xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision b9221f71)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/idr.h>
9 #include <linux/io.h>
10 #include <linux/irqreturn.h>
11 #include <linux/log2.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include "qm.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 #define QM_IRQ_NUM_V1			1
26 #define QM_IRQ_NUM_PF_V2		4
27 #define QM_IRQ_NUM_VF_V2		2
28 #define QM_IRQ_NUM_VF_V3		3
29 
30 #define QM_EQ_EVENT_IRQ_VECTOR		0
31 #define QM_AEQ_EVENT_IRQ_VECTOR		1
32 #define QM_CMD_EVENT_IRQ_VECTOR		2
33 #define QM_ABNORMAL_EVENT_IRQ_VECTOR	3
34 
35 /* mailbox */
36 #define QM_MB_CMD_SQC			0x0
37 #define QM_MB_CMD_CQC			0x1
38 #define QM_MB_CMD_EQC			0x2
39 #define QM_MB_CMD_AEQC			0x3
40 #define QM_MB_CMD_SQC_BT		0x4
41 #define QM_MB_CMD_CQC_BT		0x5
42 #define QM_MB_CMD_SQC_VFT_V2		0x6
43 #define QM_MB_CMD_STOP_QP		0x8
44 #define QM_MB_CMD_SRC			0xc
45 #define QM_MB_CMD_DST			0xd
46 
47 #define QM_MB_CMD_SEND_BASE		0x300
48 #define QM_MB_EVENT_SHIFT		8
49 #define QM_MB_BUSY_SHIFT		13
50 #define QM_MB_OP_SHIFT			14
51 #define QM_MB_CMD_DATA_ADDR_L		0x304
52 #define QM_MB_CMD_DATA_ADDR_H		0x308
53 #define QM_MB_PING_ALL_VFS		0xffff
54 #define QM_MB_CMD_DATA_SHIFT		32
55 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
56 
57 /* sqc shift */
58 #define QM_SQ_HOP_NUM_SHIFT		0
59 #define QM_SQ_PAGE_SIZE_SHIFT		4
60 #define QM_SQ_BUF_SIZE_SHIFT		8
61 #define QM_SQ_SQE_SIZE_SHIFT		12
62 #define QM_SQ_PRIORITY_SHIFT		0
63 #define QM_SQ_ORDERS_SHIFT		4
64 #define QM_SQ_TYPE_SHIFT		8
65 #define QM_QC_PASID_ENABLE		0x1
66 #define QM_QC_PASID_ENABLE_SHIFT	7
67 
68 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
69 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
70 
71 /* cqc shift */
72 #define QM_CQ_HOP_NUM_SHIFT		0
73 #define QM_CQ_PAGE_SIZE_SHIFT		4
74 #define QM_CQ_BUF_SIZE_SHIFT		8
75 #define QM_CQ_CQE_SIZE_SHIFT		12
76 #define QM_CQ_PHASE_SHIFT		0
77 #define QM_CQ_FLAG_SHIFT		1
78 
79 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
80 #define QM_QC_CQE_SIZE			4
81 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
82 
83 /* eqc shift */
84 #define QM_EQE_AEQE_SIZE		(2UL << 12)
85 #define QM_EQC_PHASE_SHIFT		16
86 
87 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
88 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
89 
90 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
91 #define QM_AEQE_TYPE_SHIFT		17
92 
93 #define QM_DOORBELL_CMD_SQ		0
94 #define QM_DOORBELL_CMD_CQ		1
95 #define QM_DOORBELL_CMD_EQ		2
96 #define QM_DOORBELL_CMD_AEQ		3
97 
98 #define QM_DOORBELL_BASE_V1		0x340
99 #define QM_DB_CMD_SHIFT_V1		16
100 #define QM_DB_INDEX_SHIFT_V1		32
101 #define QM_DB_PRIORITY_SHIFT_V1		48
102 #define QM_DOORBELL_SQ_CQ_BASE_V2	0x1000
103 #define QM_DOORBELL_EQ_AEQ_BASE_V2	0x2000
104 #define QM_QUE_ISO_CFG_V		0x0030
105 #define QM_PAGE_SIZE			0x0034
106 #define QM_QUE_ISO_EN			0x100154
107 #define QM_CAPBILITY			0x100158
108 #define QM_QP_NUN_MASK			GENMASK(10, 0)
109 #define QM_QP_DB_INTERVAL		0x10000
110 #define QM_QP_MAX_NUM_SHIFT		11
111 #define QM_DB_CMD_SHIFT_V2		12
112 #define QM_DB_RAND_SHIFT_V2		16
113 #define QM_DB_INDEX_SHIFT_V2		32
114 #define QM_DB_PRIORITY_SHIFT_V2		48
115 
116 #define QM_MEM_START_INIT		0x100040
117 #define QM_MEM_INIT_DONE		0x100044
118 #define QM_VFT_CFG_RDY			0x10006c
119 #define QM_VFT_CFG_OP_WR		0x100058
120 #define QM_VFT_CFG_TYPE			0x10005c
121 #define QM_SQC_VFT			0x0
122 #define QM_CQC_VFT			0x1
123 #define QM_VFT_CFG			0x100060
124 #define QM_VFT_CFG_OP_ENABLE		0x100054
125 
126 #define QM_VFT_CFG_DATA_L		0x100064
127 #define QM_VFT_CFG_DATA_H		0x100068
128 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
129 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
130 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
131 #define QM_SQC_VFT_START_SQN_SHIFT	28
132 #define QM_SQC_VFT_VALID		(1ULL << 44)
133 #define QM_SQC_VFT_SQN_SHIFT		45
134 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
135 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
136 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
137 #define QM_CQC_VFT_VALID		(1ULL << 28)
138 
139 #define QM_SQC_VFT_BASE_SHIFT_V2	28
140 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
141 #define QM_SQC_VFT_NUM_SHIFT_V2		45
142 #define QM_SQC_VFT_NUM_MASK_v2		GENMASK(9, 0)
143 
144 #define QM_DFX_CNT_CLR_CE		0x100118
145 
146 #define QM_ABNORMAL_INT_SOURCE		0x100000
147 #define QM_ABNORMAL_INT_SOURCE_CLR	GENMASK(14, 0)
148 #define QM_ABNORMAL_INT_MASK		0x100004
149 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
150 #define QM_ABNORMAL_INT_STATUS		0x100008
151 #define QM_ABNORMAL_INT_SET		0x10000c
152 #define QM_ABNORMAL_INF00		0x100010
153 #define QM_FIFO_OVERFLOW_TYPE		0xc0
154 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
155 #define QM_FIFO_OVERFLOW_VF		0x3f
156 #define QM_ABNORMAL_INF01		0x100014
157 #define QM_DB_TIMEOUT_TYPE		0xc0
158 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
159 #define QM_DB_TIMEOUT_VF		0x3f
160 #define QM_RAS_CE_ENABLE		0x1000ec
161 #define QM_RAS_FE_ENABLE		0x1000f0
162 #define QM_RAS_NFE_ENABLE		0x1000f4
163 #define QM_RAS_CE_THRESHOLD		0x1000f8
164 #define QM_RAS_CE_TIMES_PER_IRQ		1
165 #define QM_RAS_MSI_INT_SEL		0x1040f4
166 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
167 
168 #define QM_RESET_WAIT_TIMEOUT		400
169 #define QM_PEH_VENDOR_ID		0x1000d8
170 #define ACC_VENDOR_ID_VALUE		0x5a5a
171 #define QM_PEH_DFX_INFO0		0x1000fc
172 #define QM_PEH_DFX_INFO1		0x100100
173 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
174 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
175 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
176 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
177 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
178 #define ACC_MASTER_TRANS_RETURN_RW	3
179 #define ACC_MASTER_TRANS_RETURN		0x300150
180 #define ACC_MASTER_GLOBAL_CTRL		0x300000
181 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
182 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
183 #define ACC_AM_ROB_ECC_INT_STS		0x300104
184 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
185 #define QM_MSI_CAP_ENABLE		BIT(16)
186 
187 /* interfunction communication */
188 #define QM_IFC_READY_STATUS		0x100128
189 #define QM_IFC_C_STS_M			0x10012C
190 #define QM_IFC_INT_SET_P		0x100130
191 #define QM_IFC_INT_CFG			0x100134
192 #define QM_IFC_INT_SOURCE_P		0x100138
193 #define QM_IFC_INT_SOURCE_V		0x0020
194 #define QM_IFC_INT_MASK			0x0024
195 #define QM_IFC_INT_STATUS		0x0028
196 #define QM_IFC_INT_SET_V		0x002C
197 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
198 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
199 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
200 #define QM_IFC_INT_DISABLE		BIT(0)
201 #define QM_IFC_INT_STATUS_MASK		BIT(0)
202 #define QM_IFC_INT_SET_MASK		BIT(0)
203 #define QM_WAIT_DST_ACK			10
204 #define QM_MAX_PF_WAIT_COUNT		10
205 #define QM_MAX_VF_WAIT_COUNT		40
206 #define QM_VF_RESET_WAIT_US            20000
207 #define QM_VF_RESET_WAIT_CNT           3000
208 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
209 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
210 
211 #define QM_DFX_MB_CNT_VF		0x104010
212 #define QM_DFX_DB_CNT_VF		0x104020
213 #define QM_DFX_SQE_CNT_VF_SQN		0x104030
214 #define QM_DFX_CQE_CNT_VF_CQN		0x104040
215 #define QM_DFX_QN_SHIFT			16
216 #define CURRENT_FUN_MASK		GENMASK(5, 0)
217 #define CURRENT_Q_MASK			GENMASK(31, 16)
218 
219 #define POLL_PERIOD			10
220 #define POLL_TIMEOUT			1000
221 #define WAIT_PERIOD_US_MAX		200
222 #define WAIT_PERIOD_US_MIN		100
223 #define MAX_WAIT_COUNTS			1000
224 #define QM_CACHE_WB_START		0x204
225 #define QM_CACHE_WB_DONE		0x208
226 
227 #define PCI_BAR_2			2
228 #define PCI_BAR_4			4
229 #define QM_SQE_DATA_ALIGN_MASK		GENMASK(6, 0)
230 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
231 
232 #define QM_DBG_READ_LEN		256
233 #define QM_DBG_WRITE_LEN		1024
234 #define QM_DBG_TMP_BUF_LEN		22
235 #define QM_PCI_COMMAND_INVALID		~0
236 
237 #define WAIT_PERIOD			20
238 #define REMOVE_WAIT_DELAY		10
239 #define QM_SQE_ADDR_MASK		GENMASK(7, 0)
240 #define QM_EQ_DEPTH			(1024 * 2)
241 
242 #define QM_DRIVER_REMOVING		0
243 #define QM_RST_SCHED			1
244 #define QM_RESETTING			2
245 #define QM_QOS_PARAM_NUM		2
246 #define QM_QOS_VAL_NUM			1
247 #define QM_QOS_BDF_PARAM_NUM		4
248 #define QM_QOS_MAX_VAL			1000
249 #define QM_QOS_RATE			100
250 #define QM_QOS_EXPAND_RATE		1000
251 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
252 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
253 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
254 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
255 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
256 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
257 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
258 #define QM_SHAPER_CBS_B			1
259 #define QM_SHAPER_CBS_S			16
260 #define QM_SHAPER_VFT_OFFSET		6
261 #define WAIT_FOR_QOS_VF			100
262 #define QM_QOS_MIN_ERROR_RATE		5
263 #define QM_QOS_TYPICAL_NUM		8
264 #define QM_SHAPER_MIN_CBS_S		8
265 #define QM_QOS_TICK			0x300U
266 #define QM_QOS_DIVISOR_CLK		0x1f40U
267 #define QM_QOS_MAX_CIR_B		200
268 #define QM_QOS_MIN_CIR_B		100
269 #define QM_QOS_MAX_CIR_U		6
270 #define QM_QOS_MAX_CIR_S		11
271 #define QM_QOS_VAL_MAX_LEN		32
272 
273 #define QM_AUTOSUSPEND_DELAY		3000
274 
275 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
276 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT)	| \
277 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT)	| \
278 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT)	| \
279 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
280 
281 #define QM_MK_CQC_DW3_V2(cqe_sz) \
282 	((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
283 
284 #define QM_MK_SQC_W13(priority, orders, alg_type) \
285 	(((priority) << QM_SQ_PRIORITY_SHIFT)	| \
286 	((orders) << QM_SQ_ORDERS_SHIFT)	| \
287 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
288 
289 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
290 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT)	| \
291 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT)	| \
292 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT)	| \
293 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
294 
295 #define QM_MK_SQC_DW3_V2(sqe_sz) \
296 	((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
297 
298 #define INIT_QC_COMMON(qc, base, pasid) do {			\
299 	(qc)->head = 0;						\
300 	(qc)->tail = 0;						\
301 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
302 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
303 	(qc)->dw3 = 0;						\
304 	(qc)->w8 = 0;						\
305 	(qc)->rsvd0 = 0;					\
306 	(qc)->pasid = cpu_to_le16(pasid);			\
307 	(qc)->w11 = 0;						\
308 	(qc)->rsvd1 = 0;					\
309 } while (0)
310 
311 enum vft_type {
312 	SQC_VFT = 0,
313 	CQC_VFT,
314 	SHAPER_VFT,
315 };
316 
317 enum acc_err_result {
318 	ACC_ERR_NONE,
319 	ACC_ERR_NEED_RESET,
320 	ACC_ERR_RECOVERED,
321 };
322 
323 enum qm_alg_type {
324 	ALG_TYPE_0,
325 	ALG_TYPE_1,
326 };
327 
328 enum qm_mb_cmd {
329 	QM_PF_FLR_PREPARE = 0x01,
330 	QM_PF_SRST_PREPARE,
331 	QM_PF_RESET_DONE,
332 	QM_VF_PREPARE_DONE,
333 	QM_VF_PREPARE_FAIL,
334 	QM_VF_START_DONE,
335 	QM_VF_START_FAIL,
336 	QM_PF_SET_QOS,
337 	QM_VF_GET_QOS,
338 };
339 
340 struct qm_cqe {
341 	__le32 rsvd0;
342 	__le16 cmd_id;
343 	__le16 rsvd1;
344 	__le16 sq_head;
345 	__le16 sq_num;
346 	__le16 rsvd2;
347 	__le16 w7;
348 };
349 
350 struct qm_eqe {
351 	__le32 dw0;
352 };
353 
354 struct qm_aeqe {
355 	__le32 dw0;
356 };
357 
358 struct qm_sqc {
359 	__le16 head;
360 	__le16 tail;
361 	__le32 base_l;
362 	__le32 base_h;
363 	__le32 dw3;
364 	__le16 w8;
365 	__le16 rsvd0;
366 	__le16 pasid;
367 	__le16 w11;
368 	__le16 cq_num;
369 	__le16 w13;
370 	__le32 rsvd1;
371 };
372 
373 struct qm_cqc {
374 	__le16 head;
375 	__le16 tail;
376 	__le32 base_l;
377 	__le32 base_h;
378 	__le32 dw3;
379 	__le16 w8;
380 	__le16 rsvd0;
381 	__le16 pasid;
382 	__le16 w11;
383 	__le32 dw6;
384 	__le32 rsvd1;
385 };
386 
387 struct qm_eqc {
388 	__le16 head;
389 	__le16 tail;
390 	__le32 base_l;
391 	__le32 base_h;
392 	__le32 dw3;
393 	__le32 rsvd[2];
394 	__le32 dw6;
395 };
396 
397 struct qm_aeqc {
398 	__le16 head;
399 	__le16 tail;
400 	__le32 base_l;
401 	__le32 base_h;
402 	__le32 dw3;
403 	__le32 rsvd[2];
404 	__le32 dw6;
405 };
406 
407 struct qm_mailbox {
408 	__le16 w0;
409 	__le16 queue_num;
410 	__le32 base_l;
411 	__le32 base_h;
412 	__le32 rsvd;
413 };
414 
415 struct qm_doorbell {
416 	__le16 queue_num;
417 	__le16 cmd;
418 	__le16 index;
419 	__le16 priority;
420 };
421 
422 struct hisi_qm_resource {
423 	struct hisi_qm *qm;
424 	int distance;
425 	struct list_head list;
426 };
427 
428 struct hisi_qm_hw_ops {
429 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
430 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
431 		      u8 cmd, u16 index, u8 priority);
432 	u32 (*get_irq_num)(struct hisi_qm *qm);
433 	int (*debug_init)(struct hisi_qm *qm);
434 	void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe);
435 	void (*hw_error_uninit)(struct hisi_qm *qm);
436 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
437 	int (*stop_qp)(struct hisi_qp *qp);
438 	int (*set_msi)(struct hisi_qm *qm, bool set);
439 	int (*ping_all_vfs)(struct hisi_qm *qm, u64 cmd);
440 	int (*ping_pf)(struct hisi_qm *qm, u64 cmd);
441 };
442 
443 struct qm_dfx_item {
444 	const char *name;
445 	u32 offset;
446 };
447 
448 static struct qm_dfx_item qm_dfx_files[] = {
449 	{"err_irq", offsetof(struct qm_dfx, err_irq_cnt)},
450 	{"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)},
451 	{"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)},
452 	{"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)},
453 	{"mb_err", offsetof(struct qm_dfx, mb_err_cnt)},
454 };
455 
456 static const char * const qm_debug_file_name[] = {
457 	[CURRENT_QM]   = "current_qm",
458 	[CURRENT_Q]    = "current_q",
459 	[CLEAR_ENABLE] = "clear_enable",
460 };
461 
462 struct hisi_qm_hw_error {
463 	u32 int_msk;
464 	const char *msg;
465 };
466 
467 static const struct hisi_qm_hw_error qm_hw_error[] = {
468 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
469 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
470 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
471 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
472 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
473 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
474 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
475 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
476 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
477 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
478 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
479 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
480 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
481 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
482 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
483 	{ /* sentinel */ }
484 };
485 
486 static const char * const qm_db_timeout[] = {
487 	"sq", "cq", "eq", "aeq",
488 };
489 
490 static const char * const qm_fifo_overflow[] = {
491 	"cq", "eq", "aeq",
492 };
493 
494 static const char * const qm_s[] = {
495 	"init", "start", "close", "stop",
496 };
497 
498 static const char * const qp_s[] = {
499 	"none", "init", "start", "stop", "close",
500 };
501 
502 static const u32 typical_qos_val[QM_QOS_TYPICAL_NUM] = {100, 250, 500, 1000,
503 						10000, 25000, 50000, 100000};
504 static const u32 typical_qos_cbs_s[QM_QOS_TYPICAL_NUM] = {9, 10, 11, 12, 16,
505 							 17, 18, 19};
506 
507 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
508 {
509 	enum qm_state curr = atomic_read(&qm->status.flags);
510 	bool avail = false;
511 
512 	switch (curr) {
513 	case QM_INIT:
514 		if (new == QM_START || new == QM_CLOSE)
515 			avail = true;
516 		break;
517 	case QM_START:
518 		if (new == QM_STOP)
519 			avail = true;
520 		break;
521 	case QM_STOP:
522 		if (new == QM_CLOSE || new == QM_START)
523 			avail = true;
524 		break;
525 	default:
526 		break;
527 	}
528 
529 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
530 		qm_s[curr], qm_s[new]);
531 
532 	if (!avail)
533 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
534 			 qm_s[curr], qm_s[new]);
535 
536 	return avail;
537 }
538 
539 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
540 			      enum qp_state new)
541 {
542 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
543 	enum qp_state qp_curr = 0;
544 	bool avail = false;
545 
546 	if (qp)
547 		qp_curr = atomic_read(&qp->qp_status.flags);
548 
549 	switch (new) {
550 	case QP_INIT:
551 		if (qm_curr == QM_START || qm_curr == QM_INIT)
552 			avail = true;
553 		break;
554 	case QP_START:
555 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
556 		    (qm_curr == QM_START && qp_curr == QP_STOP))
557 			avail = true;
558 		break;
559 	case QP_STOP:
560 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
561 		    (qp_curr == QP_INIT))
562 			avail = true;
563 		break;
564 	case QP_CLOSE:
565 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
566 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
567 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
568 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
569 			avail = true;
570 		break;
571 	default:
572 		break;
573 	}
574 
575 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
576 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
577 
578 	if (!avail)
579 		dev_warn(&qm->pdev->dev,
580 			 "Can not change qp state from %s to %s in QM %s\n",
581 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
582 
583 	return avail;
584 }
585 
586 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
587 			   u64 base, u16 queue, bool op)
588 {
589 	mailbox->w0 = cpu_to_le16((cmd) |
590 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
591 		(0x1 << QM_MB_BUSY_SHIFT));
592 	mailbox->queue_num = cpu_to_le16(queue);
593 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
594 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
595 	mailbox->rsvd = 0;
596 }
597 
598 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
599 static int qm_wait_mb_ready(struct hisi_qm *qm)
600 {
601 	u32 val;
602 
603 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
604 					  val, !((val >> QM_MB_BUSY_SHIFT) &
605 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
606 }
607 
608 /* 128 bit should be written to hardware at one time to trigger a mailbox */
609 static void qm_mb_write(struct hisi_qm *qm, const void *src)
610 {
611 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
612 	unsigned long tmp0 = 0, tmp1 = 0;
613 
614 	if (!IS_ENABLED(CONFIG_ARM64)) {
615 		memcpy_toio(fun_base, src, 16);
616 		wmb();
617 		return;
618 	}
619 
620 	asm volatile("ldp %0, %1, %3\n"
621 		     "stp %0, %1, %2\n"
622 		     "dsb sy\n"
623 		     : "=&r" (tmp0),
624 		       "=&r" (tmp1),
625 		       "+Q" (*((char __iomem *)fun_base))
626 		     : "Q" (*((char *)src))
627 		     : "memory");
628 }
629 
630 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
631 {
632 	if (unlikely(qm_wait_mb_ready(qm))) {
633 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
634 		goto mb_busy;
635 	}
636 
637 	qm_mb_write(qm, mailbox);
638 
639 	if (unlikely(qm_wait_mb_ready(qm))) {
640 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
641 		goto mb_busy;
642 	}
643 
644 	return 0;
645 
646 mb_busy:
647 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
648 	return -EBUSY;
649 }
650 
651 static int qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
652 		 bool op)
653 {
654 	struct qm_mailbox mailbox;
655 	int ret;
656 
657 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
658 		queue, cmd, (unsigned long long)dma_addr);
659 
660 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
661 
662 	mutex_lock(&qm->mailbox_lock);
663 	ret = qm_mb_nolock(qm, &mailbox);
664 	mutex_unlock(&qm->mailbox_lock);
665 
666 	return ret;
667 }
668 
669 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
670 {
671 	u64 doorbell;
672 
673 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
674 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
675 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
676 
677 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
678 }
679 
680 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
681 {
682 	void __iomem *io_base = qm->io_base;
683 	u16 randata = 0;
684 	u64 doorbell;
685 
686 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
