1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/aer.h> 6 #include <linux/bitmap.h> 7 #include <linux/dma-mapping.h> 8 #include <linux/idr.h> 9 #include <linux/io.h> 10 #include <linux/irqreturn.h> 11 #include <linux/log2.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/seq_file.h> 14 #include <linux/slab.h> 15 #include <linux/uacce.h> 16 #include <linux/uaccess.h> 17 #include <uapi/misc/uacce/hisi_qm.h> 18 #include <linux/hisi_acc_qm.h> 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 #define QM_IRQ_NUM_V1 1 26 #define QM_IRQ_NUM_PF_V2 4 27 #define QM_IRQ_NUM_VF_V2 2 28 #define QM_IRQ_NUM_VF_V3 3 29 30 #define QM_EQ_EVENT_IRQ_VECTOR 0 31 #define QM_AEQ_EVENT_IRQ_VECTOR 1 32 #define QM_CMD_EVENT_IRQ_VECTOR 2 33 #define QM_ABNORMAL_EVENT_IRQ_VECTOR 3 34 35 /* mailbox */ 36 #define QM_MB_PING_ALL_VFS 0xffff 37 #define QM_MB_CMD_DATA_SHIFT 32 38 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 39 40 /* sqc shift */ 41 #define QM_SQ_HOP_NUM_SHIFT 0 42 #define QM_SQ_PAGE_SIZE_SHIFT 4 43 #define QM_SQ_BUF_SIZE_SHIFT 8 44 #define QM_SQ_SQE_SIZE_SHIFT 12 45 #define QM_SQ_PRIORITY_SHIFT 0 46 #define QM_SQ_ORDERS_SHIFT 4 47 #define QM_SQ_TYPE_SHIFT 8 48 #define QM_QC_PASID_ENABLE 0x1 49 #define QM_QC_PASID_ENABLE_SHIFT 7 50 51 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 52 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) 53 54 /* cqc shift */ 55 #define QM_CQ_HOP_NUM_SHIFT 0 56 #define QM_CQ_PAGE_SIZE_SHIFT 4 57 #define QM_CQ_BUF_SIZE_SHIFT 8 58 #define QM_CQ_CQE_SIZE_SHIFT 12 59 #define QM_CQ_PHASE_SHIFT 0 60 #define QM_CQ_FLAG_SHIFT 1 61 62 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 63 #define QM_QC_CQE_SIZE 4 64 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) 65 66 /* eqc shift */ 67 #define QM_EQE_AEQE_SIZE (2UL << 12) 68 #define QM_EQC_PHASE_SHIFT 16 69 70 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 71 #define QM_EQE_CQN_MASK GENMASK(15, 0) 72 73 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 74 #define QM_AEQE_TYPE_SHIFT 17 75 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 76 #define QM_CQ_OVERFLOW 0 77 #define QM_EQ_OVERFLOW 1 78 #define QM_CQE_ERROR 2 79 80 #define QM_DOORBELL_CMD_SQ 0 81 #define QM_DOORBELL_CMD_CQ 1 82 #define QM_DOORBELL_CMD_EQ 2 83 #define QM_DOORBELL_CMD_AEQ 3 84 85 #define QM_DOORBELL_BASE_V1 0x340 86 #define QM_DB_CMD_SHIFT_V1 16 87 #define QM_DB_INDEX_SHIFT_V1 32 88 #define QM_DB_PRIORITY_SHIFT_V1 48 89 #define QM_QUE_ISO_CFG_V 0x0030 90 #define QM_PAGE_SIZE 0x0034 91 #define QM_QUE_ISO_EN 0x100154 92 #define QM_CAPBILITY 0x100158 93 #define QM_QP_NUN_MASK GENMASK(10, 0) 94 #define QM_QP_DB_INTERVAL 0x10000 95 96 #define QM_MEM_START_INIT 0x100040 97 #define QM_MEM_INIT_DONE 0x100044 98 #define QM_VFT_CFG_RDY 0x10006c 99 #define QM_VFT_CFG_OP_WR 0x100058 100 #define QM_VFT_CFG_TYPE 0x10005c 101 #define QM_SQC_VFT 0x0 102 #define QM_CQC_VFT 0x1 103 #define QM_VFT_CFG 0x100060 104 #define QM_VFT_CFG_OP_ENABLE 0x100054 105 #define QM_PM_CTRL 0x100148 106 #define QM_IDLE_DISABLE BIT(9) 107 108 #define QM_VFT_CFG_DATA_L 0x100064 109 #define QM_VFT_CFG_DATA_H 0x100068 110 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 111 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 112 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 113 #define QM_SQC_VFT_START_SQN_SHIFT 28 114 #define QM_SQC_VFT_VALID (1ULL << 44) 115 #define QM_SQC_VFT_SQN_SHIFT 45 116 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 117 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 118 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 119 #define QM_CQC_VFT_VALID (1ULL << 28) 120 121 #define QM_SQC_VFT_BASE_SHIFT_V2 28 122 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 123 #define QM_SQC_VFT_NUM_SHIFT_V2 45 124 #define QM_SQC_VFT_NUM_MASK_v2 GENMASK(9, 0) 125 126 #define QM_DFX_CNT_CLR_CE 0x100118 127 128 #define QM_ABNORMAL_INT_SOURCE 0x100000 129 #define QM_ABNORMAL_INT_SOURCE_CLR GENMASK(14, 0) 130 #define QM_ABNORMAL_INT_MASK 0x100004 131 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 132 #define QM_ABNORMAL_INT_STATUS 0x100008 133 #define QM_ABNORMAL_INT_SET 0x10000c 134 #define QM_ABNORMAL_INF00 0x100010 135 #define QM_FIFO_OVERFLOW_TYPE 0xc0 136 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 137 #define QM_FIFO_OVERFLOW_VF 0x3f 138 #define QM_ABNORMAL_INF01 0x100014 139 #define QM_DB_TIMEOUT_TYPE 0xc0 140 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 141 #define QM_DB_TIMEOUT_VF 0x3f 142 #define QM_RAS_CE_ENABLE 0x1000ec 143 #define QM_RAS_FE_ENABLE 0x1000f0 144 #define QM_RAS_NFE_ENABLE 0x1000f4 145 #define QM_RAS_CE_THRESHOLD 0x1000f8 146 #define QM_RAS_CE_TIMES_PER_IRQ 1 147 #define QM_RAS_MSI_INT_SEL 0x1040f4 148 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 149 150 #define QM_RESET_WAIT_TIMEOUT 400 151 #define QM_PEH_VENDOR_ID 0x1000d8 152 #define ACC_VENDOR_ID_VALUE 0x5a5a 153 #define QM_PEH_DFX_INFO0 0x1000fc 154 #define QM_PEH_DFX_INFO1 0x100100 155 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 156 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 157 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 158 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 159 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 160 #define ACC_MASTER_TRANS_RETURN_RW 3 161 #define ACC_MASTER_TRANS_RETURN 0x300150 162 #define ACC_MASTER_GLOBAL_CTRL 0x300000 163 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 164 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 165 #define ACC_AM_ROB_ECC_INT_STS 0x300104 166 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 167 #define QM_MSI_CAP_ENABLE BIT(16) 168 169 /* interfunction communication */ 170 #define QM_IFC_READY_STATUS 0x100128 171 #define QM_IFC_C_STS_M 0x10012C 172 #define QM_IFC_INT_SET_P 0x100130 173 #define QM_IFC_INT_CFG 0x100134 174 #define QM_IFC_INT_SOURCE_P 0x100138 175 #define QM_IFC_INT_SOURCE_V 0x0020 176 #define QM_IFC_INT_MASK 0x0024 177 #define QM_IFC_INT_STATUS 0x0028 178 #define QM_IFC_INT_SET_V 0x002C 179 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 180 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 181 #define QM_IFC_INT_SOURCE_MASK BIT(0) 182 #define QM_IFC_INT_DISABLE BIT(0) 183 #define QM_IFC_INT_STATUS_MASK BIT(0) 184 #define QM_IFC_INT_SET_MASK BIT(0) 185 #define QM_WAIT_DST_ACK 10 186 #define QM_MAX_PF_WAIT_COUNT 10 187 #define QM_MAX_VF_WAIT_COUNT 40 188 #define QM_VF_RESET_WAIT_US 20000 189 #define QM_VF_RESET_WAIT_CNT 3000 190 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 191 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 192 193 #define QM_DFX_MB_CNT_VF 0x104010 194 #define QM_DFX_DB_CNT_VF 0x104020 195 #define QM_DFX_SQE_CNT_VF_SQN 0x104030 196 #define QM_DFX_CQE_CNT_VF_CQN 0x104040 197 #define QM_DFX_QN_SHIFT 16 198 #define CURRENT_FUN_MASK GENMASK(5, 0) 199 #define CURRENT_Q_MASK GENMASK(31, 16) 200 201 #define POLL_PERIOD 10 202 #define POLL_TIMEOUT 1000 203 #define WAIT_PERIOD_US_MAX 200 204 #define WAIT_PERIOD_US_MIN 100 205 #define MAX_WAIT_COUNTS 1000 206 #define QM_CACHE_WB_START 0x204 207 #define QM_CACHE_WB_DONE 0x208 208 209 #define PCI_BAR_2 2 210 #define PCI_BAR_4 4 211 #define QM_SQE_DATA_ALIGN_MASK GENMASK(6, 0) 212 #define QMC_ALIGN(sz) ALIGN(sz, 32) 213 214 #define QM_DBG_READ_LEN 256 215 #define QM_DBG_WRITE_LEN 1024 216 #define QM_DBG_TMP_BUF_LEN 22 217 #define QM_PCI_COMMAND_INVALID ~0 218 #define QM_RESET_STOP_TX_OFFSET 1 219 #define QM_RESET_STOP_RX_OFFSET 2 220 221 #define WAIT_PERIOD 20 222 #define REMOVE_WAIT_DELAY 10 223 #define QM_SQE_ADDR_MASK GENMASK(7, 0) 224 #define QM_EQ_DEPTH (1024 * 2) 225 226 #define QM_DRIVER_REMOVING 0 227 #define QM_RST_SCHED 1 228 #define QM_RESETTING 2 229 #define QM_QOS_PARAM_NUM 2 230 #define QM_QOS_VAL_NUM 1 231 #define QM_QOS_BDF_PARAM_NUM 4 232 #define QM_QOS_MAX_VAL 1000 233 #define QM_QOS_RATE 100 234 #define QM_QOS_EXPAND_RATE 1000 235 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 236 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 237 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 238 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 239 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 240 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 241 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 242 #define QM_SHAPER_CBS_B 1 243 #define QM_SHAPER_CBS_S 16 244 #define QM_SHAPER_VFT_OFFSET 6 245 #define WAIT_FOR_QOS_VF 100 246 #define QM_QOS_MIN_ERROR_RATE 5 247 #define QM_QOS_TYPICAL_NUM 8 248 #define QM_SHAPER_MIN_CBS_S 8 249 #define QM_QOS_TICK 0x300U 250 #define QM_QOS_DIVISOR_CLK 0x1f40U 251 #define QM_QOS_MAX_CIR_B 200 252 #define QM_QOS_MIN_CIR_B 100 253 #define QM_QOS_MAX_CIR_U 6 254 #define QM_QOS_MAX_CIR_S 11 255 #define QM_QOS_VAL_MAX_LEN 32 256 #define QM_DFX_BASE 0x0100000 257 #define QM_DFX_STATE1 0x0104000 258 #define QM_DFX_STATE2 0x01040C8 259 #define QM_DFX_COMMON 0x0000 260 #define QM_DFX_BASE_LEN 0x5A 261 #define QM_DFX_STATE1_LEN 0x2E 262 #define QM_DFX_STATE2_LEN 0x11 263 #define QM_DFX_COMMON_LEN 0xC3 264 #define QM_DFX_REGS_LEN 4UL 265 #define QM_AUTOSUSPEND_DELAY 3000 266 267 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 268 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 269 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 270 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 271 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 272 273 #define QM_MK_CQC_DW3_V2(cqe_sz) \ 274 ((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 275 276 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 277 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 278 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 279 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 280 281 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 282 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 283 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 284 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 285 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 286 287 #define QM_MK_SQC_DW3_V2(sqe_sz) \ 288 ((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 289 290 #define INIT_QC_COMMON(qc, base, pasid) do { \ 291 (qc)->head = 0; \ 292 (qc)->tail = 0; \ 293 (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ 294 (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ 295 (qc)->dw3 = 0; \ 296 (qc)->w8 = 0; \ 297 (qc)->rsvd0 = 0; \ 298 (qc)->pasid = cpu_to_le16(pasid); \ 299 (qc)->w11 = 0; \ 300 (qc)->rsvd1 = 0; \ 301 } while (0) 302 303 enum vft_type { 304 SQC_VFT = 0, 305 CQC_VFT, 306 SHAPER_VFT, 307 }; 308 309 enum acc_err_result { 310 ACC_ERR_NONE, 311 ACC_ERR_NEED_RESET, 312 ACC_ERR_RECOVERED, 313 }; 314 315 enum qm_alg_type { 316 ALG_TYPE_0, 317 ALG_TYPE_1, 318 }; 319 320 enum qm_mb_cmd { 321 QM_PF_FLR_PREPARE = 0x01, 322 QM_PF_SRST_PREPARE, 323 QM_PF_RESET_DONE, 324 QM_VF_PREPARE_DONE, 325 QM_VF_PREPARE_FAIL, 326 QM_VF_START_DONE, 327 QM_VF_START_FAIL, 328 QM_PF_SET_QOS, 329 QM_VF_GET_QOS, 330 }; 331 332 struct qm_cqe { 333 __le32 rsvd0; 334 __le16 cmd_id; 335 __le16 rsvd1; 336 __le16 sq_head; 337 __le16 sq_num; 338 __le16 rsvd2; 339 __le16 w7; 340 }; 341 342 struct qm_eqe { 343 __le32 dw0; 344 }; 345 346 struct qm_aeqe { 347 __le32 dw0; 348 }; 349 350 struct qm_sqc { 351 __le16 head; 352 __le16 tail; 353 __le32 base_l; 354 __le32 base_h; 355 __le32 dw3; 356 __le16 w8; 357 __le16 rsvd0; 358 __le16 pasid; 359 __le16 w11; 360 __le16 cq_num; 361 __le16 w13; 362 __le32 rsvd1; 363 }; 364 365 struct qm_cqc { 366 __le16 head; 367 __le16 tail; 368 __le32 base_l; 369 __le32 base_h; 370 __le32 dw3; 371 __le16 w8; 372 __le16 rsvd0; 373 __le16 pasid; 374 __le16 w11; 375 __le32 dw6; 376 __le32 rsvd1; 377 }; 378 379 struct qm_eqc { 380 __le16 head; 381 __le16 tail; 382 __le32 base_l; 383 __le32 base_h; 384 __le32 dw3; 385 __le32 rsvd[2]; 386 __le32 dw6; 387 }; 388 389 struct qm_aeqc { 390 __le16 head; 391 __le16 tail; 392 __le32 base_l; 393 __le32 base_h; 394 __le32 dw3; 395 __le32 rsvd[2]; 396 __le32 dw6; 397 }; 398 399 struct qm_mailbox { 400 __le16 w0; 401 __le16 queue_num; 402 __le32 base_l; 403 __le32 base_h; 404 __le32 rsvd; 405 }; 406 407 struct qm_doorbell { 408 __le16 queue_num; 409 __le16 cmd; 410 __le16 index; 411 __le16 priority; 412 }; 413 414 struct hisi_qm_resource { 415 struct hisi_qm *qm; 416 int distance; 417 struct list_head list; 418 }; 419 420 struct hisi_qm_hw_ops { 421 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 422 void (*qm_db)(struct hisi_qm *qm, u16 qn, 423 u8 cmd, u16 index, u8 priority); 424 u32 (*get_irq_num)(struct hisi_qm *qm); 425 int (*debug_init)(struct hisi_qm *qm); 426 void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe); 427 void (*hw_error_uninit)(struct hisi_qm *qm); 428 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 429 int (*stop_qp)(struct hisi_qp *qp); 430 int (*set_msi)(struct hisi_qm *qm, bool set); 431 int (*ping_all_vfs)(struct hisi_qm *qm, u64 cmd); 432 int (*ping_pf)(struct hisi_qm *qm, u64 cmd); 433 }; 434 435 struct qm_dfx_item { 436 const char *name; 437 u32 offset; 438 }; 439 440 static struct qm_dfx_item qm_dfx_files[] = { 441 {"err_irq", offsetof(struct qm_dfx, err_irq_cnt)}, 442 {"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)}, 443 {"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)}, 444 {"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)}, 445 {"mb_err", offsetof(struct qm_dfx, mb_err_cnt)}, 446 }; 447 448 static const char * const qm_debug_file_name[] = { 449 [CURRENT_QM] = "current_qm", 450 [CURRENT_Q] = "current_q", 451 [CLEAR_ENABLE] = "clear_enable", 452 }; 453 454 struct hisi_qm_hw_error { 455 u32 int_msk; 456 const char *msg; 457 }; 458 459 static const struct hisi_qm_hw_error qm_hw_error[] = { 460 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 461 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 462 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 463 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 464 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 465 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 466 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 467 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 468 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 469 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 470 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 471 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 472 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 473 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 474 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 475 { /* sentinel */ } 476 }; 477 478 /* define the QM's dfx regs region and region length */ 479 static struct dfx_diff_registers qm_diff_regs[] = { 480 { 481 .reg_offset = QM_DFX_BASE, 482 .reg_len = QM_DFX_BASE_LEN, 483 }, { 484 .reg_offset = QM_DFX_STATE1, 485 .reg_len = QM_DFX_STATE1_LEN, 486 }, { 487 .reg_offset = QM_DFX_STATE2, 488 .reg_len = QM_DFX_STATE2_LEN, 489 }, { 490 .reg_offset = QM_DFX_COMMON, 491 .reg_len = QM_DFX_COMMON_LEN, 492 }, 493 }; 494 495 static const char * const qm_db_timeout[] = { 496 "sq", "cq", "eq", "aeq", 497 }; 498 499 static const char * const qm_fifo_overflow[] = { 500 "cq", "eq", "aeq", 501 }; 502 503 static const char * const qm_s[] = { 504 "init", "start", "close", "stop", 505 }; 506 507 static const char * const qp_s[] = { 508 "none", "init", "start", "stop", "close", 509 }; 510 511 struct qm_typical_qos_table { 512 u32 start; 513 u32 end; 514 u32 val; 515 }; 516 517 /* the qos step is 100 */ 518 static struct qm_typical_qos_table shaper_cir_s[] = { 519 {100, 100, 4}, 520 {200, 200, 3}, 521 {300, 500, 2}, 522 {600, 1000, 1}, 523 {1100, 100000, 0}, 524 }; 525 526 static struct qm_typical_qos_table shaper_cbs_s[] = { 527 {100, 200, 9}, 528 {300, 500, 11}, 529 {600, 1000, 12}, 530 {1100, 10000, 16}, 531 {10100, 25000, 17}, 532 {25100, 50000, 18}, 533 {50100, 100000, 19} 534 }; 535 536 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 537 { 538 enum qm_state curr = atomic_read(&qm->status.flags); 539 bool avail = false; 540 541 switch (curr) { 542 case QM_INIT: 543 if (new == QM_START || new == QM_CLOSE) 544 avail = true; 545 break; 546 case QM_START: 547 if (new == QM_STOP) 548 avail = true; 549 break; 550 case QM_STOP: 551 if (new == QM_CLOSE || new == QM_START) 552 avail = true; 553 break; 554 default: 555 break; 556 } 557 558 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 559 qm_s[curr], qm_s[new]); 560 561 if (!avail) 562 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 563 qm_s[curr], qm_s[new]); 564 565 return avail; 566 } 567 568 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 569 enum qp_state new) 570 { 571 enum qm_state qm_curr = atomic_read(&qm->status.flags); 572 enum qp_state qp_curr = 0; 573 bool avail = false; 574 575 if (qp) 576 qp_curr = atomic_read(&qp->qp_status.flags); 577 578 switch (new) { 579 case QP_INIT: 580 if (qm_curr == QM_START || qm_curr == QM_INIT) 581 avail = true; 582 break; 583 case QP_START: 584 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 585 (qm_curr == QM_START && qp_curr == QP_STOP)) 586 avail = true; 587 break; 588 case QP_STOP: 589 if ((qm_curr == QM_START && qp_curr == QP_START) || 590 (qp_curr == QP_INIT)) 591 avail = true; 592 break; 593 case QP_CLOSE: 594 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 595 (qm_curr == QM_START && qp_curr == QP_STOP) || 596 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 597 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 598 avail = true; 599 break; 600 default: 601 break; 602 } 603 604 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 605 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 606 607 if (!avail) 608 dev_warn(&qm->pdev->dev, 609 "Can not change qp state from %s to %s in QM %s\n", 610 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 611 612 return avail; 613 } 614 615 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 616 { 617 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 618 } 619 620 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 621 { 622 return qm->err_ini->get_dev_hw_err_status(qm); 623 } 624 625 /* Check if the error causes the master ooo block */ 626 static int qm_check_dev_error(struct hisi_qm *qm) 627 { 628 u32 val, dev_val; 629 630 if (qm->fun_type == QM_HW_VF) 631 return 0; 632 633 val = qm_get_hw_error_status(qm); 634 dev_val = qm_get_dev_err_status(qm); 635 636 if (qm->ver < QM_HW_V3) 637 return (val & QM_ECC_MBIT) || 638 (dev_val & qm->err_info.ecc_2bits_mask); 639 640 return (val & readl(qm->io_base + QM_OOO_SHUTDOWN_SEL)) || 641 (dev_val & (~qm->err_info.dev_ce_mask)); 642 } 643 644 static int qm_wait_reset_finish(struct hisi_qm *qm) 645 { 646 int delay = 0; 647 648 /* All reset requests need to be queued for processing */ 649 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 650 msleep(++delay); 651 if (delay > QM_RESET_WAIT_TIMEOUT) 652 return -EBUSY; 653 } 654 655 return 0; 656 } 657 658 static int qm_reset_prepare_ready(struct hisi_qm *qm) 659 { 660 struct pci_dev *pdev = qm->pdev; 661 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 662 663 /* 664 * PF and VF on host doesnot support resetting at the 665 * same time on Kunpeng920. 666 */ 667 if (qm->ver < QM_HW_V3) 668 return qm_wait_reset_finish(pf_qm); 669 670 return qm_wait_reset_finish(qm); 671 } 672 673 static void qm_reset_bit_clear(struct hisi_qm *qm) 674 { 675 struct pci_dev *pdev = qm->pdev; 676 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 677 678 if (qm->ver < QM_HW_V3) 679 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 680 681 clear_bit(QM_RESETTING, &qm->misc_ctl); 682 } 683 684 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 685 u64 base, u16 queue, bool op) 686 { 687 mailbox->w0 = cpu_to_le16((cmd) | 688 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 689 (0x1 << QM_MB_BUSY_SHIFT)); 690 mailbox->queue_num = cpu_to_le16(queue); 691 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 692 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 693 mailbox->rsvd = 0; 694 } 695 696 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 697 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 698 { 699 u32 val; 700 701 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 702 val, !