xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision bef7a78d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/debugfs.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/idr.h>
10 #include <linux/io.h>
11 #include <linux/irqreturn.h>
12 #include <linux/log2.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include "qm.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 #define QM_IRQ_NUM_V1			1
26 #define QM_IRQ_NUM_PF_V2		4
27 #define QM_IRQ_NUM_VF_V2		2
28 
29 #define QM_EQ_EVENT_IRQ_VECTOR		0
30 #define QM_AEQ_EVENT_IRQ_VECTOR		1
31 #define QM_ABNORMAL_EVENT_IRQ_VECTOR	3
32 
33 /* mailbox */
34 #define QM_MB_CMD_SQC			0x0
35 #define QM_MB_CMD_CQC			0x1
36 #define QM_MB_CMD_EQC			0x2
37 #define QM_MB_CMD_AEQC			0x3
38 #define QM_MB_CMD_SQC_BT		0x4
39 #define QM_MB_CMD_CQC_BT		0x5
40 #define QM_MB_CMD_SQC_VFT_V2		0x6
41 
42 #define QM_MB_CMD_SEND_BASE		0x300
43 #define QM_MB_EVENT_SHIFT		8
44 #define QM_MB_BUSY_SHIFT		13
45 #define QM_MB_OP_SHIFT			14
46 #define QM_MB_CMD_DATA_ADDR_L		0x304
47 #define QM_MB_CMD_DATA_ADDR_H		0x308
48 
49 /* sqc shift */
50 #define QM_SQ_HOP_NUM_SHIFT		0
51 #define QM_SQ_PAGE_SIZE_SHIFT		4
52 #define QM_SQ_BUF_SIZE_SHIFT		8
53 #define QM_SQ_SQE_SIZE_SHIFT		12
54 #define QM_SQ_PRIORITY_SHIFT		0
55 #define QM_SQ_ORDERS_SHIFT		4
56 #define QM_SQ_TYPE_SHIFT		8
57 
58 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
59 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
60 
61 /* cqc shift */
62 #define QM_CQ_HOP_NUM_SHIFT		0
63 #define QM_CQ_PAGE_SIZE_SHIFT		4
64 #define QM_CQ_BUF_SIZE_SHIFT		8
65 #define QM_CQ_CQE_SIZE_SHIFT		12
66 #define QM_CQ_PHASE_SHIFT		0
67 #define QM_CQ_FLAG_SHIFT		1
68 
69 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
70 #define QM_QC_CQE_SIZE			4
71 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
72 
73 /* eqc shift */
74 #define QM_EQE_AEQE_SIZE		(2UL << 12)
75 #define QM_EQC_PHASE_SHIFT		16
76 
77 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
78 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
79 
80 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
81 #define QM_AEQE_TYPE_SHIFT		17
82 
83 #define QM_DOORBELL_CMD_SQ		0
84 #define QM_DOORBELL_CMD_CQ		1
85 #define QM_DOORBELL_CMD_EQ		2
86 #define QM_DOORBELL_CMD_AEQ		3
87 
88 #define QM_DOORBELL_BASE_V1		0x340
89 #define QM_DB_CMD_SHIFT_V1		16
90 #define QM_DB_INDEX_SHIFT_V1		32
91 #define QM_DB_PRIORITY_SHIFT_V1		48
92 #define QM_DOORBELL_SQ_CQ_BASE_V2	0x1000
93 #define QM_DOORBELL_EQ_AEQ_BASE_V2	0x2000
94 #define QM_DB_CMD_SHIFT_V2		12
95 #define QM_DB_RAND_SHIFT_V2		16
96 #define QM_DB_INDEX_SHIFT_V2		32
97 #define QM_DB_PRIORITY_SHIFT_V2		48
98 
99 #define QM_MEM_START_INIT		0x100040
100 #define QM_MEM_INIT_DONE		0x100044
101 #define QM_VFT_CFG_RDY			0x10006c
102 #define QM_VFT_CFG_OP_WR		0x100058
103 #define QM_VFT_CFG_TYPE			0x10005c
104 #define QM_SQC_VFT			0x0
105 #define QM_CQC_VFT			0x1
106 #define QM_VFT_CFG			0x100060
107 #define QM_VFT_CFG_OP_ENABLE		0x100054
108 
109 #define QM_VFT_CFG_DATA_L		0x100064
110 #define QM_VFT_CFG_DATA_H		0x100068
111 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
112 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
113 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
114 #define QM_SQC_VFT_START_SQN_SHIFT	28
115 #define QM_SQC_VFT_VALID		(1ULL << 44)
116 #define QM_SQC_VFT_SQN_SHIFT		45
117 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
118 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
119 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
120 #define QM_CQC_VFT_VALID		(1ULL << 28)
121 
122 #define QM_SQC_VFT_BASE_SHIFT_V2	28
123 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(5, 0)
124 #define QM_SQC_VFT_NUM_SHIFT_V2		45
125 #define QM_SQC_VFT_NUM_MASK_v2		GENMASK(9, 0)
126 
127 #define QM_DFX_CNT_CLR_CE		0x100118
128 
129 #define QM_ABNORMAL_INT_SOURCE		0x100000
130 #define QM_ABNORMAL_INT_SOURCE_CLR	GENMASK(12, 0)
131 #define QM_ABNORMAL_INT_MASK		0x100004
132 #define QM_ABNORMAL_INT_MASK_VALUE	0x1fff
133 #define QM_ABNORMAL_INT_STATUS		0x100008
134 #define QM_ABNORMAL_INT_SET		0x10000c
135 #define QM_ABNORMAL_INF00		0x100010
136 #define QM_FIFO_OVERFLOW_TYPE		0xc0
137 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
138 #define QM_FIFO_OVERFLOW_VF		0x3f
139 #define QM_ABNORMAL_INF01		0x100014
140 #define QM_DB_TIMEOUT_TYPE		0xc0
141 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
142 #define QM_DB_TIMEOUT_VF		0x3f
143 #define QM_RAS_CE_ENABLE		0x1000ec
144 #define QM_RAS_FE_ENABLE		0x1000f0
145 #define QM_RAS_NFE_ENABLE		0x1000f4
146 #define QM_RAS_CE_THRESHOLD		0x1000f8
147 #define QM_RAS_CE_TIMES_PER_IRQ		1
148 #define QM_RAS_MSI_INT_SEL		0x1040f4
149 
150 #define QM_DEV_RESET_FLAG		0
151 #define QM_RESET_WAIT_TIMEOUT		400
152 #define QM_PEH_VENDOR_ID		0x1000d8
153 #define ACC_VENDOR_ID_VALUE		0x5a5a
154 #define QM_PEH_DFX_INFO0		0x1000fc
155 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
156 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
157 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
158 #define ACC_MASTER_TRANS_RETURN_RW	3
159 #define ACC_MASTER_TRANS_RETURN		0x300150
160 #define ACC_MASTER_GLOBAL_CTRL		0x300000
161 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
162 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
163 #define ACC_AM_ROB_ECC_INT_STS		0x300104
164 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
165 
166 #define POLL_PERIOD			10
167 #define POLL_TIMEOUT			1000
168 #define WAIT_PERIOD_US_MAX		200
169 #define WAIT_PERIOD_US_MIN		100
170 #define MAX_WAIT_COUNTS			1000
171 #define QM_CACHE_WB_START		0x204
172 #define QM_CACHE_WB_DONE		0x208
173 
174 #define PCI_BAR_2			2
175 #define QM_SQE_DATA_ALIGN_MASK		GENMASK(6, 0)
176 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
177 
178 #define QM_DBG_READ_LEN		256
179 #define QM_DBG_WRITE_LEN		1024
180 #define QM_DBG_TMP_BUF_LEN		22
181 #define QM_PCI_COMMAND_INVALID		~0
182 
183 #define WAIT_PERIOD			20
184 #define REMOVE_WAIT_DELAY		10
185 #define QM_SQE_ADDR_MASK		GENMASK(7, 0)
186 #define QM_EQ_DEPTH			(1024 * 2)
187 
188 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
189 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT)	| \
190 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT)	| \
191 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT)	| \
192 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
193 
194 #define QM_MK_CQC_DW3_V2(cqe_sz) \
195 	((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
196 
197 #define QM_MK_SQC_W13(priority, orders, alg_type) \
198 	(((priority) << QM_SQ_PRIORITY_SHIFT)	| \
199 	((orders) << QM_SQ_ORDERS_SHIFT)	| \
200 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
201 
202 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
203 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT)	| \
204 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT)	| \
205 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT)	| \
206 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
207 
208 #define QM_MK_SQC_DW3_V2(sqe_sz) \
209 	((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
210 
211 #define INIT_QC_COMMON(qc, base, pasid) do {			\
212 	(qc)->head = 0;						\
213 	(qc)->tail = 0;						\
214 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
215 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
216 	(qc)->dw3 = 0;						\
217 	(qc)->w8 = 0;						\
218 	(qc)->rsvd0 = 0;					\
219 	(qc)->pasid = cpu_to_le16(pasid);			\
220 	(qc)->w11 = 0;						\
221 	(qc)->rsvd1 = 0;					\
222 } while (0)
223 
224 enum vft_type {
225 	SQC_VFT = 0,
226 	CQC_VFT,
227 };
228 
229 enum acc_err_result {
230 	ACC_ERR_NONE,
231 	ACC_ERR_NEED_RESET,
232 	ACC_ERR_RECOVERED,
233 };
234 
235 struct qm_cqe {
236 	__le32 rsvd0;
237 	__le16 cmd_id;
238 	__le16 rsvd1;
239 	__le16 sq_head;
240 	__le16 sq_num;
241 	__le16 rsvd2;
242 	__le16 w7;
243 };
244 
245 struct qm_eqe {
246 	__le32 dw0;
247 };
248 
249 struct qm_aeqe {
250 	__le32 dw0;
251 };
252 
253 struct qm_sqc {
254 	__le16 head;
255 	__le16 tail;
256 	__le32 base_l;
257 	__le32 base_h;
258 	__le32 dw3;
259 	__le16 w8;
260 	__le16 rsvd0;
261 	__le16 pasid;
262 	__le16 w11;
263 	__le16 cq_num;
264 	__le16 w13;
265 	__le32 rsvd1;
266 };
267 
268 struct qm_cqc {
269 	__le16 head;
270 	__le16 tail;
271 	__le32 base_l;
272 	__le32 base_h;
273 	__le32 dw3;
274 	__le16 w8;
275 	__le16 rsvd0;
276 	__le16 pasid;
277 	__le16 w11;
278 	__le32 dw6;
279 	__le32 rsvd1;
280 };
281 
282 struct qm_eqc {
283 	__le16 head;
284 	__le16 tail;
285 	__le32 base_l;
286 	__le32 base_h;
287 	__le32 dw3;
288 	__le32 rsvd[2];
289 	__le32 dw6;
290 };
291 
292 struct qm_aeqc {
293 	__le16 head;
294 	__le16 tail;
295 	__le32 base_l;
296 	__le32 base_h;
297 	__le32 dw3;
298 	__le32 rsvd[2];
299 	__le32 dw6;
300 };
301 
302 struct qm_mailbox {
303 	__le16 w0;
304 	__le16 queue_num;
305 	__le32 base_l;
306 	__le32 base_h;
307 	__le32 rsvd;
308 };
309 
310 struct qm_doorbell {
311 	__le16 queue_num;
312 	__le16 cmd;
313 	__le16 index;
314 	__le16 priority;
315 };
316 
317 struct hisi_qm_resource {
318 	struct hisi_qm *qm;
319 	int distance;
320 	struct list_head list;
321 };
322 
323 struct hisi_qm_hw_ops {
324 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
325 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
326 		      u8 cmd, u16 index, u8 priority);
327 	u32 (*get_irq_num)(struct hisi_qm *qm);
328 	int (*debug_init)(struct hisi_qm *qm);
329 	void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe);
330 	void (*hw_error_uninit)(struct hisi_qm *qm);
331 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
332 };
333 
334 struct qm_dfx_item {
335 	const char *name;
336 	u32 offset;
337 };
338 
339 static struct qm_dfx_item qm_dfx_files[] = {
340 	{"err_irq", offsetof(struct qm_dfx, err_irq_cnt)},
341 	{"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)},
342 	{"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)},
343 	{"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)},
344 	{"mb_err", offsetof(struct qm_dfx, mb_err_cnt)},
345 };
346 
347 static const char * const qm_debug_file_name[] = {
348 	[CURRENT_Q]    = "current_q",
349 	[CLEAR_ENABLE] = "clear_enable",
350 };
351 
352 struct hisi_qm_hw_error {
353 	u32 int_msk;
354 	const char *msg;
355 };
356 
357 static const struct hisi_qm_hw_error qm_hw_error[] = {
358 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
359 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
360 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
361 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
362 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
363 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
364 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
365 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
366 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
367 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
368 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
369 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
370 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
371 	{ /* sentinel */ }
372 };
373 
374 static const char * const qm_db_timeout[] = {
375 	"sq", "cq", "eq", "aeq",
376 };
377 
378 static const char * const qm_fifo_overflow[] = {
379 	"cq", "eq", "aeq",
380 };
381 
382 static const char * const qm_s[] = {
383 	"init", "start", "close", "stop",
384 };
385 
386 static const char * const qp_s[] = {
387 	"none", "init", "start", "stop", "close",
388 };
389 
390 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
391 {
392 	enum qm_state curr = atomic_read(&qm->status.flags);
393 	bool avail = false;
394 
395 	switch (curr) {
396 	case QM_INIT:
397 		if (new == QM_START || new == QM_CLOSE)
398 			avail = true;
399 		break;
400 	case QM_START:
401 		if (new == QM_STOP)
402 			avail = true;
403 		break;
404 	case QM_STOP:
405 		if (new == QM_CLOSE || new == QM_START)
406 			avail = true;
407 		break;
408 	default:
409 		break;
410 	}
411 
412 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
413 		qm_s[curr], qm_s[new]);
414 
415 	if (!avail)
416 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
417 			 qm_s[curr], qm_s[new]);
418 
419 	return avail;
420 }
421 
422 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
423 			      enum qp_state new)
424 {
425 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
426 	enum qp_state qp_curr = 0;
427 	bool avail = false;
428 
429 	if (qp)
430 		qp_curr = atomic_read(&qp->qp_status.flags);
431 
432 	switch (new) {
433 	case QP_INIT:
434 		if (qm_curr == QM_START || qm_curr == QM_INIT)
435 			avail = true;
436 		break;
437 	case QP_START:
438 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
439 		    (qm_curr == QM_START && qp_curr == QP_STOP))
440 			avail = true;
441 		break;
442 	case QP_STOP:
443 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
444 		    (qp_curr == QP_INIT))
445 			avail = true;
446 		break;
447 	case QP_CLOSE:
448 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
449 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
450 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
451 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
452 			avail = true;
453 		break;
454 	default:
455 		break;
456 	}
457 
458 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
459 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
460 
461 	if (!avail)
462 		dev_warn(&qm->pdev->dev,
463 			 "Can not change qp state from %s to %s in QM %s\n",
464 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
465 
466 	return avail;
467 }
468 
469 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
470 static int qm_wait_mb_ready(struct hisi_qm *qm)
471 {
472 	u32 val;
473 
474 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
475 					  val, !((val >> QM_MB_BUSY_SHIFT) &
476 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
477 }
478 
479 /* 128 bit should be written to hardware at one time to trigger a mailbox */
480 static void qm_mb_write(struct hisi_qm *qm, const void *src)
481 {
482 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
483 	unsigned long tmp0 = 0, tmp1 = 0;
484 