687 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
688 			  QM_DOORBELL_SQ_CQ_BASE_V2;
689 	else
690 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
691 
692 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
693 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
694 		   ((u64)index << QM_DB_INDEX_SHIFT_V2)	 |
695 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
696 
697 	writeq(doorbell, io_base);
698 }
699 
700 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
701 {
702 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
703 		qn, cmd, index);
704 
705 	qm->ops->qm_db(qm, qn, cmd, index, priority);
706 }
707 
708 static int qm_dev_mem_reset(struct hisi_qm *qm)
709 {
710 	u32 val;
711 
712 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
713 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
714 					  val & BIT(0), POLL_PERIOD,
715 					  POLL_TIMEOUT);
716 }
717 
718 static u32 qm_get_irq_num_v1(struct hisi_qm *qm)
719 {
720 	return QM_IRQ_NUM_V1;
721 }
722 
723 static u32 qm_get_irq_num_v2(struct hisi_qm *qm)
724 {
725 	if (qm->fun_type == QM_HW_PF)
726 		return QM_IRQ_NUM_PF_V2;
727 	else
728 		return QM_IRQ_NUM_VF_V2;
729 }
730 
731 static u32 qm_get_irq_num_v3(struct hisi_qm *qm)
732 {
733 	if (qm->fun_type == QM_HW_PF)
734 		return QM_IRQ_NUM_PF_V2;
735 
736 	return QM_IRQ_NUM_VF_V3;
737 }
738 
739 static int qm_pm_get_sync(struct hisi_qm *qm)
740 {
741 	struct device *dev = &qm->pdev->dev;
742 	int ret;
743 
744 	if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3)
745 		return 0;
746 
747 	ret = pm_runtime_resume_and_get(dev);
748 	if (ret < 0) {
749 		dev_err(dev, "failed to get_sync(%d).\n", ret);
750 		return ret;
751 	}
752 
753 	return 0;
754 }
755 
756 static void qm_pm_put_sync(struct hisi_qm *qm)
757 {
758 	struct device *dev = &qm->pdev->dev;
759 
760 	if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3)
761 		return;
762 
763 	pm_runtime_mark_last_busy(dev);
764 	pm_runtime_put_autosuspend(dev);
765 }
766 
767 static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe)
768 {
769 	u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
770 
771 	return &qm->qp_array[cqn];
772 }
773 
774 static void qm_cq_head_update(struct hisi_qp *qp)
775 {
776 	if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) {
777 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
778 		qp->qp_status.cq_head = 0;
779 	} else {
780 		qp->qp_status.cq_head++;
781 	}
782 }
783 
784 static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm)
785 {
786 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
787 		return;
788 
789 	if (qp->event_cb) {
790 		qp->event_cb(qp);
791 		return;
792 	}
793 
794 	if (qp->req_cb) {
795 		struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
796 
797 		while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
798 			dma_rmb();
799 			qp->req_cb(qp, qp->sqe + qm->sqe_size *
800 				   le16_to_cpu(cqe->sq_head));
801 			qm_cq_head_update(qp);
802 			cqe = qp->cqe + qp->qp_status.cq_head;
803 			qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
804 			      qp->qp_status.cq_head, 0);
805 			atomic_dec(&qp->qp_status.used);
806 		}
807 
808 		/* set c_flag */
809 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
810 		      qp->qp_status.cq_head, 1);
811 	}
812 }
813 
814 static void qm_work_process(struct work_struct *work)
815 {
816 	struct hisi_qm *qm = container_of(work, struct hisi_qm, work);
817 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
818 	struct hisi_qp *qp;
819 	int eqe_num = 0;
820 
821 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
822 		eqe_num++;
823 		qp = qm_to_hisi_qp(qm, eqe);
824 		qm_poll_qp(qp, qm);
825 
826 		if (qm->status.eq_head == QM_EQ_DEPTH - 1) {
827 			qm->status.eqc_phase = !qm->status.eqc_phase;
828 			eqe = qm->eqe;
829 			qm->status.eq_head = 0;
830 		} else {
831 			eqe++;
832 			qm->status.eq_head++;
833 		}
834 
835 		if (eqe_num == QM_EQ_DEPTH / 2 - 1) {
836 			eqe_num = 0;
837 			qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
838 		}
839 	}
840 
841 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
842 }
843 
844 static irqreturn_t do_qm_irq(int irq, void *data)
845 {
846 	struct hisi_qm *qm = (struct hisi_qm *)data;
847 
848 	/* the workqueue created by device driver of QM */
849 	if (qm->wq)
850 		queue_work(qm->wq, &qm->work);
851 	else
852 		schedule_work(&qm->work);
853 
854 	return IRQ_HANDLED;
855 }
856 
857 static irqreturn_t qm_irq(int irq, void *data)
858 {
859 	struct hisi_qm *qm = data;
860 
861 	if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
862 		return do_qm_irq(irq, data);
863 
864 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
865 	dev_err(&qm->pdev->dev, "invalid int source\n");
866 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
867 
868 	return IRQ_NONE;
869 }
870 
871 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
872 {
873 	struct hisi_qm *qm = data;
874 	u32 val;
875 
876 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
877 	val &= QM_IFC_INT_STATUS_MASK;
878 	if (!val)
879 		return IRQ_NONE;
880 
881 	schedule_work(&qm->cmd_process);
882 
883 	return IRQ_HANDLED;
884 }
885 
886 static irqreturn_t qm_aeq_irq(int irq, void *data)
887 {
888 	struct hisi_qm *qm = data;
889 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
890 	u32 type;
891 
892 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
893 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
894 		return IRQ_NONE;
895 
896 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
897 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
898 		if (type < ARRAY_SIZE(qm_fifo_overflow))
899 			dev_err(&qm->pdev->dev, "%s overflow\n",
900 				qm_fifo_overflow[type]);
901 		else
902 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
903 				type);
904 
905 		if (qm->status.aeq_head == QM_Q_DEPTH - 1) {
906 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
907 			aeqe = qm->aeqe;
908 			qm->status.aeq_head = 0;
909 		} else {
910 			aeqe++;
911 			qm->status.aeq_head++;
912 		}
913 
914 		qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
915 	}
916 
917 	return IRQ_HANDLED;
918 }
919 
920 static void qm_irq_unregister(struct hisi_qm *qm)
921 {
922 	struct pci_dev *pdev = qm->pdev;
923 
924 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
925 
926 	if (qm->ver > QM_HW_V1) {
927 		free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
928 
929 		if (qm->fun_type == QM_HW_PF)
930 			free_irq(pci_irq_vector(pdev,
931 				 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
932 	}
933 
934 	if (qm->ver > QM_HW_V2)
935 		free_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR), qm);
936 }
937 
938 static void qm_init_qp_status(struct hisi_qp *qp)
939 {
940 	struct hisi_qp_status *qp_status = &qp->qp_status;
941 
942 	qp_status->sq_tail = 0;
943 	qp_status->cq_head = 0;
944 	qp_status->cqc_phase = true;
945 	atomic_set(&qp_status->used, 0);
946 }
947 
948 static void qm_init_prefetch(struct hisi_qm *qm)
949 {
950 	struct device *dev = &qm->pdev->dev;
951 	u32 page_type = 0x0;
952 
953 	if (qm->ver < QM_HW_V3)
954 		return;
955 
956 	switch (PAGE_SIZE) {
957 	case SZ_4K:
958 		page_type = 0x0;
959 		break;
960 	case SZ_16K:
961 		page_type = 0x1;
962 		break;
963 	case SZ_64K:
964 		page_type = 0x2;
965 		break;
966 	default:
967 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
968 			PAGE_SIZE);
969 	}
970 
971 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
972 }
973 
974 /*
975  * the formula:
976  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
977  *
978  *		        IR_b * (2 ^ IR_u) * 8
979  * IR(Mbps) * 10 ^ -3 = -------------------------
980  *		        Tick * (2 ^ IR_s)
981  */
982 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
983 {
984 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
985 					(QM_QOS_TICK * (1 << cir_s));
986 }
987 
988 static u32 acc_shaper_calc_cbs_s(u32 ir)
989 {
990 	int i;
991 
992 	if (ir < typical_qos_val[0])
993 		return QM_SHAPER_MIN_CBS_S;
994 
995 	for (i = 1; i < QM_QOS_TYPICAL_NUM; i++) {
996 		if (ir >= typical_qos_val[i - 1] && ir < typical_qos_val[i])
997 			return typical_qos_cbs_s[i - 1];
998 	}
999 
1000 	return typical_qos_cbs_s[QM_QOS_TYPICAL_NUM - 1];
1001 }
1002 
1003 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1004 {
1005 	u32 cir_b, cir_u, cir_s, ir_calc;
1006 	u32 error_rate;
1007 
1008 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1009 
1010 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1011 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1012 			for (cir_s = 0; cir_s <= QM_QOS_MAX_CIR_S; cir_s++) {
1013 				/** the formula is changed to:
1014 				 *	   IR_b * (2 ^ IR_u) * DIVISOR_CLK
1015 				 * IR(Mbps) = -------------------------
1016 				 *	       768 * (2 ^ IR_s)
1017 				 */
1018 				ir_calc = acc_shaper_para_calc(cir_b, cir_u,
1019 							       cir_s);
1020 				error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1021 				if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1022 					factor->cir_b = cir_b;
1023 					factor->cir_u = cir_u;
1024 					factor->cir_s = cir_s;
1025 
1026 					return 0;
1027 				}
1028 			}
1029 		}
1030 	}
1031 
1032 	return -EINVAL;
1033 }
1034 
1035 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1036 			    u32 number, struct qm_shaper_factor *factor)
1037 {
1038 	u64 tmp = 0;
1039 
1040 	if (number > 0) {
1041 		switch (type) {
1042 		case SQC_VFT:
1043 			if (qm->ver == QM_HW_V1) {
1044 				tmp = QM_SQC_VFT_BUF_SIZE	|
1045 				      QM_SQC_VFT_SQC_SIZE	|
1046 				      QM_SQC_VFT_INDEX_NUMBER	|
1047 				      QM_SQC_VFT_VALID		|
1048 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1049 			} else {
1050 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1051 				      QM_SQC_VFT_VALID |
1052 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1053 			}
1054 			break;
1055 		case CQC_VFT:
1056 			if (qm->ver == QM_HW_V1) {
1057 				tmp = QM_CQC_VFT_BUF_SIZE	|
1058 				      QM_CQC_VFT_SQC_SIZE	|
1059 				      QM_CQC_VFT_INDEX_NUMBER	|
1060 				      QM_CQC_VFT_VALID;
1061 			} else {
1062 				tmp = QM_CQC_VFT_VALID;
1063 			}
1064 			break;
1065 		case SHAPER_VFT:
1066 			if (qm->ver >= QM_HW_V3) {
1067 				tmp = factor->cir_b |
1068 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1069 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1070 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1071 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1072 			}
1073 			break;
1074 		}
1075 	}
1076 
1077 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1078 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1079 }
1080 
1081 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1082 			     u32 fun_num, u32 base, u32 number)
1083 {
1084 	struct qm_shaper_factor *factor = &qm->factor[fun_num];
1085 	unsigned int val;
1086 	int ret;
1087 
1088 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1089 					 val & BIT(0), POLL_PERIOD,
1090 					 POLL_TIMEOUT);
1091 	if (ret)
1092 		return ret;
1093 
1094 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1095 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1096 	if (type == SHAPER_VFT)
1097 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1098 
1099 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1100 
1101 	qm_vft_data_cfg(qm, type, base, number, factor);
1102 
1103 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1104 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1105 
1106 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1107 					  val & BIT(0), POLL_PERIOD,
1108 					  POLL_TIMEOUT);
1109 }
1110 
1111 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1112 {
1113 	int ret, i;
1114 
1115 	qm->factor[fun_num].func_qos = QM_QOS_MAX_VAL;
1116 	ret = qm_get_shaper_para(QM_QOS_MAX_VAL * QM_QOS_RATE, &qm->factor[fun_num]);
1117 	if (ret) {
1118 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1119 		return ret;
1120 	}
1121 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1122 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1123 		/* The base number of queue reuse for different alg type */
1124 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1125 		if (ret)
1126 			return ret;
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 /* The config should be conducted after qm_dev_mem_reset() */
1133 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1134 			      u32 number)
1135 {
1136 	int ret, i;
1137 
1138 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1139 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1140 		if (ret)
1141 			return ret;
1142 	}
1143 
1144 	/* init default shaper qos val */
1145 	if (qm->ver >= QM_HW_V3) {
1146 		ret = qm_shaper_init_vft(qm, fun_num);
1147 		if (ret)
1148 			goto back_sqc_cqc;
1149 	}
1150 
1151 	return 0;
1152 back_sqc_cqc:
1153 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1154 		ret = qm_set_vft_common(qm, i, fun_num, 0, 0);
1155 		if (ret)
1156 			return ret;
1157 	}
1158 	return ret;
1159 }
1160 
1161 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1162 {
1163 	u64 sqc_vft;
1164 	int ret;
1165 
1166 	ret = qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1167 	if (ret)
1168 		return ret;
1169 
1170 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1171 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1172 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1173 	*number = (QM_SQC_VFT_NUM_MASK_v2 &
1174 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1175 
1176 	return 0;
1177 }
1178 
1179 static int qm_get_vf_qp_num(struct hisi_qm *qm, u32 fun_num)
1180 {
1181 	u32 remain_q_num, vfq_num;
1182 	u32 num_vfs = qm->vfs_num;
1183 
1184 	vfq_num = (qm->ctrl_qp_num - qm->qp_num) / num_vfs;
1185 	if (vfq_num >= qm->max_qp_num)
1186 		return qm->max_qp_num;
1187 
1188 	remain_q_num = (qm->ctrl_qp_num - qm->qp_num) % num_vfs;
1189 	if (vfq_num + remain_q_num <= qm->max_qp_num)
1190 		return fun_num == num_vfs ? vfq_num + remain_q_num : vfq_num;
1191 
1192 	/*
1193 	 * if vfq_num + remain_q_num > max_qp_num, the last VFs,
1194 	 * each with one more queue.
1195 	 */
1196 	return fun_num + remain_q_num > num_vfs ? vfq_num + 1 : vfq_num;
1197 }
1198 
1199 static struct hisi_qm *file_to_qm(struct debugfs_file *file)
1200 {
1201 	struct qm_debug *debug = file->debug;
1202 
1203 	return container_of(debug, struct hisi_qm, debug);
1204 }
1205 
1206 static u32 current_q_read(struct hisi_qm *qm)
1207 {
1208 	return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT;
1209 }
1210 
1211 static int current_q_write(struct hisi_qm *qm, u32 val)
1212 {
1213 	u32 tmp;
1214 
1215 	if (val >= qm->debug.curr_qm_qp_num)
1216 		return -EINVAL;
1217 
1218 	tmp = val << QM_DFX_QN_SHIFT |
1219 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK);
1220 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
1221 
1222 	tmp = val << QM_DFX_QN_SHIFT |
1223 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK);
1224 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
1225 
1226 	return 0;
1227 }
1228 
1229 static u32 clear_enable_read(struct hisi_qm *qm)
1230 {
1231 	return readl(qm->io_base + QM_DFX_CNT_CLR_CE);
1232 }
1233 
1234 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */
1235 static int clear_enable_write(struct hisi_qm *qm, u32 rd_clr_ctrl)
1236 {
1237 	if (rd_clr_ctrl > 1)
1238 		return -EINVAL;
1239 
1240 	writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE);
1241 
1242 	return 0;
1243 }
1244 
1245 static u32 current_qm_read(struct hisi_qm *qm)
1246 {
1247 	return readl(qm->io_base + QM_DFX_MB_CNT_VF);
1248 }
1249 
1250 static int current_qm_write(struct hisi_qm *qm, u32 val)
1251 {
1252 	u32 tmp;
1253 
1254 	if (val > qm->vfs_num)
1255 		return -EINVAL;
1256 
1257 	/* According PF or VF Dev ID to calculation curr_qm_qp_num and store */
1258 	if (!val)
1259 		qm->debug.curr_qm_qp_num = qm->qp_num;
1260 	else
1261 		qm->debug.curr_qm_qp_num = qm_get_vf_qp_num(qm, val);
1262 
1263 	writel(val, qm->io_base + QM_DFX_MB_CNT_VF);
1264 	writel(val, qm->io_base + QM_DFX_DB_CNT_VF);
1265 
1266 	tmp = val |
1267 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_Q_MASK);
1268 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
1269 
1270 	tmp = val |
1271 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_Q_MASK);
1272 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
1273 
1274 	return 0;
1275 }
1276 
1277 static ssize_t qm_debug_read(struct file *filp, char __user *buf,
1278 			     size_t count, loff_t *pos)
1279 {
1280 	struct debugfs_file *file = filp->private_data;
1281 	enum qm_debug_file index = file->index;
1282 	struct hisi_qm *qm = file_to_qm(file);
1283 	char tbuf[QM_DBG_TMP_BUF_LEN];
1284 	u32 val;
1285 	int ret;
1286 
1287 	ret = hisi_qm_get_dfx_access(qm);
1288 	if (ret)
1289 		return ret;
1290 
1291 	mutex_lock(&file->lock);
1292 	switch (index) {
1293 	case CURRENT_QM:
1294 		val = current_qm_read(qm);
1295 		break;
1296 	case CURRENT_Q:
1297 		val = current_q_read(qm);
1298 		break;
1299 	case CLEAR_ENABLE:
1300 		val = clear_enable_read(qm);
1301 		break;
1302 	default:
1303 		goto err_input;
1304 	}
1305 	mutex_unlock(&file->lock);
1306 
1307 	hisi_qm_put_dfx_access(qm);
1308 	ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val);
1309 	return simple_read_from_buffer(buf, count, pos, tbuf, ret);
1310 
1311 err_input:
1312 	mutex_unlock(&file->lock);
1313 	hisi_qm_put_dfx_access(qm);
1314 	return -EINVAL;
1315 }
1316 
1317 static ssize_t qm_debug_write(struct file *filp, const char __user *buf,
1318 			      size_t count, loff_t *pos)
1319 {
1320 	struct debugfs_file *file = filp->private_data;
1321 	enum qm_debug_file index = file->index;
1322 	struct hisi_qm *qm = file_to_qm(file);
1323 	unsigned long val;
1324 	char tbuf[QM_DBG_TMP_BUF_LEN];
1325 	int len, ret;
1326 
1327 	if (*pos != 0)
1328 		return 0;
1329 
1330 	if (count >= QM_DBG_TMP_BUF_LEN)
1331 		return -ENOSPC;
1332 
1333 	len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf,
1334 				     count);
1335 	if (len < 0)
1336 		return len;
1337 
1338 	tbuf[len] = '\0';
1339 	if (kstrtoul(tbuf, 0, &val))
1340 		return -EFAULT;
1341 
1342 	ret = hisi_qm_get_dfx_access(qm);
1343 	if (ret)
1344 		return ret;
1345 
1346 	mutex_lock(&file->lock);
1347 	switch (index) {
1348 	case CURRENT_QM:
1349 		ret = current_qm_write(qm, val);
1350 		break;
1351 	case CURRENT_Q:
1352 		ret = current_q_write(qm, val);
1353 		break;
1354 	case CLEAR_ENABLE:
1355 		ret = clear_enable_write(qm, val);
1356 		break;
1357 	default:
1358 		ret = -EINVAL;
1359 	}
1360 	mutex_unlock(&file->lock);
1361 
1362 	hisi_qm_put_dfx_access(qm);
1363 
1364 	if (ret)
1365 		return ret;
1366 
1367 	return count;
1368 }
1369 
1370 static const struct file_operations qm_debug_fops = {
1371 	.owner = THIS_MODULE,
1372 	.open = simple_open,
1373 	.read = qm_debug_read,
1374 	.write = qm_debug_write,
1375 };
1376 
1377 #define CNT_CYC_REGS_NUM		10
1378 static const struct debugfs_reg32 qm_dfx_regs[] = {
1379 	/* XXX_CNT are reading clear register */
1380 	{"QM_ECC_1BIT_CNT               ",  0x104000ull},
1381 	{"QM_ECC_MBIT_CNT               ",  0x104008ull},
1382 	{"QM_DFX_MB_CNT                 ",  0x104018ull},
1383 	{"QM_DFX_DB_CNT                 ",  0x104028ull},
1384 	{"QM_DFX_SQE_CNT                ",  0x104038ull},
1385 	{"QM_DFX_CQE_CNT                ",  0x104048ull},
1386 	{"QM_DFX_SEND_SQE_TO_ACC_CNT    ",  0x104050ull},
1387 	{"QM_DFX_WB_SQE_FROM_ACC_CNT    ",  0x104058ull},
1388 	{"QM_DFX_ACC_FINISH_CNT         ",  0x104060ull},
1389 	{"QM_DFX_CQE_ERR_CNT            ",  0x1040b4ull},
1390 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1391 	{"QM_ECC_1BIT_INF               ",  0x104004ull},
1392 	{"QM_ECC_MBIT_INF               ",  0x10400cull},
1393 	{"QM_DFX_ACC_RDY_VLD0           ",  0x1040a0ull},
1394 	{"QM_DFX_ACC_RDY_VLD1           ",  0x1040a4ull},
1395 	{"QM_DFX_AXI_RDY_VLD            ",  0x1040a8ull},
1396 	{"QM_DFX_FF_ST0                 ",  0x1040c8ull},
1397 	{"QM_DFX_FF_ST1                 ",  0x1040ccull},
1398 	{"QM_DFX_FF_ST2                 ",  0x1040d0ull},
1399 	{"QM_DFX_FF_ST3                 ",  0x1040d4ull},
1400 	{"QM_DFX_FF_ST4                 ",  0x1040d8ull},
1401 	{"QM_DFX_FF_ST5                 ",  0x1040dcull},
1402 	{"QM_DFX_FF_ST6                 ",  0x1040e0ull},
1403 	{"QM_IN_IDLE_ST                 ",  0x1040e4ull},
1404 };
1405 
1406 static const struct debugfs_reg32 qm_vf_dfx_regs[] = {
1407 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1408 };
1409 
1410 /**
1411  * hisi_qm_regs_dump() - Dump registers's value.
1412  * @s: debugfs file handle.
1413  * @regset: accelerator registers information.
1414  *
1415  * Dump accelerator registers.
