2254 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2255 {
2256 	struct hisi_qp *qp = q->priv;
2257 
2258 	return hisi_qm_start_qp(qp, qp->pasid);
2259 }
2260 
2261 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2262 {
2263 	hisi_qm_stop_qp(q->priv);
2264 }
2265 
2266 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2267 {
2268 	struct hisi_qm *qm = q->uacce->priv;
2269 	struct hisi_qp *qp = q->priv;
2270 
2271 	down_write(&qm->qps_lock);
2272 	qp->alg_type = type;
2273 	up_write(&qm->qps_lock);
2274 }
2275 
2276 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2277 				unsigned long arg)
2278 {
2279 	struct hisi_qp *qp = q->priv;
2280 	struct hisi_qp_ctx qp_ctx;
2281 
2282 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2283 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2284 				   sizeof(struct hisi_qp_ctx)))
2285 			return -EFAULT;
2286 
2287 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2288 			return -EINVAL;
2289 
2290 		qm_set_sqctype(q, qp_ctx.qc_type);
2291 		qp_ctx.id = qp->qp_id;
2292 
2293 		if (copy_to_user((void __user *)arg, &qp_ctx,
2294 				 sizeof(struct hisi_qp_ctx)))
2295 			return -EFAULT;
2296 	} else {
2297 		return -EINVAL;
2298 	}
2299 
2300 	return 0;
2301 }
2302 
2303 static const struct uacce_ops uacce_qm_ops = {
2304 	.get_available_instances = hisi_qm_get_available_instances,
2305 	.get_queue = hisi_qm_uacce_get_queue,
2306 	.put_queue = hisi_qm_uacce_put_queue,
2307 	.start_queue = hisi_qm_uacce_start_queue,
2308 	.stop_queue = hisi_qm_uacce_stop_queue,
2309 	.mmap = hisi_qm_uacce_mmap,
2310 	.ioctl = hisi_qm_uacce_ioctl,
2311 };
2312 
2313 static int qm_alloc_uacce(struct hisi_qm *qm)
2314 {
2315 	struct pci_dev *pdev = qm->pdev;
2316 	struct uacce_device *uacce;
2317 	unsigned long mmio_page_nr;
2318 	unsigned long dus_page_nr;
2319 	struct uacce_interface interface = {
2320 		.flags = UACCE_DEV_SVA,
2321 		.ops = &uacce_qm_ops,
2322 	};
2323 	int ret;
2324 
2325 	ret = strscpy(interface.name, pdev->driver->name,
2326 		      sizeof(interface.name));
2327 	if (ret < 0)
2328 		return -ENAMETOOLONG;
2329 
2330 	uacce = uacce_alloc(&pdev->dev, &interface);
2331 	if (IS_ERR(uacce))
2332 		return PTR_ERR(uacce);
2333 
2334 	if (uacce->flags & UACCE_DEV_SVA && qm->mode == UACCE_MODE_SVA) {
2335 		qm->use_sva = true;
2336 	} else {
2337 		/* only consider sva case */
2338 		uacce_remove(uacce);
2339 		qm->uacce = NULL;
2340 		return -EINVAL;
2341 	}
2342 
2343 	uacce->is_vf = pdev->is_virtfn;
2344 	uacce->priv = qm;
2345 	uacce->algs = qm->algs;
2346 
2347 	if (qm->ver == QM_HW_V1)
2348 		uacce->api_ver = HISI_QM_API_VER_BASE;
2349 	else if (qm->ver == QM_HW_V2)
2350 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2351 	else
2352 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2353 
2354 	if (qm->ver == QM_HW_V1)
2355 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2356 	else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation)
2357 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2358 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2359 	else
2360 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2361 
2362 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH +
2363 		       sizeof(struct qm_cqe) * QM_Q_DEPTH) >> PAGE_SHIFT;
2364 
2365 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2366 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2367 
2368 	qm->uacce = uacce;
2369 
2370 	return 0;
2371 }
2372 
2373 /**
2374  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2375  * there is user on the QM, return failure without doing anything.
2376  * @qm: The qm needed to be fronzen.
2377  *
2378  * This function frozes QM, then we can do SRIOV disabling.
2379  */
2380 static int qm_frozen(struct hisi_qm *qm)
2381 {
2382 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2383 		return 0;
2384 
2385 	down_write(&qm->qps_lock);
2386 
2387 	if (!qm->qp_in_used) {
2388 		qm->qp_in_used = qm->qp_num;
2389 		up_write(&qm->qps_lock);
2390 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2391 		return 0;
2392 	}
2393 
2394 	up_write(&qm->qps_lock);
2395 
2396 	return -EBUSY;
2397 }
2398 
2399 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2400 			     struct hisi_qm_list *qm_list)
2401 {
2402 	struct hisi_qm *qm, *vf_qm;
2403 	struct pci_dev *dev;
2404 	int ret = 0;
2405 
2406 	if (!qm_list || !pdev)
2407 		return -EINVAL;
2408 
2409 	/* Try to frozen all the VFs as disable SRIOV */
2410 	mutex_lock(&qm_list->lock);
2411 	list_for_each_entry(qm, &qm_list->list, list) {
2412 		dev = qm->pdev;
2413 		if (dev == pdev)
2414 			continue;
2415 		if (pci_physfn(dev) == pdev) {
2416 			vf_qm = pci_get_drvdata(dev);
2417 			ret = qm_frozen(vf_qm);
2418 			if (ret)
2419 				goto frozen_fail;
2420 		}
2421 	}
2422 
2423 frozen_fail:
2424 	mutex_unlock(&qm_list->lock);
2425 
2426 	return ret;
2427 }
2428 
2429 /**
2430  * hisi_qm_wait_task_finish() - Wait until the task is finished
2431  * when removing the driver.
2432  * @qm: The qm needed to wait for the task to finish.
2433  * @qm_list: The list of all available devices.
2434  */
2435 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2436 {
2437 	while (qm_frozen(qm) ||
2438 	       ((qm->fun_type == QM_HW_PF) &&
2439 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2440 		msleep(WAIT_PERIOD);
2441 	}
2442 
2443 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2444 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2445 		msleep(WAIT_PERIOD);
2446 
2447 	udelay(REMOVE_WAIT_DELAY);
2448 }
2449 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2450 
2451 /**
2452  * hisi_qm_get_free_qp_num() - Get free number of qp in qm.
2453  * @qm: The qm which want to get free qp.
2454  *
2455  * This function return free number of qp in qm.
