1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/bitmap.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/idr.h> 8 #include <linux/io.h> 9 #include <linux/irqreturn.h> 10 #include <linux/log2.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/uacce.h> 15 #include <linux/uaccess.h> 16 #include <uapi/misc/uacce/hisi_qm.h> 17 #include <linux/hisi_acc_qm.h> 18 #include "qm_common.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 26 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 27 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_SHIFT 16 29 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 30 31 /* mailbox */ 32 #define QM_MB_PING_ALL_VFS 0xffff 33 #define QM_MB_CMD_DATA_SHIFT 32 34 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 35 #define QM_MB_STATUS_MASK GENMASK(12, 9) 36 37 /* sqc shift */ 38 #define QM_SQ_HOP_NUM_SHIFT 0 39 #define QM_SQ_PAGE_SIZE_SHIFT 4 40 #define QM_SQ_BUF_SIZE_SHIFT 8 41 #define QM_SQ_SQE_SIZE_SHIFT 12 42 #define QM_SQ_PRIORITY_SHIFT 0 43 #define QM_SQ_ORDERS_SHIFT 4 44 #define QM_SQ_TYPE_SHIFT 8 45 #define QM_QC_PASID_ENABLE 0x1 46 #define QM_QC_PASID_ENABLE_SHIFT 7 47 48 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 49 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) 50 51 /* cqc shift */ 52 #define QM_CQ_HOP_NUM_SHIFT 0 53 #define QM_CQ_PAGE_SIZE_SHIFT 4 54 #define QM_CQ_BUF_SIZE_SHIFT 8 55 #define QM_CQ_CQE_SIZE_SHIFT 12 56 #define QM_CQ_PHASE_SHIFT 0 57 #define QM_CQ_FLAG_SHIFT 1 58 59 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 60 #define QM_QC_CQE_SIZE 4 61 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) 62 63 /* eqc shift */ 64 #define QM_EQE_AEQE_SIZE (2UL << 12) 65 #define QM_EQC_PHASE_SHIFT 16 66 67 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 68 #define QM_EQE_CQN_MASK GENMASK(15, 0) 69 70 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 71 #define QM_AEQE_TYPE_SHIFT 17 72 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 73 #define QM_CQ_OVERFLOW 0 74 #define QM_EQ_OVERFLOW 1 75 #define QM_CQE_ERROR 2 76 77 #define QM_XQ_DEPTH_SHIFT 16 78 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 79 80 #define QM_DOORBELL_CMD_SQ 0 81 #define QM_DOORBELL_CMD_CQ 1 82 #define QM_DOORBELL_CMD_EQ 2 83 #define QM_DOORBELL_CMD_AEQ 3 84 85 #define QM_DOORBELL_BASE_V1 0x340 86 #define QM_DB_CMD_SHIFT_V1 16 87 #define QM_DB_INDEX_SHIFT_V1 32 88 #define QM_DB_PRIORITY_SHIFT_V1 48 89 #define QM_PAGE_SIZE 0x0034 90 #define QM_QP_DB_INTERVAL 0x10000 91 92 #define QM_MEM_START_INIT 0x100040 93 #define QM_MEM_INIT_DONE 0x100044 94 #define QM_VFT_CFG_RDY 0x10006c 95 #define QM_VFT_CFG_OP_WR 0x100058 96 #define QM_VFT_CFG_TYPE 0x10005c 97 #define QM_VFT_CFG 0x100060 98 #define QM_VFT_CFG_OP_ENABLE 0x100054 99 #define QM_PM_CTRL 0x100148 100 #define QM_IDLE_DISABLE BIT(9) 101 102 #define QM_VFT_CFG_DATA_L 0x100064 103 #define QM_VFT_CFG_DATA_H 0x100068 104 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 105 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 106 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 107 #define QM_SQC_VFT_START_SQN_SHIFT 28 108 #define QM_SQC_VFT_VALID (1ULL << 44) 109 #define QM_SQC_VFT_SQN_SHIFT 45 110 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 111 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 112 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 113 #define QM_CQC_VFT_VALID (1ULL << 28) 114 115 #define QM_SQC_VFT_BASE_SHIFT_V2 28 116 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 117 #define QM_SQC_VFT_NUM_SHIFT_V2 45 118 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) 119 120 #define QM_ABNORMAL_INT_SOURCE 0x100000 121 #define QM_ABNORMAL_INT_MASK 0x100004 122 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 123 #define QM_ABNORMAL_INT_STATUS 0x100008 124 #define QM_ABNORMAL_INT_SET 0x10000c 125 #define QM_ABNORMAL_INF00 0x100010 126 #define QM_FIFO_OVERFLOW_TYPE 0xc0 127 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 128 #define QM_FIFO_OVERFLOW_VF 0x3f 129 #define QM_ABNORMAL_INF01 0x100014 130 #define QM_DB_TIMEOUT_TYPE 0xc0 131 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 132 #define QM_DB_TIMEOUT_VF 0x3f 133 #define QM_RAS_CE_ENABLE 0x1000ec 134 #define QM_RAS_FE_ENABLE 0x1000f0 135 #define QM_RAS_NFE_ENABLE 0x1000f4 136 #define QM_RAS_CE_THRESHOLD 0x1000f8 137 #define QM_RAS_CE_TIMES_PER_IRQ 1 138 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 139 #define QM_ECC_MBIT BIT(2) 140 #define QM_DB_TIMEOUT BIT(10) 141 #define QM_OF_FIFO_OF BIT(11) 142 143 #define QM_RESET_WAIT_TIMEOUT 400 144 #define QM_PEH_VENDOR_ID 0x1000d8 145 #define ACC_VENDOR_ID_VALUE 0x5a5a 146 #define QM_PEH_DFX_INFO0 0x1000fc 147 #define QM_PEH_DFX_INFO1 0x100100 148 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 149 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 150 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 151 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 152 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 153 #define ACC_MASTER_TRANS_RETURN_RW 3 154 #define ACC_MASTER_TRANS_RETURN 0x300150 155 #define ACC_MASTER_GLOBAL_CTRL 0x300000 156 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 157 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 158 #define ACC_AM_ROB_ECC_INT_STS 0x300104 159 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 160 #define QM_MSI_CAP_ENABLE BIT(16) 161 162 /* interfunction communication */ 163 #define QM_IFC_READY_STATUS 0x100128 164 #define QM_IFC_INT_SET_P 0x100130 165 #define QM_IFC_INT_CFG 0x100134 166 #define QM_IFC_INT_SOURCE_P 0x100138 167 #define QM_IFC_INT_SOURCE_V 0x0020 168 #define QM_IFC_INT_MASK 0x0024 169 #define QM_IFC_INT_STATUS 0x0028 170 #define QM_IFC_INT_SET_V 0x002C 171 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 172 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 173 #define QM_IFC_INT_SOURCE_MASK BIT(0) 174 #define QM_IFC_INT_DISABLE BIT(0) 175 #define QM_IFC_INT_STATUS_MASK BIT(0) 176 #define QM_IFC_INT_SET_MASK BIT(0) 177 #define QM_WAIT_DST_ACK 10 178 #define QM_MAX_PF_WAIT_COUNT 10 179 #define QM_MAX_VF_WAIT_COUNT 40 180 #define QM_VF_RESET_WAIT_US 20000 181 #define QM_VF_RESET_WAIT_CNT 3000 182 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 183 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 184 185 #define POLL_PERIOD 10 186 #define POLL_TIMEOUT 1000 187 #define WAIT_PERIOD_US_MAX 200 188 #define WAIT_PERIOD_US_MIN 100 189 #define MAX_WAIT_COUNTS 1000 190 #define QM_CACHE_WB_START 0x204 191 #define QM_CACHE_WB_DONE 0x208 192 #define QM_FUNC_CAPS_REG 0x3100 193 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 194 195 #define PCI_BAR_2 2 196 #define PCI_BAR_4 4 197 #define QMC_ALIGN(sz) ALIGN(sz, 32) 198 199 #define QM_DBG_READ_LEN 256 200 #define QM_PCI_COMMAND_INVALID ~0 201 #define QM_RESET_STOP_TX_OFFSET 1 202 #define QM_RESET_STOP_RX_OFFSET 2 203 204 #define WAIT_PERIOD 20 205 #define REMOVE_WAIT_DELAY 10 206 207 #define QM_DRIVER_REMOVING 0 208 #define QM_RST_SCHED 1 209 #define QM_QOS_PARAM_NUM 2 210 #define QM_QOS_MAX_VAL 1000 211 #define QM_QOS_RATE 100 212 #define QM_QOS_EXPAND_RATE 1000 213 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 214 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 215 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 216 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 217 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 218 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 219 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 220 #define QM_SHAPER_CBS_B 1 221 #define QM_SHAPER_VFT_OFFSET 6 222 #define QM_QOS_MIN_ERROR_RATE 5 223 #define QM_SHAPER_MIN_CBS_S 8 224 #define QM_QOS_TICK 0x300U 225 #define QM_QOS_DIVISOR_CLK 0x1f40U 226 #define QM_QOS_MAX_CIR_B 200 227 #define QM_QOS_MIN_CIR_B 100 228 #define QM_QOS_MAX_CIR_U 6 229 #define QM_AUTOSUSPEND_DELAY 3000 230 231 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 232 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 233 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 234 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 235 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 236 237 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 238 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 239 240 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 241 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 242 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 243 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 244 245 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 246 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 247 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 248 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 249 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 250 251 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 252 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 253 254 #define INIT_QC_COMMON(qc, base, pasid) do { \ 255 (qc)->head = 0; \ 256 (qc)->tail = 0; \ 257 (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ 258 (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ 259 (qc)->dw3 = 0; \ 260 (qc)->w8 = 0; \ 261 (qc)->rsvd0 = 0; \ 262 (qc)->pasid = cpu_to_le16(pasid); \ 263 (qc)->w11 = 0; \ 264 (qc)->rsvd1 = 0; \ 265 } while (0) 266 267 enum vft_type { 268 SQC_VFT = 0, 269 CQC_VFT, 270 SHAPER_VFT, 271 }; 272 273 enum acc_err_result { 274 ACC_ERR_NONE, 275 ACC_ERR_NEED_RESET, 276 ACC_ERR_RECOVERED, 277 }; 278 279 enum qm_alg_type { 280 ALG_TYPE_0, 281 ALG_TYPE_1, 282 }; 283 284 enum qm_mb_cmd { 285 QM_PF_FLR_PREPARE = 0x01, 286 QM_PF_SRST_PREPARE, 287 QM_PF_RESET_DONE, 288 QM_VF_PREPARE_DONE, 289 QM_VF_PREPARE_FAIL, 290 QM_VF_START_DONE, 291 QM_VF_START_FAIL, 292 QM_PF_SET_QOS, 293 QM_VF_GET_QOS, 294 }; 295 296 enum qm_basic_type { 297 QM_TOTAL_QP_NUM_CAP = 0x0, 298 QM_FUNC_MAX_QP_CAP, 299 QM_XEQ_DEPTH_CAP, 300 QM_QP_DEPTH_CAP, 301 QM_EQ_IRQ_TYPE_CAP, 302 QM_AEQ_IRQ_TYPE_CAP, 303 QM_ABN_IRQ_TYPE_CAP, 304 QM_PF2VF_IRQ_TYPE_CAP, 305 QM_PF_IRQ_NUM_CAP, 306 QM_VF_IRQ_NUM_CAP, 307 }; 308 309 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 310 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 311 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 312 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 313 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 314 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 315 }; 316 317 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 318 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 319 }; 320 321 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 322 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 323 }; 324 325 static const struct hisi_qm_cap_info qm_basic_info[] = { 326 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 327 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 328 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, 329 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 330 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 331 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 332 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 333 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 334 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 335 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 336 }; 337 338 struct qm_mailbox { 339 __le16 w0; 340 __le16 queue_num; 341 __le32 base_l; 342 __le32 base_h; 343 __le32 rsvd; 344 }; 345 346 struct qm_doorbell { 347 __le16 queue_num; 348 __le16 cmd; 349 __le16 index; 350 __le16 priority; 351 }; 352 353 struct hisi_qm_resource { 354 struct hisi_qm *qm; 355 int distance; 356 struct list_head list; 357 }; 358 359 /** 360 * struct qm_hw_err - Structure describing the device errors 361 * @list: hardware error list 362 * @timestamp: timestamp when the error occurred 363 */ 364 struct qm_hw_err { 365 struct list_head list; 366 unsigned long long timestamp; 367 }; 368 369 struct hisi_qm_hw_ops { 370 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 371 void (*qm_db)(struct hisi_qm *qm, u16 qn, 372 u8 cmd, u16 index, u8 priority); 373 int (*debug_init)(struct hisi_qm *qm); 374 void (*hw_error_init)(struct hisi_qm *qm); 375 void (*hw_error_uninit)(struct hisi_qm *qm); 376 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 377 int (*set_msi)(struct hisi_qm *qm, bool set); 378 }; 379 380 struct hisi_qm_hw_error { 381 u32 int_msk; 382 const char *msg; 383 }; 384 385 static const struct hisi_qm_hw_error qm_hw_error[] = { 386 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 387 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 388 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 389 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 390 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 391 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 392 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 393 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 394 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 395 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 396 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 397 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 398 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 399 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 400 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 401 { /* sentinel */ } 402 }; 403 404 static const char * const qm_db_timeout[] = { 405 "sq", "cq", "eq", "aeq", 406 }; 407 408 static const char * const qm_fifo_overflow[] = { 409 "cq", "eq", "aeq", 410 }; 411 412 static const char * const qp_s[] = { 413 "none", "init", "start", "stop", "close", 414 }; 415 416 struct qm_typical_qos_table { 417 u32 start; 418 u32 end; 419 u32 val; 420 }; 421 422 /* the qos step is 100 */ 423 static struct qm_typical_qos_table shaper_cir_s[] = { 424 {100, 100, 4}, 425 {200, 200, 3}, 426 {300, 500, 2}, 427 {600, 1000, 1}, 428 {1100, 100000, 0}, 429 }; 430 431 static struct qm_typical_qos_table shaper_cbs_s[] = { 432 {100, 200, 9}, 433 {300, 500, 11}, 434 {600, 1000, 12}, 435 {1100, 10000, 16}, 436 {10100, 25000, 17}, 437 {25100, 50000, 18}, 438 {50100, 100000, 19} 439 }; 440 441 static void qm_irqs_unregister(struct hisi_qm *qm); 442 443 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 444 { 445 enum qm_state curr = atomic_read(&qm->status.flags); 446 bool avail = false; 447 448 switch (curr) { 449 case QM_INIT: 450 if (new == QM_START || new == QM_CLOSE) 451 avail = true; 452 break; 453 case QM_START: 454 if (new == QM_STOP) 455 avail = true; 456 break; 457 case QM_STOP: 458 if (new == QM_CLOSE || new == QM_START) 459 avail = true; 460 break; 461 default: 462 break; 463 } 464 465 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 466 qm_s[curr], qm_s[new]); 467 468 if (!avail) 469 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 470 qm_s[curr], qm_s[new]); 471 472 return avail; 473 } 474 475 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 476 enum qp_state new) 477 { 478 enum qm_state qm_curr = atomic_read(&qm->status.flags); 479 enum qp_state qp_curr = 0; 480 bool avail = false; 481 482 if (qp) 483 qp_curr = atomic_read(&qp->qp_status.flags); 484 485 switch (new) { 486 case QP_INIT: 487 if (qm_curr == QM_START || qm_curr == QM_INIT) 488 avail = true; 489 break; 490 case QP_START: 491 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 492 (qm_curr == QM_START && qp_curr == QP_STOP)) 493 avail = true; 494 break; 495 case QP_STOP: 496 if ((qm_curr == QM_START && qp_curr == QP_START) || 497 (qp_curr == QP_INIT)) 498 avail = true; 499 break; 500 case QP_CLOSE: 501 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 502 (qm_curr == QM_START && qp_curr == QP_STOP) || 503 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 504 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 505 avail = true; 506 break; 507 default: 508 break; 509 } 510 511 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 512 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 513 514 if (!avail) 515 dev_warn(&qm->pdev->dev, 516 "Can not change qp state from %s to %s in QM %s\n", 517 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 518 519 return avail; 520 } 521 522 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 523 { 524 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 525 } 526 527 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 528 { 529 return qm->err_ini->get_dev_hw_err_status(qm); 530 } 531 532 /* Check if the error causes the master ooo block */ 533 static bool qm_check_dev_error(struct hisi_qm *qm) 534 { 535 u32 val, dev_val; 536 537 if (qm->fun_type == QM_HW_VF) 538 return false; 539 540 val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask; 541 dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask; 542 543 return val || dev_val; 544 } 545 546 static int qm_wait_reset_finish(struct hisi_qm *qm) 547 { 548 int delay = 0; 549 550 /* All reset requests need to be queued for processing */ 551 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 552 msleep(++delay); 553 if (delay > QM_RESET_WAIT_TIMEOUT) 554 return -EBUSY; 555 } 556 557 return 0; 558 } 559 560 static int qm_reset_prepare_ready(struct hisi_qm *qm) 561 { 562 struct pci_dev *pdev = qm->pdev; 563 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 564 565 /* 566 * PF and VF on host doesnot support resetting at the 567 * same time on Kunpeng920. 568 */ 569 if (qm->ver < QM_HW_V3) 570 return qm_wait_reset_finish(pf_qm); 571 572 return qm_wait_reset_finish(qm); 573 } 574 575 static void qm_reset_bit_clear(struct hisi_qm *qm) 576 { 577 struct pci_dev *pdev = qm->pdev; 578 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 579 580 if (qm->ver < QM_HW_V3) 581 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 582 583 clear_bit(QM_RESETTING, &qm->misc_ctl); 584 } 585 586 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 587 u64 base, u16 queue, bool op) 588 { 589 mailbox->w0 = cpu_to_le16((cmd) | 590 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 591 (0x1 << QM_MB_BUSY_SHIFT)); 592 mailbox->queue_num = cpu_to_le16(queue); 593 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 594 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 595 mailbox->rsvd = 0; 596 } 597 598 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 599 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 600 { 601 u32 val; 602 603 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 604 val, !