((val >> QM_MB_BUSY_SHIFT) & 703 0x1), POLL_PERIOD, POLL_TIMEOUT); 704 } 705 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 706 707 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 708 static void qm_mb_write(struct hisi_qm *qm, const void *src) 709 { 710 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 711 unsigned long tmp0 = 0, tmp1 = 0; 712 713 if (!IS_ENABLED(CONFIG_ARM64)) { 714 memcpy_toio(fun_base, src, 16); 715 dma_wmb(); 716 return; 717 } 718 719 asm volatile("ldp %0, %1, %3\n" 720 "stp %0, %1, %2\n" 721 "dmb oshst\n" 722 : "=&r" (tmp0), 723 "=&r" (tmp1), 724 "+Q" (*((char __iomem *)fun_base)) 725 : "Q" (*((char *)src)) 726 : "memory"); 727 } 728 729 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 730 { 731 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 732 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 733 goto mb_busy; 734 } 735 736 qm_mb_write(qm, mailbox); 737 738 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 739 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 740 goto mb_busy; 741 } 742 743 return 0; 744 745 mb_busy: 746 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 747 return -EBUSY; 748 } 749 750 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 751 bool op) 752 { 753 struct qm_mailbox mailbox; 754 int ret; 755 756 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 757 queue, cmd, (unsigned long long)dma_addr); 758 759 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 760 761 mutex_lock(&qm->mailbox_lock); 762 ret = qm_mb_nolock(qm, &mailbox); 763 mutex_unlock(&qm->mailbox_lock); 764 765 return ret; 766 } 767 EXPORT_SYMBOL_GPL(hisi_qm_mb); 768 769 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 770 { 771 u64 doorbell; 772 773 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 774 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 775 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 776 777 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 778 } 779 780 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 781 { 782 void __iomem *io_base = qm->io_base; 783 u16 randata = 0; 784 u64 doorbell; 785 786 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 787 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 788 QM_DOORBELL_SQ_CQ_BASE_V2; 789 else 790 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 791 792 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 793 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 794 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 795 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 796 797 writeq(doorbell, io_base); 798 } 799 800 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 801 { 802 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 803 qn, cmd, index); 804 805 qm->ops->qm_db(qm, qn, cmd, index, priority); 806 } 807 808 static void qm_disable_clock_gate(struct hisi_qm *qm) 809 { 810 u32 val; 811 812 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 813 if (qm->ver < QM_HW_V3) 814 return; 815 816 val = readl(qm->io_base + QM_PM_CTRL); 817 val |= QM_IDLE_DISABLE; 818 writel(val, qm->io_base + QM_PM_CTRL); 819 } 820 821 static int qm_dev_mem_reset(struct hisi_qm *qm) 822 { 823 u32 val; 824 825 writel(0x1, qm->io_base + QM_MEM_START_INIT); 826 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 827 val & BIT(0), POLL_PERIOD, 828 POLL_TIMEOUT); 829 } 830 831 static u32 qm_get_irq_num_v1(struct hisi_qm *qm) 832 { 833 return QM_IRQ_NUM_V1; 834 } 835 836 static u32 qm_get_irq_num_v2(struct hisi_qm *qm) 837 { 838 if (qm->fun_type == QM_HW_PF) 839 return QM_IRQ_NUM_PF_V2; 840 else 841 return QM_IRQ_NUM_VF_V2; 842 } 843 844 static u32 qm_get_irq_num_v3(struct hisi_qm *qm) 845 { 846 if (qm->fun_type == QM_HW_PF) 847 return QM_IRQ_NUM_PF_V2; 848 849 return QM_IRQ_NUM_VF_V3; 850 } 851 852 static int qm_pm_get_sync(struct hisi_qm *qm) 853 { 854 struct device *dev = &qm->pdev->dev; 855 int ret; 856 857 if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3) 858 return 0; 859 860 ret = pm_runtime_resume_and_get(dev); 861 if (ret < 0) { 862 dev_err(dev, "failed to get_sync(%d).\n", ret); 863 return ret; 864 } 865 866 return 0; 867 } 868 869 static void qm_pm_put_sync(struct hisi_qm *qm) 870 { 871 struct device *dev = &qm->pdev->dev; 872 873 if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3) 874 return; 875 876 pm_runtime_mark_last_busy(dev); 877 pm_runtime_put_autosuspend(dev); 878 } 879 880 static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe) 881 { 882 u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 883 884 return &qm->qp_array[cqn]; 885 } 886 887 static void qm_cq_head_update(struct hisi_qp *qp) 888 { 889 if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) { 890 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 891 qp->qp_status.cq_head = 0; 892 } else { 893 qp->qp_status.cq_head++; 894 } 895 } 896 897 static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm) 898 { 899 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 900 return; 901 902 if (qp->event_cb) { 903 qp->event_cb(qp); 904 return; 905 } 906 907 if (qp->req_cb) { 908 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 909 910 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 911 dma_rmb(); 912 qp->req_cb(qp, qp->sqe + qm->sqe_size * 913 le16_to_cpu(cqe->sq_head)); 914 qm_cq_head_update(qp); 915 cqe = qp->cqe + qp->qp_status.cq_head; 916 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 917 qp->qp_status.cq_head, 0); 918 atomic_dec(&qp->qp_status.used); 919 } 920 921 /* set c_flag */ 922 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 923 qp->qp_status.cq_head, 1); 924 } 925 } 926 927 static void qm_work_process(struct work_struct *work) 928 { 929 struct hisi_qm *qm = container_of(work, struct hisi_qm, work); 930 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 931 struct hisi_qp *qp; 932 int eqe_num = 0; 933 934 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 935 eqe_num++; 936 qp = qm_to_hisi_qp(qm, eqe); 937 qm_poll_qp(qp, qm); 938 939 if (qm->status.eq_head == QM_EQ_DEPTH - 1) { 940 qm->status.eqc_phase = !qm->status.eqc_phase; 941 eqe = qm->eqe; 942 qm->status.eq_head = 0; 943 } else { 944 eqe++; 945 qm->status.eq_head++; 946 } 947 948 if (eqe_num == QM_EQ_DEPTH / 2 - 1) { 949 eqe_num = 0; 950 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 951 } 952 } 953 954 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 955 } 956 957 static irqreturn_t do_qm_irq(int irq, void *data) 958 { 959 struct hisi_qm *qm = (struct hisi_qm *)data; 960 961 /* the workqueue created by device driver of QM */ 962 if (qm->wq) 963 queue_work(qm->wq, &qm->work); 964 else 965 schedule_work(&qm->work); 966 967 return IRQ_HANDLED; 968 } 969 970 static irqreturn_t qm_irq(int irq, void *data) 971 { 972 struct hisi_qm *qm = data; 973 974 if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE)) 975 return do_qm_irq(irq, data); 976 977 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 978 dev_err(&qm->pdev->dev, "invalid int source\n"); 979 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 980 981 return IRQ_NONE; 982 } 983 984 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 985 { 986 struct hisi_qm *qm = data; 987 u32 val; 988 989 val = readl(qm->io_base + QM_IFC_INT_STATUS); 990 val &= QM_IFC_INT_STATUS_MASK; 991 if (!val) 992 return IRQ_NONE; 993 994 schedule_work(&qm->cmd_process); 995 996 return IRQ_HANDLED; 997 } 998 999 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 1000 { 1001 u32 *addr; 1002 1003 if (qp->is_in_kernel) 1004 return; 1005 1006 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 1007 *addr = 1; 1008 1009 /* make sure setup is completed */ 1010 smp_wmb(); 1011 } 1012 1013 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 1014 { 1015 struct hisi_qp *qp = &qm->qp_array[qp_id]; 1016 1017 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 1018 hisi_qm_stop_qp(qp); 1019 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 1020 } 1021 1022 static void qm_reset_function(struct hisi_qm *qm) 1023 { 1024 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 1025 struct device *dev = &qm->pdev->dev; 1026 int ret; 1027 1028 if (qm_check_dev_error(pf_qm)) 1029 return; 1030 1031 ret = qm_reset_prepare_ready(qm); 1032 if (ret) { 1033 dev_err(dev, "reset function not ready\n"); 1034 return; 1035 } 1036 1037 ret = hisi_qm_stop(qm, QM_FLR); 1038 if (ret) { 1039 dev_err(dev, "failed to stop qm when reset function\n"); 1040 goto clear_bit; 1041 } 1042 1043 ret = hisi_qm_start(qm); 1044 if (ret) 1045 dev_err(dev, "failed to start qm when reset function\n"); 1046 1047 clear_bit: 1048 qm_reset_bit_clear(qm); 1049 } 1050 1051 static irqreturn_t qm_aeq_thread(int irq, void *data) 1052 { 1053 struct hisi_qm *qm = data; 1054 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1055 u32 type, qp_id; 1056 1057 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1058 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; 1059 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1060 1061 switch (type) { 1062 case QM_EQ_OVERFLOW: 1063 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1064 qm_reset_function(qm); 1065 return IRQ_HANDLED; 1066 case QM_CQ_OVERFLOW: 1067 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1068 qp_id); 1069 fallthrough; 1070 case QM_CQE_ERROR: 1071 qm_disable_qp(qm, qp_id); 1072 break; 1073 default: 1074 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1075 type); 1076 break; 1077 } 1078 1079 if (qm->status.aeq_head == QM_Q_DEPTH - 1) { 1080 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1081 aeqe = qm->aeqe; 1082 qm->status.aeq_head = 0; 1083 } else { 1084 aeqe++; 1085 qm->status.aeq_head++; 1086 } 1087 } 1088 1089 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1090 1091 return IRQ_HANDLED; 1092 } 1093 1094 static irqreturn_t qm_aeq_irq(int irq, void *data) 1095 { 1096 struct hisi_qm *qm = data; 1097 1098 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1099 if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE)) 1100 return IRQ_NONE; 1101 1102 return IRQ_WAKE_THREAD; 1103 } 1104 1105 static void qm_irq_unregister(struct hisi_qm *qm) 1106 { 1107 struct pci_dev *pdev = qm->pdev; 1108 1109 free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm); 1110 1111 if (qm->ver > QM_HW_V1) { 1112 free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm); 1113 1114 if (qm->fun_type == QM_HW_PF) 1115 free_irq(pci_irq_vector(pdev, 1116 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm); 1117 } 1118 1119 if (qm->ver > QM_HW_V2) 1120 free_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR), qm); 1121 } 1122 1123 static void qm_init_qp_status(struct hisi_qp *qp) 1124 { 1125 struct hisi_qp_status *qp_status = &qp->qp_status; 1126 1127 qp_status->sq_tail = 0; 1128 qp_status->cq_head = 0; 1129 qp_status->cqc_phase = true; 1130 atomic_set(&qp_status->used, 0); 1131 } 1132 1133 static void qm_init_prefetch(struct hisi_qm *qm) 1134 { 1135 struct device *dev = &qm->pdev->dev; 1136 u32 page_type = 0x0; 1137 1138 if (qm->ver < QM_HW_V3) 1139 return; 1140 1141 switch (PAGE_SIZE) { 1142 case SZ_4K: 1143 page_type = 0x0; 1144 break; 1145 case SZ_16K: 1146 page_type = 0x1; 1147 break; 1148 case SZ_64K: 1149 page_type = 0x2; 1150 break; 1151 default: 1152 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1153 PAGE_SIZE); 1154 } 1155 1156 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1157 } 1158 1159 /* 1160 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1161 * is the expected qos calculated. 1162 * the formula: 1163 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1164 * 1165 * IR_b * (2 ^ IR_u) * 8000 1166 * IR(Mbps) = ------------------------- 1167 * Tick * (2 ^ IR_s) 1168 */ 1169 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1170 { 1171 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1172 (QM_QOS_TICK * (1 << cir_s)); 1173 } 1174 1175 static u32 acc_shaper_calc_cbs_s(u32 ir) 1176 { 1177 int table_size = ARRAY_SIZE(shaper_cbs_s); 1178 int i; 1179 1180 for (i = 0; i < table_size; i++) { 1181 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1182 return shaper_cbs_s[i].val; 1183 } 1184 1185 return QM_SHAPER_MIN_CBS_S; 1186 } 1187 1188 static u32 acc_shaper_calc_cir_s(u32 ir) 1189 { 1190 int table_size = ARRAY_SIZE(shaper_cir_s); 1191 int i; 1192 1193 for (i = 0; i < table_size; i++) { 1194 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1195 return shaper_cir_s[i].val; 1196 } 1197 1198 return 0; 1199 } 1200 1201 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1202 { 1203 u32 cir_b, cir_u, cir_s, ir_calc; 1204 u32 error_rate; 1205 1206 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1207 cir_s = acc_shaper_calc_cir_s(ir); 1208 1209 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1210 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1211 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1212 1213 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1214 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1215 factor->cir_b = cir_b; 1216 factor->cir_u = cir_u; 1217 factor->cir_s = cir_s; 1218 return 0; 1219 } 1220 } 1221 } 1222 1223 return -EINVAL; 1224 } 1225 1226 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1227 u32 number, struct qm_shaper_factor *factor) 1228 { 1229 u64 tmp = 0; 1230 1231 if (number > 0) { 1232 switch (type) { 1233 case SQC_VFT: 1234 if (qm->ver == QM_HW_V1) { 1235 tmp = QM_SQC_VFT_BUF_SIZE | 1236 QM_SQC_VFT_SQC_SIZE | 1237 QM_SQC_VFT_INDEX_NUMBER | 1238 QM_SQC_VFT_VALID | 1239 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1240 } else { 1241 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1242 QM_SQC_VFT_VALID | 1243 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1244 } 1245 break; 1246 case CQC_VFT: 1247 if (qm->ver == QM_HW_V1) { 1248 tmp = QM_CQC_VFT_BUF_SIZE | 1249 QM_CQC_VFT_SQC_SIZE | 1250 QM_CQC_VFT_INDEX_NUMBER | 1251 QM_CQC_VFT_VALID; 1252 } else { 1253 tmp = QM_CQC_VFT_VALID; 1254 } 1255 break; 1256 case SHAPER_VFT: 1257 if (qm->ver >= QM_HW_V3) { 1258 tmp = factor->cir_b | 1259 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1260 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1261 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1262 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1263 } 1264 break; 1265 } 1266 } 1267 1268 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1269 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1270 } 1271 1272 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1273 u32 fun_num, u32 base, u32 number) 1274 { 1275 struct qm_shaper_factor *factor = &qm->factor[fun_num]; 1276 unsigned int val; 1277 int ret; 1278 1279 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1280 val & BIT(0), POLL_PERIOD, 1281 POLL_TIMEOUT); 1282 if (ret) 1283 return ret; 1284 1285 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1286 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1287 if (type == SHAPER_VFT) 1288 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1289 1290 writel(fun_num, qm->io_base + QM_VFT_CFG); 1291 1292 qm_vft_data_cfg(qm, type, base, number, factor); 1293 1294 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1295 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1296 1297 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1298 val & BIT(0), POLL_PERIOD, 1299 POLL_TIMEOUT); 1300 } 1301 1302 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1303 { 1304 u32 qos = qm->factor[fun_num].func_qos; 1305 int ret, i; 1306 1307 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1308 if (ret) { 1309 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1310 return ret; 1311 } 1312 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1313 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1314 /* The base number of queue reuse for different alg type */ 1315 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1316 if (ret) 1317 return ret; 1318 } 1319 1320 return 0; 1321 } 1322 1323 /* The config should be conducted after qm_dev_mem_reset() */ 1324 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1325 u32 number) 1326 { 1327 int ret, i; 1328 1329 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1330 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1331 if (ret) 1332 return ret; 1333 } 1334 1335 /* init default shaper qos val */ 1336 if (qm->ver >= QM_HW_V3) { 1337 ret = qm_shaper_init_vft(qm, fun_num); 1338 if (ret) 1339 goto back_sqc_cqc; 1340 } 1341 1342 return 0; 1343 back_sqc_cqc: 1344 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1345 ret = qm_set_vft_common(qm, i, fun_num, 0, 0); 1346 if (ret) 1347 return ret; 1348 } 1349 return ret; 1350 } 1351 1352 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1353 { 1354 u64 sqc_vft; 1355 int ret; 1356 1357 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1358 if (ret) 1359 return ret; 1360 1361 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1362 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1363 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1364 *number = (QM_SQC_VFT_NUM_MASK_v2 & 1365 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1366 1367 return 0; 1368 } 1369 1370 static int qm_get_vf_qp_num(struct hisi_qm *qm, u32 fun_num) 1371 { 1372 u32 remain_q_num, vfq_num; 1373 u32 num_vfs = qm->vfs_num; 1374 1375 vfq_num = (qm->ctrl_qp_num - qm->qp_num) / num_vfs; 1376 if (vfq_num >= qm->max_qp_num) 1377 return qm->max_qp_num; 1378 1379 remain_q_num = (qm->ctrl_qp_num - qm->qp_num) % num_vfs; 1380 if (vfq_num + remain_q_num <= qm->max_qp_num) 1381 return fun_num == num_vfs ? vfq_num + remain_q_num : vfq_num; 1382 1383 /* 1384 * if vfq_num + remain_q_num > max_qp_num, the last VFs, 1385 * each with one more queue. 1386 */ 1387 return fun_num + remain_q_num > num_vfs ? vfq_num + 1 : vfq_num; 1388 } 1389 1390 static struct hisi_qm *file_to_qm(struct debugfs_file *file) 1391 { 1392 struct qm_debug *debug = file->debug; 1393 1394 return container_of(debug, struct hisi_qm, debug); 1395 } 1396 1397 static u32 current_q_read(struct hisi_qm *qm) 1398 { 1399 return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT; 1400 } 1401 1402 static int current_q_write(struct hisi_qm *qm, u32 val) 1403 { 1404 u32 tmp; 1405 1406 if (val >= qm->debug.curr_qm_qp_num) 1407 return -EINVAL; 1408 1409 tmp = val << QM_DFX_QN_SHIFT | 1410 (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK); 1411 writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 1412 1413 tmp = val << QM_DFX_QN_SHIFT | 1414 (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK); 1415 writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 1416 1417 return 0; 1418 } 1419 1420 static u32 clear_enable_read(struct hisi_qm *qm) 1421 { 1422 return readl(qm->io_base + QM_DFX_CNT_CLR_CE); 1423 } 1424 1425 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */ 1426 static int clear_enable_write(struct hisi_qm *qm, u32 rd_clr_ctrl) 1427 { 1428 if (rd_clr_ctrl > 1) 1429 return -EINVAL; 1430 1431 writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE); 1432 1433 return 0; 1434 } 1435 1436 static u32 current_qm_read(struct hisi_qm *qm) 1437 { 1438 return readl(qm->io_base + QM_DFX_MB_CNT_VF); 1439 } 1440 1441 static int current_qm_write(struct hisi_qm *qm, u32 val) 1442 { 1443 u32 tmp; 1444 1445 if (val > qm->vfs_num) 1446 return -EINVAL; 1447 1448 /* According PF or VF Dev ID to calculation curr_qm_qp_num and store */ 1449 if (!val) 1450 qm->debug.curr_qm_qp_num = qm->qp_num; 1451 else 1452 qm->debug.curr_qm_qp_num = qm_get_vf_qp_num(qm, val); 1453 1454 writel(val, qm->io_base + QM_DFX_MB_CNT_VF); 1455 writel(val, qm->io_base + QM_DFX_DB_CNT_VF); 1456 1457 tmp = val | 1458 (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_Q_MASK); 1459 writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 1460 1461 tmp = val | 1462 (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_Q_MASK); 1463 writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 1464 1465 return 0; 1466 } 1467 1468 static ssize_t qm_debug_read(struct file *filp, char __user *buf, 1469 size_t count, loff_t *pos) 1470 { 1471 struct debugfs_file *file = filp->private_data; 1472 enum qm_debug_file index = file->index; 1473 struct hisi_qm *qm = file_to_qm(file); 1474 char tbuf[QM_DBG_TMP_BUF_LEN]; 1475 u32 val; 1476 int ret; 1477 1478 ret = hisi_qm_get_dfx_access(qm); 1479 if (ret) 1480 return ret; 1481 1482 mutex_lock(&file->lock); 1483 switch (index) { 1484 case CURRENT_QM: 1485 val = current_qm_read(qm); 1486 break; 1487 case CURRENT_Q: 1488 val = current_q_read(qm); 1489 break; 1490 case CLEAR_ENABLE: 1491 val = clear_enable_read(qm); 1492 break; 1493 default: 1494 goto err_input; 1495 } 1496 mutex_unlock(&file->lock); 1497 1498 hisi_qm_put_dfx_access(qm); 1499 ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val); 1500 return simple_read_from_buffer(buf, count, pos, tbuf, ret); 1501 1502 err_input: 1503 mutex_unlock(&file->lock); 1504 hisi_qm_put_dfx_access(qm); 1505 return -EINVAL; 1506 } 1507 1508 static ssize_t qm_debug_write(struct file *filp, const char __user *buf, 1509 size_t count, loff_t *pos) 1510 { 1511 struct debugfs_file *file = filp->private_data; 1512 enum qm_debug_file index = file->index; 1513 struct hisi_qm *qm = file_to_qm(file); 1514 unsigned long val; 1515 char tbuf[QM_DBG_TMP_BUF_LEN]; 1516 int len, ret; 1517 1518 if (*pos != 0) 1519 return 0; 1520 1521 if (count >= QM_DBG_TMP_BUF_LEN) 1522 return -ENOSPC; 1523 1524 len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf, 1525 count); 1526 if (len < 0) 1527 return len; 1528 1529 tbuf[len] = '\0'; 1530 if (kstrtoul(tbuf, 0, &val)) 1531 return -EFAULT; 1532 1533 ret = hisi_qm_get_dfx_access(qm); 1534 if (ret) 1535 return ret; 1536 1537 mutex_lock(&file->lock); 1538 switch (index) { 1539 case CURRENT_QM: 1540 ret = current_qm_write(qm, val); 1541 break; 1542 case CURRENT_Q: 1543 ret = current_q_write(qm, val); 1544 break; 1545 case CLEAR_ENABLE: 1546 ret = clear_enable_write(qm, val); 1547 break; 1548 default: 1549 ret = -EINVAL; 1550 } 1551 mutex_unlock(&file->lock); 1552 1553 hisi_qm_put_dfx_access(qm); 1554 1555 if (ret) 1556 return ret; 1557 1558 return count; 1559 } 1560 1561 static const struct file_operations qm_debug_fops = { 1562 .owner = THIS_MODULE, 1563 .open = simple_open, 1564 .read = qm_debug_read, 1565 .write = qm_debug_write, 1566 }; 1567 1568 #define CNT_CYC_REGS_NUM 10 1569 static const struct debugfs_reg32 qm_dfx_regs[] = { 1570 /* XXX_CNT are reading clear register */ 1571 {"QM_ECC_1BIT_CNT ", 0x104000ull}, 1572 {"QM_ECC_MBIT_CNT ", 0x104008ull}, 1573 {"QM_DFX_MB_CNT ", 0x104018ull}, 1574 {"QM_DFX_DB_CNT ", 0x104028ull}, 1575 {"QM_DFX_SQE_CNT ", 0x104038ull}, 1576 {"QM_DFX_CQE_CNT ", 0x104048ull}, 1577 {"QM_DFX_SEND_SQE_TO_ACC_CNT ", 0x104050ull}, 1578 {"QM_DFX_WB_SQE_FROM_ACC_CNT ", 0x104058ull}, 1579 {"QM_DFX_ACC_FINISH_CNT ", 0x104060ull}, 1580 {"QM_DFX_CQE_ERR_CNT ", 0x1040b4ull}, 1581 {"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull}, 1582 {"QM_ECC_1BIT_INF ", 0x104004ull}, 1583 {"QM_ECC_MBIT_INF ", 0x10400cull}, 1584 {"QM_DFX_ACC_RDY_VLD0 ", 0x1040a0ull}, 1585 {"QM_DFX_ACC_RDY_VLD1 ", 0x1040a4ull}, 1586 {"QM_DFX_AXI_RDY_VLD ", 0x1040a8ull}, 1587 {"QM_DFX_FF_ST0 ", 0x1040c8ull}, 1588 {"QM_DFX_FF_ST1 ", 0x1040ccull}, 1589 {"QM_DFX_FF_ST2 ", 0x1040d0ull}, 1590 {"QM_DFX_FF_ST3 ", 0x1040d4ull}, 1591 {"QM_DFX_FF_ST4 ", 0x1040d8ull}, 1592 {"QM_DFX_FF_ST5 ", 0x1040dcull}, 1593 {"QM_DFX_FF_ST6 ", 0x1040e0ull}, 1594 {"QM_IN_IDLE_ST ", 0x1040e4ull}, 1595 }; 1596 1597 static const struct debugfs_reg32 qm_vf_dfx_regs[] = { 1598 {"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull}, 1599 }; 1600 1601 /** 1602 * hisi_qm_regs_dump() - Dump registers's value. 