2456  */
2457 int hisi_qm_get_free_qp_num(struct hisi_qm *qm)
2458 {
2459 	int ret;
2460 
2461 	down_read(&qm->qps_lock);
2462 	ret = qm->qp_num - qm->qp_in_used;
2463 	up_read(&qm->qps_lock);
2464 
2465 	return ret;
2466 }
2467 EXPORT_SYMBOL_GPL(hisi_qm_get_free_qp_num);
2468 
2469 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2470 {
2471 	struct device *dev = &qm->pdev->dev;
2472 	struct qm_dma *qdma;
2473 	int i;
2474 
2475 	for (i = num - 1; i >= 0; i--) {
2476 		qdma = &qm->qp_array[i].qdma;
2477 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2478 	}
2479 
2480 	kfree(qm->qp_array);
2481 }
2482 
2483 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id)
2484 {
2485 	struct device *dev = &qm->pdev->dev;
2486 	size_t off = qm->sqe_size * QM_Q_DEPTH;
2487 	struct hisi_qp *qp;
2488 
2489 	qp = &qm->qp_array[id];
2490 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2491 					 GFP_KERNEL);
2492 	if (!qp->qdma.va)
2493 		return -ENOMEM;
2494 
2495 	qp->sqe = qp->qdma.va;
2496 	qp->sqe_dma = qp->qdma.dma;
2497 	qp->cqe = qp->qdma.va + off;
2498 	qp->cqe_dma = qp->qdma.dma + off;
2499 	qp->qdma.size = dma_size;
2500 	qp->qm = qm;
2501 	qp->qp_id = id;
2502 
2503 	return 0;
2504 }
2505 
2506 static int hisi_qm_memory_init(struct hisi_qm *qm)
2507 {
2508 	struct device *dev = &qm->pdev->dev;
2509 	size_t qp_dma_size, off = 0;
2510 	int i, ret = 0;
2511 
2512 #define QM_INIT_BUF(qm, type, num) do { \
2513 	(qm)->type = ((qm)->qdma.va + (off)); \
2514 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
2515 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
2516 } while (0)
2517 
2518 	idr_init(&qm->qp_idr);
2519 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) +
2520 			QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) +
2521 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
2522 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
2523 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
2524 					 GFP_ATOMIC);
2525 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
2526 	if (!qm->qdma.va)
2527 		return -ENOMEM;
2528 
2529 	QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH);
2530 	QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH);
2531 	QM_INIT_BUF(qm, sqc, qm->qp_num);
2532 	QM_INIT_BUF(qm, cqc, qm->qp_num);
2533 
2534 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
2535 	if (!qm->qp_array) {
2536 		ret = -ENOMEM;
2537 		goto err_alloc_qp_array;
2538 	}
2539 
2540 	/* one more page for device or qp statuses */
2541 	qp_dma_size = qm->sqe_size * QM_Q_DEPTH +
2542 		      sizeof(struct qm_cqe) * QM_Q_DEPTH;
2543 	qp_dma_size = PAGE_ALIGN(qp_dma_size);
2544 	for (i = 0; i < qm->qp_num; i++) {
2545 		ret = hisi_qp_memory_init(qm, qp_dma_size, i);
2546 		if (ret)
2547 			goto err_init_qp_mem;
2548 
2549 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
2550 	}
2551 
2552 	return ret;
2553 
2554 err_init_qp_mem:
2555 	hisi_qp_memory_uninit(qm, i);
2556 err_alloc_qp_array:
2557 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
2558 
2559 	return ret;
2560 }
2561 
2562 static void hisi_qm_pre_init(struct hisi_qm *qm)
2563 {
2564 	struct pci_dev *pdev = qm->pdev;
2565 
2566 	if (qm->ver == QM_HW_V1)
2567 		qm->ops = &qm_hw_ops_v1;
2568 	else
2569 		qm->ops = &qm_hw_ops_v2;
2570 
2571 	pci_set_drvdata(pdev, qm);
2572 	mutex_init(&qm->mailbox_lock);
2573 	init_rwsem(&qm->qps_lock);
2574 	qm->qp_in_used = 0;
2575 	qm->misc_ctl = false;
2576 }
2577 
2578 static void qm_put_pci_res(struct hisi_qm *qm)
2579 {
2580 	struct pci_dev *pdev = qm->pdev;
2581 
2582 	if (qm->use_db_isolation)
2583 		iounmap(qm->db_io_base);
2584 
2585 	iounmap(qm->io_base);
2586 	pci_release_mem_regions(pdev);
2587 }
2588 
2589 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
2590 {
2591 	struct pci_dev *pdev = qm->pdev;
2592 
2593 	pci_free_irq_vectors(pdev);
2594 	qm_put_pci_res(qm);
2595 	pci_disable_device(pdev);
2596 }
2597 
2598 /**
2599  * hisi_qm_uninit() - Uninitialize qm.
2600  * @qm: The qm needed uninit.
2601  *
2602  * This function uninits qm related device resources.
2603  */
2604 void hisi_qm_uninit(struct hisi_qm *qm)
2605 {
2606 	struct pci_dev *pdev = qm->pdev;
2607 	struct device *dev = &pdev->dev;
2608 
2609 	down_write(&qm->qps_lock);
2610 
2611 	if (!qm_avail_state(qm, QM_CLOSE)) {
2612 		up_write(&qm->qps_lock);
2613 		return;
2614 	}
2615 
2616 	hisi_qp_memory_uninit(qm, qm->qp_num);
2617 	idr_destroy(&qm->qp_idr);
2618 
2619 	if (qm->qdma.va) {
2620 		hisi_qm_cache_wb(qm);
2621 		dma_free_coherent(dev, qm->qdma.size,
2622 				  qm->qdma.va, qm->qdma.dma);
2623 		memset(&qm->qdma, 0, sizeof(qm->qdma));
2624 	}
2625 
2626 	qm_irq_unregister(qm);
2627 	hisi_qm_pci_uninit(qm);
2628 	uacce_remove(qm->uacce);
2629 	qm->uacce = NULL;
2630 
2631 	up_write(&qm->qps_lock);
2632 }
2633 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2634 
2635 /**
2636  * hisi_qm_get_vft() - Get vft from a qm.
2637  * @qm: The qm we want to get its vft.
2638  * @base: The base number of queue in vft.
2639  * @number: The number of queues in vft.
2640  *
2641  * We can allocate multiple queues to a qm by configuring virtual function
2642  * table. We get related configures by this function. Normally, we call this
2643  * function in VF driver to get the queue information.
2644  *
2645  * qm hw v1 does not support this interface.
2646  */
2647 int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2648 {
2649 	if (!base || !number)
2650 		return -EINVAL;
2651 
2652 	if (!qm->ops->get_vft) {
2653 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2654 		return -EINVAL;
2655 	}
2656 
2657 	return qm->ops->get_vft(qm, base, number);
2658 }
2659 EXPORT_SYMBOL_GPL(hisi_qm_get_vft);
2660 
2661 /**
2662  * hisi_qm_set_vft() - Set vft to a qm.
2663  * @qm: The qm we want to set its vft.
2664  * @fun_num: The function number.
2665  * @base: The base number of queue in vft.
2666  * @number: The number of queues in vft.
2667  *
2668  * This function is alway called in PF driver, it is used to assign queues
2669  * among PF and VFs.
2670  *
2671  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2672  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2673  * (VF function number 0x2)
2674  */
2675 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2676 		    u32 number)
2677 {
2678 	u32 max_q_num = qm->ctrl_qp_num;
2679 
2680 	if (base >= max_q_num || number > max_q_num ||
2681 	    (base + number) > max_q_num)
2682 		return -EINVAL;
2683 
2684 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2685 }
2686 
2687 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2688 {
2689 	struct hisi_qm_status *status = &qm->status;
2690 
2691 	status->eq_head = 0;
2692 	status->aeq_head = 0;
2693 	status->eqc_phase = true;
2694 	status->aeqc_phase = true;
2695 }
2696 
2697 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
2698 {
2699 	struct device *dev = &qm->pdev->dev;
2700 	struct qm_eqc *eqc;
2701 	dma_addr_t eqc_dma;
2702 	int ret;
2703 
2704 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
2705 	if (!eqc)
2706 		return -ENOMEM;
2707 
2708 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
2709 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
2710 	if (qm->ver == QM_HW_V1)
2711 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
2712 	eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
2713 
2714 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
2715 				 DMA_TO_DEVICE);
2716 	if (dma_mapping_error(dev, eqc_dma)) {
2717 		kfree(eqc);
2718 		return -ENOMEM;
2719 	}
2720 
2721 	ret = qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
2722 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
2723 	kfree(eqc);
2724 
2725 	return ret;
2726 }
2727 
2728 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
2729 {
2730 	struct device *dev = &qm->pdev->dev;
2731 	struct qm_aeqc *aeqc;
2732 	dma_addr_t aeqc_dma;
2733 	int ret;
2734 
2735 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
2736 	if (!aeqc)
2737 		return -ENOMEM;
2738 
2739 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
2740 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
2741 	aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
2742 
2743 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
2744 				  DMA_TO_DEVICE);
2745 	if (dma_mapping_error(dev, aeqc_dma)) {
2746 		kfree(aeqc);
2747 		return -ENOMEM;
2748 	}
2749 
2750 	ret = qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
2751 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
2752 	kfree(aeqc);
2753 
2754 	return ret;
2755 }
2756 
2757 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
2758 {
2759 	struct device *dev = &qm->pdev->dev;
2760 	int ret;
2761 
2762 	qm_init_eq_aeq_status(qm);
2763 
2764 	ret = qm_eq_ctx_cfg(qm);
2765 	if (ret) {
2766 		dev_err(dev, "Set eqc failed!\n");
2767 		return ret;
2768 	}
2769 
2770 	return qm_aeq_ctx_cfg(qm);
2771 }
2772 
2773 static int __hisi_qm_start(struct hisi_qm *qm)
2774 {
2775 	int ret;
2776 
2777 	WARN_ON(!qm->qdma.va);
2778 
2779 	if (qm->fun_type == QM_HW_PF) {
2780 		ret = qm_dev_mem_reset(qm);
2781 		if (ret)
2782 			return ret;
2783 
2784 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
2785 		if (ret)
2786 			return ret;
2787 	}
2788 
2789 	ret = qm_eq_aeq_ctx_cfg(qm);
2790 	if (ret)
2791 		return ret;
2792 
2793 	ret = qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
2794 	if (ret)
2795 		return ret;
2796 
2797 	ret = qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
2798 	if (ret)
2799 		return ret;
2800 
2801 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
2802 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
2803 
2804 	return 0;
2805 }
2806 
2807 /**
2808  * hisi_qm_start() - start qm
2809  * @qm: The qm to be started.