1416  */
1417 void hisi_qm_regs_dump(struct seq_file *s, struct debugfs_regset32 *regset)
1418 {
1419 	struct pci_dev *pdev = to_pci_dev(regset->dev);
1420 	struct hisi_qm *qm = pci_get_drvdata(pdev);
1421 	const struct debugfs_reg32 *regs = regset->regs;
1422 	int regs_len = regset->nregs;
1423 	int i, ret;
1424 	u32 val;
1425 
1426 	ret = hisi_qm_get_dfx_access(qm);
1427 	if (ret)
1428 		return;
1429 
1430 	for (i = 0; i < regs_len; i++) {
1431 		val = readl(regset->base + regs[i].offset);
1432 		seq_printf(s, "%s= 0x%08x\n", regs[i].name, val);
1433 	}
1434 
1435 	hisi_qm_put_dfx_access(qm);
1436 }
1437 EXPORT_SYMBOL_GPL(hisi_qm_regs_dump);
1438 
1439 static int qm_regs_show(struct seq_file *s, void *unused)
1440 {
1441 	struct hisi_qm *qm = s->private;
1442 	struct debugfs_regset32 regset;
1443 
1444 	if (qm->fun_type == QM_HW_PF) {
1445 		regset.regs = qm_dfx_regs;
1446 		regset.nregs = ARRAY_SIZE(qm_dfx_regs);
1447 	} else {
1448 		regset.regs = qm_vf_dfx_regs;
1449 		regset.nregs = ARRAY_SIZE(qm_vf_dfx_regs);
1450 	}
1451 
1452 	regset.base = qm->io_base;
1453 	regset.dev = &qm->pdev->dev;
1454 
1455 	hisi_qm_regs_dump(s, &regset);
1456 
1457 	return 0;
1458 }
1459 
1460 DEFINE_SHOW_ATTRIBUTE(qm_regs);
1461 
1462 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer,
1463 			   size_t count, loff_t *pos)
1464 {
1465 	char buf[QM_DBG_READ_LEN];
1466 	int len;
1467 
1468 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n",
1469 			"Please echo help to cmd to get help information");
1470 
1471 	return simple_read_from_buffer(buffer, count, pos, buf, len);
1472 }
1473 
1474 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1475 			  dma_addr_t *dma_addr)
1476 {
1477 	struct device *dev = &qm->pdev->dev;
1478 	void *ctx_addr;
1479 
1480 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1481 	if (!ctx_addr)
1482 		return ERR_PTR(-ENOMEM);
1483 
1484 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1485 	if (dma_mapping_error(dev, *dma_addr)) {
1486 		dev_err(dev, "DMA mapping error!\n");
1487 		kfree(ctx_addr);
1488 		return ERR_PTR(-ENOMEM);
1489 	}
1490 
1491 	return ctx_addr;
1492 }
1493 
1494 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1495 			const void *ctx_addr, dma_addr_t *dma_addr)
1496 {
1497 	struct device *dev = &qm->pdev->dev;
1498 
1499 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1500 	kfree(ctx_addr);
1501 }
1502 
1503 static int dump_show(struct hisi_qm *qm, void *info,
1504 		     unsigned int info_size, char *info_name)
1505 {
1506 	struct device *dev = &qm->pdev->dev;
1507 	u8 *info_buf, *info_curr = info;
1508 	u32 i;
1509 #define BYTE_PER_DW	4
1510 
1511 	info_buf = kzalloc(info_size, GFP_KERNEL);
1512 	if (!info_buf)
1513 		return -ENOMEM;
1514 
1515 	for (i = 0; i < info_size; i++, info_curr++) {
1516 		if (i % BYTE_PER_DW == 0)
1517 			info_buf[i + 3UL] = *info_curr;
1518 		else if (i % BYTE_PER_DW == 1)
1519 			info_buf[i + 1UL] = *info_curr;
1520 		else if (i % BYTE_PER_DW == 2)
1521 			info_buf[i - 1] = *info_curr;
1522 		else if (i % BYTE_PER_DW == 3)
1523 			info_buf[i - 3] = *info_curr;
1524 	}
1525 
1526 	dev_info(dev, "%s DUMP\n", info_name);
1527 	for (i = 0; i < info_size; i += BYTE_PER_DW) {
1528 		pr_info("DW%u: %02X%02X %02X%02X\n", i / BYTE_PER_DW,
1529 			info_buf[i], info_buf[i + 1UL],
1530 			info_buf[i + 2UL], info_buf[i + 3UL]);
1531 	}
1532 
1533 	kfree(info_buf);
1534 
1535 	return 0;
1536 }
1537 
1538 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1539 {
1540 	return qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1541 }
1542 
1543 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1544 {
1545 	return qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1546 }
1547 
1548 static int qm_sqc_dump(struct hisi_qm *qm, const char *s)
1549 {
1550 	struct device *dev = &qm->pdev->dev;
1551 	struct qm_sqc *sqc, *sqc_curr;
1552 	dma_addr_t sqc_dma;
1553 	u32 qp_id;
1554 	int ret;
1555 
1556 	if (!s)
1557 		return -EINVAL;
1558 
1559 	ret = kstrtou32(s, 0, &qp_id);
1560 	if (ret || qp_id >= qm->qp_num) {
1561 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1562 		return -EINVAL;
1563 	}
1564 
1565 	sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma);
1566 	if (IS_ERR(sqc))
1567 		return PTR_ERR(sqc);
1568 
1569 	ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id);
1570 	if (ret) {
1571 		down_read(&qm->qps_lock);
1572 		if (qm->sqc) {
1573 			sqc_curr = qm->sqc + qp_id;
1574 
1575 			ret = dump_show(qm, sqc_curr, sizeof(*sqc),
1576 					"SOFT SQC");
1577 			if (ret)
1578 				dev_info(dev, "Show soft sqc failed!\n");
1579 		}
1580 		up_read(&qm->qps_lock);
1581 
1582 		goto err_free_ctx;
1583 	}
1584 
1585 	ret = dump_show(qm, sqc, sizeof(*sqc), "SQC");
1586 	if (ret)
1587 		dev_info(dev, "Show hw sqc failed!\n");
1588 
1589 err_free_ctx:
1590 	qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma);
1591 	return ret;
1592 }
1593 
1594 static int qm_cqc_dump(struct hisi_qm *qm, const char *s)
1595 {
1596 	struct device *dev = &qm->pdev->dev;
1597 	struct qm_cqc *cqc, *cqc_curr;
1598 	dma_addr_t cqc_dma;
1599 	u32 qp_id;
1600 	int ret;
1601 
1602 	if (!s)
1603 		return -EINVAL;
1604 
1605 	ret = kstrtou32(s, 0, &qp_id);
1606 	if (ret || qp_id >= qm->qp_num) {
1607 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1608 		return -EINVAL;
1609 	}
1610 
1611 	cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma);
1612 	if (IS_ERR(cqc))
1613 		return PTR_ERR(cqc);
1614 
1615 	ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id);
1616 	if (ret) {
1617 		down_read(&qm->qps_lock);
1618 		if (qm->cqc) {
1619 			cqc_curr = qm->cqc + qp_id;
1620 
1621 			ret = dump_show(qm, cqc_curr, sizeof(*cqc),
1622 					"SOFT CQC");
1623 			if (ret)
1624 				dev_info(dev, "Show soft cqc failed!\n");
1625 		}
1626 		up_read(&qm->qps_lock);
1627 
1628 		goto err_free_ctx;
1629 	}
1630 
1631 	ret = dump_show(qm, cqc, sizeof(*cqc), "CQC");
1632 	if (ret)
1633 		dev_info(dev, "Show hw cqc failed!\n");
1634 
1635 err_free_ctx:
1636 	qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma);
1637 	return ret;
1638 }
1639 
1640 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size,
1641 			    int cmd, char *name)
1642 {
1643 	struct device *dev = &qm->pdev->dev;
1644 	dma_addr_t xeqc_dma;
1645 	void *xeqc;
1646 	int ret;
1647 
1648 	if (strsep(&s, " ")) {
1649 		dev_err(dev, "Please do not input extra characters!\n");
1650 		return -EINVAL;
1651 	}
1652 
1653 	xeqc = qm_ctx_alloc(qm, size, &xeqc_dma);
1654 	if (IS_ERR(xeqc))
1655 		return PTR_ERR(xeqc);
1656 
1657 	ret = qm_mb(qm, cmd, xeqc_dma, 0, 1);
1658 	if (ret)
1659 		goto err_free_ctx;
1660 
1661 	ret = dump_show(qm, xeqc, size, name);
1662 	if (ret)
1663 		dev_info(dev, "Show hw %s failed!\n", name);
1664 
1665 err_free_ctx:
1666 	qm_ctx_free(qm, size, xeqc, &xeqc_dma);
1667 	return ret;
1668 }
1669 
1670 static int q_dump_param_parse(struct hisi_qm *qm, char *s,
1671 			      u32 *e_id, u32 *q_id)
1672 {
1673 	struct device *dev = &qm->pdev->dev;
1674 	unsigned int qp_num = qm->qp_num;
1675 	char *presult;
1676 	int ret;
1677 
1678 	presult = strsep(&s, " ");
1679 	if (!presult) {
1680 		dev_err(dev, "Please input qp number!\n");
1681 		return -EINVAL;
1682 	}
1683 
1684 	ret = kstrtou32(presult, 0, q_id);
1685 	if (ret || *q_id >= qp_num) {
1686 		dev_err(dev, "Please input qp num (0-%u)", qp_num - 1);
1687 		return -EINVAL;
1688 	}
1689 
1690 	presult = strsep(&s, " ");
1691 	if (!presult) {
1692 		dev_err(dev, "Please input sqe number!\n");
1693 		return -EINVAL;
1694 	}
1695 
1696 	ret = kstrtou32(presult, 0, e_id);
1697 	if (ret || *e_id >= QM_Q_DEPTH) {
1698 		dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1);
1699 		return -EINVAL;
1700 	}
1701 
1702 	if (strsep(&s, " ")) {
1703 		dev_err(dev, "Please do not input extra characters!\n");
1704 		return -EINVAL;
1705 	}
1706 
1707 	return 0;
1708 }
1709 
1710 static int qm_sq_dump(struct hisi_qm *qm, char *s)
1711 {
1712 	struct device *dev = &qm->pdev->dev;
1713 	void *sqe, *sqe_curr;
1714 	struct hisi_qp *qp;
1715 	u32 qp_id, sqe_id;
1716 	int ret;
1717 
1718 	ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id);
1719 	if (ret)
1720 		return ret;
1721 
1722 	sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL);
1723 	if (!sqe)
1724 		return -ENOMEM;
1725 
1726 	qp = &qm->qp_array[qp_id];
1727 	memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH);
1728 	sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size);
1729 	memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK,
1730 	       qm->debug.sqe_mask_len);
1731 
1732 	ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE");
1733 	if (ret)
1734 		dev_info(dev, "Show sqe failed!\n");
1735 
1736 	kfree(sqe);
1737 
1738 	return ret;
1739 }
1740 
1741 static int qm_cq_dump(struct hisi_qm *qm, char *s)
1742 {
1743 	struct device *dev = &qm->pdev->dev;
1744 	struct qm_cqe *cqe_curr;
1745 	struct hisi_qp *qp;
1746 	u32 qp_id, cqe_id;
1747 	int ret;
1748 
1749 	ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id);
1750 	if (ret)
1751 		return ret;
1752 
1753 	qp = &qm->qp_array[qp_id];
1754 	cqe_curr = qp->cqe + cqe_id;
1755 	ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE");
1756 	if (ret)
1757 		dev_info(dev, "Show cqe failed!\n");
1758 
1759 	return ret;
1760 }
1761 
1762 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s,
1763 			  size_t size, char *name)
1764 {
1765 	struct device *dev = &qm->pdev->dev;
1766 	void *xeqe;
1767 	u32 xeqe_id;
1768 	int ret;
1769 
1770 	if (!s)
1771 		return -EINVAL;
1772 
1773 	ret = kstrtou32(s, 0, &xeqe_id);
1774 	if (ret)
1775 		return -EINVAL;
1776 
1777 	if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) {
1778 		dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1);
1779 		return -EINVAL;
1780 	} else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) {
1781 		dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1);
1782 		return -EINVAL;
1783 	}
1784 
1785 	down_read(&qm->qps_lock);
1786 
1787 	if (qm->eqe && !strcmp(name, "EQE")) {
1788 		xeqe = qm->eqe + xeqe_id;
1789 	} else if (qm->aeqe && !strcmp(name, "AEQE")) {
1790 		xeqe = qm->aeqe + xeqe_id;
1791 	} else {
1792 		ret = -EINVAL;
1793 		goto err_unlock;
1794 	}
1795 
1796 	ret = dump_show(qm, xeqe, size, name);
1797 	if (ret)
1798 		dev_info(dev, "Show %s failed!\n", name);
1799 
1800 err_unlock:
1801 	up_read(&qm->qps_lock);
1802 	return ret;
1803 }
1804 
1805 static int qm_dbg_help(struct hisi_qm *qm, char *s)
1806 {
1807 	struct device *dev = &qm->pdev->dev;
1808 
1809 	if (strsep(&s, " ")) {
1810 		dev_err(dev, "Please do not input extra characters!\n");
1811 		return -EINVAL;
1812 	}
1813 
1814 	dev_info(dev, "available commands:\n");
1815 	dev_info(dev, "sqc <num>\n");
1816 	dev_info(dev, "cqc <num>\n");
1817 	dev_info(dev, "eqc\n");
1818 	dev_info(dev, "aeqc\n");
1819 	dev_info(dev, "sq <num> <e>\n");
1820 	dev_info(dev, "cq <num> <e>\n");
1821 	dev_info(dev, "eq <e>\n");
1822 	dev_info(dev, "aeq <e>\n");
1823 
1824 	return 0;
1825 }
1826 
1827 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf)
1828 {
1829 	struct device *dev = &qm->pdev->dev;
1830 	char *presult, *s, *s_tmp;
1831 	int ret;
1832 
1833 	s = kstrdup(cmd_buf, GFP_KERNEL);
1834 	if (!s)
1835 		return -ENOMEM;
1836 
1837 	s_tmp = s;
1838 	presult = strsep(&s, " ");
1839 	if (!presult) {
1840 		ret = -EINVAL;
1841 		goto err_buffer_free;
1842 	}
1843 
1844 	if (!strcmp(presult, "sqc"))
1845 		ret = qm_sqc_dump(qm, s);
1846 	else if (!strcmp(presult, "cqc"))
1847 		ret = qm_cqc_dump(qm, s);
1848 	else if (!strcmp(presult, "eqc"))
1849 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc),
1850 				       QM_MB_CMD_EQC, "EQC");
1851 	else if (!strcmp(presult, "aeqc"))
1852 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc),
1853 				       QM_MB_CMD_AEQC, "AEQC");
1854 	else if (!strcmp(presult, "sq"))
1855 		ret = qm_sq_dump(qm, s);
1856 	else if (!strcmp(presult, "cq"))
1857 		ret = qm_cq_dump(qm, s);
1858 	else if (!strcmp(presult, "eq"))
1859 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE");
1860 	else if (!strcmp(presult, "aeq"))
1861 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE");
1862 	else if (!strcmp(presult, "help"))
1863 		ret = qm_dbg_help(qm, s);
1864 	else
1865 		ret = -EINVAL;
1866 
1867 	if (ret)
1868 		dev_info(dev, "Please echo help\n");
1869 
1870 err_buffer_free:
1871 	kfree(s_tmp);
1872 
1873 	return ret;
1874 }
1875 
1876 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer,
1877 			    size_t count, loff_t *pos)
1878 {
1879 	struct hisi_qm *qm = filp->private_data;
1880 	char *cmd_buf, *cmd_buf_tmp;
1881 	int ret;
1882 
1883 	if (*pos)
1884 		return 0;
1885 
1886 	ret = hisi_qm_get_dfx_access(qm);
1887 	if (ret)
1888 		return ret;
1889 
1890 	/* Judge if the instance is being reset. */
1891 	if (unlikely(atomic_read(&qm->status.flags) == QM_STOP))
1892 		return 0;
1893 
1894 	if (count > QM_DBG_WRITE_LEN) {
1895 		ret = -ENOSPC;
1896 		goto put_dfx_access;
1897 	}
1898 
1899 	cmd_buf = memdup_user_nul(buffer, count);
1900 	if (IS_ERR(cmd_buf)) {
1901 		ret = PTR_ERR(cmd_buf);
1902 		goto put_dfx_access;
1903 	}
1904 
1905 	cmd_buf_tmp = strchr(cmd_buf, '\n');
1906 	if (cmd_buf_tmp) {
1907 		*cmd_buf_tmp = '\0';
1908 		count = cmd_buf_tmp - cmd_buf + 1;
1909 	}
1910 
1911 	ret = qm_cmd_write_dump(qm, cmd_buf);
1912 	if (ret) {
1913 		kfree(cmd_buf);
1914 		goto put_dfx_access;
1915 	}
1916 
1917 	kfree(cmd_buf);
1918 
1919 	ret = count;
1920 
1921 put_dfx_access:
1922 	hisi_qm_put_dfx_access(qm);
1923 	return ret;
1924 }
1925 
1926 static const struct file_operations qm_cmd_fops = {
1927 	.owner = THIS_MODULE,
1928 	.open = simple_open,
1929 	.read = qm_cmd_read,
1930 	.write = qm_cmd_write,
1931 };
1932 
1933 static void qm_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir,
1934 				   enum qm_debug_file index)
1935 {
1936 	struct debugfs_file *file = qm->debug.files + index;
1937 
1938 	debugfs_create_file(qm_debug_file_name[index], 0600, dir, file,
1939 			    &qm_debug_fops);
1940 
1941 	file->index = index;
1942 	mutex_init(&file->lock);
1943 	file->debug = &qm->debug;
1944 }
1945 
1946 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1947 {
1948 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1949 }
1950 
1951 static void qm_hw_error_cfg(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1952 {
1953 	qm->error_mask = ce | nfe | fe;
1954 	/* clear QM hw residual error source */
1955 	writel(QM_ABNORMAL_INT_SOURCE_CLR,
1956 	       qm->io_base + QM_ABNORMAL_INT_SOURCE);
1957 
1958 	/* configure error type */
1959 	writel(ce, qm->io_base + QM_RAS_CE_ENABLE);
1960 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1961 	writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1962 	writel(fe, qm->io_base + QM_RAS_FE_ENABLE);
1963 }
1964 
1965 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1966 {
1967 	u32 irq_enable = ce | nfe | fe;
1968 	u32 irq_unmask = ~irq_enable;
1969 
1970 	qm_hw_error_cfg(qm, ce, nfe, fe);
1971 
1972 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1973 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1974 }
1975 
1976 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1977 {
1978 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1979 }
1980 
1981 static void qm_hw_error_init_v3(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1982 {
1983 	u32 irq_enable = ce | nfe | fe;
1984 	u32 irq_unmask = ~irq_enable;
1985 
1986 	qm_hw_error_cfg(qm, ce, nfe, fe);
1987 
1988 	/* enable close master ooo when hardware error happened */
1989 	writel(nfe & (~QM_DB_RANDOM_INVALID), qm->io_base + QM_OOO_SHUTDOWN_SEL);
1990 
1991 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1992 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1993 }
1994 
1995 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1996 {
1997 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1998 
1999 	/* disable close master ooo when hardware error happened */
2000 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
2001 }
2002 
2003 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
2004 {
2005 	const struct hisi_qm_hw_error *err;
2006 	struct device *dev = &qm->pdev->dev;
2007 	u32 reg_val, type, vf_num;
2008 	int i;
2009 
2010 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
2011 		err = &qm_hw_error[i];
2012 		if (!(err->int_msk & error_status))
2013 			continue;
2014 
2015 		dev_err(dev, "%s [error status=0x%x] found\n",
2016 			err->msg, err->int_msk);
2017 
2018 		if (err->int_msk & QM_DB_TIMEOUT) {
2019 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
2020 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
2021 			       QM_DB_TIMEOUT_TYPE_SHIFT;
2022 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
2023 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
2024 				qm_db_timeout[type], vf_num);
2025 		} else if (err->int_msk & QM_OF_FIFO_OF) {
2026 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
2027 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
2028 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
2029 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
2030 
2031 			if (type < ARRAY_SIZE(qm_fifo_overflow))
2032 				dev_err(dev, "qm %s fifo overflow in function %u\n",
2033 					qm_fifo_overflow[type], vf_num);
2034 			else
2035 				dev_err(dev, "unknown error type\n");
2036 		}
2037 	}
2038 }
2039 
2040 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
2041 {
2042 	u32 error_status, tmp, val;
2043 
2044 	/* read err sts */
2045 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
2046 	error_status = qm->error_mask & tmp;
2047 
2048 	if (error_status) {
2049 		if (error_status & QM_ECC_MBIT)
2050 			qm->err_status.is_qm_ecc_mbit = true;
2051 
2052 		qm_log_hw_error(qm, error_status);
2053 		val = error_status | QM_DB_RANDOM_INVALID | QM_BASE_CE;
2054 		/* ce error does not need to be reset */
2055 		if (val == (QM_DB_RANDOM_INVALID | QM_BASE_CE)) {
2056 			writel(error_status, qm->io_base +
2057 			       QM_ABNORMAL_INT_SOURCE);
2058 			writel(qm->err_info.nfe,
2059 			       qm->io_base + QM_RAS_NFE_ENABLE);
2060 			return ACC_ERR_RECOVERED;
2061 		}
2062 
2063 		return ACC_ERR_NEED_RESET;
2064 	}
2065 
2066 	return ACC_ERR_RECOVERED;
2067 }
2068 
2069 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
2070 {
2071 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
2072 }
2073 
2074 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
2075 {
2076 	return qm->err_ini->get_dev_hw_err_status(qm);
2077 }
2078 
2079 /* Check if the error causes the master ooo block */
2080 static int qm_check_dev_error(struct hisi_qm *qm)
2081 {
2082 	u32 val, dev_val;
2083 
2084 	if (qm->fun_type == QM_HW_VF)
2085 		return 0;
2086 
2087 	val = qm_get_hw_error_status(qm);
2088 	dev_val = qm_get_dev_err_status(qm);
2089 
2090 	if (qm->ver < QM_HW_V3)
2091 		return (val & QM_ECC_MBIT) ||
2092 		       (dev_val & qm->err_info.ecc_2bits_mask);
2093 
2094 	return (val & readl(qm->io_base + QM_OOO_SHUTDOWN_SEL)) ||
2095 	       (dev_val & (~qm->err_info.dev_ce_mask));
2096 }
2097 
2098 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
2099 {
2100 	struct qm_mailbox mailbox;
2101 	int ret;
2102 
2103 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
2104 	mutex_lock(&qm->mailbox_lock);
2105 	ret = qm_mb_nolock(qm, &mailbox);
2106 	if (ret)
2107 		goto err_unlock;
2108 
2109 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
2110 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
2111 
2112 err_unlock:
2113 	mutex_unlock(&qm->mailbox_lock);
2114 	return ret;
2115 }
2116 
2117 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
2118 {
2119 	u32 val;
2120 
2121 	if (qm->fun_type == QM_HW_PF)
2122 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
2123 
2124 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
2125 	val |= QM_IFC_INT_SOURCE_MASK;
2126 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
2127 }
2128 
2129 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
2130 {
2131 	struct device *dev = &qm->pdev->dev;
2132 	u32 cmd;
2133 	u64 msg;
2134 	int ret;
2135 
2136 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
2137 	if (ret) {