1603 * @s: debugfs file handle. 1604 * @regset: accelerator registers information. 1605 * 1606 * Dump accelerator registers. 1607 */ 1608 void hisi_qm_regs_dump(struct seq_file *s, struct debugfs_regset32 *regset) 1609 { 1610 struct pci_dev *pdev = to_pci_dev(regset->dev); 1611 struct hisi_qm *qm = pci_get_drvdata(pdev); 1612 const struct debugfs_reg32 *regs = regset->regs; 1613 int regs_len = regset->nregs; 1614 int i, ret; 1615 u32 val; 1616 1617 ret = hisi_qm_get_dfx_access(qm); 1618 if (ret) 1619 return; 1620 1621 for (i = 0; i < regs_len; i++) { 1622 val = readl(regset->base + regs[i].offset); 1623 seq_printf(s, "%s= 0x%08x\n", regs[i].name, val); 1624 } 1625 1626 hisi_qm_put_dfx_access(qm); 1627 } 1628 EXPORT_SYMBOL_GPL(hisi_qm_regs_dump); 1629 1630 static int qm_regs_show(struct seq_file *s, void *unused) 1631 { 1632 struct hisi_qm *qm = s->private; 1633 struct debugfs_regset32 regset; 1634 1635 if (qm->fun_type == QM_HW_PF) { 1636 regset.regs = qm_dfx_regs; 1637 regset.nregs = ARRAY_SIZE(qm_dfx_regs); 1638 } else { 1639 regset.regs = qm_vf_dfx_regs; 1640 regset.nregs = ARRAY_SIZE(qm_vf_dfx_regs); 1641 } 1642 1643 regset.base = qm->io_base; 1644 regset.dev = &qm->pdev->dev; 1645 1646 hisi_qm_regs_dump(s, ®set); 1647 1648 return 0; 1649 } 1650 1651 DEFINE_SHOW_ATTRIBUTE(qm_regs); 1652 1653 static struct dfx_diff_registers *dfx_regs_init(struct hisi_qm *qm, 1654 const struct dfx_diff_registers *cregs, int reg_len) 1655 { 1656 struct dfx_diff_registers *diff_regs; 1657 u32 j, base_offset; 1658 int i; 1659 1660 diff_regs = kcalloc(reg_len, sizeof(*diff_regs), GFP_KERNEL); 1661 if (!diff_regs) 1662 return ERR_PTR(-ENOMEM); 1663 1664 for (i = 0; i < reg_len; i++) { 1665 if (!cregs[i].reg_len) 1666 continue; 1667 1668 diff_regs[i].reg_offset = cregs[i].reg_offset; 1669 diff_regs[i].reg_len = cregs[i].reg_len; 1670 diff_regs[i].regs = kcalloc(QM_DFX_REGS_LEN, cregs[i].reg_len, 1671 GFP_KERNEL); 1672 if (!diff_regs[i].regs) 1673 goto alloc_error; 1674 1675 for (j = 0; j < diff_regs[i].reg_len; j++) { 1676 base_offset = diff_regs[i].reg_offset + 1677 j * QM_DFX_REGS_LEN; 1678 diff_regs[i].regs[j] = readl(qm->io_base + base_offset); 1679 } 1680 } 1681 1682 return diff_regs; 1683 1684 alloc_error: 1685 while (i > 0) { 1686 i--; 1687 kfree(diff_regs[i].regs); 1688 } 1689 kfree(diff_regs); 1690 return ERR_PTR(-ENOMEM); 1691 } 1692 1693 static void dfx_regs_uninit(struct hisi_qm *qm, 1694 struct dfx_diff_registers *dregs, int reg_len) 1695 { 1696 int i; 1697 1698 /* Setting the pointer is NULL to prevent double free */ 1699 for (i = 0; i < reg_len; i++) { 1700 kfree(dregs[i].regs); 1701 dregs[i].regs = NULL; 1702 } 1703 kfree(dregs); 1704 dregs = NULL; 1705 } 1706 1707 /** 1708 * hisi_qm_diff_regs_init() - Allocate memory for registers. 1709 * @qm: device qm handle. 1710 * @dregs: diff registers handle. 1711 * @reg_len: diff registers region length. 1712 */ 1713 int hisi_qm_diff_regs_init(struct hisi_qm *qm, 1714 struct dfx_diff_registers *dregs, int reg_len) 1715 { 1716 if (!qm || !dregs || reg_len <= 0) 1717 return -EINVAL; 1718 1719 if (qm->fun_type != QM_HW_PF) 1720 return 0; 1721 1722 qm->debug.qm_diff_regs = dfx_regs_init(qm, qm_diff_regs, 1723 ARRAY_SIZE(qm_diff_regs)); 1724 if (IS_ERR(qm->debug.qm_diff_regs)) 1725 return PTR_ERR(qm->debug.qm_diff_regs); 1726 1727 qm->debug.acc_diff_regs = dfx_regs_init(qm, dregs, reg_len); 1728 if (IS_ERR(qm->debug.acc_diff_regs)) { 1729 dfx_regs_uninit(qm, qm->debug.qm_diff_regs, 1730 ARRAY_SIZE(qm_diff_regs)); 1731 return PTR_ERR(qm->debug.acc_diff_regs); 1732 } 1733 1734 return 0; 1735 } 1736 EXPORT_SYMBOL_GPL(hisi_qm_diff_regs_init); 1737 1738 /** 1739 * hisi_qm_diff_regs_uninit() - Free memory for registers. 1740 * @qm: device qm handle. 1741 * @reg_len: diff registers region length. 1742 */ 1743 void hisi_qm_diff_regs_uninit(struct hisi_qm *qm, int reg_len) 1744 { 1745 if (!qm || reg_len <= 0 || qm->fun_type != QM_HW_PF) 1746 return; 1747 1748 dfx_regs_uninit(qm, qm->debug.acc_diff_regs, reg_len); 1749 dfx_regs_uninit(qm, qm->debug.qm_diff_regs, ARRAY_SIZE(qm_diff_regs)); 1750 } 1751 EXPORT_SYMBOL_GPL(hisi_qm_diff_regs_uninit); 1752 1753 /** 1754 * hisi_qm_acc_diff_regs_dump() - Dump registers's value. 1755 * @qm: device qm handle. 1756 * @s: Debugfs file handle. 1757 * @dregs: diff registers handle. 1758 * @regs_len: diff registers region length. 1759 */ 1760 void hisi_qm_acc_diff_regs_dump(struct hisi_qm *qm, struct seq_file *s, 1761 struct dfx_diff_registers *dregs, int regs_len) 1762 { 1763 u32 j, val, base_offset; 1764 int i, ret; 1765 1766 if (!qm || !s || !dregs || regs_len <= 0) 1767 return; 1768 1769 ret = hisi_qm_get_dfx_access(qm); 1770 if (ret) 1771 return; 1772 1773 down_read(&qm->qps_lock); 1774 for (i = 0; i < regs_len; i++) { 1775 if (!dregs[i].reg_len) 1776 continue; 1777 1778 for (j = 0; j < dregs[i].reg_len; j++) { 1779 base_offset = dregs[i].reg_offset + j * QM_DFX_REGS_LEN; 1780 val = readl(qm->io_base + base_offset); 1781 if (val != dregs[i].regs[j]) 1782 seq_printf(s, "0x%08x = 0x%08x ---> 0x%08x\n", 1783 base_offset, dregs[i].regs[j], val); 1784 } 1785 } 1786 up_read(&qm->qps_lock); 1787 1788 hisi_qm_put_dfx_access(qm); 1789 } 1790 EXPORT_SYMBOL_GPL(hisi_qm_acc_diff_regs_dump); 1791 1792 static int qm_diff_regs_show(struct seq_file *s, void *unused) 1793 { 1794 struct hisi_qm *qm = s->private; 1795 1796 hisi_qm_acc_diff_regs_dump(qm, s, qm->debug.qm_diff_regs, 1797 ARRAY_SIZE(qm_diff_regs)); 1798 1799 return 0; 1800 } 1801 DEFINE_SHOW_ATTRIBUTE(qm_diff_regs); 1802 1803 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer, 1804 size_t count, loff_t *pos) 1805 { 1806 char buf[QM_DBG_READ_LEN]; 1807 int len; 1808 1809 len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", 1810 "Please echo help to cmd to get help information"); 1811 1812 return simple_read_from_buffer(buffer, count, pos, buf, len); 1813 } 1814 1815 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, 1816 dma_addr_t *dma_addr) 1817 { 1818 struct device *dev = &qm->pdev->dev; 1819 void *ctx_addr; 1820 1821 ctx_addr = kzalloc(ctx_size, GFP_KERNEL); 1822 if (!ctx_addr) 1823 return ERR_PTR(-ENOMEM); 1824 1825 *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); 1826 if (dma_mapping_error(dev, *dma_addr)) { 1827 dev_err(dev, "DMA mapping error!\n"); 1828 kfree(ctx_addr); 1829 return ERR_PTR(-ENOMEM); 1830 } 1831 1832 return ctx_addr; 1833 } 1834 1835 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, 1836 const void *ctx_addr, dma_addr_t *dma_addr) 1837 { 1838 struct device *dev = &qm->pdev->dev; 1839 1840 dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); 1841 kfree(ctx_addr); 1842 } 1843 1844 static int dump_show(struct hisi_qm *qm, void *info, 1845 unsigned int info_size, char *info_name) 1846 { 1847 struct device *dev = &qm->pdev->dev; 1848 u8 *info_buf, *info_curr = info; 1849 u32 i; 1850 #define BYTE_PER_DW 4 1851 1852 info_buf = kzalloc(info_size, GFP_KERNEL); 1853 if (!info_buf) 1854 return -ENOMEM; 1855 1856 for (i = 0; i < info_size; i++, info_curr++) { 1857 if (i % BYTE_PER_DW == 0) 1858 info_buf[i + 3UL] = *info_curr; 1859 else if (i % BYTE_PER_DW == 1) 1860 info_buf[i + 1UL] = *info_curr; 1861 else if (i % BYTE_PER_DW == 2) 1862 info_buf[i - 1] = *info_curr; 1863 else if (i % BYTE_PER_DW == 3) 1864 info_buf[i - 3] = *info_curr; 1865 } 1866 1867 dev_info(dev, "%s DUMP\n", info_name); 1868 for (i = 0; i < info_size; i += BYTE_PER_DW) { 1869 pr_info("DW%u: %02X%02X %02X%02X\n", i / BYTE_PER_DW, 1870 info_buf[i], info_buf[i + 1UL], 1871 info_buf[i + 2UL], info_buf[i + 3UL]); 1872 } 1873 1874 kfree(info_buf); 1875 1876 return 0; 1877 } 1878 1879 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1880 { 1881 return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); 1882 } 1883 1884 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1885 { 1886 return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); 1887 } 1888 1889 static int qm_sqc_dump(struct hisi_qm *qm, const char *s) 1890 { 1891 struct device *dev = &qm->pdev->dev; 1892 struct qm_sqc *sqc, *sqc_curr; 1893 dma_addr_t sqc_dma; 1894 u32 qp_id; 1895 int ret; 1896 1897 if (!s) 1898 return -EINVAL; 1899 1900 ret = kstrtou32(s, 0, &qp_id); 1901 if (ret || qp_id >= qm->qp_num) { 1902 dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1); 1903 return -EINVAL; 1904 } 1905 1906 sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma); 1907 if (IS_ERR(sqc)) 1908 return PTR_ERR(sqc); 1909 1910 ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id); 1911 if (ret) { 1912 down_read(&qm->qps_lock); 1913 if (qm->sqc) { 1914 sqc_curr = qm->sqc + qp_id; 1915 1916 ret = dump_show(qm, sqc_curr, sizeof(*sqc), 1917 "SOFT SQC"); 1918 if (ret) 1919 dev_info(dev, "Show soft sqc failed!\n"); 1920 } 1921 up_read(&qm->qps_lock); 1922 1923 goto err_free_ctx; 1924 } 1925 1926 ret = dump_show(qm, sqc, sizeof(*sqc), "SQC"); 1927 if (ret) 1928 dev_info(dev, "Show hw sqc failed!\n"); 1929 1930 err_free_ctx: 1931 qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma); 1932 return ret; 1933 } 1934 1935 static int qm_cqc_dump(struct hisi_qm *qm, const char *s) 1936 { 1937 struct device *dev = &qm->pdev->dev; 1938 struct qm_cqc *cqc, *cqc_curr; 1939 dma_addr_t cqc_dma; 1940 u32 qp_id; 1941 int ret; 1942 1943 if (!s) 1944 return -EINVAL; 1945 1946 ret = kstrtou32(s, 0, &qp_id); 1947 if (ret || qp_id >= qm->qp_num) { 1948 dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1); 1949 return -EINVAL; 1950 } 1951 1952 cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma); 1953 if (IS_ERR(cqc)) 1954 return PTR_ERR(cqc); 1955 1956 ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id); 1957 if (ret) { 1958 down_read(&qm->qps_lock); 1959 if (qm->cqc) { 1960 cqc_curr = qm->cqc + qp_id; 1961 1962 ret = dump_show(qm, cqc_curr, sizeof(*cqc), 1963 "SOFT CQC"); 1964 if (ret) 1965 dev_info(dev, "Show soft cqc failed!\n"); 1966 } 1967 up_read(&qm->qps_lock); 1968 1969 goto err_free_ctx; 1970 } 1971 1972 ret = dump_show(qm, cqc, sizeof(*cqc), "CQC"); 1973 if (ret) 1974 dev_info(dev, "Show hw cqc failed!\n"); 1975 1976 err_free_ctx: 1977 qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma); 1978 return ret; 1979 } 1980 1981 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size, 1982 int cmd, char *name) 1983 { 1984 struct device *dev = &qm->pdev->dev; 1985 dma_addr_t xeqc_dma; 1986 void *xeqc; 1987 int ret; 1988 1989 if (strsep(&s, " ")) { 1990 dev_err(dev, "Please do not input extra characters!\n"); 1991 return -EINVAL; 1992 } 1993 1994 xeqc = qm_ctx_alloc(qm, size, &xeqc_dma); 1995 if (IS_ERR(xeqc)) 1996 return PTR_ERR(xeqc); 1997 1998 ret = hisi_qm_mb(qm, cmd, xeqc_dma, 0, 1); 1999 if (ret) 2000 goto err_free_ctx; 2001 2002 ret = dump_show(qm, xeqc, size, name); 2003 if (ret) 2004 dev_info(dev, "Show hw %s failed!\n", name); 2005 2006 err_free_ctx: 2007 qm_ctx_free(qm, size, xeqc, &xeqc_dma); 2008 return ret; 2009 } 2010 2011 static int q_dump_param_parse(struct hisi_qm *qm, char *s, 2012 u32 *e_id, u32 *q_id) 2013 { 2014 struct device *dev = &qm->pdev->dev; 2015 unsigned int qp_num = qm->qp_num; 2016 char *presult; 2017 int ret; 2018 2019 presult = strsep(&s, " "); 2020 if (!presult) { 2021 dev_err(dev, "Please input qp number!\n"); 2022 return -EINVAL; 2023 } 2024 2025 ret = kstrtou32(presult, 0, q_id); 2026 if (ret || *q_id >= qp_num) { 2027 dev_err(dev, "Please input qp num (0-%u)", qp_num - 1); 2028 return -EINVAL; 2029 } 2030 2031 presult = strsep(&s, " "); 2032 if (!presult) { 2033 dev_err(dev, "Please input sqe number!\n"); 2034 return -EINVAL; 2035 } 2036 2037 ret = kstrtou32(presult, 0, e_id); 2038 if (ret || *e_id >= QM_Q_DEPTH) { 2039 dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1); 2040 return -EINVAL; 2041 } 2042 2043 if (strsep(&s, " ")) { 2044 dev_err(dev, "Please do not input extra characters!\n"); 2045 return -EINVAL; 2046 } 2047 2048 return 0; 2049 } 2050 2051 static int qm_sq_dump(struct hisi_qm *qm, char *s) 2052 { 2053 struct device *dev = &qm->pdev->dev; 2054 void *sqe, *sqe_curr; 2055 struct hisi_qp *qp; 2056 u32 qp_id, sqe_id; 2057 int ret; 2058 2059 ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id); 2060 if (ret) 2061 return ret; 2062 2063 sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL); 2064 if (!sqe) 2065 return -ENOMEM; 2066 2067 qp = &qm->qp_array[qp_id]; 2068 memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH); 2069 sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size); 2070 memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK, 2071 qm->debug.sqe_mask_len); 2072 2073 ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE"); 2074 if (ret) 2075 dev_info(dev, "Show sqe failed!\n"); 2076 2077 kfree(sqe); 2078 2079 return ret; 2080 } 2081 2082 static int qm_cq_dump(struct hisi_qm *qm, char *s) 2083 { 2084 struct device *dev = &qm->pdev->dev; 2085 struct qm_cqe *cqe_curr; 2086 struct hisi_qp *qp; 2087 u32 qp_id, cqe_id; 2088 int ret; 2089 2090 ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id); 2091 if (ret) 2092 return ret; 2093 2094 qp = &qm->qp_array[qp_id]; 2095 cqe_curr = qp->cqe + cqe_id; 2096 ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE"); 2097 if (ret) 2098 dev_info(dev, "Show cqe failed!\n"); 2099 2100 return ret; 2101 } 2102 2103 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s, 2104 size_t size, char *name) 2105 { 2106 struct device *dev = &qm->pdev->dev; 2107 void *xeqe; 2108 u32 xeqe_id; 2109 int ret; 2110 2111 if (!s) 2112 return -EINVAL; 2113 2114 ret = kstrtou32(s, 0, &xeqe_id); 2115 if (ret) 2116 return -EINVAL; 2117 2118 if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) { 2119 dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1); 2120 return -EINVAL; 2121 } else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) { 2122 dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1); 2123 return -EINVAL; 2124 } 2125 2126 down_read(&qm->qps_lock); 2127 2128 if (qm->eqe && !strcmp(name, "EQE")) { 2129 xeqe = qm->eqe + xeqe_id; 2130 } else if (qm->aeqe && !strcmp(name, "AEQE")) { 2131 xeqe = qm->aeqe + xeqe_id; 2132 } else { 2133 ret = -EINVAL; 2134 goto err_unlock; 2135 } 2136 2137 ret = dump_show(qm, xeqe, size, name); 2138 if (ret) 2139 dev_info(dev, "Show %s failed!\n", name); 2140 2141 err_unlock: 2142 up_read(&qm->qps_lock); 2143 return ret; 2144 } 2145 2146 static int qm_dbg_help(struct hisi_qm *qm, char *s) 2147 { 2148 struct device *dev = &qm->pdev->dev; 2149 2150 if (strsep(&s, " ")) { 2151 dev_err(dev, "Please do not input extra characters!\n"); 2152 return -EINVAL; 2153 } 2154 2155 dev_info(dev, "available commands:\n"); 2156 dev_info(dev, "sqc <num>\n"); 2157 dev_info(dev, "cqc <num>\n"); 2158 dev_info(dev, "eqc\n"); 2159 dev_info(dev, "aeqc\n"); 2160 dev_info(dev, "sq <num> <e>\n"); 2161 dev_info(dev, "cq <num> <e>\n"); 2162 dev_info(dev, "eq <e>\n"); 2163 dev_info(dev, "aeq <e>\n"); 2164 2165 return 0; 2166 } 2167 2168 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf) 2169 { 2170 struct device *dev = &qm->pdev->dev; 2171 char *presult, *s, *s_tmp; 2172 int ret; 2173 2174 s = kstrdup(cmd_buf, GFP_KERNEL); 2175 if (!s) 2176 return -ENOMEM; 2177 2178 s_tmp = s; 2179 presult = strsep(&s, " "); 2180 if (!presult) { 2181 ret = -EINVAL; 2182 goto err_buffer_free; 2183 } 2184 2185 if (!strcmp(presult, "sqc")) 2186 ret = qm_sqc_dump(qm, s); 2187 else if (!strcmp(presult, "cqc")) 2188 ret = qm_cqc_dump(qm, s); 2189 else if (!strcmp(presult, "eqc")) 2190 ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc), 2191 QM_MB_CMD_EQC, "EQC"); 2192 else if (!strcmp(presult, "aeqc")) 2193 ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc), 2194 QM_MB_CMD_AEQC, "AEQC"); 2195 else if (!strcmp(presult, "sq")) 2196 ret = qm_sq_dump(qm, s); 2197 else if (!strcmp(presult, "cq")) 2198 ret = qm_cq_dump(qm, s); 2199 else if (!strcmp(presult, "eq")) 2200 ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE"); 2201 else if (!strcmp(presult, "aeq")) 2202 ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE"); 2203 else if (!strcmp(presult, "help")) 2204 ret = qm_dbg_help(qm, s); 2205 else 2206 ret = -EINVAL; 2207 2208 if (ret) 2209 dev_info(dev, "Please echo help\n"); 2210 2211 err_buffer_free: 2212 kfree(s_tmp); 2213 2214 return ret; 2215 } 2216 2217 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer, 2218 size_t count, loff_t *pos) 2219 { 2220 struct hisi_qm *qm = filp->private_data; 2221 char *cmd_buf, *cmd_buf_tmp; 2222 int ret; 2223 2224 if (*pos) 2225 return 0; 2226 2227 ret = hisi_qm_get_dfx_access(qm); 2228 if (ret) 2229 return ret; 2230 2231 /* Judge if the instance is being reset. */ 2232 if (unlikely(atomic_read(&qm->status.flags) == QM_STOP)) 2233 return 0; 2234 2235 if (count > QM_DBG_WRITE_LEN) { 2236 ret = -ENOSPC; 2237 goto put_dfx_access; 2238 } 2239 2240 cmd_buf = memdup_user_nul(buffer, count); 2241 if (IS_ERR(cmd_buf)) { 2242 ret = PTR_ERR(cmd_buf); 2243 goto put_dfx_access; 2244 } 2245 2246 cmd_buf_tmp = strchr(cmd_buf, '\n'); 2247 if (cmd_buf_tmp) { 2248 *cmd_buf_tmp = '\0'; 2249 count = cmd_buf_tmp - cmd_buf + 1; 2250 } 2251 2252 ret = qm_cmd_write_dump(qm, cmd_buf); 2253 if (ret) { 2254 kfree(cmd_buf); 2255 goto put_dfx_access; 2256 } 2257 2258 kfree(cmd_buf); 2259 2260 ret = count; 2261 2262 put_dfx_access: 2263 hisi_qm_put_dfx_access(qm); 2264 return ret; 2265 } 2266 2267 static const struct file_operations qm_cmd_fops = { 2268 .owner = THIS_MODULE, 2269 .open = simple_open, 2270 .read = qm_cmd_read, 2271 .write = qm_cmd_write, 2272 }; 2273 2274 static void qm_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir, 2275 enum qm_debug_file index) 2276 { 2277 struct debugfs_file *file = qm->debug.files + index; 2278 2279 debugfs_create_file(qm_debug_file_name[index], 0600, dir, file, 2280 &qm_debug_fops); 2281 2282 file->index = index; 2283 mutex_init(&file->lock); 2284 file->debug = &qm->debug; 2285 } 2286 2287 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 2288 { 2289 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 2290 } 2291 2292 static void qm_hw_error_cfg(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 2293 { 2294 qm->error_mask = ce | nfe | fe; 2295 /* clear QM hw residual error source */ 2296 writel(QM_ABNORMAL_INT_SOURCE_CLR, 2297 qm->io_base + QM_ABNORMAL_INT_SOURCE); 2298 2299 /* configure error type */ 2300 writel(ce, qm->io_base + QM_RAS_CE_ENABLE); 2301 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 2302 writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE); 2303 writel(fe, qm->io_base + QM_RAS_FE_ENABLE); 2304 } 2305 2306 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 2307 { 2308 u32 irq_enable = ce | nfe | fe; 2309 u32 irq_unmask = ~irq_enable; 2310 2311 qm_hw_error_cfg(qm, ce, nfe, fe); 2312 2313 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 2314 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 2315 } 2316 2317 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 2318 { 2319 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 2320 } 2321 2322 static void qm_hw_error_init_v3(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 2323 { 2324 u32 irq_enable = ce | nfe | fe; 2325 u32 irq_unmask = ~irq_enable; 2326 2327 qm_hw_error_cfg(qm, ce, nfe, fe); 2328 2329 /* enable close master ooo when hardware error happened */ 2330 writel(nfe & (~QM_DB_RANDOM_INVALID), qm->io_base + QM_OOO_SHUTDOWN_SEL); 2331 2332 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 2333 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 2334 } 2335 2336 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 2337 { 2338 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 2339 2340 /* disable close master ooo when hardware error happened */ 2341 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 2342 } 2343 2344 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 2345 { 2346 const struct hisi_qm_hw_error *err; 2347 struct device *dev = &qm->pdev->dev; 2348 u32 reg_val, type, vf_num; 2349 int i; 2350 2351 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 2352 err = &qm_hw_error[i]; 2353 if (!