((val >> QM_MB_BUSY_SHIFT) & 605 0x1), POLL_PERIOD, POLL_TIMEOUT); 606 } 607 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 608 609 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 610 static void qm_mb_write(struct hisi_qm *qm, const void *src) 611 { 612 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 613 614 #if IS_ENABLED(CONFIG_ARM64) 615 unsigned long tmp0 = 0, tmp1 = 0; 616 #endif 617 618 if (!IS_ENABLED(CONFIG_ARM64)) { 619 memcpy_toio(fun_base, src, 16); 620 dma_wmb(); 621 return; 622 } 623 624 #if IS_ENABLED(CONFIG_ARM64) 625 asm volatile("ldp %0, %1, %3\n" 626 "stp %0, %1, %2\n" 627 "dmb oshst\n" 628 : "=&r" (tmp0), 629 "=&r" (tmp1), 630 "+Q" (*((char __iomem *)fun_base)) 631 : "Q" (*((char *)src)) 632 : "memory"); 633 #endif 634 } 635 636 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 637 { 638 int ret; 639 u32 val; 640 641 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 642 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 643 ret = -EBUSY; 644 goto mb_busy; 645 } 646 647 qm_mb_write(qm, mailbox); 648 649 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 650 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 651 ret = -ETIMEDOUT; 652 goto mb_busy; 653 } 654 655 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 656 if (val & QM_MB_STATUS_MASK) { 657 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 658 ret = -EIO; 659 goto mb_busy; 660 } 661 662 return 0; 663 664 mb_busy: 665 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 666 return ret; 667 } 668 669 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 670 bool op) 671 { 672 struct qm_mailbox mailbox; 673 int ret; 674 675 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 676 queue, cmd, (unsigned long long)dma_addr); 677 678 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 679 680 mutex_lock(&qm->mailbox_lock); 681 ret = qm_mb_nolock(qm, &mailbox); 682 mutex_unlock(&qm->mailbox_lock); 683 684 return ret; 685 } 686 EXPORT_SYMBOL_GPL(hisi_qm_mb); 687 688 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 689 { 690 u64 doorbell; 691 692 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 693 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 694 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 695 696 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 697 } 698 699 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 700 { 701 void __iomem *io_base = qm->io_base; 702 u16 randata = 0; 703 u64 doorbell; 704 705 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 706 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 707 QM_DOORBELL_SQ_CQ_BASE_V2; 708 else 709 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 710 711 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 712 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 713 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 714 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 715 716 writeq(doorbell, io_base); 717 } 718 719 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 720 { 721 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 722 qn, cmd, index); 723 724 qm->ops->qm_db(qm, qn, cmd, index, priority); 725 } 726 727 static void qm_disable_clock_gate(struct hisi_qm *qm) 728 { 729 u32 val; 730 731 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 732 if (qm->ver < QM_HW_V3) 733 return; 734 735 val = readl(qm->io_base + QM_PM_CTRL); 736 val |= QM_IDLE_DISABLE; 737 writel(val, qm->io_base + QM_PM_CTRL); 738 } 739 740 static int qm_dev_mem_reset(struct hisi_qm *qm) 741 { 742 u32 val; 743 744 writel(0x1, qm->io_base + QM_MEM_START_INIT); 745 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 746 val & BIT(0), POLL_PERIOD, 747 POLL_TIMEOUT); 748 } 749 750 /** 751 * hisi_qm_get_hw_info() - Get device information. 752 * @qm: The qm which want to get information. 753 * @info_table: Array for storing device information. 754 * @index: Index in info_table. 755 * @is_read: Whether read from reg, 0: not support read from reg. 756 * 757 * This function returns device information the caller needs. 758 */ 759 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 760 const struct hisi_qm_cap_info *info_table, 761 u32 index, bool is_read) 762 { 763 u32 val; 764 765 switch (qm->ver) { 766 case QM_HW_V1: 767 return info_table[index].v1_val; 768 case QM_HW_V2: 769 return info_table[index].v2_val; 770 default: 771 if (!is_read) 772 return info_table[index].v3_val; 773 774 val = readl(qm->io_base + info_table[index].offset); 775 return (val >> info_table[index].shift) & info_table[index].mask; 776 } 777 } 778 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 779 780 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 781 u16 *high_bits, enum qm_basic_type type) 782 { 783 u32 depth; 784 785 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 786 *low_bits = depth & QM_XQ_DEPTH_MASK; 787 *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 788 } 789 790 static u32 qm_get_irq_num(struct hisi_qm *qm) 791 { 792 if (qm->fun_type == QM_HW_PF) 793 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 794 795 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 796 } 797 798 static int qm_pm_get_sync(struct hisi_qm *qm) 799 { 800 struct device *dev = &qm->pdev->dev; 801 int ret; 802 803 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 804 return 0; 805 806 ret = pm_runtime_resume_and_get(dev); 807 if (ret < 0) { 808 dev_err(dev, "failed to get_sync(%d).\n", ret); 809 return ret; 810 } 811 812 return 0; 813 } 814 815 static void qm_pm_put_sync(struct hisi_qm *qm) 816 { 817 struct device *dev = &qm->pdev->dev; 818 819 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 820 return; 821 822 pm_runtime_mark_last_busy(dev); 823 pm_runtime_put_autosuspend(dev); 824 } 825 826 static void qm_cq_head_update(struct hisi_qp *qp) 827 { 828 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 829 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 830 qp->qp_status.cq_head = 0; 831 } else { 832 qp->qp_status.cq_head++; 833 } 834 } 835 836 static void qm_poll_req_cb(struct hisi_qp *qp) 837 { 838 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 839 struct hisi_qm *qm = qp->qm; 840 841 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 842 dma_rmb(); 843 qp->req_cb(qp, qp->sqe + qm->sqe_size * 844 le16_to_cpu(cqe->sq_head)); 845 qm_cq_head_update(qp); 846 cqe = qp->cqe + qp->qp_status.cq_head; 847 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 848 qp->qp_status.cq_head, 0); 849 atomic_dec(&qp->qp_status.used); 850 } 851 852 /* set c_flag */ 853 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 854 } 855 856 static int qm_get_complete_eqe_num(struct hisi_qm_poll_data *poll_data) 857 { 858 struct hisi_qm *qm = poll_data->qm; 859 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 860 u16 eq_depth = qm->eq_depth; 861 int eqe_num = 0; 862 u16 cqn; 863 864 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 865 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 866 poll_data->qp_finish_id[eqe_num] = cqn; 867 eqe_num++; 868 869 if (qm->status.eq_head == eq_depth - 1) { 870 qm->status.eqc_phase = !qm->status.eqc_phase; 871 eqe = qm->eqe; 872 qm->status.eq_head = 0; 873 } else { 874 eqe++; 875 qm->status.eq_head++; 876 } 877 878 if (eqe_num == (eq_depth >> 1) - 1) 879 break; 880 } 881 882 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 883 884 return eqe_num; 885 } 886 887 static void qm_work_process(struct work_struct *work) 888 { 889 struct hisi_qm_poll_data *poll_data = 890 container_of(work, struct hisi_qm_poll_data, work); 891 struct hisi_qm *qm = poll_data->qm; 892 struct hisi_qp *qp; 893 int eqe_num, i; 894 895 /* Get qp id of completed tasks and re-enable the interrupt. */ 896 eqe_num = qm_get_complete_eqe_num(poll_data); 897 for (i = eqe_num - 1; i >= 0; i--) { 898 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 899 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 900 continue; 901 902 if (qp->event_cb) { 903 qp->event_cb(qp); 904 continue; 905 } 906 907 if (likely(qp->req_cb)) 908 qm_poll_req_cb(qp); 909 } 910 } 911 912 static bool do_qm_eq_irq(struct hisi_qm *qm) 913 { 914 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 915 struct hisi_qm_poll_data *poll_data; 916 u16 cqn; 917 918 if (!readl(qm->io_base + QM_VF_EQ_INT_SOURCE)) 919 return false; 920 921 if (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 922 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 923 poll_data = &qm->poll_data[cqn]; 924 queue_work(qm->wq, &poll_data->work); 925 926 return true; 927 } 928 929 return false; 930 } 931 932 static irqreturn_t qm_eq_irq(int irq, void *data) 933 { 934 struct hisi_qm *qm = data; 935 bool ret; 936 937 ret = do_qm_eq_irq(qm); 938 if (ret) 939 return IRQ_HANDLED; 940 941 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 942 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 943 944 return IRQ_NONE; 945 } 946 947 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 948 { 949 struct hisi_qm *qm = data; 950 u32 val; 951 952 val = readl(qm->io_base + QM_IFC_INT_STATUS); 953 val &= QM_IFC_INT_STATUS_MASK; 954 if (!val) 955 return IRQ_NONE; 956 957 schedule_work(&qm->cmd_process); 958 959 return IRQ_HANDLED; 960 } 961 962 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 963 { 964 u32 *addr; 965 966 if (qp->is_in_kernel) 967 return; 968 969 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 970 *addr = 1; 971 972 /* make sure setup is completed */ 973 smp_wmb(); 974 } 975 976 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 977 { 978 struct hisi_qp *qp = &qm->qp_array[qp_id]; 979 980 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 981 hisi_qm_stop_qp(qp); 982 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 983 } 984 985 static void qm_reset_function(struct hisi_qm *qm) 986 { 987 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 988 struct device *dev = &qm->pdev->dev; 989 int ret; 990 991 if (qm_check_dev_error(pf_qm)) 992 return; 993 994 ret = qm_reset_prepare_ready(qm); 995 if (ret) { 996 dev_err(dev, "reset function not ready\n"); 997 return; 998 } 999 1000 ret = hisi_qm_stop(qm, QM_FLR); 1001 if (ret) { 1002 dev_err(dev, "failed to stop qm when reset function\n"); 1003 goto clear_bit; 1004 } 1005 1006 ret = hisi_qm_start(qm); 1007 if (ret) 1008 dev_err(dev, "failed to start qm when reset function\n"); 1009 1010 clear_bit: 1011 qm_reset_bit_clear(qm); 1012 } 1013 1014 static irqreturn_t qm_aeq_thread(int irq, void *data) 1015 { 1016 struct hisi_qm *qm = data; 1017 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1018 u16 aeq_depth = qm->aeq_depth; 1019 u32 type, qp_id; 1020 1021 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1022 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; 1023 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1024 1025 switch (type) { 1026 case QM_EQ_OVERFLOW: 1027 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1028 qm_reset_function(qm); 1029 return IRQ_HANDLED; 1030 case QM_CQ_OVERFLOW: 1031 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1032 qp_id); 1033 fallthrough; 1034 case QM_CQE_ERROR: 1035 qm_disable_qp(qm, qp_id); 1036 break; 1037 default: 1038 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1039 type); 1040 break; 1041 } 1042 1043 if (qm->status.aeq_head == aeq_depth - 1) { 1044 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1045 aeqe = qm->aeqe; 1046 qm->status.aeq_head = 0; 1047 } else { 1048 aeqe++; 1049 qm->status.aeq_head++; 1050 } 1051 } 1052 1053 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1054 1055 return IRQ_HANDLED; 1056 } 1057 1058 static irqreturn_t qm_aeq_irq(int irq, void *data) 1059 { 1060 struct hisi_qm *qm = data; 1061 1062 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1063 if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE)) 1064 return IRQ_NONE; 1065 1066 return IRQ_WAKE_THREAD; 1067 } 1068 1069 static void qm_init_qp_status(struct hisi_qp *qp) 1070 { 1071 struct hisi_qp_status *qp_status = &qp->qp_status; 1072 1073 qp_status->sq_tail = 0; 1074 qp_status->cq_head = 0; 1075 qp_status->cqc_phase = true; 1076 atomic_set(&qp_status->used, 0); 1077 } 1078 1079 static void qm_init_prefetch(struct hisi_qm *qm) 1080 { 1081 struct device *dev = &qm->pdev->dev; 1082 u32 page_type = 0x0; 1083 1084 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1085 return; 1086 1087 switch (PAGE_SIZE) { 1088 case SZ_4K: 1089 page_type = 0x0; 1090 break; 1091 case SZ_16K: 1092 page_type = 0x1; 1093 break; 1094 case SZ_64K: 1095 page_type = 0x2; 1096 break; 1097 default: 1098 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1099 PAGE_SIZE); 1100 } 1101 1102 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1103 } 1104 1105 /* 1106 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1107 * is the expected qos calculated. 1108 * the formula: 1109 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1110 * 1111 * IR_b * (2 ^ IR_u) * 8000 1112 * IR(Mbps) = ------------------------- 1113 * Tick * (2 ^ IR_s) 1114 */ 1115 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1116 { 1117 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1118 (QM_QOS_TICK * (1 << cir_s)); 1119 } 1120 1121 static u32 acc_shaper_calc_cbs_s(u32 ir) 1122 { 1123 int table_size = ARRAY_SIZE(shaper_cbs_s); 1124 int i; 1125 1126 for (i = 0; i < table_size; i++) { 1127 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1128 return shaper_cbs_s[i].val; 1129 } 1130 1131 return QM_SHAPER_MIN_CBS_S; 1132 } 1133 1134 static u32 acc_shaper_calc_cir_s(u32 ir) 1135 { 1136 int table_size = ARRAY_SIZE(shaper_cir_s); 1137 int i; 1138 1139 for (i = 0; i < table_size; i++) { 1140 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1141 return shaper_cir_s[i].val; 1142 } 1143 1144 return 0; 1145 } 1146 1147 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1148 { 1149 u32 cir_b, cir_u, cir_s, ir_calc; 1150 u32 error_rate; 1151 1152 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1153 cir_s = acc_shaper_calc_cir_s(ir); 1154 1155 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1156 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1157 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1158 1159 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1160 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1161 factor->cir_b = cir_b; 1162 factor->cir_u = cir_u; 1163 factor->cir_s = cir_s; 1164 return 0; 1165 } 1166 } 1167 } 1168 1169 return -EINVAL; 1170 } 1171 1172 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1173 u32 number, struct qm_shaper_factor *factor) 1174 { 1175 u64 tmp = 0; 1176 1177 if (number > 0) { 1178 switch (type) { 1179 case SQC_VFT: 1180 if (qm->ver == QM_HW_V1) { 1181 tmp = QM_SQC_VFT_BUF_SIZE | 1182 QM_SQC_VFT_SQC_SIZE | 1183 QM_SQC_VFT_INDEX_NUMBER | 1184 QM_SQC_VFT_VALID | 1185 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1186 } else { 1187 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1188 QM_SQC_VFT_VALID | 1189 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1190 } 1191 break; 1192 case CQC_VFT: 1193 if (qm->ver == QM_HW_V1) { 1194 tmp = QM_CQC_VFT_BUF_SIZE | 1195 QM_CQC_VFT_SQC_SIZE | 1196 QM_CQC_VFT_INDEX_NUMBER | 1197 QM_CQC_VFT_VALID; 1198 } else { 1199 tmp = QM_CQC_VFT_VALID; 1200 } 1201 break; 1202 case SHAPER_VFT: 1203 if (factor) { 1204 tmp = factor->cir_b | 1205 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1206 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1207 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1208 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1209 } 1210 break; 1211 } 1212 } 1213 1214 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1215 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1216 } 1217 1218 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1219 u32 fun_num, u32 base, u32 number) 1220 { 1221 struct qm_shaper_factor *factor = NULL; 1222 unsigned int val; 1223 int ret; 1224 1225 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1226 factor = &qm->factor[fun_num]; 1227 1228 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1229 val & BIT(0), POLL_PERIOD, 1230 POLL_TIMEOUT); 1231 if (ret) 1232 return ret; 1233 1234 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1235 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1236 if (type == SHAPER_VFT) 1237 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1238 1239 writel(fun_num, qm->io_base + QM_VFT_CFG); 1240 1241 qm_vft_data_cfg(qm, type, base, number, factor); 1242 1243 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1244 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1245 1246 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1247 val & BIT(0), POLL_PERIOD, 1248 POLL_TIMEOUT); 1249 } 1250 1251 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1252 { 1253 u32 qos = qm->factor[fun_num].func_qos; 1254 int ret, i; 1255 1256 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1257 if (ret) { 1258 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1259 return ret; 1260 } 1261 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1262 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1263 /* The base number of queue reuse for different alg type */ 1264 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1265 if (ret) 1266 return ret; 1267 } 1268 1269 return 0; 1270 } 1271 1272 /* The config should be conducted after qm_dev_mem_reset() */ 1273 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1274 u32 number) 1275 { 1276 int ret, i; 1277 1278 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1279 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1280 if (ret) 1281 return ret; 1282 } 1283 1284 /* init default shaper qos val */ 1285 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1286 ret = qm_shaper_init_vft(qm, fun_num); 1287 if (ret) 1288 goto back_sqc_cqc; 1289 } 1290 1291 return 0; 1292 back_sqc_cqc: 1293 for (i = SQC_VFT; i <= CQC_VFT; i++) 1294 qm_set_vft_common(qm, i, fun_num, 0, 0); 1295 1296 return ret; 1297 } 1298 1299 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1300 { 1301 u64 sqc_vft; 1302 int ret; 1303 1304 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1305 if (ret) 1306 return ret; 1307 1308 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1309 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1310 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1311 *number = (QM_SQC_VFT_NUM_MASK_V2 & 1312 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1313 1314 return 0; 1315 } 1316 1317 void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, 1318 dma_addr_t *dma_addr) 1319 { 1320 struct device *dev = &qm->pdev->dev; 1321 void *ctx_addr; 1322 1323 ctx_addr = kzalloc(ctx_size, GFP_KERNEL); 1324 if (!ctx_addr) 1325 return ERR_PTR(-ENOMEM); 1326 1327 *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); 1328 if (dma_mapping_error(dev, *dma_addr)) { 1329 dev_err(dev, "DMA mapping error!