2138 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
2139 		return;
2140 	}
2141 
2142 	cmd = msg & QM_MB_CMD_DATA_MASK;
2143 	switch (cmd) {
2144 	case QM_VF_PREPARE_FAIL:
2145 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
2146 		break;
2147 	case QM_VF_START_FAIL:
2148 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
2149 		break;
2150 	case QM_VF_PREPARE_DONE:
2151 	case QM_VF_START_DONE:
2152 		break;
2153 	default:
2154 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
2155 		break;
2156 	}
2157 }
2158 
2159 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
2160 {
2161 	struct device *dev = &qm->pdev->dev;
2162 	u32 vfs_num = qm->vfs_num;
2163 	int cnt = 0;
2164 	int ret = 0;
2165 	u64 val;
2166 	u32 i;
2167 
2168 	if (!qm->vfs_num || qm->ver < QM_HW_V3)
2169 		return 0;
2170 
2171 	while (true) {
2172 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
2173 		/* All VFs send command to PF, break */
2174 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
2175 			break;
2176 
2177 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
2178 			ret = -EBUSY;
2179 			break;
2180 		}
2181 
2182 		msleep(QM_WAIT_DST_ACK);
2183 	}
2184 
2185 	/* PF check VFs msg */
2186 	for (i = 1; i <= vfs_num; i++) {
2187 		if (val & BIT(i))
2188 			qm_handle_vf_msg(qm, i);
2189 		else
2190 			dev_err(dev, "VF(%u) not ping PF!\n", i);
2191 	}
2192 
2193 	/* PF clear interrupt to ack VFs */
2194 	qm_clear_cmd_interrupt(qm, val);
2195 
2196 	return ret;
2197 }
2198 
2199 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
2200 {
2201 	u32 val;
2202 
2203 	val = readl(qm->io_base + QM_IFC_INT_CFG);
2204 	val &= ~QM_IFC_SEND_ALL_VFS;
2205 	val |= fun_num;
2206 	writel(val, qm->io_base + QM_IFC_INT_CFG);
2207 
2208 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
2209 	val |= QM_IFC_INT_SET_MASK;
2210 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
2211 }
2212 
2213 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
2214 {
2215 	u32 val;
2216 
2217 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
2218 	val |= QM_IFC_INT_SET_MASK;
2219 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
2220 }
2221 
2222 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
2223 {
2224 	struct device *dev = &qm->pdev->dev;
2225 	struct qm_mailbox mailbox;
2226 	int cnt = 0;
2227 	u64 val;
2228 	int ret;
2229 
2230 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
2231 	mutex_lock(&qm->mailbox_lock);
2232 	ret = qm_mb_nolock(qm, &mailbox);
2233 	if (ret) {
2234 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
2235 		goto err_unlock;
2236 	}
2237 
2238 	qm_trigger_vf_interrupt(qm, fun_num);
2239 	while (true) {
2240 		msleep(QM_WAIT_DST_ACK);
2241 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
2242 		/* if VF respond, PF notifies VF successfully. */
2243 		if (!(val & BIT(fun_num)))
2244 			goto err_unlock;
2245 
2246 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
2247 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
2248 			ret = -ETIMEDOUT;
2249 			break;
2250 		}
2251 	}
2252 
2253 err_unlock:
2254 	mutex_unlock(&qm->mailbox_lock);
2255 	return ret;
2256 }
2257 
2258 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
2259 {
2260 	struct device *dev = &qm->pdev->dev;
2261 	u32 vfs_num = qm->vfs_num;
2262 	struct qm_mailbox mailbox;
2263 	u64 val = 0;
2264 	int cnt = 0;
2265 	int ret;
2266 	u32 i;
2267 
2268 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
2269 	mutex_lock(&qm->mailbox_lock);
2270 	/* PF sends command to all VFs by mailbox */
2271 	ret = qm_mb_nolock(qm, &mailbox);
2272 	if (ret) {
2273 		dev_err(dev, "failed to send command to VFs!\n");
2274 		mutex_unlock(&qm->mailbox_lock);
2275 		return ret;
2276 	}
2277 
2278 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
2279 	while (true) {
2280 		msleep(QM_WAIT_DST_ACK);
2281 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
2282 		/* If all VFs acked, PF notifies VFs successfully. */
2283 		if (!(val & GENMASK(vfs_num, 1))) {
2284 			mutex_unlock(&qm->mailbox_lock);
2285 			return 0;
2286 		}
2287 
2288 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
2289 			break;
2290 	}
2291 
2292 	mutex_unlock(&qm->mailbox_lock);
2293 
2294 	/* Check which vf respond timeout. */
2295 	for (i = 1; i <= vfs_num; i++) {
2296 		if (val & BIT(i))
2297 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
2298 	}
2299 
2300 	return -ETIMEDOUT;
2301 }
2302 
2303 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
2304 {
2305 	struct qm_mailbox mailbox;
2306 	int cnt = 0;
2307 	u32 val;
2308 	int ret;
2309 
2310 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
2311 	mutex_lock(&qm->mailbox_lock);
2312 	ret = qm_mb_nolock(qm, &mailbox);
2313 	if (ret) {
2314 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
2315 		goto unlock;
2316 	}
2317 
2318 	qm_trigger_pf_interrupt(qm);
2319 	/* Waiting for PF response */
2320 	while (true) {
2321 		msleep(QM_WAIT_DST_ACK);
2322 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
2323 		if (!(val & QM_IFC_INT_STATUS_MASK))
2324 			break;
2325 
2326 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
2327 			ret = -ETIMEDOUT;
2328 			break;
2329 		}
2330 	}
2331 
2332 unlock:
2333 	mutex_unlock(&qm->mailbox_lock);
2334 	return ret;
2335 }
2336 
2337 static int qm_stop_qp(struct hisi_qp *qp)
2338 {
2339 	return qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
2340 }
2341 
2342 static int qm_set_msi(struct hisi_qm *qm, bool set)
2343 {
2344 	struct pci_dev *pdev = qm->pdev;
2345 
2346 	if (set) {
2347 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
2348 				       0);
2349 	} else {
2350 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
2351 				       ACC_PEH_MSI_DISABLE);
2352 		if (qm->err_status.is_qm_ecc_mbit ||
2353 		    qm->err_status.is_dev_ecc_mbit)
2354 			return 0;
2355 
2356 		mdelay(1);
2357 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
2358 			return -EFAULT;
2359 	}
2360 
2361 	return 0;
2362 }
2363 
2364 static void qm_wait_msi_finish(struct hisi_qm *qm)
2365 {
2366 	struct pci_dev *pdev = qm->pdev;
2367 	u32 cmd = ~0;
2368 	int cnt = 0;
2369 	u32 val;
2370 	int ret;
2371 
2372 	while (true) {
2373 		pci_read_config_dword(pdev, pdev->msi_cap +
2374 				      PCI_MSI_PENDING_64, &cmd);
2375 		if (!cmd)
2376 			break;
2377 
2378 		if (++cnt > MAX_WAIT_COUNTS) {
2379 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
2380 			break;
2381 		}
2382 
2383 		udelay(1);
2384 	}
2385 
2386 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
2387 					 val, !(val & QM_PEH_DFX_MASK),
2388 					 POLL_PERIOD, POLL_TIMEOUT);
2389 	if (ret)
2390 		pci_warn(pdev, "failed to empty PEH MSI!\n");
2391 
2392 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
2393 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
2394 					 POLL_PERIOD, POLL_TIMEOUT);
2395 	if (ret)
2396 		pci_warn(pdev, "failed to finish MSI operation!\n");
2397 }
2398 
2399 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
2400 {
2401 	struct pci_dev *pdev = qm->pdev;
2402 	int ret = -ETIMEDOUT;
2403 	u32 cmd, i;
2404 
2405 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
2406 	if (set)
2407 		cmd |= QM_MSI_CAP_ENABLE;
2408 	else
2409 		cmd &= ~QM_MSI_CAP_ENABLE;
2410 
2411 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
2412 	if (set) {
2413 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
2414 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
2415 			if (cmd & QM_MSI_CAP_ENABLE)
2416 				return 0;
2417 
2418 			udelay(1);
2419 		}
2420 	} else {
2421 		udelay(WAIT_PERIOD_US_MIN);
2422 		qm_wait_msi_finish(qm);
2423 		ret = 0;
2424 	}
2425 
2426 	return ret;
2427 }
2428 
2429 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
2430 	.qm_db = qm_db_v1,
2431 	.get_irq_num = qm_get_irq_num_v1,
2432 	.hw_error_init = qm_hw_error_init_v1,
2433 	.set_msi = qm_set_msi,
2434 };
2435 
2436 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
2437 	.get_vft = qm_get_vft_v2,
2438 	.qm_db = qm_db_v2,
2439 	.get_irq_num = qm_get_irq_num_v2,
2440 	.hw_error_init = qm_hw_error_init_v2,
2441 	.hw_error_uninit = qm_hw_error_uninit_v2,
2442 	.hw_error_handle = qm_hw_error_handle_v2,
2443 	.set_msi = qm_set_msi,
2444 };
2445 
2446 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
2447 	.get_vft = qm_get_vft_v2,
2448 	.qm_db = qm_db_v2,
2449 	.get_irq_num = qm_get_irq_num_v3,
2450 	.hw_error_init = qm_hw_error_init_v3,
2451 	.hw_error_uninit = qm_hw_error_uninit_v3,
2452 	.hw_error_handle = qm_hw_error_handle_v2,
2453 	.stop_qp = qm_stop_qp,
2454 	.set_msi = qm_set_msi_v3,
2455 	.ping_all_vfs = qm_ping_all_vfs,
2456 	.ping_pf = qm_ping_pf,
2457 };
2458 
2459 static void *qm_get_avail_sqe(struct hisi_qp *qp)
2460 {
2461 	struct hisi_qp_status *qp_status = &qp->qp_status;
2462 	u16 sq_tail = qp_status->sq_tail;
2463 
2464 	if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1))
2465 		return NULL;
2466 
2467 	return qp->sqe + sq_tail * qp->qm->sqe_size;
2468 }
2469 
2470 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
2471 {
2472 	struct device *dev = &qm->pdev->dev;
2473 	struct hisi_qp *qp;
2474 	int qp_id;
2475 
2476 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
2477 		return ERR_PTR(-EPERM);
2478 
2479 	if (qm->qp_in_used == qm->qp_num) {
2480 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2481 				     qm->qp_num);
2482 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2483 		return ERR_PTR(-EBUSY);
2484 	}
2485 
2486 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
2487 	if (qp_id < 0) {
2488 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2489 				    qm->qp_num);
2490 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2491 		return ERR_PTR(-EBUSY);
2492 	}
2493 
2494 	qp = &qm->qp_array[qp_id];
2495 
2496 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH);
2497 
2498 	qp->event_cb = NULL;
2499 	qp->req_cb = NULL;
2500 	qp->qp_id = qp_id;
2501 	qp->alg_type = alg_type;
2502 	qp->is_in_kernel = true;
2503 	qm->qp_in_used++;
2504 	atomic_set(&qp->qp_status.flags, QP_INIT);
2505 
2506 	return qp;
2507 }
2508 
2509 /**
2510  * hisi_qm_create_qp() - Create a queue pair from qm.
2511  * @qm: The qm we create a qp from.
2512  * @alg_type: Accelerator specific algorithm type in sqc.
2513  *
2514  * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating
2515  * qp memory fails.
2516  */
2517 struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
2518 {
2519 	struct hisi_qp *qp;
2520 	int ret;
2521 
2522 	ret = qm_pm_get_sync(qm);
2523 	if (ret)
2524 		return ERR_PTR(ret);
2525 
2526 	down_write(&qm->qps_lock);
2527 	qp = qm_create_qp_nolock(qm, alg_type);
2528 	up_write(&qm->qps_lock);
2529 
2530 	if (IS_ERR(qp))
2531 		qm_pm_put_sync(qm);
2532 
2533 	return qp;
2534 }
2535 EXPORT_SYMBOL_GPL(hisi_qm_create_qp);
2536 
2537 /**
2538  * hisi_qm_release_qp() - Release a qp back to its qm.
2539  * @qp: The qp we want to release.
2540  *
2541  * This function releases the resource of a qp.
2542  */
2543 void hisi_qm_release_qp(struct hisi_qp *qp)
2544 {
2545 	struct hisi_qm *qm = qp->qm;
2546 
2547 	down_write(&qm->qps_lock);
2548 
2549 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
2550 		up_write(&qm->qps_lock);
2551 		return;
2552 	}
2553 
2554 	qm->qp_in_used--;
2555 	idr_remove(&qm->qp_idr, qp->qp_id);
2556 
2557 	up_write(&qm->qps_lock);
2558 
2559 	qm_pm_put_sync(qm);
2560 }
2561 EXPORT_SYMBOL_GPL(hisi_qm_release_qp);
2562 
2563 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2564 {
2565 	struct hisi_qm *qm = qp->qm;
2566 	struct device *dev = &qm->pdev->dev;
2567 	enum qm_hw_ver ver = qm->ver;
2568 	struct qm_sqc *sqc;
2569 	dma_addr_t sqc_dma;
2570 	int ret;
2571 
2572 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
2573 	if (!sqc)
2574 		return -ENOMEM;
2575 
2576 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
2577 	if (ver == QM_HW_V1) {
2578 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
2579 		sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
2580 	} else {
2581 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size));
2582 		sqc->w8 = 0; /* rand_qc */
2583 	}
2584 	sqc->cq_num = cpu_to_le16(qp_id);
2585 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
2586 
2587 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2588 		sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
2589 				       QM_QC_PASID_ENABLE_SHIFT);
2590 
2591 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
2592 				 DMA_TO_DEVICE);
2593 	if (dma_mapping_error(dev, sqc_dma)) {
2594 		kfree(sqc);
2595 		return -ENOMEM;
2596 	}
2597 
2598 	ret = qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
2599 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
2600 	kfree(sqc);
2601 
2602 	return ret;
2603 }
2604 
2605 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2606 {
2607 	struct hisi_qm *qm = qp->qm;
2608 	struct device *dev = &qm->pdev->dev;
2609 	enum qm_hw_ver ver = qm->ver;
2610 	struct qm_cqc *cqc;
2611 	dma_addr_t cqc_dma;
2612 	int ret;
2613 
2614 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
2615 	if (!cqc)
2616 		return -ENOMEM;
2617 
2618 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
2619 	if (ver == QM_HW_V1) {
2620 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
2621 							QM_QC_CQE_SIZE));
2622 		cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
2623 	} else {
2624 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE));
2625 		cqc->w8 = 0; /* rand_qc */
2626 	}
2627 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2628 
2629 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2630 		cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2631 
2632 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
2633 				 DMA_TO_DEVICE);
2634 	if (dma_mapping_error(dev, cqc_dma)) {
2635 		kfree(cqc);
2636 		return -ENOMEM;
2637 	}
2638 
2639 	ret = qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
2640 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
2641 	kfree(cqc);
2642 
2643 	return ret;
2644 }
2645 
2646 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2647 {
2648 	int ret;
2649 
2650 	qm_init_qp_status(qp);
2651 
2652 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2653 	if (ret)
2654 		return ret;
2655 
2656 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
2657 }
2658 
2659 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2660 {
2661 	struct hisi_qm *qm = qp->qm;
2662 	struct device *dev = &qm->pdev->dev;
2663 	int qp_id = qp->qp_id;
2664 	u32 pasid = arg;
2665 	int ret;
2666 
2667 	if (!qm_qp_avail_state(qm, qp, QP_START))
2668 		return -EPERM;
2669 
2670 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2671 	if (ret)
2672 		return ret;
2673 
2674 	atomic_set(&qp->qp_status.flags, QP_START);
2675 	dev_dbg(dev, "queue %d started\n", qp_id);
2676 
2677 	return 0;
2678 }
2679 
2680 /**
2681  * hisi_qm_start_qp() - Start a qp into running.
2682  * @qp: The qp we want to start to run.
2683  * @arg: Accelerator specific argument.
2684  *
2685  * After this function, qp can receive request from user. Return 0 if
2686  * successful, Return -EBUSY if failed.
2687  */
2688 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2689 {
2690 	struct hisi_qm *qm = qp->qm;
2691 	int ret;
2692 
2693 	down_write(&qm->qps_lock);
2694 	ret = qm_start_qp_nolock(qp, arg);
2695 	up_write(&qm->qps_lock);
2696 
2697 	return ret;
2698 }
2699 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2700 
2701 /**
2702  * qp_stop_fail_cb() - call request cb.
2703  * @qp: stopped failed qp.
2704  *
2705  * Callback function should be called whether task completed or not.
2706  */
2707 static void qp_stop_fail_cb(struct hisi_qp *qp)
2708 {
2709 	int qp_used = atomic_read(&qp->qp_status.used);
2710 	u16 cur_tail = qp->qp_status.sq_tail;
2711 	u16 cur_head = (cur_tail + QM_Q_DEPTH - qp_used) % QM_Q_DEPTH;
2712 	struct hisi_qm *qm = qp->qm;
2713 	u16 pos;
2714 	int i;
2715 
2716 	for (i = 0; i < qp_used; i++) {
2717 		pos = (i + cur_head) % QM_Q_DEPTH;
2718 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2719 		atomic_dec(&qp->qp_status.used);
2720 	}
2721 }
2722 
2723 /**
2724  * qm_drain_qp() - Drain a qp.
2725  * @qp: The qp we want to drain.
2726  *
2727  * Determine whether the queue is cleared by judging the tail pointers of
2728  * sq and cq.
2729  */
2730 static int qm_drain_qp(struct hisi_qp *qp)
2731 {
2732 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
2733 	struct hisi_qm *qm = qp->qm;
2734 	struct device *dev = &qm->pdev->dev;
2735 	struct qm_sqc *sqc;
2736 	struct qm_cqc *cqc;
2737 	dma_addr_t dma_addr;
2738 	int ret = 0, i = 0;
2739 	void *addr;
2740 
2741 	/* No need to judge if master OOO is blocked. */
2742 	if (qm_check_dev_error(qm))
2743 		return 0;
2744 
2745 	/* Kunpeng930 supports drain qp by device */
2746 	if (qm->ops->stop_qp) {
2747 		ret = qm->ops->stop_qp(qp);
2748 		if (ret)
2749 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
2750 		return ret;
2751 	}
2752 
2753 	addr = qm_ctx_alloc(qm, size, &dma_addr);
2754 	if (IS_ERR(addr)) {
2755 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
2756 		return -ENOMEM;
2757 	}
2758 
2759 	while (++i) {
2760 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
2761 		if (ret) {
2762 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2763 			break;
2764 		}
2765 		sqc = addr;
2766 
2767 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
2768 				      qp->qp_id);
2769 		if (ret) {
2770 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2771 			break;
2772 		}
2773 		cqc = addr + sizeof(struct qm_sqc);
2774 
2775 		if ((sqc->tail == cqc->tail) &&
2776 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2777 			break;
2778 
2779 		if (i == MAX_WAIT_COUNTS) {
2780 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
2781 			ret = -EBUSY;
2782 			break;
2783 		}
2784 
2785 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2786 	}
2787 
2788 	qm_ctx_free(qm, size, addr, &dma_addr);
2789 
2790 	return ret;
2791 }
2792 
2793 static int qm_stop_qp_nolock(struct hisi_qp *qp)
2794 {
2795 	struct device *dev = &qp->qm->pdev->dev;
2796 	int ret;
2797 
2798 	/*
2799 	 * It is allowed to stop and release qp when reset, If the qp is
2800 	 * stopped when reset but still want to be released then, the
2801 	 * is_resetting flag should be set negative so that this qp will not
2802 	 * be restarted after reset.
2803 	 */
2804 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
2805 		qp->is_resetting = false;
2806 		return 0;
2807 	}
2808 
2809 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
2810 		return -EPERM;
2811 
2812 	atomic_set(&qp->qp_status.flags, QP_STOP);
2813 
2814 	ret = qm_drain_qp(qp);
2815 	if (ret)
2816 		dev_err(dev, "Failed to drain out data for stopping!\n");
2817 
2818 	if (qp->qm->wq)
2819 		flush_workqueue(qp->qm->wq);
2820 	else
2821 		flush_work(&qp->qm->work);
2822 
2823 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2824 		qp_stop_fail_cb(qp);
2825 
2826 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2827 
2828 	return 0;
2829 }
2830 
2831 /**
2832  * hisi_qm_stop_qp() - Stop a qp in qm.
2833  * @qp: The qp we want to stop.
2834  *
2835  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
2836  */
2837 int hisi_qm_stop_qp(struct hisi_qp *qp)
2838 {
2839 	int ret;
2840 
2841 	down_write(&qp->qm->qps_lock);
2842 	ret = qm_stop_qp_nolock(qp);
2843 	up_write(&qp->qm->qps_lock);
2844 
2845 	return ret;
2846 }
2847 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2848 
2849 /**
2850  * hisi_qp_send() - Queue up a task in the hardware queue.
2851  * @qp: The qp in which to put the message.
2852  * @msg: The message.
2853  *
2854  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2855  * if qp related qm is resetting.
2856  *
2857  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2858  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2859  *       reset may happen, we have no lock here considering performance. This
2860  *       causes current qm_db sending fail or can not receive sended sqe. QM
2861  *       sync/async receive function should handle the error sqe. ACC reset
2862  *       done function should clear used sqe to 0.