(err->int_msk & error_status)) 2354 continue; 2355 2356 dev_err(dev, "%s [error status=0x%x] found\n", 2357 err->msg, err->int_msk); 2358 2359 if (err->int_msk & QM_DB_TIMEOUT) { 2360 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 2361 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 2362 QM_DB_TIMEOUT_TYPE_SHIFT; 2363 vf_num = reg_val & QM_DB_TIMEOUT_VF; 2364 dev_err(dev, "qm %s doorbell timeout in function %u\n", 2365 qm_db_timeout[type], vf_num); 2366 } else if (err->int_msk & QM_OF_FIFO_OF) { 2367 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 2368 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 2369 QM_FIFO_OVERFLOW_TYPE_SHIFT; 2370 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 2371 2372 if (type < ARRAY_SIZE(qm_fifo_overflow)) 2373 dev_err(dev, "qm %s fifo overflow in function %u\n", 2374 qm_fifo_overflow[type], vf_num); 2375 else 2376 dev_err(dev, "unknown error type\n"); 2377 } 2378 } 2379 } 2380 2381 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 2382 { 2383 u32 error_status, tmp, val; 2384 2385 /* read err sts */ 2386 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 2387 error_status = qm->error_mask & tmp; 2388 2389 if (error_status) { 2390 if (error_status & QM_ECC_MBIT) 2391 qm->err_status.is_qm_ecc_mbit = true; 2392 2393 qm_log_hw_error(qm, error_status); 2394 val = error_status | QM_DB_RANDOM_INVALID | QM_BASE_CE; 2395 /* ce error does not need to be reset */ 2396 if (val == (QM_DB_RANDOM_INVALID | QM_BASE_CE)) { 2397 writel(error_status, qm->io_base + 2398 QM_ABNORMAL_INT_SOURCE); 2399 writel(qm->err_info.nfe, 2400 qm->io_base + QM_RAS_NFE_ENABLE); 2401 return ACC_ERR_RECOVERED; 2402 } 2403 2404 return ACC_ERR_NEED_RESET; 2405 } 2406 2407 return ACC_ERR_RECOVERED; 2408 } 2409 2410 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 2411 { 2412 struct qm_mailbox mailbox; 2413 int ret; 2414 2415 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 2416 mutex_lock(&qm->mailbox_lock); 2417 ret = qm_mb_nolock(qm, &mailbox); 2418 if (ret) 2419 goto err_unlock; 2420 2421 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 2422 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 2423 2424 err_unlock: 2425 mutex_unlock(&qm->mailbox_lock); 2426 return ret; 2427 } 2428 2429 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 2430 { 2431 u32 val; 2432 2433 if (qm->fun_type == QM_HW_PF) 2434 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 2435 2436 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 2437 val |= QM_IFC_INT_SOURCE_MASK; 2438 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 2439 } 2440 2441 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 2442 { 2443 struct device *dev = &qm->pdev->dev; 2444 u32 cmd; 2445 u64 msg; 2446 int ret; 2447 2448 ret = qm_get_mb_cmd(qm, &msg, vf_id); 2449 if (ret) { 2450 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 2451 return; 2452 } 2453 2454 cmd = msg & QM_MB_CMD_DATA_MASK; 2455 switch (cmd) { 2456 case QM_VF_PREPARE_FAIL: 2457 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 2458 break; 2459 case QM_VF_START_FAIL: 2460 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 2461 break; 2462 case QM_VF_PREPARE_DONE: 2463 case QM_VF_START_DONE: 2464 break; 2465 default: 2466 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 2467 break; 2468 } 2469 } 2470 2471 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 2472 { 2473 struct device *dev = &qm->pdev->dev; 2474 u32 vfs_num = qm->vfs_num; 2475 int cnt = 0; 2476 int ret = 0; 2477 u64 val; 2478 u32 i; 2479 2480 if (!qm->vfs_num || qm->ver < QM_HW_V3) 2481 return 0; 2482 2483 while (true) { 2484 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 2485 /* All VFs send command to PF, break */ 2486 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 2487 break; 2488 2489 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 2490 ret = -EBUSY; 2491 break; 2492 } 2493 2494 msleep(QM_WAIT_DST_ACK); 2495 } 2496 2497 /* PF check VFs msg */ 2498 for (i = 1; i <= vfs_num; i++) { 2499 if (val & BIT(i)) 2500 qm_handle_vf_msg(qm, i); 2501 else 2502 dev_err(dev, "VF(%u) not ping PF!\n", i); 2503 } 2504 2505 /* PF clear interrupt to ack VFs */ 2506 qm_clear_cmd_interrupt(qm, val); 2507 2508 return ret; 2509 } 2510 2511 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 2512 { 2513 u32 val; 2514 2515 val = readl(qm->io_base + QM_IFC_INT_CFG); 2516 val &= ~QM_IFC_SEND_ALL_VFS; 2517 val |= fun_num; 2518 writel(val, qm->io_base + QM_IFC_INT_CFG); 2519 2520 val = readl(qm->io_base + QM_IFC_INT_SET_P); 2521 val |= QM_IFC_INT_SET_MASK; 2522 writel(val, qm->io_base + QM_IFC_INT_SET_P); 2523 } 2524 2525 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 2526 { 2527 u32 val; 2528 2529 val = readl(qm->io_base + QM_IFC_INT_SET_V); 2530 val |= QM_IFC_INT_SET_MASK; 2531 writel(val, qm->io_base + QM_IFC_INT_SET_V); 2532 } 2533 2534 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 2535 { 2536 struct device *dev = &qm->pdev->dev; 2537 struct qm_mailbox mailbox; 2538 int cnt = 0; 2539 u64 val; 2540 int ret; 2541 2542 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 2543 mutex_lock(&qm->mailbox_lock); 2544 ret = qm_mb_nolock(qm, &mailbox); 2545 if (ret) { 2546 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 2547 goto err_unlock; 2548 } 2549 2550 qm_trigger_vf_interrupt(qm, fun_num); 2551 while (true) { 2552 msleep(QM_WAIT_DST_ACK); 2553 val = readq(qm->io_base + QM_IFC_READY_STATUS); 2554 /* if VF respond, PF notifies VF successfully. */ 2555 if (!(val & BIT(fun_num))) 2556 goto err_unlock; 2557 2558 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 2559 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 2560 ret = -ETIMEDOUT; 2561 break; 2562 } 2563 } 2564 2565 err_unlock: 2566 mutex_unlock(&qm->mailbox_lock); 2567 return ret; 2568 } 2569 2570 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 2571 { 2572 struct device *dev = &qm->pdev->dev; 2573 u32 vfs_num = qm->vfs_num; 2574 struct qm_mailbox mailbox; 2575 u64 val = 0; 2576 int cnt = 0; 2577 int ret; 2578 u32 i; 2579 2580 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 2581 mutex_lock(&qm->mailbox_lock); 2582 /* PF sends command to all VFs by mailbox */ 2583 ret = qm_mb_nolock(qm, &mailbox); 2584 if (ret) { 2585 dev_err(dev, "failed to send command to VFs!\n"); 2586 mutex_unlock(&qm->mailbox_lock); 2587 return ret; 2588 } 2589 2590 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 2591 while (true) { 2592 msleep(QM_WAIT_DST_ACK); 2593 val = readq(qm->io_base + QM_IFC_READY_STATUS); 2594 /* If all VFs acked, PF notifies VFs successfully. */ 2595 if (!(val & GENMASK(vfs_num, 1))) { 2596 mutex_unlock(&qm->mailbox_lock); 2597 return 0; 2598 } 2599 2600 if (++cnt > QM_MAX_PF_WAIT_COUNT) 2601 break; 2602 } 2603 2604 mutex_unlock(&qm->mailbox_lock); 2605 2606 /* Check which vf respond timeout. */ 2607 for (i = 1; i <= vfs_num; i++) { 2608 if (val & BIT(i)) 2609 dev_err(dev, "failed to get response from VF(%u)!\n", i); 2610 } 2611 2612 return -ETIMEDOUT; 2613 } 2614 2615 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 2616 { 2617 struct qm_mailbox mailbox; 2618 int cnt = 0; 2619 u32 val; 2620 int ret; 2621 2622 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 2623 mutex_lock(&qm->mailbox_lock); 2624 ret = qm_mb_nolock(qm, &mailbox); 2625 if (ret) { 2626 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 2627 goto unlock; 2628 } 2629 2630 qm_trigger_pf_interrupt(qm); 2631 /* Waiting for PF response */ 2632 while (true) { 2633 msleep(QM_WAIT_DST_ACK); 2634 val = readl(qm->io_base + QM_IFC_INT_SET_V); 2635 if (!(val & QM_IFC_INT_STATUS_MASK)) 2636 break; 2637 2638 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 2639 ret = -ETIMEDOUT; 2640 break; 2641 } 2642 } 2643 2644 unlock: 2645 mutex_unlock(&qm->mailbox_lock); 2646 return ret; 2647 } 2648 2649 static int qm_stop_qp(struct hisi_qp *qp) 2650 { 2651 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 2652 } 2653 2654 static int qm_set_msi(struct hisi_qm *qm, bool set) 2655 { 2656 struct pci_dev *pdev = qm->pdev; 2657 2658 if (set) { 2659 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 2660 0); 2661 } else { 2662 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 2663 ACC_PEH_MSI_DISABLE); 2664 if (qm->err_status.is_qm_ecc_mbit || 2665 qm->err_status.is_dev_ecc_mbit) 2666 return 0; 2667 2668 mdelay(1); 2669 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 2670 return -EFAULT; 2671 } 2672 2673 return 0; 2674 } 2675 2676 static void qm_wait_msi_finish(struct hisi_qm *qm) 2677 { 2678 struct pci_dev *pdev = qm->pdev; 2679 u32 cmd = ~0; 2680 int cnt = 0; 2681 u32 val; 2682 int ret; 2683 2684 while (true) { 2685 pci_read_config_dword(pdev, pdev->msi_cap + 2686 PCI_MSI_PENDING_64, &cmd); 2687 if (!cmd) 2688 break; 2689 2690 if (++cnt > MAX_WAIT_COUNTS) { 2691 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 2692 break; 2693 } 2694 2695 udelay(1); 2696 } 2697 2698 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 2699 val, !(val & QM_PEH_DFX_MASK), 2700 POLL_PERIOD, POLL_TIMEOUT); 2701 if (ret) 2702 pci_warn(pdev, "failed to empty PEH MSI!\n"); 2703 2704 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 2705 val, !(val & QM_PEH_MSI_FINISH_MASK), 2706 POLL_PERIOD, POLL_TIMEOUT); 2707 if (ret) 2708 pci_warn(pdev, "failed to finish MSI operation!\n"); 2709 } 2710 2711 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 2712 { 2713 struct pci_dev *pdev = qm->pdev; 2714 int ret = -ETIMEDOUT; 2715 u32 cmd, i; 2716 2717 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 2718 if (set) 2719 cmd |= QM_MSI_CAP_ENABLE; 2720 else 2721 cmd &= ~QM_MSI_CAP_ENABLE; 2722 2723 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 2724 if (set) { 2725 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 2726 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 2727 if (cmd & QM_MSI_CAP_ENABLE) 2728 return 0; 2729 2730 udelay(1); 2731 } 2732 } else { 2733 udelay(WAIT_PERIOD_US_MIN); 2734 qm_wait_msi_finish(qm); 2735 ret = 0; 2736 } 2737 2738 return ret; 2739 } 2740 2741 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 2742 .qm_db = qm_db_v1, 2743 .get_irq_num = qm_get_irq_num_v1, 2744 .hw_error_init = qm_hw_error_init_v1, 2745 .set_msi = qm_set_msi, 2746 }; 2747 2748 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 2749 .get_vft = qm_get_vft_v2, 2750 .qm_db = qm_db_v2, 2751 .get_irq_num = qm_get_irq_num_v2, 2752 .hw_error_init = qm_hw_error_init_v2, 2753 .hw_error_uninit = qm_hw_error_uninit_v2, 2754 .hw_error_handle = qm_hw_error_handle_v2, 2755 .set_msi = qm_set_msi, 2756 }; 2757 2758 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 2759 .get_vft = qm_get_vft_v2, 2760 .qm_db = qm_db_v2, 2761 .get_irq_num = qm_get_irq_num_v3, 2762 .hw_error_init = qm_hw_error_init_v3, 2763 .hw_error_uninit = qm_hw_error_uninit_v3, 2764 .hw_error_handle = qm_hw_error_handle_v2, 2765 .stop_qp = qm_stop_qp, 2766 .set_msi = qm_set_msi_v3, 2767 .ping_all_vfs = qm_ping_all_vfs, 2768 .ping_pf = qm_ping_pf, 2769 }; 2770 2771 static void *qm_get_avail_sqe(struct hisi_qp *qp) 2772 { 2773 struct hisi_qp_status *qp_status = &qp->qp_status; 2774 u16 sq_tail = qp_status->sq_tail; 2775 2776 if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1)) 2777 return NULL; 2778 2779 return qp->sqe + sq_tail * qp->qm->sqe_size; 2780 } 2781 2782 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 2783 { 2784 u64 *addr; 2785 2786 /* Use last 64 bits of DUS to reset status. */ 2787 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 2788 *addr = 0; 2789 } 2790 2791 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 2792 { 2793 struct device *dev = &qm->pdev->dev; 2794 struct hisi_qp *qp; 2795 int qp_id; 2796 2797 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 2798 return ERR_PTR(-EPERM); 2799 2800 if (qm->qp_in_used == qm->qp_num) { 2801 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 2802 qm->qp_num); 2803 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 2804 return ERR_PTR(-EBUSY); 2805 } 2806 2807 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 2808 if (qp_id < 0) { 2809 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 2810 qm->qp_num); 2811 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 2812 return ERR_PTR(-EBUSY); 2813 } 2814 2815 qp = &qm->qp_array[qp_id]; 2816 hisi_qm_unset_hw_reset(qp); 2817 memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH); 2818 2819 qp->event_cb = NULL; 2820 qp->req_cb = NULL; 2821 qp->qp_id = qp_id; 2822 qp->alg_type = alg_type; 2823 qp->is_in_kernel = true; 2824 qm->qp_in_used++; 2825 atomic_set(&qp->qp_status.flags, QP_INIT); 2826 2827 return qp; 2828 } 2829 2830 /** 2831 * hisi_qm_create_qp() - Create a queue pair from qm. 2832 * @qm: The qm we create a qp from. 2833 * @alg_type: Accelerator specific algorithm type in sqc. 2834 * 2835 * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating 2836 * qp memory fails. 2837 */ 2838 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 2839 { 2840 struct hisi_qp *qp; 2841 int ret; 2842 2843 ret = qm_pm_get_sync(qm); 2844 if (ret) 2845 return ERR_PTR(ret); 2846 2847 down_write(&qm->qps_lock); 2848 qp = qm_create_qp_nolock(qm, alg_type); 2849 up_write(&qm->qps_lock); 2850 2851 if (IS_ERR(qp)) 2852 qm_pm_put_sync(qm); 2853 2854 return qp; 2855 } 2856 2857 /** 2858 * hisi_qm_release_qp() - Release a qp back to its qm. 2859 * @qp: The qp we want to release. 2860 * 2861 * This function releases the resource of a qp. 2862 */ 2863 static void hisi_qm_release_qp(struct hisi_qp *qp) 2864 { 2865 struct hisi_qm *qm = qp->qm; 2866 2867 down_write(&qm->qps_lock); 2868 2869 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 2870 up_write(&qm->qps_lock); 2871 return; 2872 } 2873 2874 qm->qp_in_used--; 2875 idr_remove(&qm->qp_idr, qp->qp_id); 2876 2877 up_write(&qm->qps_lock); 2878 2879 qm_pm_put_sync(qm); 2880 } 2881 2882 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2883 { 2884 struct hisi_qm *qm = qp->qm; 2885 struct device *dev = &qm->pdev->dev; 2886 enum qm_hw_ver ver = qm->ver; 2887 struct qm_sqc *sqc; 2888 dma_addr_t sqc_dma; 2889 int ret; 2890 2891 sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); 2892 if (!sqc) 2893 return -ENOMEM; 2894 2895 INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); 2896 if (ver == QM_HW_V1) { 2897 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 2898 sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1); 2899 } else { 2900 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size)); 2901 sqc->w8 = 0; /* rand_qc */ 2902 } 2903 sqc->cq_num = cpu_to_le16(qp_id); 2904 sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 2905 2906 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2907 sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 2908 QM_QC_PASID_ENABLE_SHIFT); 2909 2910 sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), 2911 DMA_TO_DEVICE); 2912 if (dma_mapping_error(dev, sqc_dma)) { 2913 kfree(sqc); 2914 return -ENOMEM; 2915 } 2916 2917 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); 2918 dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); 2919 kfree(sqc); 2920 2921 return ret; 2922 } 2923 2924 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2925 { 2926 struct hisi_qm *qm = qp->qm; 2927 struct device *dev = &qm->pdev->dev; 2928 enum qm_hw_ver ver = qm->ver; 2929 struct qm_cqc *cqc; 2930 dma_addr_t cqc_dma; 2931 int ret; 2932 2933 cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); 2934 if (!cqc) 2935 return -ENOMEM; 2936 2937 INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); 2938 if (ver == QM_HW_V1) { 2939 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 2940 QM_QC_CQE_SIZE)); 2941 cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1); 2942 } else { 2943 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE)); 2944 cqc->w8 = 0; /* rand_qc */ 2945 } 2946 cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 2947 2948 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2949 cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 2950 2951 cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), 2952 DMA_TO_DEVICE); 2953 if (dma_mapping_error(dev, cqc_dma)) { 2954 kfree(cqc); 2955 return -ENOMEM; 2956 } 2957 2958 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); 2959 dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); 2960 kfree(cqc); 2961 2962 return ret; 2963 } 2964 2965 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2966 { 2967 int ret; 2968 2969 qm_init_qp_status(qp); 2970 2971 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2972 if (ret) 2973 return ret; 2974 2975 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2976 } 2977 2978 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2979 { 2980 struct hisi_qm *qm = qp->qm; 2981 struct device *dev = &qm->pdev->dev; 2982 int qp_id = qp->qp_id; 2983 u32 pasid = arg; 2984 int ret; 2985 2986 if (!qm_qp_avail_state(qm, qp, QP_START)) 2987 return -EPERM; 2988 2989 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2990 if (ret) 2991 return ret; 2992 2993 atomic_set(&qp->qp_status.flags, QP_START); 2994 dev_dbg(dev, "queue %d started\n", qp_id); 2995 2996 return 0; 2997 } 2998 2999 /** 3000 * hisi_qm_start_qp() - Start a qp into running. 3001 * @qp: The qp we want to start to run. 3002 * @arg: Accelerator specific argument. 3003 * 3004 * After this function, qp can receive request from user. Return 0 if 3005 * successful, Return -EBUSY if failed. 3006 */ 3007 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 3008 { 3009 struct hisi_qm *qm = qp->qm; 3010 int ret; 3011 3012 down_write(&qm->qps_lock); 3013 ret = qm_start_qp_nolock(qp, arg); 3014 up_write(&qm->qps_lock); 3015 3016 return ret; 3017 } 3018 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 3019 3020 /** 3021 * qp_stop_fail_cb() - call request cb. 3022 * @qp: stopped failed qp. 3023 * 3024 * Callback function should be called whether task completed or not. 3025 */ 3026 static void qp_stop_fail_cb(struct hisi_qp *qp) 3027 { 3028 int qp_used = atomic_read(&qp->qp_status.used); 3029 u16 cur_tail = qp->qp_status.sq_tail; 3030 u16 cur_head = (cur_tail + QM_Q_DEPTH - qp_used) % QM_Q_DEPTH; 3031 struct hisi_qm *qm = qp->qm; 3032 u16 pos; 3033 int i; 3034 3035 for (i = 0; i < qp_used; i++) { 3036 pos = (i + cur_head) % QM_Q_DEPTH; 3037 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 3038 atomic_dec(&qp->qp_status.used); 3039 } 3040 } 3041 3042 /** 3043 * qm_drain_qp() - Drain a qp. 3044 * @qp: The qp we want to drain. 3045 * 3046 * Determine whether the queue is cleared by judging the tail pointers of 3047 * sq and cq. 3048 */ 3049 static int qm_drain_qp(struct hisi_qp *qp) 3050 { 3051 size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); 3052 struct hisi_qm *qm = qp->qm; 3053 struct device *dev = &qm->pdev->dev; 3054 struct qm_sqc *sqc; 3055 struct qm_cqc *cqc; 3056 dma_addr_t dma_addr; 3057 int ret = 0, i = 0; 3058 void *addr; 3059 3060 /* No need to judge if master OOO is blocked. */ 3061 if (qm_check_dev_error(qm)) 3062 return 0; 3063 3064 /* Kunpeng930 supports drain qp by device */ 3065 if (qm->ops->stop_qp) { 3066 ret = qm->ops->stop_qp(qp); 3067 if (ret) 3068 dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); 3069 return ret; 3070 } 3071 3072 addr = qm_ctx_alloc(qm, size, &dma_addr); 3073 if (IS_ERR(addr)) { 3074 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); 3075 return -ENOMEM; 3076 } 3077 3078 while (++i) { 3079 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); 3080 if (ret) { 3081 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 3082 break; 3083 } 3084 sqc = addr; 3085 3086 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), 3087 qp->qp_id); 3088 if (ret) { 3089 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 3090 break; 3091 } 3092 cqc = addr + sizeof(struct qm_sqc); 3093 3094 if ((sqc->tail == cqc->tail) && 3095 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 3096 break; 3097 3098 if (i == MAX_WAIT_COUNTS) { 3099 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 3100 ret = -EBUSY; 3101 break; 3102 } 3103 3104 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 3105 } 3106 3107 qm_ctx_free(qm, size, addr, &dma_addr); 3108 3109 return ret; 3110 } 3111 3112 static int qm_stop_qp_nolock(struct hisi_qp *qp) 3113 { 3114 struct device *dev = &qp->qm->pdev->dev; 3115 int ret; 3116 3117 /* 3118 * It is allowed to stop and release qp when reset, If the qp is 3119 * stopped when reset but still want to be released then, the 3120 * is_resetting flag should be set negative so that this qp will not 3121 * be restarted after reset. 3122 */ 3123 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 3124 qp->is_resetting = false; 3125 return 0; 3126 } 3127 3128 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 3129 return -EPERM; 3130 3131 atomic_set(&qp->qp_status.flags, QP_STOP); 3132 3133 ret = qm_drain_qp(qp); 3134 if (ret) 3135 dev_err(dev, "Failed to drain out data for stopping!\n"); 3136 3137 if (qp->qm->wq) 3138 flush_workqueue(qp->qm->wq); 3139 else 3140 flush_work(&qp->qm->work); 3141 3142 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 3143 qp_stop_fail_cb(qp); 3144 3145 dev_dbg(dev, "stop queue %u!", qp->qp_id); 3146 3147 return 0; 3148 } 3149 3150 /** 3151 * hisi_qm_stop_qp() - Stop a qp in qm. 3152 * @qp: The qp we want to stop. 3153 * 3154 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 3155 */ 3156 int hisi_qm_stop_qp(struct hisi_qp *qp) 3157 { 3158 int ret; 3159 3160 down_write(&qp->qm->qps_lock); 3161 ret = qm_stop_qp_nolock(qp); 3162 up_write(&qp->qm->qps_lock); 3163 3164 return ret; 3165 } 3166 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 3167 3168 /** 3169 * hisi_qp_send() - Queue up a task in the hardware queue. 3170 * @qp: The qp in which to put the message. 