485 	if (!IS_ENABLED(CONFIG_ARM64)) {
486 		memcpy_toio(fun_base, src, 16);
487 		wmb();
488 		return;
489 	}
490 
491 	asm volatile("ldp %0, %1, %3\n"
492 		     "stp %0, %1, %2\n"
493 		     "dsb sy\n"
494 		     : "=&r" (tmp0),
495 		       "=&r" (tmp1),
496 		       "+Q" (*((char __iomem *)fun_base))
497 		     : "Q" (*((char *)src))
498 		     : "memory");
499 }
500 
501 static int qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
502 		 bool op)
503 {
504 	struct qm_mailbox mailbox;
505 	int ret = 0;
506 
507 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
508 		queue, cmd, (unsigned long long)dma_addr);
509 
510 	mailbox.w0 = cpu_to_le16(cmd |
511 		     (op ? 0x1 << QM_MB_OP_SHIFT : 0) |
512 		     (0x1 << QM_MB_BUSY_SHIFT));
513 	mailbox.queue_num = cpu_to_le16(queue);
514 	mailbox.base_l = cpu_to_le32(lower_32_bits(dma_addr));
515 	mailbox.base_h = cpu_to_le32(upper_32_bits(dma_addr));
516 	mailbox.rsvd = 0;
517 
518 	mutex_lock(&qm->mailbox_lock);
519 
520 	if (unlikely(qm_wait_mb_ready(qm))) {
521 		ret = -EBUSY;
522 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
523 		goto busy_unlock;
524 	}
525 
526 	qm_mb_write(qm, &mailbox);
527 
528 	if (unlikely(qm_wait_mb_ready(qm))) {
529 		ret = -EBUSY;
530 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
531 		goto busy_unlock;
532 	}
533 
534 busy_unlock:
535 	mutex_unlock(&qm->mailbox_lock);
536 
537 	if (ret)
538 		atomic64_inc(&qm->debug.dfx.mb_err_cnt);
539 	return ret;
540 }
541 
542 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
543 {
544 	u64 doorbell;
545 
546 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
547 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
548 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
549 
550 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
551 }
552 
553 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
554 {
555 	u64 doorbell;
556 	u64 dbase;
557 	u16 randata = 0;
558 
559 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
560 		dbase = QM_DOORBELL_SQ_CQ_BASE_V2;
561 	else
562 		dbase = QM_DOORBELL_EQ_AEQ_BASE_V2;
563 
564 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
565 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
566 		   ((u64)index << QM_DB_INDEX_SHIFT_V2)	 |
567 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
568 
569 	writeq(doorbell, qm->io_base + dbase);
570 }
571 
572 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
573 {
574 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
575 		qn, cmd, index);
576 
577 	qm->ops->qm_db(qm, qn, cmd, index, priority);
578 }
579 
580 static int qm_dev_mem_reset(struct hisi_qm *qm)
581 {
582 	u32 val;
583 
584 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
585 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
586 					  val & BIT(0), POLL_PERIOD,
587 					  POLL_TIMEOUT);
588 }
589 
590 static u32 qm_get_irq_num_v1(struct hisi_qm *qm)
591 {
592 	return QM_IRQ_NUM_V1;
593 }
594 
595 static u32 qm_get_irq_num_v2(struct hisi_qm *qm)
596 {
597 	if (qm->fun_type == QM_HW_PF)
598 		return QM_IRQ_NUM_PF_V2;
599 	else
600 		return QM_IRQ_NUM_VF_V2;
601 }
602 
603 static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe)
604 {
605 	u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
606 
607 	return &qm->qp_array[cqn];
608 }
609 
610 static void qm_cq_head_update(struct hisi_qp *qp)
611 {
612 	if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) {
613 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
614 		qp->qp_status.cq_head = 0;
615 	} else {
616 		qp->qp_status.cq_head++;
617 	}
618 }
619 
620 static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm)
621 {
622 	if (qp->event_cb) {
623 		qp->event_cb(qp);
624 		return;
625 	}
626 
627 	if (qp->req_cb) {
628 		struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
629 
630 		while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
631 			dma_rmb();
632 			qp->req_cb(qp, qp->sqe + qm->sqe_size *
633 				   le16_to_cpu(cqe->sq_head));
634 			qm_cq_head_update(qp);
635 			cqe = qp->cqe + qp->qp_status.cq_head;
636 			qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
637 			      qp->qp_status.cq_head, 0);
638 			atomic_dec(&qp->qp_status.used);
639 		}
640 
641 		/* set c_flag */
642 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
643 		      qp->qp_status.cq_head, 1);
644 	}
645 }
646 
647 static void qm_work_process(struct work_struct *work)
648 {
649 	struct hisi_qm *qm = container_of(work, struct hisi_qm, work);
650 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
651 	struct hisi_qp *qp;
652 	int eqe_num = 0;
653 
654 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
655 		eqe_num++;
656 		qp = qm_to_hisi_qp(qm, eqe);
657 		qm_poll_qp(qp, qm);
658 
659 		if (qm->status.eq_head == QM_EQ_DEPTH - 1) {
660 			qm->status.eqc_phase = !qm->status.eqc_phase;
661 			eqe = qm->eqe;
662 			qm->status.eq_head = 0;
663 		} else {
664 			eqe++;
665 			qm->status.eq_head++;
666 		}
667 
668 		if (eqe_num == QM_EQ_DEPTH / 2 - 1) {
669 			eqe_num = 0;
670 			qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
671 		}
672 	}
673 
674 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
675 }
676 
677 static irqreturn_t do_qm_irq(int irq, void *data)
678 {
679 	struct hisi_qm *qm = (struct hisi_qm *)data;
680 
681 	/* the workqueue created by device driver of QM */
682 	if (qm->wq)
683 		queue_work(qm->wq, &qm->work);
684 	else
685 		schedule_work(&qm->work);
686 
687 	return IRQ_HANDLED;
688 }
689 
690 static irqreturn_t qm_irq(int irq, void *data)
691 {
692 	struct hisi_qm *qm = data;
693 
694 	if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
695 		return do_qm_irq(irq, data);
696 
697 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
698 	dev_err(&qm->pdev->dev, "invalid int source\n");
699 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
700 
701 	return IRQ_NONE;
702 }
703 
704 static irqreturn_t qm_aeq_irq(int irq, void *data)
705 {
706 	struct hisi_qm *qm = data;
707 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
708 	u32 type;
709 
710 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
711 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
712 		return IRQ_NONE;
713 
714 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
715 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
716 		if (type < ARRAY_SIZE(qm_fifo_overflow))
717 			dev_err(&qm->pdev->dev, "%s overflow\n",
718 				qm_fifo_overflow[type]);
719 		else
720 			dev_err(&qm->pdev->dev, "unknown error type %d\n",
721 				type);
722 
723 		if (qm->status.aeq_head == QM_Q_DEPTH - 1) {
724 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
725 			aeqe = qm->aeqe;
726 			qm->status.aeq_head = 0;
727 		} else {
728 			aeqe++;
729 			qm->status.aeq_head++;
730 		}
731 
732 		qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
733 	}
734 
735 	return IRQ_HANDLED;
736 }
737 
738 static void qm_irq_unregister(struct hisi_qm *qm)
739 {
740 	struct pci_dev *pdev = qm->pdev;
741 
742 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
743 
744 	if (qm->ver == QM_HW_V1)
745 		return;
746 
747 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
748 
749 	if (qm->fun_type == QM_HW_PF)
750 		free_irq(pci_irq_vector(pdev,
751 			 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
752 }
753 
754 static void qm_init_qp_status(struct hisi_qp *qp)
755 {
756 	struct hisi_qp_status *qp_status = &qp->qp_status;
757 
758 	qp_status->sq_tail = 0;
759 	qp_status->cq_head = 0;
760 	qp_status->cqc_phase = true;
761 	atomic_set(&qp_status->used, 0);
762 }
763 
764 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
765 			    u32 number)
766 {
767 	u64 tmp = 0;
768 
769 	if (number > 0) {
770 		switch (type) {
771 		case SQC_VFT:
772 			if (qm->ver == QM_HW_V1) {
773 				tmp = QM_SQC_VFT_BUF_SIZE	|
774 				      QM_SQC_VFT_SQC_SIZE	|
775 				      QM_SQC_VFT_INDEX_NUMBER	|
776 				      QM_SQC_VFT_VALID		|
777 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
778 			} else {
779 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
780 				      QM_SQC_VFT_VALID |
781 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
782 			}
783 			break;
784 		case CQC_VFT:
785 			if (qm->ver == QM_HW_V1) {
786 				tmp = QM_CQC_VFT_BUF_SIZE	|
787 				      QM_CQC_VFT_SQC_SIZE	|
788 				      QM_CQC_VFT_INDEX_NUMBER	|
789 				      QM_CQC_VFT_VALID;
790 			} else {
791 				tmp = QM_CQC_VFT_VALID;
792 			}
793 			break;
794 		}
795 	}
796 
797 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
798 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
799 }
800 
801 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
802 			     u32 fun_num, u32 base, u32 number)
803 {
804 	unsigned int val;
805 	int ret;
806 
807 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
808 					 val & BIT(0), POLL_PERIOD,
809 					 POLL_TIMEOUT);
810 	if (ret)
811 		return ret;
812 
813 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
814 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
815 	writel(fun_num, qm->io_base + QM_VFT_CFG);
816 
817 	qm_vft_data_cfg(qm, type, base, number);
818 
819 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
820 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
821 
822 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
823 					  val & BIT(0), POLL_PERIOD,
824 					  POLL_TIMEOUT);
825 }
826 
827 /* The config should be conducted after qm_dev_mem_reset() */
828 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
829 			      u32 number)
830 {
831 	int ret, i;
832 
833 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
834 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
835 		if (ret)
836 			return ret;
837 	}
838 
839 	return 0;
840 }
841 
842 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
843 {
844 	u64 sqc_vft;
845 	int ret;
846 
847 	ret = qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
848 	if (ret)
849 		return ret;
850 
851 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
852 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
853 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
854 	*number = (QM_SQC_VFT_NUM_MASK_v2 &
855 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
856 
857 	return 0;
858 }
859 
860 static struct hisi_qm *file_to_qm(struct debugfs_file *file)
861 {
862 	struct qm_debug *debug = file->debug;
863 
864 	return container_of(debug, struct hisi_qm, debug);
865 }
866 
867 static u32 current_q_read(struct debugfs_file *file)
868 {
869 	struct hisi_qm *qm = file_to_qm(file);
870 
871 	return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT;
872 }
873 
874 static int current_q_write(struct debugfs_file *file, u32 val)
875 {
876 	struct hisi_qm *qm = file_to_qm(file);
877 	u32 tmp;
878 
879 	if (val >= qm->debug.curr_qm_qp_num)
880 		return -EINVAL;
881 
882 	tmp = val << QM_DFX_QN_SHIFT |
883 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK);
884 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
885 
886 	tmp = val << QM_DFX_QN_SHIFT |
887 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK);
888 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
889 
890 	return 0;
891 }
892 
893 static u32 clear_enable_read(struct debugfs_file *file)
894 {
895 	struct hisi_qm *qm = file_to_qm(file);
896 
897 	return readl(qm->io_base + QM_DFX_CNT_CLR_CE);
898 }
899 
900 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */
901 static int clear_enable_write(struct debugfs_file *file, u32 rd_clr_ctrl)
902 {
903 	struct hisi_qm *qm = file_to_qm(file);
904 
905 	if (rd_clr_ctrl > 1)
906 		return -EINVAL;
907 
908 	writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE);
909 
910 	return 0;
911 }
912 
913 static ssize_t qm_debug_read(struct file *filp, char __user *buf,
914 			     size_t count, loff_t *pos)
915 {
916 	struct debugfs_file *file = filp->private_data;
917 	enum qm_debug_file index = file->index;
918 	char tbuf[QM_DBG_TMP_BUF_LEN];
919 	u32 val;
920 	int ret;
921 
922 	mutex_lock(&file->lock);
923 	switch (index) {
924 	case CURRENT_Q:
925 		val = current_q_read(file);
926 		break;
927 	case CLEAR_ENABLE:
928 		val = clear_enable_read(file);
929 		break;
930 	default:
931 		mutex_unlock(&file->lock);
932 		return -EINVAL;
933 	}
934 	mutex_unlock(&file->lock);
935 
936 	ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val);
937 	return simple_read_from_buffer(buf, count, pos, tbuf, ret);
938 }
939 
940 static ssize_t qm_debug_write(struct file *filp, const char __user *buf,
941 			      size_t count, loff_t *pos)
942 {
943 	struct debugfs_file *file = filp->private_data;
944 	enum qm_debug_file index = file->index;
945 	unsigned long val;
946 	char tbuf[QM_DBG_TMP_BUF_LEN];
947 	int len, ret;
948 
949 	if (*pos != 0)
950 		return 0;
951 
952 	if (count >= QM_DBG_TMP_BUF_LEN)
953 		return -ENOSPC;
954 
955 	len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf,
956 				     count);
957 	if (len < 0)
958 		return len;
959 
960 	tbuf[len] = '\0';
961 	if (kstrtoul(tbuf, 0, &val))
962 		return -EFAULT;
963 
964 	mutex_lock(&file->lock);
965 	switch (index) {
966 	case CURRENT_Q:
967 		ret = current_q_write(file, val);
968 		if (ret)
969 			goto err_input;
970 		break;
971 	case CLEAR_ENABLE:
972 		ret = clear_enable_write(file, val);
973 		if (ret)
974 			goto err_input;
975 		break;
976 	default:
977 		ret = -EINVAL;
978 		goto err_input;
979 	}
980 	mutex_unlock(&file->lock);
981 
982 	return count;
983 
984 err_input:
985 	mutex_unlock(&file->lock);
986 	return ret;
987 }
988 
989 static const struct file_operations qm_debug_fops = {
990 	.owner = THIS_MODULE,
991 	.open = simple_open,
992 	.read = qm_debug_read,
993 	.write = qm_debug_write,
994 };
995 
996 struct qm_dfx_registers {
997 	char  *reg_name;
998 	u64   reg_offset;
999 };
1000 
1001 #define CNT_CYC_REGS_NUM		10
1002 static struct qm_dfx_registers qm_dfx_regs[] = {
1003 	/* XXX_CNT are reading clear register */
1004 	{"QM_ECC_1BIT_CNT               ",  0x104000ull},
1005 	{"QM_ECC_MBIT_CNT               ",  0x104008ull},
1006 	{"QM_DFX_MB_CNT                 ",  0x104018ull},
1007 	{"QM_DFX_DB_CNT                 ",  0x104028ull},