2810  *
2811  * This function starts a qm, then we can allocate qp from this qm.
2812  */
2813 int hisi_qm_start(struct hisi_qm *qm)
2814 {
2815 	struct device *dev = &qm->pdev->dev;
2816 	int ret = 0;
2817 
2818 	down_write(&qm->qps_lock);
2819 
2820 	if (!qm_avail_state(qm, QM_START)) {
2821 		up_write(&qm->qps_lock);
2822 		return -EPERM;
2823 	}
2824 
2825 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
2826 
2827 	if (!qm->qp_num) {
2828 		dev_err(dev, "qp_num should not be 0\n");
2829 		ret = -EINVAL;
2830 		goto err_unlock;
2831 	}
2832 
2833 	ret = __hisi_qm_start(qm);
2834 	if (!ret)
2835 		atomic_set(&qm->status.flags, QM_START);
2836 
2837 err_unlock:
2838 	up_write(&qm->qps_lock);
2839 	return ret;
2840 }
2841 EXPORT_SYMBOL_GPL(hisi_qm_start);
2842 
2843 static int qm_restart(struct hisi_qm *qm)
2844 {
2845 	struct device *dev = &qm->pdev->dev;
2846 	struct hisi_qp *qp;
2847 	int ret, i;
2848 
2849 	ret = hisi_qm_start(qm);
2850 	if (ret < 0)
2851 		return ret;
2852 
2853 	down_write(&qm->qps_lock);
2854 	for (i = 0; i < qm->qp_num; i++) {
2855 		qp = &qm->qp_array[i];
2856 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
2857 		    qp->is_resetting == true) {
2858 			ret = qm_start_qp_nolock(qp, 0);
2859 			if (ret < 0) {
2860 				dev_err(dev, "Failed to start qp%d!\n", i);
2861 
2862 				up_write(&qm->qps_lock);
2863 				return ret;
2864 			}
2865 			qp->is_resetting = false;
2866 		}
2867 	}
2868 	up_write(&qm->qps_lock);
2869 
2870 	return 0;
2871 }
2872 
2873 /* Stop started qps in reset flow */
2874 static int qm_stop_started_qp(struct hisi_qm *qm)
2875 {
2876 	struct device *dev = &qm->pdev->dev;
2877 	struct hisi_qp *qp;
2878 	int i, ret;
2879 
2880 	for (i = 0; i < qm->qp_num; i++) {
2881 		qp = &qm->qp_array[i];
2882 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
2883 			qp->is_resetting = true;
2884 			ret = qm_stop_qp_nolock(qp);
2885 			if (ret < 0) {
2886 				dev_err(dev, "Failed to stop qp%d!\n", i);
2887 				return ret;
2888 			}
2889 		}
2890 	}
2891 
2892 	return 0;
2893 }
2894 
2895 
2896 /**
2897  * qm_clear_queues() - Clear all queues memory in a qm.
2898  * @qm: The qm in which the queues will be cleared.
2899  *
2900  * This function clears all queues memory in a qm. Reset of accelerator can
2901  * use this to clear queues.
2902  */
2903 static void qm_clear_queues(struct hisi_qm *qm)
2904 {
2905 	struct hisi_qp *qp;
2906 	int i;
2907 
2908 	for (i = 0; i < qm->qp_num; i++) {
2909 		qp = &qm->qp_array[i];
2910 		if (qp->is_resetting)
2911 			memset(qp->qdma.va, 0, qp->qdma.size);
2912 	}
2913 
2914 	memset(qm->qdma.va, 0, qm->qdma.size);
2915 }
2916 
2917 /**
2918  * hisi_qm_stop() - Stop a qm.
2919  * @qm: The qm which will be stopped.
2920  * @r: The reason to stop qm.
2921  *
2922  * This function stops qm and its qps, then qm can not accept request.
2923  * Related resources are not released at this state, we can use hisi_qm_start
2924  * to let qm start again.
2925  */
2926 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
2927 {
2928 	struct device *dev = &qm->pdev->dev;
2929 	int ret = 0;
2930 
2931 	down_write(&qm->qps_lock);
2932 
2933 	qm->status.stop_reason = r;
2934 	if (!qm_avail_state(qm, QM_STOP)) {
2935 		ret = -EPERM;
2936 		goto err_unlock;
2937 	}
2938 
2939 	if (qm->status.stop_reason == QM_SOFT_RESET ||
2940 	    qm->status.stop_reason == QM_FLR) {
2941 		ret = qm_stop_started_qp(qm);
2942 		if (ret < 0) {
2943 			dev_err(dev, "Failed to stop started qp!\n");
2944 			goto err_unlock;
2945 		}
2946 	}
2947 
2948 	/* Mask eq and aeq irq */
2949 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
2950 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
2951 
2952 	if (qm->fun_type == QM_HW_PF) {
2953 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
2954 		if (ret < 0) {
2955 			dev_err(dev, "Failed to set vft!\n");
2956 			ret = -EBUSY;
2957 			goto err_unlock;
2958 		}
2959 	}
2960 
2961 	qm_clear_queues(qm);
2962 	atomic_set(&qm->status.flags, QM_STOP);
2963 
2964 err_unlock:
2965 	up_write(&qm->qps_lock);
2966 	return ret;
2967 }
2968 EXPORT_SYMBOL_GPL(hisi_qm_stop);
2969 
2970 static ssize_t qm_status_read(struct file *filp, char __user *buffer,
2971 			      size_t count, loff_t *pos)
2972 {
2973 	struct hisi_qm *qm = filp->private_data;
2974 	char buf[QM_DBG_READ_LEN];
2975 	int val, len;
2976 
2977 	val = atomic_read(&qm->status.flags);
2978 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]);
2979 
2980 	return simple_read_from_buffer(buffer, count, pos, buf, len);
2981 }
2982 
2983 static const struct file_operations qm_status_fops = {
2984 	.owner = THIS_MODULE,
2985 	.open = simple_open,
2986 	.read = qm_status_read,
2987 };
2988 
2989 static int qm_debugfs_atomic64_set(void *data, u64 val)
2990 {
2991 	if (val)
2992 		return -EINVAL;
2993 
2994 	atomic64_set((atomic64_t *)data, 0);
2995 
2996 	return 0;
2997 }
2998 
2999 static int qm_debugfs_atomic64_get(void *data, u64 *val)
3000 {
3001 	*val = atomic64_read((atomic64_t *)data);
3002 
3003 	return 0;
3004 }
3005 
3006 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get,
3007 			 qm_debugfs_atomic64_set, "%llu\n");
3008 
3009 /**
3010  * hisi_qm_debug_init() - Initialize qm related debugfs files.
3011  * @qm: The qm for which we want to add debugfs files.
3012  *
3013  * Create qm related debugfs files.
3014  */
3015 void hisi_qm_debug_init(struct hisi_qm *qm)
3016 {
3017 	struct qm_dfx *dfx = &qm->debug.dfx;
3018 	struct dentry *qm_d;
3019 	void *data;
3020 	int i;
3021 
3022 	qm_d = debugfs_create_dir("qm", qm->debug.debug_root);
3023 	qm->debug.qm_d = qm_d;
3024 
3025 	/* only show this in PF */
3026 	if (qm->fun_type == QM_HW_PF) {
3027 		qm_create_debugfs_file(qm, qm->debug.debug_root, CURRENT_QM);
3028 		for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++)
3029 			qm_create_debugfs_file(qm, qm_d, i);
3030 	}
3031 
3032 	debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops);
3033 
3034 	debugfs_create_file("cmd", 0444, qm->debug.qm_d, qm, &qm_cmd_fops);
3035 
3036 	debugfs_create_file("status", 0444, qm->debug.qm_d, qm,
3037 			&qm_status_fops);
3038 	for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) {
3039 		data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset);
3040 		debugfs_create_file(qm_dfx_files[i].name,
3041 			0644,
3042 			qm_d,
3043 			data,
3044 			&qm_atomic64_ops);
3045 	}
3046 }
3047 EXPORT_SYMBOL_GPL(hisi_qm_debug_init);
3048 
3049 /**
3050  * hisi_qm_debug_regs_clear() - clear qm debug related registers.