\n"); 1330 kfree(ctx_addr); 1331 return ERR_PTR(-ENOMEM); 1332 } 1333 1334 return ctx_addr; 1335 } 1336 1337 void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, 1338 const void *ctx_addr, dma_addr_t *dma_addr) 1339 { 1340 struct device *dev = &qm->pdev->dev; 1341 1342 dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); 1343 kfree(ctx_addr); 1344 } 1345 1346 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1347 { 1348 return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); 1349 } 1350 1351 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1352 { 1353 return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); 1354 } 1355 1356 static void qm_hw_error_init_v1(struct hisi_qm *qm) 1357 { 1358 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1359 } 1360 1361 static void qm_hw_error_cfg(struct hisi_qm *qm) 1362 { 1363 struct hisi_qm_err_info *err_info = &qm->err_info; 1364 1365 qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; 1366 /* clear QM hw residual error source */ 1367 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1368 1369 /* configure error type */ 1370 writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); 1371 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1372 writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1373 writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); 1374 } 1375 1376 static void qm_hw_error_init_v2(struct hisi_qm *qm) 1377 { 1378 u32 irq_unmask; 1379 1380 qm_hw_error_cfg(qm); 1381 1382 irq_unmask = ~qm->error_mask; 1383 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1384 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1385 } 1386 1387 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1388 { 1389 u32 irq_mask = qm->error_mask; 1390 1391 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1392 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1393 } 1394 1395 static void qm_hw_error_init_v3(struct hisi_qm *qm) 1396 { 1397 u32 irq_unmask; 1398 1399 qm_hw_error_cfg(qm); 1400 1401 /* enable close master ooo when hardware error happened */ 1402 writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1403 1404 irq_unmask = ~qm->error_mask; 1405 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1406 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1407 } 1408 1409 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1410 { 1411 u32 irq_mask = qm->error_mask; 1412 1413 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1414 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1415 1416 /* disable close master ooo when hardware error happened */ 1417 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1418 } 1419 1420 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1421 { 1422 const struct hisi_qm_hw_error *err; 1423 struct device *dev = &qm->pdev->dev; 1424 u32 reg_val, type, vf_num; 1425 int i; 1426 1427 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1428 err = &qm_hw_error[i]; 1429 if (!(err->int_msk & error_status)) 1430 continue; 1431 1432 dev_err(dev, "%s [error status=0x%x] found\n", 1433 err->msg, err->int_msk); 1434 1435 if (err->int_msk & QM_DB_TIMEOUT) { 1436 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1437 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1438 QM_DB_TIMEOUT_TYPE_SHIFT; 1439 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1440 dev_err(dev, "qm %s doorbell timeout in function %u\n", 1441 qm_db_timeout[type], vf_num); 1442 } else if (err->int_msk & QM_OF_FIFO_OF) { 1443 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1444 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1445 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1446 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1447 1448 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1449 dev_err(dev, "qm %s fifo overflow in function %u\n", 1450 qm_fifo_overflow[type], vf_num); 1451 else 1452 dev_err(dev, "unknown error type\n"); 1453 } 1454 } 1455 } 1456 1457 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1458 { 1459 u32 error_status, tmp; 1460 1461 /* read err sts */ 1462 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 1463 error_status = qm->error_mask & tmp; 1464 1465 if (error_status) { 1466 if (error_status & QM_ECC_MBIT) 1467 qm->err_status.is_qm_ecc_mbit = true; 1468 1469 qm_log_hw_error(qm, error_status); 1470 if (error_status & qm->err_info.qm_reset_mask) 1471 return ACC_ERR_NEED_RESET; 1472 1473 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1474 writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1475 } 1476 1477 return ACC_ERR_RECOVERED; 1478 } 1479 1480 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 1481 { 1482 struct qm_mailbox mailbox; 1483 int ret; 1484 1485 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 1486 mutex_lock(&qm->mailbox_lock); 1487 ret = qm_mb_nolock(qm, &mailbox); 1488 if (ret) 1489 goto err_unlock; 1490 1491 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1492 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1493 1494 err_unlock: 1495 mutex_unlock(&qm->mailbox_lock); 1496 return ret; 1497 } 1498 1499 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 1500 { 1501 u32 val; 1502 1503 if (qm->fun_type == QM_HW_PF) 1504 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 1505 1506 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 1507 val |= QM_IFC_INT_SOURCE_MASK; 1508 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 1509 } 1510 1511 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 1512 { 1513 struct device *dev = &qm->pdev->dev; 1514 u32 cmd; 1515 u64 msg; 1516 int ret; 1517 1518 ret = qm_get_mb_cmd(qm, &msg, vf_id); 1519 if (ret) { 1520 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 1521 return; 1522 } 1523 1524 cmd = msg & QM_MB_CMD_DATA_MASK; 1525 switch (cmd) { 1526 case QM_VF_PREPARE_FAIL: 1527 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 1528 break; 1529 case QM_VF_START_FAIL: 1530 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 1531 break; 1532 case QM_VF_PREPARE_DONE: 1533 case QM_VF_START_DONE: 1534 break; 1535 default: 1536 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 1537 break; 1538 } 1539 } 1540 1541 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 1542 { 1543 struct device *dev = &qm->pdev->dev; 1544 u32 vfs_num = qm->vfs_num; 1545 int cnt = 0; 1546 int ret = 0; 1547 u64 val; 1548 u32 i; 1549 1550 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 1551 return 0; 1552 1553 while (true) { 1554 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 1555 /* All VFs send command to PF, break */ 1556 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 1557 break; 1558 1559 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1560 ret = -EBUSY; 1561 break; 1562 } 1563 1564 msleep(QM_WAIT_DST_ACK); 1565 } 1566 1567 /* PF check VFs msg */ 1568 for (i = 1; i <= vfs_num; i++) { 1569 if (val & BIT(i)) 1570 qm_handle_vf_msg(qm, i); 1571 else 1572 dev_err(dev, "VF(%u) not ping PF!\n", i); 1573 } 1574 1575 /* PF clear interrupt to ack VFs */ 1576 qm_clear_cmd_interrupt(qm, val); 1577 1578 return ret; 1579 } 1580 1581 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 1582 { 1583 u32 val; 1584 1585 val = readl(qm->io_base + QM_IFC_INT_CFG); 1586 val &= ~QM_IFC_SEND_ALL_VFS; 1587 val |= fun_num; 1588 writel(val, qm->io_base + QM_IFC_INT_CFG); 1589 1590 val = readl(qm->io_base + QM_IFC_INT_SET_P); 1591 val |= QM_IFC_INT_SET_MASK; 1592 writel(val, qm->io_base + QM_IFC_INT_SET_P); 1593 } 1594 1595 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 1596 { 1597 u32 val; 1598 1599 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1600 val |= QM_IFC_INT_SET_MASK; 1601 writel(val, qm->io_base + QM_IFC_INT_SET_V); 1602 } 1603 1604 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 1605 { 1606 struct device *dev = &qm->pdev->dev; 1607 struct qm_mailbox mailbox; 1608 int cnt = 0; 1609 u64 val; 1610 int ret; 1611 1612 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 1613 mutex_lock(&qm->mailbox_lock); 1614 ret = qm_mb_nolock(qm, &mailbox); 1615 if (ret) { 1616 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 1617 goto err_unlock; 1618 } 1619 1620 qm_trigger_vf_interrupt(qm, fun_num); 1621 while (true) { 1622 msleep(QM_WAIT_DST_ACK); 1623 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1624 /* if VF respond, PF notifies VF successfully. */ 1625 if (!(val & BIT(fun_num))) 1626 goto err_unlock; 1627 1628 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1629 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 1630 ret = -ETIMEDOUT; 1631 break; 1632 } 1633 } 1634 1635 err_unlock: 1636 mutex_unlock(&qm->mailbox_lock); 1637 return ret; 1638 } 1639 1640 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 1641 { 1642 struct device *dev = &qm->pdev->dev; 1643 u32 vfs_num = qm->vfs_num; 1644 struct qm_mailbox mailbox; 1645 u64 val = 0; 1646 int cnt = 0; 1647 int ret; 1648 u32 i; 1649 1650 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 1651 mutex_lock(&qm->mailbox_lock); 1652 /* PF sends command to all VFs by mailbox */ 1653 ret = qm_mb_nolock(qm, &mailbox); 1654 if (ret) { 1655 dev_err(dev, "failed to send command to VFs!\n"); 1656 mutex_unlock(&qm->mailbox_lock); 1657 return ret; 1658 } 1659 1660 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 1661 while (true) { 1662 msleep(QM_WAIT_DST_ACK); 1663 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1664 /* If all VFs acked, PF notifies VFs successfully. */ 1665 if (!(val & GENMASK(vfs_num, 1))) { 1666 mutex_unlock(&qm->mailbox_lock); 1667 return 0; 1668 } 1669 1670 if (++cnt > QM_MAX_PF_WAIT_COUNT) 1671 break; 1672 } 1673 1674 mutex_unlock(&qm->mailbox_lock); 1675 1676 /* Check which vf respond timeout. */ 1677 for (i = 1; i <= vfs_num; i++) { 1678 if (val & BIT(i)) 1679 dev_err(dev, "failed to get response from VF(%u)!\n", i); 1680 } 1681 1682 return -ETIMEDOUT; 1683 } 1684 1685 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 1686 { 1687 struct qm_mailbox mailbox; 1688 int cnt = 0; 1689 u32 val; 1690 int ret; 1691 1692 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 1693 mutex_lock(&qm->mailbox_lock); 1694 ret = qm_mb_nolock(qm, &mailbox); 1695 if (ret) { 1696 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 1697 goto unlock; 1698 } 1699 1700 qm_trigger_pf_interrupt(qm); 1701 /* Waiting for PF response */ 1702 while (true) { 1703 msleep(QM_WAIT_DST_ACK); 1704 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1705 if (!(val & QM_IFC_INT_STATUS_MASK)) 1706 break; 1707 1708 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 1709 ret = -ETIMEDOUT; 1710 break; 1711 } 1712 } 1713 1714 unlock: 1715 mutex_unlock(&qm->mailbox_lock); 1716 return ret; 1717 } 1718 1719 static int qm_stop_qp(struct hisi_qp *qp) 1720 { 1721 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1722 } 1723 1724 static int qm_set_msi(struct hisi_qm *qm, bool set) 1725 { 1726 struct pci_dev *pdev = qm->pdev; 1727 1728 if (set) { 1729 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1730 0); 1731 } else { 1732 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1733 ACC_PEH_MSI_DISABLE); 1734 if (qm->err_status.is_qm_ecc_mbit || 1735 qm->err_status.is_dev_ecc_mbit) 1736 return 0; 1737 1738 mdelay(1); 1739 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 1740 return -EFAULT; 1741 } 1742 1743 return 0; 1744 } 1745 1746 static void qm_wait_msi_finish(struct hisi_qm *qm) 1747 { 1748 struct pci_dev *pdev = qm->pdev; 1749 u32 cmd = ~0; 1750 int cnt = 0; 1751 u32 val; 1752 int ret; 1753 1754 while (true) { 1755 pci_read_config_dword(pdev, pdev->msi_cap + 1756 PCI_MSI_PENDING_64, &cmd); 1757 if (!cmd) 1758 break; 1759 1760 if (++cnt > MAX_WAIT_COUNTS) { 1761 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 1762 break; 1763 } 1764 1765 udelay(1); 1766 } 1767 1768 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 1769 val, !(val & QM_PEH_DFX_MASK), 1770 POLL_PERIOD, POLL_TIMEOUT); 1771 if (ret) 1772 pci_warn(pdev, "failed to empty PEH MSI!\n"); 1773 1774 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 1775 val, !(val & QM_PEH_MSI_FINISH_MASK), 1776 POLL_PERIOD, POLL_TIMEOUT); 1777 if (ret) 1778 pci_warn(pdev, "failed to finish MSI operation!\n"); 1779 } 1780 1781 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 1782 { 1783 struct pci_dev *pdev = qm->pdev; 1784 int ret = -ETIMEDOUT; 1785 u32 cmd, i; 1786 1787 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1788 if (set) 1789 cmd |= QM_MSI_CAP_ENABLE; 1790 else 1791 cmd &= ~QM_MSI_CAP_ENABLE; 1792 1793 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 1794 if (set) { 1795 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 1796 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1797 if (cmd & QM_MSI_CAP_ENABLE) 1798 return 0; 1799 1800 udelay(1); 1801 } 1802 } else { 1803 udelay(WAIT_PERIOD_US_MIN); 1804 qm_wait_msi_finish(qm); 1805 ret = 0; 1806 } 1807 1808 return ret; 1809 } 1810 1811 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1812 .qm_db = qm_db_v1, 1813 .hw_error_init = qm_hw_error_init_v1, 1814 .set_msi = qm_set_msi, 1815 }; 1816 1817 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1818 .get_vft = qm_get_vft_v2, 1819 .qm_db = qm_db_v2, 1820 .hw_error_init = qm_hw_error_init_v2, 1821 .hw_error_uninit = qm_hw_error_uninit_v2, 1822 .hw_error_handle = qm_hw_error_handle_v2, 1823 .set_msi = qm_set_msi, 1824 }; 1825 1826 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1827 .get_vft = qm_get_vft_v2, 1828 .qm_db = qm_db_v2, 1829 .hw_error_init = qm_hw_error_init_v3, 1830 .hw_error_uninit = qm_hw_error_uninit_v3, 1831 .hw_error_handle = qm_hw_error_handle_v2, 1832 .set_msi = qm_set_msi_v3, 1833 }; 1834 1835 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1836 { 1837 struct hisi_qp_status *qp_status = &qp->qp_status; 1838 u16 sq_tail = qp_status->sq_tail; 1839 1840 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 1841 return NULL; 1842 1843 return qp->sqe + sq_tail * qp->qm->sqe_size; 1844 } 1845 1846 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 1847 { 1848 u64 *addr; 1849 1850 /* Use last 64 bits of DUS to reset status. */ 1851 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 1852 *addr = 0; 1853 } 1854 1855 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1856 { 1857 struct device *dev = &qm->pdev->dev; 1858 struct hisi_qp *qp; 1859 int qp_id; 1860 1861 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 1862 return ERR_PTR(-EPERM); 1863 1864 if (qm->qp_in_used == qm->qp_num) { 1865 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1866 qm->qp_num); 1867 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1868 return ERR_PTR(-EBUSY); 1869 } 1870 1871 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 1872 if (qp_id < 0) { 1873 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1874 qm->qp_num); 1875 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1876 return ERR_PTR(-EBUSY); 1877 } 1878 1879 qp = &qm->qp_array[qp_id]; 1880 hisi_qm_unset_hw_reset(qp); 1881 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 1882 1883 qp->event_cb = NULL; 1884 qp->req_cb = NULL; 1885 qp->qp_id = qp_id; 1886 qp->alg_type = alg_type; 1887 qp->is_in_kernel = true; 1888 qm->qp_in_used++; 1889 atomic_set(&qp->qp_status.flags, QP_INIT); 1890 1891 return qp; 1892 } 1893 1894 /** 1895 * hisi_qm_create_qp() - Create a queue pair from qm. 1896 * @qm: The qm we create a qp from. 1897 * @alg_type: Accelerator specific algorithm type in sqc. 1898 * 1899 * Return created qp, negative error code if failed. 1900 */ 1901 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 1902 { 1903 struct hisi_qp *qp; 1904 int ret; 1905 1906 ret = qm_pm_get_sync(qm); 1907 if (ret) 1908 return ERR_PTR(ret); 1909 1910 down_write(&qm->qps_lock); 1911 qp = qm_create_qp_nolock(qm, alg_type); 1912 up_write(&qm->qps_lock); 1913 1914 if (IS_ERR(qp)) 1915 qm_pm_put_sync(qm); 1916 1917 return qp; 1918 } 1919 1920 /** 1921 * hisi_qm_release_qp() - Release a qp back to its qm. 1922 * @qp: The qp we want to release. 1923 * 1924 * This function releases the resource of a qp. 1925 */ 1926 static void hisi_qm_release_qp(struct hisi_qp *qp) 1927 { 1928 struct hisi_qm *qm = qp->qm; 1929 1930 down_write(&qm->qps_lock); 1931 1932 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 1933 up_write(&qm->qps_lock); 1934 return; 1935 } 1936 1937 qm->qp_in_used--; 1938 idr_remove(&qm->qp_idr, qp->qp_id); 1939 1940 up_write(&qm->qps_lock); 1941 1942 qm_pm_put_sync(qm); 1943 } 1944 1945 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1946 { 1947 struct hisi_qm *qm = qp->qm; 1948 struct device *dev = &qm->pdev->dev; 1949 enum qm_hw_ver ver = qm->ver; 1950 struct qm_sqc *sqc; 1951 dma_addr_t sqc_dma; 1952 int ret; 1953 1954 sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); 1955 if (!sqc) 1956 return -ENOMEM; 1957 1958 INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); 1959 if (ver == QM_HW_V1) { 1960 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 1961 sqc->w8 = cpu_to_le16(qp->sq_depth - 1); 1962 } else { 1963 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 1964 sqc->w8 = 0; /* rand_qc */ 1965 } 1966 sqc->cq_num = cpu_to_le16(qp_id); 1967 sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 1968 1969 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1970 sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 1971 QM_QC_PASID_ENABLE_SHIFT); 1972 1973 sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), 1974 DMA_TO_DEVICE); 1975 if (dma_mapping_error(dev, sqc_dma)) { 1976 kfree(sqc); 1977 return -ENOMEM; 1978 } 1979 1980 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); 1981 dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); 1982 kfree(sqc); 1983 1984 return ret; 1985 } 1986 1987 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1988 { 1989 struct hisi_qm *qm = qp->qm; 1990 struct device *dev = &qm->pdev->dev; 1991 enum qm_hw_ver ver = qm->ver; 1992 struct qm_cqc *cqc; 1993 dma_addr_t cqc_dma; 1994 int ret; 1995 1996 cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); 1997 if (!cqc) 1998 return -ENOMEM; 1999 2000 INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); 2001 if (ver == QM_HW_V1) { 2002 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 2003 QM_QC_CQE_SIZE)); 2004 cqc->w8 = cpu_to_le16(qp->cq_depth - 1); 2005 } else { 2006 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 2007 cqc->w8 = 0; /* rand_qc */ 2008 } 2009 cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 2010 2011 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2012 cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 2013 2014 cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), 2015 DMA_TO_DEVICE); 2016 if (dma_mapping_error(dev, cqc_dma)) { 2017 kfree(cqc); 2018 return -ENOMEM; 2019 } 2020 2021 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); 2022 dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); 2023 kfree(cqc); 2024 2025 return ret; 2026 } 2027 2028 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2029 { 2030 int ret; 2031 2032 qm_init_qp_status(qp); 2033 2034 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2035 if (ret) 2036 return ret; 2037 2038 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2039 } 2040 2041 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2042 { 2043 struct hisi_qm *qm = qp->qm; 2044 struct device *dev = &qm->pdev->dev; 2045 int qp_id = qp->qp_id; 2046 u32 pasid = arg; 2047 int ret; 2048 2049 if (!qm_qp_avail_state(qm, qp, QP_START)) 2050 return -EPERM; 2051 2052 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2053 if (ret) 2054 return ret; 2055 2056 atomic_set(&qp->qp_status.flags, QP_START); 2057 dev_dbg(dev, "queue %d started\n", qp_id); 2058 2059 return 0; 2060 } 2061 2062 /** 2063 * hisi_qm_start_qp() - Start a qp into running. 