1008 	{"QM_DFX_SQE_CNT                ",  0x104038ull},
1009 	{"QM_DFX_CQE_CNT                ",  0x104048ull},
1010 	{"QM_DFX_SEND_SQE_TO_ACC_CNT    ",  0x104050ull},
1011 	{"QM_DFX_WB_SQE_FROM_ACC_CNT    ",  0x104058ull},
1012 	{"QM_DFX_ACC_FINISH_CNT         ",  0x104060ull},
1013 	{"QM_DFX_CQE_ERR_CNT            ",  0x1040b4ull},
1014 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1015 	{"QM_ECC_1BIT_INF               ",  0x104004ull},
1016 	{"QM_ECC_MBIT_INF               ",  0x10400cull},
1017 	{"QM_DFX_ACC_RDY_VLD0           ",  0x1040a0ull},
1018 	{"QM_DFX_ACC_RDY_VLD1           ",  0x1040a4ull},
1019 	{"QM_DFX_AXI_RDY_VLD            ",  0x1040a8ull},
1020 	{"QM_DFX_FF_ST0                 ",  0x1040c8ull},
1021 	{"QM_DFX_FF_ST1                 ",  0x1040ccull},
1022 	{"QM_DFX_FF_ST2                 ",  0x1040d0ull},
1023 	{"QM_DFX_FF_ST3                 ",  0x1040d4ull},
1024 	{"QM_DFX_FF_ST4                 ",  0x1040d8ull},
1025 	{"QM_DFX_FF_ST5                 ",  0x1040dcull},
1026 	{"QM_DFX_FF_ST6                 ",  0x1040e0ull},
1027 	{"QM_IN_IDLE_ST                 ",  0x1040e4ull},
1028 	{ NULL, 0}
1029 };
1030 
1031 static struct qm_dfx_registers qm_vf_dfx_regs[] = {
1032 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1033 	{ NULL, 0}
1034 };
1035 
1036 static int qm_regs_show(struct seq_file *s, void *unused)
1037 {
1038 	struct hisi_qm *qm = s->private;
1039 	struct qm_dfx_registers *regs;
1040 	u32 val;
1041 
1042 	if (qm->fun_type == QM_HW_PF)
1043 		regs = qm_dfx_regs;
1044 	else
1045 		regs = qm_vf_dfx_regs;
1046 
1047 	while (regs->reg_name) {
1048 		val = readl(qm->io_base + regs->reg_offset);
1049 		seq_printf(s, "%s= 0x%08x\n", regs->reg_name, val);
1050 		regs++;
1051 	}
1052 
1053 	return 0;
1054 }
1055 
1056 DEFINE_SHOW_ATTRIBUTE(qm_regs);
1057 
1058 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer,
1059 			   size_t count, loff_t *pos)
1060 {
1061 	char buf[QM_DBG_READ_LEN];
1062 	int len;
1063 
1064 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n",
1065 			"Please echo help to cmd to get help information");
1066 
1067 	return simple_read_from_buffer(buffer, count, pos, buf, len);
1068 }
1069 
1070 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1071 			  dma_addr_t *dma_addr)
1072 {
1073 	struct device *dev = &qm->pdev->dev;
1074 	void *ctx_addr;
1075 
1076 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1077 	if (!ctx_addr)
1078 		return ERR_PTR(-ENOMEM);
1079 
1080 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1081 	if (dma_mapping_error(dev, *dma_addr)) {
1082 		dev_err(dev, "DMA mapping error!\n");
1083 		kfree(ctx_addr);
1084 		return ERR_PTR(-ENOMEM);
1085 	}
1086 
1087 	return ctx_addr;
1088 }
1089 
1090 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1091 			const void *ctx_addr, dma_addr_t *dma_addr)
1092 {
1093 	struct device *dev = &qm->pdev->dev;
1094 
1095 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1096 	kfree(ctx_addr);
1097 }
1098 
1099 static int dump_show(struct hisi_qm *qm, void *info,
1100 		     unsigned int info_size, char *info_name)
1101 {
1102 	struct device *dev = &qm->pdev->dev;
1103 	u8 *info_buf, *info_curr = info;
1104 	u32 i;
1105 #define BYTE_PER_DW	4
1106 
1107 	info_buf = kzalloc(info_size, GFP_KERNEL);
1108 	if (!info_buf)
1109 		return -ENOMEM;
1110 
1111 	for (i = 0; i < info_size; i++, info_curr++) {
1112 		if (i % BYTE_PER_DW == 0)
1113 			info_buf[i + 3UL] = *info_curr;
1114 		else if (i % BYTE_PER_DW == 1)
1115 			info_buf[i + 1UL] = *info_curr;
1116 		else if (i % BYTE_PER_DW == 2)
1117 			info_buf[i - 1] = *info_curr;
1118 		else if (i % BYTE_PER_DW == 3)
1119 			info_buf[i - 3] = *info_curr;
1120 	}
1121 
1122 	dev_info(dev, "%s DUMP\n", info_name);
1123 	for (i = 0; i < info_size; i += BYTE_PER_DW) {
1124 		pr_info("DW%d: %02X%02X %02X%02X\n", i / BYTE_PER_DW,
1125 			info_buf[i], info_buf[i + 1UL],
1126 			info_buf[i + 2UL], info_buf[i + 3UL]);
1127 	}
1128 
1129 	kfree(info_buf);
1130 
1131 	return 0;
1132 }
1133 
1134 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1135 {
1136 	return qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1137 }
1138 
1139 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1140 {
1141 	return qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1142 }
1143 
1144 static int qm_sqc_dump(struct hisi_qm *qm, const char *s)
1145 {
1146 	struct device *dev = &qm->pdev->dev;
1147 	struct qm_sqc *sqc, *sqc_curr;
1148 	dma_addr_t sqc_dma;
1149 	u32 qp_id;
1150 	int ret;
1151 
1152 	if (!s)
1153 		return -EINVAL;
1154 
1155 	ret = kstrtou32(s, 0, &qp_id);
1156 	if (ret || qp_id >= qm->qp_num) {
1157 		dev_err(dev, "Please input qp num (0-%d)", qm->qp_num - 1);
1158 		return -EINVAL;
1159 	}
1160 
1161 	sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma);
1162 	if (IS_ERR(sqc))
1163 		return PTR_ERR(sqc);
1164 
1165 	ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id);
1166 	if (ret) {
1167 		down_read(&qm->qps_lock);
1168 		if (qm->sqc) {
1169 			sqc_curr = qm->sqc + qp_id;
1170 
1171 			ret = dump_show(qm, sqc_curr, sizeof(*sqc),
1172 					"SOFT SQC");
1173 			if (ret)
1174 				dev_info(dev, "Show soft sqc failed!\n");
1175 		}
1176 		up_read(&qm->qps_lock);
1177 
1178 		goto err_free_ctx;
1179 	}
1180 
1181 	ret = dump_show(qm, sqc, sizeof(*sqc), "SQC");
1182 	if (ret)
1183 		dev_info(dev, "Show hw sqc failed!\n");
1184 
1185 err_free_ctx:
1186 	qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma);
1187 	return ret;
1188 }
1189 
1190 static int qm_cqc_dump(struct hisi_qm *qm, const char *s)
1191 {
1192 	struct device *dev = &qm->pdev->dev;
1193 	struct qm_cqc *cqc, *cqc_curr;
1194 	dma_addr_t cqc_dma;
1195 	u32 qp_id;
1196 	int ret;
1197 
1198 	if (!s)
1199 		return -EINVAL;
1200 
1201 	ret = kstrtou32(s, 0, &qp_id);
1202 	if (ret || qp_id >= qm->qp_num) {
1203 		dev_err(dev, "Please input qp num (0-%d)", qm->qp_num - 1);
1204 		return -EINVAL;
1205 	}
1206 
1207 	cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma);
1208 	if (IS_ERR(cqc))
1209 		return PTR_ERR(cqc);
1210 
1211 	ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id);
1212 	if (ret) {
1213 		down_read(&qm->qps_lock);
1214 		if (qm->cqc) {
1215 			cqc_curr = qm->cqc + qp_id;
1216 
1217 			ret = dump_show(qm, cqc_curr, sizeof(*cqc),
1218 					"SOFT CQC");
1219 			if (ret)
1220 				dev_info(dev, "Show soft cqc failed!\n");
1221 		}
1222 		up_read(&qm->qps_lock);
1223 
1224 		goto err_free_ctx;
1225 	}
1226 
1227 	ret = dump_show(qm, cqc, sizeof(*cqc), "CQC");
1228 	if (ret)
1229 		dev_info(dev, "Show hw cqc failed!\n");
1230 
1231 err_free_ctx:
1232 	qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma);
1233 	return ret;
1234 }
1235 
1236 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size,
1237 			    int cmd, char *name)
1238 {
1239 	struct device *dev = &qm->pdev->dev;
1240 	dma_addr_t xeqc_dma;
1241 	void *xeqc;
1242 	int ret;
1243 
1244 	if (strsep(&s, " ")) {
1245 		dev_err(dev, "Please do not input extra characters!\n");
1246 		return -EINVAL;
1247 	}
1248 
1249 	xeqc = qm_ctx_alloc(qm, size, &xeqc_dma);
1250 	if (IS_ERR(xeqc))
1251 		return PTR_ERR(xeqc);
1252 
1253 	ret = qm_mb(qm, cmd, xeqc_dma, 0, 1);
1254 	if (ret)
1255 		goto err_free_ctx;
1256 
1257 	ret = dump_show(qm, xeqc, size, name);
1258 	if (ret)
1259 		dev_info(dev, "Show hw %s failed!\n", name);
1260 
1261 err_free_ctx:
1262 	qm_ctx_free(qm, size, xeqc, &xeqc_dma);
1263 	return ret;
1264 }
1265 
1266 static int q_dump_param_parse(struct hisi_qm *qm, char *s,
1267 			      u32 *e_id, u32 *q_id)
1268 {
1269 	struct device *dev = &qm->pdev->dev;
1270 	unsigned int qp_num = qm->qp_num;
1271 	char *presult;
1272 	int ret;
1273 
1274 	presult = strsep(&s, " ");
1275 	if (!presult) {
1276 		dev_err(dev, "Please input qp number!\n");
1277 		return -EINVAL;
1278 	}
1279 
1280 	ret = kstrtou32(presult, 0, q_id);
1281 	if (ret || *q_id >= qp_num) {
1282 		dev_err(dev, "Please input qp num (0-%d)", qp_num - 1);
1283 		return -EINVAL;
1284 	}
1285 
1286 	presult = strsep(&s, " ");
1287 	if (!presult) {
1288 		dev_err(dev, "Please input sqe number!\n");
1289 		return -EINVAL;
1290 	}
1291 
1292 	ret = kstrtou32(presult, 0, e_id);
1293 	if (ret || *e_id >= QM_Q_DEPTH) {
1294 		dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1);
1295 		return -EINVAL;
1296 	}
1297 
1298 	if (strsep(&s, " ")) {
1299 		dev_err(dev, "Please do not input extra characters!\n");
1300 		return -EINVAL;
1301 	}
1302 
1303 	return 0;
1304 }
1305 
1306 static int qm_sq_dump(struct hisi_qm *qm, char *s)
1307 {
1308 	struct device *dev = &qm->pdev->dev;
1309 	void *sqe, *sqe_curr;
1310 	struct hisi_qp *qp;
1311 	u32 qp_id, sqe_id;
1312 	int ret;
1313 
1314 	ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id);
1315 	if (ret)
1316 		return ret;
1317 
1318 	sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL);
1319 	if (!sqe)
1320 		return -ENOMEM;
1321 
1322 	qp = &qm->qp_array[qp_id];
1323 	memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH);
1324 	sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size);
1325 	memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK,
1326 	       qm->debug.sqe_mask_len);
1327 
1328 	ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE");
1329 	if (ret)
1330 		dev_info(dev, "Show sqe failed!\n");
1331 
1332 	kfree(sqe);
1333 
1334 	return ret;
1335 }
1336 
1337 static int qm_cq_dump(struct hisi_qm *qm, char *s)
1338 {
1339 	struct device *dev = &qm->pdev->dev;
1340 	struct qm_cqe *cqe_curr;
1341 	struct hisi_qp *qp;
1342 	u32 qp_id, cqe_id;
1343 	int ret;
1344 
1345 	ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id);
1346 	if (ret)
1347 		return ret;
1348 
1349 	qp = &qm->qp_array[qp_id];
1350 	cqe_curr = qp->cqe + cqe_id;
1351 	ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE");
1352 	if (ret)
1353 		dev_info(dev, "Show cqe failed!\n");
1354 
1355 	return ret;
1356 }
1357 
1358 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s,
1359 			  size_t size, char *name)
1360 {
1361 	struct device *dev = &qm->pdev->dev;
1362 	void *xeqe;
1363 	u32 xeqe_id;
1364 	int ret;
1365 
1366 	if (!s)
1367 		return -EINVAL;
1368 
1369 	ret = kstrtou32(s, 0, &xeqe_id);
1370 	if (ret)
1371 		return -EINVAL;
1372 
1373 	if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) {
1374 		dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1);
1375 		return -EINVAL;
1376 	} else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) {
1377 		dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1);
1378 		return -EINVAL;
1379 	}
1380 
1381 	down_read(&qm->qps_lock);
1382 
1383 	if (qm->eqe && !strcmp(name, "EQE")) {
1384 		xeqe = qm->eqe + xeqe_id;
1385 	} else if (qm->aeqe && !strcmp(name, "AEQE")) {
1386 		xeqe = qm->aeqe + xeqe_id;
1387 	} else {
1388 		ret = -EINVAL;
1389 		goto err_unlock;
1390 	}
1391 
1392 	ret = dump_show(qm, xeqe, size, name);
1393 	if (ret)
1394 		dev_info(dev, "Show %s failed!\n", name);
1395 
1396 err_unlock:
1397 	up_read(&qm->qps_lock);
1398 	return ret;
1399 }
1400 
1401 static int qm_dbg_help(struct hisi_qm *qm, char *s)
1402 {
1403 	struct device *dev = &qm->pdev->dev;
1404 
1405 	if (strsep(&s, " ")) {
1406 		dev_err(dev, "Please do not input extra characters!\n");
1407 		return -EINVAL;
1408 	}
1409 
1410 	dev_info(dev, "available commands:\n");
1411 	dev_info(dev, "sqc <num>\n");
1412 	dev_info(dev, "cqc <num>\n");
1413 	dev_info(dev, "eqc\n");
1414 	dev_info(dev, "aeqc\n");
1415 	dev_info(dev, "sq <num> <e>\n");
1416 	dev_info(dev, "cq <num> <e>\n");
1417 	dev_info(dev, "eq <e>\n");
1418 	dev_info(dev, "aeq <e>\n");
1419 
1420 	return 0;
1421 }
1422 
1423 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf)
1424 {
1425 	struct device *dev = &qm->pdev->dev;
1426 	char *presult, *s, *s_tmp;
1427 	int ret;
1428 
1429 	s = kstrdup(cmd_buf, GFP_KERNEL);
1430 	if (!s)
1431 		return -ENOMEM;
1432 
1433 	s_tmp = s;
1434 	presult = strsep(&s, " ");
1435 	if (!presult) {
1436 		ret = -EINVAL;
1437 		goto err_buffer_free;
1438 	}
1439 
1440 	if (!strcmp(presult, "sqc"))
1441 		ret = qm_sqc_dump(qm, s);
1442 	else if (!strcmp(presult, "cqc"))
1443 		ret = qm_cqc_dump(qm, s);
1444 	else if (!strcmp(presult, "eqc"))
1445 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc),
1446 				       QM_MB_CMD_EQC, "EQC");
1447 	else if (!strcmp(presult, "aeqc"))
1448 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc),
1449 				       QM_MB_CMD_AEQC, "AEQC");
1450 	else if (!strcmp(presult, "sq"))
1451 		ret = qm_sq_dump(qm, s);
1452 	else if (!strcmp(presult, "cq"))
1453 		ret = qm_cq_dump(qm, s);
1454 	else if (!strcmp(presult, "eq"))
1455 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE");
1456 	else if (!strcmp(presult, "aeq"))
1457 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE");
1458 	else if (!strcmp(presult, "help"))
1459 		ret = qm_dbg_help(qm, s);
1460 	else
1461 		ret = -EINVAL;
1462 
1463 	if (ret)
1464 		dev_info(dev, "Please echo help\n");
1465 
1466 err_buffer_free:
1467 	kfree(s_tmp);
1468 
1469 	return ret;
1470 }
1471 
1472 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer,
1473 			    size_t count, loff_t *pos)
1474 {
1475 	struct hisi_qm *qm = filp->private_data;
1476 	char *cmd_buf, *cmd_buf_tmp;
1477 	int ret;
1478 
1479 	if (*pos)
1480 		return 0;
1481 
1482 	/* Judge if the instance is being reset. */
1483 	if (unlikely(atomic_read(&qm->status.flags) == QM_STOP))
1484 		return 0;
1485 
1486 	if (count > QM_DBG_WRITE_LEN)
1487 		return -ENOSPC;
1488 
1489 	cmd_buf = kzalloc(count + 1, GFP_KERNEL);
1490 	if (!cmd_buf)
1491 		return -ENOMEM;
1492 
1493 	if (copy_from_user(cmd_buf, buffer, count)) {
1494 		kfree(cmd_buf);
1495 		return -EFAULT;
1496 	}
1497 
1498 	cmd_buf[count] = '\0';
1499 
1500 	cmd_buf_tmp = strchr(cmd_buf, '\n');
1501 	if (cmd_buf_tmp) {
1502 		*cmd_buf_tmp = '\0';
1503 		count = cmd_buf_tmp - cmd_buf + 1;
1504 	}
1505 
1506 	ret = qm_cmd_write_dump(qm, cmd_buf);
1507 	if (ret) {
1508 		kfree(cmd_buf);
1509 		return ret;
1510 	}
1511 
1512 	kfree(cmd_buf);
1513 
1514 	return count;
1515 }
1516 
1517 static const struct file_operations qm_cmd_fops = {
1518 	.owner = THIS_MODULE,
1519 	.open = simple_open,