3051  * @qm: The qm for which we want to clear its debug registers.
3052  */
3053 void hisi_qm_debug_regs_clear(struct hisi_qm *qm)
3054 {
3055 	struct qm_dfx_registers *regs;
3056 	int i;
3057 
3058 	/* clear current_qm */
3059 	writel(0x0, qm->io_base + QM_DFX_MB_CNT_VF);
3060 	writel(0x0, qm->io_base + QM_DFX_DB_CNT_VF);
3061 
3062 	/* clear current_q */
3063 	writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
3064 	writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
3065 
3066 	/*
3067 	 * these registers are reading and clearing, so clear them after
3068 	 * reading them.
3069 	 */
3070 	writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE);
3071 
3072 	regs = qm_dfx_regs;
3073 	for (i = 0; i < CNT_CYC_REGS_NUM; i++) {
3074 		readl(qm->io_base + regs->reg_offset);
3075 		regs++;
3076 	}
3077 
3078 	writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE);
3079 }
3080 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear);
3081 
3082 static void qm_hw_error_init(struct hisi_qm *qm)
3083 {
3084 	const struct hisi_qm_err_info *err_info = &qm->err_ini->err_info;
3085 
3086 	if (!qm->ops->hw_error_init) {
3087 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3088 		return;
3089 	}
3090 
3091 	qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe);
3092 }
3093 
3094 static void qm_hw_error_uninit(struct hisi_qm *qm)
3095 {
3096 	if (!qm->ops->hw_error_uninit) {
3097 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3098 		return;
3099 	}
3100 
3101 	qm->ops->hw_error_uninit(qm);
3102 }
3103 
3104 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3105 {
3106 	if (!qm->ops->hw_error_handle) {
3107 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3108 		return ACC_ERR_NONE;
3109 	}
3110 
3111 	return qm->ops->hw_error_handle(qm);
3112 }
3113 
3114 /**
3115  * hisi_qm_dev_err_init() - Initialize device error configuration.
3116  * @qm: The qm for which we want to do error initialization.
3117  *
3118  * Initialize QM and device error related configuration.
3119  */
3120 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3121 {
3122 	if (qm->fun_type == QM_HW_VF)
3123 		return;
3124 
3125 	qm_hw_error_init(qm);
3126 
3127 	if (!qm->err_ini->hw_err_enable) {
3128 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3129 		return;
3130 	}
3131 	qm->err_ini->hw_err_enable(qm);
3132 }
3133 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3134 
3135 /**
3136  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3137  * @qm: The qm for which we want to do error uninitialization.
3138  *
3139  * Uninitialize QM and device error related configuration.
3140  */
3141 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3142 {
3143 	if (qm->fun_type == QM_HW_VF)
3144 		return;
3145 
3146 	qm_hw_error_uninit(qm);
3147 
3148 	if (!qm->err_ini->hw_err_disable) {
3149 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3150 		return;
3151 	}
3152 	qm->err_ini->hw_err_disable(qm);
3153 }
3154 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3155 
3156 /**
3157  * hisi_qm_free_qps() - free multiple queue pairs.
3158  * @qps: The queue pairs need to be freed.
3159  * @qp_num: The num of queue pairs.
3160  */
3161 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3162 {
3163 	int i;
3164 
3165 	if (!qps || qp_num <= 0)
3166 		return;
3167 
3168 	for (i = qp_num - 1; i >= 0; i--)
3169 		hisi_qm_release_qp(qps[i]);
3170 }
3171 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3172 
3173 static void free_list(struct list_head *head)
3174 {
3175 	struct hisi_qm_resource *res, *tmp;
3176 
3177 	list_for_each_entry_safe(res, tmp, head, list) {
3178 		list_del(&res->list);
3179 		kfree(res);
3180 	}
3181 }
3182 
3183 static int hisi_qm_sort_devices(int node, struct list_head *head,
3184 				struct hisi_qm_list *qm_list)
3185 {
3186 	struct hisi_qm_resource *res, *tmp;
3187 	struct hisi_qm *qm;
3188 	struct list_head *n;
3189 	struct device *dev;
3190 	int dev_node = 0;
3191 
3192 	list_for_each_entry(qm, &qm_list->list, list) {
3193 		dev = &qm->pdev->dev;
3194 
3195 		if (IS_ENABLED(CONFIG_NUMA)) {
3196 			dev_node = dev_to_node(dev);
3197 			if (dev_node < 0)
3198 				dev_node = 0;
3199 		}
3200 
3201 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3202 		if (!res)
3203 			return -ENOMEM;
3204 
3205 		res->qm = qm;
3206 		res->distance = node_distance(dev_node, node);
3207 		n = head;
3208 		list_for_each_entry(tmp, head, list) {
3209 			if (res->distance < tmp->distance) {
3210 				n = &tmp->list;
3211 				break;
3212 			}
3213 		}
3214 		list_add_tail(&res->list, n);
3215 	}
3216 
3217 	return 0;
3218 }
3219 
3220 /**
3221  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3222  * @qm_list: The list of all available devices.
3223  * @qp_num: The number of queue pairs need created.
3224  * @alg_type: The algorithm type.
3225  * @node: The numa node.
3226  * @qps: The queue pairs need created.
3227  *
3228  * This function will sort all available device according to numa distance.
3229  * Then try to create all queue pairs from one device, if all devices do
3230  * not meet the requirements will return error.
3231  */
3232 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3233 			   u8 alg_type, int node, struct hisi_qp **qps)
3234 {
3235 	struct hisi_qm_resource *tmp;
3236 	int ret = -ENODEV;
3237 	LIST_HEAD(head);
3238 	int i;
3239 
3240 	if (!qps || !qm_list || qp_num <= 0)
3241 		return -EINVAL;
3242 
3243 	mutex_lock(&qm_list->lock);
3244 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3245 		mutex_unlock(&qm_list->lock);
3246 		goto err;
3247 	}
3248 
3249 	list_for_each_entry(tmp, &head, list) {
3250 		for (i = 0; i < qp_num; i++) {
3251 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3252 			if (IS_ERR(qps[i])) {
3253 				hisi_qm_free_qps(qps, i);
3254 				break;
3255 			}
3256 		}
3257 
3258 		if (i == qp_num) {
3259 			ret = 0;
3260 			break;
3261 		}
3262 	}
3263 
3264 	mutex_unlock(&qm_list->lock);
3265 	if (ret)
3266 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3267 			node, alg_type, qp_num);
3268 
3269 err:
3270 	free_list(&head);
3271 	return ret;
3272 }
3273 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3274 
3275 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3276 {
3277 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3278 	u32 max_qp_num = qm->max_qp_num;
3279 	u32 q_base = qm->qp_num;
3280 	int ret;
3281 
3282 	if (!num_vfs)
3283 		return -EINVAL;
3284 
3285 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3286 
3287 	/* If vfs_q_num is less than num_vfs, return error. */
3288 	if (vfs_q_num < num_vfs)
3289 		return -EINVAL;
3290 
3291 	q_num = vfs_q_num / num_vfs;
3292 	remain_q_num = vfs_q_num % num_vfs;
3293 
3294 	for (i = num_vfs; i > 0; i--) {
3295 		/*
3296 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3297 		 * remaining queues equally.
3298 		 */
3299 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3300 			act_q_num = q_num + remain_q_num;
3301 			remain_q_num = 0;
3302 		} else if (remain_q_num > 0) {
3303 			act_q_num = q_num + 1;
3304 			remain_q_num--;
3305 		} else {
3306 			act_q_num = q_num;
3307 		}
3308 
3309 		act_q_num = min_t(int, act_q_num, max_qp_num);
3310 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3311 		if (ret) {
3312 			for (j = num_vfs; j > i; j--)
3313 				hisi_qm_set_vft(qm, j, 0, 0);
3314 			return ret;
3315 		}
3316 		q_base += act_q_num;
3317 	}
3318 
3319 	return 0;
3320 }
3321 
3322 static int qm_clear_vft_config(struct hisi_qm *qm)
3323 {
3324 	int ret;
3325 	u32 i;
3326 
3327 	for (i = 1; i <= qm->vfs_num; i++) {
3328 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3329 		if (ret)
3330 			return ret;
3331 	}
3332 	qm->vfs_num = 0;
3333 
3334 	return 0;
3335 }
3336 
3337 /**
3338  * hisi_qm_sriov_enable() - enable virtual functions
3339  * @pdev: the PCIe device
3340  * @max_vfs: the number of virtual functions to enable
3341  *
3342  * Returns the number of enabled VFs. If there are VFs enabled already or
3343  * max_vfs is more than the total number of device can be enabled, returns
3344  * failure.