2064 * @qp: The qp we want to start to run. 2065 * @arg: Accelerator specific argument. 2066 * 2067 * After this function, qp can receive request from user. Return 0 if 2068 * successful, negative error code if failed. 2069 */ 2070 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2071 { 2072 struct hisi_qm *qm = qp->qm; 2073 int ret; 2074 2075 down_write(&qm->qps_lock); 2076 ret = qm_start_qp_nolock(qp, arg); 2077 up_write(&qm->qps_lock); 2078 2079 return ret; 2080 } 2081 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2082 2083 /** 2084 * qp_stop_fail_cb() - call request cb. 2085 * @qp: stopped failed qp. 2086 * 2087 * Callback function should be called whether task completed or not. 2088 */ 2089 static void qp_stop_fail_cb(struct hisi_qp *qp) 2090 { 2091 int qp_used = atomic_read(&qp->qp_status.used); 2092 u16 cur_tail = qp->qp_status.sq_tail; 2093 u16 sq_depth = qp->sq_depth; 2094 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 2095 struct hisi_qm *qm = qp->qm; 2096 u16 pos; 2097 int i; 2098 2099 for (i = 0; i < qp_used; i++) { 2100 pos = (i + cur_head) % sq_depth; 2101 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2102 atomic_dec(&qp->qp_status.used); 2103 } 2104 } 2105 2106 /** 2107 * qm_drain_qp() - Drain a qp. 2108 * @qp: The qp we want to drain. 2109 * 2110 * Determine whether the queue is cleared by judging the tail pointers of 2111 * sq and cq. 2112 */ 2113 static int qm_drain_qp(struct hisi_qp *qp) 2114 { 2115 size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); 2116 struct hisi_qm *qm = qp->qm; 2117 struct device *dev = &qm->pdev->dev; 2118 struct qm_sqc *sqc; 2119 struct qm_cqc *cqc; 2120 dma_addr_t dma_addr; 2121 int ret = 0, i = 0; 2122 void *addr; 2123 2124 /* No need to judge if master OOO is blocked. */ 2125 if (qm_check_dev_error(qm)) 2126 return 0; 2127 2128 /* Kunpeng930 supports drain qp by device */ 2129 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 2130 ret = qm_stop_qp(qp); 2131 if (ret) 2132 dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); 2133 return ret; 2134 } 2135 2136 addr = hisi_qm_ctx_alloc(qm, size, &dma_addr); 2137 if (IS_ERR(addr)) { 2138 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); 2139 return -ENOMEM; 2140 } 2141 2142 while (++i) { 2143 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); 2144 if (ret) { 2145 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2146 break; 2147 } 2148 sqc = addr; 2149 2150 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), 2151 qp->qp_id); 2152 if (ret) { 2153 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2154 break; 2155 } 2156 cqc = addr + sizeof(struct qm_sqc); 2157 2158 if ((sqc->tail == cqc->tail) && 2159 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2160 break; 2161 2162 if (i == MAX_WAIT_COUNTS) { 2163 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 2164 ret = -EBUSY; 2165 break; 2166 } 2167 2168 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2169 } 2170 2171 hisi_qm_ctx_free(qm, size, addr, &dma_addr); 2172 2173 return ret; 2174 } 2175 2176 static int qm_stop_qp_nolock(struct hisi_qp *qp) 2177 { 2178 struct device *dev = &qp->qm->pdev->dev; 2179 int ret; 2180 2181 /* 2182 * It is allowed to stop and release qp when reset, If the qp is 2183 * stopped when reset but still want to be released then, the 2184 * is_resetting flag should be set negative so that this qp will not 2185 * be restarted after reset. 2186 */ 2187 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 2188 qp->is_resetting = false; 2189 return 0; 2190 } 2191 2192 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 2193 return -EPERM; 2194 2195 atomic_set(&qp->qp_status.flags, QP_STOP); 2196 2197 ret = qm_drain_qp(qp); 2198 if (ret) 2199 dev_err(dev, "Failed to drain out data for stopping!\n"); 2200 2201 2202 flush_workqueue(qp->qm->wq); 2203 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2204 qp_stop_fail_cb(qp); 2205 2206 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2207 2208 return 0; 2209 } 2210 2211 /** 2212 * hisi_qm_stop_qp() - Stop a qp in qm. 2213 * @qp: The qp we want to stop. 2214 * 2215 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 2216 */ 2217 int hisi_qm_stop_qp(struct hisi_qp *qp) 2218 { 2219 int ret; 2220 2221 down_write(&qp->qm->qps_lock); 2222 ret = qm_stop_qp_nolock(qp); 2223 up_write(&qp->qm->qps_lock); 2224 2225 return ret; 2226 } 2227 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2228 2229 /** 2230 * hisi_qp_send() - Queue up a task in the hardware queue. 2231 * @qp: The qp in which to put the message. 2232 * @msg: The message. 2233 * 2234 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2235 * if qp related qm is resetting. 2236 * 2237 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2238 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2239 * reset may happen, we have no lock here considering performance. This 2240 * causes current qm_db sending fail or can not receive sended sqe. QM 2241 * sync/async receive function should handle the error sqe. ACC reset 2242 * done function should clear used sqe to 0. 2243 */ 2244 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2245 { 2246 struct hisi_qp_status *qp_status = &qp->qp_status; 2247 u16 sq_tail = qp_status->sq_tail; 2248 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 2249 void *sqe = qm_get_avail_sqe(qp); 2250 2251 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2252 atomic_read(&qp->qm->status.flags) == QM_STOP || 2253 qp->is_resetting)) { 2254 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2255 return -EAGAIN; 2256 } 2257 2258 if (!sqe) 2259 return -EBUSY; 2260 2261 memcpy(sqe, msg, qp->qm->sqe_size); 2262 2263 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2264 atomic_inc(&qp->qp_status.used); 2265 qp_status->sq_tail = sq_tail_next; 2266 2267 return 0; 2268 } 2269 EXPORT_SYMBOL_GPL(hisi_qp_send); 2270 2271 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2272 { 2273 unsigned int val; 2274 2275 if (qm->ver == QM_HW_V1) 2276 return; 2277 2278 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2279 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2280 val, val & BIT(0), POLL_PERIOD, 2281 POLL_TIMEOUT)) 2282 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2283 } 2284 2285 static void qm_qp_event_notifier(struct hisi_qp *qp) 2286 { 2287 wake_up_interruptible(&qp->uacce_q->wait); 2288 } 2289 2290 /* This function returns free number of qp in qm. */ 2291 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2292 { 2293 struct hisi_qm *qm = uacce->priv; 2294 int ret; 2295 2296 down_read(&qm->qps_lock); 2297 ret = qm->qp_num - qm->qp_in_used; 2298 up_read(&qm->qps_lock); 2299 2300 return ret; 2301 } 2302 2303 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 2304 { 2305 int i; 2306 2307 for (i = 0; i < qm->qp_num; i++) 2308 qm_set_qp_disable(&qm->qp_array[i], offset); 2309 } 2310 2311 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2312 unsigned long arg, 2313 struct uacce_queue *q) 2314 { 2315 struct hisi_qm *qm = uacce->priv; 2316 struct hisi_qp *qp; 2317 u8 alg_type = 0; 2318 2319 qp = hisi_qm_create_qp(qm, alg_type); 2320 if (IS_ERR(qp)) 2321 return PTR_ERR(qp); 2322 2323 q->priv = qp; 2324 q->uacce = uacce; 2325 qp->uacce_q = q; 2326 qp->event_cb = qm_qp_event_notifier; 2327 qp->pasid = arg; 2328 qp->is_in_kernel = false; 2329 2330 return 0; 2331 } 2332 2333 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2334 { 2335 struct hisi_qp *qp = q->priv; 2336 2337 hisi_qm_release_qp(qp); 2338 } 2339 2340 /* map sq/cq/doorbell to user space */ 2341 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2342 struct vm_area_struct *vma, 2343 struct uacce_qfile_region *qfr) 2344 { 2345 struct hisi_qp *qp = q->priv; 2346 struct hisi_qm *qm = qp->qm; 2347 resource_size_t phys_base = qm->db_phys_base + 2348 qp->qp_id * qm->db_interval; 2349 size_t sz = vma->vm_end - vma->vm_start; 2350 struct pci_dev *pdev = qm->pdev; 2351 struct device *dev = &pdev->dev; 2352 unsigned long vm_pgoff; 2353 int ret; 2354 2355 switch (qfr->type) { 2356 case UACCE_QFRT_MMIO: 2357 if (qm->ver == QM_HW_V1) { 2358 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2359 return -EINVAL; 2360 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 2361 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2362 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2363 return -EINVAL; 2364 } else { 2365 if (sz > qm->db_interval) 2366 return -EINVAL; 2367 } 2368 2369 vm_flags_set(vma, VM_IO); 2370 2371 return remap_pfn_range(vma, vma->vm_start, 2372 phys_base >> PAGE_SHIFT, 2373 sz, pgprot_noncached(vma->vm_page_prot)); 2374 case UACCE_QFRT_DUS: 2375 if (sz != qp->qdma.size) 2376 return -EINVAL; 2377 2378 /* 2379 * dma_mmap_coherent() requires vm_pgoff as 0 2380 * restore vm_pfoff to initial value for mmap() 2381 */ 2382 vm_pgoff = vma->vm_pgoff; 2383 vma->vm_pgoff = 0; 2384 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2385 qp->qdma.dma, sz); 2386 vma->vm_pgoff = vm_pgoff; 2387 return ret; 2388 2389 default: 2390 return -EINVAL; 2391 } 2392 } 2393 2394 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2395 { 2396 struct hisi_qp *qp = q->priv; 2397 2398 return hisi_qm_start_qp(qp, qp->pasid); 2399 } 2400 2401 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2402 { 2403 hisi_qm_stop_qp(q->priv); 2404 } 2405 2406 static int hisi_qm_is_q_updated(struct uacce_queue *q) 2407 { 2408 struct hisi_qp *qp = q->priv; 2409 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 2410 int updated = 0; 2411 2412 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 2413 /* make sure to read data from memory */ 2414 dma_rmb(); 2415 qm_cq_head_update(qp); 2416 cqe = qp->cqe + qp->qp_status.cq_head; 2417 updated = 1; 2418 } 2419 2420 return updated; 2421 } 2422 2423 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2424 { 2425 struct hisi_qm *qm = q->uacce->priv; 2426 struct hisi_qp *qp = q->priv; 2427 2428 down_write(&qm->qps_lock); 2429 qp->alg_type = type; 2430 up_write(&qm->qps_lock); 2431 } 2432 2433 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2434 unsigned long arg) 2435 { 2436 struct hisi_qp *qp = q->priv; 2437 struct hisi_qp_info qp_info; 2438 struct hisi_qp_ctx qp_ctx; 2439 2440 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2441 if (copy_from_user(&qp_ctx, (void __user *)arg, 2442 sizeof(struct hisi_qp_ctx))) 2443 return -EFAULT; 2444 2445 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 2446 return -EINVAL; 2447 2448 qm_set_sqctype(q, qp_ctx.qc_type); 2449 qp_ctx.id = qp->qp_id; 2450 2451 if (copy_to_user((void __user *)arg, &qp_ctx, 2452 sizeof(struct hisi_qp_ctx))) 2453 return -EFAULT; 2454 2455 return 0; 2456 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 2457 if (copy_from_user(&qp_info, (void __user *)arg, 2458 sizeof(struct hisi_qp_info))) 2459 return -EFAULT; 2460 2461 qp_info.sqe_size = qp->qm->sqe_size; 2462 qp_info.sq_depth = qp->sq_depth; 2463 qp_info.cq_depth = qp->cq_depth; 2464 2465 if (copy_to_user((void __user *)arg, &qp_info, 2466 sizeof(struct hisi_qp_info))) 2467 return -EFAULT; 2468 2469 return 0; 2470 } 2471 2472 return -EINVAL; 2473 } 2474 2475 /** 2476 * qm_hw_err_isolate() - Try to set the isolation status of the uacce device 2477 * according to user's configuration of error threshold. 2478 * @qm: the uacce device 2479 */ 2480 static int qm_hw_err_isolate(struct hisi_qm *qm) 2481 { 2482 struct qm_hw_err *err, *tmp, *hw_err; 2483 struct qm_err_isolate *isolate; 2484 u32 count = 0; 2485 2486 isolate = &qm->isolate_data; 2487 2488 #define SECONDS_PER_HOUR 3600 2489 2490 /* All the hw errs are processed by PF driver */ 2491 if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold) 2492 return 0; 2493 2494 hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL); 2495 if (!hw_err) 2496 return -ENOMEM; 2497 2498 /* 2499 * Time-stamp every slot AER error. Then check the AER error log when the 2500 * next device AER error occurred. if the device slot AER error count exceeds 2501 * the setting error threshold in one hour, the isolated state will be set 2502 * to true. And the AER error logs that exceed one hour will be cleared. 2503 */ 2504 mutex_lock(&isolate->isolate_lock); 2505 hw_err->timestamp = jiffies; 2506 list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) { 2507 if ((hw_err->timestamp - err->timestamp) / HZ > 2508 SECONDS_PER_HOUR) { 2509 list_del(&err->list); 2510 kfree(err); 2511 } else { 2512 count++; 2513 } 2514 } 2515 list_add(&hw_err->list, &isolate->qm_hw_errs); 2516 mutex_unlock(&isolate->isolate_lock); 2517 2518 if (count >= isolate->err_threshold) 2519 isolate->is_isolate = true; 2520 2521 return 0; 2522 } 2523 2524 static void qm_hw_err_destroy(struct hisi_qm *qm) 2525 { 2526 struct qm_hw_err *err, *tmp; 2527 2528 mutex_lock(&qm->isolate_data.isolate_lock); 2529 list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) { 2530 list_del(&err->list); 2531 kfree(err); 2532 } 2533 mutex_unlock(&qm->isolate_data.isolate_lock); 2534 } 2535 2536 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce) 2537 { 2538 struct hisi_qm *qm = uacce->priv; 2539 struct hisi_qm *pf_qm; 2540 2541 if (uacce->is_vf) 2542 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2543 else 2544 pf_qm = qm; 2545 2546 return pf_qm->isolate_data.is_isolate ? 2547 UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL; 2548 } 2549 2550 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num) 2551 { 2552 struct hisi_qm *qm = uacce->priv; 2553 2554 /* Must be set by PF */ 2555 if (uacce->is_vf) 2556 return -EPERM; 2557 2558 if (qm->isolate_data.is_isolate) 2559 return -EPERM; 2560 2561 qm->isolate_data.err_threshold = num; 2562 2563 /* After the policy is updated, need to reset the hardware err list */ 2564 qm_hw_err_destroy(qm); 2565 2566 return 0; 2567 } 2568 2569 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce) 2570 { 2571 struct hisi_qm *qm = uacce->priv; 2572 struct hisi_qm *pf_qm; 2573 2574 if (uacce->is_vf) { 2575 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2576 return pf_qm->isolate_data.err_threshold; 2577 } 2578 2579 return qm->isolate_data.err_threshold; 2580 } 2581 2582 static const struct uacce_ops uacce_qm_ops = { 2583 .get_available_instances = hisi_qm_get_available_instances, 2584 .get_queue = hisi_qm_uacce_get_queue, 2585 .put_queue = hisi_qm_uacce_put_queue, 2586 .start_queue = hisi_qm_uacce_start_queue, 2587 .stop_queue = hisi_qm_uacce_stop_queue, 2588 .mmap = hisi_qm_uacce_mmap, 2589 .ioctl = hisi_qm_uacce_ioctl, 2590 .is_q_updated = hisi_qm_is_q_updated, 2591 .get_isolate_state = hisi_qm_get_isolate_state, 2592 .isolate_err_threshold_write = hisi_qm_isolate_threshold_write, 2593 .isolate_err_threshold_read = hisi_qm_isolate_threshold_read, 2594 }; 2595 2596 static void qm_remove_uacce(struct hisi_qm *qm) 2597 { 2598 struct uacce_device *uacce = qm->uacce; 2599 2600 if (qm->use_sva) { 2601 qm_hw_err_destroy(qm); 2602 uacce_remove(uacce); 2603 qm->uacce = NULL; 2604 } 2605 } 2606 2607 static int qm_alloc_uacce(struct hisi_qm *qm) 2608 { 2609 struct pci_dev *pdev = qm->pdev; 2610 struct uacce_device *uacce; 2611 unsigned long mmio_page_nr; 2612 unsigned long dus_page_nr; 2613 u16 sq_depth, cq_depth; 2614 struct uacce_interface interface = { 2615 .flags = UACCE_DEV_SVA, 2616 .ops = &uacce_qm_ops, 2617 }; 2618 int ret; 2619 2620 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 2621 sizeof(interface.name)); 2622 if (ret < 0) 2623 return -ENAMETOOLONG; 2624 2625 uacce = uacce_alloc(&pdev->dev, &interface); 2626 if (IS_ERR(uacce)) 2627 return PTR_ERR(uacce); 2628 2629 if (uacce->flags & UACCE_DEV_SVA) { 2630 qm->use_sva = true; 2631 } else { 2632 /* only consider sva case */ 2633 qm_remove_uacce(qm); 2634 return -EINVAL; 2635 } 2636 2637 uacce->is_vf = pdev->is_virtfn; 2638 uacce->priv = qm; 2639 2640 if (qm->ver == QM_HW_V1) 2641 uacce->api_ver = HISI_QM_API_VER_BASE; 2642 else if (qm->ver == QM_HW_V2) 2643 uacce->api_ver = HISI_QM_API_VER2_BASE; 2644 else 2645 uacce->api_ver = HISI_QM_API_VER3_BASE; 2646 2647 if (qm->ver == QM_HW_V1) 2648 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2649 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2650 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2651 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2652 else 2653 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2654 2655 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 2656 2657 /* Add one more page for device or qp status */ 2658 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 2659 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 2660 PAGE_SHIFT; 2661 2662 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2663 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2664 2665 qm->uacce = uacce; 2666 INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs); 2667 mutex_init(&qm->isolate_data.isolate_lock); 2668 2669 return 0; 2670 } 2671 2672 /** 2673 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2674 * there is user on the QM, return failure without doing anything. 2675 * @qm: The qm needed to be fronzen. 2676 * 2677 * This function frozes QM, then we can do SRIOV disabling. 2678 */ 2679 static int qm_frozen(struct hisi_qm *qm) 2680 { 2681 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2682 return 0; 2683 2684 down_write(&qm->qps_lock); 2685 2686 if (!qm->qp_in_used) { 2687 qm->qp_in_used = qm->qp_num; 2688 up_write(&qm->qps_lock); 2689 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2690 return 0; 2691 } 2692 2693 up_write(&qm->qps_lock); 2694 2695 return -EBUSY; 2696 } 2697 2698 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2699 struct hisi_qm_list *qm_list) 2700 { 2701 struct hisi_qm *qm, *vf_qm; 2702 struct pci_dev *dev; 2703 int ret = 0; 2704 2705 if (!qm_list || !pdev) 2706 return -EINVAL; 2707 2708 /* Try to frozen all the VFs as disable SRIOV */ 2709 mutex_lock(&qm_list->lock); 2710 list_for_each_entry(qm, &qm_list->list, list) { 2711 dev = qm->pdev; 2712 if (dev == pdev) 2713 continue; 2714 if (pci_physfn(dev) == pdev) { 2715 vf_qm = pci_get_drvdata(dev); 2716 ret = qm_frozen(vf_qm); 2717 if (ret) 2718 goto frozen_fail; 2719 } 2720 } 2721 2722 frozen_fail: 2723 mutex_unlock(&qm_list->lock); 2724 2725 return ret; 2726 } 2727 2728 /** 2729 * hisi_qm_wait_task_finish() - Wait until the task is finished 2730 * when removing the driver. 2731 * @qm: The qm needed to wait for the task to finish. 2732 * @qm_list: The list of all available devices. 