1520 	.read = qm_cmd_read,
1521 	.write = qm_cmd_write,
1522 };
1523 
1524 static void qm_create_debugfs_file(struct hisi_qm *qm, enum qm_debug_file index)
1525 {
1526 	struct dentry *qm_d = qm->debug.qm_d;
1527 	struct debugfs_file *file = qm->debug.files + index;
1528 
1529 	debugfs_create_file(qm_debug_file_name[index], 0600, qm_d, file,
1530 			    &qm_debug_fops);
1531 
1532 	file->index = index;
1533 	mutex_init(&file->lock);
1534 	file->debug = &qm->debug;
1535 }
1536 
1537 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1538 {
1539 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1540 }
1541 
1542 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1543 {
1544 	u32 irq_enable = ce | nfe | fe;
1545 	u32 irq_unmask = ~irq_enable;
1546 
1547 	qm->error_mask = ce | nfe | fe;
1548 
1549 	/* clear QM hw residual error source */
1550 	writel(QM_ABNORMAL_INT_SOURCE_CLR,
1551 	       qm->io_base + QM_ABNORMAL_INT_SOURCE);
1552 
1553 	/* configure error type */
1554 	writel(ce, qm->io_base + QM_RAS_CE_ENABLE);
1555 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1556 	writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1557 	writel(fe, qm->io_base + QM_RAS_FE_ENABLE);
1558 
1559 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1560 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1561 }
1562 
1563 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1564 {
1565 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1566 }
1567 
1568 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1569 {
1570 	const struct hisi_qm_hw_error *err;
1571 	struct device *dev = &qm->pdev->dev;
1572 	u32 reg_val, type, vf_num;
1573 	int i;
1574 
1575 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1576 		err = &qm_hw_error[i];
1577 		if (!(err->int_msk & error_status))
1578 			continue;
1579 
1580 		dev_err(dev, "%s [error status=0x%x] found\n",
1581 			err->msg, err->int_msk);
1582 
1583 		if (err->int_msk & QM_DB_TIMEOUT) {
1584 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1585 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1586 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1587 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1588 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
1589 				qm_db_timeout[type], vf_num);
1590 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1591 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1592 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1593 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1594 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1595 
1596 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1597 				dev_err(dev, "qm %s fifo overflow in function %u\n",
1598 					qm_fifo_overflow[type], vf_num);
1599 			else
1600 				dev_err(dev, "unknown error type\n");
1601 		}
1602 	}
1603 }
1604 
1605 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1606 {
1607 	u32 error_status, tmp;
1608 
1609 	/* read err sts */
1610 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1611 	error_status = qm->error_mask & tmp;
1612 
1613 	if (error_status) {
1614 		if (error_status & QM_ECC_MBIT)
1615 			qm->err_status.is_qm_ecc_mbit = true;
1616 
1617 		qm_log_hw_error(qm, error_status);
1618 		if (error_status == QM_DB_RANDOM_INVALID) {
1619 			writel(error_status, qm->io_base +
1620 			       QM_ABNORMAL_INT_SOURCE);
1621 			return ACC_ERR_RECOVERED;
1622 		}
1623 
1624 		return ACC_ERR_NEED_RESET;
1625 	}
1626 
1627 	return ACC_ERR_RECOVERED;
1628 }
1629 
1630 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1631 	.qm_db = qm_db_v1,
1632 	.get_irq_num = qm_get_irq_num_v1,
1633 	.hw_error_init = qm_hw_error_init_v1,
1634 };
1635 
1636 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1637 	.get_vft = qm_get_vft_v2,
1638 	.qm_db = qm_db_v2,
1639 	.get_irq_num = qm_get_irq_num_v2,
1640 	.hw_error_init = qm_hw_error_init_v2,
1641 	.hw_error_uninit = qm_hw_error_uninit_v2,
1642 	.hw_error_handle = qm_hw_error_handle_v2,
1643 };
1644 
1645 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1646 {
1647 	struct hisi_qp_status *qp_status = &qp->qp_status;
1648 	u16 sq_tail = qp_status->sq_tail;
1649 
1650 	if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1))
1651 		return NULL;
1652 
1653 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1654 }
1655 
1656 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1657 {
1658 	struct device *dev = &qm->pdev->dev;
1659 	struct hisi_qp *qp;
1660 	int qp_id;
1661 
1662 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
1663 		return ERR_PTR(-EPERM);
1664 
1665 	if (qm->qp_in_used == qm->qp_num) {
1666 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1667 				     qm->qp_num);
1668 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1669 		return ERR_PTR(-EBUSY);
1670 	}
1671 
1672 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1673 	if (qp_id < 0) {
1674 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1675 				    qm->qp_num);
1676 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1677 		return ERR_PTR(-EBUSY);
1678 	}
1679 
1680 	qp = &qm->qp_array[qp_id];
1681 
1682 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH);
1683 
1684 	qp->event_cb = NULL;
1685 	qp->req_cb = NULL;
1686 	qp->qp_id = qp_id;
1687 	qp->alg_type = alg_type;
1688 	qm->qp_in_used++;
1689 	atomic_set(&qp->qp_status.flags, QP_INIT);
1690 
1691 	return qp;
1692 }
1693 
1694 /**
1695  * hisi_qm_create_qp() - Create a queue pair from qm.
1696  * @qm: The qm we create a qp from.
1697  * @alg_type: Accelerator specific algorithm type in sqc.
1698  *
1699  * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating
1700  * qp memory fails.
1701  */
1702 struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1703 {
1704 	struct hisi_qp *qp;
1705 
1706 	down_write(&qm->qps_lock);
1707 	qp = qm_create_qp_nolock(qm, alg_type);
1708 	up_write(&qm->qps_lock);
1709 
1710 	return qp;
1711 }
1712 EXPORT_SYMBOL_GPL(hisi_qm_create_qp);
1713 
1714 /**
1715  * hisi_qm_release_qp() - Release a qp back to its qm.
1716  * @qp: The qp we want to release.
1717  *
1718  * This function releases the resource of a qp.
1719  */
1720 void hisi_qm_release_qp(struct hisi_qp *qp)
1721 {
1722 	struct hisi_qm *qm = qp->qm;
1723 
1724 	down_write(&qm->qps_lock);
1725 
1726 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
1727 		up_write(&qm->qps_lock);
1728 		return;
1729 	}
1730 
1731 	qm->qp_in_used--;
1732 	idr_remove(&qm->qp_idr, qp->qp_id);
1733 
1734 	up_write(&qm->qps_lock);
1735 }
1736 EXPORT_SYMBOL_GPL(hisi_qm_release_qp);
1737 
1738 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1739 {
1740 	struct hisi_qm *qm = qp->qm;
1741 	struct device *dev = &qm->pdev->dev;
1742 	enum qm_hw_ver ver = qm->ver;
1743 	struct qm_sqc *sqc;
1744 	dma_addr_t sqc_dma;
1745 	int ret;
1746 
1747 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
1748 	if (!sqc)
1749 		return -ENOMEM;
1750 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
1751 				 DMA_TO_DEVICE);
1752 	if (dma_mapping_error(dev, sqc_dma)) {
1753 		kfree(sqc);
1754 		return -ENOMEM;
1755 	}
1756 
1757 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
1758 	if (ver == QM_HW_V1) {
1759 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1760 		sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
1761 	} else {
1762 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size));
1763 		sqc->w8 = 0; /* rand_qc */
1764 	}
1765 	sqc->cq_num = cpu_to_le16(qp_id);
1766 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1767 
1768 	ret = qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
1769 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
1770 	kfree(sqc);
1771 
1772 	return ret;
1773 }
1774 
1775 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1776 {
1777 	struct hisi_qm *qm = qp->qm;
1778 	struct device *dev = &qm->pdev->dev;
1779 	enum qm_hw_ver ver = qm->ver;
1780 	struct qm_cqc *cqc;
1781 	dma_addr_t cqc_dma;
1782 	int ret;
1783 
1784 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
1785 	if (!cqc)
1786 		return -ENOMEM;
1787 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
1788 				 DMA_TO_DEVICE);
1789 	if (dma_mapping_error(dev, cqc_dma)) {
1790 		kfree(cqc);
1791 		return -ENOMEM;
1792 	}
1793 
1794 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
1795 	if (ver == QM_HW_V1) {
1796 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
1797 							QM_QC_CQE_SIZE));
1798 		cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
1799 	} else {
1800 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE));
1801 		cqc->w8 = 0; /* rand_qc */
1802 	}
1803 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
1804 
1805 	ret = qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
1806 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
1807 	kfree(cqc);
1808 
1809 	return ret;
1810 }
1811 
1812 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1813 {
1814 	int ret;
1815 
1816 	qm_init_qp_status(qp);
1817 
1818 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
1819 	if (ret)
1820 		return ret;
1821 
1822 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
1823 }
1824 
1825 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
1826 {
1827 	struct hisi_qm *qm = qp->qm;
1828 	struct device *dev = &qm->pdev->dev;
1829 	int qp_id = qp->qp_id;
1830 	u32 pasid = arg;
1831 	int ret;
1832 
1833 	if (!qm_qp_avail_state(qm, qp, QP_START))
1834 		return -EPERM;
1835 
1836 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
1837 	if (ret)
1838 		return ret;
1839 
1840 	atomic_set(&qp->qp_status.flags, QP_START);
1841 	dev_dbg(dev, "queue %d started\n", qp_id);
1842 
1843 	return 0;
1844 }
1845 
1846 /**
1847  * hisi_qm_start_qp() - Start a qp into running.
1848  * @qp: The qp we want to start to run.
1849  * @arg: Accelerator specific argument.
1850  *
1851  * After this function, qp can receive request from user. Return 0 if
1852  * successful, Return -EBUSY if failed.
1853  */
1854 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
1855 {
1856 	struct hisi_qm *qm = qp->qm;
1857 	int ret;
1858 
1859 	down_write(&qm->qps_lock);
1860 	ret = qm_start_qp_nolock(qp, arg);
1861 	up_write(&qm->qps_lock);
1862 
1863 	return ret;
1864 }
1865 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
1866 
1867 /**
1868  * qm_drain_qp() - Drain a qp.
1869  * @qp: The qp we want to drain.
1870  *
1871  * Determine whether the queue is cleared by judging the tail pointers of
1872  * sq and cq.
1873  */
1874 static int qm_drain_qp(struct hisi_qp *qp)
1875 {
1876 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
1877 	struct hisi_qm *qm = qp->qm;
1878 	struct device *dev = &qm->pdev->dev;
1879 	struct qm_sqc *sqc;
1880 	struct qm_cqc *cqc;
1881 	dma_addr_t dma_addr;
1882 	int ret = 0, i = 0;
1883 	void *addr;
1884 
1885 	/*
1886 	 * No need to judge if ECC multi-bit error occurs because the
1887 	 * master OOO will be blocked.
1888 	 */
1889 	if (qm->err_status.is_qm_ecc_mbit || qm->err_status.is_dev_ecc_mbit)
1890 		return 0;
1891 
1892 	addr = qm_ctx_alloc(qm, size, &dma_addr);
1893 	if (IS_ERR(addr)) {
1894 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
1895 		return -ENOMEM;
1896 	}
1897 
1898 	while (++i) {
1899 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
1900 		if (ret) {
1901 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
1902 			break;
1903 		}
1904 		sqc = addr;
1905 
1906 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
1907 				      qp->qp_id);
1908 		if (ret) {
1909 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
1910 			break;
1911 		}
1912 		cqc = addr + sizeof(struct qm_sqc);
1913 
1914 		if ((sqc->tail == cqc->tail) &&
1915 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
1916 			break;
1917 
1918 		if (i == MAX_WAIT_COUNTS) {
1919 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
1920 			ret = -EBUSY;
1921 			break;
1922 		}
1923 
1924 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
1925 	}
1926 
1927 	qm_ctx_free(qm, size, addr, &dma_addr);
1928 
1929 	return ret;
1930 }
1931 
1932 static int qm_stop_qp_nolock(struct hisi_qp *qp)
1933 {
1934 	struct device *dev = &qp->qm->pdev->dev;
1935 	int ret;
1936 
1937 	/*
1938 	 * It is allowed to stop and release qp when reset, If the qp is
1939 	 * stopped when reset but still want to be released then, the
1940 	 * is_resetting flag should be set negative so that this qp will not
1941 	 * be restarted after reset.
1942 	 */
1943 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
1944 		qp->is_resetting = false;
1945 		return 0;
1946 	}
1947 
1948 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
1949 		return -EPERM;
1950 
1951 	atomic_set(&qp->qp_status.flags, QP_STOP);
1952 
1953 	ret = qm_drain_qp(qp);
1954 	if (ret)
1955 		dev_err(dev, "Failed to drain out data for stopping!\n");
1956 
1957 	if (qp->qm->wq)
1958 		flush_workqueue(qp->qm->wq);
1959 	else
1960 		flush_work(&qp->qm->work);
1961 
1962 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
1963 
1964 	return 0;
1965 }
1966 
1967 /**
1968  * hisi_qm_stop_qp() - Stop a qp in qm.
1969  * @qp: The qp we want to stop.
1970  *
1971  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
1972  */
1973 int hisi_qm_stop_qp(struct hisi_qp *qp)
1974 {
1975 	int ret;
1976 
1977 	down_write(&qp->qm->qps_lock);
1978 	ret = qm_stop_qp_nolock(qp);
1979 	up_write(&qp->qm->qps_lock);
1980 
1981 	return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
1984 
1985 /**
1986  * hisi_qp_send() - Queue up a task in the hardware queue.
1987  * @qp: The qp in which to put the message.
1988  * @msg: The message.
1989  *
1990  * This function will return -EBUSY if qp is currently full, and -EAGAIN
1991  * if qp related qm is resetting.
1992  *
1993  * Note: This function may run with qm_irq_thread and ACC reset at same time.
1994  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
1995  *       reset may happen, we have no lock here considering performance. This
1996  *       causes current qm_db sending fail or can not receive sended sqe. QM
1997  *       sync/async receive function should handle the error sqe. ACC reset
1998  *       done function should clear used sqe to 0.
