1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/aer.h> 6 #include <linux/bitmap.h> 7 #include <linux/dma-mapping.h> 8 #include <linux/idr.h> 9 #include <linux/io.h> 10 #include <linux/irqreturn.h> 11 #include <linux/log2.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/seq_file.h> 14 #include <linux/slab.h> 15 #include <linux/uacce.h> 16 #include <linux/uaccess.h> 17 #include <uapi/misc/uacce/hisi_qm.h> 18 #include "qm.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 #define QM_IRQ_NUM_V1 1 26 #define QM_IRQ_NUM_PF_V2 4 27 #define QM_IRQ_NUM_VF_V2 2 28 #define QM_IRQ_NUM_VF_V3 3 29 30 #define QM_EQ_EVENT_IRQ_VECTOR 0 31 #define QM_AEQ_EVENT_IRQ_VECTOR 1 32 #define QM_CMD_EVENT_IRQ_VECTOR 2 33 #define QM_ABNORMAL_EVENT_IRQ_VECTOR 3 34 35 /* mailbox */ 36 #define QM_MB_CMD_SQC 0x0 37 #define QM_MB_CMD_CQC 0x1 38 #define QM_MB_CMD_EQC 0x2 39 #define QM_MB_CMD_AEQC 0x3 40 #define QM_MB_CMD_SQC_BT 0x4 41 #define QM_MB_CMD_CQC_BT 0x5 42 #define QM_MB_CMD_SQC_VFT_V2 0x6 43 #define QM_MB_CMD_STOP_QP 0x8 44 #define QM_MB_CMD_SRC 0xc 45 #define QM_MB_CMD_DST 0xd 46 47 #define QM_MB_CMD_SEND_BASE 0x300 48 #define QM_MB_EVENT_SHIFT 8 49 #define QM_MB_BUSY_SHIFT 13 50 #define QM_MB_OP_SHIFT 14 51 #define QM_MB_CMD_DATA_ADDR_L 0x304 52 #define QM_MB_CMD_DATA_ADDR_H 0x308 53 #define QM_MB_PING_ALL_VFS 0xffff 54 #define QM_MB_CMD_DATA_SHIFT 32 55 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 56 57 /* sqc shift */ 58 #define QM_SQ_HOP_NUM_SHIFT 0 59 #define QM_SQ_PAGE_SIZE_SHIFT 4 60 #define QM_SQ_BUF_SIZE_SHIFT 8 61 #define QM_SQ_SQE_SIZE_SHIFT 12 62 #define QM_SQ_PRIORITY_SHIFT 0 63 #define QM_SQ_ORDERS_SHIFT 4 64 #define QM_SQ_TYPE_SHIFT 8 65 #define QM_QC_PASID_ENABLE 0x1 66 #define QM_QC_PASID_ENABLE_SHIFT 7 67 68 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 69 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) 70 71 /* cqc shift */ 72 #define QM_CQ_HOP_NUM_SHIFT 0 73 #define QM_CQ_PAGE_SIZE_SHIFT 4 74 #define QM_CQ_BUF_SIZE_SHIFT 8 75 #define QM_CQ_CQE_SIZE_SHIFT 12 76 #define QM_CQ_PHASE_SHIFT 0 77 #define QM_CQ_FLAG_SHIFT 1 78 79 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 80 #define QM_QC_CQE_SIZE 4 81 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) 82 83 /* eqc shift */ 84 #define QM_EQE_AEQE_SIZE (2UL << 12) 85 #define QM_EQC_PHASE_SHIFT 16 86 87 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 88 #define QM_EQE_CQN_MASK GENMASK(15, 0) 89 90 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 91 #define QM_AEQE_TYPE_SHIFT 17 92 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 93 #define QM_CQ_OVERFLOW 0 94 #define QM_EQ_OVERFLOW 1 95 #define QM_CQE_ERROR 2 96 97 #define QM_DOORBELL_CMD_SQ 0 98 #define QM_DOORBELL_CMD_CQ 1 99 #define QM_DOORBELL_CMD_EQ 2 100 #define QM_DOORBELL_CMD_AEQ 3 101 102 #define QM_DOORBELL_BASE_V1 0x340 103 #define QM_DB_CMD_SHIFT_V1 16 104 #define QM_DB_INDEX_SHIFT_V1 32 105 #define QM_DB_PRIORITY_SHIFT_V1 48 106 #define QM_DOORBELL_SQ_CQ_BASE_V2 0x1000 107 #define QM_DOORBELL_EQ_AEQ_BASE_V2 0x2000 108 #define QM_QUE_ISO_CFG_V 0x0030 109 #define QM_PAGE_SIZE 0x0034 110 #define QM_QUE_ISO_EN 0x100154 111 #define QM_CAPBILITY 0x100158 112 #define QM_QP_NUN_MASK GENMASK(10, 0) 113 #define QM_QP_DB_INTERVAL 0x10000 114 #define QM_QP_MAX_NUM_SHIFT 11 115 #define QM_DB_CMD_SHIFT_V2 12 116 #define QM_DB_RAND_SHIFT_V2 16 117 #define QM_DB_INDEX_SHIFT_V2 32 118 #define QM_DB_PRIORITY_SHIFT_V2 48 119 120 #define QM_MEM_START_INIT 0x100040 121 #define QM_MEM_INIT_DONE 0x100044 122 #define QM_VFT_CFG_RDY 0x10006c 123 #define QM_VFT_CFG_OP_WR 0x100058 124 #define QM_VFT_CFG_TYPE 0x10005c 125 #define QM_SQC_VFT 0x0 126 #define QM_CQC_VFT 0x1 127 #define QM_VFT_CFG 0x100060 128 #define QM_VFT_CFG_OP_ENABLE 0x100054 129 #define QM_PM_CTRL 0x100148 130 #define QM_IDLE_DISABLE BIT(9) 131 132 #define QM_VFT_CFG_DATA_L 0x100064 133 #define QM_VFT_CFG_DATA_H 0x100068 134 