2733 */ 2734 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2735 { 2736 while (qm_frozen(qm) || 2737 ((qm->fun_type == QM_HW_PF) && 2738 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2739 msleep(WAIT_PERIOD); 2740 } 2741 2742 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2743 test_bit(QM_RESETTING, &qm->misc_ctl)) 2744 msleep(WAIT_PERIOD); 2745 2746 udelay(REMOVE_WAIT_DELAY); 2747 } 2748 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2749 2750 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2751 { 2752 struct device *dev = &qm->pdev->dev; 2753 struct qm_dma *qdma; 2754 int i; 2755 2756 for (i = num - 1; i >= 0; i--) { 2757 qdma = &qm->qp_array[i].qdma; 2758 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2759 kfree(qm->poll_data[i].qp_finish_id); 2760 } 2761 2762 kfree(qm->poll_data); 2763 kfree(qm->qp_array); 2764 } 2765 2766 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 2767 u16 sq_depth, u16 cq_depth) 2768 { 2769 struct device *dev = &qm->pdev->dev; 2770 size_t off = qm->sqe_size * sq_depth; 2771 struct hisi_qp *qp; 2772 int ret = -ENOMEM; 2773 2774 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 2775 GFP_KERNEL); 2776 if (!qm->poll_data[id].qp_finish_id) 2777 return -ENOMEM; 2778 2779 qp = &qm->qp_array[id]; 2780 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2781 GFP_KERNEL); 2782 if (!qp->qdma.va) 2783 goto err_free_qp_finish_id; 2784 2785 qp->sqe = qp->qdma.va; 2786 qp->sqe_dma = qp->qdma.dma; 2787 qp->cqe = qp->qdma.va + off; 2788 qp->cqe_dma = qp->qdma.dma + off; 2789 qp->qdma.size = dma_size; 2790 qp->sq_depth = sq_depth; 2791 qp->cq_depth = cq_depth; 2792 qp->qm = qm; 2793 qp->qp_id = id; 2794 2795 return 0; 2796 2797 err_free_qp_finish_id: 2798 kfree(qm->poll_data[id].qp_finish_id); 2799 return ret; 2800 } 2801 2802 static void hisi_qm_pre_init(struct hisi_qm *qm) 2803 { 2804 struct pci_dev *pdev = qm->pdev; 2805 2806 if (qm->ver == QM_HW_V1) 2807 qm->ops = &qm_hw_ops_v1; 2808 else if (qm->ver == QM_HW_V2) 2809 qm->ops = &qm_hw_ops_v2; 2810 else 2811 qm->ops = &qm_hw_ops_v3; 2812 2813 pci_set_drvdata(pdev, qm); 2814 mutex_init(&qm->mailbox_lock); 2815 init_rwsem(&qm->qps_lock); 2816 qm->qp_in_used = 0; 2817 qm->misc_ctl = false; 2818 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 2819 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 2820 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 2821 } 2822 } 2823 2824 static void qm_cmd_uninit(struct hisi_qm *qm) 2825 { 2826 u32 val; 2827 2828 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2829 return; 2830 2831 val = readl(qm->io_base + QM_IFC_INT_MASK); 2832 val |= QM_IFC_INT_DISABLE; 2833 writel(val, qm->io_base + QM_IFC_INT_MASK); 2834 } 2835 2836 static void qm_cmd_init(struct hisi_qm *qm) 2837 { 2838 u32 val; 2839 2840 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2841 return; 2842 2843 /* Clear communication interrupt source */ 2844 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 2845 2846 /* Enable pf to vf communication reg. */ 2847 val = readl(qm->io_base + QM_IFC_INT_MASK); 2848 val &= ~QM_IFC_INT_DISABLE; 2849 writel(val, qm->io_base + QM_IFC_INT_MASK); 2850 } 2851 2852 static void qm_put_pci_res(struct hisi_qm *qm) 2853 { 2854 struct pci_dev *pdev = qm->pdev; 2855 2856 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2857 iounmap(qm->db_io_base); 2858 2859 iounmap(qm->io_base); 2860 pci_release_mem_regions(pdev); 2861 } 2862 2863 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 2864 { 2865 struct pci_dev *pdev = qm->pdev; 2866 2867 pci_free_irq_vectors(pdev); 2868 qm_put_pci_res(qm); 2869 pci_disable_device(pdev); 2870 } 2871 2872 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 2873 { 2874 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 2875 writel(state, qm->io_base + QM_VF_STATE); 2876 } 2877 2878 static void hisi_qm_unint_work(struct hisi_qm *qm) 2879 { 2880 destroy_workqueue(qm->wq); 2881 } 2882 2883 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 2884 { 2885 struct device *dev = &qm->pdev->dev; 2886 2887 hisi_qp_memory_uninit(qm, qm->qp_num); 2888 if (qm->qdma.va) { 2889 hisi_qm_cache_wb(qm); 2890 dma_free_coherent(dev, qm->qdma.size, 2891 qm->qdma.va, qm->qdma.dma); 2892 } 2893 2894 idr_destroy(&qm->qp_idr); 2895 2896 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 2897 kfree(qm->factor); 2898 } 2899 2900 /** 2901 * hisi_qm_uninit() - Uninitialize qm. 2902 * @qm: The qm needed uninit. 2903 * 2904 * This function uninits qm related device resources. 2905 */ 2906 void hisi_qm_uninit(struct hisi_qm *qm) 2907 { 2908 qm_cmd_uninit(qm); 2909 hisi_qm_unint_work(qm); 2910 down_write(&qm->qps_lock); 2911 2912 if (!qm_avail_state(qm, QM_CLOSE)) { 2913 up_write(&qm->qps_lock); 2914 return; 2915 } 2916 2917 hisi_qm_memory_uninit(qm); 2918 hisi_qm_set_state(qm, QM_NOT_READY); 2919 up_write(&qm->qps_lock); 2920 2921 qm_irqs_unregister(qm); 2922 hisi_qm_pci_uninit(qm); 2923 if (qm->use_sva) { 2924 uacce_remove(qm->uacce); 2925 qm->uacce = NULL; 2926 } 2927 } 2928 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 2929 2930 /** 2931 * hisi_qm_get_vft() - Get vft from a qm. 2932 * @qm: The qm we want to get its vft. 2933 * @base: The base number of queue in vft. 2934 * @number: The number of queues in vft. 2935 * 2936 * We can allocate multiple queues to a qm by configuring virtual function 2937 * table. We get related configures by this function. Normally, we call this 2938 * function in VF driver to get the queue information. 2939 * 2940 * qm hw v1 does not support this interface. 2941 */ 2942 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 2943 { 2944 if (!base || !number) 2945 return -EINVAL; 2946 2947 if (!qm->ops->get_vft) { 2948 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 2949 return -EINVAL; 2950 } 2951 2952 return qm->ops->get_vft(qm, base, number); 2953 } 2954 2955 /** 2956 * hisi_qm_set_vft() - Set vft to a qm. 2957 * @qm: The qm we want to set its vft. 2958 * @fun_num: The function number. 2959 * @base: The base number of queue in vft. 2960 * @number: The number of queues in vft. 2961 * 2962 * This function is alway called in PF driver, it is used to assign queues 2963 * among PF and VFs. 2964 * 2965 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 2966 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 2967 * (VF function number 0x2) 2968 */ 2969 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 2970 u32 number) 2971 { 2972 u32 max_q_num = qm->ctrl_qp_num; 2973 2974 if (base >= max_q_num || number > max_q_num || 2975 (base + number) > max_q_num) 2976 return -EINVAL; 2977 2978 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 2979 } 2980 2981 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 2982 { 2983 struct hisi_qm_status *status = &qm->status; 2984 2985 status->eq_head = 0; 2986 status->aeq_head = 0; 2987 status->eqc_phase = true; 2988 status->aeqc_phase = true; 2989 } 2990 2991 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 2992 { 2993 /* Clear eq/aeq interrupt source */ 2994 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 2995 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 2996 2997 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 2998 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 2999 } 3000 3001 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 3002 { 3003 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 3004 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 3005 } 3006 3007 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 3008 { 3009 struct device *dev = &qm->pdev->dev; 3010 struct qm_eqc *eqc; 3011 dma_addr_t eqc_dma; 3012 int ret; 3013 3014 eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); 3015 if (!eqc) 3016 return -ENOMEM; 3017 3018 eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3019 eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3020 if (qm->ver == QM_HW_V1) 3021 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3022 eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3023 3024 eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), 3025 DMA_TO_DEVICE); 3026 if (dma_mapping_error(dev, eqc_dma)) { 3027 kfree(eqc); 3028 return -ENOMEM; 3029 } 3030 3031 ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); 3032 dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); 3033 kfree(eqc); 3034 3035 return ret; 3036 } 3037 3038 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3039 { 3040 struct device *dev = &qm->pdev->dev; 3041 struct qm_aeqc *aeqc; 3042 dma_addr_t aeqc_dma; 3043 int ret; 3044 3045 aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); 3046 if (!aeqc) 3047 return -ENOMEM; 3048 3049 aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3050 aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3051 aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3052 3053 aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), 3054 DMA_TO_DEVICE); 3055 if (dma_mapping_error(dev, aeqc_dma)) { 3056 kfree(aeqc); 3057 return -ENOMEM; 3058 } 3059 3060 ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); 3061 dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); 3062 kfree(aeqc); 3063 3064 return ret; 3065 } 3066 3067 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3068 { 3069 struct device *dev = &qm->pdev->dev; 3070 int ret; 3071 3072 qm_init_eq_aeq_status(qm); 3073 3074 ret = qm_eq_ctx_cfg(qm); 3075 if (ret) { 3076 dev_err(dev, "Set eqc failed!\n"); 3077 return ret; 3078 } 3079 3080 return qm_aeq_ctx_cfg(qm); 3081 } 3082 3083 static int __hisi_qm_start(struct hisi_qm *qm) 3084 { 3085 int ret; 3086 3087 WARN_ON(!qm->qdma.va); 3088 3089 if (qm->fun_type == QM_HW_PF) { 3090 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3091 if (ret) 3092 return ret; 3093 } 3094 3095 ret = qm_eq_aeq_ctx_cfg(qm); 3096 if (ret) 3097 return ret; 3098 3099 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3100 if (ret) 3101 return ret; 3102 3103 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3104 if (ret) 3105 return ret; 3106 3107 qm_init_prefetch(qm); 3108 qm_enable_eq_aeq_interrupts(qm); 3109 3110 return 0; 3111 } 3112 3113 /** 3114 * hisi_qm_start() - start qm 3115 * @qm: The qm to be started. 3116 * 3117 * This function starts a qm, then we can allocate qp from this qm. 3118 */ 3119 int hisi_qm_start(struct hisi_qm *qm) 3120 { 3121 struct device *dev = &qm->pdev->dev; 3122 int ret = 0; 3123 3124 down_write(&qm->qps_lock); 3125 3126 if (!qm_avail_state(qm, QM_START)) { 3127 up_write(&qm->qps_lock); 3128 return -EPERM; 3129 } 3130 3131 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3132 3133 if (!qm->qp_num) { 3134 dev_err(dev, "qp_num should not be 0\n"); 3135 ret = -EINVAL; 3136 goto err_unlock; 3137 } 3138 3139 ret = __hisi_qm_start(qm); 3140 if (!ret) 3141 atomic_set(&qm->status.flags, QM_START); 3142 3143 hisi_qm_set_state(qm, QM_READY); 3144 err_unlock: 3145 up_write(&qm->qps_lock); 3146 return ret; 3147 } 3148 EXPORT_SYMBOL_GPL(hisi_qm_start); 3149 3150 static int qm_restart(struct hisi_qm *qm) 3151 { 3152 struct device *dev = &qm->pdev->dev; 3153 struct hisi_qp *qp; 3154 int ret, i; 3155 3156 ret = hisi_qm_start(qm); 3157 if (ret < 0) 3158 return ret; 3159 3160 down_write(&qm->qps_lock); 3161 for (i = 0; i < qm->qp_num; i++) { 3162 qp = &qm->qp_array[i]; 3163 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3164 qp->is_resetting == true) { 3165 ret = qm_start_qp_nolock(qp, 0); 3166 if (ret < 0) { 3167 dev_err(dev, "Failed to start qp%d!\n", i); 3168 3169 up_write(&qm->qps_lock); 3170 return ret; 3171 } 3172 qp->is_resetting = false; 3173 } 3174 } 3175 up_write(&qm->qps_lock); 3176 3177 return 0; 3178 } 3179 3180 /* Stop started qps in reset flow */ 3181 static int qm_stop_started_qp(struct hisi_qm *qm) 3182 { 3183 struct device *dev = &qm->pdev->dev; 3184 struct hisi_qp *qp; 3185 int i, ret; 3186 3187 for (i = 0; i < qm->qp_num; i++) { 3188 qp = &qm->qp_array[i]; 3189 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 3190 qp->is_resetting = true; 3191 ret = qm_stop_qp_nolock(qp); 3192 if (ret < 0) { 3193 dev_err(dev, "Failed to stop qp%d!\n", i); 3194 return ret; 3195 } 3196 } 3197 } 3198 3199 return 0; 3200 } 3201 3202 /** 3203 * qm_clear_queues() - Clear all queues memory in a qm. 3204 * @qm: The qm in which the queues will be cleared. 3205 * 3206 * This function clears all queues memory in a qm. Reset of accelerator can 3207 * use this to clear queues. 3208 */ 3209 static void qm_clear_queues(struct hisi_qm *qm) 3210 { 3211 struct hisi_qp *qp; 3212 int i; 3213 3214 for (i = 0; i < qm->qp_num; i++) { 3215 qp = &qm->qp_array[i]; 3216 if (qp->is_in_kernel && qp->is_resetting) 3217 memset(qp->qdma.va, 0, qp->qdma.size); 3218 } 3219 3220 memset(qm->qdma.va, 0, qm->qdma.size); 3221 } 3222 3223 /** 3224 * hisi_qm_stop() - Stop a qm. 3225 * @qm: The qm which will be stopped. 3226 * @r: The reason to stop qm. 3227 * 3228 * This function stops qm and its qps, then qm can not accept request. 3229 * Related resources are not released at this state, we can use hisi_qm_start 3230 * to let qm start again. 3231 */ 3232 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3233 { 3234 struct device *dev = &qm->pdev->dev; 3235 int ret = 0; 3236 3237 down_write(&qm->qps_lock); 3238 3239 qm->status.stop_reason = r; 3240 if (!qm_avail_state(qm, QM_STOP)) { 3241 ret = -EPERM; 3242 goto err_unlock; 3243 } 3244 3245 if (qm->status.stop_reason == QM_SOFT_RESET || 3246 qm->status.stop_reason == QM_FLR) { 3247 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3248 ret = qm_stop_started_qp(qm); 3249 if (ret < 0) { 3250 dev_err(dev, "Failed to stop started qp!\n"); 3251 goto err_unlock; 3252 } 3253 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3254 } 3255 3256 qm_disable_eq_aeq_interrupts(qm); 3257 if (qm->fun_type == QM_HW_PF) { 3258 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3259 if (ret < 0) { 3260 dev_err(dev, "Failed to set vft!\n"); 3261 ret = -EBUSY; 3262 goto err_unlock; 3263 } 3264 } 3265 3266 qm_clear_queues(qm); 3267 atomic_set(&qm->status.flags, QM_STOP); 3268 3269 err_unlock: 3270 up_write(&qm->qps_lock); 3271 return ret; 3272 } 3273 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3274 3275 static void qm_hw_error_init(struct hisi_qm *qm) 3276 { 3277 if (!qm->ops->hw_error_init) { 3278 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3279 return; 3280 } 3281 3282 qm->ops->hw_error_init(qm); 3283 } 3284 3285 static void qm_hw_error_uninit(struct hisi_qm *qm) 3286 { 3287 if (!qm->ops->hw_error_uninit) { 3288 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3289 return; 3290 } 3291 3292 qm->ops->hw_error_uninit(qm); 3293 } 3294 3295 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3296 { 3297 if (!qm->ops->hw_error_handle) { 3298 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3299 return ACC_ERR_NONE; 3300 } 3301 3302 return qm->ops->hw_error_handle(qm); 3303 } 3304 3305 /** 3306 * hisi_qm_dev_err_init() - Initialize device error configuration. 3307 * @qm: The qm for which we want to do error initialization. 3308 * 3309 * Initialize QM and device error related configuration. 3310 */ 3311 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3312 { 3313 if (qm->fun_type == QM_HW_VF) 3314 return; 3315 3316 qm_hw_error_init(qm); 3317 3318 if (!qm->err_ini->hw_err_enable) { 3319 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3320 return; 3321 } 3322 qm->err_ini->hw_err_enable(qm); 3323 } 3324 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3325 3326 /** 3327 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3328 * @qm: The qm for which we want to do error uninitialization. 3329 * 3330 * Uninitialize QM and device error related configuration. 3331 */ 3332 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3333 { 3334 if (qm->fun_type == QM_HW_VF) 3335 return; 3336 3337 qm_hw_error_uninit(qm); 3338 3339 if (!qm->err_ini->hw_err_disable) { 3340 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3341 return; 3342 } 3343 qm->err_ini->hw_err_disable(qm); 3344 } 3345 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3346 3347 /** 3348 * hisi_qm_free_qps() - free multiple queue pairs. 3349 * @qps: The queue pairs need to be freed. 3350 * @qp_num: The num of queue pairs. 3351 */ 3352 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3353 { 3354 int i; 3355 3356 if (!qps || qp_num <= 0) 3357 return; 3358 3359 for (i = qp_num - 1; i >= 0; i--) 3360 hisi_qm_release_qp(qps[i]); 3361 } 3362 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3363 3364 static void free_list(struct list_head *head) 3365 { 3366 struct hisi_qm_resource *res, *tmp; 3367 3368 list_for_each_entry_safe(res, tmp, head, list) { 3369 list_del(&res->list); 3370 kfree(res); 3371 } 3372 } 3373 3374 static int hisi_qm_sort_devices(int node, struct list_head *head, 3375 struct hisi_qm_list *qm_list) 3376 { 3377 struct hisi_qm_resource *res, *tmp; 3378 struct hisi_qm *qm; 3379 struct list_head *n; 3380 struct device *dev; 3381 int dev_node; 3382 3383 list_for_each_entry(qm, &qm_list->list, list) { 3384 dev = &qm->pdev->dev; 3385 3386 dev_node = dev_to_node(dev); 3387 if (dev_node < 0) 3388 dev_node = 0; 3389 3390 res = kzalloc(sizeof(*res), GFP_KERNEL); 3391 if (!res) 3392 return -ENOMEM; 3393 3394 res->qm = qm; 3395 res->distance = node_distance(dev_node, node); 3396 n = head; 3397 list_for_each_entry(tmp, head, list) { 3398 if (res->distance < tmp->distance) { 3399 n = &tmp->list; 3400 break; 3401 } 3402 } 3403 list_add_tail(&res->list, n); 3404 } 3405 3406 return 0; 3407 } 3408 3409 /** 3410 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3411 * @qm_list: The list of all available devices. 3412 * @qp_num: The number of queue pairs need created. 3413 * @alg_type: The algorithm type. 3414 * @node: The numa node. 3415 * @qps: The queue pairs need created. 3416 * 3417 * This function will sort all available device according to numa distance. 3418 * Then try to create all queue pairs from one device, if all devices do 3419 * not meet the requirements will return error. 3420 */ 3421 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3422 u8 alg_type, int node, struct hisi_qp **qps) 3423 { 3424 struct hisi_qm_resource *tmp; 3425 int ret = -ENODEV; 3426 LIST_HEAD(head); 3427 int i; 3428 3429 if (!qps || !qm_list || qp_num <= 0) 3430 return -EINVAL; 3431 3432 mutex_lock(&qm_list->lock); 3433 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3434 mutex_unlock(&qm_list->lock); 3435 goto err; 3436 } 3437 3438 list_for_each_entry(tmp, &head, list) { 3439 for (i = 0; i < qp_num; i++) { 3440 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3441 if (IS_ERR(qps[i])) { 3442 hisi_qm_free_qps(qps, i); 3443 break; 3444 } 3445 } 3446 3447 if (i == qp_num) { 3448 ret = 0; 3449 break; 3450 } 3451 } 3452 3453 mutex_unlock(&qm_list->lock); 3454 if (ret) 3455 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3456 node, alg_type, qp_num); 3457 3458 err: 3459 free_list(&head); 3460 return ret; 3461 } 3462 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3463 3464 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3465 { 3466 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3467 u32 max_qp_num = qm->max_qp_num; 3468 u32 q_base = qm->qp_num; 3469 int ret; 3470 3471 if (!num_vfs) 3472 return -EINVAL; 3473 3474 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3475 3476 /* If vfs_q_num is less than num_vfs, return error. */ 3477 if (vfs_q_num < num_vfs) 3478 return -EINVAL; 3479 3480 q_num = vfs_q_num / num_vfs; 3481 remain_q_num = vfs_q_num % num_vfs; 3482 3483 for (i = num_vfs; i > 0; i--) { 3484 /* 3485 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3486 * remaining queues equally. 