1999  */
2000 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2001 {
2002 	struct hisi_qp_status *qp_status = &qp->qp_status;
2003 	u16 sq_tail = qp_status->sq_tail;
2004 	u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH;
2005 	void *sqe = qm_get_avail_sqe(qp);
2006 
2007 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2008 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2009 		     qp->is_resetting)) {
2010 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2011 		return -EAGAIN;
2012 	}
2013 
2014 	if (!sqe)
2015 		return -EBUSY;
2016 
2017 	memcpy(sqe, msg, qp->qm->sqe_size);
2018 
2019 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2020 	atomic_inc(&qp->qp_status.used);
2021 	qp_status->sq_tail = sq_tail_next;
2022 
2023 	return 0;
2024 }
2025 EXPORT_SYMBOL_GPL(hisi_qp_send);
2026 
2027 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2028 {
2029 	unsigned int val;
2030 
2031 	if (qm->ver == QM_HW_V1)
2032 		return;
2033 
2034 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2035 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2036 				       val, val & BIT(0), POLL_PERIOD,
2037 				       POLL_TIMEOUT))
2038 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2039 }
2040 
2041 static void qm_qp_event_notifier(struct hisi_qp *qp)
2042 {
2043 	wake_up_interruptible(&qp->uacce_q->wait);
2044 }
2045 
2046 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2047 {
2048 	return hisi_qm_get_free_qp_num(uacce->priv);
2049 }
2050 
2051 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2052 				   unsigned long arg,
2053 				   struct uacce_queue *q)
2054 {
2055 	struct hisi_qm *qm = uacce->priv;
2056 	struct hisi_qp *qp;
2057 	u8 alg_type = 0;
2058 
2059 	qp = hisi_qm_create_qp(qm, alg_type);
2060 	if (IS_ERR(qp))
2061 		return PTR_ERR(qp);
2062 
2063 	q->priv = qp;
2064 	q->uacce = uacce;
2065 	qp->uacce_q = q;
2066 	qp->event_cb = qm_qp_event_notifier;
2067 	qp->pasid = arg;
2068 
2069 	return 0;
2070 }
2071 
2072 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2073 {
2074 	struct hisi_qp *qp = q->priv;
2075 
2076 	hisi_qm_cache_wb(qp->qm);
2077 	hisi_qm_release_qp(qp);
2078 }
2079 
2080 /* map sq/cq/doorbell to user space */
2081 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2082 			      struct vm_area_struct *vma,
2083 			      struct uacce_qfile_region *qfr)
2084 {
2085 	struct hisi_qp *qp = q->priv;
2086 	struct hisi_qm *qm = qp->qm;
2087 	size_t sz = vma->vm_end - vma->vm_start;
2088 	struct pci_dev *pdev = qm->pdev;
2089 	struct device *dev = &pdev->dev;
2090 	unsigned long vm_pgoff;
2091 	int ret;
2092 
2093 	switch (qfr->type) {
2094 	case UACCE_QFRT_MMIO:
2095 		if (qm->ver == QM_HW_V1) {
2096 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2097 				return -EINVAL;
2098 		} else {
2099 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2100 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2101 				return -EINVAL;
2102 		}
2103 
2104 		vma->vm_flags |= VM_IO;
2105 
2106 		return remap_pfn_range(vma, vma->vm_start,
2107 				       qm->phys_base >> PAGE_SHIFT,
2108 				       sz, pgprot_noncached(vma->vm_page_prot));
2109 	case UACCE_QFRT_DUS:
2110 		if (sz != qp->qdma.size)
2111 			return -EINVAL;
2112 
2113 		/*
2114 		 * dma_mmap_coherent() requires vm_pgoff as 0
2115 		 * restore vm_pfoff to initial value for mmap()
2116 		 */
2117 		vm_pgoff = vma->vm_pgoff;
2118 		vma->vm_pgoff = 0;
2119 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2120 					qp->qdma.dma, sz);
2121 		vma->vm_pgoff = vm_pgoff;
2122 		return ret;
2123 
2124 	default:
2125 		return -EINVAL;
2126 	}
2127 }
2128 
2129 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2130 {
2131 	struct hisi_qp *qp = q->priv;
2132 
2133 	return hisi_qm_start_qp(qp, qp->pasid);
2134 }
2135 
2136 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2137 {
2138 	hisi_qm_stop_qp(q->priv);
2139 }
2140 
2141 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2142 {
2143 	struct hisi_qm *qm = q->uacce->priv;
2144 	struct hisi_qp *qp = q->priv;
2145 
2146 	down_write(&qm->qps_lock);
2147 	qp->alg_type = type;
2148 	up_write(&qm->qps_lock);
2149 }
2150 
2151 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2152 				unsigned long arg)
2153 {
2154 	struct hisi_qp *qp = q->priv;
2155 	struct hisi_qp_ctx qp_ctx;
2156 
2157 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2158 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2159 				   sizeof(struct hisi_qp_ctx)))
2160 			return -EFAULT;
2161 
2162 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2163 			return -EINVAL;
2164 
2165 		qm_set_sqctype(q, qp_ctx.qc_type);
2166 		qp_ctx.id = qp->qp_id;
2167 
2168 		if (copy_to_user((void __user *)arg, &qp_ctx,
2169 				 sizeof(struct hisi_qp_ctx)))
2170 			return -EFAULT;
2171 	} else {
2172 		return -EINVAL;
2173 	}
2174 
2175 	return 0;
2176 }
2177 
2178 static const struct uacce_ops uacce_qm_ops = {
2179 	.get_available_instances = hisi_qm_get_available_instances,
2180 	.get_queue = hisi_qm_uacce_get_queue,
2181 	.put_queue = hisi_qm_uacce_put_queue,
2182 	.start_queue = hisi_qm_uacce_start_queue,
2183 	.stop_queue = hisi_qm_uacce_stop_queue,
2184 	.mmap = hisi_qm_uacce_mmap,
2185 	.ioctl = hisi_qm_uacce_ioctl,
2186 };
2187 
2188 static int qm_alloc_uacce(struct hisi_qm *qm)
2189 {
2190 	struct pci_dev *pdev = qm->pdev;
2191 	struct uacce_device *uacce;
2192 	unsigned long mmio_page_nr;
2193 	unsigned long dus_page_nr;
2194 	struct uacce_interface interface = {
2195 		.flags = UACCE_DEV_SVA,
2196 		.ops = &uacce_qm_ops,
2197 	};
2198 	int ret;
2199 
2200 	ret = strscpy(interface.name, pdev->driver->name,
2201 		      sizeof(interface.name));
2202 	if (ret < 0)
2203 		return -ENAMETOOLONG;
2204 
2205 	uacce = uacce_alloc(&pdev->dev, &interface);
2206 	if (IS_ERR(uacce))
2207 		return PTR_ERR(uacce);
2208 
2209 	if (uacce->flags & UACCE_DEV_SVA) {
2210 		qm->use_sva = true;
2211 	} else {
2212 		/* only consider sva case */
2213 		uacce_remove(uacce);
2214 		qm->uacce = NULL;
2215 		return -EINVAL;
2216 	}
2217 
2218 	uacce->is_vf = pdev->is_virtfn;
2219 	uacce->priv = qm;
2220 	uacce->algs = qm->algs;
2221 
2222 	if (qm->ver == QM_HW_V1) {
2223 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2224 		uacce->api_ver = HISI_QM_API_VER_BASE;
2225 	} else {
2226 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2227 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2228 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2229 	}
2230 
2231 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH +
2232 		       sizeof(struct qm_cqe) * QM_Q_DEPTH) >> PAGE_SHIFT;
2233 
2234 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2235 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2236 
2237 	qm->uacce = uacce;
2238 
2239 	return 0;
2240 }
2241 
2242 /**
2243  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2244  * there is user on the QM, return failure without doing anything.
2245  * @qm: The qm needed to be fronzen.
2246  *
2247  * This function frozes QM, then we can do SRIOV disabling.
2248  */
2249 static int qm_frozen(struct hisi_qm *qm)
2250 {
2251 	down_write(&qm->qps_lock);
2252 
2253 	if (qm->is_frozen) {
2254 		up_write(&qm->qps_lock);
2255 		return 0;
2256 	}
2257 
2258 	if (!qm->qp_in_used) {
2259 		qm->qp_in_used = qm->qp_num;
2260 		qm->is_frozen = true;
2261 		up_write(&qm->qps_lock);
2262 		return 0;
2263 	}
2264 
2265 	up_write(&qm->qps_lock);
2266 
2267 	return -EBUSY;
2268 }
2269 
2270 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2271 			     struct hisi_qm_list *qm_list)
2272 {
2273 	struct hisi_qm *qm, *vf_qm;
2274 	struct pci_dev *dev;
2275 	int ret = 0;
2276 
2277 	if (!qm_list || !pdev)
2278 		return -EINVAL;
2279 
2280 	/* Try to frozen all the VFs as disable SRIOV */
2281 	mutex_lock(&qm_list->lock);
2282 	list_for_each_entry(qm, &qm_list->list, list) {
2283 		dev = qm->pdev;
2284 		if (dev == pdev)
2285 			continue;
2286 		if (pci_physfn(dev) == pdev) {
2287 			vf_qm = pci_get_drvdata(dev);
2288 			ret = qm_frozen(vf_qm);
2289 			if (ret)
2290 				goto frozen_fail;
2291 		}
2292 	}
2293 
2294 frozen_fail:
2295 	mutex_unlock(&qm_list->lock);
2296 
2297 	return ret;
2298 }
2299 
2300 /**
2301  * hisi_qm_wait_task_finish() - Wait until the task is finished
2302  * when removing the driver.
2303  * @qm: The qm needed to wait for the task to finish.
2304  * @qm_list: The list of all available devices.
2305  */
2306 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2307 {
2308 	while (qm_frozen(qm) ||
2309 	       ((qm->fun_type == QM_HW_PF) &&
2310 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2311 		msleep(WAIT_PERIOD);
2312 	}
2313 
2314 	udelay(REMOVE_WAIT_DELAY);
2315 }
2316 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2317 
2318 /**
2319  * hisi_qm_get_free_qp_num() - Get free number of qp in qm.
2320  * @qm: The qm which want to get free qp.
2321  *
2322  * This function return free number of qp in qm.
2323  */
2324 int hisi_qm_get_free_qp_num(struct hisi_qm *qm)
2325 {
2326 	int ret;
2327 
2328 	down_read(&qm->qps_lock);
2329 	ret = qm->qp_num - qm->qp_in_used;
2330 	up_read(&qm->qps_lock);
2331 
2332 	return ret;
2333 }
2334 EXPORT_SYMBOL_GPL(hisi_qm_get_free_qp_num);
2335 
2336 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2337 {
2338 	struct device *dev = &qm->pdev->dev;
2339 	struct qm_dma *qdma;
2340 	int i;
2341 
2342 	for (i = num - 1; i >= 0; i--) {
2343 		qdma = &qm->qp_array[i].qdma;
2344 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2345 	}
2346 
2347 	kfree(qm->qp_array);
2348 }
2349 
2350 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id)
2351 {
2352 	struct device *dev = &qm->pdev->dev;
2353 	size_t off = qm->sqe_size * QM_Q_DEPTH;
2354 	struct hisi_qp *qp;
2355 
2356 	qp = &qm->qp_array[id];
2357 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2358 					 GFP_KERNEL);
2359 	if (!qp->qdma.va)
2360 		return -ENOMEM;
2361 
2362 	qp->sqe = qp->qdma.va;
2363 	qp->sqe_dma = qp->qdma.dma;
2364 	qp->cqe = qp->qdma.va + off;
2365 	qp->cqe_dma = qp->qdma.dma + off;
2366 	qp->qdma.size = dma_size;
2367 	qp->qm = qm;
2368 	qp->qp_id = id;
2369 
2370 	return 0;
2371 }
2372 
2373 static int hisi_qm_memory_init(struct hisi_qm *qm)
2374 {
2375 	struct device *dev = &qm->pdev->dev;
2376 	size_t qp_dma_size, off = 0;
2377 	int i, ret = 0;
2378 
2379 #define QM_INIT_BUF(qm, type, num) do { \
2380 	(qm)->type = ((qm)->qdma.va + (off)); \
2381 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
2382 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
2383 } while (0)
2384 
2385 	idr_init(&qm->qp_idr);
2386 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) +
2387 			QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) +
2388 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
2389 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
2390 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
2391 					 GFP_ATOMIC);
2392 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
2393 	if (!qm->qdma.va)
2394 		return -ENOMEM;
2395 
2396 	QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH);
2397 	QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH);
2398 	QM_INIT_BUF(qm, sqc, qm->qp_num);
2399 	QM_INIT_BUF(qm, cqc, qm->qp_num);
2400 
2401 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
2402 	if (!qm->qp_array) {
2403 		ret = -ENOMEM;
2404 		goto err_alloc_qp_array;
2405 	}
2406 
2407 	/* one more page for device or qp statuses */
2408 	qp_dma_size = qm->sqe_size * QM_Q_DEPTH +
2409 		      sizeof(struct qm_cqe) * QM_Q_DEPTH;
2410 	qp_dma_size = PAGE_ALIGN(qp_dma_size);
2411 	for (i = 0; i < qm->qp_num; i++) {
2412 		ret = hisi_qp_memory_init(qm, qp_dma_size, i);
2413 		if (ret)
2414 			goto err_init_qp_mem;
2415 
2416 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
2417 	}
2418 
2419 	return ret;
2420 
2421 err_init_qp_mem:
2422 	hisi_qp_memory_uninit(qm, i);
2423 err_alloc_qp_array:
2424 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
2425 
2426 	return ret;
2427 }
2428 
2429 static void hisi_qm_pre_init(struct hisi_qm *qm)
2430 {
2431 	struct pci_dev *pdev = qm->pdev;
2432 
2433 	if (qm->ver == QM_HW_V1)
2434 		qm->ops = &qm_hw_ops_v1;
2435 	else
2436 		qm->ops = &qm_hw_ops_v2;
2437 
2438 	pci_set_drvdata(pdev, qm);
2439 	mutex_init(&qm->mailbox_lock);
2440 	init_rwsem(&qm->qps_lock);
2441 	qm->qp_in_used = 0;
2442 	qm->is_frozen = false;
2443 }
2444 
2445 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
2446 {
2447 	struct pci_dev *pdev = qm->pdev;
2448 
2449 	pci_free_irq_vectors(pdev);
2450 	iounmap(qm->io_base);
2451 	pci_release_mem_regions(pdev);
2452 	pci_disable_device(pdev);
2453 }
2454 
2455 /**
2456  * hisi_qm_uninit() - Uninitialize qm.
2457  * @qm: The qm needed uninit.
2458  *
2459  * This function uninits qm related device resources.
2460  */
2461 void hisi_qm_uninit(struct hisi_qm *qm)
2462 {
2463 	struct pci_dev *pdev = qm->pdev;
2464 	struct device *dev = &pdev->dev;
2465 
2466 	down_write(&qm->qps_lock);
2467 
2468 	if (!qm_avail_state(qm, QM_CLOSE)) {
2469 		up_write(&qm->qps_lock);
2470 		return;
2471 	}
2472 
2473 	hisi_qp_memory_uninit(qm, qm->qp_num);
2474 	idr_destroy(&qm->qp_idr);
2475 
2476 	if (qm->qdma.va) {
2477 		hisi_qm_cache_wb(qm);
2478 		dma_free_coherent(dev, qm->qdma.size,
2479 				  qm->qdma.va, qm->qdma.dma);
2480 		memset(&qm->qdma, 0, sizeof(qm->qdma));
2481 	}
2482 
2483 	qm_irq_unregister(qm);
2484 	hisi_qm_pci_uninit(qm);
2485 	uacce_remove(qm->uacce);
2486 	qm->uacce = NULL;
2487 
2488 	up_write(&qm->qps_lock);
2489 }
2490 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2491 
2492 /**
2493  * hisi_qm_get_vft() - Get vft from a qm.
2494  * @qm: The qm we want to get its vft.
2495  * @base: The base number of queue in vft.
2496  * @number: The number of queues in vft.
2497  *
2498  * We can allocate multiple queues to a qm by configuring virtual function
2499  * table. We get related configures by this function. Normally, we call this
2500  * function in VF driver to get the queue information.
2501  *
2502  * qm hw v1 does not support this interface.
2503  */
2504 int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2505 {
2506 	if (!base || !number)
2507 		return -EINVAL;
2508 
2509 	if (!qm->ops->get_vft) {
2510 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2511 		return -EINVAL;
2512 	}
2513 
2514 	return qm->ops->get_vft(qm, base, number);
2515 }
2516 EXPORT_SYMBOL_GPL(hisi_qm_get_vft);
2517 
2518 /**
2519  * hisi_qm_set_vft() - Set vft to a qm.
2520  * @qm: The qm we want to set its vft.
2521  * @fun_num: The function number.
2522  * @base: The base number of queue in vft.
2523  * @number: The number of queues in vft.
2524  *
2525  * This function is alway called in PF driver, it is used to assign queues
2526  * among PF and VFs.