3345  */
3346 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3347 {
3348 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3349 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3350 
3351 	total_vfs = pci_sriov_get_totalvfs(pdev);
3352 	pre_existing_vfs = pci_num_vf(pdev);
3353 	if (pre_existing_vfs) {
3354 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3355 			pre_existing_vfs);
3356 		return 0;
3357 	}
3358 
3359 	num_vfs = min_t(int, max_vfs, total_vfs);
3360 	ret = qm_vf_q_assign(qm, num_vfs);
3361 	if (ret) {
3362 		pci_err(pdev, "Can't assign queues for VF!\n");
3363 		return ret;
3364 	}
3365 
3366 	qm->vfs_num = num_vfs;
3367 
3368 	ret = pci_enable_sriov(pdev, num_vfs);
3369 	if (ret) {
3370 		pci_err(pdev, "Can't enable VF!\n");
3371 		qm_clear_vft_config(qm);
3372 		return ret;
3373 	}
3374 
3375 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3376 
3377 	return num_vfs;
3378 }
3379 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3380 
3381 /**
3382  * hisi_qm_sriov_disable - disable virtual functions
3383  * @pdev: the PCI device.
3384  * @is_frozen: true when all the VFs are frozen.
3385  *
3386  * Return failure if there are VFs assigned already or VF is in used.
3387  */
3388 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3389 {
3390 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3391 
3392 	if (pci_vfs_assigned(pdev)) {
3393 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3394 		return -EPERM;
3395 	}
3396 
3397 	/* While VF is in used, SRIOV cannot be disabled. */
3398 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3399 		pci_err(pdev, "Task is using its VF!\n");
3400 		return -EBUSY;
3401 	}
3402 
3403 	pci_disable_sriov(pdev);
3404 	return qm_clear_vft_config(qm);
3405 }
3406 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3407 
3408 /**
3409  * hisi_qm_sriov_configure - configure the number of VFs
3410  * @pdev: The PCI device
3411  * @num_vfs: The number of VFs need enabled
3412  *
3413  * Enable SR-IOV according to num_vfs, 0 means disable.
3414  */
3415 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3416 {
3417 	if (num_vfs == 0)
3418 		return hisi_qm_sriov_disable(pdev, false);
3419 	else
3420 		return hisi_qm_sriov_enable(pdev, num_vfs);
3421 }
3422 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3423 
3424 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3425 {
3426 	u32 err_sts;
3427 
3428 	if (!qm->err_ini->get_dev_hw_err_status) {
3429 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3430 		return ACC_ERR_NONE;
3431 	}
3432 
3433 	/* get device hardware error status */
3434 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3435 	if (err_sts) {
3436 		if (err_sts & qm->err_ini->err_info.ecc_2bits_mask)
3437 			qm->err_status.is_dev_ecc_mbit = true;
3438 
3439 		if (qm->err_ini->log_dev_hw_err)
3440 			qm->err_ini->log_dev_hw_err(qm, err_sts);
3441 
3442 		/* ce error does not need to be reset */
3443 		if ((err_sts | qm->err_ini->err_info.dev_ce_mask) ==
3444 		     qm->err_ini->err_info.dev_ce_mask) {
3445 			if (qm->err_ini->clear_dev_hw_err_status)
3446 				qm->err_ini->clear_dev_hw_err_status(qm,
3447 								err_sts);
3448 
3449 			return ACC_ERR_RECOVERED;
3450 		}
3451 
3452 		return ACC_ERR_NEED_RESET;
3453 	}
3454 
3455 	return ACC_ERR_RECOVERED;
3456 }
3457 
3458 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3459 {
3460 	enum acc_err_result qm_ret, dev_ret;
3461 
3462 	/* log qm error */
3463 	qm_ret = qm_hw_error_handle(qm);
3464 
3465 	/* log device error */
3466 	dev_ret = qm_dev_err_handle(qm);
3467 
3468 	return (qm_ret == ACC_ERR_NEED_RESET ||
3469 		dev_ret == ACC_ERR_NEED_RESET) ?
3470 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3471 }
3472 
3473 /**
3474  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3475  * @pdev: The PCI device which need report error.
3476  * @state: The connectivity between CPU and device.
3477  *
3478  * We register this function into PCIe AER handlers, It will report device or
3479  * qm hardware error status when error occur.
3480  */
3481 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3482 					  pci_channel_state_t state)
3483 {
3484 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3485 	enum acc_err_result ret;
3486 
3487 	if (pdev->is_virtfn)
3488 		return PCI_ERS_RESULT_NONE;
3489 
3490 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
3491 	if (state == pci_channel_io_perm_failure)
3492 		return PCI_ERS_RESULT_DISCONNECT;
3493 
3494 	ret = qm_process_dev_error(qm);
3495 	if (ret == ACC_ERR_NEED_RESET)
3496 		return PCI_ERS_RESULT_NEED_RESET;
3497 
3498 	return PCI_ERS_RESULT_RECOVERED;
3499 }
3500 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3501 
3502 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
3503 {
3504 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
3505 }
3506 
3507 static int qm_check_req_recv(struct hisi_qm *qm)
3508 {
3509 	struct pci_dev *pdev = qm->pdev;
3510 	int ret;
3511 	u32 val;
3512 
3513 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
3514 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3515 					 (val == ACC_VENDOR_ID_VALUE),
3516 					 POLL_PERIOD, POLL_TIMEOUT);
3517 	if (ret) {
3518 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
3519 		return ret;
3520 	}
3521 
3522 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
3523 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3524 					 (val == PCI_VENDOR_ID_HUAWEI),
3525 					 POLL_PERIOD, POLL_TIMEOUT);
3526 	if (ret)
3527 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
3528 
3529 	return ret;
3530 }
3531 
3532 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
3533 {
3534 	struct pci_dev *pdev = qm->pdev;
3535 	u16 cmd;
3536 	int i;
3537 
3538 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3539 	if (set)
3540 		cmd |= PCI_COMMAND_MEMORY;
3541 	else
3542 		cmd &= ~PCI_COMMAND_MEMORY;
3543 
3544 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
3545 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3546 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3547 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
3548 			return 0;
3549 
3550 		udelay(1);
3551 	}
3552 
3553 	return -ETIMEDOUT;
3554 }
3555 
3556 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
3557 {
3558 	struct pci_dev *pdev = qm->pdev;
3559 	u16 sriov_ctrl;
3560 	int pos;
3561 	int i;
3562 
3563 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3564 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3565 	if (set)
3566 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
3567 	else
3568 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
3569 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
3570 
3571 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3572 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3573 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
3574 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
3575 			return 0;
3576 
3577 		udelay(1);
3578 	}
3579 
3580 	return -ETIMEDOUT;
3581 }
3582 
3583 static int qm_set_msi(struct hisi_qm *qm, bool set)
3584 {
3585 	struct pci_dev *pdev = qm->pdev;
3586 
3587 	if (set) {
3588 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
3589 				       0);
3590 	} else {
3591 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
3592 				       ACC_PEH_MSI_DISABLE);
3593 		if (qm->err_status.is_qm_ecc_mbit ||
3594 		    qm->err_status.is_dev_ecc_mbit)
3595 			return 0;
3596 
3597 		mdelay(1);
3598 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
3599 			return -EFAULT;
3600 	}
3601 
3602 	return 0;
3603 }
3604 
3605 static int qm_vf_reset_prepare(struct hisi_qm *qm,
3606 			       enum qm_stop_reason stop_reason)
3607 {
3608 	struct hisi_qm_list *qm_list = qm->qm_list;
3609 	struct pci_dev *pdev = qm->pdev;
3610 	struct pci_dev *virtfn;
3611 	struct hisi_qm *vf_qm;
3612 	int ret = 0;
3613 
3614 	mutex_lock(&qm_list->lock);
3615 	list_for_each_entry(vf_qm, &qm_list->list, list) {
3616 		virtfn = vf_qm->pdev;
3617 		if (virtfn == pdev)
3618 			continue;
3619 
3620 		if (pci_physfn(virtfn) == pdev) {
3621 			/* save VFs PCIE BAR configuration */
3622 			pci_save_state(virtfn);
3623 
3624 			ret = hisi_qm_stop(vf_qm, stop_reason);
3625 			if (ret)
3626 				goto stop_fail;
3627 		}
3628 	}
3629 
3630 stop_fail:
3631 	mutex_unlock(&qm_list->lock);
3632 	return ret;
3633 }
3634 
3635 static int qm_reset_prepare_ready(struct hisi_qm *qm)
3636 {
3637 	struct pci_dev *pdev = qm->pdev;
3638 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3639 	int delay = 0;