2863  */
2864 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2865 {
2866 	struct hisi_qp_status *qp_status = &qp->qp_status;
2867 	u16 sq_tail = qp_status->sq_tail;
2868 	u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH;
2869 	void *sqe = qm_get_avail_sqe(qp);
2870 
2871 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2872 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2873 		     qp->is_resetting)) {
2874 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2875 		return -EAGAIN;
2876 	}
2877 
2878 	if (!sqe)
2879 		return -EBUSY;
2880 
2881 	memcpy(sqe, msg, qp->qm->sqe_size);
2882 
2883 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2884 	atomic_inc(&qp->qp_status.used);
2885 	qp_status->sq_tail = sq_tail_next;
2886 
2887 	return 0;
2888 }
2889 EXPORT_SYMBOL_GPL(hisi_qp_send);
2890 
2891 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2892 {
2893 	unsigned int val;
2894 
2895 	if (qm->ver == QM_HW_V1)
2896 		return;
2897 
2898 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2899 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2900 				       val, val & BIT(0), POLL_PERIOD,
2901 				       POLL_TIMEOUT))
2902 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2903 }
2904 
2905 static void qm_qp_event_notifier(struct hisi_qp *qp)
2906 {
2907 	wake_up_interruptible(&qp->uacce_q->wait);
2908 }
2909 
2910 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2911 {
2912 	return hisi_qm_get_free_qp_num(uacce->priv);
2913 }
2914 
2915 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2916 				   unsigned long arg,
2917 				   struct uacce_queue *q)
2918 {
2919 	struct hisi_qm *qm = uacce->priv;
2920 	struct hisi_qp *qp;
2921 	u8 alg_type = 0;
2922 
2923 	qp = hisi_qm_create_qp(qm, alg_type);
2924 	if (IS_ERR(qp))
2925 		return PTR_ERR(qp);
2926 
2927 	q->priv = qp;
2928 	q->uacce = uacce;
2929 	qp->uacce_q = q;
2930 	qp->event_cb = qm_qp_event_notifier;
2931 	qp->pasid = arg;
2932 	qp->is_in_kernel = false;
2933 
2934 	return 0;
2935 }
2936 
2937 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2938 {
2939 	struct hisi_qp *qp = q->priv;
2940 
2941 	hisi_qm_cache_wb(qp->qm);
2942 	hisi_qm_release_qp(qp);
2943 }
2944 
2945 /* map sq/cq/doorbell to user space */
2946 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2947 			      struct vm_area_struct *vma,
2948 			      struct uacce_qfile_region *qfr)
2949 {
2950 	struct hisi_qp *qp = q->priv;
2951 	struct hisi_qm *qm = qp->qm;
2952 	resource_size_t phys_base = qm->db_phys_base +
2953 				    qp->qp_id * qm->db_interval;
2954 	size_t sz = vma->vm_end - vma->vm_start;
2955 	struct pci_dev *pdev = qm->pdev;
2956 	struct device *dev = &pdev->dev;
2957 	unsigned long vm_pgoff;
2958 	int ret;
2959 
2960 	switch (qfr->type) {
2961 	case UACCE_QFRT_MMIO:
2962 		if (qm->ver == QM_HW_V1) {
2963 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2964 				return -EINVAL;
2965 		} else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) {
2966 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2967 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2968 				return -EINVAL;
2969 		} else {
2970 			if (sz > qm->db_interval)
2971 				return -EINVAL;
2972 		}
2973 
2974 		vma->vm_flags |= VM_IO;
2975 
2976 		return remap_pfn_range(vma, vma->vm_start,
2977 				       phys_base >> PAGE_SHIFT,
2978 				       sz, pgprot_noncached(vma->vm_page_prot));
2979 	case UACCE_QFRT_DUS:
2980 		if (sz != qp->qdma.size)
2981 			return -EINVAL;
2982 
2983 		/*
2984 		 * dma_mmap_coherent() requires vm_pgoff as 0
2985 		 * restore vm_pfoff to initial value for mmap()
2986 		 */
2987 		vm_pgoff = vma->vm_pgoff;
2988 		vma->vm_pgoff = 0;
2989 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2990 					qp->qdma.dma, sz);
2991 		vma->vm_pgoff = vm_pgoff;
2992 		return ret;
2993 
2994 	default:
2995 		return -EINVAL;
2996 	}
2997 }
2998 
2999 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
3000 {
3001 	struct hisi_qp *qp = q->priv;
3002 
3003 	return hisi_qm_start_qp(qp, qp->pasid);
3004 }
3005 
3006 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
3007 {
3008 	hisi_qm_stop_qp(q->priv);
3009 }
3010 
3011 static int hisi_qm_is_q_updated(struct uacce_queue *q)
3012 {
3013 	struct hisi_qp *qp = q->priv;
3014 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
3015 	int updated = 0;
3016 
3017 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
3018 		/* make sure to read data from memory */
3019 		dma_rmb();
3020 		qm_cq_head_update(qp);
3021 		cqe = qp->cqe + qp->qp_status.cq_head;
3022 		updated = 1;
3023 	}
3024 
3025 	return updated;
3026 }
3027 
3028 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
3029 {
3030 	struct hisi_qm *qm = q->uacce->priv;
3031 	struct hisi_qp *qp = q->priv;
3032 
3033 	down_write(&qm->qps_lock);
3034 	qp->alg_type = type;
3035 	up_write(&qm->qps_lock);
3036 }
3037 
3038 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
3039 				unsigned long arg)
3040 {
3041 	struct hisi_qp *qp = q->priv;
3042 	struct hisi_qp_ctx qp_ctx;
3043 
3044 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
3045 		if (copy_from_user(&qp_ctx, (void __user *)arg,
3046 				   sizeof(struct hisi_qp_ctx)))
3047 			return -EFAULT;
3048 
3049 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
3050 			return -EINVAL;
3051 
3052 		qm_set_sqctype(q, qp_ctx.qc_type);
3053 		qp_ctx.id = qp->qp_id;
3054 
3055 		if (copy_to_user((void __user *)arg, &qp_ctx,
3056 				 sizeof(struct hisi_qp_ctx)))
3057 			return -EFAULT;
3058 	} else {
3059 		return -EINVAL;
3060 	}
3061 
3062 	return 0;
3063 }
3064 
3065 static const struct uacce_ops uacce_qm_ops = {
3066 	.get_available_instances = hisi_qm_get_available_instances,
3067 	.get_queue = hisi_qm_uacce_get_queue,
3068 	.put_queue = hisi_qm_uacce_put_queue,
3069 	.start_queue = hisi_qm_uacce_start_queue,
3070 	.stop_queue = hisi_qm_uacce_stop_queue,
3071 	.mmap = hisi_qm_uacce_mmap,
3072 	.ioctl = hisi_qm_uacce_ioctl,
3073 	.is_q_updated = hisi_qm_is_q_updated,
3074 };
3075 
3076 static int qm_alloc_uacce(struct hisi_qm *qm)
3077 {
3078 	struct pci_dev *pdev = qm->pdev;
3079 	struct uacce_device *uacce;
3080 	unsigned long mmio_page_nr;
3081 	unsigned long dus_page_nr;
3082 	struct uacce_interface interface = {
3083 		.flags = UACCE_DEV_SVA,
3084 		.ops = &uacce_qm_ops,
3085 	};
3086 	int ret;
3087 
3088 	ret = strscpy(interface.name, pdev->driver->name,
3089 		      sizeof(interface.name));
3090 	if (ret < 0)
3091 		return -ENAMETOOLONG;
3092 
3093 	uacce = uacce_alloc(&pdev->dev, &interface);
3094 	if (IS_ERR(uacce))
3095 		return PTR_ERR(uacce);
3096 
3097 	if (uacce->flags & UACCE_DEV_SVA && qm->mode == UACCE_MODE_SVA) {
3098 		qm->use_sva = true;
3099 	} else {
3100 		/* only consider sva case */
3101 		uacce_remove(uacce);
3102 		qm->uacce = NULL;
3103 		return -EINVAL;
3104 	}
3105 
3106 	uacce->is_vf = pdev->is_virtfn;
3107 	uacce->priv = qm;
3108 	uacce->algs = qm->algs;
3109 
3110 	if (qm->ver == QM_HW_V1)
3111 		uacce->api_ver = HISI_QM_API_VER_BASE;
3112 	else if (qm->ver == QM_HW_V2)
3113 		uacce->api_ver = HISI_QM_API_VER2_BASE;
3114 	else
3115 		uacce->api_ver = HISI_QM_API_VER3_BASE;
3116 
3117 	if (qm->ver == QM_HW_V1)
3118 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
3119 	else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation)
3120 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
3121 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
3122 	else
3123 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
3124 
3125 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH +
3126 		       sizeof(struct qm_cqe) * QM_Q_DEPTH) >> PAGE_SHIFT;
3127 
3128 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
3129 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
3130 
3131 	qm->uacce = uacce;
3132 
3133 	return 0;
3134 }
3135 
3136 /**
3137  * qm_frozen() - Try to froze QM to cut continuous queue request. If
3138  * there is user on the QM, return failure without doing anything.
3139  * @qm: The qm needed to be fronzen.
3140  *
3141  * This function frozes QM, then we can do SRIOV disabling.
3142  */
3143 static int qm_frozen(struct hisi_qm *qm)
3144 {
3145 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
3146 		return 0;
3147 
3148 	down_write(&qm->qps_lock);
3149 
3150 	if (!qm->qp_in_used) {
3151 		qm->qp_in_used = qm->qp_num;
3152 		up_write(&qm->qps_lock);
3153 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
3154 		return 0;
3155 	}
3156 
3157 	up_write(&qm->qps_lock);
3158 
3159 	return -EBUSY;
3160 }
3161 
3162 static int qm_try_frozen_vfs(struct pci_dev *pdev,
3163 			     struct hisi_qm_list *qm_list)
3164 {
3165 	struct hisi_qm *qm, *vf_qm;
3166 	struct pci_dev *dev;
3167 	int ret = 0;
3168 
3169 	if (!qm_list || !pdev)
3170 		return -EINVAL;
3171 
3172 	/* Try to frozen all the VFs as disable SRIOV */
3173 	mutex_lock(&qm_list->lock);
3174 	list_for_each_entry(qm, &qm_list->list, list) {
3175 		dev = qm->pdev;
3176 		if (dev == pdev)
3177 			continue;
3178 		if (pci_physfn(dev) == pdev) {
3179 			vf_qm = pci_get_drvdata(dev);
3180 			ret = qm_frozen(vf_qm);
3181 			if (ret)
3182 				goto frozen_fail;
3183 		}
3184 	}
3185 
3186 frozen_fail:
3187 	mutex_unlock(&qm_list->lock);
3188 
3189 	return ret;
3190 }
3191 
3192 /**
3193  * hisi_qm_wait_task_finish() - Wait until the task is finished
3194  * when removing the driver.
3195  * @qm: The qm needed to wait for the task to finish.
3196  * @qm_list: The list of all available devices.
3197  */
3198 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
3199 {
3200 	while (qm_frozen(qm) ||
3201 	       ((qm->fun_type == QM_HW_PF) &&
3202 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
3203 		msleep(WAIT_PERIOD);
3204 	}
3205 
3206 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
3207 	       test_bit(QM_RESETTING, &qm->misc_ctl))
3208 		msleep(WAIT_PERIOD);
3209 
3210 	udelay(REMOVE_WAIT_DELAY);
3211 }
3212 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
3213 
3214 /**
3215  * hisi_qm_get_free_qp_num() - Get free number of qp in qm.
3216  * @qm: The qm which want to get free qp.
3217  *
3218  * This function return free number of qp in qm.
3219  */
3220 int hisi_qm_get_free_qp_num(struct hisi_qm *qm)
3221 {
3222 	int ret;
3223 
3224 	down_read(&qm->qps_lock);
3225 	ret = qm->qp_num - qm->qp_in_used;
3226 	up_read(&qm->qps_lock);
3227 
3228 	return ret;
3229 }
3230 EXPORT_SYMBOL_GPL(hisi_qm_get_free_qp_num);
3231 
3232 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
3233 {
3234 	struct device *dev = &qm->pdev->dev;
3235 	struct qm_dma *qdma;
3236 	int i;
3237 
3238 	for (i = num - 1; i >= 0; i--) {
3239 		qdma = &qm->qp_array[i].qdma;
3240 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
3241 	}
3242 
3243 	kfree(qm->qp_array);
3244 }
3245 
3246 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id)
3247 {
3248 	struct device *dev = &qm->pdev->dev;
3249 	size_t off = qm->sqe_size * QM_Q_DEPTH;
3250 	struct hisi_qp *qp;
3251 
3252 	qp = &qm->qp_array[id];
3253 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
3254 					 GFP_KERNEL);
3255 	if (!qp->qdma.va)
3256 		return -ENOMEM;
3257 
3258 	qp->sqe = qp->qdma.va;
3259 	qp->sqe_dma = qp->qdma.dma;
3260 	qp->cqe = qp->qdma.va + off;
3261 	qp->cqe_dma = qp->qdma.dma + off;
3262 	qp->qdma.size = dma_size;
3263 	qp->qm = qm;
3264 	qp->qp_id = id;
3265 
3266 	return 0;
3267 }
3268 
3269 static void hisi_qm_pre_init(struct hisi_qm *qm)
3270 {
3271 	struct pci_dev *pdev = qm->pdev;
3272 
3273 	if (qm->ver == QM_HW_V1)
3274 		qm->ops = &qm_hw_ops_v1;
3275 	else if (qm->ver == QM_HW_V2)
3276 		qm->ops = &qm_hw_ops_v2;
3277 	else
3278 		qm->ops = &qm_hw_ops_v3;
3279 
3280 	pci_set_drvdata(pdev, qm);
3281 	mutex_init(&qm->mailbox_lock);
3282 	init_rwsem(&qm->qps_lock);
3283 	qm->qp_in_used = 0;
3284 	qm->misc_ctl = false;
3285 	if (qm->fun_type == QM_HW_PF && qm->ver > QM_HW_V2) {
3286 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
3287 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
3288 	}
3289 }
3290 
3291 static void qm_cmd_uninit(struct hisi_qm *qm)
3292 {
3293 	u32 val;
3294 
3295 	if (qm->ver < QM_HW_V3)
3296 		return;
3297 
3298 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3299 	val |= QM_IFC_INT_DISABLE;
3300 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3301 }
3302 
3303 static void qm_cmd_init(struct hisi_qm *qm)
3304 {
3305 	u32 val;
3306 
3307 	if (qm->ver < QM_HW_V3)
3308 		return;
3309 
3310 	/* Clear communication interrupt source */
3311 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
3312 
3313 	/* Enable pf to vf communication reg. */
3314 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3315 	val &= ~QM_IFC_INT_DISABLE;
3316 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3317 }
3318 
3319 static void qm_put_pci_res(struct hisi_qm *qm)
3320 {
3321 	struct pci_dev *pdev = qm->pdev;
3322 
3323 	if (qm->use_db_isolation)
3324 		iounmap(qm->db_io_base);
3325 
3326 	iounmap(qm->io_base);
3327 	pci_release_mem_regions(pdev);
3328 }
3329 
3330 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
3331 {
3332 	struct pci_dev *pdev = qm->pdev;
3333 
3334 	pci_free_irq_vectors(pdev);
3335 	qm_put_pci_res(qm);
3336 	pci_disable_device(pdev);
3337 }
3338 
3339 /**
3340  * hisi_qm_uninit() - Uninitialize qm.
3341  * @qm: The qm needed uninit.
3342  *
3343  * This function uninits qm related device resources.
3344  */
3345 void hisi_qm_uninit(struct hisi_qm *qm)
3346 {
3347 	struct pci_dev *pdev = qm->pdev;
3348 	struct device *dev = &pdev->dev;
3349 
3350 	qm_cmd_uninit(qm);
3351 	kfree(qm->factor);
3352 	down_write(&qm->qps_lock);
3353 
3354 	if (!qm_avail_state(qm, QM_CLOSE)) {
3355 		up_write(&qm->qps_lock);
3356 		return;
3357 	}
3358 
3359 	hisi_qp_memory_uninit(qm, qm->qp_num);
3360 	idr_destroy(&qm->qp_idr);
3361 
3362 	if (qm->qdma.va) {
3363 		hisi_qm_cache_wb(qm);
3364 		dma_free_coherent(dev, qm->qdma.size,
3365 				  qm->qdma.va, qm->qdma.dma);
3366 	}
3367 
3368 	qm_irq_unregister(qm);
3369 	hisi_qm_pci_uninit(qm);
3370 	uacce_remove(qm->uacce);
3371 	qm->uacce = NULL;
3372 
3373 	up_write(&qm->qps_lock);
3374 }
3375 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
3376 
3377 /**
3378  * hisi_qm_get_vft() - Get vft from a qm.
3379  * @qm: The qm we want to get its vft.
3380  * @base: The base number of queue in vft.
3381  * @number: The number of queues in vft.
3382  *
3383  * We can allocate multiple queues to a qm by configuring virtual function
3384  * table. We get related configures by this function. Normally, we call this
3385  * function in VF driver to get the queue information.
3386  *
3387  * qm hw v1 does not support this interface.
3388  */
3389 int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
3390 {
3391 	if (!base || !number)
3392 		return -EINVAL;
3393 
3394 	if (!qm->ops->get_vft) {
3395 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
3396 		return -EINVAL;
3397 	}
3398 
3399 	return qm->ops->get_vft(qm, base, number);
3400 }
3401 EXPORT_SYMBOL_GPL(hisi_qm_get_vft);
3402 
3403 /**
3404  * hisi_qm_set_vft() - Set vft to a qm.
3405  * @qm: The qm we want to set its vft.
3406  * @fun_num: The function number.
3407  * @base: The base number of queue in vft.
3408  * @number: The number of queues in vft.
3409  *
3410  * This function is alway called in PF driver, it is used to assign queues
3411  * among PF and VFs.
3412  *
3413  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
3414  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
3415  * (VF function number 0x2)
3416  */
3417 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
3418 		    u32 number)
3419 {
3420 	u32 max_q_num = qm->ctrl_qp_num;
3421 
3422 	if (base >= max_q_num || number > max_q_num ||
3423 	    (base + number) > max_q_num)
3424 		return -EINVAL;
3425 
3426 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
3427 }
3428 
3429 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
3430 {
3431 	struct hisi_qm_status *status = &qm->status;
3432 
3433 	status->eq_head = 0;
3434 	status->aeq_head = 0;
3435 	status->eqc_phase = true;
3436 	status->aeqc_phase = true;
3437 }
3438 
3439 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3440 {
3441 	struct device *dev = &qm->pdev->dev;
3442 	struct qm_eqc *eqc;
3443 	dma_addr_t eqc_dma;
3444 	int ret;
3445 
3446 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
3447 	if (!eqc)
3448 		return -ENOMEM;
3449 
3450 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3451 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3452 	if (qm->ver == QM_HW_V1)
3453 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3454 	eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
3455 
3456 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
3457 				 DMA_TO_DEVICE);
3458 	if (dma_mapping_error(dev, eqc_dma)) {
3459 		kfree(eqc);
3460 		return -ENOMEM;
3461 	}
3462 
3463 	ret = qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
3464 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
3465 	kfree(eqc);
3466 
3467 	return ret;
3468 }
3469 
3470 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3471 {
3472 	struct device *dev = &qm->pdev->dev;
3473 	struct qm_aeqc *aeqc;
3474 	dma_addr_t aeqc_dma;
3475 	int ret;
3476 
3477 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
3478 	if (!aeqc)
3479 		return -ENOMEM;
3480 
3481 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3482 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3483 	aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
3484 
3485 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
3486 				  DMA_TO_DEVICE);
3487 	if (dma_mapping_error(dev, aeqc_dma)) {
3488 		kfree(aeqc);
3489 		return -ENOMEM;
3490 	}
3491 
3492 	ret = qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
3493 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
3494 	kfree(aeqc);
3495 
3496 	return ret;
3497 }
3498 
3499 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3500 {
3501 	struct device *dev = &qm->pdev->dev;
3502 	int ret;
3503 
3504 	qm_init_eq_aeq_status(qm);
3505 
3506 	ret = qm_eq_ctx_cfg(qm);
3507 	if (ret) {
3508 		dev_err(dev, "Set eqc failed!\n");
3509 		return ret;
3510 	}
3511 
3512 	return qm_aeq_ctx_cfg(qm);
3513 }
3514 
3515 static int __hisi_qm_start(struct hisi_qm *qm)
3516 {
3517 	int ret;
3518 
3519 	WARN_ON(!qm->qdma.va);
3520 
3521 	if (qm->fun_type == QM_HW_PF) {
3522 		ret = qm_dev_mem_reset(qm);
3523 		if (ret)
3524 			return ret;
3525 
3526 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3527 		if (ret)
3528 			return ret;
3529 	}
3530 
3531 	ret = qm_eq_aeq_ctx_cfg(qm);
3532 	if (ret)
3533 		return ret;
3534 
3535 	ret = qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3536 	if (ret)
3537 		return ret;
3538 
3539 	ret = qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3540 	if (ret)
3541 		return ret;
3542 
3543 	qm_init_prefetch(qm);
3544 
3545 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
3546 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
3547 
3548 	return 0;
3549 }
3550 
3551 /**
3552  * hisi_qm_start() - start qm
3553  * @qm: The qm to be started.
3554  *
3555  * This function starts a qm, then we can allocate qp from this qm.
3556  */
3557 int hisi_qm_start(struct hisi_qm *qm)
3558 {
3559 	struct device *dev = &qm->pdev->dev;
3560 	int ret = 0;
3561 
3562 	down_write(&qm->qps_lock);
3563 
3564 	if (!qm_avail_state(qm, QM_START)) {
3565 		up_write(&qm->qps_lock);
3566 		return -EPERM;
3567 	}
3568 
3569 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3570 
3571 	if (!qm->qp_num) {
3572 		dev_err(dev, "qp_num should not be 0\n");
3573 		ret = -EINVAL;
3574 		goto err_unlock;
3575 	}
3576 
3577 	ret = __hisi_qm_start(qm);
3578 	if (!ret)
3579 		atomic_set(&qm->status.flags, QM_START);
3580 
3581 err_unlock:
3582 	up_write(&qm->qps_lock);
3583 	return ret;
3584 }
3585 EXPORT_SYMBOL_GPL(hisi_qm_start);
3586 
3587 static int qm_restart(struct hisi_qm *qm)
3588 {
3589 	struct device *dev = &qm->pdev->dev;
3590 	struct hisi_qp *qp;
3591 	int ret, i;
3592 
3593 	ret = hisi_qm_start(qm);
3594 	if (ret < 0)
3595 		return ret;
3596 
3597 	down_write(&qm->qps_lock);
3598 	for (i = 0; i < qm->qp_num; i++) {
3599 		qp = &qm->qp_array[i];
3600 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3601 		    qp->is_resetting == true) {
3602 			ret = qm_start_qp_nolock(qp, 0);
3603 			if (ret < 0) {
3604 				dev_err(dev, "Failed to start qp%d!\n", i);
3605 
3606 				up_write(&qm->qps_lock);
3607 				return ret;
3608 			}
3609 			qp->is_resetting = false;
3610 		}
3611 	}
3612 	up_write(&qm->qps_lock);
3613 
3614 	return 0;
3615 }
3616 
3617 /* Stop started qps in reset flow */
3618 static int qm_stop_started_qp(struct hisi_qm *qm)
3619 {
3620 	struct device *dev = &qm->pdev->dev;
3621 	struct hisi_qp *qp;
3622 	int i, ret;
3623 
3624 	for (i = 0; i < qm->qp_num; i++) {
3625 		qp = &qm->qp_array[i];
3626 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
3627 			qp->is_resetting = true;
3628 			ret = qm_stop_qp_nolock(qp);
3629 			if (ret < 0) {
3630 				dev_err(dev, "Failed to stop qp%d!\n", i);
3631 				return ret;
3632 			}
3633 		}
3634 	}
3635 
3636 	return 0;
3637 }
3638 
3639 
3640 /**
3641  * qm_clear_queues() - Clear all queues memory in a qm.
3642  * @qm: The qm in which the queues will be cleared.
3643  *
3644  * This function clears all queues memory in a qm. Reset of accelerator can
3645  * use this to clear queues.
3646  */
3647 static void qm_clear_queues(struct hisi_qm *qm)
3648 {
3649 	struct hisi_qp *qp;
3650 	int i;
3651 
3652 	for (i = 0; i < qm->qp_num; i++) {
3653 		qp = &qm->qp_array[i];
3654 		if (qp->is_resetting)
3655 			memset(qp->qdma.va, 0, qp->qdma.size);
3656 	}
3657 
3658 	memset(qm->qdma.va, 0, qm->qdma.size);
3659 }
3660 
3661 /**
3662  * hisi_qm_stop() - Stop a qm.