2527  *
2528  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2529  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2530  * (VF function number 0x2)
2531  */
2532 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2533 		    u32 number)
2534 {
2535 	u32 max_q_num = qm->ctrl_qp_num;
2536 
2537 	if (base >= max_q_num || number > max_q_num ||
2538 	    (base + number) > max_q_num)
2539 		return -EINVAL;
2540 
2541 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2542 }
2543 
2544 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2545 {
2546 	struct hisi_qm_status *status = &qm->status;
2547 
2548 	status->eq_head = 0;
2549 	status->aeq_head = 0;
2550 	status->eqc_phase = true;
2551 	status->aeqc_phase = true;
2552 }
2553 
2554 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
2555 {
2556 	struct device *dev = &qm->pdev->dev;
2557 	struct qm_eqc *eqc;
2558 	dma_addr_t eqc_dma;
2559 	int ret;
2560 
2561 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); //todo
2562 	if (!eqc)
2563 		return -ENOMEM;
2564 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
2565 				 DMA_TO_DEVICE);
2566 	if (dma_mapping_error(dev, eqc_dma)) {
2567 		kfree(eqc);
2568 		return -ENOMEM;
2569 	}
2570 
2571 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
2572 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
2573 	if (qm->ver == QM_HW_V1)
2574 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
2575 	eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
2576 
2577 	ret = qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
2578 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
2579 	kfree(eqc);
2580 
2581 	return ret;
2582 }
2583 
2584 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
2585 {
2586 	struct device *dev = &qm->pdev->dev;
2587 	struct qm_aeqc *aeqc;
2588 	dma_addr_t aeqc_dma;
2589 	int ret;
2590 
2591 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
2592 	if (!aeqc)
2593 		return -ENOMEM;
2594 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
2595 				  DMA_TO_DEVICE);
2596 	if (dma_mapping_error(dev, aeqc_dma)) {
2597 		kfree(aeqc);
2598 		return -ENOMEM;
2599 	}
2600 
2601 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
2602 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
2603 	aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
2604 
2605 	ret = qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
2606 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
2607 	kfree(aeqc);
2608 
2609 	return ret;
2610 }
2611 
2612 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
2613 {
2614 	struct device *dev = &qm->pdev->dev;
2615 	int ret;
2616 
2617 	qm_init_eq_aeq_status(qm);
2618 
2619 	ret = qm_eq_ctx_cfg(qm);
2620 	if (ret) {
2621 		dev_err(dev, "Set eqc failed!\n");
2622 		return ret;
2623 	}
2624 
2625 	return qm_aeq_ctx_cfg(qm);
2626 }
2627 
2628 static int __hisi_qm_start(struct hisi_qm *qm)
2629 {
2630 	int ret;
2631 
2632 	WARN_ON(!qm->qdma.dma);
2633 
2634 	if (qm->fun_type == QM_HW_PF) {
2635 		ret = qm_dev_mem_reset(qm);
2636 		if (ret)
2637 			return ret;
2638 
2639 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
2640 		if (ret)
2641 			return ret;
2642 	}
2643 
2644 	ret = qm_eq_aeq_ctx_cfg(qm);
2645 	if (ret)
2646 		return ret;
2647 
2648 	ret = qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
2649 	if (ret)
2650 		return ret;
2651 
2652 	ret = qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
2653 	if (ret)
2654 		return ret;
2655 
2656 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
2657 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
2658 
2659 	return 0;
2660 }
2661 
2662 /**
2663  * hisi_qm_start() - start qm
2664  * @qm: The qm to be started.
2665  *
2666  * This function starts a qm, then we can allocate qp from this qm.
2667  */
2668 int hisi_qm_start(struct hisi_qm *qm)
2669 {
2670 	struct device *dev = &qm->pdev->dev;
2671 	int ret = 0;
2672 
2673 	down_write(&qm->qps_lock);
2674 
2675 	if (!qm_avail_state(qm, QM_START)) {
2676 		up_write(&qm->qps_lock);
2677 		return -EPERM;
2678 	}
2679 
2680 	dev_dbg(dev, "qm start with %d queue pairs\n", qm->qp_num);
2681 
2682 	if (!qm->qp_num) {
2683 		dev_err(dev, "qp_num should not be 0\n");
2684 		ret = -EINVAL;
2685 		goto err_unlock;
2686 	}
2687 
2688 	ret = __hisi_qm_start(qm);
2689 	if (!ret)
2690 		atomic_set(&qm->status.flags, QM_START);
2691 
2692 err_unlock:
2693 	up_write(&qm->qps_lock);
2694 	return ret;
2695 }
2696 EXPORT_SYMBOL_GPL(hisi_qm_start);
2697 
2698 static int qm_restart(struct hisi_qm *qm)
2699 {
2700 	struct device *dev = &qm->pdev->dev;
2701 	struct hisi_qp *qp;
2702 	int ret, i;
2703 
2704 	ret = hisi_qm_start(qm);
2705 	if (ret < 0)
2706 		return ret;
2707 
2708 	down_write(&qm->qps_lock);
2709 	for (i = 0; i < qm->qp_num; i++) {
2710 		qp = &qm->qp_array[i];
2711 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
2712 		    qp->is_resetting == true) {
2713 			ret = qm_start_qp_nolock(qp, 0);
2714 			if (ret < 0) {
2715 				dev_err(dev, "Failed to start qp%d!\n", i);
2716 
2717 				up_write(&qm->qps_lock);
2718 				return ret;
2719 			}
2720 			qp->is_resetting = false;
2721 		}
2722 	}
2723 	up_write(&qm->qps_lock);
2724 
2725 	return 0;
2726 }
2727 
2728 /* Stop started qps in reset flow */
2729 static int qm_stop_started_qp(struct hisi_qm *qm)
2730 {
2731 	struct device *dev = &qm->pdev->dev;
2732 	struct hisi_qp *qp;
2733 	int i, ret;
2734 
2735 	for (i = 0; i < qm->qp_num; i++) {
2736 		qp = &qm->qp_array[i];
2737 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
2738 			qp->is_resetting = true;
2739 			ret = qm_stop_qp_nolock(qp);
2740 			if (ret < 0) {
2741 				dev_err(dev, "Failed to stop qp%d!\n", i);
2742 				return ret;
2743 			}
2744 		}
2745 	}
2746 
2747 	return 0;
2748 }
2749 
2750 
2751 /**
2752  * qm_clear_queues() - Clear all queues memory in a qm.
2753  * @qm: The qm in which the queues will be cleared.
2754  *
2755  * This function clears all queues memory in a qm. Reset of accelerator can
2756  * use this to clear queues.
2757  */
2758 static void qm_clear_queues(struct hisi_qm *qm)
2759 {
2760 	struct hisi_qp *qp;
2761 	int i;
2762 
2763 	for (i = 0; i < qm->qp_num; i++) {
2764 		qp = &qm->qp_array[i];
2765 		if (qp->is_resetting)
2766 			memset(qp->qdma.va, 0, qp->qdma.size);
2767 	}
2768 
2769 	memset(qm->qdma.va, 0, qm->qdma.size);
2770 }
2771 
2772 /**
2773  * hisi_qm_stop() - Stop a qm.
2774  * @qm: The qm which will be stopped.
2775  * @r: The reason to stop qm.
2776  *
2777  * This function stops qm and its qps, then qm can not accept request.
2778  * Related resources are not released at this state, we can use hisi_qm_start
2779  * to let qm start again.
2780  */
2781 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
2782 {
2783 	struct device *dev = &qm->pdev->dev;
2784 	int ret = 0;
2785 
2786 	down_write(&qm->qps_lock);
2787 
2788 	qm->status.stop_reason = r;
2789 	if (!qm_avail_state(qm, QM_STOP)) {
2790 		ret = -EPERM;
2791 		goto err_unlock;
2792 	}
2793 
2794 	if (qm->status.stop_reason == QM_SOFT_RESET ||
2795 	    qm->status.stop_reason == QM_FLR) {
2796 		ret = qm_stop_started_qp(qm);
2797 		if (ret < 0) {
2798 			dev_err(dev, "Failed to stop started qp!\n");
2799 			goto err_unlock;
2800 		}
2801 	}
2802 
2803 	/* Mask eq and aeq irq */
2804 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
2805 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
2806 
2807 	if (qm->fun_type == QM_HW_PF) {
2808 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
2809 		if (ret < 0) {
2810 			dev_err(dev, "Failed to set vft!\n");
2811 			ret = -EBUSY;
2812 			goto err_unlock;
2813 		}
2814 	}
2815 
2816 	qm_clear_queues(qm);
2817 	atomic_set(&qm->status.flags, QM_STOP);
2818 
2819 err_unlock:
2820 	up_write(&qm->qps_lock);
2821 	return ret;
2822 }
2823 EXPORT_SYMBOL_GPL(hisi_qm_stop);
2824 
2825 static ssize_t qm_status_read(struct file *filp, char __user *buffer,
2826 			      size_t count, loff_t *pos)
2827 {
2828 	struct hisi_qm *qm = filp->private_data;
2829 	char buf[QM_DBG_READ_LEN];
2830 	int val, len;
2831 
2832 	val = atomic_read(&qm->status.flags);
2833 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]);
2834 
2835 	return simple_read_from_buffer(buffer, count, pos, buf, len);
2836 }
2837 
2838 static const struct file_operations qm_status_fops = {
2839 	.owner = THIS_MODULE,
2840 	.open = simple_open,
2841 	.read = qm_status_read,
2842 };
2843 
2844 static int qm_debugfs_atomic64_set(void *data, u64 val)
2845 {
2846 	if (val)
2847 		return -EINVAL;
2848 
2849 	atomic64_set((atomic64_t *)data, 0);
2850 
2851 	return 0;
2852 }
2853 
2854 static int qm_debugfs_atomic64_get(void *data, u64 *val)
2855 {
2856 	*val = atomic64_read((atomic64_t *)data);
2857 
2858 	return 0;
2859 }
2860 
2861 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get,
2862 			 qm_debugfs_atomic64_set, "%llu\n");
2863 
2864 /**
2865  * hisi_qm_debug_init() - Initialize qm related debugfs files.
2866  * @qm: The qm for which we want to add debugfs files.
2867  *
2868  * Create qm related debugfs files.
2869  */
2870 void hisi_qm_debug_init(struct hisi_qm *qm)
2871 {
2872 	struct qm_dfx *dfx = &qm->debug.dfx;
2873 	struct dentry *qm_d;
2874 	void *data;
2875 	int i;
2876 
2877 	qm_d = debugfs_create_dir("qm", qm->debug.debug_root);
2878 	qm->debug.qm_d = qm_d;
2879 
2880 	/* only show this in PF */
2881 	if (qm->fun_type == QM_HW_PF)
2882 		for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++)
2883 			qm_create_debugfs_file(qm, i);
2884 
2885 	debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops);
2886 
2887 	debugfs_create_file("cmd", 0444, qm->debug.qm_d, qm, &qm_cmd_fops);
2888 
2889 	debugfs_create_file("status", 0444, qm->debug.qm_d, qm,
2890 			&qm_status_fops);
2891 	for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) {
2892 		data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset);
2893 		debugfs_create_file(qm_dfx_files[i].name,
2894 			0644,
2895 			qm_d,
2896 			data,
2897 			&qm_atomic64_ops);
2898 	}
2899 }
2900 EXPORT_SYMBOL_GPL(hisi_qm_debug_init);
2901 
2902 /**
2903  * hisi_qm_debug_regs_clear() - clear qm debug related registers.
2904  * @qm: The qm for which we want to clear its debug registers.
2905  */
2906 void hisi_qm_debug_regs_clear(struct hisi_qm *qm)
2907 {
2908 	struct qm_dfx_registers *regs;
2909 	int i;
2910 
2911 	/* clear current_q */
2912 	writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
2913 	writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
2914 
2915 	/*
2916 	 * these registers are reading and clearing, so clear them after
2917 	 * reading them.
2918 	 */
2919 	writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE);
2920 
2921 	regs = qm_dfx_regs;
2922 	for (i = 0; i < CNT_CYC_REGS_NUM; i++) {
2923 		readl(qm->io_base + regs->reg_offset);
2924 		regs++;
2925 	}
2926 
2927 	writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE);
2928 }
2929 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear);
2930 
2931 static void qm_hw_error_init(struct hisi_qm *qm)
2932 {
2933 	const struct hisi_qm_err_info *err_info = &qm->err_ini->err_info;
2934 
2935 	if (!qm->ops->hw_error_init) {
2936 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
2937 		return;
2938 	}
2939 
2940 	qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe);
2941 }
2942 
2943 static void qm_hw_error_uninit(struct hisi_qm *qm)
2944 {
2945 	if (!qm->ops->hw_error_uninit) {
2946 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
2947 		return;
2948 	}
2949 
2950 	qm->ops->hw_error_uninit(qm);
2951 }
2952 
2953 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
2954 {
2955 	if (!qm->ops->hw_error_handle) {
2956 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
2957 		return ACC_ERR_NONE;
2958 	}
2959 
2960 	return qm->ops->hw_error_handle(qm);
2961 }
2962 
2963 /**
2964  * hisi_qm_dev_err_init() - Initialize device error configuration.
2965  * @qm: The qm for which we want to do error initialization.
2966  *
2967  * Initialize QM and device error related configuration.
2968  */
2969 void hisi_qm_dev_err_init(struct hisi_qm *qm)
2970 {
2971 	if (qm->fun_type == QM_HW_VF)
2972 		return;
2973 
2974 	qm_hw_error_init(qm);
2975 
2976 	if (!qm->err_ini->hw_err_enable) {
2977 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
2978 		return;
2979 	}
2980 	qm->err_ini->hw_err_enable(qm);
2981 }
2982 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
2983 
2984 /**
2985  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
2986  * @qm: The qm for which we want to do error uninitialization.
2987  *
2988  * Uninitialize QM and device error related configuration.
2989  */
2990 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
2991 {
2992 	if (qm->fun_type == QM_HW_VF)
2993 		return;
2994 
2995 	qm_hw_error_uninit(qm);
2996 
2997 	if (!qm->err_ini->hw_err_disable) {
2998 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
2999 		return;
3000 	}
3001 	qm->err_ini->hw_err_disable(qm);
3002 }
3003 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3004 
3005 /**
3006  * hisi_qm_free_qps() - free multiple queue pairs.
3007  * @qps: The queue pairs need to be freed.
3008  * @qp_num: The num of queue pairs.
3009  */
3010 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3011 {
3012 	int i;
3013 
3014 	if (!qps || qp_num <= 0)
3015 		return;
3016 
3017 	for (i = qp_num - 1; i >= 0; i--)
3018 		hisi_qm_release_qp(qps[i]);
3019 }
3020 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3021 
3022 static void free_list(struct list_head *head)
3023 {
3024 	struct hisi_qm_resource *res, *tmp;
3025 
3026 	list_for_each_entry_safe(res, tmp, head, list) {
3027 		list_del(&res->list);
3028 		kfree(res);
3029 	}
3030 }
3031 
3032 static int hisi_qm_sort_devices(int node, struct list_head *head,
3033 				struct hisi_qm_list *qm_list)
3034 {
3035 	struct hisi_qm_resource *res, *tmp;
3036 	struct hisi_qm *qm;
3037 	struct list_head *n;
3038 	struct device *dev;
3039 	int dev_node = 0;
3040 
3041 	list_for_each_entry(qm, &qm_list->list, list) {
3042 		dev = &qm->pdev->dev;
3043 
3044 		if (IS_ENABLED(CONFIG_NUMA)) {
3045 			dev_node = dev_to_node(dev);
3046 			if (dev_node < 0)
3047 				dev_node = 0;
3048 		}
3049 
3050 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3051 		if (!res)
3052 			return -ENOMEM;
3053 
3054 		res->qm = qm;
3055 		res->distance = node_distance(dev_node, node);
3056 		n = head;
3057 		list_for_each_entry(tmp, head, list) {
3058 			if (res->distance < tmp->distance) {
3059 				n = &tmp->list;
3060 				break;
3061 			}
3062 		}
3063 		list_add_tail(&res->list, n);
3064 	}
3065 
3066 	return 0;
3067 }
3068 
3069 /**
3070  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3071  * @qm_list: The list of all available devices.
3072  * @qp_num: The number of queue pairs need created.
3073  * @alg_type: The algorithm type.
3074  * @node: The numa node.
3075  * @qps: The queue pairs need created.
3076  *
3077  * This function will sort all available device according to numa distance.
3078  * Then try to create all queue pairs from one device, if all devices do
3079  * not meet the requirements will return error.