3640 
3641 	/* All reset requests need to be queued for processing */
3642 	while (test_and_set_bit(QM_RESETTING, &pf_qm->misc_ctl)) {
3643 		msleep(++delay);
3644 		if (delay > QM_RESET_WAIT_TIMEOUT)
3645 			return -EBUSY;
3646 	}
3647 
3648 	return 0;
3649 }
3650 
3651 static int qm_controller_reset_prepare(struct hisi_qm *qm)
3652 {
3653 	struct pci_dev *pdev = qm->pdev;
3654 	int ret;
3655 
3656 	ret = qm_reset_prepare_ready(qm);
3657 	if (ret) {
3658 		pci_err(pdev, "Controller reset not ready!\n");
3659 		return ret;
3660 	}
3661 
3662 	if (qm->vfs_num) {
3663 		ret = qm_vf_reset_prepare(qm, QM_SOFT_RESET);
3664 		if (ret) {
3665 			pci_err(pdev, "Fails to stop VFs!\n");
3666 			clear_bit(QM_RESETTING, &qm->misc_ctl);
3667 			return ret;
3668 		}
3669 	}
3670 
3671 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
3672 	if (ret) {
3673 		pci_err(pdev, "Fails to stop QM!\n");
3674 		clear_bit(QM_RESETTING, &qm->misc_ctl);
3675 		return ret;
3676 	}
3677 
3678 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
3679 
3680 	return 0;
3681 }
3682 
3683 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
3684 {
3685 	u32 nfe_enb = 0;
3686 
3687 	if (!qm->err_status.is_dev_ecc_mbit &&
3688 	    qm->err_status.is_qm_ecc_mbit &&
3689 	    qm->err_ini->close_axi_master_ooo) {
3690 
3691 		qm->err_ini->close_axi_master_ooo(qm);
3692 
3693 	} else if (qm->err_status.is_dev_ecc_mbit &&
3694 		   !qm->err_status.is_qm_ecc_mbit &&
3695 		   !qm->err_ini->close_axi_master_ooo) {
3696 
3697 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
3698 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
3699 		       qm->io_base + QM_RAS_NFE_ENABLE);
3700 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
3701 	}
3702 }
3703 
3704 static int qm_soft_reset(struct hisi_qm *qm)
3705 {
3706 	struct pci_dev *pdev = qm->pdev;
3707 	int ret;
3708 	u32 val;
3709 
3710 	/* Ensure all doorbells and mailboxes received by QM */
3711 	ret = qm_check_req_recv(qm);
3712 	if (ret)
3713 		return ret;
3714 
3715 	if (qm->vfs_num) {
3716 		ret = qm_set_vf_mse(qm, false);
3717 		if (ret) {
3718 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
3719 			return ret;
3720 		}
3721 	}
3722 
3723 	ret = qm_set_msi(qm, false);
3724 	if (ret) {
3725 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
3726 		return ret;
3727 	}
3728 
3729 	qm_dev_ecc_mbit_handle(qm);
3730 
3731 	/* OOO register set and check */
3732 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
3733 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
3734 
3735 	/* If bus lock, reset chip */
3736 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
3737 					 val,
3738 					 (val == ACC_MASTER_TRANS_RETURN_RW),
3739 					 POLL_PERIOD, POLL_TIMEOUT);
3740 	if (ret) {
3741 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
3742 		return ret;
3743 	}
3744 
3745 	ret = qm_set_pf_mse(qm, false);
3746 	if (ret) {
3747 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
3748 		return ret;
3749 	}
3750 
3751 	/* The reset related sub-control registers are not in PCI BAR */
3752 	if (ACPI_HANDLE(&pdev->dev)) {
3753 		unsigned long long value = 0;
3754 		acpi_status s;
3755 
3756 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
3757 					  qm->err_ini->err_info.acpi_rst,
3758 					  NULL, &value);
3759 		if (ACPI_FAILURE(s)) {
3760 			pci_err(pdev, "NO controller reset method!\n");
3761 			return -EIO;
3762 		}
3763 
3764 		if (value) {
3765 			pci_err(pdev, "Reset step %llu failed!\n", value);
3766 			return -EIO;
3767 		}
3768 	} else {
3769 		pci_err(pdev, "No reset method!\n");
3770 		return -EINVAL;
3771 	}
3772 
3773 	return 0;
3774 }
3775 
3776 static int qm_vf_reset_done(struct hisi_qm *qm)
3777 {
3778 	struct hisi_qm_list *qm_list = qm->qm_list;
3779 	struct pci_dev *pdev = qm->pdev;
3780 	struct pci_dev *virtfn;
3781 	struct hisi_qm *vf_qm;
3782 	int ret = 0;
3783 
3784 	mutex_lock(&qm_list->lock);
3785 	list_for_each_entry(vf_qm, &qm_list->list, list) {
3786 		virtfn = vf_qm->pdev;
3787 		if (virtfn == pdev)
3788 			continue;
3789 
3790 		if (pci_physfn(virtfn) == pdev) {
3791 			/* enable VFs PCIE BAR configuration */
3792 			pci_restore_state(virtfn);
3793 
3794 			ret = qm_restart(vf_qm);
3795 			if (ret)
3796 				goto restart_fail;
3797 		}
3798 	}
3799 
3800 restart_fail:
3801 	mutex_unlock(&qm_list->lock);
3802 	return ret;
3803 }
3804 
3805 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
3806 {
3807 	return qm->err_ini->get_dev_hw_err_status(qm);
3808 }
3809 
3810 static int qm_dev_hw_init(struct hisi_qm *qm)
3811 {
3812 	return qm->err_ini->hw_init(qm);
3813 }
3814 
3815 static void qm_restart_prepare(struct hisi_qm *qm)
3816 {
3817 	u32 value;
3818 
3819 	if (!qm->err_status.is_qm_ecc_mbit &&
3820 	    !qm->err_status.is_dev_ecc_mbit)
3821 		return;
3822 
3823 	/* temporarily close the OOO port used for PEH to write out MSI */
3824 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3825 	writel(value & ~qm->err_ini->err_info.msi_wr_port,
3826 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3827 
3828 	/* clear dev ecc 2bit error source if having */
3829 	value = qm_get_dev_err_status(qm) &
3830 		qm->err_ini->err_info.ecc_2bits_mask;
3831 	if (value && qm->err_ini->clear_dev_hw_err_status)
3832 		qm->err_ini->clear_dev_hw_err_status(qm, value);
3833 
3834 	/* clear QM ecc mbit error source */
3835 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
3836 
3837 	/* clear AM Reorder Buffer ecc mbit source */
3838 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
3839 
3840 	if (qm->err_ini->open_axi_master_ooo)
3841 		qm->err_ini->open_axi_master_ooo(qm);
3842 }
3843 
3844 static void qm_restart_done(struct hisi_qm *qm)
3845 {
3846 	u32 value;
3847 
3848 	if (!qm->err_status.is_qm_ecc_mbit &&
3849 	    !qm->err_status.is_dev_ecc_mbit)
3850 		return;
3851 
3852 	/* open the OOO port for PEH to write out MSI */
3853 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3854 	value |= qm->err_ini->err_info.msi_wr_port;
3855 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3856 
3857 	qm->err_status.is_qm_ecc_mbit = false;
3858 	qm->err_status.is_dev_ecc_mbit = false;
3859 }
3860 
3861 static int qm_controller_reset_done(struct hisi_qm *qm)
3862 {
3863 	struct pci_dev *pdev = qm->pdev;
3864 	int ret;
3865 
3866 	ret = qm_set_msi(qm, true);
3867 	if (ret) {
3868 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
3869 		return ret;
3870 	}
3871 
3872 	ret = qm_set_pf_mse(qm, true);
3873 	if (ret) {
3874 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
3875 		return ret;
3876 	}
3877 
3878 	if (qm->vfs_num) {
3879 		ret = qm_set_vf_mse(qm, true);
3880 		if (ret) {
3881 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
3882 			return ret;
3883 		}
3884 	}
3885 
3886 	ret = qm_dev_hw_init(qm);
3887 	if (ret) {
3888 		pci_err(pdev, "Failed to init device\n");
3889 		return ret;
3890 	}
3891 
3892 	qm_restart_prepare(qm);
3893 
3894 	ret = qm_restart(qm);
3895 	if (ret) {
3896 		pci_err(pdev, "Failed to start QM!\n");
3897 		return ret;
3898 	}
3899 
3900 	if (qm->vfs_num) {
3901 		ret = qm_vf_q_assign(qm, qm->vfs_num);
3902 		if (ret) {
3903 			pci_err(pdev, "Failed to assign queue!\n");
3904 			return ret;
3905 		}
3906 	}
3907 
3908 	ret = qm_vf_reset_done(qm);
3909 	if (ret) {
3910 		pci_err(pdev, "Failed to start VFs!\n");
3911 		return -EPERM;
3912 	}
3913 
3914 	hisi_qm_dev_err_init(qm);
3915 	qm_restart_done(qm);
3916 
3917 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3918 
3919 	return 0;
3920 }
3921 
3922 static int qm_controller_reset(struct hisi_qm *qm)
3923 {
3924 	struct pci_dev *pdev = qm->pdev;
3925 	int ret;
3926 
3927 	pci_info(pdev, "Controller resetting...\n");
3928 
3929 	ret = qm_controller_reset_prepare(qm);
3930 	if (ret) {
3931 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
3932 		return ret;
3933 	}
3934 
3935 	ret = qm_soft_reset(qm);
3936 	if (ret) {
3937 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
3938 		clear_bit(QM_RESETTING, &qm->misc_ctl);
3939 		return ret;
3940 	}
3941 
3942 	ret = qm_controller_reset_done(qm);
3943 	if (ret) {
3944 		clear_bit(QM_RESETTING, &qm->misc_ctl);
3945 		return ret;
3946 	}
3947 
3948 	pci_info(pdev, "Controller reset complete\n");
3949 
3950 	return 0;
3951 }
3952 
3953 /**
3954  * hisi_qm_dev_slot_reset() - slot reset
3955  * @pdev: the PCIe device
3956  *
3957  * This function offers QM relate PCIe device reset interface. Drivers which
3958  * use QM can use this function as slot_reset in its struct pci_error_handlers.