3663  * @qm: The qm which will be stopped.
3664  * @r: The reason to stop qm.
3665  *
3666  * This function stops qm and its qps, then qm can not accept request.
3667  * Related resources are not released at this state, we can use hisi_qm_start
3668  * to let qm start again.
3669  */
3670 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3671 {
3672 	struct device *dev = &qm->pdev->dev;
3673 	int ret = 0;
3674 
3675 	down_write(&qm->qps_lock);
3676 
3677 	qm->status.stop_reason = r;
3678 	if (!qm_avail_state(qm, QM_STOP)) {
3679 		ret = -EPERM;
3680 		goto err_unlock;
3681 	}
3682 
3683 	if (qm->status.stop_reason == QM_SOFT_RESET ||
3684 	    qm->status.stop_reason == QM_FLR) {
3685 		ret = qm_stop_started_qp(qm);
3686 		if (ret < 0) {
3687 			dev_err(dev, "Failed to stop started qp!\n");
3688 			goto err_unlock;
3689 		}
3690 	}
3691 
3692 	/* Mask eq and aeq irq */
3693 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
3694 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3695 
3696 	if (qm->fun_type == QM_HW_PF) {
3697 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3698 		if (ret < 0) {
3699 			dev_err(dev, "Failed to set vft!\n");
3700 			ret = -EBUSY;
3701 			goto err_unlock;
3702 		}
3703 	}
3704 
3705 	qm_clear_queues(qm);
3706 	atomic_set(&qm->status.flags, QM_STOP);
3707 
3708 err_unlock:
3709 	up_write(&qm->qps_lock);
3710 	return ret;
3711 }
3712 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3713 
3714 static ssize_t qm_status_read(struct file *filp, char __user *buffer,
3715 			      size_t count, loff_t *pos)
3716 {
3717 	struct hisi_qm *qm = filp->private_data;
3718 	char buf[QM_DBG_READ_LEN];
3719 	int val, len;
3720 
3721 	val = atomic_read(&qm->status.flags);
3722 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]);
3723 
3724 	return simple_read_from_buffer(buffer, count, pos, buf, len);
3725 }
3726 
3727 static const struct file_operations qm_status_fops = {
3728 	.owner = THIS_MODULE,
3729 	.open = simple_open,
3730 	.read = qm_status_read,
3731 };
3732 
3733 static int qm_debugfs_atomic64_set(void *data, u64 val)
3734 {
3735 	if (val)
3736 		return -EINVAL;
3737 
3738 	atomic64_set((atomic64_t *)data, 0);
3739 
3740 	return 0;
3741 }
3742 
3743 static int qm_debugfs_atomic64_get(void *data, u64 *val)
3744 {
3745 	*val = atomic64_read((atomic64_t *)data);
3746 
3747 	return 0;
3748 }
3749 
3750 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get,
3751 			 qm_debugfs_atomic64_set, "%llu\n");
3752 
3753 static void qm_hw_error_init(struct hisi_qm *qm)
3754 {
3755 	struct hisi_qm_err_info *err_info = &qm->err_info;
3756 
3757 	if (!qm->ops->hw_error_init) {
3758 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3759 		return;
3760 	}
3761 
3762 	qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe);
3763 }
3764 
3765 static void qm_hw_error_uninit(struct hisi_qm *qm)
3766 {
3767 	if (!qm->ops->hw_error_uninit) {
3768 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3769 		return;
3770 	}
3771 
3772 	qm->ops->hw_error_uninit(qm);
3773 }
3774 
3775 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3776 {
3777 	if (!qm->ops->hw_error_handle) {
3778 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3779 		return ACC_ERR_NONE;
3780 	}
3781 
3782 	return qm->ops->hw_error_handle(qm);
3783 }
3784 
3785 /**
3786  * hisi_qm_dev_err_init() - Initialize device error configuration.
3787  * @qm: The qm for which we want to do error initialization.
3788  *
3789  * Initialize QM and device error related configuration.
3790  */
3791 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3792 {
3793 	if (qm->fun_type == QM_HW_VF)
3794 		return;
3795 
3796 	qm_hw_error_init(qm);
3797 
3798 	if (!qm->err_ini->hw_err_enable) {
3799 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3800 		return;
3801 	}
3802 	qm->err_ini->hw_err_enable(qm);
3803 }
3804 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3805 
3806 /**
3807  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3808  * @qm: The qm for which we want to do error uninitialization.
3809  *
3810  * Uninitialize QM and device error related configuration.
3811  */
3812 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3813 {
3814 	if (qm->fun_type == QM_HW_VF)
3815 		return;
3816 
3817 	qm_hw_error_uninit(qm);
3818 
3819 	if (!qm->err_ini->hw_err_disable) {
3820 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3821 		return;
3822 	}
3823 	qm->err_ini->hw_err_disable(qm);
3824 }
3825 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3826 
3827 /**
3828  * hisi_qm_free_qps() - free multiple queue pairs.
3829  * @qps: The queue pairs need to be freed.
3830  * @qp_num: The num of queue pairs.
3831  */
3832 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3833 {
3834 	int i;
3835 
3836 	if (!qps || qp_num <= 0)
3837 		return;
3838 
3839 	for (i = qp_num - 1; i >= 0; i--)
3840 		hisi_qm_release_qp(qps[i]);
3841 }
3842 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3843 
3844 static void free_list(struct list_head *head)
3845 {
3846 	struct hisi_qm_resource *res, *tmp;
3847 
3848 	list_for_each_entry_safe(res, tmp, head, list) {
3849 		list_del(&res->list);
3850 		kfree(res);
3851 	}
3852 }
3853 
3854 static int hisi_qm_sort_devices(int node, struct list_head *head,
3855 				struct hisi_qm_list *qm_list)
3856 {
3857 	struct hisi_qm_resource *res, *tmp;
3858 	struct hisi_qm *qm;
3859 	struct list_head *n;
3860 	struct device *dev;
3861 	int dev_node = 0;
3862 
3863 	list_for_each_entry(qm, &qm_list->list, list) {
3864 		dev = &qm->pdev->dev;
3865 
3866 		if (IS_ENABLED(CONFIG_NUMA)) {
3867 			dev_node = dev_to_node(dev);
3868 			if (dev_node < 0)
3869 				dev_node = 0;
3870 		}
3871 
3872 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3873 		if (!res)
3874 			return -ENOMEM;
3875 
3876 		res->qm = qm;
3877 		res->distance = node_distance(dev_node, node);
3878 		n = head;
3879 		list_for_each_entry(tmp, head, list) {
3880 			if (res->distance < tmp->distance) {
3881 				n = &tmp->list;
3882 				break;
3883 			}
3884 		}
3885 		list_add_tail(&res->list, n);
3886 	}
3887 
3888 	return 0;
3889 }
3890 
3891 /**
3892  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3893  * @qm_list: The list of all available devices.
3894  * @qp_num: The number of queue pairs need created.
3895  * @alg_type: The algorithm type.
3896  * @node: The numa node.
3897  * @qps: The queue pairs need created.
3898  *
3899  * This function will sort all available device according to numa distance.
3900  * Then try to create all queue pairs from one device, if all devices do
3901  * not meet the requirements will return error.
3902  */
3903 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3904 			   u8 alg_type, int node, struct hisi_qp **qps)
3905 {
3906 	struct hisi_qm_resource *tmp;
3907 	int ret = -ENODEV;
3908 	LIST_HEAD(head);
3909 	int i;
3910 
3911 	if (!qps || !qm_list || qp_num <= 0)
3912 		return -EINVAL;
3913 
3914 	mutex_lock(&qm_list->lock);
3915 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3916 		mutex_unlock(&qm_list->lock);
3917 		goto err;
3918 	}
3919 
3920 	list_for_each_entry(tmp, &head, list) {
3921 		for (i = 0; i < qp_num; i++) {
3922 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3923 			if (IS_ERR(qps[i])) {
3924 				hisi_qm_free_qps(qps, i);
3925 				break;
3926 			}
3927 		}
3928 
3929 		if (i == qp_num) {
3930 			ret = 0;
3931 			break;
3932 		}
3933 	}
3934 
3935 	mutex_unlock(&qm_list->lock);
3936 	if (ret)
3937 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3938 			node, alg_type, qp_num);
3939 
3940 err:
3941 	free_list(&head);
3942 	return ret;
3943 }
3944 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3945 
3946 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3947 {
3948 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3949 	u32 max_qp_num = qm->max_qp_num;
3950 	u32 q_base = qm->qp_num;
3951 	int ret;
3952 
3953 	if (!num_vfs)
3954 		return -EINVAL;
3955 
3956 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3957 
3958 	/* If vfs_q_num is less than num_vfs, return error. */
3959 	if (vfs_q_num < num_vfs)
3960 		return -EINVAL;
3961 
3962 	q_num = vfs_q_num / num_vfs;
3963 	remain_q_num = vfs_q_num % num_vfs;
3964 
3965 	for (i = num_vfs; i > 0; i--) {
3966 		/*
3967 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3968 		 * remaining queues equally.
3969 		 */
3970 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3971 			act_q_num = q_num + remain_q_num;
3972 			remain_q_num = 0;
3973 		} else if (remain_q_num > 0) {
3974 			act_q_num = q_num + 1;
3975 			remain_q_num--;
3976 		} else {
3977 			act_q_num = q_num;
3978 		}
3979 
3980 		act_q_num = min_t(int, act_q_num, max_qp_num);
3981 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3982 		if (ret) {
3983 			for (j = num_vfs; j > i; j--)
3984 				hisi_qm_set_vft(qm, j, 0, 0);
3985 			return ret;
3986 		}
3987 		q_base += act_q_num;
3988 	}
3989 
3990 	return 0;
3991 }
3992 
3993 static int qm_clear_vft_config(struct hisi_qm *qm)
3994 {
3995 	int ret;
3996 	u32 i;
3997 
3998 	for (i = 1; i <= qm->vfs_num; i++) {
3999 		ret = hisi_qm_set_vft(qm, i, 0, 0);
4000 		if (ret)
4001 			return ret;
4002 	}
4003 	qm->vfs_num = 0;
4004 
4005 	return 0;
4006 }
4007 
4008 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
4009 {
4010 	struct device *dev = &qm->pdev->dev;
4011 	u32 ir = qos * QM_QOS_RATE;
4012 	int ret, total_vfs, i;
4013 
4014 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
4015 	if (fun_index > total_vfs)
4016 		return -EINVAL;
4017 
4018 	qm->factor[fun_index].func_qos = qos;
4019 
4020 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
4021 	if (ret) {
4022 		dev_err(dev, "failed to calculate shaper parameter!\n");
4023 		return -EINVAL;
4024 	}
4025 
4026 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
4027 		/* The base number of queue reuse for different alg type */
4028 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
4029 		if (ret) {
4030 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
4031 			return -EINVAL;
4032 		}
4033 	}
4034 
4035 	return 0;
4036 }
4037 
4038 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
4039 {
4040 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
4041 	u64 shaper_vft, ir_calc, ir;
4042 	unsigned int val;
4043 	u32 error_rate;
4044 	int ret;
4045 
4046 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
4047 					 val & BIT(0), POLL_PERIOD,
4048 					 POLL_TIMEOUT);
4049 	if (ret)
4050 		return 0;
4051 
4052 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
4053 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
4054 	writel(fun_index, qm->io_base + QM_VFT_CFG);
4055 
4056 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
4057 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
4058 
4059 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
4060 					 val & BIT(0), POLL_PERIOD,
4061 					 POLL_TIMEOUT);
4062 	if (ret)
4063 		return 0;
4064 
4065 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
4066 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
4067 
4068 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
4069 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
4070 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
4071 
4072 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
4073 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
4074 
4075 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
4076 
4077 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
4078 
4079 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
4080 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
4081 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
4082 		return 0;
4083 	}
4084 
4085 	return ir;
4086 }
4087 
4088 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
4089 {
4090 	struct device *dev = &qm->pdev->dev;
4091 	u64 mb_cmd;
4092 	u32 qos;
4093 	int ret;
4094 
4095 	qos = qm_get_shaper_vft_qos(qm, fun_num);
4096 	if (!qos) {
4097 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
4098 		return;
4099 	}
4100 
4101 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
4102 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
4103 	if (ret)
4104 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
4105 }
4106 
4107 static int qm_vf_read_qos(struct hisi_qm *qm)
4108 {
4109 	int cnt = 0;
4110 	int ret;
4111 
4112 	/* reset mailbox qos val */
4113 	qm->mb_qos = 0;
4114 
4115 	/* vf ping pf to get function qos */
4116 	if (qm->ops->ping_pf) {
4117 		ret = qm->ops->ping_pf(qm, QM_VF_GET_QOS);
4118 		if (ret) {
4119 			pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
4120 			return ret;
4121 		}
4122 	}
4123 
4124 	while (true) {
4125 		msleep(QM_WAIT_DST_ACK);
4126 		if (qm->mb_qos)
4127 			break;
4128 
4129 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
4130 			pci_err(qm->pdev, "PF ping VF timeout!\n");
4131 			return  -ETIMEDOUT;
4132 		}
4133 	}
4134 
4135 	return ret;
4136 }
4137 
4138 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
4139 			       size_t count, loff_t *pos)
4140 {
4141 	struct hisi_qm *qm = filp->private_data;
4142 	char tbuf[QM_DBG_READ_LEN];
4143 	u32 qos_val, ir;
4144 	int ret;
4145 
4146 	ret = hisi_qm_get_dfx_access(qm);
4147 	if (ret)
4148 		return ret;
4149 
4150 	/* Mailbox and reset cannot be operated at the same time */
4151 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4152 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
4153 		ret = -EAGAIN;
4154 		goto err_put_dfx_access;
4155 	}
4156 
4157 	if (qm->fun_type == QM_HW_PF) {
4158 		ir = qm_get_shaper_vft_qos(qm, 0);
4159 	} else {
4160 		ret = qm_vf_read_qos(qm);
4161 		if (ret)
4162 			goto err_get_status;
4163 		ir = qm->mb_qos;
4164 	}
4165 
4166 	qos_val = ir / QM_QOS_RATE;
4167 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
4168 
4169 	ret =  simple_read_from_buffer(buf, count, pos, tbuf, ret);
4170 
4171 err_get_status:
4172 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4173 err_put_dfx_access:
4174 	hisi_qm_put_dfx_access(qm);
4175 	return ret;
4176 }
4177 
4178 static ssize_t qm_qos_value_init(const char *buf, unsigned long *val)
4179 {
4180 	int buflen = strlen(buf);
4181 	int ret, i;
4182 
4183 	for (i = 0; i < buflen; i++) {
4184 		if (!isdigit(buf[i]))
4185 			return -EINVAL;
4186 	}
4187 
4188 	ret = sscanf(buf, "%ld", val);
4189 	if (ret != QM_QOS_VAL_NUM)
4190 		return -EINVAL;
4191 
4192 	return 0;
4193 }
4194 
4195 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
4196 			       size_t count, loff_t *pos)
4197 {
4198 	struct hisi_qm *qm = filp->private_data;
4199 	char tbuf[QM_DBG_READ_LEN];
4200 	int tmp1, bus, device, function;
4201 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
4202 	char val_buf[QM_QOS_VAL_MAX_LEN] = {0};
4203 	unsigned int fun_index;
4204 	unsigned long val = 0;
4205 	int len, ret;
4206 
4207 	if (qm->fun_type == QM_HW_VF)
4208 		return -EINVAL;
4209 
4210 	/* Mailbox and reset cannot be operated at the same time */
4211 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4212 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
4213 		return -EAGAIN;
4214 	}
4215 
4216 	if (*pos != 0) {
4217 		ret = 0;
4218 		goto err_get_status;
4219 	}
4220 
4221 	if (count >= QM_DBG_READ_LEN) {
4222 		ret = -ENOSPC;
4223 		goto err_get_status;
4224 	}
4225 
4226 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
4227 	if (len < 0) {
4228 		ret = len;
4229 		goto err_get_status;
4230 	}
4231 
4232 	tbuf[len] = '\0';
4233 	ret = sscanf(tbuf, "%s %s", tbuf_bdf, val_buf);
4234 	if (ret != QM_QOS_PARAM_NUM) {
4235 		ret = -EINVAL;
4236 		goto err_get_status;
4237 	}
4238 
4239 	ret = qm_qos_value_init(val_buf, &val);
4240 	if (val == 0 || val > QM_QOS_MAX_VAL || ret) {
4241 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
4242 		ret = -EINVAL;
4243 		goto err_get_status;
4244 	}
4245 
4246 	ret = sscanf(tbuf_bdf, "%d:%x:%d.%d", &tmp1, &bus, &device, &function);
4247 	if (ret != QM_QOS_BDF_PARAM_NUM) {
4248 		pci_err(qm->pdev, "input pci bdf value is error!\n");
4249 		ret = -EINVAL;
4250 		goto err_get_status;
4251 	}
4252 
4253 	fun_index = device * 8 + function;
4254 
4255 	ret = qm_pm_get_sync(qm);
4256 	if (ret) {
4257 		ret = -EINVAL;
4258 		goto err_get_status;
4259 	}
4260 
4261 	ret = qm_func_shaper_enable(qm, fun_index, val);
4262 	if (ret) {
4263 		pci_err(qm->pdev, "failed to enable function shaper!\n");
4264 		ret = -EINVAL;
4265 		goto err_put_sync;
4266 	}
4267 
4268 	ret = count;
4269 
4270 err_put_sync:
4271 	qm_pm_put_sync(qm);
4272 err_get_status:
4273 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4274 	return ret;
4275 }
4276 
4277 static const struct file_operations qm_algqos_fops = {
4278 	.owner = THIS_MODULE,
4279 	.open = simple_open,
4280 	.read = qm_algqos_read,
4281 	.write = qm_algqos_write,
4282 };
4283 
4284 /**
4285  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
4286  * @qm: The qm for which we want to add debugfs files.
4287  *
4288  * Create function qos debugfs files.
4289  */
4290 static void hisi_qm_set_algqos_init(struct hisi_qm *qm)
4291 {
4292 	if (qm->fun_type == QM_HW_PF)
4293 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
4294 				    qm, &qm_algqos_fops);
4295 	else
4296 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
4297 				    qm, &qm_algqos_fops);
4298 }
4299 
4300 /**
4301  * hisi_qm_debug_init() - Initialize qm related debugfs files.
4302  * @qm: The qm for which we want to add debugfs files.
4303  *
4304  * Create qm related debugfs files.
4305  */
4306 void hisi_qm_debug_init(struct hisi_qm *qm)
4307 {
4308 	struct qm_dfx *dfx = &qm->debug.dfx;
4309 	struct dentry *qm_d;
4310 	void *data;
4311 	int i;
4312 
4313 	qm_d = debugfs_create_dir("qm", qm->debug.debug_root);
4314 	qm->debug.qm_d = qm_d;
4315 
4316 	/* only show this in PF */
4317 	if (qm->fun_type == QM_HW_PF) {
4318 		qm_create_debugfs_file(qm, qm->debug.debug_root, CURRENT_QM);
4319 		for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++)
4320 			qm_create_debugfs_file(qm, qm->debug.qm_d, i);
4321 	}
4322 
4323 	debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops);
4324 
4325 	debugfs_create_file("cmd", 0600, qm->debug.qm_d, qm, &qm_cmd_fops);
4326 
4327 	debugfs_create_file("status", 0444, qm->debug.qm_d, qm,
4328 			&qm_status_fops);
4329 	for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) {
4330 		data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset);
4331 		debugfs_create_file(qm_dfx_files[i].name,
4332 			0644,
4333 			qm_d,
4334 			data,
4335 			&qm_atomic64_ops);
4336 	}
4337 
4338 	if (qm->ver >= QM_HW_V3)
4339 		hisi_qm_set_algqos_init(qm);
4340 }
4341 EXPORT_SYMBOL_GPL(hisi_qm_debug_init);
4342 
4343 /**
4344  * hisi_qm_debug_regs_clear() - clear qm debug related registers.
4345  * @qm: The qm for which we want to clear its debug registers.
4346  */
4347 void hisi_qm_debug_regs_clear(struct hisi_qm *qm)
4348 {
4349 	const struct debugfs_reg32 *regs;
4350 	int i;
4351 
4352 	/* clear current_qm */
4353 	writel(0x0, qm->io_base + QM_DFX_MB_CNT_VF);
4354 	writel(0x0, qm->io_base + QM_DFX_DB_CNT_VF);
4355 
4356 	/* clear current_q */
4357 	writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
4358 	writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
4359 
4360 	/*
4361 	 * these registers are reading and clearing, so clear them after
4362 	 * reading them.
4363 	 */
4364 	writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE);
4365 
4366 	regs = qm_dfx_regs;
4367 	for (i = 0; i < CNT_CYC_REGS_NUM; i++) {
4368 		readl(qm->io_base + regs->offset);
4369 		regs++;
4370 	}
4371 
4372 	/* clear clear_enable */
4373 	writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE);
4374 }
4375 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear);
4376 
4377 /**
4378  * hisi_qm_sriov_enable() - enable virtual functions
4379  * @pdev: the PCIe device
4380  * @max_vfs: the number of virtual functions to enable
4381  *
4382  * Returns the number of enabled VFs. If there are VFs enabled already or
4383  * max_vfs is more than the total number of device can be enabled, returns
4384  * failure.
4385  */
4386 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
4387 {
4388 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4389 	int pre_existing_vfs, num_vfs, total_vfs, ret;
4390 
4391 	ret = qm_pm_get_sync(qm);
4392 	if (ret)
4393 		return ret;
4394 
4395 	total_vfs = pci_sriov_get_totalvfs(pdev);
4396 	pre_existing_vfs = pci_num_vf(pdev);
4397 	if (pre_existing_vfs) {
4398 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
4399 			pre_existing_vfs);
4400 		goto err_put_sync;
4401 	}
4402 
4403 	num_vfs = min_t(int, max_vfs, total_vfs);
4404 	ret = qm_vf_q_assign(qm, num_vfs);
4405 	if (ret) {
4406 		pci_err(pdev, "Can't assign queues for VF!\n");
4407 		goto err_put_sync;
4408 	}
4409 
4410 	qm->vfs_num = num_vfs;
4411 
4412 	ret = pci_enable_sriov(pdev, num_vfs);
4413 	if (ret) {
4414 		pci_err(pdev, "Can't enable VF!\n");
4415 		qm_clear_vft_config(qm);
4416 		goto err_put_sync;
4417 	}
4418 
4419 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
4420 
4421 	return num_vfs;
4422 
4423 err_put_sync:
4424 	qm_pm_put_sync(qm);
4425 	return ret;
4426 }
4427 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
4428 
4429 /**
4430  * hisi_qm_sriov_disable - disable virtual functions
4431  * @pdev: the PCI device.
4432  * @is_frozen: true when all the VFs are frozen.
4433  *
4434  * Return failure if there are VFs assigned already or VF is in used.