3171 * @msg: The message. 3172 * 3173 * This function will return -EBUSY if qp is currently full, and -EAGAIN 3174 * if qp related qm is resetting. 3175 * 3176 * Note: This function may run with qm_irq_thread and ACC reset at same time. 3177 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 3178 * reset may happen, we have no lock here considering performance. This 3179 * causes current qm_db sending fail or can not receive sended sqe. QM 3180 * sync/async receive function should handle the error sqe. ACC reset 3181 * done function should clear used sqe to 0. 3182 */ 3183 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 3184 { 3185 struct hisi_qp_status *qp_status = &qp->qp_status; 3186 u16 sq_tail = qp_status->sq_tail; 3187 u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH; 3188 void *sqe = qm_get_avail_sqe(qp); 3189 3190 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 3191 atomic_read(&qp->qm->status.flags) == QM_STOP || 3192 qp->is_resetting)) { 3193 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 3194 return -EAGAIN; 3195 } 3196 3197 if (!sqe) 3198 return -EBUSY; 3199 3200 memcpy(sqe, msg, qp->qm->sqe_size); 3201 3202 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 3203 atomic_inc(&qp->qp_status.used); 3204 qp_status->sq_tail = sq_tail_next; 3205 3206 return 0; 3207 } 3208 EXPORT_SYMBOL_GPL(hisi_qp_send); 3209 3210 static void hisi_qm_cache_wb(struct hisi_qm *qm) 3211 { 3212 unsigned int val; 3213 3214 if (qm->ver == QM_HW_V1) 3215 return; 3216 3217 writel(0x1, qm->io_base + QM_CACHE_WB_START); 3218 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 3219 val, val & BIT(0), POLL_PERIOD, 3220 POLL_TIMEOUT)) 3221 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 3222 } 3223 3224 static void qm_qp_event_notifier(struct hisi_qp *qp) 3225 { 3226 wake_up_interruptible(&qp->uacce_q->wait); 3227 } 3228 3229 /* This function returns free number of qp in qm. */ 3230 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 3231 { 3232 struct hisi_qm *qm = uacce->priv; 3233 int ret; 3234 3235 down_read(&qm->qps_lock); 3236 ret = qm->qp_num - qm->qp_in_used; 3237 up_read(&qm->qps_lock); 3238 3239 return ret; 3240 } 3241 3242 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 3243 { 3244 int i; 3245 3246 for (i = 0; i < qm->qp_num; i++) 3247 qm_set_qp_disable(&qm->qp_array[i], offset); 3248 } 3249 3250 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 3251 unsigned long arg, 3252 struct uacce_queue *q) 3253 { 3254 struct hisi_qm *qm = uacce->priv; 3255 struct hisi_qp *qp; 3256 u8 alg_type = 0; 3257 3258 qp = hisi_qm_create_qp(qm, alg_type); 3259 if (IS_ERR(qp)) 3260 return PTR_ERR(qp); 3261 3262 q->priv = qp; 3263 q->uacce = uacce; 3264 qp->uacce_q = q; 3265 qp->event_cb = qm_qp_event_notifier; 3266 qp->pasid = arg; 3267 qp->is_in_kernel = false; 3268 3269 return 0; 3270 } 3271 3272 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 3273 { 3274 struct hisi_qp *qp = q->priv; 3275 3276 hisi_qm_cache_wb(qp->qm); 3277 hisi_qm_release_qp(qp); 3278 } 3279 3280 /* map sq/cq/doorbell to user space */ 3281 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 3282 struct vm_area_struct *vma, 3283 struct uacce_qfile_region *qfr) 3284 { 3285 struct hisi_qp *qp = q->priv; 3286 struct hisi_qm *qm = qp->qm; 3287 resource_size_t phys_base = qm->db_phys_base + 3288 qp->qp_id * qm->db_interval; 3289 size_t sz = vma->vm_end - vma->vm_start; 3290 struct pci_dev *pdev = qm->pdev; 3291 struct device *dev = &pdev->dev; 3292 unsigned long vm_pgoff; 3293 int ret; 3294 3295 switch (qfr->type) { 3296 case UACCE_QFRT_MMIO: 3297 if (qm->ver == QM_HW_V1) { 3298 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 3299 return -EINVAL; 3300 } else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) { 3301 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 3302 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 3303 return -EINVAL; 3304 } else { 3305 if (sz > qm->db_interval) 3306 return -EINVAL; 3307 } 3308 3309 vma->vm_flags |= VM_IO; 3310 3311 return remap_pfn_range(vma, vma->vm_start, 3312 phys_base >> PAGE_SHIFT, 3313 sz, pgprot_noncached(vma->vm_page_prot)); 3314 case UACCE_QFRT_DUS: 3315 if (sz != qp->qdma.size) 3316 return -EINVAL; 3317 3318 /* 3319 * dma_mmap_coherent() requires vm_pgoff as 0 3320 * restore vm_pfoff to initial value for mmap() 3321 */ 3322 vm_pgoff = vma->vm_pgoff; 3323 vma->vm_pgoff = 0; 3324 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 3325 qp->qdma.dma, sz); 3326 vma->vm_pgoff = vm_pgoff; 3327 return ret; 3328 3329 default: 3330 return -EINVAL; 3331 } 3332 } 3333 3334 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 3335 { 3336 struct hisi_qp *qp = q->priv; 3337 3338 return hisi_qm_start_qp(qp, qp->pasid); 3339 } 3340 3341 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 3342 { 3343 hisi_qm_stop_qp(q->priv); 3344 } 3345 3346 static int hisi_qm_is_q_updated(struct uacce_queue *q) 3347 { 3348 struct hisi_qp *qp = q->priv; 3349 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 3350 int updated = 0; 3351 3352 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 3353 /* make sure to read data from memory */ 3354 dma_rmb(); 3355 qm_cq_head_update(qp); 3356 cqe = qp->cqe + qp->qp_status.cq_head; 3357 updated = 1; 3358 } 3359 3360 return updated; 3361 } 3362 3363 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 3364 { 3365 struct hisi_qm *qm = q->uacce->priv; 3366 struct hisi_qp *qp = q->priv; 3367 3368 down_write(&qm->qps_lock); 3369 qp->alg_type = type; 3370 up_write(&qm->qps_lock); 3371 } 3372 3373 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 3374 unsigned long arg) 3375 { 3376 struct hisi_qp *qp = q->priv; 3377 struct hisi_qp_ctx qp_ctx; 3378 3379 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 3380 if (copy_from_user(&qp_ctx, (void __user *)arg, 3381 sizeof(struct hisi_qp_ctx))) 3382 return -EFAULT; 3383 3384 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 3385 return -EINVAL; 3386 3387 qm_set_sqctype(q, qp_ctx.qc_type); 3388 qp_ctx.id = qp->qp_id; 3389 3390 if (copy_to_user((void __user *)arg, &qp_ctx, 3391 sizeof(struct hisi_qp_ctx))) 3392 return -EFAULT; 3393 } else { 3394 return -EINVAL; 3395 } 3396 3397 return 0; 3398 } 3399 3400 static const struct uacce_ops uacce_qm_ops = { 3401 .get_available_instances = hisi_qm_get_available_instances, 3402 .get_queue = hisi_qm_uacce_get_queue, 3403 .put_queue = hisi_qm_uacce_put_queue, 3404 .start_queue = hisi_qm_uacce_start_queue, 3405 .stop_queue = hisi_qm_uacce_stop_queue, 3406 .mmap = hisi_qm_uacce_mmap, 3407 .ioctl = hisi_qm_uacce_ioctl, 3408 .is_q_updated = hisi_qm_is_q_updated, 3409 }; 3410 3411 static int qm_alloc_uacce(struct hisi_qm *qm) 3412 { 3413 struct pci_dev *pdev = qm->pdev; 3414 struct uacce_device *uacce; 3415 unsigned long mmio_page_nr; 3416 unsigned long dus_page_nr; 3417 struct uacce_interface interface = { 3418 .flags = UACCE_DEV_SVA, 3419 .ops = &uacce_qm_ops, 3420 }; 3421 int ret; 3422 3423 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 3424 sizeof(interface.name)); 3425 if (ret < 0) 3426 return -ENAMETOOLONG; 3427 3428 uacce = uacce_alloc(&pdev->dev, &interface); 3429 if (IS_ERR(uacce)) 3430 return PTR_ERR(uacce); 3431 3432 if (uacce->flags & UACCE_DEV_SVA) { 3433 qm->use_sva = true; 3434 } else { 3435 /* only consider sva case */ 3436 uacce_remove(uacce); 3437 qm->uacce = NULL; 3438 return -EINVAL; 3439 } 3440 3441 uacce->is_vf = pdev->is_virtfn; 3442 uacce->priv = qm; 3443 uacce->algs = qm->algs; 3444 3445 if (qm->ver == QM_HW_V1) 3446 uacce->api_ver = HISI_QM_API_VER_BASE; 3447 else if (qm->ver == QM_HW_V2) 3448 uacce->api_ver = HISI_QM_API_VER2_BASE; 3449 else 3450 uacce->api_ver = HISI_QM_API_VER3_BASE; 3451 3452 if (qm->ver == QM_HW_V1) 3453 mmio_page_nr = QM_DOORBELL_PAGE_NR; 3454 else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) 3455 mmio_page_nr = QM_DOORBELL_PAGE_NR + 3456 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 3457 else 3458 mmio_page_nr = qm->db_interval / PAGE_SIZE; 3459 3460 /* Add one more page for device or qp status */ 3461 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH + 3462 sizeof(struct qm_cqe) * QM_Q_DEPTH + PAGE_SIZE) >> 3463 PAGE_SHIFT; 3464 3465 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 3466 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 3467 3468 qm->uacce = uacce; 3469 3470 return 0; 3471 } 3472 3473 /** 3474 * qm_frozen() - Try to froze QM to cut continuous queue request. If 3475 * there is user on the QM, return failure without doing anything. 3476 * @qm: The qm needed to be fronzen. 3477 * 3478 * This function frozes QM, then we can do SRIOV disabling. 3479 */ 3480 static int qm_frozen(struct hisi_qm *qm) 3481 { 3482 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 3483 return 0; 3484 3485 down_write(&qm->qps_lock); 3486 3487 if (!qm->qp_in_used) { 3488 qm->qp_in_used = qm->qp_num; 3489 up_write(&qm->qps_lock); 3490 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 3491 return 0; 3492 } 3493 3494 up_write(&qm->qps_lock); 3495 3496 return -EBUSY; 3497 } 3498 3499 static int qm_try_frozen_vfs(struct pci_dev *pdev, 3500 struct hisi_qm_list *qm_list) 3501 { 3502 struct hisi_qm *qm, *vf_qm; 3503 struct pci_dev *dev; 3504 int ret = 0; 3505 3506 if (!qm_list || !pdev) 3507 return -EINVAL; 3508 3509 /* Try to frozen all the VFs as disable SRIOV */ 3510 mutex_lock(&qm_list->lock); 3511 list_for_each_entry(qm, &qm_list->list, list) { 3512 dev = qm->pdev; 3513 if (dev == pdev) 3514 continue; 3515 if (pci_physfn(dev) == pdev) { 3516 vf_qm = pci_get_drvdata(dev); 3517 ret = qm_frozen(vf_qm); 3518 if (ret) 3519 goto frozen_fail; 3520 } 3521 } 3522 3523 frozen_fail: 3524 mutex_unlock(&qm_list->lock); 3525 3526 return ret; 3527 } 3528 3529 /** 3530 * hisi_qm_wait_task_finish() - Wait until the task is finished 3531 * when removing the driver. 3532 * @qm: The qm needed to wait for the task to finish. 3533 * @qm_list: The list of all available devices. 3534 */ 3535 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 3536 { 3537 while (qm_frozen(qm) || 3538 ((qm->fun_type == QM_HW_PF) && 3539 qm_try_frozen_vfs(qm->pdev, qm_list))) { 3540 msleep(WAIT_PERIOD); 3541 } 3542 3543 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 3544 test_bit(QM_RESETTING, &qm->misc_ctl)) 3545 msleep(WAIT_PERIOD); 3546 3547 udelay(REMOVE_WAIT_DELAY); 3548 } 3549 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 3550 3551 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 3552 { 3553 struct device *dev = &qm->pdev->dev; 3554 struct qm_dma *qdma; 3555 int i; 3556 3557 for (i = num - 1; i >= 0; i--) { 3558 qdma = &qm->qp_array[i].qdma; 3559 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 3560 } 3561 3562 kfree(qm->qp_array); 3563 } 3564 3565 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id) 3566 { 3567 struct device *dev = &qm->pdev->dev; 3568 size_t off = qm->sqe_size * QM_Q_DEPTH; 3569 struct hisi_qp *qp; 3570 3571 qp = &qm->qp_array[id]; 3572 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 3573 GFP_KERNEL); 3574 if (!qp->qdma.va) 3575 return -ENOMEM; 3576 3577 qp->sqe = qp->qdma.va; 3578 qp->sqe_dma = qp->qdma.dma; 3579 qp->cqe = qp->qdma.va + off; 3580 qp->cqe_dma = qp->qdma.dma + off; 3581 qp->qdma.size = dma_size; 3582 qp->qm = qm; 3583 qp->qp_id = id; 3584 3585 return 0; 3586 } 3587 3588 static void hisi_qm_pre_init(struct hisi_qm *qm) 3589 { 3590 struct pci_dev *pdev = qm->pdev; 3591 3592 if (qm->ver == QM_HW_V1) 3593 qm->ops = &qm_hw_ops_v1; 3594 else if (qm->ver == QM_HW_V2) 3595 qm->ops = &qm_hw_ops_v2; 3596 else 3597 qm->ops = &qm_hw_ops_v3; 3598 3599 pci_set_drvdata(pdev, qm); 3600 mutex_init(&qm->mailbox_lock); 3601 init_rwsem(&qm->qps_lock); 3602 qm->qp_in_used = 0; 3603 qm->misc_ctl = false; 3604 if (qm->fun_type == QM_HW_PF && qm->ver > QM_HW_V2) { 3605 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 3606 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 3607 } 3608 } 3609 3610 static void qm_cmd_uninit(struct hisi_qm *qm) 3611 { 3612 u32 val; 3613 3614 if (qm->ver < QM_HW_V3) 3615 return; 3616 3617 val = readl(qm->io_base + QM_IFC_INT_MASK); 3618 val |= QM_IFC_INT_DISABLE; 3619 writel(val, qm->io_base + QM_IFC_INT_MASK); 3620 } 3621 3622 static void qm_cmd_init(struct hisi_qm *qm) 3623 { 3624 u32 val; 3625 3626 if (qm->ver < QM_HW_V3) 3627 return; 3628 3629 /* Clear communication interrupt source */ 3630 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 3631 3632 /* Enable pf to vf communication reg. */ 3633 val = readl(qm->io_base + QM_IFC_INT_MASK); 3634 val &= ~QM_IFC_INT_DISABLE; 3635 writel(val, qm->io_base + QM_IFC_INT_MASK); 3636 } 3637 3638 static void qm_put_pci_res(struct hisi_qm *qm) 3639 { 3640 struct pci_dev *pdev = qm->pdev; 3641 3642 if (qm->use_db_isolation) 3643 iounmap(qm->db_io_base); 3644 3645 iounmap(qm->io_base); 3646 pci_release_mem_regions(pdev); 3647 } 3648 3649 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 3650 { 3651 struct pci_dev *pdev = qm->pdev; 3652 3653 pci_free_irq_vectors(pdev); 3654 qm_put_pci_res(qm); 3655 pci_disable_device(pdev); 3656 } 3657 3658 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 3659 { 3660 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 3661 writel(state, qm->io_base + QM_VF_STATE); 3662 } 3663 3664 static void qm_last_regs_uninit(struct hisi_qm *qm) 3665 { 3666 struct qm_debug *debug = &qm->debug; 3667 3668 if (qm->fun_type == QM_HW_VF || !debug->qm_last_words) 3669 return; 3670 3671 kfree(debug->qm_last_words); 3672 debug->qm_last_words = NULL; 3673 } 3674 3675 /** 3676 * hisi_qm_uninit() - Uninitialize qm. 3677 * @qm: The qm needed uninit. 3678 * 3679 * This function uninits qm related device resources. 3680 */ 3681 void hisi_qm_uninit(struct hisi_qm *qm) 3682 { 3683 struct pci_dev *pdev = qm->pdev; 3684 struct device *dev = &pdev->dev; 3685 3686 qm_last_regs_uninit(qm); 3687 3688 qm_cmd_uninit(qm); 3689 kfree(qm->factor); 3690 down_write(&qm->qps_lock); 3691 3692 if (!qm_avail_state(qm, QM_CLOSE)) { 3693 up_write(&qm->qps_lock); 3694 return; 3695 } 3696 3697 hisi_qp_memory_uninit(qm, qm->qp_num); 3698 idr_destroy(&qm->qp_idr); 3699 3700 if (qm->qdma.va) { 3701 hisi_qm_cache_wb(qm); 3702 dma_free_coherent(dev, qm->qdma.size, 3703 qm->qdma.va, qm->qdma.dma); 3704 } 3705 hisi_qm_set_state(qm, QM_NOT_READY); 3706 up_write(&qm->qps_lock); 3707 3708 qm_irq_unregister(qm); 3709 hisi_qm_pci_uninit(qm); 3710 if (qm->use_sva) { 3711 uacce_remove(qm->uacce); 3712 qm->uacce = NULL; 3713 } 3714 } 3715 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 3716 3717 /** 3718 * hisi_qm_get_vft() - Get vft from a qm. 3719 * @qm: The qm we want to get its vft. 3720 * @base: The base number of queue in vft. 3721 * @number: The number of queues in vft. 3722 * 3723 * We can allocate multiple queues to a qm by configuring virtual function 3724 * table. We get related configures by this function. Normally, we call this 3725 * function in VF driver to get the queue information. 3726 * 3727 * qm hw v1 does not support this interface. 3728 */ 3729 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 3730 { 3731 if (!base || !number) 3732 return -EINVAL; 3733 3734 if (!qm->ops->get_vft) { 3735 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 3736 return -EINVAL; 3737 } 3738 3739 return qm->ops->get_vft(qm, base, number); 3740 } 3741 3742 /** 3743 * hisi_qm_set_vft() - Set vft to a qm. 3744 * @qm: The qm we want to set its vft. 3745 * @fun_num: The function number. 3746 * @base: The base number of queue in vft. 3747 * @number: The number of queues in vft. 3748 * 3749 * This function is alway called in PF driver, it is used to assign queues 3750 * among PF and VFs. 3751 * 3752 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 3753 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 3754 * (VF function number 0x2) 3755 */ 3756 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 3757 u32 number) 3758 { 3759 u32 max_q_num = qm->ctrl_qp_num; 3760 3761 if (base >= max_q_num || number > max_q_num || 3762 (base + number) > max_q_num) 3763 return -EINVAL; 3764 3765 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 3766 } 3767 3768 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 3769 { 3770 struct hisi_qm_status *status = &qm->status; 3771 3772 status->eq_head = 0; 3773 status->aeq_head = 0; 3774 status->eqc_phase = true; 3775 status->aeqc_phase = true; 3776 } 3777 3778 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 3779 { 3780 /* Clear eq/aeq interrupt source */ 3781 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 3782 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 3783 3784 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 3785 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 3786 } 3787 3788 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 3789 { 3790 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 3791 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 3792 } 3793 3794 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 3795 { 3796 struct device *dev = &qm->pdev->dev; 3797 struct qm_eqc *eqc; 3798 dma_addr_t eqc_dma; 3799 int ret; 3800 3801 eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); 3802 if (!eqc) 3803 return -ENOMEM; 3804 3805 eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3806 eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3807 if (qm->ver == QM_HW_V1) 3808 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3809 eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3810 3811 eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), 3812 DMA_TO_DEVICE); 3813 if (dma_mapping_error(dev, eqc_dma)) { 3814 kfree(eqc); 3815 return -ENOMEM; 3816 } 3817 3818 ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); 3819 dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); 3820 kfree(eqc); 3821 3822 return ret; 3823 } 3824 3825 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3826 { 3827 struct device *dev = &qm->pdev->dev; 3828 struct qm_aeqc *aeqc; 3829 dma_addr_t aeqc_dma; 3830 int ret; 3831 3832 aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); 3833 if (!aeqc) 3834 return -ENOMEM; 3835 3836 aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3837 aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3838 aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3839 3840 aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), 3841 DMA_TO_DEVICE); 3842 if (dma_mapping_error(dev, aeqc_dma)) { 3843 kfree(aeqc); 3844 return -ENOMEM; 3845 } 3846 3847 ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); 3848 dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); 3849 kfree(aeqc); 3850 3851 return ret; 3852 } 3853 3854 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3855 { 3856 struct device *dev = &qm->pdev->dev; 3857 int ret; 3858 3859 qm_init_eq_aeq_status(qm); 3860 3861 ret = qm_eq_ctx_cfg(qm); 3862 if (ret) { 3863 dev_err(dev, "Set eqc failed!\n"); 3864 return ret; 3865 } 3866 3867 return qm_aeq_ctx_cfg(qm); 3868 } 3869 3870 static int __hisi_qm_start(struct hisi_qm *qm) 3871 { 3872 int ret; 3873 3874 WARN_ON(!qm->qdma.va); 3875 3876 if (qm->fun_type == QM_HW_PF) { 3877 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3878 if (ret) 3879 return ret; 3880 } 3881 3882 ret = qm_eq_aeq_ctx_cfg(qm); 3883 if (ret) 3884 return ret; 3885 3886 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3887 if (ret) 3888 return ret; 3889 3890 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3891 if (ret) 3892 return ret; 3893 3894 qm_init_prefetch(qm); 3895 qm_enable_eq_aeq_interrupts(qm); 3896 3897 return 0; 3898 } 3899 3900 /** 3901 * hisi_qm_start() - start qm 3902 * @qm: The qm to be started. 3903 * 3904 * This function starts a qm, then we can allocate qp from this qm. 3905 */ 3906 int hisi_qm_start(struct hisi_qm *qm) 3907 { 3908 struct device *dev = &qm->pdev->dev; 3909 int ret = 0; 3910 3911 down_write(&qm->qps_lock); 3912 3913 if (!qm_avail_state(qm, QM_START)) { 3914 up_write(&qm->qps_lock); 3915 return -EPERM; 3916 } 3917 3918 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3919 3920 if (!qm->qp_num) { 3921 dev_err(dev, "qp_num should not be 0\n"); 3922 ret = -EINVAL; 3923 goto err_unlock; 3924 } 3925 3926 ret = __hisi_qm_start(qm); 3927 if (!ret) 3928 atomic_set(&qm->status.flags, QM_START); 3929 3930 hisi_qm_set_state(qm, QM_READY); 3931 err_unlock: 3932 up_write(&qm->qps_lock); 3933 return ret; 3934 } 3935 EXPORT_SYMBOL_GPL(hisi_qm_start); 3936 3937 static int qm_restart(struct hisi_qm *qm) 3938 { 3939 struct device *dev = &qm->pdev->dev; 3940 struct hisi_qp *qp; 3941 int ret, i; 3942 3943 ret = hisi_qm_start(qm); 3944 if (ret < 0) 3945 return ret; 3946 3947 down_write(&qm->qps_lock); 3948 for (i = 0; i < qm->qp_num; i++) { 3949 qp = &qm->qp_array[i]; 3950 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3951 qp->is_resetting == true) { 3952 ret = qm_start_qp_nolock(qp, 0); 3953 if (ret < 0) { 3954 dev_err(dev, "Failed to start qp%d!\n", i); 3955 3956 up_write(&qm->qps_lock); 3957 return ret; 3958 } 3959 qp->is_resetting = false; 3960 } 3961 } 3962 up_write(&qm->qps_lock); 3963 3964 return 0; 3965 } 3966 3967 /* Stop started qps in reset flow */ 3968 static int qm_stop_started_qp(struct hisi_qm *qm) 3969 { 3970 struct device *dev = &qm->pdev->dev; 3971 struct hisi_qp *qp; 3972 int i, ret; 3973 3974 for (i = 0; i < qm->qp_num; i++) { 3975 qp = &qm->qp_array[i]; 3976 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 3977 qp->is_resetting = true; 3978 ret = qm_stop_qp_nolock(qp); 3979 if (ret < 0) { 3980 dev_err(dev, "Failed to stop qp%d!