3959  */
3960 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
3961 {
3962 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3963 	int ret;
3964 
3965 	if (pdev->is_virtfn)
3966 		return PCI_ERS_RESULT_RECOVERED;
3967 
3968 	pci_aer_clear_nonfatal_status(pdev);
3969 
3970 	/* reset pcie device controller */
3971 	ret = qm_controller_reset(qm);
3972 	if (ret) {
3973 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
3974 		return PCI_ERS_RESULT_DISCONNECT;
3975 	}
3976 
3977 	return PCI_ERS_RESULT_RECOVERED;
3978 }
3979 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
3980 
3981 /* check the interrupt is ecc-mbit error or not */
3982 static int qm_check_dev_error(struct hisi_qm *qm)
3983 {
3984 	int ret;
3985 
3986 	if (qm->fun_type == QM_HW_VF)
3987 		return 0;
3988 
3989 	ret = qm_get_hw_error_status(qm) & QM_ECC_MBIT;
3990 	if (ret)
3991 		return ret;
3992 
3993 	return (qm_get_dev_err_status(qm) &
3994 		qm->err_ini->err_info.ecc_2bits_mask);
3995 }
3996 
3997 void hisi_qm_reset_prepare(struct pci_dev *pdev)
3998 {
3999 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4000 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4001 	u32 delay = 0;
4002 	int ret;
4003 
4004 	hisi_qm_dev_err_uninit(pf_qm);
4005 
4006 	/*
4007 	 * Check whether there is an ECC mbit error, If it occurs, need to
4008 	 * wait for soft reset to fix it.
4009 	 */
4010 	while (qm_check_dev_error(pf_qm)) {
4011 		msleep(++delay);
4012 		if (delay > QM_RESET_WAIT_TIMEOUT)
4013 			return;
4014 	}
4015 
4016 	ret = qm_reset_prepare_ready(qm);
4017 	if (ret) {
4018 		pci_err(pdev, "FLR not ready!\n");
4019 		return;
4020 	}
4021 
4022 	if (qm->vfs_num) {
4023 		ret = qm_vf_reset_prepare(qm, QM_FLR);
4024 		if (ret) {
4025 			pci_err(pdev, "Failed to prepare reset, ret = %d.\n",
4026 				ret);
4027 			return;
4028 		}
4029 	}
4030 
4031 	ret = hisi_qm_stop(qm, QM_FLR);
4032 	if (ret) {
4033 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4034 		return;
4035 	}
4036 
4037 	pci_info(pdev, "FLR resetting...\n");
4038 }
4039 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4040 
4041 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4042 {
4043 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4044 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4045 	u32 id;
4046 
4047 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4048 	if (id == QM_PCI_COMMAND_INVALID) {
4049 		pci_err(pdev, "Device can not be used!\n");
4050 		return false;
4051 	}
4052 
4053 	return true;
4054 }
4055 
4056 void hisi_qm_reset_done(struct pci_dev *pdev)
4057 {
4058 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4059 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4060 	int ret;
4061 
4062 	hisi_qm_dev_err_init(pf_qm);
4063 
4064 	ret = qm_restart(qm);
4065 	if (ret) {
4066 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4067 		goto flr_done;
4068 	}
4069 
4070 	if (qm->fun_type == QM_HW_PF) {
4071 		ret = qm_dev_hw_init(qm);
4072 		if (ret) {
4073 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4074 			goto flr_done;
4075 		}
4076 
4077 		if (!qm->vfs_num)
4078 			goto flr_done;
4079 
4080 		ret = qm_vf_q_assign(qm, qm->vfs_num);
4081 		if (ret) {
4082 			pci_err(pdev, "Failed to assign VFs, ret = %d.\n", ret);
4083 			goto flr_done;
4084 		}
4085 
4086 		ret = qm_vf_reset_done(qm);
4087 		if (ret) {
4088 			pci_err(pdev, "Failed to start VFs, ret = %d.\n", ret);
4089 			goto flr_done;
4090 		}
4091 	}
4092 
4093 flr_done:
4094 	if (qm_flr_reset_complete(pdev))
4095 		pci_info(pdev, "FLR reset complete\n");
4096 
4097 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4098 }
4099 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4100 
4101 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4102 {
4103 	struct hisi_qm *qm = data;
4104 	enum acc_err_result ret;
4105 
4106 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4107 	ret = qm_process_dev_error(qm);
4108 	if (ret == ACC_ERR_NEED_RESET &&
4109 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4110 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4111 		schedule_work(&qm->rst_work);
4112 
4113 	return IRQ_HANDLED;
4114 }
4115 
4116 static int qm_irq_register(struct hisi_qm *qm)
4117 {
4118 	struct pci_dev *pdev = qm->pdev;
4119 	int ret;
4120 
4121 	ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR),
4122 			  qm_irq, 0, qm->dev_name, qm);
4123 	if (ret)
4124 		return ret;
4125 
4126 	if (qm->ver != QM_HW_V1) {
4127 		ret = request_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR),
4128 				  qm_aeq_irq, 0, qm->dev_name, qm);
4129 		if (ret)
4130 			goto err_aeq_irq;
4131 
4132 		if (qm->fun_type == QM_HW_PF) {
4133 			ret = request_irq(pci_irq_vector(pdev,
4134 					  QM_ABNORMAL_EVENT_IRQ_VECTOR),
4135 					  qm_abnormal_irq, 0, qm->dev_name, qm);
4136 			if (ret)
4137 				goto err_abonormal_irq;
4138 		}
4139 	}
4140 
4141 	return 0;
4142 
4143 err_abonormal_irq:
4144 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
4145 err_aeq_irq:
4146 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
4147 	return ret;
4148 }
4149 
4150 /**
4151  * hisi_qm_dev_shutdown() - Shutdown device.
4152  * @pdev: The device will be shutdown.
4153  *
4154  * This function will stop qm when OS shutdown or rebooting.
4155  */
4156 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4157 {
4158 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4159 	int ret;
4160 
4161 	ret = hisi_qm_stop(qm, QM_NORMAL);
4162 	if (ret)
4163 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4164 }
4165 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4166 
4167 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4168 {
4169 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4170 	int ret;
4171 
4172 	/* reset pcie device controller */
4173 	ret = qm_controller_reset(qm);
4174 	if (ret)
4175 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4176 
4177 }
4178 
4179 /**
4180  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
4181  * @qm: The qm needs add.