3487 */ 3488 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3489 act_q_num = q_num + remain_q_num; 3490 remain_q_num = 0; 3491 } else if (remain_q_num > 0) { 3492 act_q_num = q_num + 1; 3493 remain_q_num--; 3494 } else { 3495 act_q_num = q_num; 3496 } 3497 3498 act_q_num = min(act_q_num, max_qp_num); 3499 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3500 if (ret) { 3501 for (j = num_vfs; j > i; j--) 3502 hisi_qm_set_vft(qm, j, 0, 0); 3503 return ret; 3504 } 3505 q_base += act_q_num; 3506 } 3507 3508 return 0; 3509 } 3510 3511 static int qm_clear_vft_config(struct hisi_qm *qm) 3512 { 3513 int ret; 3514 u32 i; 3515 3516 for (i = 1; i <= qm->vfs_num; i++) { 3517 ret = hisi_qm_set_vft(qm, i, 0, 0); 3518 if (ret) 3519 return ret; 3520 } 3521 qm->vfs_num = 0; 3522 3523 return 0; 3524 } 3525 3526 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 3527 { 3528 struct device *dev = &qm->pdev->dev; 3529 u32 ir = qos * QM_QOS_RATE; 3530 int ret, total_vfs, i; 3531 3532 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 3533 if (fun_index > total_vfs) 3534 return -EINVAL; 3535 3536 qm->factor[fun_index].func_qos = qos; 3537 3538 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 3539 if (ret) { 3540 dev_err(dev, "failed to calculate shaper parameter!\n"); 3541 return -EINVAL; 3542 } 3543 3544 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 3545 /* The base number of queue reuse for different alg type */ 3546 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 3547 if (ret) { 3548 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 3549 return -EINVAL; 3550 } 3551 } 3552 3553 return 0; 3554 } 3555 3556 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 3557 { 3558 u64 cir_u = 0, cir_b = 0, cir_s = 0; 3559 u64 shaper_vft, ir_calc, ir; 3560 unsigned int val; 3561 u32 error_rate; 3562 int ret; 3563 3564 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3565 val & BIT(0), POLL_PERIOD, 3566 POLL_TIMEOUT); 3567 if (ret) 3568 return 0; 3569 3570 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 3571 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 3572 writel(fun_index, qm->io_base + QM_VFT_CFG); 3573 3574 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 3575 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 3576 3577 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3578 val & BIT(0), POLL_PERIOD, 3579 POLL_TIMEOUT); 3580 if (ret) 3581 return 0; 3582 3583 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 3584 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 3585 3586 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 3587 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 3588 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 3589 3590 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 3591 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 3592 3593 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 3594 3595 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 3596 3597 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 3598 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 3599 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 3600 return 0; 3601 } 3602 3603 return ir; 3604 } 3605 3606 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 3607 { 3608 struct device *dev = &qm->pdev->dev; 3609 u64 mb_cmd; 3610 u32 qos; 3611 int ret; 3612 3613 qos = qm_get_shaper_vft_qos(qm, fun_num); 3614 if (!qos) { 3615 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 3616 return; 3617 } 3618 3619 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 3620 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 3621 if (ret) 3622 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 3623 } 3624 3625 static int qm_vf_read_qos(struct hisi_qm *qm) 3626 { 3627 int cnt = 0; 3628 int ret = -EINVAL; 3629 3630 /* reset mailbox qos val */ 3631 qm->mb_qos = 0; 3632 3633 /* vf ping pf to get function qos */ 3634 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 3635 if (ret) { 3636 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 3637 return ret; 3638 } 3639 3640 while (true) { 3641 msleep(QM_WAIT_DST_ACK); 3642 if (qm->mb_qos) 3643 break; 3644 3645 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 3646 pci_err(qm->pdev, "PF ping VF timeout!\n"); 3647 return -ETIMEDOUT; 3648 } 3649 } 3650 3651 return ret; 3652 } 3653 3654 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 3655 size_t count, loff_t *pos) 3656 { 3657 struct hisi_qm *qm = filp->private_data; 3658 char tbuf[QM_DBG_READ_LEN]; 3659 u32 qos_val, ir; 3660 int ret; 3661 3662 ret = hisi_qm_get_dfx_access(qm); 3663 if (ret) 3664 return ret; 3665 3666 /* Mailbox and reset cannot be operated at the same time */ 3667 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3668 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 3669 ret = -EAGAIN; 3670 goto err_put_dfx_access; 3671 } 3672 3673 if (qm->fun_type == QM_HW_PF) { 3674 ir = qm_get_shaper_vft_qos(qm, 0); 3675 } else { 3676 ret = qm_vf_read_qos(qm); 3677 if (ret) 3678 goto err_get_status; 3679 ir = qm->mb_qos; 3680 } 3681 3682 qos_val = ir / QM_QOS_RATE; 3683 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 3684 3685 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 3686 3687 err_get_status: 3688 clear_bit(QM_RESETTING, &qm->misc_ctl); 3689 err_put_dfx_access: 3690 hisi_qm_put_dfx_access(qm); 3691 return ret; 3692 } 3693 3694 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 3695 unsigned long *val, 3696 unsigned int *fun_index) 3697 { 3698 const struct bus_type *bus_type = qm->pdev->dev.bus; 3699 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 3700 char val_buf[QM_DBG_READ_LEN] = {0}; 3701 struct pci_dev *pdev; 3702 struct device *dev; 3703 int ret; 3704 3705 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 3706 if (ret != QM_QOS_PARAM_NUM) 3707 return -EINVAL; 3708 3709 ret = kstrtoul(val_buf, 10, val); 3710 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 3711 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 3712 return -EINVAL; 3713 } 3714 3715 dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); 3716 if (!dev) { 3717 pci_err(qm->pdev, "input pci bdf number is error!\n"); 3718 return -ENODEV; 3719 } 3720 3721 pdev = container_of(dev, struct pci_dev, dev); 3722 3723 *fun_index = pdev->devfn; 3724 3725 return 0; 3726 } 3727 3728 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 3729 size_t count, loff_t *pos) 3730 { 3731 struct hisi_qm *qm = filp->private_data; 3732 char tbuf[QM_DBG_READ_LEN]; 3733 unsigned int fun_index; 3734 unsigned long val; 3735 int len, ret; 3736 3737 if (*pos != 0) 3738 return 0; 3739 3740 if (count >= QM_DBG_READ_LEN) 3741 return -ENOSPC; 3742 3743 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 3744 if (len < 0) 3745 return len; 3746 3747 tbuf[len] = '\0'; 3748 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 3749 if (ret) 3750 return ret; 3751 3752 /* Mailbox and reset cannot be operated at the same time */ 3753 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3754 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 3755 return -EAGAIN; 3756 } 3757 3758 ret = qm_pm_get_sync(qm); 3759 if (ret) { 3760 ret = -EINVAL; 3761 goto err_get_status; 3762 } 3763 3764 ret = qm_func_shaper_enable(qm, fun_index, val); 3765 if (ret) { 3766 pci_err(qm->pdev, "failed to enable function shaper!\n"); 3767 ret = -EINVAL; 3768 goto err_put_sync; 3769 } 3770 3771 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 3772 fun_index, val); 3773 ret = count; 3774 3775 err_put_sync: 3776 qm_pm_put_sync(qm); 3777 err_get_status: 3778 clear_bit(QM_RESETTING, &qm->misc_ctl); 3779 return ret; 3780 } 3781 3782 static const struct file_operations qm_algqos_fops = { 3783 .owner = THIS_MODULE, 3784 .open = simple_open, 3785 .read = qm_algqos_read, 3786 .write = qm_algqos_write, 3787 }; 3788 3789 /** 3790 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 3791 * @qm: The qm for which we want to add debugfs files. 3792 * 3793 * Create function qos debugfs files, VF ping PF to get function qos. 3794 */ 3795 void hisi_qm_set_algqos_init(struct hisi_qm *qm) 3796 { 3797 if (qm->fun_type == QM_HW_PF) 3798 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 3799 qm, &qm_algqos_fops); 3800 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3801 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 3802 qm, &qm_algqos_fops); 3803 } 3804 3805 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 3806 { 3807 int i; 3808 3809 for (i = 1; i <= total_func; i++) 3810 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 3811 } 3812 3813 /** 3814 * hisi_qm_sriov_enable() - enable virtual functions 3815 * @pdev: the PCIe device 3816 * @max_vfs: the number of virtual functions to enable 3817 * 3818 * Returns the number of enabled VFs. If there are VFs enabled already or 3819 * max_vfs is more than the total number of device can be enabled, returns 3820 * failure. 3821 */ 3822 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3823 { 3824 struct hisi_qm *qm = pci_get_drvdata(pdev); 3825 int pre_existing_vfs, num_vfs, total_vfs, ret; 3826 3827 ret = qm_pm_get_sync(qm); 3828 if (ret) 3829 return ret; 3830 3831 total_vfs = pci_sriov_get_totalvfs(pdev); 3832 pre_existing_vfs = pci_num_vf(pdev); 3833 if (pre_existing_vfs) { 3834 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3835 pre_existing_vfs); 3836 goto err_put_sync; 3837 } 3838 3839 if (max_vfs > total_vfs) { 3840 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 3841 ret = -ERANGE; 3842 goto err_put_sync; 3843 } 3844 3845 num_vfs = max_vfs; 3846 3847 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3848 hisi_qm_init_vf_qos(qm, num_vfs); 3849 3850 ret = qm_vf_q_assign(qm, num_vfs); 3851 if (ret) { 3852 pci_err(pdev, "Can't assign queues for VF!\n"); 3853 goto err_put_sync; 3854 } 3855 3856 qm->vfs_num = num_vfs; 3857 3858 ret = pci_enable_sriov(pdev, num_vfs); 3859 if (ret) { 3860 pci_err(pdev, "Can't enable VF!\n"); 3861 qm_clear_vft_config(qm); 3862 goto err_put_sync; 3863 } 3864 3865 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3866 3867 return num_vfs; 3868 3869 err_put_sync: 3870 qm_pm_put_sync(qm); 3871 return ret; 3872 } 3873 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3874 3875 /** 3876 * hisi_qm_sriov_disable - disable virtual functions 3877 * @pdev: the PCI device. 3878 * @is_frozen: true when all the VFs are frozen. 3879 * 3880 * Return failure if there are VFs assigned already or VF is in used. 3881 */ 3882 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3883 { 3884 struct hisi_qm *qm = pci_get_drvdata(pdev); 3885 int ret; 3886 3887 if (pci_vfs_assigned(pdev)) { 3888 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3889 return -EPERM; 3890 } 3891 3892 /* While VF is in used, SRIOV cannot be disabled. */ 3893 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 3894 pci_err(pdev, "Task is using its VF!\n"); 3895 return -EBUSY; 3896 } 3897 3898 pci_disable_sriov(pdev); 3899 3900 ret = qm_clear_vft_config(qm); 3901 if (ret) 3902 return ret; 3903 3904 qm_pm_put_sync(qm); 3905 3906 return 0; 3907 } 3908 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 3909 3910 /** 3911 * hisi_qm_sriov_configure - configure the number of VFs 3912 * @pdev: The PCI device 3913 * @num_vfs: The number of VFs need enabled 3914 * 3915 * Enable SR-IOV according to num_vfs, 0 means disable. 3916 */ 3917 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 3918 { 3919 if (num_vfs == 0) 3920 return hisi_qm_sriov_disable(pdev, false); 3921 else 3922 return hisi_qm_sriov_enable(pdev, num_vfs); 3923 } 3924 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 3925 3926 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 3927 { 3928 u32 err_sts; 3929 3930 if (!qm->err_ini->get_dev_hw_err_status) { 3931 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 3932 return ACC_ERR_NONE; 3933 } 3934 3935 /* get device hardware error status */ 3936 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 3937 if (err_sts) { 3938 if (err_sts & qm->err_info.ecc_2bits_mask) 3939 qm->err_status.is_dev_ecc_mbit = true; 3940 3941 if (qm->err_ini->log_dev_hw_err) 3942 qm->err_ini->log_dev_hw_err(qm, err_sts); 3943 3944 if (err_sts & qm->err_info.dev_reset_mask) 3945 return ACC_ERR_NEED_RESET; 3946 3947 if (qm->err_ini->clear_dev_hw_err_status) 3948 qm->err_ini->clear_dev_hw_err_status(qm, err_sts); 3949 } 3950 3951 return ACC_ERR_RECOVERED; 3952 } 3953 3954 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 3955 { 3956 enum acc_err_result qm_ret, dev_ret; 3957 3958 /* log qm error */ 3959 qm_ret = qm_hw_error_handle(qm); 3960 3961 /* log device error */ 3962 dev_ret = qm_dev_err_handle(qm); 3963 3964 return (qm_ret == ACC_ERR_NEED_RESET || 3965 dev_ret == ACC_ERR_NEED_RESET) ? 3966 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 3967 } 3968 3969 /** 3970 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 3971 * @pdev: The PCI device which need report error. 3972 * @state: The connectivity between CPU and device. 3973 * 3974 * We register this function into PCIe AER handlers, It will report device or 3975 * qm hardware error status when error occur. 3976 */ 3977 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 3978 pci_channel_state_t state) 3979 { 3980 struct hisi_qm *qm = pci_get_drvdata(pdev); 3981 enum acc_err_result ret; 3982 3983 if (pdev->is_virtfn) 3984 return PCI_ERS_RESULT_NONE; 3985 3986 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 3987 if (state == pci_channel_io_perm_failure) 3988 return PCI_ERS_RESULT_DISCONNECT; 3989 3990 ret = qm_process_dev_error(qm); 3991 if (ret == ACC_ERR_NEED_RESET) 3992 return PCI_ERS_RESULT_NEED_RESET; 3993 3994 return PCI_ERS_RESULT_RECOVERED; 3995 } 3996 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 3997 3998 static int qm_check_req_recv(struct hisi_qm *qm) 3999 { 4000 struct pci_dev *pdev = qm->pdev; 4001 int ret; 4002 u32 val; 4003 4004 if (qm->ver >= QM_HW_V3) 4005 return 0; 4006 4007 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 4008 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4009 (val == ACC_VENDOR_ID_VALUE), 4010 POLL_PERIOD, POLL_TIMEOUT); 4011 if (ret) { 4012 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 4013 return ret; 4014 } 4015 4016 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 4017 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4018 (val == PCI_VENDOR_ID_HUAWEI), 4019 POLL_PERIOD, POLL_TIMEOUT); 4020 if (ret) 4021 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 4022 4023 return ret; 4024 } 4025 4026 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 4027 { 4028 struct pci_dev *pdev = qm->pdev; 4029 u16 cmd; 4030 int i; 4031 4032 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4033 if (set) 4034 cmd |= PCI_COMMAND_MEMORY; 4035 else 4036 cmd &= ~PCI_COMMAND_MEMORY; 4037 4038 pci_write_config_word(pdev, PCI_COMMAND, cmd); 4039 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4040 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4041 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 4042 return 0; 4043 4044 udelay(1); 4045 } 4046 4047 return -ETIMEDOUT; 4048 } 4049 4050 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 4051 { 4052 struct pci_dev *pdev = qm->pdev; 4053 u16 sriov_ctrl; 4054 int pos; 4055 int i; 4056 4057 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 4058 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4059 if (set) 4060 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4061 else 4062 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4063 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4064 4065 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4066 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4067 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4068 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4069 return 0; 4070 4071 udelay(1); 4072 } 4073 4074 return -ETIMEDOUT; 4075 } 4076 4077 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4078 enum qm_stop_reason stop_reason) 4079 { 4080 struct hisi_qm_list *qm_list = qm->qm_list; 4081 struct pci_dev *pdev = qm->pdev; 4082 struct pci_dev *virtfn; 4083 struct hisi_qm *vf_qm; 4084 int ret = 0; 4085 4086 mutex_lock(&qm_list->lock); 4087 list_for_each_entry(vf_qm, &qm_list->list, list) { 4088 virtfn = vf_qm->pdev; 4089 if (virtfn == pdev) 4090 continue; 4091 4092 if (pci_physfn(virtfn) == pdev) { 4093 /* save VFs PCIE BAR configuration */ 4094 pci_save_state(virtfn); 4095 4096 ret = hisi_qm_stop(vf_qm, stop_reason); 4097 if (ret) 4098 goto stop_fail; 4099 } 4100 } 4101 4102 stop_fail: 4103 mutex_unlock(&qm_list->lock); 4104 return ret; 4105 } 4106 4107 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 4108 enum qm_stop_reason stop_reason) 4109 { 4110 struct pci_dev *pdev = qm->pdev; 4111 int ret; 4112 4113 if (!qm->vfs_num) 4114 return 0; 4115 4116 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4117 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4118 ret = qm_ping_all_vfs(qm, cmd); 4119 if (ret) 4120 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 4121 } else { 4122 ret = qm_vf_reset_prepare(qm, stop_reason); 4123 if (ret) 4124 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4125 } 4126 4127 return ret; 4128 } 4129 4130 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4131 { 4132 struct pci_dev *pdev = qm->pdev; 4133 int ret; 4134 4135 ret = qm_reset_prepare_ready(qm); 4136 if (ret) { 4137 pci_err(pdev, "Controller reset not ready!\n"); 4138 return ret; 4139 } 4140 4141 /* PF obtains the information of VF by querying the register. */ 4142 qm_cmd_uninit(qm); 4143 4144 /* Whether VFs stop successfully, soft reset will continue. */ 4145 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4146 if (ret) 4147 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4148 4149 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4150 if (ret) { 4151 pci_err(pdev, "Fails to stop QM!\n"); 4152 qm_reset_bit_clear(qm); 4153 return ret; 4154 } 4155 4156 if (qm->use_sva) { 4157 ret = qm_hw_err_isolate(qm); 4158 if (ret) 4159 pci_err(pdev, "failed to isolate hw err!