4435  */
4436 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
4437 {
4438 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4439 	int total_vfs = pci_sriov_get_totalvfs(qm->pdev);
4440 	int ret;
4441 
4442 	if (pci_vfs_assigned(pdev)) {
4443 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
4444 		return -EPERM;
4445 	}
4446 
4447 	/* While VF is in used, SRIOV cannot be disabled. */
4448 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
4449 		pci_err(pdev, "Task is using its VF!\n");
4450 		return -EBUSY;
4451 	}
4452 
4453 	pci_disable_sriov(pdev);
4454 	/* clear vf function shaper configure array */
4455 	memset(qm->factor + 1, 0, sizeof(struct qm_shaper_factor) * total_vfs);
4456 	ret = qm_clear_vft_config(qm);
4457 	if (ret)
4458 		return ret;
4459 
4460 	qm_pm_put_sync(qm);
4461 
4462 	return 0;
4463 }
4464 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
4465 
4466 /**
4467  * hisi_qm_sriov_configure - configure the number of VFs
4468  * @pdev: The PCI device
4469  * @num_vfs: The number of VFs need enabled
4470  *
4471  * Enable SR-IOV according to num_vfs, 0 means disable.
4472  */
4473 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
4474 {
4475 	if (num_vfs == 0)
4476 		return hisi_qm_sriov_disable(pdev, false);
4477 	else
4478 		return hisi_qm_sriov_enable(pdev, num_vfs);
4479 }
4480 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
4481 
4482 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
4483 {
4484 	u32 err_sts;
4485 
4486 	if (!qm->err_ini->get_dev_hw_err_status) {
4487 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
4488 		return ACC_ERR_NONE;
4489 	}
4490 
4491 	/* get device hardware error status */
4492 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
4493 	if (err_sts) {
4494 		if (err_sts & qm->err_info.ecc_2bits_mask)
4495 			qm->err_status.is_dev_ecc_mbit = true;
4496 
4497 		if (qm->err_ini->log_dev_hw_err)
4498 			qm->err_ini->log_dev_hw_err(qm, err_sts);
4499 
4500 		/* ce error does not need to be reset */
4501 		if ((err_sts | qm->err_info.dev_ce_mask) ==
4502 		     qm->err_info.dev_ce_mask) {
4503 			if (qm->err_ini->clear_dev_hw_err_status)
4504 				qm->err_ini->clear_dev_hw_err_status(qm,
4505 								err_sts);
4506 
4507 			return ACC_ERR_RECOVERED;
4508 		}
4509 
4510 		return ACC_ERR_NEED_RESET;
4511 	}
4512 
4513 	return ACC_ERR_RECOVERED;
4514 }
4515 
4516 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
4517 {
4518 	enum acc_err_result qm_ret, dev_ret;
4519 
4520 	/* log qm error */
4521 	qm_ret = qm_hw_error_handle(qm);
4522 
4523 	/* log device error */
4524 	dev_ret = qm_dev_err_handle(qm);
4525 
4526 	return (qm_ret == ACC_ERR_NEED_RESET ||
4527 		dev_ret == ACC_ERR_NEED_RESET) ?
4528 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
4529 }
4530 
4531 /**
4532  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
4533  * @pdev: The PCI device which need report error.
4534  * @state: The connectivity between CPU and device.
4535  *
4536  * We register this function into PCIe AER handlers, It will report device or
4537  * qm hardware error status when error occur.
4538  */
4539 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
4540 					  pci_channel_state_t state)
4541 {
4542 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4543 	enum acc_err_result ret;
4544 
4545 	if (pdev->is_virtfn)
4546 		return PCI_ERS_RESULT_NONE;
4547 
4548 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
4549 	if (state == pci_channel_io_perm_failure)
4550 		return PCI_ERS_RESULT_DISCONNECT;
4551 
4552 	ret = qm_process_dev_error(qm);
4553 	if (ret == ACC_ERR_NEED_RESET)
4554 		return PCI_ERS_RESULT_NEED_RESET;
4555 
4556 	return PCI_ERS_RESULT_RECOVERED;
4557 }
4558 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
4559 
4560 static int qm_check_req_recv(struct hisi_qm *qm)
4561 {
4562 	struct pci_dev *pdev = qm->pdev;
4563 	int ret;
4564 	u32 val;
4565 
4566 	if (qm->ver >= QM_HW_V3)
4567 		return 0;
4568 
4569 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
4570 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4571 					 (val == ACC_VENDOR_ID_VALUE),
4572 					 POLL_PERIOD, POLL_TIMEOUT);
4573 	if (ret) {
4574 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
4575 		return ret;
4576 	}
4577 
4578 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
4579 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4580 					 (val == PCI_VENDOR_ID_HUAWEI),
4581 					 POLL_PERIOD, POLL_TIMEOUT);
4582 	if (ret)
4583 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
4584 
4585 	return ret;
4586 }
4587 
4588 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
4589 {
4590 	struct pci_dev *pdev = qm->pdev;
4591 	u16 cmd;
4592 	int i;
4593 
4594 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4595 	if (set)
4596 		cmd |= PCI_COMMAND_MEMORY;
4597 	else
4598 		cmd &= ~PCI_COMMAND_MEMORY;
4599 
4600 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
4601 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4602 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4603 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
4604 			return 0;
4605 
4606 		udelay(1);
4607 	}
4608 
4609 	return -ETIMEDOUT;
4610 }
4611 
4612 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
4613 {
4614 	struct pci_dev *pdev = qm->pdev;
4615 	u16 sriov_ctrl;
4616 	int pos;
4617 	int i;
4618 
4619 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4620 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4621 	if (set)
4622 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
4623 	else
4624 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
4625 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
4626 
4627 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4628 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4629 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
4630 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
4631 			return 0;
4632 
4633 		udelay(1);
4634 	}
4635 
4636 	return -ETIMEDOUT;
4637 }
4638 
4639 static int qm_vf_reset_prepare(struct hisi_qm *qm,
4640 			       enum qm_stop_reason stop_reason)
4641 {
4642 	struct hisi_qm_list *qm_list = qm->qm_list;
4643 	struct pci_dev *pdev = qm->pdev;
4644 	struct pci_dev *virtfn;
4645 	struct hisi_qm *vf_qm;
4646 	int ret = 0;
4647 
4648 	mutex_lock(&qm_list->lock);
4649 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4650 		virtfn = vf_qm->pdev;
4651 		if (virtfn == pdev)
4652 			continue;
4653 
4654 		if (pci_physfn(virtfn) == pdev) {
4655 			/* save VFs PCIE BAR configuration */
4656 			pci_save_state(virtfn);
4657 
4658 			ret = hisi_qm_stop(vf_qm, stop_reason);
4659 			if (ret)
4660 				goto stop_fail;
4661 		}
4662 	}
4663 
4664 stop_fail:
4665 	mutex_unlock(&qm_list->lock);
4666 	return ret;
4667 }
4668 
4669 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
4670 			   enum qm_stop_reason stop_reason)
4671 {
4672 	struct pci_dev *pdev = qm->pdev;
4673 	int ret;
4674 
4675 	if (!qm->vfs_num)
4676 		return 0;
4677 
4678 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
4679 	if (qm->ops->ping_all_vfs) {
4680 		ret = qm->ops->ping_all_vfs(qm, cmd);
4681 		if (ret)
4682 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
4683 	} else {
4684 		ret = qm_vf_reset_prepare(qm, stop_reason);
4685 		if (ret)
4686 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4687 	}
4688 
4689 	return ret;
4690 }
4691 
4692 static int qm_wait_reset_finish(struct hisi_qm *qm)
4693 {
4694 	int delay = 0;
4695 
4696 	/* All reset requests need to be queued for processing */
4697 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4698 		msleep(++delay);
4699 		if (delay > QM_RESET_WAIT_TIMEOUT)
4700 			return -EBUSY;
4701 	}
4702 
4703 	return 0;
4704 }
4705 
4706 static int qm_reset_prepare_ready(struct hisi_qm *qm)
4707 {
4708 	struct pci_dev *pdev = qm->pdev;
4709 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4710 
4711 	/*
4712 	 * PF and VF on host doesnot support resetting at the
4713 	 * same time on Kunpeng920.
4714 	 */
4715 	if (qm->ver < QM_HW_V3)
4716 		return qm_wait_reset_finish(pf_qm);
4717 
4718 	return qm_wait_reset_finish(qm);
4719 }
4720 
4721 static void qm_reset_bit_clear(struct hisi_qm *qm)
4722 {
4723 	struct pci_dev *pdev = qm->pdev;
4724 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4725 
4726 	if (qm->ver < QM_HW_V3)
4727 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
4728 
4729 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4730 }
4731 
4732 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4733 {
4734 	struct pci_dev *pdev = qm->pdev;
4735 	int ret;
4736 
4737 	ret = qm_reset_prepare_ready(qm);
4738 	if (ret) {
4739 		pci_err(pdev, "Controller reset not ready!\n");
4740 		return ret;
4741 	}
4742 
4743 	/* PF obtains the information of VF by querying the register. */
4744 	qm_cmd_uninit(qm);
4745 
4746 	/* Whether VFs stop successfully, soft reset will continue. */
4747 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4748 	if (ret)
4749 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4750 
4751 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4752 	if (ret) {
4753 		pci_err(pdev, "Fails to stop QM!\n");
4754 		qm_reset_bit_clear(qm);
4755 		return ret;
4756 	}
4757 
4758 	ret = qm_wait_vf_prepare_finish(qm);
4759 	if (ret)
4760 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4761 
4762 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4763 
4764 	return 0;
4765 }
4766 
4767 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4768 {
4769 	u32 nfe_enb = 0;
4770 
4771 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4772 	if (qm->ver >= QM_HW_V3)
4773 		return;
4774 
4775 	if (!qm->err_status.is_dev_ecc_mbit &&
4776 	    qm->err_status.is_qm_ecc_mbit &&
4777 	    qm->err_ini->close_axi_master_ooo) {
4778 
4779 		qm->err_ini->close_axi_master_ooo(qm);
4780 
4781 	} else if (qm->err_status.is_dev_ecc_mbit &&
4782 		   !qm->err_status.is_qm_ecc_mbit &&
4783 		   !qm->err_ini->close_axi_master_ooo) {
4784 
4785 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4786 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4787 		       qm->io_base + QM_RAS_NFE_ENABLE);
4788 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4789 	}
4790 }
4791 
4792 static int qm_soft_reset(struct hisi_qm *qm)
4793 {
4794 	struct pci_dev *pdev = qm->pdev;
4795 	int ret;
4796 	u32 val;
4797 
4798 	/* Ensure all doorbells and mailboxes received by QM */
4799 	ret = qm_check_req_recv(qm);
4800 	if (ret)
4801 		return ret;
4802 
4803 	if (qm->vfs_num) {
4804 		ret = qm_set_vf_mse(qm, false);
4805 		if (ret) {
4806 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4807 			return ret;
4808 		}
4809 	}
4810 
4811 	ret = qm->ops->set_msi(qm, false);
4812 	if (ret) {
4813 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4814 		return ret;
4815 	}
4816 
4817 	qm_dev_ecc_mbit_handle(qm);
4818 
4819 	/* OOO register set and check */
4820 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
4821 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4822 
4823 	/* If bus lock, reset chip */
4824 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4825 					 val,
4826 					 (val == ACC_MASTER_TRANS_RETURN_RW),
4827 					 POLL_PERIOD, POLL_TIMEOUT);
4828 	if (ret) {
4829 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
4830 		return ret;
4831 	}
4832 
4833 	if (qm->err_ini->close_sva_prefetch)
4834 		qm->err_ini->close_sva_prefetch(qm);
4835 
4836 	ret = qm_set_pf_mse(qm, false);
4837 	if (ret) {
4838 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4839 		return ret;
4840 	}
4841 
4842 	/* The reset related sub-control registers are not in PCI BAR */
4843 	if (ACPI_HANDLE(&pdev->dev)) {
4844 		unsigned long long value = 0;
4845 		acpi_status s;
4846 
4847 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4848 					  qm->err_info.acpi_rst,
4849 					  NULL, &value);
4850 		if (ACPI_FAILURE(s)) {
4851 			pci_err(pdev, "NO controller reset method!\n");
4852 			return -EIO;
4853 		}
4854 
4855 		if (value) {
4856 			pci_err(pdev, "Reset step %llu failed!\n", value);
4857 			return -EIO;
4858 		}
4859 	} else {
4860 		pci_err(pdev, "No reset method!\n");
4861 		return -EINVAL;
4862 	}
4863 
4864 	return 0;
4865 }
4866 
4867 static int qm_vf_reset_done(struct hisi_qm *qm)
4868 {
4869 	struct hisi_qm_list *qm_list = qm->qm_list;
4870 	struct pci_dev *pdev = qm->pdev;
4871 	struct pci_dev *virtfn;
4872 	struct hisi_qm *vf_qm;
4873 	int ret = 0;
4874 
4875 	mutex_lock(&qm_list->lock);
4876 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4877 		virtfn = vf_qm->pdev;
4878 		if (virtfn == pdev)
4879 			continue;
4880 
4881 		if (pci_physfn(virtfn) == pdev) {
4882 			/* enable VFs PCIE BAR configuration */
4883 			pci_restore_state(virtfn);
4884 
4885 			ret = qm_restart(vf_qm);
4886 			if (ret)
4887 				goto restart_fail;
4888 		}
4889 	}
4890 
4891 restart_fail:
4892 	mutex_unlock(&qm_list->lock);
4893 	return ret;
4894 }
4895 
4896 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
4897 {
4898 	struct pci_dev *pdev = qm->pdev;
4899 	int ret;
4900 
4901 	if (!qm->vfs_num)
4902 		return 0;
4903 
4904 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4905 	if (ret) {
4906 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4907 		return ret;
4908 	}
4909 
4910 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4911 	if (qm->ops->ping_all_vfs) {
4912 		ret = qm->ops->ping_all_vfs(qm, cmd);
4913 		if (ret)
4914 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4915 	} else {
4916 		ret = qm_vf_reset_done(qm);
4917 		if (ret)
4918 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4919 	}
4920 
4921 	return ret;
4922 }
4923 
4924 static int qm_dev_hw_init(struct hisi_qm *qm)
4925 {
4926 	return qm->err_ini->hw_init(qm);
4927 }
4928 
4929 static void qm_restart_prepare(struct hisi_qm *qm)
4930 {
4931 	u32 value;
4932 
4933 	if (qm->err_ini->open_sva_prefetch)
4934 		qm->err_ini->open_sva_prefetch(qm);
4935 
4936 	if (qm->ver >= QM_HW_V3)
4937 		return;
4938 
4939 	if (!qm->err_status.is_qm_ecc_mbit &&
4940 	    !qm->err_status.is_dev_ecc_mbit)
4941 		return;
4942 
4943 	/* temporarily close the OOO port used for PEH to write out MSI */
4944 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4945 	writel(value & ~qm->err_info.msi_wr_port,
4946 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4947 
4948 	/* clear dev ecc 2bit error source if having */
4949 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4950 	if (value && qm->err_ini->clear_dev_hw_err_status)
4951 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4952 
4953 	/* clear QM ecc mbit error source */
4954 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4955 
4956 	/* clear AM Reorder Buffer ecc mbit source */
4957 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4958 }
4959 
4960 static void qm_restart_done(struct hisi_qm *qm)
4961 {
4962 	u32 value;
4963 
4964 	if (qm->ver >= QM_HW_V3)
4965 		goto clear_flags;
4966 
4967 	if (!qm->err_status.is_qm_ecc_mbit &&
4968 	    !qm->err_status.is_dev_ecc_mbit)
4969 		return;
4970 
4971 	/* open the OOO port for PEH to write out MSI */
4972 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4973 	value |= qm->err_info.msi_wr_port;
4974 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4975 
4976 clear_flags:
4977 	qm->err_status.is_qm_ecc_mbit = false;
4978 	qm->err_status.is_dev_ecc_mbit = false;
4979 }
4980 
4981 static int qm_controller_reset_done(struct hisi_qm *qm)
4982 {
4983 	struct pci_dev *pdev = qm->pdev;
4984 	int ret;
4985 
4986 	ret = qm->ops->set_msi(qm, true);
4987 	if (ret) {
4988 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4989 		return ret;
4990 	}
4991 
4992 	ret = qm_set_pf_mse(qm, true);
4993 	if (ret) {
4994 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4995 		return ret;
4996 	}
4997 
4998 	if (qm->vfs_num) {
4999 		ret = qm_set_vf_mse(qm, true);
5000 		if (ret) {
5001 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
5002 			return ret;
5003 		}
5004 	}
5005 
5006 	ret = qm_dev_hw_init(qm);
5007 	if (ret) {
5008 		pci_err(pdev, "Failed to init device\n");
5009 		return ret;
5010 	}
5011 
5012 	qm_restart_prepare(qm);
5013 	hisi_qm_dev_err_init(qm);
5014 	if (qm->err_ini->open_axi_master_ooo)
5015 		qm->err_ini->open_axi_master_ooo(qm);
5016 
5017 	ret = qm_restart(qm);
5018 	if (ret) {
5019 		pci_err(pdev, "Failed to start QM!\n");
5020 		return ret;
5021 	}
5022 
5023 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
5024 	if (ret)
5025 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
5026 
5027 	ret = qm_wait_vf_prepare_finish(qm);
5028 	if (ret)
5029 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
5030 
5031 	qm_cmd_init(qm);
5032 	qm_restart_done(qm);
5033 
5034 	qm_reset_bit_clear(qm);
5035 
5036 	return 0;
5037 }
5038 
5039 static int qm_controller_reset(struct hisi_qm *qm)
5040 {
5041 	struct pci_dev *pdev = qm->pdev;
5042 	int ret;
5043 
5044 	pci_info(pdev, "Controller resetting...\n");
5045 
5046 	ret = qm_controller_reset_prepare(qm);
5047 	if (ret) {
5048 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
5049 		return ret;
5050 	}
5051 
5052 	ret = qm_soft_reset(qm);
5053 	if (ret) {
5054 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
5055 		qm_reset_bit_clear(qm);
5056 		return ret;
5057 	}
5058 
5059 	ret = qm_controller_reset_done(qm);
5060 	if (ret) {
5061 		qm_reset_bit_clear(qm);
5062 		return ret;
5063 	}
5064 
5065 	pci_info(pdev, "Controller reset complete\n");
5066 
5067 	return 0;
5068 }
5069 
5070 /**
5071  * hisi_qm_dev_slot_reset() - slot reset
5072  * @pdev: the PCIe device
5073  *
5074  * This function offers QM relate PCIe device reset interface. Drivers which
5075  * use QM can use this function as slot_reset in its struct pci_error_handlers.
5076  */
5077 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
5078 {
5079 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5080 	int ret;
5081 
5082 	if (pdev->is_virtfn)
5083 		return PCI_ERS_RESULT_RECOVERED;
5084 
5085 	pci_aer_clear_nonfatal_status(pdev);
5086 
5087 	/* reset pcie device controller */
5088 	ret = qm_controller_reset(qm);
5089 	if (ret) {
5090 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
5091 		return PCI_ERS_RESULT_DISCONNECT;
5092 	}
5093 
5094 	return PCI_ERS_RESULT_RECOVERED;
5095 }
5096 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
5097 
5098 void hisi_qm_reset_prepare(struct pci_dev *pdev)
5099 {
5100 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
5101 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5102 	u32 delay = 0;
5103 	int ret;
5104 
5105 	hisi_qm_dev_err_uninit(pf_qm);
5106 
5107 	/*
5108 	 * Check whether there is an ECC mbit error, If it occurs, need to
5109 	 * wait for soft reset to fix it.
5110 	 */
5111 	while (qm_check_dev_error(pf_qm)) {
5112 		msleep(++delay);
5113 		if (delay > QM_RESET_WAIT_TIMEOUT)
5114 			return;
5115 	}
5116 
5117 	ret = qm_reset_prepare_ready(qm);
5118 	if (ret) {
5119 		pci_err(pdev, "FLR not ready!\n");
5120 		return;
5121 	}
5122 
5123 	/* PF obtains the information of VF by querying the register. */
5124 	if (qm->fun_type == QM_HW_PF)
5125 		qm_cmd_uninit(qm);
5126 
5127 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR);
5128 	if (ret)
5129 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
5130 
5131 	ret = hisi_qm_stop(qm, QM_FLR);
5132 	if (ret) {
5133 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
5134 		return;
5135 	}
5136 
5137 	ret = qm_wait_vf_prepare_finish(qm);
5138 	if (ret)
5139 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
5140 
5141 	pci_info(pdev, "FLR resetting...\n");
5142 }
5143 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
5144 
5145 static bool qm_flr_reset_complete(struct pci_dev *pdev)
5146 {
5147 	struct pci_dev *pf_pdev = pci_physfn(pdev);
5148 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
5149 	u32 id;
5150 
5151 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
5152 	if (id == QM_PCI_COMMAND_INVALID) {
5153 		pci_err(pdev, "Device can not be used!\n");
5154 		return false;
5155 	}
5156 
5157 	return true;
5158 }
5159 
5160 void hisi_qm_reset_done(struct pci_dev *pdev)
5161 {
5162 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
5163 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5164 	int ret;
5165 
5166 	if (qm->fun_type == QM_HW_PF) {
5167 		ret = qm_dev_hw_init(qm);
5168 		if (ret) {
5169 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
5170 			goto flr_done;
5171 		}
5172 	}
5173 
5174 	hisi_qm_dev_err_init(pf_qm);
5175 
5176 	ret = qm_restart(qm);
5177 	if (ret) {
5178 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
5179 		goto flr_done;
5180 	}
5181 
5182 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
5183 	if (ret)
5184 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
5185 
5186 	ret = qm_wait_vf_prepare_finish(qm);
5187 	if (ret)
5188 		pci_err(pdev, "failed to start by vfs in FLR!\n");
5189 
5190 flr_done:
5191 	if (qm->fun_type == QM_HW_PF)
5192 		qm_cmd_init(qm);
5193 
5194 	if (qm_flr_reset_complete(pdev))
5195 		pci_info(pdev, "FLR reset complete\n");
5196 
5197 	qm_reset_bit_clear(qm);
5198 }
5199 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
5200 
5201 static irqreturn_t qm_abnormal_irq(int irq, void *data)
5202 {
5203 	struct hisi_qm *qm = data;
5204 	enum acc_err_result ret;
5205 
5206 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
5207 	ret = qm_process_dev_error(qm);
5208 	if (ret == ACC_ERR_NEED_RESET &&
5209 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
5210 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
5211 		schedule_work(&qm->rst_work);
5212 
5213 	return IRQ_HANDLED;
5214 }
5215 
5216 static int qm_irq_register(struct hisi_qm *qm)
5217 {
5218 	struct pci_dev *pdev = qm->pdev;
5219 	int ret;
5220 
5221 	ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR),
5222 			  qm_irq, 0, qm->dev_name, qm);
5223 	if (ret)
5224 		return ret;
5225 
5226 	if (qm->ver > QM_HW_V1) {
5227 		ret = request_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR),
5228 				  qm_aeq_irq, 0, qm->dev_name, qm);
5229 		if (ret)
5230 			goto err_aeq_irq;
5231 
5232 		if (qm->fun_type == QM_HW_PF) {
5233 			ret = request_irq(pci_irq_vector(pdev,
5234 					  QM_ABNORMAL_EVENT_IRQ_VECTOR),
5235 					  qm_abnormal_irq, 0, qm->dev_name, qm);
5236 			if (ret)
5237 				goto err_abonormal_irq;
5238 		}
5239 	}
5240 
5241 	if (qm->ver > QM_HW_V2) {
5242 		ret = request_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR),
5243 				qm_mb_cmd_irq, 0, qm->dev_name, qm);
5244 		if (ret)
5245 			goto err_mb_cmd_irq;
5246 	}
5247 
5248 	return 0;
5249 
5250 err_mb_cmd_irq:
5251 	if (qm->fun_type == QM_HW_PF)
5252 		free_irq(pci_irq_vector(pdev, QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
5253 err_abonormal_irq:
5254 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
5255 err_aeq_irq:
5256 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
5257 	return ret;
5258 }
5259 
5260 /**
5261  * hisi_qm_dev_shutdown() - Shutdown device.