3080  */
3081 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3082 			   u8 alg_type, int node, struct hisi_qp **qps)
3083 {
3084 	struct hisi_qm_resource *tmp;
3085 	int ret = -ENODEV;
3086 	LIST_HEAD(head);
3087 	int i;
3088 
3089 	if (!qps || !qm_list || qp_num <= 0)
3090 		return -EINVAL;
3091 
3092 	mutex_lock(&qm_list->lock);
3093 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3094 		mutex_unlock(&qm_list->lock);
3095 		goto err;
3096 	}
3097 
3098 	list_for_each_entry(tmp, &head, list) {
3099 		for (i = 0; i < qp_num; i++) {
3100 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3101 			if (IS_ERR(qps[i])) {
3102 				hisi_qm_free_qps(qps, i);
3103 				break;
3104 			}
3105 		}
3106 
3107 		if (i == qp_num) {
3108 			ret = 0;
3109 			break;
3110 		}
3111 	}
3112 
3113 	mutex_unlock(&qm_list->lock);
3114 	if (ret)
3115 		pr_info("Failed to create qps, node[%d], alg[%d], qp[%d]!\n",
3116 			node, alg_type, qp_num);
3117 
3118 err:
3119 	free_list(&head);
3120 	return ret;
3121 }
3122 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3123 
3124 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3125 {
3126 	u32 remain_q_num, q_num, i, j;
3127 	u32 q_base = qm->qp_num;
3128 	int ret;
3129 
3130 	if (!num_vfs)
3131 		return -EINVAL;
3132 
3133 	remain_q_num = qm->ctrl_qp_num - qm->qp_num;
3134 
3135 	/* If remain queues not enough, return error. */
3136 	if (qm->ctrl_qp_num < qm->qp_num || remain_q_num < num_vfs)
3137 		return -EINVAL;
3138 
3139 	q_num = remain_q_num / num_vfs;
3140 	for (i = 1; i <= num_vfs; i++) {
3141 		if (i == num_vfs)
3142 			q_num += remain_q_num % num_vfs;
3143 		ret = hisi_qm_set_vft(qm, i, q_base, q_num);
3144 		if (ret) {
3145 			for (j = i; j > 0; j--)
3146 				hisi_qm_set_vft(qm, j, 0, 0);
3147 			return ret;
3148 		}
3149 		q_base += q_num;
3150 	}
3151 
3152 	return 0;
3153 }
3154 
3155 static int qm_clear_vft_config(struct hisi_qm *qm)
3156 {
3157 	int ret;
3158 	u32 i;
3159 
3160 	for (i = 1; i <= qm->vfs_num; i++) {
3161 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3162 		if (ret)
3163 			return ret;
3164 	}
3165 	qm->vfs_num = 0;
3166 
3167 	return 0;
3168 }
3169 
3170 /**
3171  * hisi_qm_sriov_enable() - enable virtual functions
3172  * @pdev: the PCIe device
3173  * @max_vfs: the number of virtual functions to enable
3174  *
3175  * Returns the number of enabled VFs. If there are VFs enabled already or
3176  * max_vfs is more than the total number of device can be enabled, returns
3177  * failure.
3178  */
3179 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3180 {
3181 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3182 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3183 
3184 	total_vfs = pci_sriov_get_totalvfs(pdev);
3185 	pre_existing_vfs = pci_num_vf(pdev);
3186 	if (pre_existing_vfs) {
3187 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3188 			pre_existing_vfs);
3189 		return 0;
3190 	}
3191 
3192 	num_vfs = min_t(int, max_vfs, total_vfs);
3193 	ret = qm_vf_q_assign(qm, num_vfs);
3194 	if (ret) {
3195 		pci_err(pdev, "Can't assign queues for VF!\n");
3196 		return ret;
3197 	}
3198 
3199 	qm->vfs_num = num_vfs;
3200 
3201 	ret = pci_enable_sriov(pdev, num_vfs);
3202 	if (ret) {
3203 		pci_err(pdev, "Can't enable VF!\n");
3204 		qm_clear_vft_config(qm);
3205 		return ret;
3206 	}
3207 
3208 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3209 
3210 	return num_vfs;
3211 }
3212 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3213 
3214 /**
3215  * hisi_qm_sriov_disable - disable virtual functions
3216  * @pdev: the PCI device.
3217  * @is_frozen: true when all the VFs are frozen.
3218  *
3219  * Return failure if there are VFs assigned already or VF is in used.
3220  */
3221 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3222 {
3223 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3224 
3225 	if (pci_vfs_assigned(pdev)) {
3226 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3227 		return -EPERM;
3228 	}
3229 
3230 	/* While VF is in used, SRIOV cannot be disabled. */
3231 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3232 		pci_err(pdev, "Task is using its VF!\n");
3233 		return -EBUSY;
3234 	}
3235 
3236 	pci_disable_sriov(pdev);
3237 	return qm_clear_vft_config(qm);
3238 }
3239 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3240 
3241 /**
3242  * hisi_qm_sriov_configure - configure the number of VFs
3243  * @pdev: The PCI device
3244  * @num_vfs: The number of VFs need enabled
3245  *
3246  * Enable SR-IOV according to num_vfs, 0 means disable.
3247  */
3248 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3249 {
3250 	if (num_vfs == 0)
3251 		return hisi_qm_sriov_disable(pdev, 0);
3252 	else
3253 		return hisi_qm_sriov_enable(pdev, num_vfs);
3254 }
3255 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3256 
3257 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3258 {
3259 	u32 err_sts;
3260 
3261 	if (!qm->err_ini->get_dev_hw_err_status) {
3262 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3263 		return ACC_ERR_NONE;
3264 	}
3265 
3266 	/* get device hardware error status */
3267 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3268 	if (err_sts) {
3269 		if (err_sts & qm->err_ini->err_info.ecc_2bits_mask)
3270 			qm->err_status.is_dev_ecc_mbit = true;
3271 
3272 		if (!qm->err_ini->log_dev_hw_err) {
3273 			dev_err(&qm->pdev->dev, "Device doesn't support log hw error!\n");
3274 			return ACC_ERR_NEED_RESET;
3275 		}
3276 
3277 		qm->err_ini->log_dev_hw_err(qm, err_sts);
3278 		return ACC_ERR_NEED_RESET;
3279 	}
3280 
3281 	return ACC_ERR_RECOVERED;
3282 }
3283 
3284 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3285 {
3286 	enum acc_err_result qm_ret, dev_ret;
3287 
3288 	/* log qm error */
3289 	qm_ret = qm_hw_error_handle(qm);
3290 
3291 	/* log device error */
3292 	dev_ret = qm_dev_err_handle(qm);
3293 
3294 	return (qm_ret == ACC_ERR_NEED_RESET ||
3295 		dev_ret == ACC_ERR_NEED_RESET) ?
3296 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3297 }
3298 
3299 /**
3300  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3301  * @pdev: The PCI device which need report error.
3302  * @state: The connectivity between CPU and device.
3303  *
3304  * We register this function into PCIe AER handlers, It will report device or
3305  * qm hardware error status when error occur.
3306  */
3307 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3308 					  pci_channel_state_t state)
3309 {
3310 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3311 	enum acc_err_result ret;
3312 
3313 	if (pdev->is_virtfn)
3314 		return PCI_ERS_RESULT_NONE;
3315 
3316 	pci_info(pdev, "PCI error detected, state(=%d)!!\n", state);
3317 	if (state == pci_channel_io_perm_failure)
3318 		return PCI_ERS_RESULT_DISCONNECT;
3319 
3320 	ret = qm_process_dev_error(qm);
3321 	if (ret == ACC_ERR_NEED_RESET)
3322 		return PCI_ERS_RESULT_NEED_RESET;
3323 
3324 	return PCI_ERS_RESULT_RECOVERED;
3325 }
3326 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3327 
3328 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
3329 {
3330 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
3331 }
3332 
3333 static int qm_check_req_recv(struct hisi_qm *qm)
3334 {
3335 	struct pci_dev *pdev = qm->pdev;
3336 	int ret;
3337 	u32 val;
3338 
3339 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
3340 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3341 					 (val == ACC_VENDOR_ID_VALUE),
3342 					 POLL_PERIOD, POLL_TIMEOUT);
3343 	if (ret) {
3344 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
3345 		return ret;
3346 	}
3347 
3348 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
3349 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3350 					 (val == PCI_VENDOR_ID_HUAWEI),
3351 					 POLL_PERIOD, POLL_TIMEOUT);
3352 	if (ret)
3353 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
3354 
3355 	return ret;
3356 }
3357 
3358 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
3359 {
3360 	struct pci_dev *pdev = qm->pdev;
3361 	u16 cmd;
3362 	int i;
3363 
3364 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3365 	if (set)
3366 		cmd |= PCI_COMMAND_MEMORY;
3367 	else
3368 		cmd &= ~PCI_COMMAND_MEMORY;
3369 
3370 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
3371 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3372 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3373 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
3374 			return 0;
3375 
3376 		udelay(1);
3377 	}
3378 
3379 	return -ETIMEDOUT;
3380 }
3381 
3382 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
3383 {
3384 	struct pci_dev *pdev = qm->pdev;
3385 	u16 sriov_ctrl;
3386 	int pos;
3387 	int i;
3388 
3389 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3390 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3391 	if (set)
3392 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
3393 	else
3394 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
3395 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
3396 
3397 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3398 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3399 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
3400 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
3401 			return 0;
3402 
3403 		udelay(1);
3404 	}
3405 
3406 	return -ETIMEDOUT;
3407 }
3408 
3409 static int qm_set_msi(struct hisi_qm *qm, bool set)
3410 {
3411 	struct pci_dev *pdev = qm->pdev;
3412 
3413 	if (set) {
3414 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
3415 				       0);
3416 	} else {
3417 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
3418 				       ACC_PEH_MSI_DISABLE);
3419 		if (qm->err_status.is_qm_ecc_mbit ||
3420 		    qm->err_status.is_dev_ecc_mbit)
3421 			return 0;
3422 
3423 		mdelay(1);
3424 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
3425 			return -EFAULT;
3426 	}
3427 
3428 	return 0;
3429 }
3430 
3431 static int qm_vf_reset_prepare(struct hisi_qm *qm,
3432 			       enum qm_stop_reason stop_reason)
3433 {
3434 	struct hisi_qm_list *qm_list = qm->qm_list;
3435 	struct pci_dev *pdev = qm->pdev;
3436 	struct pci_dev *virtfn;
3437 	struct hisi_qm *vf_qm;
3438 	int ret = 0;
3439 
3440 	mutex_lock(&qm_list->lock);
3441 	list_for_each_entry(vf_qm, &qm_list->list, list) {
3442 		virtfn = vf_qm->pdev;
3443 		if (virtfn == pdev)
3444 			continue;
3445 
3446 		if (pci_physfn(virtfn) == pdev) {
3447 			/* save VFs PCIE BAR configuration */
3448 			pci_save_state(virtfn);
3449 
3450 			ret = hisi_qm_stop(vf_qm, stop_reason);
3451 			if (ret)
3452 				goto stop_fail;
3453 		}
3454 	}
3455 
3456 stop_fail:
3457 	mutex_unlock(&qm_list->lock);
3458 	return ret;
3459 }
3460 
3461 static int qm_reset_prepare_ready(struct hisi_qm *qm)
3462 {
3463 	struct pci_dev *pdev = qm->pdev;
3464 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3465 	int delay = 0;
3466 
3467 	/* All reset requests need to be queued for processing */
3468 	while (test_and_set_bit(QM_DEV_RESET_FLAG, &pf_qm->reset_flag)) {
3469 		msleep(++delay);
3470 		if (delay > QM_RESET_WAIT_TIMEOUT)
3471 			return -EBUSY;
3472 	}
3473 
3474 	return 0;
3475 }
3476 
3477 static int qm_controller_reset_prepare(struct hisi_qm *qm)
3478 {
3479 	struct pci_dev *pdev = qm->pdev;
3480 	int ret;
3481 
3482 	ret = qm_reset_prepare_ready(qm);
3483 	if (ret) {
3484 		pci_err(pdev, "Controller reset not ready!\n");
3485 		return ret;
3486 	}
3487 
3488 	if (qm->vfs_num) {
3489 		ret = qm_vf_reset_prepare(qm, QM_SOFT_RESET);
3490 		if (ret) {
3491 			pci_err(pdev, "Fails to stop VFs!\n");
3492 			return ret;
3493 		}
3494 	}
3495 
3496 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
3497 	if (ret) {
3498 		pci_err(pdev, "Fails to stop QM!\n");
3499 		return ret;
3500 	}
3501 
3502 	return 0;
3503 }
3504 
3505 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
3506 {
3507 	u32 nfe_enb = 0;
3508 
3509 	if (!qm->err_status.is_dev_ecc_mbit &&
3510 	    qm->err_status.is_qm_ecc_mbit &&
3511 	    qm->err_ini->close_axi_master_ooo) {
3512 
3513 		qm->err_ini->close_axi_master_ooo(qm);
3514 
3515 	} else if (qm->err_status.is_dev_ecc_mbit &&
3516 		   !qm->err_status.is_qm_ecc_mbit &&
3517 		   !qm->err_ini->close_axi_master_ooo) {
3518 
3519 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
3520 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
3521 		       qm->io_base + QM_RAS_NFE_ENABLE);
3522 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
3523 	}
3524 }
3525 
3526 static int qm_soft_reset(struct hisi_qm *qm)
3527 {
3528 	struct pci_dev *pdev = qm->pdev;
3529 	int ret;
3530 	u32 val;
3531 
3532 	/* Ensure all doorbells and mailboxes received by QM */
3533 	ret = qm_check_req_recv(qm);
3534 	if (ret)
3535 		return ret;
3536 
3537 	if (qm->vfs_num) {
3538 		ret = qm_set_vf_mse(qm, false);
3539 		if (ret) {
3540 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
3541 			return ret;
3542 		}
3543 	}
3544 
3545 	ret = qm_set_msi(qm, false);
3546 	if (ret) {
3547 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
3548 		return ret;
3549 	}
3550 
3551 	qm_dev_ecc_mbit_handle(qm);
3552 
3553 	/* OOO register set and check */
3554 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
3555 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
3556 
3557 	/* If bus lock, reset chip */
3558 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
3559 					 val,
3560 					 (val == ACC_MASTER_TRANS_RETURN_RW),
3561 					 POLL_PERIOD, POLL_TIMEOUT);
3562 	if (ret) {
3563 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
3564 		return ret;
3565 	}
3566 
3567 	ret = qm_set_pf_mse(qm, false);
3568 	if (ret) {
3569 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
3570 		return ret;
3571 	}
3572 
3573 	/* The reset related sub-control registers are not in PCI BAR */
3574 	if (ACPI_HANDLE(&pdev->dev)) {
3575 		unsigned long long value = 0;
3576 		acpi_status s;
3577 
3578 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
3579 					  qm->err_ini->err_info.acpi_rst,
3580 					  NULL, &value);
3581 		if (ACPI_FAILURE(s)) {
3582 			pci_err(pdev, "NO controller reset method!\n");
3583 			return -EIO;
3584 		}
3585 
3586 		if (value) {
3587 			pci_err(pdev, "Reset step %llu failed!\n", value);
3588 			return -EIO;
3589 		}
3590 	} else {
3591 		pci_err(pdev, "No reset method!\n");
3592 		return -EINVAL;
3593 	}
3594 
3595 	return 0;
3596 }
3597 
3598 static int qm_vf_reset_done(struct hisi_qm *qm)
3599 {
3600 	struct hisi_qm_list *qm_list = qm->qm_list;
3601 	struct pci_dev *pdev = qm->pdev;
3602 	struct pci_dev *virtfn;
3603 	struct hisi_qm *vf_qm;
3604 	int ret = 0;
3605 
3606 	mutex_lock(&qm_list->lock);
3607 	list_for_each_entry(vf_qm, &qm_list->list, list) {
3608 		virtfn = vf_qm->pdev;
3609 		if (virtfn == pdev)
3610 			continue;
3611 
3612 		if (pci_physfn(virtfn) == pdev) {
3613 			/* enable VFs PCIE BAR configuration */
3614 			pci_restore_state(virtfn);
3615 
3616 			ret = qm_restart(vf_qm);
3617 			if (ret)
3618 				goto restart_fail;
3619 		}
3620 	}
3621 
3622 restart_fail:
3623 	mutex_unlock(&qm_list->lock);
3624 	return ret;
3625 }
3626 
3627 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
3628 {
3629 	return qm->err_ini->get_dev_hw_err_status(qm);
3630 }
3631 
3632 static int qm_dev_hw_init(struct hisi_qm *qm)
3633 {
3634 	return qm->err_ini->hw_init(qm);
3635 }
3636 
3637 static void qm_restart_prepare(struct hisi_qm *qm)
3638 {
3639 	u32 value;
3640 
3641 	if (!qm->err_status.is_qm_ecc_mbit &&
3642 	    !qm->err_status.is_dev_ecc_mbit)
3643 		return;
3644 
3645 	/* temporarily close the OOO port used for PEH to write out MSI */
3646 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3647 	writel(value & ~qm->err_ini->err_info.msi_wr_port,
3648 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3649 
3650 	/* clear dev ecc 2bit error source if having */
3651 	value = qm_get_dev_err_status(qm) &
3652 		qm->err_ini->err_info.ecc_2bits_mask;
3653 	if (value && qm->err_ini->clear_dev_hw_err_status)
3654 		qm->err_ini->clear_dev_hw_err_status(qm, value);
3655 
3656 	/* clear QM ecc mbit error source */
3657 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
3658 
3659 	/* clear AM Reorder Buffer ecc mbit source */
3660 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
3661 
3662 	if (qm->err_ini->open_axi_master_ooo)
3663 		qm->err_ini->open_axi_master_ooo(qm);
3664 }
3665 
3666 static void qm_restart_done(struct hisi_qm *qm)
3667 {
3668 	u32 value;
3669 
3670 	if (!qm->err_status.is_qm_ecc_mbit &&
3671 	    !qm->err_status.is_dev_ecc_mbit)
3672 		return;
3673 
3674 	/* open the OOO port for PEH to write out MSI */
3675 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3676 	value |= qm->err_ini->err_info.msi_wr_port;
3677 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3678 
3679 	qm->err_status.is_qm_ecc_mbit = false;
3680 	qm->err_status.is_dev_ecc_mbit = false;
3681 }
3682 
3683 static int qm_controller_reset_done(struct hisi_qm *qm)
3684 {
3685 	struct pci_dev *pdev = qm->pdev;
3686 	int ret;
3687 
3688 	ret = qm_set_msi(qm, true);
3689 	if (ret) {
3690 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
3691 		return ret;
3692 	}
3693 
3694 	ret = qm_set_pf_mse(qm, true);
3695 	if (ret) {
3696 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
3697 		return ret;
3698 	}
3699 
3700 	if (qm->vfs_num) {
3701 		ret = qm_set_vf_mse(qm, true);
3702 		if (ret) {
3703 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
3704 			return ret;
3705 		}
3706 	}
3707 
3708 	ret = qm_dev_hw_init(qm);
3709 	if (ret) {
3710 		pci_err(pdev, "Failed to init device\n");
3711 		return ret;
3712 	}
3713 
3714 	qm_restart_prepare(qm);
3715 
3716 	ret = qm_restart(qm);
3717 	if (ret) {
3718 		pci_err(pdev, "Failed to start QM!\n");
3719 		return ret;
3720 	}
3721 
3722 	if (qm->vfs_num) {
3723 		ret = qm_vf_q_assign(qm, qm->vfs_num);
3724 		if (ret) {
3725 			pci_err(pdev, "Failed to assign queue!\n");
3726 			return ret;
3727 		}
3728 	}
3729 
3730 	ret = qm_vf_reset_done(qm);
3731 	if (ret) {
3732 		pci_err(pdev, "Failed to start VFs!\n");
3733 		return -EPERM;
3734 	}
3735 
3736 	hisi_qm_dev_err_init(qm);
3737 	qm_restart_done(qm);
3738 
3739 	clear_bit(QM_DEV_RESET_FLAG, &qm->reset_flag);
3740 
3741 	return 0;
3742 }
3743 
3744 static int qm_controller_reset(struct hisi_qm *qm)
3745 {
3746 	struct pci_dev *pdev = qm->pdev;
3747 	int ret;
3748 
3749 	pci_info(pdev, "Controller resetting...\n");
3750 
3751 	ret = qm_controller_reset_prepare(qm);
3752 	if (ret)
3753 		return ret;
3754 
3755 	ret = qm_soft_reset(qm);
3756 	if (ret) {
3757 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
3758 		return ret;
3759 	}
3760 
3761 	ret = qm_controller_reset_done(qm);
3762 	if (ret)
3763 		return ret;
3764 
3765 	pci_info(pdev, "Controller reset complete\n");
3766 
3767 	return 0;
3768 }
3769 
3770 /**
3771  * hisi_qm_dev_slot_reset() - slot reset
3772  * @pdev: the PCIe device
3773  *
3774  * This function offers QM relate PCIe device reset interface. Drivers which
3775  * use QM can use this function as slot_reset in its struct pci_error_handlers.