\n"); 4160 } 4161 4162 ret = qm_wait_vf_prepare_finish(qm); 4163 if (ret) 4164 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4165 4166 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4167 4168 return 0; 4169 } 4170 4171 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4172 { 4173 u32 nfe_enb = 0; 4174 4175 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4176 if (qm->ver >= QM_HW_V3) 4177 return; 4178 4179 if (!qm->err_status.is_dev_ecc_mbit && 4180 qm->err_status.is_qm_ecc_mbit && 4181 qm->err_ini->close_axi_master_ooo) { 4182 qm->err_ini->close_axi_master_ooo(qm); 4183 } else if (qm->err_status.is_dev_ecc_mbit && 4184 !qm->err_status.is_qm_ecc_mbit && 4185 !qm->err_ini->close_axi_master_ooo) { 4186 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4187 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4188 qm->io_base + QM_RAS_NFE_ENABLE); 4189 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4190 } 4191 } 4192 4193 static int qm_soft_reset(struct hisi_qm *qm) 4194 { 4195 struct pci_dev *pdev = qm->pdev; 4196 int ret; 4197 u32 val; 4198 4199 /* Ensure all doorbells and mailboxes received by QM */ 4200 ret = qm_check_req_recv(qm); 4201 if (ret) 4202 return ret; 4203 4204 if (qm->vfs_num) { 4205 ret = qm_set_vf_mse(qm, false); 4206 if (ret) { 4207 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4208 return ret; 4209 } 4210 } 4211 4212 ret = qm->ops->set_msi(qm, false); 4213 if (ret) { 4214 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4215 return ret; 4216 } 4217 4218 qm_dev_ecc_mbit_handle(qm); 4219 4220 /* OOO register set and check */ 4221 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 4222 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4223 4224 /* If bus lock, reset chip */ 4225 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4226 val, 4227 (val == ACC_MASTER_TRANS_RETURN_RW), 4228 POLL_PERIOD, POLL_TIMEOUT); 4229 if (ret) { 4230 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 4231 return ret; 4232 } 4233 4234 if (qm->err_ini->close_sva_prefetch) 4235 qm->err_ini->close_sva_prefetch(qm); 4236 4237 ret = qm_set_pf_mse(qm, false); 4238 if (ret) { 4239 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4240 return ret; 4241 } 4242 4243 /* The reset related sub-control registers are not in PCI BAR */ 4244 if (ACPI_HANDLE(&pdev->dev)) { 4245 unsigned long long value = 0; 4246 acpi_status s; 4247 4248 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4249 qm->err_info.acpi_rst, 4250 NULL, &value); 4251 if (ACPI_FAILURE(s)) { 4252 pci_err(pdev, "NO controller reset method!\n"); 4253 return -EIO; 4254 } 4255 4256 if (value) { 4257 pci_err(pdev, "Reset step %llu failed!\n", value); 4258 return -EIO; 4259 } 4260 } else { 4261 pci_err(pdev, "No reset method!\n"); 4262 return -EINVAL; 4263 } 4264 4265 return 0; 4266 } 4267 4268 static int qm_vf_reset_done(struct hisi_qm *qm) 4269 { 4270 struct hisi_qm_list *qm_list = qm->qm_list; 4271 struct pci_dev *pdev = qm->pdev; 4272 struct pci_dev *virtfn; 4273 struct hisi_qm *vf_qm; 4274 int ret = 0; 4275 4276 mutex_lock(&qm_list->lock); 4277 list_for_each_entry(vf_qm, &qm_list->list, list) { 4278 virtfn = vf_qm->pdev; 4279 if (virtfn == pdev) 4280 continue; 4281 4282 if (pci_physfn(virtfn) == pdev) { 4283 /* enable VFs PCIE BAR configuration */ 4284 pci_restore_state(virtfn); 4285 4286 ret = qm_restart(vf_qm); 4287 if (ret) 4288 goto restart_fail; 4289 } 4290 } 4291 4292 restart_fail: 4293 mutex_unlock(&qm_list->lock); 4294 return ret; 4295 } 4296 4297 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 4298 { 4299 struct pci_dev *pdev = qm->pdev; 4300 int ret; 4301 4302 if (!qm->vfs_num) 4303 return 0; 4304 4305 ret = qm_vf_q_assign(qm, qm->vfs_num); 4306 if (ret) { 4307 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4308 return ret; 4309 } 4310 4311 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4312 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4313 ret = qm_ping_all_vfs(qm, cmd); 4314 if (ret) 4315 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4316 } else { 4317 ret = qm_vf_reset_done(qm); 4318 if (ret) 4319 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4320 } 4321 4322 return ret; 4323 } 4324 4325 static int qm_dev_hw_init(struct hisi_qm *qm) 4326 { 4327 return qm->err_ini->hw_init(qm); 4328 } 4329 4330 static void qm_restart_prepare(struct hisi_qm *qm) 4331 { 4332 u32 value; 4333 4334 if (qm->err_ini->open_sva_prefetch) 4335 qm->err_ini->open_sva_prefetch(qm); 4336 4337 if (qm->ver >= QM_HW_V3) 4338 return; 4339 4340 if (!qm->err_status.is_qm_ecc_mbit && 4341 !qm->err_status.is_dev_ecc_mbit) 4342 return; 4343 4344 /* temporarily close the OOO port used for PEH to write out MSI */ 4345 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4346 writel(value & ~qm->err_info.msi_wr_port, 4347 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4348 4349 /* clear dev ecc 2bit error source if having */ 4350 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 4351 if (value && qm->err_ini->clear_dev_hw_err_status) 4352 qm->err_ini->clear_dev_hw_err_status(qm, value); 4353 4354 /* clear QM ecc mbit error source */ 4355 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4356 4357 /* clear AM Reorder Buffer ecc mbit source */ 4358 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4359 } 4360 4361 static void qm_restart_done(struct hisi_qm *qm) 4362 { 4363 u32 value; 4364 4365 if (qm->ver >= QM_HW_V3) 4366 goto clear_flags; 4367 4368 if (!qm->err_status.is_qm_ecc_mbit && 4369 !qm->err_status.is_dev_ecc_mbit) 4370 return; 4371 4372 /* open the OOO port for PEH to write out MSI */ 4373 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4374 value |= qm->err_info.msi_wr_port; 4375 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4376 4377 clear_flags: 4378 qm->err_status.is_qm_ecc_mbit = false; 4379 qm->err_status.is_dev_ecc_mbit = false; 4380 } 4381 4382 static int qm_controller_reset_done(struct hisi_qm *qm) 4383 { 4384 struct pci_dev *pdev = qm->pdev; 4385 int ret; 4386 4387 ret = qm->ops->set_msi(qm, true); 4388 if (ret) { 4389 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4390 return ret; 4391 } 4392 4393 ret = qm_set_pf_mse(qm, true); 4394 if (ret) { 4395 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4396 return ret; 4397 } 4398 4399 if (qm->vfs_num) { 4400 ret = qm_set_vf_mse(qm, true); 4401 if (ret) { 4402 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 4403 return ret; 4404 } 4405 } 4406 4407 ret = qm_dev_hw_init(qm); 4408 if (ret) { 4409 pci_err(pdev, "Failed to init device\n"); 4410 return ret; 4411 } 4412 4413 qm_restart_prepare(qm); 4414 hisi_qm_dev_err_init(qm); 4415 if (qm->err_ini->open_axi_master_ooo) 4416 qm->err_ini->open_axi_master_ooo(qm); 4417 4418 ret = qm_dev_mem_reset(qm); 4419 if (ret) { 4420 pci_err(pdev, "failed to reset device memory\n"); 4421 return ret; 4422 } 4423 4424 ret = qm_restart(qm); 4425 if (ret) { 4426 pci_err(pdev, "Failed to start QM!\n"); 4427 return ret; 4428 } 4429 4430 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4431 if (ret) 4432 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 4433 4434 ret = qm_wait_vf_prepare_finish(qm); 4435 if (ret) 4436 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 4437 4438 qm_cmd_init(qm); 4439 qm_restart_done(qm); 4440 4441 qm_reset_bit_clear(qm); 4442 4443 return 0; 4444 } 4445 4446 static int qm_controller_reset(struct hisi_qm *qm) 4447 { 4448 struct pci_dev *pdev = qm->pdev; 4449 int ret; 4450 4451 pci_info(pdev, "Controller resetting...\n"); 4452 4453 ret = qm_controller_reset_prepare(qm); 4454 if (ret) { 4455 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4456 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4457 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4458 return ret; 4459 } 4460 4461 hisi_qm_show_last_dfx_regs(qm); 4462 if (qm->err_ini->show_last_dfx_regs) 4463 qm->err_ini->show_last_dfx_regs(qm); 4464 4465 ret = qm_soft_reset(qm); 4466 if (ret) 4467 goto err_reset; 4468 4469 ret = qm_controller_reset_done(qm); 4470 if (ret) 4471 goto err_reset; 4472 4473 pci_info(pdev, "Controller reset complete\n"); 4474 4475 return 0; 4476 4477 err_reset: 4478 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4479 qm_reset_bit_clear(qm); 4480 4481 /* if resetting fails, isolate the device */ 4482 if (qm->use_sva) 4483 qm->isolate_data.is_isolate = true; 4484 return ret; 4485 } 4486 4487 /** 4488 * hisi_qm_dev_slot_reset() - slot reset 4489 * @pdev: the PCIe device 4490 * 4491 * This function offers QM relate PCIe device reset interface. Drivers which 4492 * use QM can use this function as slot_reset in its struct pci_error_handlers. 4493 */ 4494 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 4495 { 4496 struct hisi_qm *qm = pci_get_drvdata(pdev); 4497 int ret; 4498 4499 if (pdev->is_virtfn) 4500 return PCI_ERS_RESULT_RECOVERED; 4501 4502 /* reset pcie device controller */ 4503 ret = qm_controller_reset(qm); 4504 if (ret) { 4505 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4506 return PCI_ERS_RESULT_DISCONNECT; 4507 } 4508 4509 return PCI_ERS_RESULT_RECOVERED; 4510 } 4511 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4512 4513 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4514 { 4515 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4516 struct hisi_qm *qm = pci_get_drvdata(pdev); 4517 u32 delay = 0; 4518 int ret; 4519 4520 hisi_qm_dev_err_uninit(pf_qm); 4521 4522 /* 4523 * Check whether there is an ECC mbit error, If it occurs, need to 4524 * wait for soft reset to fix it. 4525 */ 4526 while (qm_check_dev_error(pf_qm)) { 4527 msleep(++delay); 4528 if (delay > QM_RESET_WAIT_TIMEOUT) 4529 return; 4530 } 4531 4532 ret = qm_reset_prepare_ready(qm); 4533 if (ret) { 4534 pci_err(pdev, "FLR not ready!\n"); 4535 return; 4536 } 4537 4538 /* PF obtains the information of VF by querying the register. */ 4539 if (qm->fun_type == QM_HW_PF) 4540 qm_cmd_uninit(qm); 4541 4542 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR); 4543 if (ret) 4544 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 4545 4546 ret = hisi_qm_stop(qm, QM_FLR); 4547 if (ret) { 4548 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4549 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4550 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4551 return; 4552 } 4553 4554 ret = qm_wait_vf_prepare_finish(qm); 4555 if (ret) 4556 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 4557 4558 pci_info(pdev, "FLR resetting...\n"); 4559 } 4560 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4561 4562 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4563 { 4564 struct pci_dev *pf_pdev = pci_physfn(pdev); 4565 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4566 u32 id; 4567 4568 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4569 if (id == QM_PCI_COMMAND_INVALID) { 4570 pci_err(pdev, "Device can not be used!\n"); 4571 return false; 4572 } 4573 4574 return true; 4575 } 4576 4577 void hisi_qm_reset_done(struct pci_dev *pdev) 4578 { 4579 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4580 struct hisi_qm *qm = pci_get_drvdata(pdev); 4581 int ret; 4582 4583 if (qm->fun_type == QM_HW_PF) { 4584 ret = qm_dev_hw_init(qm); 4585 if (ret) { 4586 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4587 goto flr_done; 4588 } 4589 } 4590 4591 hisi_qm_dev_err_init(pf_qm); 4592 4593 ret = qm_restart(qm); 4594 if (ret) { 4595 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4596 goto flr_done; 4597 } 4598 4599 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4600 if (ret) 4601 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 4602 4603 ret = qm_wait_vf_prepare_finish(qm); 4604 if (ret) 4605 pci_err(pdev, "failed to start by vfs in FLR!\n"); 4606 4607 flr_done: 4608 if (qm->fun_type == QM_HW_PF) 4609 qm_cmd_init(qm); 4610 4611 if (qm_flr_reset_complete(pdev)) 4612 pci_info(pdev, "FLR reset complete\n"); 4613 4614 qm_reset_bit_clear(qm); 4615 } 4616 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4617 4618 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4619 { 4620 struct hisi_qm *qm = data; 4621 enum acc_err_result ret; 4622 4623 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4624 ret = qm_process_dev_error(qm); 4625 if (ret == ACC_ERR_NEED_RESET && 4626 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4627 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4628 schedule_work(&qm->rst_work); 4629 4630 return IRQ_HANDLED; 4631 } 4632 4633 /** 4634 * hisi_qm_dev_shutdown() - Shutdown device. 4635 * @pdev: The device will be shutdown. 4636 * 4637 * This function will stop qm when OS shutdown or rebooting. 4638 */ 4639 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4640 { 4641 struct hisi_qm *qm = pci_get_drvdata(pdev); 4642 int ret; 4643 4644 ret = hisi_qm_stop(qm, QM_NORMAL); 4645 if (ret) 4646 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4647 } 4648 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4649 4650 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4651 { 4652 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4653 int ret; 4654 4655 ret = qm_pm_get_sync(qm); 4656 if (ret) { 4657 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4658 return; 4659 } 4660 4661 /* reset pcie device controller */ 4662 ret = qm_controller_reset(qm); 4663 if (ret) 4664 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4665 4666 qm_pm_put_sync(qm); 4667 } 4668 4669 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 4670 enum qm_stop_reason stop_reason) 4671 { 4672 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 4673 struct pci_dev *pdev = qm->pdev; 4674 int ret; 4675 4676 ret = qm_reset_prepare_ready(qm); 4677 if (ret) { 4678 dev_err(&pdev->dev, "reset prepare not ready!\n"); 4679 atomic_set(&qm->status.flags, QM_STOP); 4680 cmd = QM_VF_PREPARE_FAIL; 4681 goto err_prepare; 4682 } 4683 4684 ret = hisi_qm_stop(qm, stop_reason); 4685 if (ret) { 4686 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 4687 atomic_set(&qm->status.flags, QM_STOP); 4688 cmd = QM_VF_PREPARE_FAIL; 4689 goto err_prepare; 4690 } else { 4691 goto out; 4692 } 4693 4694 err_prepare: 4695 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4696 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4697 out: 4698 pci_save_state(pdev); 4699 ret = qm_ping_pf(qm, cmd); 4700 if (ret) 4701 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 4702 } 4703 4704 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 4705 { 4706 enum qm_mb_cmd cmd = QM_VF_START_DONE; 4707 struct pci_dev *pdev = qm->pdev; 4708 int ret; 4709 4710 pci_restore_state(pdev); 4711 ret = hisi_qm_start(qm); 4712 if (ret) { 4713 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 4714 cmd = QM_VF_START_FAIL; 4715 } 4716 4717 qm_cmd_init(qm); 4718 ret = qm_ping_pf(qm, cmd); 4719 if (ret) 4720 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 4721 4722 qm_reset_bit_clear(qm); 4723 } 4724 4725 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 4726 { 4727 struct device *dev = &qm->pdev->dev; 4728 u32 val, cmd; 4729 u64 msg; 4730 int ret; 4731 4732 /* Wait for reset to finish */ 4733 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 4734 val == BIT(0), QM_VF_RESET_WAIT_US, 4735 QM_VF_RESET_WAIT_TIMEOUT_US); 4736 /* hardware completion status should be available by this time */ 4737 if (ret) { 4738 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 4739 return -ETIMEDOUT; 4740 } 4741 4742 /* 4743 * Whether message is got successfully, 4744 * VF needs to ack PF by clearing the interrupt. 4745 */ 4746 ret = qm_get_mb_cmd(qm, &msg, 0); 4747 qm_clear_cmd_interrupt(qm, 0); 4748 if (ret) { 4749 dev_err(dev, "failed to get msg from PF in reset done!\n"); 4750 return ret; 4751 } 4752 4753 cmd = msg & QM_MB_CMD_DATA_MASK; 4754 if (cmd != QM_PF_RESET_DONE) { 4755 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 4756 ret = -EINVAL; 4757 } 4758 4759 return ret; 4760 } 4761 4762 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 4763 enum qm_stop_reason stop_reason) 4764 { 4765 struct device *dev = &qm->pdev->dev; 4766 int ret; 4767 4768 dev_info(dev, "device reset start...\n"); 4769 4770 /* The message is obtained by querying the register during resetting */ 4771 qm_cmd_uninit(qm); 4772 qm_pf_reset_vf_prepare(qm, stop_reason); 4773 4774 ret = qm_wait_pf_reset_finish(qm); 4775 if (ret) 4776 goto err_get_status; 4777 4778 qm_pf_reset_vf_done(qm); 4779 4780 dev_info(dev, "device reset done.\n"); 4781 4782 return; 4783 4784 err_get_status: 4785 qm_cmd_init(qm); 4786 qm_reset_bit_clear(qm); 4787 } 4788 4789 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 4790 { 4791 struct device *dev = &qm->pdev->dev; 4792 u64 msg; 4793 u32 cmd; 4794 int ret; 4795 4796 /* 4797 * Get the msg from source by sending mailbox. Whether message is got 4798 * successfully, destination needs to ack source by clearing the interrupt. 4799 */ 4800 ret = qm_get_mb_cmd(qm, &msg, fun_num); 4801 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 4802 if (ret) { 4803 dev_err(dev, "failed to get msg from source!\n"); 4804 return; 4805 } 4806 4807 cmd = msg & QM_MB_CMD_DATA_MASK; 4808 switch (cmd) { 4809 case QM_PF_FLR_PREPARE: 4810 qm_pf_reset_vf_process(qm, QM_FLR); 4811 break; 4812 case QM_PF_SRST_PREPARE: 4813 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 4814 break; 4815 case QM_VF_GET_QOS: 4816 qm_vf_get_qos(qm, fun_num); 4817 break; 4818 case QM_PF_SET_QOS: 4819 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 4820 break; 4821 default: 4822 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 4823 break; 4824 } 4825 } 4826 4827 static void qm_cmd_process(struct work_struct *cmd_process) 4828 { 4829 struct hisi_qm *qm = container_of(cmd_process, 4830 struct hisi_qm, cmd_process); 4831 u32 vfs_num = qm->vfs_num; 4832 u64 val; 4833 u32 i; 4834 4835 if (qm->fun_type == QM_HW_PF) { 4836 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 4837 if (!val) 4838 return; 4839 4840 for (i = 1; i <= vfs_num; i++) { 4841 if (val & BIT(i)) 4842 qm_handle_cmd_msg(qm, i); 4843 } 4844 4845 return; 4846 } 4847 4848 qm_handle_cmd_msg(qm, 0); 4849 } 4850 4851 /** 4852 * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. 4853 * @qm: The qm needs add. 4854 * @qm_list: The qm list. 4855 * 4856 * This function adds qm to qm list, and will register algorithm to 4857 * crypto when the qm list is empty. 4858 */ 4859 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4860 { 4861 struct device *dev = &qm->pdev->dev; 4862 int flag = 0; 4863 int ret = 0; 4864 4865 mutex_lock(&qm_list->lock); 4866 if (list_empty(&qm_list->list)) 4867 flag = 1; 4868 list_add_tail(&qm->list, &qm_list->list); 4869 mutex_unlock(&qm_list->lock); 4870 4871 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 4872 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 4873 return 0; 4874 } 4875 4876 if (flag) { 4877 ret = qm_list->register_to_crypto(qm); 4878 if (ret) { 4879 mutex_lock(&qm_list->lock); 4880 list_del(&qm->list); 4881 mutex_unlock(&qm_list->lock); 4882 } 4883 } 4884 4885 return ret; 4886 } 4887 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4888 4889 /** 4890 * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from 4891 * qm list. 4892 * @qm: The qm needs delete. 4893 * @qm_list: The qm list. 4894 * 4895 * This function deletes qm from qm list, and will unregister algorithm 4896 * from crypto when the qm list is empty. 