\n", i); 3981 return ret; 3982 } 3983 } 3984 } 3985 3986 return 0; 3987 } 3988 3989 3990 /** 3991 * qm_clear_queues() - Clear all queues memory in a qm. 3992 * @qm: The qm in which the queues will be cleared. 3993 * 3994 * This function clears all queues memory in a qm. Reset of accelerator can 3995 * use this to clear queues. 3996 */ 3997 static void qm_clear_queues(struct hisi_qm *qm) 3998 { 3999 struct hisi_qp *qp; 4000 int i; 4001 4002 for (i = 0; i < qm->qp_num; i++) { 4003 qp = &qm->qp_array[i]; 4004 if (qp->is_in_kernel && qp->is_resetting) 4005 memset(qp->qdma.va, 0, qp->qdma.size); 4006 } 4007 4008 memset(qm->qdma.va, 0, qm->qdma.size); 4009 } 4010 4011 /** 4012 * hisi_qm_stop() - Stop a qm. 4013 * @qm: The qm which will be stopped. 4014 * @r: The reason to stop qm. 4015 * 4016 * This function stops qm and its qps, then qm can not accept request. 4017 * Related resources are not released at this state, we can use hisi_qm_start 4018 * to let qm start again. 4019 */ 4020 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 4021 { 4022 struct device *dev = &qm->pdev->dev; 4023 int ret = 0; 4024 4025 down_write(&qm->qps_lock); 4026 4027 qm->status.stop_reason = r; 4028 if (!qm_avail_state(qm, QM_STOP)) { 4029 ret = -EPERM; 4030 goto err_unlock; 4031 } 4032 4033 if (qm->status.stop_reason == QM_SOFT_RESET || 4034 qm->status.stop_reason == QM_FLR) { 4035 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4036 ret = qm_stop_started_qp(qm); 4037 if (ret < 0) { 4038 dev_err(dev, "Failed to stop started qp!\n"); 4039 goto err_unlock; 4040 } 4041 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4042 } 4043 4044 qm_disable_eq_aeq_interrupts(qm); 4045 if (qm->fun_type == QM_HW_PF) { 4046 ret = hisi_qm_set_vft(qm, 0, 0, 0); 4047 if (ret < 0) { 4048 dev_err(dev, "Failed to set vft!\n"); 4049 ret = -EBUSY; 4050 goto err_unlock; 4051 } 4052 } 4053 4054 qm_clear_queues(qm); 4055 atomic_set(&qm->status.flags, QM_STOP); 4056 4057 err_unlock: 4058 up_write(&qm->qps_lock); 4059 return ret; 4060 } 4061 EXPORT_SYMBOL_GPL(hisi_qm_stop); 4062 4063 static ssize_t qm_status_read(struct file *filp, char __user *buffer, 4064 size_t count, loff_t *pos) 4065 { 4066 struct hisi_qm *qm = filp->private_data; 4067 char buf[QM_DBG_READ_LEN]; 4068 int val, len; 4069 4070 val = atomic_read(&qm->status.flags); 4071 len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]); 4072 4073 return simple_read_from_buffer(buffer, count, pos, buf, len); 4074 } 4075 4076 static const struct file_operations qm_status_fops = { 4077 .owner = THIS_MODULE, 4078 .open = simple_open, 4079 .read = qm_status_read, 4080 }; 4081 4082 static int qm_debugfs_atomic64_set(void *data, u64 val) 4083 { 4084 if (val) 4085 return -EINVAL; 4086 4087 atomic64_set((atomic64_t *)data, 0); 4088 4089 return 0; 4090 } 4091 4092 static int qm_debugfs_atomic64_get(void *data, u64 *val) 4093 { 4094 *val = atomic64_read((atomic64_t *)data); 4095 4096 return 0; 4097 } 4098 4099 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get, 4100 qm_debugfs_atomic64_set, "%llu\n"); 4101 4102 static void qm_hw_error_init(struct hisi_qm *qm) 4103 { 4104 struct hisi_qm_err_info *err_info = &qm->err_info; 4105 4106 if (!qm->ops->hw_error_init) { 4107 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 4108 return; 4109 } 4110 4111 qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe); 4112 } 4113 4114 static void qm_hw_error_uninit(struct hisi_qm *qm) 4115 { 4116 if (!qm->ops->hw_error_uninit) { 4117 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 4118 return; 4119 } 4120 4121 qm->ops->hw_error_uninit(qm); 4122 } 4123 4124 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 4125 { 4126 if (!qm->ops->hw_error_handle) { 4127 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 4128 return ACC_ERR_NONE; 4129 } 4130 4131 return qm->ops->hw_error_handle(qm); 4132 } 4133 4134 /** 4135 * hisi_qm_dev_err_init() - Initialize device error configuration. 4136 * @qm: The qm for which we want to do error initialization. 4137 * 4138 * Initialize QM and device error related configuration. 4139 */ 4140 void hisi_qm_dev_err_init(struct hisi_qm *qm) 4141 { 4142 if (qm->fun_type == QM_HW_VF) 4143 return; 4144 4145 qm_hw_error_init(qm); 4146 4147 if (!qm->err_ini->hw_err_enable) { 4148 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 4149 return; 4150 } 4151 qm->err_ini->hw_err_enable(qm); 4152 } 4153 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 4154 4155 /** 4156 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 4157 * @qm: The qm for which we want to do error uninitialization. 4158 * 4159 * Uninitialize QM and device error related configuration. 4160 */ 4161 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 4162 { 4163 if (qm->fun_type == QM_HW_VF) 4164 return; 4165 4166 qm_hw_error_uninit(qm); 4167 4168 if (!qm->err_ini->hw_err_disable) { 4169 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 4170 return; 4171 } 4172 qm->err_ini->hw_err_disable(qm); 4173 } 4174 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 4175 4176 /** 4177 * hisi_qm_free_qps() - free multiple queue pairs. 4178 * @qps: The queue pairs need to be freed. 4179 * @qp_num: The num of queue pairs. 4180 */ 4181 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 4182 { 4183 int i; 4184 4185 if (!qps || qp_num <= 0) 4186 return; 4187 4188 for (i = qp_num - 1; i >= 0; i--) 4189 hisi_qm_release_qp(qps[i]); 4190 } 4191 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 4192 4193 static void free_list(struct list_head *head) 4194 { 4195 struct hisi_qm_resource *res, *tmp; 4196 4197 list_for_each_entry_safe(res, tmp, head, list) { 4198 list_del(&res->list); 4199 kfree(res); 4200 } 4201 } 4202 4203 static int hisi_qm_sort_devices(int node, struct list_head *head, 4204 struct hisi_qm_list *qm_list) 4205 { 4206 struct hisi_qm_resource *res, *tmp; 4207 struct hisi_qm *qm; 4208 struct list_head *n; 4209 struct device *dev; 4210 int dev_node = 0; 4211 4212 list_for_each_entry(qm, &qm_list->list, list) { 4213 dev = &qm->pdev->dev; 4214 4215 if (IS_ENABLED(CONFIG_NUMA)) { 4216 dev_node = dev_to_node(dev); 4217 if (dev_node < 0) 4218 dev_node = 0; 4219 } 4220 4221 res = kzalloc(sizeof(*res), GFP_KERNEL); 4222 if (!res) 4223 return -ENOMEM; 4224 4225 res->qm = qm; 4226 res->distance = node_distance(dev_node, node); 4227 n = head; 4228 list_for_each_entry(tmp, head, list) { 4229 if (res->distance < tmp->distance) { 4230 n = &tmp->list; 4231 break; 4232 } 4233 } 4234 list_add_tail(&res->list, n); 4235 } 4236 4237 return 0; 4238 } 4239 4240 /** 4241 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 4242 * @qm_list: The list of all available devices. 4243 * @qp_num: The number of queue pairs need created. 4244 * @alg_type: The algorithm type. 4245 * @node: The numa node. 4246 * @qps: The queue pairs need created. 4247 * 4248 * This function will sort all available device according to numa distance. 4249 * Then try to create all queue pairs from one device, if all devices do 4250 * not meet the requirements will return error. 4251 */ 4252 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 4253 u8 alg_type, int node, struct hisi_qp **qps) 4254 { 4255 struct hisi_qm_resource *tmp; 4256 int ret = -ENODEV; 4257 LIST_HEAD(head); 4258 int i; 4259 4260 if (!qps || !qm_list || qp_num <= 0) 4261 return -EINVAL; 4262 4263 mutex_lock(&qm_list->lock); 4264 if (hisi_qm_sort_devices(node, &head, qm_list)) { 4265 mutex_unlock(&qm_list->lock); 4266 goto err; 4267 } 4268 4269 list_for_each_entry(tmp, &head, list) { 4270 for (i = 0; i < qp_num; i++) { 4271 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 4272 if (IS_ERR(qps[i])) { 4273 hisi_qm_free_qps(qps, i); 4274 break; 4275 } 4276 } 4277 4278 if (i == qp_num) { 4279 ret = 0; 4280 break; 4281 } 4282 } 4283 4284 mutex_unlock(&qm_list->lock); 4285 if (ret) 4286 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 4287 node, alg_type, qp_num); 4288 4289 err: 4290 free_list(&head); 4291 return ret; 4292 } 4293 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 4294 4295 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 4296 { 4297 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 4298 u32 max_qp_num = qm->max_qp_num; 4299 u32 q_base = qm->qp_num; 4300 int ret; 4301 4302 if (!num_vfs) 4303 return -EINVAL; 4304 4305 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 4306 4307 /* If vfs_q_num is less than num_vfs, return error. */ 4308 if (vfs_q_num < num_vfs) 4309 return -EINVAL; 4310 4311 q_num = vfs_q_num / num_vfs; 4312 remain_q_num = vfs_q_num % num_vfs; 4313 4314 for (i = num_vfs; i > 0; i--) { 4315 /* 4316 * if q_num + remain_q_num > max_qp_num in last vf, divide the 4317 * remaining queues equally. 4318 */ 4319 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 4320 act_q_num = q_num + remain_q_num; 4321 remain_q_num = 0; 4322 } else if (remain_q_num > 0) { 4323 act_q_num = q_num + 1; 4324 remain_q_num--; 4325 } else { 4326 act_q_num = q_num; 4327 } 4328 4329 act_q_num = min_t(int, act_q_num, max_qp_num); 4330 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 4331 if (ret) { 4332 for (j = num_vfs; j > i; j--) 4333 hisi_qm_set_vft(qm, j, 0, 0); 4334 return ret; 4335 } 4336 q_base += act_q_num; 4337 } 4338 4339 return 0; 4340 } 4341 4342 static int qm_clear_vft_config(struct hisi_qm *qm) 4343 { 4344 int ret; 4345 u32 i; 4346 4347 for (i = 1; i <= qm->vfs_num; i++) { 4348 ret = hisi_qm_set_vft(qm, i, 0, 0); 4349 if (ret) 4350 return ret; 4351 } 4352 qm->vfs_num = 0; 4353 4354 return 0; 4355 } 4356 4357 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 4358 { 4359 struct device *dev = &qm->pdev->dev; 4360 u32 ir = qos * QM_QOS_RATE; 4361 int ret, total_vfs, i; 4362 4363 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 4364 if (fun_index > total_vfs) 4365 return -EINVAL; 4366 4367 qm->factor[fun_index].func_qos = qos; 4368 4369 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 4370 if (ret) { 4371 dev_err(dev, "failed to calculate shaper parameter!\n"); 4372 return -EINVAL; 4373 } 4374 4375 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 4376 /* The base number of queue reuse for different alg type */ 4377 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 4378 if (ret) { 4379 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 4380 return -EINVAL; 4381 } 4382 } 4383 4384 return 0; 4385 } 4386 4387 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 4388 { 4389 u64 cir_u = 0, cir_b = 0, cir_s = 0; 4390 u64 shaper_vft, ir_calc, ir; 4391 unsigned int val; 4392 u32 error_rate; 4393 int ret; 4394 4395 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 4396 val & BIT(0), POLL_PERIOD, 4397 POLL_TIMEOUT); 4398 if (ret) 4399 return 0; 4400 4401 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 4402 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 4403 writel(fun_index, qm->io_base + QM_VFT_CFG); 4404 4405 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 4406 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 4407 4408 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 4409 val & BIT(0), POLL_PERIOD, 4410 POLL_TIMEOUT); 4411 if (ret) 4412 return 0; 4413 4414 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 4415 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 4416 4417 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 4418 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 4419 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 4420 4421 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 4422 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 4423 4424 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 4425 4426 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 4427 4428 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 4429 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 4430 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 4431 return 0; 4432 } 4433 4434 return ir; 4435 } 4436 4437 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 4438 { 4439 struct device *dev = &qm->pdev->dev; 4440 u64 mb_cmd; 4441 u32 qos; 4442 int ret; 4443 4444 qos = qm_get_shaper_vft_qos(qm, fun_num); 4445 if (!qos) { 4446 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 4447 return; 4448 } 4449 4450 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 4451 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 4452 if (ret) 4453 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 4454 } 4455 4456 static int qm_vf_read_qos(struct hisi_qm *qm) 4457 { 4458 int cnt = 0; 4459 int ret = -EINVAL; 4460 4461 /* reset mailbox qos val */ 4462 qm->mb_qos = 0; 4463 4464 /* vf ping pf to get function qos */ 4465 if (qm->ops->ping_pf) { 4466 ret = qm->ops->ping_pf(qm, QM_VF_GET_QOS); 4467 if (ret) { 4468 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 4469 return ret; 4470 } 4471 } 4472 4473 while (true) { 4474 msleep(QM_WAIT_DST_ACK); 4475 if (qm->mb_qos) 4476 break; 4477 4478 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 4479 pci_err(qm->pdev, "PF ping VF timeout!\n"); 4480 return -ETIMEDOUT; 4481 } 4482 } 4483 4484 return ret; 4485 } 4486 4487 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 4488 size_t count, loff_t *pos) 4489 { 4490 struct hisi_qm *qm = filp->private_data; 4491 char tbuf[QM_DBG_READ_LEN]; 4492 u32 qos_val, ir; 4493 int ret; 4494 4495 ret = hisi_qm_get_dfx_access(qm); 4496 if (ret) 4497 return ret; 4498 4499 /* Mailbox and reset cannot be operated at the same time */ 4500 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 4501 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 4502 ret = -EAGAIN; 4503 goto err_put_dfx_access; 4504 } 4505 4506 if (qm->fun_type == QM_HW_PF) { 4507 ir = qm_get_shaper_vft_qos(qm, 0); 4508 } else { 4509 ret = qm_vf_read_qos(qm); 4510 if (ret) 4511 goto err_get_status; 4512 ir = qm->mb_qos; 4513 } 4514 4515 qos_val = ir / QM_QOS_RATE; 4516 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 4517 4518 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 4519 4520 err_get_status: 4521 clear_bit(QM_RESETTING, &qm->misc_ctl); 4522 err_put_dfx_access: 4523 hisi_qm_put_dfx_access(qm); 4524 return ret; 4525 } 4526 4527 static ssize_t qm_qos_value_init(const char *buf, unsigned long *val) 4528 { 4529 int buflen = strlen(buf); 4530 int ret, i; 4531 4532 for (i = 0; i < buflen; i++) { 4533 if (!isdigit(buf[i])) 4534 return -EINVAL; 4535 } 4536 4537 ret = sscanf(buf, "%lu", val); 4538 if (ret != QM_QOS_VAL_NUM) 4539 return -EINVAL; 4540 4541 return 0; 4542 } 4543 4544 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 4545 unsigned long *val, 4546 unsigned int *fun_index) 4547 { 4548 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 4549 char val_buf[QM_QOS_VAL_MAX_LEN] = {0}; 4550 u32 tmp1, device, function; 4551 int ret, bus; 4552 4553 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 4554 if (ret != QM_QOS_PARAM_NUM) 4555 return -EINVAL; 4556 4557 ret = qm_qos_value_init(val_buf, val); 4558 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 4559 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 4560 return -EINVAL; 4561 } 4562 4563 ret = sscanf(tbuf_bdf, "%u:%x:%u.%u", &tmp1, &bus, &device, &function); 4564 if (ret != QM_QOS_BDF_PARAM_NUM) { 4565 pci_err(qm->pdev, "input pci bdf value is error!\n"); 4566 return -EINVAL; 4567 } 4568 4569 *fun_index = PCI_DEVFN(device, function); 4570 4571 return 0; 4572 } 4573 4574 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 4575 size_t count, loff_t *pos) 4576 { 4577 struct hisi_qm *qm = filp->private_data; 4578 char tbuf[QM_DBG_READ_LEN]; 4579 unsigned int fun_index; 4580 unsigned long val; 4581 int len, ret; 4582 4583 if (qm->fun_type == QM_HW_VF) 4584 return -EINVAL; 4585 4586 if (*pos != 0) 4587 return 0; 4588 4589 if (count >= QM_DBG_READ_LEN) 4590 return -ENOSPC; 4591 4592 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 4593 if (len < 0) 4594 return len; 4595 4596 tbuf[len] = '\0'; 4597 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 4598 if (ret) 4599 return ret; 4600 4601 /* Mailbox and reset cannot be operated at the same time */ 4602 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 4603 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 4604 return -EAGAIN; 4605 } 4606 4607 ret = qm_pm_get_sync(qm); 4608 if (ret) { 4609 ret = -EINVAL; 4610 goto err_get_status; 4611 } 4612 4613 ret = qm_func_shaper_enable(qm, fun_index, val); 4614 if (ret) { 4615 pci_err(qm->pdev, "failed to enable function shaper!\n"); 4616 ret = -EINVAL; 4617 goto err_put_sync; 4618 } 4619 4620 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 4621 fun_index, val); 4622 ret = count; 4623 4624 err_put_sync: 4625 qm_pm_put_sync(qm); 4626 err_get_status: 4627 clear_bit(QM_RESETTING, &qm->misc_ctl); 4628 return ret; 4629 } 4630 4631 static const struct file_operations qm_algqos_fops = { 4632 .owner = THIS_MODULE, 4633 .open = simple_open, 4634 .read = qm_algqos_read, 4635 .write = qm_algqos_write, 4636 }; 4637 4638 /** 4639 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 4640 * @qm: The qm for which we want to add debugfs files. 4641 * 4642 * Create function qos debugfs files. 4643 */ 4644 static void hisi_qm_set_algqos_init(struct hisi_qm *qm) 4645 { 4646 if (qm->fun_type == QM_HW_PF) 4647 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 4648 qm, &qm_algqos_fops); 4649 else 4650 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 4651 qm, &qm_algqos_fops); 4652 } 4653 4654 /** 4655 * hisi_qm_debug_init() - Initialize qm related debugfs files. 4656 * @qm: The qm for which we want to add debugfs files. 4657 * 4658 * Create qm related debugfs files. 4659 */ 4660 void hisi_qm_debug_init(struct hisi_qm *qm) 4661 { 4662 struct dfx_diff_registers *qm_regs = qm->debug.qm_diff_regs; 4663 struct qm_dfx *dfx = &qm->debug.dfx; 4664 struct dentry *qm_d; 4665 void *data; 4666 int i; 4667 4668 qm_d = debugfs_create_dir("qm", qm->debug.debug_root); 4669 qm->debug.qm_d = qm_d; 4670 4671 /* only show this in PF */ 4672 if (qm->fun_type == QM_HW_PF) { 4673 qm_create_debugfs_file(qm, qm->debug.debug_root, CURRENT_QM); 4674 for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++) 4675 qm_create_debugfs_file(qm, qm->debug.qm_d, i); 4676 } 4677 4678 if (qm_regs) 4679 debugfs_create_file("diff_regs", 0444, qm->debug.qm_d, 4680 qm, &qm_diff_regs_fops); 4681 4682 debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops); 4683 4684 debugfs_create_file("cmd", 0600, qm->debug.qm_d, qm, &qm_cmd_fops); 4685 4686 debugfs_create_file("status", 0444, qm->debug.qm_d, qm, 4687 &qm_status_fops); 4688 for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) { 4689 data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset); 4690 debugfs_create_file(qm_dfx_files[i].name, 4691 0644, 4692 qm_d, 4693 data, 4694 &qm_atomic64_ops); 4695 } 4696 4697 if (qm->ver >= QM_HW_V3) 4698 hisi_qm_set_algqos_init(qm); 4699 } 4700 EXPORT_SYMBOL_GPL(hisi_qm_debug_init); 4701 4702 /** 4703 * hisi_qm_debug_regs_clear() - clear qm debug related registers. 4704 * @qm: The qm for which we want to clear its debug registers. 4705 */ 4706 void hisi_qm_debug_regs_clear(struct hisi_qm *qm) 4707 { 4708 const struct debugfs_reg32 *regs; 4709 int i; 4710 4711 /* clear current_qm */ 4712 writel(0x0, qm->io_base + QM_DFX_MB_CNT_VF); 4713 writel(0x0, qm->io_base + QM_DFX_DB_CNT_VF); 4714 4715 /* clear current_q */ 4716 writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 4717 writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 4718 4719 /* 4720 * these registers are reading and clearing, so clear them after 4721 * reading them. 4722 */ 4723 writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE); 4724 4725 regs = qm_dfx_regs; 4726 for (i = 0; i < CNT_CYC_REGS_NUM; i++) { 4727 readl(qm->io_base + regs->offset); 4728 regs++; 4729 } 4730 4731 /* clear clear_enable */ 4732 writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE); 4733 } 4734 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear); 4735 4736 /** 4737 * hisi_qm_sriov_enable() - enable virtual functions 4738 * @pdev: the PCIe device 4739 * @max_vfs: the number of virtual functions to enable 4740 * 4741 * Returns the number of enabled VFs. If there are VFs enabled already or 4742 * max_vfs is more than the total number of device can be enabled, returns 4743 * failure. 4744 */ 4745 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 4746 { 4747 struct hisi_qm *qm = pci_get_drvdata(pdev); 4748 int pre_existing_vfs, num_vfs, total_vfs, ret; 4749 4750 ret = qm_pm_get_sync(qm); 4751 if (ret) 4752 return ret; 4753 4754 total_vfs = pci_sriov_get_totalvfs(pdev); 4755 pre_existing_vfs = pci_num_vf(pdev); 4756 if (pre_existing_vfs) { 4757 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 4758 pre_existing_vfs); 4759 goto err_put_sync; 4760 } 4761 4762 num_vfs = min_t(int, max_vfs, total_vfs); 4763 ret = qm_vf_q_assign(qm, num_vfs); 4764 if (ret) { 4765 pci_err(pdev, "Can't assign queues for VF!\n"); 4766 goto err_put_sync; 4767 } 4768 4769 qm->vfs_num = num_vfs; 4770 4771 ret = pci_enable_sriov(pdev, num_vfs); 4772 if (ret) { 4773 pci_err(pdev, "Can't enable VF!\n"); 4774 qm_clear_vft_config(qm); 4775 goto err_put_sync; 4776 } 4777 4778 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 4779 4780 return num_vfs; 4781 4782 err_put_sync: 4783 qm_pm_put_sync(qm); 4784 return ret; 4785 } 4786 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 4787 4788 /** 4789 * hisi_qm_sriov_disable - disable virtual functions 4790 * @pdev: the PCI device. 