4182  * @qm_list: The qm list.
4183  *
4184  * This function adds qm to qm list, and will register algorithm to
4185  * crypto when the qm list is empty.
4186  */
4187 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4188 {
4189 	int flag = 0;
4190 	int ret = 0;
4191 	/* HW V2 not support both use uacce sva mode and hardware crypto algs */
4192 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4193 		return 0;
4194 
4195 	mutex_lock(&qm_list->lock);
4196 	if (list_empty(&qm_list->list))
4197 		flag = 1;
4198 	list_add_tail(&qm->list, &qm_list->list);
4199 	mutex_unlock(&qm_list->lock);
4200 
4201 	if (flag) {
4202 		ret = qm_list->register_to_crypto(qm);
4203 		if (ret) {
4204 			mutex_lock(&qm_list->lock);
4205 			list_del(&qm->list);
4206 			mutex_unlock(&qm_list->lock);
4207 		}
4208 	}
4209 
4210 	return ret;
4211 }
4212 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4213 
4214 /**
4215  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
4216  * qm list.
4217  * @qm: The qm needs delete.
4218  * @qm_list: The qm list.
4219  *
4220  * This function deletes qm from qm list, and will unregister algorithm
4221  * from crypto when the qm list is empty.
4222  */
4223 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4224 {
4225 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4226 		return;
4227 
4228 	mutex_lock(&qm_list->lock);
4229 	list_del(&qm->list);
4230 	mutex_unlock(&qm_list->lock);
4231 
4232 	if (list_empty(&qm_list->list))
4233 		qm_list->unregister_from_crypto(qm);
4234 }
4235 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
4236 
4237 static int qm_get_qp_num(struct hisi_qm *qm)
4238 {
4239 	if (qm->ver == QM_HW_V1)
4240 		qm->ctrl_qp_num = QM_QNUM_V1;
4241 	else if (qm->ver == QM_HW_V2)
4242 		qm->ctrl_qp_num = QM_QNUM_V2;
4243 	else
4244 		qm->ctrl_qp_num = readl(qm->io_base + QM_CAPBILITY) &
4245 					QM_QP_NUN_MASK;
4246 
4247 	if (qm->use_db_isolation)
4248 		qm->max_qp_num = (readl(qm->io_base + QM_CAPBILITY) >>
4249 				  QM_QP_MAX_NUM_SHIFT) & QM_QP_NUN_MASK;
4250 	else
4251 		qm->max_qp_num = qm->ctrl_qp_num;
4252 
4253 	/* check if qp number is valid */
4254 	if (qm->qp_num > qm->max_qp_num) {
4255 		dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n",
4256 			qm->qp_num, qm->max_qp_num);
4257 		return -EINVAL;
4258 	}
4259 
4260 	return 0;
4261 }
4262 
4263 static int qm_get_pci_res(struct hisi_qm *qm)
4264 {
4265 	struct pci_dev *pdev = qm->pdev;
4266 	struct device *dev = &pdev->dev;
4267 	int ret;
4268 
4269 	ret = pci_request_mem_regions(pdev, qm->dev_name);
4270 	if (ret < 0) {
4271 		dev_err(dev, "Failed to request mem regions!\n");
4272 		return ret;
4273 	}
4274 
4275 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
4276 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
4277 	if (!qm->io_base) {
4278 		ret = -EIO;
4279 		goto err_request_mem_regions;
4280 	}
4281 
4282 	if (qm->ver > QM_HW_V2) {
4283 		if (qm->fun_type == QM_HW_PF)
4284 			qm->use_db_isolation = readl(qm->io_base +
4285 						     QM_QUE_ISO_EN) & BIT(0);
4286 		else
4287 			qm->use_db_isolation = readl(qm->io_base +
4288 						     QM_QUE_ISO_CFG_V) & BIT(0);
4289 	}
4290 
4291 	if (qm->use_db_isolation) {
4292 		qm->db_interval = QM_QP_DB_INTERVAL;
4293 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
4294 		qm->db_io_base = ioremap(qm->db_phys_base,
4295 					 pci_resource_len(pdev, PCI_BAR_4));
4296 		if (!qm->db_io_base) {
4297 			ret = -EIO;
4298 			goto err_ioremap;
4299 		}
4300 	} else {
4301 		qm->db_phys_base = qm->phys_base;
4302 		qm->db_io_base = qm->io_base;
4303 		qm->db_interval = 0;
4304 	}
4305 
4306 	if (qm->fun_type == QM_HW_PF) {
4307 		ret = qm_get_qp_num(qm);
4308 		if (ret)
4309 			goto err_db_ioremap;
4310 	}
4311 
4312 	return 0;
4313 
4314 err_db_ioremap:
4315 	if (qm->use_db_isolation)
4316 		iounmap(qm->db_io_base);
4317 err_ioremap:
4318 	iounmap(qm->io_base);
4319 err_request_mem_regions:
4320 	pci_release_mem_regions(pdev);
4321 	return ret;
4322 }
4323 
4324 static int hisi_qm_pci_init(struct hisi_qm *qm)
4325 {
4326 	struct pci_dev *pdev = qm->pdev;
4327 	struct device *dev = &pdev->dev;
4328 	unsigned int num_vec;
4329 	int ret;
4330 
4331 	ret = pci_enable_device_mem(pdev);
4332 	if (ret < 0) {
4333 		dev_err(dev, "Failed to enable device mem!\n");
4334 		return ret;
4335 	}
4336 
4337 	ret = qm_get_pci_res(qm);
4338 	if (ret)
4339 		goto err_disable_pcidev;
4340 
4341 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4342 	if (ret < 0)
4343 		goto err_get_pci_res;
4344 	pci_set_master(pdev);
4345 
4346 	if (!qm->ops->get_irq_num) {
4347 		ret = -EOPNOTSUPP;
4348 		goto err_get_pci_res;
4349 	}
4350 	num_vec = qm->ops->get_irq_num(qm);
4351 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
4352 	if (ret < 0) {
4353 		dev_err(dev, "Failed to enable MSI vectors!\n");
4354 		goto err_get_pci_res;
4355 	}
4356 
4357 	return 0;
4358 
4359 err_get_pci_res:
4360 	qm_put_pci_res(qm);
4361 err_disable_pcidev:
4362 	pci_disable_device(pdev);
4363 	return ret;
4364 }
4365 
4366 /**
4367  * hisi_qm_init() - Initialize configures about qm.
4368  * @qm: The qm needing init.
4369  *
4370  * This function init qm, then we can call hisi_qm_start to put qm into work.
4371  */
4372 int hisi_qm_init(struct hisi_qm *qm)
4373 {
4374 	struct pci_dev *pdev = qm->pdev;
4375 	struct device *dev = &pdev->dev;
4376 	int ret;
4377 
4378 	hisi_qm_pre_init(qm);
4379 
4380 	ret = hisi_qm_pci_init(qm);
4381 	if (ret)
4382 		return ret;
4383 
4384 	ret = qm_irq_register(qm);
4385 	if (ret)
4386 		goto err_pci_init;
4387 
4388 	if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) {
4389 		/* v2 starts to support get vft by mailbox */
4390 		ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
4391 		if (ret)
4392 			goto err_irq_register;
4393 	}
4394 
4395 	ret = qm_alloc_uacce(qm);
4396 	if (ret < 0)
4397 		dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
4398 
4399 	ret = hisi_qm_memory_init(qm);
4400 	if (ret)
4401 		goto err_alloc_uacce;
4402 
4403 	INIT_WORK(&qm->work, qm_work_process);
4404 	if (qm->fun_type == QM_HW_PF)
4405 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
4406 
4407 	atomic_set(&qm->status.flags, QM_INIT);
4408 
4409 	return 0;
4410 
4411 err_alloc_uacce:
4412 	uacce_remove(qm->uacce);
4413 	qm->uacce = NULL;
4414 err_irq_register:
4415 	qm_irq_unregister(qm);
4416 err_pci_init:
4417 	hisi_qm_pci_uninit(qm);
4418 	return ret;
4419 }
4420 EXPORT_SYMBOL_GPL(hisi_qm_init);
4421 
4422 MODULE_LICENSE("GPL v2");
4423 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
4424 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
4425