4897 */ 4898 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4899 { 4900 mutex_lock(&qm_list->lock); 4901 list_del(&qm->list); 4902 mutex_unlock(&qm_list->lock); 4903 4904 if (qm->ver <= QM_HW_V2 && qm->use_sva) 4905 return; 4906 4907 if (list_empty(&qm_list->list)) 4908 qm_list->unregister_from_crypto(qm); 4909 } 4910 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 4911 4912 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 4913 { 4914 struct pci_dev *pdev = qm->pdev; 4915 u32 irq_vector, val; 4916 4917 if (qm->fun_type == QM_HW_VF) 4918 return; 4919 4920 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver); 4921 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4922 return; 4923 4924 irq_vector = val & QM_IRQ_VECTOR_MASK; 4925 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4926 } 4927 4928 static int qm_register_abnormal_irq(struct hisi_qm *qm) 4929 { 4930 struct pci_dev *pdev = qm->pdev; 4931 u32 irq_vector, val; 4932 int ret; 4933 4934 if (qm->fun_type == QM_HW_VF) 4935 return 0; 4936 4937 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver); 4938 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4939 return 0; 4940 4941 irq_vector = val & QM_IRQ_VECTOR_MASK; 4942 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 4943 if (ret) 4944 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); 4945 4946 return ret; 4947 } 4948 4949 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 4950 { 4951 struct pci_dev *pdev = qm->pdev; 4952 u32 irq_vector, val; 4953 4954 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver); 4955 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4956 return; 4957 4958 irq_vector = val & QM_IRQ_VECTOR_MASK; 4959 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4960 } 4961 4962 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 4963 { 4964 struct pci_dev *pdev = qm->pdev; 4965 u32 irq_vector, val; 4966 int ret; 4967 4968 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver); 4969 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4970 return 0; 4971 4972 irq_vector = val & QM_IRQ_VECTOR_MASK; 4973 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 4974 if (ret) 4975 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 4976 4977 return ret; 4978 } 4979 4980 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 4981 { 4982 struct pci_dev *pdev = qm->pdev; 4983 u32 irq_vector, val; 4984 4985 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver); 4986 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4987 return; 4988 4989 irq_vector = val & QM_IRQ_VECTOR_MASK; 4990 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4991 } 4992 4993 static int qm_register_aeq_irq(struct hisi_qm *qm) 4994 { 4995 struct pci_dev *pdev = qm->pdev; 4996 u32 irq_vector, val; 4997 int ret; 4998 4999 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver); 5000 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5001 return 0; 5002 5003 irq_vector = val & QM_IRQ_VECTOR_MASK; 5004 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), qm_aeq_irq, 5005 qm_aeq_thread, 0, qm->dev_name, qm); 5006 if (ret) 5007 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5008 5009 return ret; 5010 } 5011 5012 static void qm_unregister_eq_irq(struct hisi_qm *qm) 5013 { 5014 struct pci_dev *pdev = qm->pdev; 5015 u32 irq_vector, val; 5016 5017 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver); 5018 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5019 return; 5020 5021 irq_vector = val & QM_IRQ_VECTOR_MASK; 5022 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5023 } 5024 5025 static int qm_register_eq_irq(struct hisi_qm *qm) 5026 { 5027 struct pci_dev *pdev = qm->pdev; 5028 u32 irq_vector, val; 5029 int ret; 5030 5031 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver); 5032 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5033 return 0; 5034 5035 irq_vector = val & QM_IRQ_VECTOR_MASK; 5036 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); 5037 if (ret) 5038 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5039 5040 return ret; 5041 } 5042 5043 static void qm_irqs_unregister(struct hisi_qm *qm) 5044 { 5045 qm_unregister_mb_cmd_irq(qm); 5046 qm_unregister_abnormal_irq(qm); 5047 qm_unregister_aeq_irq(qm); 5048 qm_unregister_eq_irq(qm); 5049 } 5050 5051 static int qm_irqs_register(struct hisi_qm *qm) 5052 { 5053 int ret; 5054 5055 ret = qm_register_eq_irq(qm); 5056 if (ret) 5057 return ret; 5058 5059 ret = qm_register_aeq_irq(qm); 5060 if (ret) 5061 goto free_eq_irq; 5062 5063 ret = qm_register_abnormal_irq(qm); 5064 if (ret) 5065 goto free_aeq_irq; 5066 5067 ret = qm_register_mb_cmd_irq(qm); 5068 if (ret) 5069 goto free_abnormal_irq; 5070 5071 return 0; 5072 5073 free_abnormal_irq: 5074 qm_unregister_abnormal_irq(qm); 5075 free_aeq_irq: 5076 qm_unregister_aeq_irq(qm); 5077 free_eq_irq: 5078 qm_unregister_eq_irq(qm); 5079 return ret; 5080 } 5081 5082 static int qm_get_qp_num(struct hisi_qm *qm) 5083 { 5084 bool is_db_isolation; 5085 5086 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 5087 if (qm->fun_type == QM_HW_VF) { 5088 if (qm->ver != QM_HW_V1) 5089 /* v2 starts to support get vft by mailbox */ 5090 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 5091 5092 return 0; 5093 } 5094 5095 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5096 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 5097 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 5098 QM_FUNC_MAX_QP_CAP, is_db_isolation); 5099 5100 /* check if qp number is valid */ 5101 if (qm->qp_num > qm->max_qp_num) { 5102 dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n", 5103 qm->qp_num, qm->max_qp_num); 5104 return -EINVAL; 5105 } 5106 5107 return 0; 5108 } 5109 5110 static void qm_get_hw_caps(struct hisi_qm *qm) 5111 { 5112 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 5113 qm_cap_info_pf : qm_cap_info_vf; 5114 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 5115 ARRAY_SIZE(qm_cap_info_vf); 5116 u32 val, i; 5117 5118 /* Doorbell isolate register is a independent register. */ 5119 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 5120 if (val) 5121 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5122 5123 if (qm->ver >= QM_HW_V3) { 5124 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 5125 qm->cap_ver = val & QM_CAPBILITY_VERSION; 5126 } 5127 5128 /* Get PF/VF common capbility */ 5129 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 5130 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 5131 if (val) 5132 set_bit(qm_cap_info_comm[i].type, &qm->caps); 5133 } 5134 5135 /* Get PF/VF different capbility */ 5136 for (i = 0; i < size; i++) { 5137 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 5138 if (val) 5139 set_bit(cap_info[i].type, &qm->caps); 5140 } 5141 } 5142 5143 static int qm_get_pci_res(struct hisi_qm *qm) 5144 { 5145 struct pci_dev *pdev = qm->pdev; 5146 struct device *dev = &pdev->dev; 5147 int ret; 5148 5149 ret = pci_request_mem_regions(pdev, qm->dev_name); 5150 if (ret < 0) { 5151 dev_err(dev, "Failed to request mem regions!\n"); 5152 return ret; 5153 } 5154 5155 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5156 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5157 if (!qm->io_base) { 5158 ret = -EIO; 5159 goto err_request_mem_regions; 5160 } 5161 5162 qm_get_hw_caps(qm); 5163 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 5164 qm->db_interval = QM_QP_DB_INTERVAL; 5165 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5166 qm->db_io_base = ioremap(qm->db_phys_base, 5167 pci_resource_len(pdev, PCI_BAR_4)); 5168 if (!qm->db_io_base) { 5169 ret = -EIO; 5170 goto err_ioremap; 5171 } 5172 } else { 5173 qm->db_phys_base = qm->phys_base; 5174 qm->db_io_base = qm->io_base; 5175 qm->db_interval = 0; 5176 } 5177 5178 ret = qm_get_qp_num(qm); 5179 if (ret) 5180 goto err_db_ioremap; 5181 5182 return 0; 5183 5184 err_db_ioremap: 5185 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 5186 iounmap(qm->db_io_base); 5187 err_ioremap: 5188 iounmap(qm->io_base); 5189 err_request_mem_regions: 5190 pci_release_mem_regions(pdev); 5191 return ret; 5192 } 5193 5194 static int hisi_qm_pci_init(struct hisi_qm *qm) 5195 { 5196 struct pci_dev *pdev = qm->pdev; 5197 struct device *dev = &pdev->dev; 5198 unsigned int num_vec; 5199 int ret; 5200 5201 ret = pci_enable_device_mem(pdev); 5202 if (ret < 0) { 5203 dev_err(dev, "Failed to enable device mem!\n"); 5204 return ret; 5205 } 5206 5207 ret = qm_get_pci_res(qm); 5208 if (ret) 5209 goto err_disable_pcidev; 5210 5211 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5212 if (ret < 0) 5213 goto err_get_pci_res; 5214 pci_set_master(pdev); 5215 5216 num_vec = qm_get_irq_num(qm); 5217 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5218 if (ret < 0) { 5219 dev_err(dev, "Failed to enable MSI vectors!\n"); 5220 goto err_get_pci_res; 5221 } 5222 5223 return 0; 5224 5225 err_get_pci_res: 5226 qm_put_pci_res(qm); 5227 err_disable_pcidev: 5228 pci_disable_device(pdev); 5229 return ret; 5230 } 5231 5232 static int hisi_qm_init_work(struct hisi_qm *qm) 5233 { 5234 int i; 5235 5236 for (i = 0; i < qm->qp_num; i++) 5237 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 5238 5239 if (qm->fun_type == QM_HW_PF) 5240 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5241 5242 if (qm->ver > QM_HW_V2) 5243 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5244 5245 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 5246 WQ_UNBOUND, num_online_cpus(), 5247 pci_name(qm->pdev)); 5248 if (!qm->wq) { 5249 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 5250 return -ENOMEM; 5251 } 5252 5253 return 0; 5254 } 5255 5256 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5257 { 5258 struct device *dev = &qm->pdev->dev; 5259 u16 sq_depth, cq_depth; 5260 size_t qp_dma_size; 5261 int i, ret; 5262 5263 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5264 if (!qm->qp_array) 5265 return -ENOMEM; 5266 5267 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 5268 if (!qm->poll_data) { 5269 kfree(qm->qp_array); 5270 return -ENOMEM; 5271 } 5272 5273 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 5274 5275 /* one more page for device or qp statuses */ 5276 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 5277 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5278 for (i = 0; i < qm->qp_num; i++) { 5279 qm->poll_data[i].qm = qm; 5280 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 5281 if (ret) 5282 goto err_init_qp_mem; 5283 5284 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5285 } 5286 5287 return 0; 5288 err_init_qp_mem: 5289 hisi_qp_memory_uninit(qm, i); 5290 5291 return ret; 5292 } 5293 5294 static int hisi_qm_memory_init(struct hisi_qm *qm) 5295 { 5296 struct device *dev = &qm->pdev->dev; 5297 int ret, total_func; 5298 size_t off = 0; 5299 5300 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 5301 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5302 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5303 if (!qm->factor) 5304 return -ENOMEM; 5305 5306 /* Only the PF value needs to be initialized */ 5307 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 5308 } 5309 5310 #define QM_INIT_BUF(qm, type, num) do { \ 5311 (qm)->type = ((qm)->qdma.va + (off)); \ 5312 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5313 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5314 } while (0) 5315 5316 idr_init(&qm->qp_idr); 5317 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 5318 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 5319 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 5320 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5321 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5322 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5323 GFP_ATOMIC); 5324 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5325 if (!qm->qdma.va) { 5326 ret = -ENOMEM; 5327 goto err_destroy_idr; 5328 } 5329 5330 QM_INIT_BUF(qm, eqe, qm->eq_depth); 5331 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 5332 QM_INIT_BUF(qm, sqc, qm->qp_num); 5333 QM_INIT_BUF(qm, cqc, qm->qp_num); 5334 5335 ret = hisi_qp_alloc_memory(qm); 5336 if (ret) 5337 goto err_alloc_qp_array; 5338 5339 return 0; 5340 5341 err_alloc_qp_array: 5342 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5343 err_destroy_idr: 5344 idr_destroy(&qm->qp_idr); 5345 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 5346 kfree(qm->factor); 5347 5348 return ret; 5349 } 5350 5351 /** 5352 * hisi_qm_init() - Initialize configures about qm. 5353 * @qm: The qm needing init. 5354 * 5355 * This function init qm, then we can call hisi_qm_start to put qm into work. 5356 */ 5357 int hisi_qm_init(struct hisi_qm *qm) 5358 { 5359 struct pci_dev *pdev = qm->pdev; 5360 struct device *dev = &pdev->dev; 5361 int ret; 5362 5363 hisi_qm_pre_init(qm); 5364 5365 ret = hisi_qm_pci_init(qm); 5366 if (ret) 5367 return ret; 5368 5369 ret = qm_irqs_register(qm); 5370 if (ret) 5371 goto err_pci_init; 5372 5373 if (qm->fun_type == QM_HW_PF) { 5374 qm_disable_clock_gate(qm); 5375 ret = qm_dev_mem_reset(qm); 5376 if (ret) { 5377 dev_err(dev, "failed to reset device memory\n"); 5378 goto err_irq_register; 5379 } 5380 } 5381 5382 if (qm->mode == UACCE_MODE_SVA) { 5383 ret = qm_alloc_uacce(qm); 5384 if (ret < 0) 5385 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5386 } 5387 5388 ret = hisi_qm_memory_init(qm); 5389 if (ret) 5390 goto err_alloc_uacce; 5391 5392 ret = hisi_qm_init_work(qm); 5393 if (ret) 5394 goto err_free_qm_memory; 5395 5396 qm_cmd_init(qm); 5397 atomic_set(&qm->status.flags, QM_INIT); 5398 5399 return 0; 5400 5401 err_free_qm_memory: 5402 hisi_qm_memory_uninit(qm); 5403 err_alloc_uacce: 5404 qm_remove_uacce(qm); 5405 err_irq_register: 5406 qm_irqs_unregister(qm); 5407 err_pci_init: 5408 hisi_qm_pci_uninit(qm); 5409 return ret; 5410 } 5411 EXPORT_SYMBOL_GPL(hisi_qm_init); 5412 5413 /** 5414 * hisi_qm_get_dfx_access() - Try to get dfx access. 5415 * @qm: pointer to accelerator device. 5416 * 5417 * Try to get dfx access, then user can get message. 5418 * 5419 * If device is in suspended, return failure, otherwise 5420 * bump up the runtime PM usage counter. 5421 */ 5422 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5423 { 5424 struct device *dev = &qm->pdev->dev; 5425 5426 if (pm_runtime_suspended(dev)) { 5427 dev_info(dev, "can not read/write - device in suspended.\n"); 5428 return -EAGAIN; 5429 } 5430 5431 return qm_pm_get_sync(qm); 5432 } 5433 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5434 5435 /** 5436 * hisi_qm_put_dfx_access() - Put dfx access. 5437 * @qm: pointer to accelerator device. 5438 * 5439 * Put dfx access, drop runtime PM usage counter. 5440 */ 5441 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5442 { 5443 qm_pm_put_sync(qm); 5444 } 5445 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5446 5447 /** 5448 * hisi_qm_pm_init() - Initialize qm runtime PM. 5449 * @qm: pointer to accelerator device. 5450 * 5451 * Function that initialize qm runtime PM. 5452 */ 5453 void hisi_qm_pm_init(struct hisi_qm *qm) 5454 { 5455 struct device *dev = &qm->pdev->dev; 5456 5457 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5458 return; 5459 5460 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5461 pm_runtime_use_autosuspend(dev); 5462 pm_runtime_put_noidle(dev); 5463 } 5464 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5465 5466 /** 5467 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5468 * @qm: pointer to accelerator device. 5469 * 5470 * Function that uninitialize qm runtime PM. 5471 */ 5472 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5473 { 5474 struct device *dev = &qm->pdev->dev; 5475 5476 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5477 return; 5478 5479 pm_runtime_get_noresume(dev); 5480 pm_runtime_dont_use_autosuspend(dev); 5481 } 5482 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5483 5484 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5485 { 5486 struct pci_dev *pdev = qm->pdev; 5487 int ret; 5488 u32 val; 5489 5490 ret = qm->ops->set_msi(qm, false); 5491 if (ret) { 5492 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5493 return ret; 5494 } 5495 5496 /* shutdown OOO register */ 5497 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 5498 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5499 5500 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 5501 val, 5502 (val == ACC_MASTER_TRANS_RETURN_RW), 5503 POLL_PERIOD, POLL_TIMEOUT); 5504 if (ret) { 5505 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 5506 return ret; 5507 } 5508 5509 ret = qm_set_pf_mse(qm, false); 5510 if (ret) 5511 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5512 5513 return ret; 5514 } 5515 5516 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5517 { 5518 struct pci_dev *pdev = qm->pdev; 5519 int ret; 5520 5521 ret = qm_set_pf_mse(qm, true); 5522 if (ret) { 5523 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5524 return ret; 5525 } 5526 5527 ret = qm->ops->set_msi(qm, true); 5528 if (ret) { 5529 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5530 return ret; 5531 } 5532 5533 ret = qm_dev_hw_init(qm); 5534 if (ret) { 5535 pci_err(pdev, "failed to init device after resuming\n"); 5536 return ret; 5537 } 5538 5539 qm_cmd_init(qm); 5540 hisi_qm_dev_err_init(qm); 5541 qm_disable_clock_gate(qm); 5542 ret = qm_dev_mem_reset(qm); 5543 if (ret) 5544 pci_err(pdev, "failed to reset device memory\n"); 5545 5546 return ret; 5547 } 5548 5549 /** 5550 * hisi_qm_suspend() - Runtime suspend of given device. 5551 * @dev: device to suspend. 5552 * 5553 * Function that suspend the device. 5554 */ 5555 int hisi_qm_suspend(struct device *dev) 5556 { 5557 struct pci_dev *pdev = to_pci_dev(dev); 5558 struct hisi_qm *qm = pci_get_drvdata(pdev); 5559 int ret; 5560 5561 pci_info(pdev, "entering suspended state\n"); 5562 5563 ret = hisi_qm_stop(qm, QM_NORMAL); 5564 if (ret) { 5565 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5566 return ret; 5567 } 5568 5569 ret = qm_prepare_for_suspend(qm); 5570 if (ret) 5571 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5572 5573 return ret; 5574 } 5575 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5576 5577 /** 5578 * hisi_qm_resume() - Runtime resume of given device. 5579 * @dev: device to resume. 5580 * 5581 * Function that resume the device. 5582 */ 5583 int hisi_qm_resume(struct device *dev) 5584 { 5585 struct pci_dev *pdev = to_pci_dev(dev); 5586 struct hisi_qm *qm = pci_get_drvdata(pdev); 5587 int ret; 5588 5589 pci_info(pdev, "resuming from suspend state\n"); 5590 5591 ret = qm_rebuild_for_resume(qm); 5592 if (ret) { 5593 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5594 return ret; 5595 } 5596 5597 ret = hisi_qm_start(qm); 5598 if (ret) { 5599 if (qm_check_dev_error(qm)) { 5600 pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); 5601 return 0; 5602 } 5603 5604 pci_err(pdev, "failed to start qm(%d)!\n", ret); 5605 } 5606 5607 return ret; 5608 } 5609 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5610 5611 MODULE_LICENSE("GPL v2"); 5612 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5613 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5614