4791 * @is_frozen: true when all the VFs are frozen. 4792 * 4793 * Return failure if there are VFs assigned already or VF is in used. 4794 */ 4795 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 4796 { 4797 struct hisi_qm *qm = pci_get_drvdata(pdev); 4798 int total_vfs = pci_sriov_get_totalvfs(qm->pdev); 4799 int ret; 4800 4801 if (pci_vfs_assigned(pdev)) { 4802 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 4803 return -EPERM; 4804 } 4805 4806 /* While VF is in used, SRIOV cannot be disabled. */ 4807 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 4808 pci_err(pdev, "Task is using its VF!\n"); 4809 return -EBUSY; 4810 } 4811 4812 pci_disable_sriov(pdev); 4813 /* clear vf function shaper configure array */ 4814 memset(qm->factor + 1, 0, sizeof(struct qm_shaper_factor) * total_vfs); 4815 ret = qm_clear_vft_config(qm); 4816 if (ret) 4817 return ret; 4818 4819 qm_pm_put_sync(qm); 4820 4821 return 0; 4822 } 4823 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 4824 4825 /** 4826 * hisi_qm_sriov_configure - configure the number of VFs 4827 * @pdev: The PCI device 4828 * @num_vfs: The number of VFs need enabled 4829 * 4830 * Enable SR-IOV according to num_vfs, 0 means disable. 4831 */ 4832 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 4833 { 4834 if (num_vfs == 0) 4835 return hisi_qm_sriov_disable(pdev, false); 4836 else 4837 return hisi_qm_sriov_enable(pdev, num_vfs); 4838 } 4839 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 4840 4841 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 4842 { 4843 u32 err_sts; 4844 4845 if (!qm->err_ini->get_dev_hw_err_status) { 4846 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 4847 return ACC_ERR_NONE; 4848 } 4849 4850 /* get device hardware error status */ 4851 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 4852 if (err_sts) { 4853 if (err_sts & qm->err_info.ecc_2bits_mask) 4854 qm->err_status.is_dev_ecc_mbit = true; 4855 4856 if (qm->err_ini->log_dev_hw_err) 4857 qm->err_ini->log_dev_hw_err(qm, err_sts); 4858 4859 /* ce error does not need to be reset */ 4860 if ((err_sts | qm->err_info.dev_ce_mask) == 4861 qm->err_info.dev_ce_mask) { 4862 if (qm->err_ini->clear_dev_hw_err_status) 4863 qm->err_ini->clear_dev_hw_err_status(qm, 4864 err_sts); 4865 4866 return ACC_ERR_RECOVERED; 4867 } 4868 4869 return ACC_ERR_NEED_RESET; 4870 } 4871 4872 return ACC_ERR_RECOVERED; 4873 } 4874 4875 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 4876 { 4877 enum acc_err_result qm_ret, dev_ret; 4878 4879 /* log qm error */ 4880 qm_ret = qm_hw_error_handle(qm); 4881 4882 /* log device error */ 4883 dev_ret = qm_dev_err_handle(qm); 4884 4885 return (qm_ret == ACC_ERR_NEED_RESET || 4886 dev_ret == ACC_ERR_NEED_RESET) ? 4887 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 4888 } 4889 4890 /** 4891 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 4892 * @pdev: The PCI device which need report error. 4893 * @state: The connectivity between CPU and device. 4894 * 4895 * We register this function into PCIe AER handlers, It will report device or 4896 * qm hardware error status when error occur. 4897 */ 4898 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 4899 pci_channel_state_t state) 4900 { 4901 struct hisi_qm *qm = pci_get_drvdata(pdev); 4902 enum acc_err_result ret; 4903 4904 if (pdev->is_virtfn) 4905 return PCI_ERS_RESULT_NONE; 4906 4907 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 4908 if (state == pci_channel_io_perm_failure) 4909 return PCI_ERS_RESULT_DISCONNECT; 4910 4911 ret = qm_process_dev_error(qm); 4912 if (ret == ACC_ERR_NEED_RESET) 4913 return PCI_ERS_RESULT_NEED_RESET; 4914 4915 return PCI_ERS_RESULT_RECOVERED; 4916 } 4917 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 4918 4919 static int qm_check_req_recv(struct hisi_qm *qm) 4920 { 4921 struct pci_dev *pdev = qm->pdev; 4922 int ret; 4923 u32 val; 4924 4925 if (qm->ver >= QM_HW_V3) 4926 return 0; 4927 4928 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 4929 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4930 (val == ACC_VENDOR_ID_VALUE), 4931 POLL_PERIOD, POLL_TIMEOUT); 4932 if (ret) { 4933 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 4934 return ret; 4935 } 4936 4937 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 4938 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4939 (val == PCI_VENDOR_ID_HUAWEI), 4940 POLL_PERIOD, POLL_TIMEOUT); 4941 if (ret) 4942 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 4943 4944 return ret; 4945 } 4946 4947 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 4948 { 4949 struct pci_dev *pdev = qm->pdev; 4950 u16 cmd; 4951 int i; 4952 4953 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4954 if (set) 4955 cmd |= PCI_COMMAND_MEMORY; 4956 else 4957 cmd &= ~PCI_COMMAND_MEMORY; 4958 4959 pci_write_config_word(pdev, PCI_COMMAND, cmd); 4960 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4961 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4962 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 4963 return 0; 4964 4965 udelay(1); 4966 } 4967 4968 return -ETIMEDOUT; 4969 } 4970 4971 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 4972 { 4973 struct pci_dev *pdev = qm->pdev; 4974 u16 sriov_ctrl; 4975 int pos; 4976 int i; 4977 4978 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 4979 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4980 if (set) 4981 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4982 else 4983 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4984 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4985 4986 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4987 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4988 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4989 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4990 return 0; 4991 4992 udelay(1); 4993 } 4994 4995 return -ETIMEDOUT; 4996 } 4997 4998 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4999 enum qm_stop_reason stop_reason) 5000 { 5001 struct hisi_qm_list *qm_list = qm->qm_list; 5002 struct pci_dev *pdev = qm->pdev; 5003 struct pci_dev *virtfn; 5004 struct hisi_qm *vf_qm; 5005 int ret = 0; 5006 5007 mutex_lock(&qm_list->lock); 5008 list_for_each_entry(vf_qm, &qm_list->list, list) { 5009 virtfn = vf_qm->pdev; 5010 if (virtfn == pdev) 5011 continue; 5012 5013 if (pci_physfn(virtfn) == pdev) { 5014 /* save VFs PCIE BAR configuration */ 5015 pci_save_state(virtfn); 5016 5017 ret = hisi_qm_stop(vf_qm, stop_reason); 5018 if (ret) 5019 goto stop_fail; 5020 } 5021 } 5022 5023 stop_fail: 5024 mutex_unlock(&qm_list->lock); 5025 return ret; 5026 } 5027 5028 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 5029 enum qm_stop_reason stop_reason) 5030 { 5031 struct pci_dev *pdev = qm->pdev; 5032 int ret; 5033 5034 if (!qm->vfs_num) 5035 return 0; 5036 5037 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 5038 if (qm->ops->ping_all_vfs) { 5039 ret = qm->ops->ping_all_vfs(qm, cmd); 5040 if (ret) 5041 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 5042 } else { 5043 ret = qm_vf_reset_prepare(qm, stop_reason); 5044 if (ret) 5045 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 5046 } 5047 5048 return ret; 5049 } 5050 5051 static int qm_controller_reset_prepare(struct hisi_qm *qm) 5052 { 5053 struct pci_dev *pdev = qm->pdev; 5054 int ret; 5055 5056 ret = qm_reset_prepare_ready(qm); 5057 if (ret) { 5058 pci_err(pdev, "Controller reset not ready!\n"); 5059 return ret; 5060 } 5061 5062 /* PF obtains the information of VF by querying the register. */ 5063 qm_cmd_uninit(qm); 5064 5065 /* Whether VFs stop successfully, soft reset will continue. */ 5066 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 5067 if (ret) 5068 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 5069 5070 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 5071 if (ret) { 5072 pci_err(pdev, "Fails to stop QM!\n"); 5073 qm_reset_bit_clear(qm); 5074 return ret; 5075 } 5076 5077 ret = qm_wait_vf_prepare_finish(qm); 5078 if (ret) 5079 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 5080 5081 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 5082 5083 return 0; 5084 } 5085 5086 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 5087 { 5088 u32 nfe_enb = 0; 5089 5090 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 5091 if (qm->ver >= QM_HW_V3) 5092 return; 5093 5094 if (!qm->err_status.is_dev_ecc_mbit && 5095 qm->err_status.is_qm_ecc_mbit && 5096 qm->err_ini->close_axi_master_ooo) { 5097 5098 qm->err_ini->close_axi_master_ooo(qm); 5099 5100 } else if (qm->err_status.is_dev_ecc_mbit && 5101 !qm->err_status.is_qm_ecc_mbit && 5102 !qm->err_ini->close_axi_master_ooo) { 5103 5104 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 5105 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 5106 qm->io_base + QM_RAS_NFE_ENABLE); 5107 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 5108 } 5109 } 5110 5111 static int qm_soft_reset(struct hisi_qm *qm) 5112 { 5113 struct pci_dev *pdev = qm->pdev; 5114 int ret; 5115 u32 val; 5116 5117 /* Ensure all doorbells and mailboxes received by QM */ 5118 ret = qm_check_req_recv(qm); 5119 if (ret) 5120 return ret; 5121 5122 if (qm->vfs_num) { 5123 ret = qm_set_vf_mse(qm, false); 5124 if (ret) { 5125 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 5126 return ret; 5127 } 5128 } 5129 5130 ret = qm->ops->set_msi(qm, false); 5131 if (ret) { 5132 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 5133 return ret; 5134 } 5135 5136 qm_dev_ecc_mbit_handle(qm); 5137 5138 /* OOO register set and check */ 5139 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 5140 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5141 5142 /* If bus lock, reset chip */ 5143 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 5144 val, 5145 (val == ACC_MASTER_TRANS_RETURN_RW), 5146 POLL_PERIOD, POLL_TIMEOUT); 5147 if (ret) { 5148 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 5149 return ret; 5150 } 5151 5152 if (qm->err_ini->close_sva_prefetch) 5153 qm->err_ini->close_sva_prefetch(qm); 5154 5155 ret = qm_set_pf_mse(qm, false); 5156 if (ret) { 5157 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 5158 return ret; 5159 } 5160 5161 /* The reset related sub-control registers are not in PCI BAR */ 5162 if (ACPI_HANDLE(&pdev->dev)) { 5163 unsigned long long value = 0; 5164 acpi_status s; 5165 5166 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 5167 qm->err_info.acpi_rst, 5168 NULL, &value); 5169 if (ACPI_FAILURE(s)) { 5170 pci_err(pdev, "NO controller reset method!\n"); 5171 return -EIO; 5172 } 5173 5174 if (value) { 5175 pci_err(pdev, "Reset step %llu failed!\n", value); 5176 return -EIO; 5177 } 5178 } else { 5179 pci_err(pdev, "No reset method!\n"); 5180 return -EINVAL; 5181 } 5182 5183 return 0; 5184 } 5185 5186 static int qm_vf_reset_done(struct hisi_qm *qm) 5187 { 5188 struct hisi_qm_list *qm_list = qm->qm_list; 5189 struct pci_dev *pdev = qm->pdev; 5190 struct pci_dev *virtfn; 5191 struct hisi_qm *vf_qm; 5192 int ret = 0; 5193 5194 mutex_lock(&qm_list->lock); 5195 list_for_each_entry(vf_qm, &qm_list->list, list) { 5196 virtfn = vf_qm->pdev; 5197 if (virtfn == pdev) 5198 continue; 5199 5200 if (pci_physfn(virtfn) == pdev) { 5201 /* enable VFs PCIE BAR configuration */ 5202 pci_restore_state(virtfn); 5203 5204 ret = qm_restart(vf_qm); 5205 if (ret) 5206 goto restart_fail; 5207 } 5208 } 5209 5210 restart_fail: 5211 mutex_unlock(&qm_list->lock); 5212 return ret; 5213 } 5214 5215 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 5216 { 5217 struct pci_dev *pdev = qm->pdev; 5218 int ret; 5219 5220 if (!qm->vfs_num) 5221 return 0; 5222 5223 ret = qm_vf_q_assign(qm, qm->vfs_num); 5224 if (ret) { 5225 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 5226 return ret; 5227 } 5228 5229 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 5230 if (qm->ops->ping_all_vfs) { 5231 ret = qm->ops->ping_all_vfs(qm, cmd); 5232 if (ret) 5233 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 5234 } else { 5235 ret = qm_vf_reset_done(qm); 5236 if (ret) 5237 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 5238 } 5239 5240 return ret; 5241 } 5242 5243 static int qm_dev_hw_init(struct hisi_qm *qm) 5244 { 5245 return qm->err_ini->hw_init(qm); 5246 } 5247 5248 static void qm_restart_prepare(struct hisi_qm *qm) 5249 { 5250 u32 value; 5251 5252 if (qm->err_ini->open_sva_prefetch) 5253 qm->err_ini->open_sva_prefetch(qm); 5254 5255 if (qm->ver >= QM_HW_V3) 5256 return; 5257 5258 if (!qm->err_status.is_qm_ecc_mbit && 5259 !qm->err_status.is_dev_ecc_mbit) 5260 return; 5261 5262 /* temporarily close the OOO port used for PEH to write out MSI */ 5263 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 5264 writel(value & ~qm->err_info.msi_wr_port, 5265 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 5266 5267 /* clear dev ecc 2bit error source if having */ 5268 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 5269 if (value && qm->err_ini->clear_dev_hw_err_status) 5270 qm->err_ini->clear_dev_hw_err_status(qm, value); 5271 5272 /* clear QM ecc mbit error source */ 5273 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 5274 5275 /* clear AM Reorder Buffer ecc mbit source */ 5276 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 5277 } 5278 5279 static void qm_restart_done(struct hisi_qm *qm) 5280 { 5281 u32 value; 5282 5283 if (qm->ver >= QM_HW_V3) 5284 goto clear_flags; 5285 5286 if (!qm->err_status.is_qm_ecc_mbit && 5287 !qm->err_status.is_dev_ecc_mbit) 5288 return; 5289 5290 /* open the OOO port for PEH to write out MSI */ 5291 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 5292 value |= qm->err_info.msi_wr_port; 5293 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 5294 5295 clear_flags: 5296 qm->err_status.is_qm_ecc_mbit = false; 5297 qm->err_status.is_dev_ecc_mbit = false; 5298 } 5299 5300 static int qm_controller_reset_done(struct hisi_qm *qm) 5301 { 5302 struct pci_dev *pdev = qm->pdev; 5303 int ret; 5304 5305 ret = qm->ops->set_msi(qm, true); 5306 if (ret) { 5307 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 5308 return ret; 5309 } 5310 5311 ret = qm_set_pf_mse(qm, true); 5312 if (ret) { 5313 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 5314 return ret; 5315 } 5316 5317 if (qm->vfs_num) { 5318 ret = qm_set_vf_mse(qm, true); 5319 if (ret) { 5320 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 5321 return ret; 5322 } 5323 } 5324 5325 ret = qm_dev_hw_init(qm); 5326 if (ret) { 5327 pci_err(pdev, "Failed to init device\n"); 5328 return ret; 5329 } 5330 5331 qm_restart_prepare(qm); 5332 hisi_qm_dev_err_init(qm); 5333 if (qm->err_ini->open_axi_master_ooo) 5334 qm->err_ini->open_axi_master_ooo(qm); 5335 5336 ret = qm_dev_mem_reset(qm); 5337 if (ret) { 5338 pci_err(pdev, "failed to reset device memory\n"); 5339 return ret; 5340 } 5341 5342 ret = qm_restart(qm); 5343 if (ret) { 5344 pci_err(pdev, "Failed to start QM!\n"); 5345 return ret; 5346 } 5347 5348 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 5349 if (ret) 5350 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 5351 5352 ret = qm_wait_vf_prepare_finish(qm); 5353 if (ret) 5354 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 5355 5356 qm_cmd_init(qm); 5357 qm_restart_done(qm); 5358 5359 qm_reset_bit_clear(qm); 5360 5361 return 0; 5362 } 5363 5364 static void qm_show_last_dfx_regs(struct hisi_qm *qm) 5365 { 5366 struct qm_debug *debug = &qm->debug; 5367 struct pci_dev *pdev = qm->pdev; 5368 u32 val; 5369 int i; 5370 5371 if (qm->fun_type == QM_HW_VF || !debug->qm_last_words) 5372 return; 5373 5374 for (i = 0; i < ARRAY_SIZE(qm_dfx_regs); i++) { 5375 val = readl_relaxed(qm->io_base + qm_dfx_regs[i].offset); 5376 if (debug->qm_last_words[i] != val) 5377 pci_info(pdev, "%s \t= 0x%08x => 0x%08x\n", 5378 qm_dfx_regs[i].name, debug->qm_last_words[i], val); 5379 } 5380 } 5381 5382 static int qm_controller_reset(struct hisi_qm *qm) 5383 { 5384 struct pci_dev *pdev = qm->pdev; 5385 int ret; 5386 5387 pci_info(pdev, "Controller resetting...\n"); 5388 5389 ret = qm_controller_reset_prepare(qm); 5390 if (ret) { 5391 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 5392 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 5393 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 5394 return ret; 5395 } 5396 5397 qm_show_last_dfx_regs(qm); 5398 if (qm->err_ini->show_last_dfx_regs) 5399 qm->err_ini->show_last_dfx_regs(qm); 5400 5401 ret = qm_soft_reset(qm); 5402 if (ret) { 5403 pci_err(pdev, "Controller reset failed (%d)\n", ret); 5404 qm_reset_bit_clear(qm); 5405 return ret; 5406 } 5407 5408 ret = qm_controller_reset_done(qm); 5409 if (ret) { 5410 qm_reset_bit_clear(qm); 5411 return ret; 5412 } 5413 5414 pci_info(pdev, "Controller reset complete\n"); 5415 5416 return 0; 5417 } 5418 5419 /** 5420 * hisi_qm_dev_slot_reset() - slot reset 5421 * @pdev: the PCIe device 5422 * 5423 * This function offers QM relate PCIe device reset interface. Drivers which 5424 * use QM can use this function as slot_reset in its struct pci_error_handlers. 5425 */ 5426 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 5427 { 5428 struct hisi_qm *qm = pci_get_drvdata(pdev); 5429 int ret; 5430 5431 if (pdev->is_virtfn) 5432 return PCI_ERS_RESULT_RECOVERED; 5433 5434 pci_aer_clear_nonfatal_status(pdev); 5435 5436 /* reset pcie device controller */ 5437 ret = qm_controller_reset(qm); 5438 if (ret) { 5439 pci_err(pdev, "Controller reset failed (%d)\n", ret); 5440 return PCI_ERS_RESULT_DISCONNECT; 5441 } 5442 5443 return PCI_ERS_RESULT_RECOVERED; 5444 } 5445 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 5446 5447 void hisi_qm_reset_prepare(struct pci_dev *pdev) 5448 { 5449 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 5450 struct hisi_qm *qm = pci_get_drvdata(pdev); 5451 u32 delay = 0; 5452 int ret; 5453 5454 hisi_qm_dev_err_uninit(pf_qm); 5455 5456 /* 5457 * Check whether there is an ECC mbit error, If it occurs, need to 5458 * wait for soft reset to fix it. 5459 */ 5460 while (qm_check_dev_error(pf_qm)) { 5461 msleep(++delay); 5462 if (delay > QM_RESET_WAIT_TIMEOUT) 5463 return; 5464 } 5465 5466 ret = qm_reset_prepare_ready(qm); 5467 if (ret) { 5468 pci_err(pdev, "FLR not ready!\n"); 5469 return; 5470 } 5471 5472 /* PF obtains the information of VF by querying the register. */ 5473 if (qm->fun_type == QM_HW_PF) 5474 qm_cmd_uninit(qm); 5475 5476 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR); 5477 if (ret) 5478 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 5479 5480 ret = hisi_qm_stop(qm, QM_FLR); 5481 if (ret) { 5482 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 5483 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 5484 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 5485 return; 5486 } 5487 5488 ret = qm_wait_vf_prepare_finish(qm); 5489 if (ret) 5490 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 5491 5492 pci_info(pdev, "FLR resetting...\n"); 5493 } 5494 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 5495 5496 static bool qm_flr_reset_complete(struct pci_dev *pdev) 5497 { 5498 struct pci_dev *pf_pdev = pci_physfn(pdev); 5499 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 5500 u32 id; 5501 5502 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 5503 if (id == QM_PCI_COMMAND_INVALID) { 5504 pci_err(pdev, "Device can not be used!\n"); 5505 return false; 5506 } 5507 5508 return true; 5509 } 5510 5511 void hisi_qm_reset_done(struct pci_dev *pdev) 5512 { 5513 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 5514 struct hisi_qm *qm = pci_get_drvdata(pdev); 5515 int ret; 5516 5517 if (qm->fun_type == QM_HW_PF) { 5518 ret = qm_dev_hw_init(qm); 5519 if (ret) { 5520 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 5521 goto flr_done; 5522 } 5523 } 5524 5525 hisi_qm_dev_err_init(pf_qm); 5526 5527 ret = qm_restart(qm); 5528 if (ret) { 5529 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 5530 goto flr_done; 5531 } 5532 5533 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 5534 if (ret) 5535 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 5536 5537 ret = qm_wait_vf_prepare_finish(qm); 5538 if (ret) 5539 pci_err(pdev, "failed to start by vfs in FLR!\n"); 5540 5541 flr_done: 5542 if (qm->fun_type == QM_HW_PF) 5543 qm_cmd_init(qm); 5544 5545 if (qm_flr_reset_complete(pdev)) 5546 pci_info(pdev, "FLR reset complete\n"); 5547 5548 qm_reset_bit_clear(qm); 5549 } 5550 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 5551 5552 static irqreturn_t qm_abnormal_irq(int irq, void *data) 5553 { 5554 struct hisi_qm *qm = data; 5555 enum acc_err_result ret; 5556 5557 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 5558 ret = qm_process_dev_error(qm); 5559 if (ret == ACC_ERR_NEED_RESET && 5560 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 5561 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 5562 schedule_work(&qm->rst_work); 5563 5564 return IRQ_HANDLED; 5565 } 5566 5567 static int qm_irq_register(struct hisi_qm *qm) 5568 { 5569 struct pci_dev *pdev = qm->pdev; 5570 int ret; 5571 5572 ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), 5573 qm_irq, 0, qm->dev_name, qm); 5574 if (ret) 5575 return ret; 5576 5577 if (qm->ver > QM_HW_V1) { 5578 ret = request_threaded_irq(pci_irq_vector(pdev, 5579 QM_AEQ_EVENT_IRQ_VECTOR), 5580 qm_aeq_irq, qm_aeq_thread, 5581 0, qm->dev_name, qm); 5582 if (ret) 5583 goto err_aeq_irq; 5584 5585 if (qm->fun_type == QM_HW_PF) { 5586 ret = request_irq(pci_irq_vector(pdev, 5587 QM_ABNORMAL_EVENT_IRQ_VECTOR), 5588 qm_abnormal_irq, 0, qm->dev_name, qm); 5589 if (ret) 5590 goto err_abonormal_irq; 5591 } 5592 } 5593 5594 if (qm->ver > QM_HW_V2) { 5595 ret = request_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR), 5596 qm_mb_cmd_irq, 0, qm->dev_name, qm); 5597 if (ret) 5598 goto err_mb_cmd_irq; 5599 } 5600 5601 return 0; 5602 5603 err_mb_cmd_irq: 5604 if (qm->fun_type == QM_HW_PF) 5605 free_irq(pci_irq_vector(pdev, QM_ABNORMAL_EVENT_IRQ_VECTOR), qm); 5606 err_abonormal_irq: 5607 free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm); 5608 err_aeq_irq: 5609 free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm); 5610 return ret; 5611 } 5612 5613 /** 5614 * hisi_qm_dev_shutdown() - Shutdown device. 