5262  * @pdev: The device will be shutdown.
5263  *
5264  * This function will stop qm when OS shutdown or rebooting.
5265  */
5266 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
5267 {
5268 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5269 	int ret;
5270 
5271 	ret = hisi_qm_stop(qm, QM_NORMAL);
5272 	if (ret)
5273 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
5274 }
5275 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
5276 
5277 static void hisi_qm_controller_reset(struct work_struct *rst_work)
5278 {
5279 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
5280 	int ret;
5281 
5282 	ret = qm_pm_get_sync(qm);
5283 	if (ret) {
5284 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
5285 		return;
5286 	}
5287 
5288 	/* reset pcie device controller */
5289 	ret = qm_controller_reset(qm);
5290 	if (ret)
5291 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
5292 
5293 	qm_pm_put_sync(qm);
5294 }
5295 
5296 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
5297 				   enum qm_stop_reason stop_reason)
5298 {
5299 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
5300 	struct pci_dev *pdev = qm->pdev;
5301 	int ret;
5302 
5303 	ret = qm_reset_prepare_ready(qm);
5304 	if (ret) {
5305 		dev_err(&pdev->dev, "reset prepare not ready!\n");
5306 		atomic_set(&qm->status.flags, QM_STOP);
5307 		cmd = QM_VF_PREPARE_FAIL;
5308 		goto err_prepare;
5309 	}
5310 
5311 	ret = hisi_qm_stop(qm, stop_reason);
5312 	if (ret) {
5313 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
5314 		atomic_set(&qm->status.flags, QM_STOP);
5315 		cmd = QM_VF_PREPARE_FAIL;
5316 		goto err_prepare;
5317 	}
5318 
5319 err_prepare:
5320 	pci_save_state(pdev);
5321 	ret = qm->ops->ping_pf(qm, cmd);
5322 	if (ret)
5323 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
5324 }
5325 
5326 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
5327 {
5328 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
5329 	struct pci_dev *pdev = qm->pdev;
5330 	int ret;
5331 
5332 	pci_restore_state(pdev);
5333 	ret = hisi_qm_start(qm);
5334 	if (ret) {
5335 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
5336 		cmd = QM_VF_START_FAIL;
5337 	}
5338 
5339 	ret = qm->ops->ping_pf(qm, cmd);
5340 	if (ret)
5341 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
5342 
5343 	qm_reset_bit_clear(qm);
5344 }
5345 
5346 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
5347 {
5348 	struct device *dev = &qm->pdev->dev;
5349 	u32 val, cmd;
5350 	u64 msg;
5351 	int ret;
5352 
5353 	/* Wait for reset to finish */
5354 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
5355 					 val == BIT(0), QM_VF_RESET_WAIT_US,
5356 					 QM_VF_RESET_WAIT_TIMEOUT_US);
5357 	/* hardware completion status should be available by this time */
5358 	if (ret) {
5359 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
5360 		return -ETIMEDOUT;
5361 	}
5362 
5363 	/*
5364 	 * Whether message is got successfully,
5365 	 * VF needs to ack PF by clearing the interrupt.
5366 	 */
5367 	ret = qm_get_mb_cmd(qm, &msg, 0);
5368 	qm_clear_cmd_interrupt(qm, 0);
5369 	if (ret) {
5370 		dev_err(dev, "failed to get msg from PF in reset done!\n");
5371 		return ret;
5372 	}
5373 
5374 	cmd = msg & QM_MB_CMD_DATA_MASK;
5375 	if (cmd != QM_PF_RESET_DONE) {
5376 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
5377 		ret = -EINVAL;
5378 	}
5379 
5380 	return ret;
5381 }
5382 
5383 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
5384 				   enum qm_stop_reason stop_reason)
5385 {
5386 	struct device *dev = &qm->pdev->dev;
5387 	int ret;
5388 
5389 	dev_info(dev, "device reset start...\n");
5390 
5391 	/* The message is obtained by querying the register during resetting */
5392 	qm_cmd_uninit(qm);
5393 	qm_pf_reset_vf_prepare(qm, stop_reason);
5394 
5395 	ret = qm_wait_pf_reset_finish(qm);
5396 	if (ret)
5397 		goto err_get_status;
5398 
5399 	qm_pf_reset_vf_done(qm);
5400 	qm_cmd_init(qm);
5401 
5402 	dev_info(dev, "device reset done.\n");
5403 
5404 	return;
5405 
5406 err_get_status:
5407 	qm_cmd_init(qm);
5408 	qm_reset_bit_clear(qm);
5409 }
5410 
5411 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
5412 {
5413 	struct device *dev = &qm->pdev->dev;
5414 	u64 msg;
5415 	u32 cmd;
5416 	int ret;
5417 
5418 	/*
5419 	 * Get the msg from source by sending mailbox. Whether message is got
5420 	 * successfully, destination needs to ack source by clearing the interrupt.
5421 	 */
5422 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
5423 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
5424 	if (ret) {
5425 		dev_err(dev, "failed to get msg from source!\n");
5426 		return;
5427 	}
5428 
5429 	cmd = msg & QM_MB_CMD_DATA_MASK;
5430 	switch (cmd) {
5431 	case QM_PF_FLR_PREPARE:
5432 		qm_pf_reset_vf_process(qm, QM_FLR);
5433 		break;
5434 	case QM_PF_SRST_PREPARE:
5435 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
5436 		break;
5437 	case QM_VF_GET_QOS:
5438 		qm_vf_get_qos(qm, fun_num);
5439 		break;
5440 	case QM_PF_SET_QOS:
5441 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
5442 		break;
5443 	default:
5444 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
5445 		break;
5446 	}
5447 }
5448 
5449 static void qm_cmd_process(struct work_struct *cmd_process)
5450 {
5451 	struct hisi_qm *qm = container_of(cmd_process,
5452 					struct hisi_qm, cmd_process);
5453 	u32 vfs_num = qm->vfs_num;
5454 	u64 val;
5455 	u32 i;
5456 
5457 	if (qm->fun_type == QM_HW_PF) {
5458 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
5459 		if (!val)
5460 			return;
5461 
5462 		for (i = 1; i <= vfs_num; i++) {
5463 			if (val & BIT(i))
5464 				qm_handle_cmd_msg(qm, i);
5465 		}
5466 
5467 		return;
5468 	}
5469 
5470 	qm_handle_cmd_msg(qm, 0);
5471 }
5472 
5473 /**
5474  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
5475  * @qm: The qm needs add.
5476  * @qm_list: The qm list.
5477  *
5478  * This function adds qm to qm list, and will register algorithm to
5479  * crypto when the qm list is empty.
5480  */
5481 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
5482 {
5483 	struct device *dev = &qm->pdev->dev;
5484 	int flag = 0;
5485 	int ret = 0;
5486 
5487 	mutex_lock(&qm_list->lock);
5488 	if (list_empty(&qm_list->list))
5489 		flag = 1;
5490 	list_add_tail(&qm->list, &qm_list->list);
5491 	mutex_unlock(&qm_list->lock);
5492 
5493 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
5494 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
5495 		return 0;
5496 	}
5497 
5498 	if (flag) {
5499 		ret = qm_list->register_to_crypto(qm);
5500 		if (ret) {
5501 			mutex_lock(&qm_list->lock);
5502 			list_del(&qm->list);
5503 			mutex_unlock(&qm_list->lock);
5504 		}
5505 	}
5506 
5507 	return ret;
5508 }
5509 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
5510 
5511 /**
5512  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
5513  * qm list.
5514  * @qm: The qm needs delete.
5515  * @qm_list: The qm list.
5516  *
5517  * This function deletes qm from qm list, and will unregister algorithm
5518  * from crypto when the qm list is empty.
5519  */
5520 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
5521 {
5522 	mutex_lock(&qm_list->lock);
5523 	list_del(&qm->list);
5524 	mutex_unlock(&qm_list->lock);
5525 
5526 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
5527 		return;
5528 
5529 	if (list_empty(&qm_list->list))
5530 		qm_list->unregister_from_crypto(qm);
5531 }
5532 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
5533 
5534 static int qm_get_qp_num(struct hisi_qm *qm)
5535 {
5536 	if (qm->ver == QM_HW_V1)
5537 		qm->ctrl_qp_num = QM_QNUM_V1;
5538 	else if (qm->ver == QM_HW_V2)
5539 		qm->ctrl_qp_num = QM_QNUM_V2;
5540 	else
5541 		qm->ctrl_qp_num = readl(qm->io_base + QM_CAPBILITY) &
5542 					QM_QP_NUN_MASK;
5543 
5544 	if (qm->use_db_isolation)
5545 		qm->max_qp_num = (readl(qm->io_base + QM_CAPBILITY) >>
5546 				  QM_QP_MAX_NUM_SHIFT) & QM_QP_NUN_MASK;
5547 	else
5548 		qm->max_qp_num = qm->ctrl_qp_num;
5549 
5550 	/* check if qp number is valid */
5551 	if (qm->qp_num > qm->max_qp_num) {
5552 		dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n",
5553 			qm->qp_num, qm->max_qp_num);
5554 		return -EINVAL;
5555 	}
5556 
5557 	return 0;
5558 }
5559 
5560 static int qm_get_pci_res(struct hisi_qm *qm)
5561 {
5562 	struct pci_dev *pdev = qm->pdev;
5563 	struct device *dev = &pdev->dev;
5564 	int ret;
5565 
5566 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5567 	if (ret < 0) {
5568 		dev_err(dev, "Failed to request mem regions!\n");
5569 		return ret;
5570 	}
5571 
5572 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5573 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5574 	if (!qm->io_base) {
5575 		ret = -EIO;
5576 		goto err_request_mem_regions;
5577 	}
5578 
5579 	if (qm->ver > QM_HW_V2) {
5580 		if (qm->fun_type == QM_HW_PF)
5581 			qm->use_db_isolation = readl(qm->io_base +
5582 						     QM_QUE_ISO_EN) & BIT(0);
5583 		else
5584 			qm->use_db_isolation = readl(qm->io_base +
5585 						     QM_QUE_ISO_CFG_V) & BIT(0);
5586 	}
5587 
5588 	if (qm->use_db_isolation) {
5589 		qm->db_interval = QM_QP_DB_INTERVAL;
5590 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5591 		qm->db_io_base = ioremap(qm->db_phys_base,
5592 					 pci_resource_len(pdev, PCI_BAR_4));
5593 		if (!qm->db_io_base) {
5594 			ret = -EIO;
5595 			goto err_ioremap;
5596 		}
5597 	} else {
5598 		qm->db_phys_base = qm->phys_base;
5599 		qm->db_io_base = qm->io_base;
5600 		qm->db_interval = 0;
5601 	}
5602 
5603 	if (qm->fun_type == QM_HW_PF) {
5604 		ret = qm_get_qp_num(qm);
5605 		if (ret)
5606 			goto err_db_ioremap;
5607 	}
5608 
5609 	return 0;
5610 
5611 err_db_ioremap:
5612 	if (qm->use_db_isolation)
5613 		iounmap(qm->db_io_base);
5614 err_ioremap:
5615 	iounmap(qm->io_base);
5616 err_request_mem_regions:
5617 	pci_release_mem_regions(pdev);
5618 	return ret;
5619 }
5620 
5621 static int hisi_qm_pci_init(struct hisi_qm *qm)
5622 {
5623 	struct pci_dev *pdev = qm->pdev;
5624 	struct device *dev = &pdev->dev;
5625 	unsigned int num_vec;
5626 	int ret;
5627 
5628 	ret = pci_enable_device_mem(pdev);
5629 	if (ret < 0) {
5630 		dev_err(dev, "Failed to enable device mem!\n");
5631 		return ret;
5632 	}
5633 
5634 	ret = qm_get_pci_res(qm);
5635 	if (ret)
5636 		goto err_disable_pcidev;
5637 
5638 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5639 	if (ret < 0)
5640 		goto err_get_pci_res;
5641 	pci_set_master(pdev);
5642 
5643 	if (!qm->ops->get_irq_num) {
5644 		ret = -EOPNOTSUPP;
5645 		goto err_get_pci_res;
5646 	}
5647 	num_vec = qm->ops->get_irq_num(qm);
5648 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5649 	if (ret < 0) {
5650 		dev_err(dev, "Failed to enable MSI vectors!\n");
5651 		goto err_get_pci_res;
5652 	}
5653 
5654 	return 0;
5655 
5656 err_get_pci_res:
5657 	qm_put_pci_res(qm);
5658 err_disable_pcidev:
5659 	pci_disable_device(pdev);
5660 	return ret;
5661 }
5662 
5663 static void hisi_qm_init_work(struct hisi_qm *qm)
5664 {
5665 	INIT_WORK(&qm->work, qm_work_process);
5666 	if (qm->fun_type == QM_HW_PF)
5667 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5668 
5669 	if (qm->ver > QM_HW_V2)
5670 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5671 }
5672 
5673 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5674 {
5675 	struct device *dev = &qm->pdev->dev;
5676 	size_t qp_dma_size;
5677 	int i, ret;
5678 
5679 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5680 	if (!qm->qp_array)
5681 		return -ENOMEM;
5682 
5683 	/* one more page for device or qp statuses */
5684 	qp_dma_size = qm->sqe_size * QM_Q_DEPTH +
5685 		      sizeof(struct qm_cqe) * QM_Q_DEPTH;
5686 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5687 	for (i = 0; i < qm->qp_num; i++) {
5688 		ret = hisi_qp_memory_init(qm, qp_dma_size, i);
5689 		if (ret)
5690 			goto err_init_qp_mem;
5691 
5692 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5693 	}
5694 
5695 	return 0;
5696 err_init_qp_mem:
5697 	hisi_qp_memory_uninit(qm, i);
5698 
5699 	return ret;
5700 }
5701 
5702 static int hisi_qm_memory_init(struct hisi_qm *qm)
5703 {
5704 	struct device *dev = &qm->pdev->dev;
5705 	int ret, total_vfs;
5706 	size_t off = 0;
5707 
5708 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
5709 	qm->factor = kcalloc(total_vfs + 1, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5710 	if (!qm->factor)
5711 		return -ENOMEM;
5712 
5713 #define QM_INIT_BUF(qm, type, num) do { \
5714 	(qm)->type = ((qm)->qdma.va + (off)); \
5715 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5716 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5717 } while (0)
5718 
5719 	idr_init(&qm->qp_idr);
5720 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) +
5721 			QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) +
5722 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5723 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5724 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5725 					 GFP_ATOMIC);
5726 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5727 	if (!qm->qdma.va) {
5728 		ret =  -ENOMEM;
5729 		goto err_alloc_qdma;
5730 	}
5731 
5732 	QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH);
5733 	QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH);
5734 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5735 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5736 
5737 	ret = hisi_qp_alloc_memory(qm);
5738 	if (ret)
5739 		goto err_alloc_qp_array;
5740 
5741 	return 0;
5742 
5743 err_alloc_qp_array:
5744 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5745 err_alloc_qdma:
5746 	kfree(qm->factor);
5747 
5748 	return ret;
5749 }
5750 
5751 /**
5752  * hisi_qm_init() - Initialize configures about qm.
5753  * @qm: The qm needing init.
5754  *
5755  * This function init qm, then we can call hisi_qm_start to put qm into work.
5756  */
5757 int hisi_qm_init(struct hisi_qm *qm)
5758 {
5759 	struct pci_dev *pdev = qm->pdev;
5760 	struct device *dev = &pdev->dev;
5761 	int ret;
5762 
5763 	hisi_qm_pre_init(qm);
5764 
5765 	ret = hisi_qm_pci_init(qm);
5766 	if (ret)
5767 		return ret;
5768 
5769 	ret = qm_irq_register(qm);
5770 	if (ret)
5771 		goto err_pci_init;
5772 
5773 	if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) {
5774 		/* v2 starts to support get vft by mailbox */
5775 		ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
5776 		if (ret)
5777 			goto err_irq_register;
5778 	}
5779 
5780 	ret = qm_alloc_uacce(qm);
5781 	if (ret < 0)
5782 		dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5783 
5784 	ret = hisi_qm_memory_init(qm);
5785 	if (ret)
5786 		goto err_alloc_uacce;
5787 
5788 	hisi_qm_init_work(qm);
5789 	qm_cmd_init(qm);
5790 	atomic_set(&qm->status.flags, QM_INIT);
5791 
5792 	return 0;
5793 
5794 err_alloc_uacce:
5795 	uacce_remove(qm->uacce);
5796 	qm->uacce = NULL;
5797 err_irq_register:
5798 	qm_irq_unregister(qm);
5799 err_pci_init:
5800 	hisi_qm_pci_uninit(qm);
5801 	return ret;
5802 }
5803 EXPORT_SYMBOL_GPL(hisi_qm_init);
5804 
5805 /**
5806  * hisi_qm_get_dfx_access() - Try to get dfx access.
5807  * @qm: pointer to accelerator device.
5808  *
5809  * Try to get dfx access, then user can get message.
5810  *
5811  * If device is in suspended, return failure, otherwise
5812  * bump up the runtime PM usage counter.
5813  */
5814 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5815 {
5816 	struct device *dev = &qm->pdev->dev;
5817 
5818 	if (pm_runtime_suspended(dev)) {
5819 		dev_info(dev, "can not read/write - device in suspended.\n");
5820 		return -EAGAIN;
5821 	}
5822 
5823 	return qm_pm_get_sync(qm);
5824 }
5825 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5826 
5827 /**
5828  * hisi_qm_put_dfx_access() - Put dfx access.
5829  * @qm: pointer to accelerator device.
5830  *
5831  * Put dfx access, drop runtime PM usage counter.
5832  */
5833 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5834 {
5835 	qm_pm_put_sync(qm);
5836 }
5837 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5838 
5839 /**
5840  * hisi_qm_pm_init() - Initialize qm runtime PM.
5841  * @qm: pointer to accelerator device.
5842  *
5843  * Function that initialize qm runtime PM.
5844  */
5845 void hisi_qm_pm_init(struct hisi_qm *qm)
5846 {
5847 	struct device *dev = &qm->pdev->dev;
5848 
5849 	if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3)
5850 		return;
5851 
5852 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5853 	pm_runtime_use_autosuspend(dev);
5854 	pm_runtime_put_noidle(dev);
5855 }
5856 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5857 
5858 /**
5859  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5860  * @qm: pointer to accelerator device.
5861  *
5862  * Function that uninitialize qm runtime PM.
5863  */
5864 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5865 {
5866 	struct device *dev = &qm->pdev->dev;
5867 
5868 	if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3)
5869 		return;
5870 
5871 	pm_runtime_get_noresume(dev);
5872 	pm_runtime_dont_use_autosuspend(dev);
5873 }
5874 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5875 
5876 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5877 {
5878 	struct pci_dev *pdev = qm->pdev;
5879 	int ret;
5880 	u32 val;
5881 
5882 	ret = qm->ops->set_msi(qm, false);
5883 	if (ret) {
5884 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5885 		return ret;
5886 	}
5887 
5888 	/* shutdown OOO register */
5889 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
5890 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5891 
5892 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
5893 					 val,
5894 					 (val == ACC_MASTER_TRANS_RETURN_RW),
5895 					 POLL_PERIOD, POLL_TIMEOUT);
5896 	if (ret) {
5897 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
5898 		return ret;
5899 	}
5900 
5901 	ret = qm_set_pf_mse(qm, false);
5902 	if (ret)
5903 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5904 
5905 	return ret;
5906 }
5907 
5908 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5909 {
5910 	struct pci_dev *pdev = qm->pdev;
5911 	int ret;
5912 
5913 	ret = qm_set_pf_mse(qm, true);
5914 	if (ret) {
5915 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5916 		return ret;
5917 	}
5918 
5919 	ret = qm->ops->set_msi(qm, true);
5920 	if (ret) {
5921 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5922 		return ret;
5923 	}
5924 
5925 	ret = qm_dev_hw_init(qm);
5926 	if (ret) {
5927 		pci_err(pdev, "failed to init device after resuming\n");
5928 		return ret;
5929 	}
5930 
5931 	qm_cmd_init(qm);
5932 	hisi_qm_dev_err_init(qm);
5933 
5934 	return 0;
5935 }
5936 
5937 /**
5938  * hisi_qm_suspend() - Runtime suspend of given device.
5939  * @dev: device to suspend.
5940  *
5941  * Function that suspend the device.
5942  */
5943 int hisi_qm_suspend(struct device *dev)
5944 {
5945 	struct pci_dev *pdev = to_pci_dev(dev);
5946 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5947 	int ret;
5948 
5949 	pci_info(pdev, "entering suspended state\n");
5950 
5951 	ret = hisi_qm_stop(qm, QM_NORMAL);
5952 	if (ret) {
5953 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
5954 		return ret;
5955 	}
5956 
5957 	ret = qm_prepare_for_suspend(qm);
5958 	if (ret)
5959 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5960 
5961 	return ret;
5962 }
5963 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5964 
5965 /**
5966  * hisi_qm_resume() - Runtime resume of given device.
5967  * @dev: device to resume.
5968  *
5969  * Function that resume the device.
5970  */
5971 int hisi_qm_resume(struct device *dev)
5972 {
5973 	struct pci_dev *pdev = to_pci_dev(dev);
5974 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5975 	int ret;
5976 
5977 	pci_info(pdev, "resuming from suspend state\n");
5978 
5979 	ret = qm_rebuild_for_resume(qm);
5980 	if (ret) {
5981 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5982 		return ret;
5983 	}
5984 
5985 	ret = hisi_qm_start(qm);
5986 	if (ret)
5987 		pci_err(pdev, "failed to start qm(%d)\n", ret);
5988 
5989 	return 0;
5990 }
5991 EXPORT_SYMBOL_GPL(hisi_qm_resume);
5992 
5993 MODULE_LICENSE("GPL v2");
5994 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5995 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5996