3776  */
3777 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
3778 {
3779 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3780 	int ret;
3781 
3782 	if (pdev->is_virtfn)
3783 		return PCI_ERS_RESULT_RECOVERED;
3784 
3785 	pci_aer_clear_nonfatal_status(pdev);
3786 
3787 	/* reset pcie device controller */
3788 	ret = qm_controller_reset(qm);
3789 	if (ret) {
3790 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
3791 		return PCI_ERS_RESULT_DISCONNECT;
3792 	}
3793 
3794 	return PCI_ERS_RESULT_RECOVERED;
3795 }
3796 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
3797 
3798 /* check the interrupt is ecc-mbit error or not */
3799 static int qm_check_dev_error(struct hisi_qm *qm)
3800 {
3801 	int ret;
3802 
3803 	if (qm->fun_type == QM_HW_VF)
3804 		return 0;
3805 
3806 	ret = qm_get_hw_error_status(qm) & QM_ECC_MBIT;
3807 	if (ret)
3808 		return ret;
3809 
3810 	return (qm_get_dev_err_status(qm) &
3811 		qm->err_ini->err_info.ecc_2bits_mask);
3812 }
3813 
3814 void hisi_qm_reset_prepare(struct pci_dev *pdev)
3815 {
3816 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3817 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3818 	u32 delay = 0;
3819 	int ret;
3820 
3821 	hisi_qm_dev_err_uninit(pf_qm);
3822 
3823 	/*
3824 	 * Check whether there is an ECC mbit error, If it occurs, need to
3825 	 * wait for soft reset to fix it.
3826 	 */
3827 	while (qm_check_dev_error(pf_qm)) {
3828 		msleep(++delay);
3829 		if (delay > QM_RESET_WAIT_TIMEOUT)
3830 			return;
3831 	}
3832 
3833 	ret = qm_reset_prepare_ready(qm);
3834 	if (ret) {
3835 		pci_err(pdev, "FLR not ready!\n");
3836 		return;
3837 	}
3838 
3839 	if (qm->vfs_num) {
3840 		ret = qm_vf_reset_prepare(qm, QM_FLR);
3841 		if (ret) {
3842 			pci_err(pdev, "Failed to prepare reset, ret = %d.\n",
3843 				ret);
3844 			return;
3845 		}
3846 	}
3847 
3848 	ret = hisi_qm_stop(qm, QM_FLR);
3849 	if (ret) {
3850 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
3851 		return;
3852 	}
3853 
3854 	pci_info(pdev, "FLR resetting...\n");
3855 }
3856 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
3857 
3858 static bool qm_flr_reset_complete(struct pci_dev *pdev)
3859 {
3860 	struct pci_dev *pf_pdev = pci_physfn(pdev);
3861 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
3862 	u32 id;
3863 
3864 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
3865 	if (id == QM_PCI_COMMAND_INVALID) {
3866 		pci_err(pdev, "Device can not be used!\n");
3867 		return false;
3868 	}
3869 
3870 	clear_bit(QM_DEV_RESET_FLAG, &qm->reset_flag);
3871 
3872 	return true;
3873 }
3874 
3875 void hisi_qm_reset_done(struct pci_dev *pdev)
3876 {
3877 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3878 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3879 	int ret;
3880 
3881 	hisi_qm_dev_err_init(pf_qm);
3882 
3883 	ret = qm_restart(qm);
3884 	if (ret) {
3885 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
3886 		goto flr_done;
3887 	}
3888 
3889 	if (qm->fun_type == QM_HW_PF) {
3890 		ret = qm_dev_hw_init(qm);
3891 		if (ret) {
3892 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
3893 			goto flr_done;
3894 		}
3895 
3896 		if (!qm->vfs_num)
3897 			goto flr_done;
3898 
3899 		ret = qm_vf_q_assign(qm, qm->vfs_num);
3900 		if (ret) {
3901 			pci_err(pdev, "Failed to assign VFs, ret = %d.\n", ret);
3902 			goto flr_done;
3903 		}
3904 
3905 		ret = qm_vf_reset_done(qm);
3906 		if (ret) {
3907 			pci_err(pdev, "Failed to start VFs, ret = %d.\n", ret);
3908 			goto flr_done;
3909 		}
3910 	}
3911 
3912 flr_done:
3913 	if (qm_flr_reset_complete(pdev))
3914 		pci_info(pdev, "FLR reset complete\n");
3915 }
3916 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
3917 
3918 static irqreturn_t qm_abnormal_irq(int irq, void *data)
3919 {
3920 	struct hisi_qm *qm = data;
3921 	enum acc_err_result ret;
3922 
3923 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
3924 	ret = qm_process_dev_error(qm);
3925 	if (ret == ACC_ERR_NEED_RESET)
3926 		schedule_work(&qm->rst_work);
3927 
3928 	return IRQ_HANDLED;
3929 }
3930 
3931 static int qm_irq_register(struct hisi_qm *qm)
3932 {
3933 	struct pci_dev *pdev = qm->pdev;
3934 	int ret;
3935 
3936 	ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR),
3937 			  qm_irq, IRQF_SHARED, qm->dev_name, qm);
3938 	if (ret)
3939 		return ret;
3940 
3941 	if (qm->ver != QM_HW_V1) {
3942 		ret = request_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR),
3943 				  qm_aeq_irq, IRQF_SHARED, qm->dev_name, qm);
3944 		if (ret)
3945 			goto err_aeq_irq;
3946 
3947 		if (qm->fun_type == QM_HW_PF) {
3948 			ret = request_irq(pci_irq_vector(pdev,
3949 					  QM_ABNORMAL_EVENT_IRQ_VECTOR),
3950 					  qm_abnormal_irq, IRQF_SHARED,
3951 					  qm->dev_name, qm);
3952 			if (ret)
3953 				goto err_abonormal_irq;
3954 		}
3955 	}
3956 
3957 	return 0;
3958 
3959 err_abonormal_irq:
3960 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
3961 err_aeq_irq:
3962 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
3963 	return ret;
3964 }
3965 
3966 /**
3967  * hisi_qm_dev_shutdown() - Shutdown device.
3968  * @pdev: The device will be shutdown.
3969  *
3970  * This function will stop qm when OS shutdown or rebooting.
3971  */
3972 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
3973 {
3974 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3975 	int ret;
3976 
3977 	ret = hisi_qm_stop(qm, QM_NORMAL);
3978 	if (ret)
3979 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
3980 }
3981 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
3982 
3983 static void hisi_qm_controller_reset(struct work_struct *rst_work)
3984 {
3985 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
3986 	int ret;
3987 
3988 	/* reset pcie device controller */
3989 	ret = qm_controller_reset(qm);
3990 	if (ret)
3991 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
3992 
3993 }
3994 
3995 /**
3996  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
3997  * @qm: The qm needs add.
3998  * @qm_list: The qm list.
3999  *
4000  * This function adds qm to qm list, and will register algorithm to
4001  * crypto when the qm list is empty.
4002  */
4003 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4004 {
4005 	int flag = 0;
4006 	int ret = 0;
4007 
4008 	mutex_lock(&qm_list->lock);
4009 	if (list_empty(&qm_list->list))
4010 		flag = 1;
4011 	list_add_tail(&qm->list, &qm_list->list);
4012 	mutex_unlock(&qm_list->lock);
4013 
4014 	if (flag) {
4015 		ret = qm_list->register_to_crypto();
4016 		if (ret) {
4017 			mutex_lock(&qm_list->lock);
4018 			list_del(&qm->list);
4019 			mutex_unlock(&qm_list->lock);
4020 		}
4021 	}
4022 
4023 	return ret;
4024 }
4025 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4026 
4027 /**
4028  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
4029  * qm list.
4030  * @qm: The qm needs delete.
4031  * @qm_list: The qm list.
4032  *
4033  * This function deletes qm from qm list, and will unregister algorithm
4034  * from crypto when the qm list is empty.
4035  */
4036 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4037 {
4038 	mutex_lock(&qm_list->lock);
4039 	list_del(&qm->list);
4040 	mutex_unlock(&qm_list->lock);
4041 
4042 	if (list_empty(&qm_list->list))
4043 		qm_list->unregister_from_crypto();
4044 }
4045 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
4046 
4047 static int hisi_qm_pci_init(struct hisi_qm *qm)
4048 {
4049 	struct pci_dev *pdev = qm->pdev;
4050 	struct device *dev = &pdev->dev;
4051 	unsigned int num_vec;
4052 	int ret;
4053 
4054 	ret = pci_enable_device_mem(pdev);
4055 	if (ret < 0) {
4056 		dev_err(dev, "Failed to enable device mem!\n");
4057 		return ret;
4058 	}
4059 
4060 	ret = pci_request_mem_regions(pdev, qm->dev_name);
4061 	if (ret < 0) {
4062 		dev_err(dev, "Failed to request mem regions!\n");
4063 		goto err_disable_pcidev;
4064 	}
4065 
4066 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
4067 	qm->phys_size = pci_resource_len(qm->pdev, PCI_BAR_2);
4068 	qm->io_base = ioremap(qm->phys_base, qm->phys_size);
4069 	if (!qm->io_base) {
4070 		ret = -EIO;
4071 		goto err_release_mem_regions;
4072 	}
4073 
4074 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4075 	if (ret < 0)
4076 		goto err_iounmap;
4077 	pci_set_master(pdev);
4078 
4079 	if (!qm->ops->get_irq_num) {
4080 		ret = -EOPNOTSUPP;
4081 		goto err_iounmap;
4082 	}
4083 	num_vec = qm->ops->get_irq_num(qm);
4084 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
4085 	if (ret < 0) {
4086 		dev_err(dev, "Failed to enable MSI vectors!\n");
4087 		goto err_iounmap;
4088 	}
4089 
4090 	return 0;
4091 
4092 err_iounmap:
4093 	iounmap(qm->io_base);
4094 err_release_mem_regions:
4095 	pci_release_mem_regions(pdev);
4096 err_disable_pcidev:
4097 	pci_disable_device(pdev);
4098 	return ret;
4099 }
4100 
4101 /**
4102  * hisi_qm_init() - Initialize configures about qm.
4103  * @qm: The qm needing init.
4104  *
4105  * This function init qm, then we can call hisi_qm_start to put qm into work.
4106  */
4107 int hisi_qm_init(struct hisi_qm *qm)
4108 {
4109 	struct pci_dev *pdev = qm->pdev;
4110 	struct device *dev = &pdev->dev;
4111 	int ret;
4112 
4113 	hisi_qm_pre_init(qm);
4114 
4115 	ret = qm_alloc_uacce(qm);
4116 	if (ret < 0)
4117 		dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
4118 
4119 	ret = hisi_qm_pci_init(qm);
4120 	if (ret)
4121 		goto err_remove_uacce;
4122 
4123 	ret = qm_irq_register(qm);
4124 	if (ret)
4125 		goto err_pci_uninit;
4126 
4127 	if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) {
4128 		/* v2 starts to support get vft by mailbox */
4129 		ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
4130 		if (ret)
4131 			goto err_irq_unregister;
4132 	}
4133 
4134 	ret = hisi_qm_memory_init(qm);
4135 	if (ret)
4136 		goto err_irq_unregister;
4137 
4138 	INIT_WORK(&qm->work, qm_work_process);
4139 	if (qm->fun_type == QM_HW_PF)
4140 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
4141 
4142 	atomic_set(&qm->status.flags, QM_INIT);
4143 
4144 	return 0;
4145 
4146 err_irq_unregister:
4147 	qm_irq_unregister(qm);
4148 err_pci_uninit:
4149 	hisi_qm_pci_uninit(qm);
4150 err_remove_uacce:
4151 	uacce_remove(qm->uacce);
4152 	qm->uacce = NULL;
4153 	return ret;
4154 }
4155 EXPORT_SYMBOL_GPL(hisi_qm_init);
4156 
4157 MODULE_LICENSE("GPL v2");
4158 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
4159 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
4160