5615 * @pdev: The device will be shutdown. 5616 * 5617 * This function will stop qm when OS shutdown or rebooting. 5618 */ 5619 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 5620 { 5621 struct hisi_qm *qm = pci_get_drvdata(pdev); 5622 int ret; 5623 5624 ret = hisi_qm_stop(qm, QM_NORMAL); 5625 if (ret) 5626 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 5627 } 5628 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 5629 5630 static void hisi_qm_controller_reset(struct work_struct *rst_work) 5631 { 5632 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 5633 int ret; 5634 5635 ret = qm_pm_get_sync(qm); 5636 if (ret) { 5637 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 5638 return; 5639 } 5640 5641 /* reset pcie device controller */ 5642 ret = qm_controller_reset(qm); 5643 if (ret) 5644 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 5645 5646 qm_pm_put_sync(qm); 5647 } 5648 5649 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 5650 enum qm_stop_reason stop_reason) 5651 { 5652 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 5653 struct pci_dev *pdev = qm->pdev; 5654 int ret; 5655 5656 ret = qm_reset_prepare_ready(qm); 5657 if (ret) { 5658 dev_err(&pdev->dev, "reset prepare not ready!\n"); 5659 atomic_set(&qm->status.flags, QM_STOP); 5660 cmd = QM_VF_PREPARE_FAIL; 5661 goto err_prepare; 5662 } 5663 5664 ret = hisi_qm_stop(qm, stop_reason); 5665 if (ret) { 5666 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 5667 atomic_set(&qm->status.flags, QM_STOP); 5668 cmd = QM_VF_PREPARE_FAIL; 5669 goto err_prepare; 5670 } else { 5671 goto out; 5672 } 5673 5674 err_prepare: 5675 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 5676 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 5677 out: 5678 pci_save_state(pdev); 5679 ret = qm->ops->ping_pf(qm, cmd); 5680 if (ret) 5681 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 5682 } 5683 5684 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 5685 { 5686 enum qm_mb_cmd cmd = QM_VF_START_DONE; 5687 struct pci_dev *pdev = qm->pdev; 5688 int ret; 5689 5690 pci_restore_state(pdev); 5691 ret = hisi_qm_start(qm); 5692 if (ret) { 5693 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 5694 cmd = QM_VF_START_FAIL; 5695 } 5696 5697 ret = qm->ops->ping_pf(qm, cmd); 5698 if (ret) 5699 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 5700 5701 qm_reset_bit_clear(qm); 5702 } 5703 5704 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 5705 { 5706 struct device *dev = &qm->pdev->dev; 5707 u32 val, cmd; 5708 u64 msg; 5709 int ret; 5710 5711 /* Wait for reset to finish */ 5712 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 5713 val == BIT(0), QM_VF_RESET_WAIT_US, 5714 QM_VF_RESET_WAIT_TIMEOUT_US); 5715 /* hardware completion status should be available by this time */ 5716 if (ret) { 5717 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 5718 return -ETIMEDOUT; 5719 } 5720 5721 /* 5722 * Whether message is got successfully, 5723 * VF needs to ack PF by clearing the interrupt. 5724 */ 5725 ret = qm_get_mb_cmd(qm, &msg, 0); 5726 qm_clear_cmd_interrupt(qm, 0); 5727 if (ret) { 5728 dev_err(dev, "failed to get msg from PF in reset done!\n"); 5729 return ret; 5730 } 5731 5732 cmd = msg & QM_MB_CMD_DATA_MASK; 5733 if (cmd != QM_PF_RESET_DONE) { 5734 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 5735 ret = -EINVAL; 5736 } 5737 5738 return ret; 5739 } 5740 5741 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 5742 enum qm_stop_reason stop_reason) 5743 { 5744 struct device *dev = &qm->pdev->dev; 5745 int ret; 5746 5747 dev_info(dev, "device reset start...\n"); 5748 5749 /* The message is obtained by querying the register during resetting */ 5750 qm_cmd_uninit(qm); 5751 qm_pf_reset_vf_prepare(qm, stop_reason); 5752 5753 ret = qm_wait_pf_reset_finish(qm); 5754 if (ret) 5755 goto err_get_status; 5756 5757 qm_pf_reset_vf_done(qm); 5758 qm_cmd_init(qm); 5759 5760 dev_info(dev, "device reset done.\n"); 5761 5762 return; 5763 5764 err_get_status: 5765 qm_cmd_init(qm); 5766 qm_reset_bit_clear(qm); 5767 } 5768 5769 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 5770 { 5771 struct device *dev = &qm->pdev->dev; 5772 u64 msg; 5773 u32 cmd; 5774 int ret; 5775 5776 /* 5777 * Get the msg from source by sending mailbox. Whether message is got 5778 * successfully, destination needs to ack source by clearing the interrupt. 5779 */ 5780 ret = qm_get_mb_cmd(qm, &msg, fun_num); 5781 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 5782 if (ret) { 5783 dev_err(dev, "failed to get msg from source!\n"); 5784 return; 5785 } 5786 5787 cmd = msg & QM_MB_CMD_DATA_MASK; 5788 switch (cmd) { 5789 case QM_PF_FLR_PREPARE: 5790 qm_pf_reset_vf_process(qm, QM_FLR); 5791 break; 5792 case QM_PF_SRST_PREPARE: 5793 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 5794 break; 5795 case QM_VF_GET_QOS: 5796 qm_vf_get_qos(qm, fun_num); 5797 break; 5798 case QM_PF_SET_QOS: 5799 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 5800 break; 5801 default: 5802 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 5803 break; 5804 } 5805 } 5806 5807 static void qm_cmd_process(struct work_struct *cmd_process) 5808 { 5809 struct hisi_qm *qm = container_of(cmd_process, 5810 struct hisi_qm, cmd_process); 5811 u32 vfs_num = qm->vfs_num; 5812 u64 val; 5813 u32 i; 5814 5815 if (qm->fun_type == QM_HW_PF) { 5816 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 5817 if (!val) 5818 return; 5819 5820 for (i = 1; i <= vfs_num; i++) { 5821 if (val & BIT(i)) 5822 qm_handle_cmd_msg(qm, i); 5823 } 5824 5825 return; 5826 } 5827 5828 qm_handle_cmd_msg(qm, 0); 5829 } 5830 5831 /** 5832 * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. 5833 * @qm: The qm needs add. 5834 * @qm_list: The qm list. 5835 * 5836 * This function adds qm to qm list, and will register algorithm to 5837 * crypto when the qm list is empty. 5838 */ 5839 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 5840 { 5841 struct device *dev = &qm->pdev->dev; 5842 int flag = 0; 5843 int ret = 0; 5844 5845 mutex_lock(&qm_list->lock); 5846 if (list_empty(&qm_list->list)) 5847 flag = 1; 5848 list_add_tail(&qm->list, &qm_list->list); 5849 mutex_unlock(&qm_list->lock); 5850 5851 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 5852 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 5853 return 0; 5854 } 5855 5856 if (flag) { 5857 ret = qm_list->register_to_crypto(qm); 5858 if (ret) { 5859 mutex_lock(&qm_list->lock); 5860 list_del(&qm->list); 5861 mutex_unlock(&qm_list->lock); 5862 } 5863 } 5864 5865 return ret; 5866 } 5867 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 5868 5869 /** 5870 * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from 5871 * qm list. 5872 * @qm: The qm needs delete. 5873 * @qm_list: The qm list. 5874 * 5875 * This function deletes qm from qm list, and will unregister algorithm 5876 * from crypto when the qm list is empty. 5877 */ 5878 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 5879 { 5880 mutex_lock(&qm_list->lock); 5881 list_del(&qm->list); 5882 mutex_unlock(&qm_list->lock); 5883 5884 if (qm->ver <= QM_HW_V2 && qm->use_sva) 5885 return; 5886 5887 if (list_empty(&qm_list->list)) 5888 qm_list->unregister_from_crypto(qm); 5889 } 5890 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 5891 5892 static int qm_get_qp_num(struct hisi_qm *qm) 5893 { 5894 if (qm->ver == QM_HW_V1) 5895 qm->ctrl_qp_num = QM_QNUM_V1; 5896 else if (qm->ver == QM_HW_V2) 5897 qm->ctrl_qp_num = QM_QNUM_V2; 5898 else 5899 qm->ctrl_qp_num = readl(qm->io_base + QM_CAPBILITY) & 5900 QM_QP_NUN_MASK; 5901 5902 if (qm->use_db_isolation) 5903 qm->max_qp_num = (readl(qm->io_base + QM_CAPBILITY) >> 5904 QM_QP_MAX_NUM_SHIFT) & QM_QP_NUN_MASK; 5905 else 5906 qm->max_qp_num = qm->ctrl_qp_num; 5907 5908 /* check if qp number is valid */ 5909 if (qm->qp_num > qm->max_qp_num) { 5910 dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n", 5911 qm->qp_num, qm->max_qp_num); 5912 return -EINVAL; 5913 } 5914 5915 return 0; 5916 } 5917 5918 static int qm_get_pci_res(struct hisi_qm *qm) 5919 { 5920 struct pci_dev *pdev = qm->pdev; 5921 struct device *dev = &pdev->dev; 5922 int ret; 5923 5924 ret = pci_request_mem_regions(pdev, qm->dev_name); 5925 if (ret < 0) { 5926 dev_err(dev, "Failed to request mem regions!\n"); 5927 return ret; 5928 } 5929 5930 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5931 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5932 if (!qm->io_base) { 5933 ret = -EIO; 5934 goto err_request_mem_regions; 5935 } 5936 5937 if (qm->ver > QM_HW_V2) { 5938 if (qm->fun_type == QM_HW_PF) 5939 qm->use_db_isolation = readl(qm->io_base + 5940 QM_QUE_ISO_EN) & BIT(0); 5941 else 5942 qm->use_db_isolation = readl(qm->io_base + 5943 QM_QUE_ISO_CFG_V) & BIT(0); 5944 } 5945 5946 if (qm->use_db_isolation) { 5947 qm->db_interval = QM_QP_DB_INTERVAL; 5948 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5949 qm->db_io_base = ioremap(qm->db_phys_base, 5950 pci_resource_len(pdev, PCI_BAR_4)); 5951 if (!qm->db_io_base) { 5952 ret = -EIO; 5953 goto err_ioremap; 5954 } 5955 } else { 5956 qm->db_phys_base = qm->phys_base; 5957 qm->db_io_base = qm->io_base; 5958 qm->db_interval = 0; 5959 } 5960 5961 if (qm->fun_type == QM_HW_PF) { 5962 ret = qm_get_qp_num(qm); 5963 if (ret) 5964 goto err_db_ioremap; 5965 } 5966 5967 return 0; 5968 5969 err_db_ioremap: 5970 if (qm->use_db_isolation) 5971 iounmap(qm->db_io_base); 5972 err_ioremap: 5973 iounmap(qm->io_base); 5974 err_request_mem_regions: 5975 pci_release_mem_regions(pdev); 5976 return ret; 5977 } 5978 5979 static int hisi_qm_pci_init(struct hisi_qm *qm) 5980 { 5981 struct pci_dev *pdev = qm->pdev; 5982 struct device *dev = &pdev->dev; 5983 unsigned int num_vec; 5984 int ret; 5985 5986 ret = pci_enable_device_mem(pdev); 5987 if (ret < 0) { 5988 dev_err(dev, "Failed to enable device mem!\n"); 5989 return ret; 5990 } 5991 5992 ret = qm_get_pci_res(qm); 5993 if (ret) 5994 goto err_disable_pcidev; 5995 5996 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5997 if (ret < 0) 5998 goto err_get_pci_res; 5999 pci_set_master(pdev); 6000 6001 if (!qm->ops->get_irq_num) { 6002 ret = -EOPNOTSUPP; 6003 goto err_get_pci_res; 6004 } 6005 num_vec = qm->ops->get_irq_num(qm); 6006 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 6007 if (ret < 0) { 6008 dev_err(dev, "Failed to enable MSI vectors!\n"); 6009 goto err_get_pci_res; 6010 } 6011 6012 return 0; 6013 6014 err_get_pci_res: 6015 qm_put_pci_res(qm); 6016 err_disable_pcidev: 6017 pci_disable_device(pdev); 6018 return ret; 6019 } 6020 6021 static void hisi_qm_init_work(struct hisi_qm *qm) 6022 { 6023 INIT_WORK(&qm->work, qm_work_process); 6024 if (qm->fun_type == QM_HW_PF) 6025 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 6026 6027 if (qm->ver > QM_HW_V2) 6028 INIT_WORK(&qm->cmd_process, qm_cmd_process); 6029 } 6030 6031 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 6032 { 6033 struct device *dev = &qm->pdev->dev; 6034 size_t qp_dma_size; 6035 int i, ret; 6036 6037 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 6038 if (!qm->qp_array) 6039 return -ENOMEM; 6040 6041 /* one more page for device or qp statuses */ 6042 qp_dma_size = qm->sqe_size * QM_Q_DEPTH + 6043 sizeof(struct qm_cqe) * QM_Q_DEPTH; 6044 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 6045 for (i = 0; i < qm->qp_num; i++) { 6046 ret = hisi_qp_memory_init(qm, qp_dma_size, i); 6047 if (ret) 6048 goto err_init_qp_mem; 6049 6050 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 6051 } 6052 6053 return 0; 6054 err_init_qp_mem: 6055 hisi_qp_memory_uninit(qm, i); 6056 6057 return ret; 6058 } 6059 6060 static int hisi_qm_memory_init(struct hisi_qm *qm) 6061 { 6062 struct device *dev = &qm->pdev->dev; 6063 int ret, total_func, i; 6064 size_t off = 0; 6065 6066 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 6067 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 6068 if (!qm->factor) 6069 return -ENOMEM; 6070 for (i = 0; i < total_func; i++) 6071 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 6072 6073 #define QM_INIT_BUF(qm, type, num) do { \ 6074 (qm)->type = ((qm)->qdma.va + (off)); \ 6075 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 6076 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 6077 } while (0) 6078 6079 idr_init(&qm->qp_idr); 6080 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) + 6081 QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) + 6082 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 6083 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 6084 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 6085 GFP_ATOMIC); 6086 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 6087 if (!qm->qdma.va) { 6088 ret = -ENOMEM; 6089 goto err_alloc_qdma; 6090 } 6091 6092 QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH); 6093 QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH); 6094 QM_INIT_BUF(qm, sqc, qm->qp_num); 6095 QM_INIT_BUF(qm, cqc, qm->qp_num); 6096 6097 ret = hisi_qp_alloc_memory(qm); 6098 if (ret) 6099 goto err_alloc_qp_array; 6100 6101 return 0; 6102 6103 err_alloc_qp_array: 6104 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 6105 err_alloc_qdma: 6106 kfree(qm->factor); 6107 6108 return ret; 6109 } 6110 6111 static void qm_last_regs_init(struct hisi_qm *qm) 6112 { 6113 int dfx_regs_num = ARRAY_SIZE(qm_dfx_regs); 6114 struct qm_debug *debug = &qm->debug; 6115 int i; 6116 6117 if (qm->fun_type == QM_HW_VF) 6118 return; 6119 6120 debug->qm_last_words = kcalloc(dfx_regs_num, sizeof(unsigned int), 6121 GFP_KERNEL); 6122 if (!debug->qm_last_words) 6123 return; 6124 6125 for (i = 0; i < dfx_regs_num; i++) { 6126 debug->qm_last_words[i] = readl_relaxed(qm->io_base + 6127 qm_dfx_regs[i].offset); 6128 } 6129 } 6130 6131 /** 6132 * hisi_qm_init() - Initialize configures about qm. 6133 * @qm: The qm needing init. 6134 * 6135 * This function init qm, then we can call hisi_qm_start to put qm into work. 6136 */ 6137 int hisi_qm_init(struct hisi_qm *qm) 6138 { 6139 struct pci_dev *pdev = qm->pdev; 6140 struct device *dev = &pdev->dev; 6141 int ret; 6142 6143 hisi_qm_pre_init(qm); 6144 6145 ret = hisi_qm_pci_init(qm); 6146 if (ret) 6147 return ret; 6148 6149 ret = qm_irq_register(qm); 6150 if (ret) 6151 goto err_pci_init; 6152 6153 if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) { 6154 /* v2 starts to support get vft by mailbox */ 6155 ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 6156 if (ret) 6157 goto err_irq_register; 6158 } 6159 6160 if (qm->fun_type == QM_HW_PF) { 6161 qm_disable_clock_gate(qm); 6162 ret = qm_dev_mem_reset(qm); 6163 if (ret) { 6164 dev_err(dev, "failed to reset device memory\n"); 6165 goto err_irq_register; 6166 } 6167 } 6168 6169 if (qm->mode == UACCE_MODE_SVA) { 6170 ret = qm_alloc_uacce(qm); 6171 if (ret < 0) 6172 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 6173 } 6174 6175 ret = hisi_qm_memory_init(qm); 6176 if (ret) 6177 goto err_alloc_uacce; 6178 6179 hisi_qm_init_work(qm); 6180 qm_cmd_init(qm); 6181 atomic_set(&qm->status.flags, QM_INIT); 6182 6183 qm_last_regs_init(qm); 6184 6185 return 0; 6186 6187 err_alloc_uacce: 6188 if (qm->use_sva) { 6189 uacce_remove(qm->uacce); 6190 qm->uacce = NULL; 6191 } 6192 err_irq_register: 6193 qm_irq_unregister(qm); 6194 err_pci_init: 6195 hisi_qm_pci_uninit(qm); 6196 return ret; 6197 } 6198 EXPORT_SYMBOL_GPL(hisi_qm_init); 6199 6200 /** 6201 * hisi_qm_get_dfx_access() - Try to get dfx access. 6202 * @qm: pointer to accelerator device. 6203 * 6204 * Try to get dfx access, then user can get message. 6205 * 6206 * If device is in suspended, return failure, otherwise 6207 * bump up the runtime PM usage counter. 6208 */ 6209 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 6210 { 6211 struct device *dev = &qm->pdev->dev; 6212 6213 if (pm_runtime_suspended(dev)) { 6214 dev_info(dev, "can not read/write - device in suspended.\n"); 6215 return -EAGAIN; 6216 } 6217 6218 return qm_pm_get_sync(qm); 6219 } 6220 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 6221 6222 /** 6223 * hisi_qm_put_dfx_access() - Put dfx access. 6224 * @qm: pointer to accelerator device. 6225 * 6226 * Put dfx access, drop runtime PM usage counter. 6227 */ 6228 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 6229 { 6230 qm_pm_put_sync(qm); 6231 } 6232 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 6233 6234 /** 6235 * hisi_qm_pm_init() - Initialize qm runtime PM. 6236 * @qm: pointer to accelerator device. 6237 * 6238 * Function that initialize qm runtime PM. 6239 */ 6240 void hisi_qm_pm_init(struct hisi_qm *qm) 6241 { 6242 struct device *dev = &qm->pdev->dev; 6243 6244 if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3) 6245 return; 6246 6247 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 6248 pm_runtime_use_autosuspend(dev); 6249 pm_runtime_put_noidle(dev); 6250 } 6251 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 6252 6253 /** 6254 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 6255 * @qm: pointer to accelerator device. 6256 * 6257 * Function that uninitialize qm runtime PM. 6258 */ 6259 void hisi_qm_pm_uninit(struct hisi_qm *qm) 6260 { 6261 struct device *dev = &qm->pdev->dev; 6262 6263 if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3) 6264 return; 6265 6266 pm_runtime_get_noresume(dev); 6267 pm_runtime_dont_use_autosuspend(dev); 6268 } 6269 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 6270 6271 static int qm_prepare_for_suspend(struct hisi_qm *qm) 6272 { 6273 struct pci_dev *pdev = qm->pdev; 6274 int ret; 6275 u32 val; 6276 6277 ret = qm->ops->set_msi(qm, false); 6278 if (ret) { 6279 pci_err(pdev, "failed to disable MSI before suspending!\n"); 6280 return ret; 6281 } 6282 6283 /* shutdown OOO register */ 6284 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 6285 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 6286 6287 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 6288 val, 6289 (val == ACC_MASTER_TRANS_RETURN_RW), 6290 POLL_PERIOD, POLL_TIMEOUT); 6291 if (ret) { 6292 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 6293 return ret; 6294 } 6295 6296 ret = qm_set_pf_mse(qm, false); 6297 if (ret) 6298 pci_err(pdev, "failed to disable MSE before suspending!\n"); 6299 6300 return ret; 6301 } 6302 6303 static int qm_rebuild_for_resume(struct hisi_qm *qm) 6304 { 6305 struct pci_dev *pdev = qm->pdev; 6306 int ret; 6307 6308 ret = qm_set_pf_mse(qm, true); 6309 if (ret) { 6310 pci_err(pdev, "failed to enable MSE after resuming!\n"); 6311 return ret; 6312 } 6313 6314 ret = qm->ops->set_msi(qm, true); 6315 if (ret) { 6316 pci_err(pdev, "failed to enable MSI after resuming!\n"); 6317 return ret; 6318 } 6319 6320 ret = qm_dev_hw_init(qm); 6321 if (ret) { 6322 pci_err(pdev, "failed to init device after resuming\n"); 6323 return ret; 6324 } 6325 6326 qm_cmd_init(qm); 6327 hisi_qm_dev_err_init(qm); 6328 qm_disable_clock_gate(qm); 6329 ret = qm_dev_mem_reset(qm); 6330 if (ret) 6331 pci_err(pdev, "failed to reset device memory\n"); 6332 6333 return ret; 6334 } 6335 6336 /** 6337 * hisi_qm_suspend() - Runtime suspend of given device. 6338 * @dev: device to suspend. 6339 * 6340 * Function that suspend the device. 6341 */ 6342 int hisi_qm_suspend(struct device *dev) 6343 { 6344 struct pci_dev *pdev = to_pci_dev(dev); 6345 struct hisi_qm *qm = pci_get_drvdata(pdev); 6346 int ret; 6347 6348 pci_info(pdev, "entering suspended state\n"); 6349 6350 ret = hisi_qm_stop(qm, QM_NORMAL); 6351 if (ret) { 6352 pci_err(pdev, "failed to stop qm(%d)\n", ret); 6353 return ret; 6354 } 6355 6356 ret = qm_prepare_for_suspend(qm); 6357 if (ret) 6358 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 6359 6360 return ret; 6361 } 6362 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 6363 6364 /** 6365 * hisi_qm_resume() - Runtime resume of given device. 6366 * @dev: device to resume. 6367 * 6368 * Function that resume the device. 6369 */ 6370 int hisi_qm_resume(struct device *dev) 6371 { 6372 struct pci_dev *pdev = to_pci_dev(dev); 6373 struct hisi_qm *qm = pci_get_drvdata(pdev); 6374 int ret; 6375 6376 pci_info(pdev, "resuming from suspend state\n"); 6377 6378 ret = qm_rebuild_for_resume(qm); 6379 if (ret) { 6380 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 6381 return ret; 6382 } 6383 6384 ret = hisi_qm_start(qm); 6385 if (ret) 6386 pci_err(pdev, "failed to start qm(%d)\n", ret); 6387 6388 return ret; 6389 } 6390 EXPORT_SYMBOL_GPL(hisi_qm_resume); 6391 6392 MODULE_LICENSE("GPL v2"); 6393 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 6394 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 6395