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 135 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 136 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 137 #define QM_SQC_VFT_START_SQN_SHIFT 28 138 #define QM_SQC_VFT_VALID (1ULL << 44) 139 #define QM_SQC_VFT_SQN_SHIFT 45 140 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 141 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 142 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 143 #define QM_CQC_VFT_VALID (1ULL << 28) 144 145 #define QM_SQC_VFT_BASE_SHIFT_V2 28 146 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 147 #define QM_SQC_VFT_NUM_SHIFT_V2 45 148 #define QM_SQC_VFT_NUM_MASK_v2 GENMASK(9, 0) 149 150 #define QM_DFX_CNT_CLR_CE 0x100118 151 152 #define QM_ABNORMAL_INT_SOURCE 0x100000 153 #define QM_ABNORMAL_INT_SOURCE_CLR GENMASK(14, 0) 154 #define QM_ABNORMAL_INT_MASK 0x100004 155 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 156 #define QM_ABNORMAL_INT_STATUS 0x100008 157 #define QM_ABNORMAL_INT_SET 0x10000c 158 #define QM_ABNORMAL_INF00 0x100010 159 #define QM_FIFO_OVERFLOW_TYPE 0xc0 160 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 161 #define QM_FIFO_OVERFLOW_VF 0x3f 162 #define QM_ABNORMAL_INF01 0x100014 163 #define QM_DB_TIMEOUT_TYPE 0xc0 164 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 165 #define QM_DB_TIMEOUT_VF 0x3f 166 #define QM_RAS_CE_ENABLE 0x1000ec 167 #define QM_RAS_FE_ENABLE 0x1000f0 168 #define QM_RAS_NFE_ENABLE 0x1000f4 169 #define QM_RAS_CE_THRESHOLD 0x1000f8 170 #define QM_RAS_CE_TIMES_PER_IRQ 1 171 #define QM_RAS_MSI_INT_SEL 0x1040f4 172 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 173 174 #define QM_RESET_WAIT_TIMEOUT 400 175 #define QM_PEH_VENDOR_ID 0x1000d8 176 #define ACC_VENDOR_ID_VALUE 0x5a5a 177 #define QM_PEH_DFX_INFO0 0x1000fc 178 #define QM_PEH_DFX_INFO1 0x100100 179 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 180 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 181 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 182 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 183 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 184 #define ACC_MASTER_TRANS_RETURN_RW 3 185 #define ACC_MASTER_TRANS_RETURN 0x300150 186 #define ACC_MASTER_GLOBAL_CTRL 0x300000 187 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 188 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 189 #define ACC_AM_ROB_ECC_INT_STS 0x300104 190 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 191 #define QM_MSI_CAP_ENABLE BIT(16) 192 193 /* interfunction communication */ 194 #define QM_IFC_READY_STATUS 0x100128 195 #define QM_IFC_C_STS_M 0x10012C 196 #define QM_IFC_INT_SET_P 0x100130 197 #define QM_IFC_INT_CFG 0x100134 198 #define QM_IFC_INT_SOURCE_P 0x100138 199 #define QM_IFC_INT_SOURCE_V 0x0020 200 #define QM_IFC_INT_MASK 0x0024 201 #define QM_IFC_INT_STATUS 0x0028 202 #define QM_IFC_INT_SET_V 0x002C 203 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 204 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 205 #define QM_IFC_INT_SOURCE_MASK BIT(0) 206 #define QM_IFC_INT_DISABLE BIT(0) 207 #define QM_IFC_INT_STATUS_MASK BIT(0) 208 #define QM_IFC_INT_SET_MASK BIT(0) 209 #define QM_WAIT_DST_ACK 10 210 #define QM_MAX_PF_WAIT_COUNT 10 211 #define QM_MAX_VF_WAIT_COUNT 40 212 #define QM_VF_RESET_WAIT_US 20000 213 #define QM_VF_RESET_WAIT_CNT 3000 214 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 215 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 216 217 #define QM_DFX_MB_CNT_VF 0x104010 218 #define QM_DFX_DB_CNT_VF 0x104020 219 #define QM_DFX_SQE_CNT_VF_SQN 0x104030 220 #define QM_DFX_CQE_CNT_VF_CQN 0x104040 221 #define QM_DFX_QN_SHIFT 16 222 #define CURRENT_FUN_MASK GENMASK(5, 0) 223 #define CURRENT_Q_MASK GENMASK(31, 16) 224 225 #define POLL_PERIOD 10 226 #define POLL_TIMEOUT 1000 227 #define WAIT_PERIOD_US_MAX 200 228 #define WAIT_PERIOD_US_MIN 100 229 #define MAX_WAIT_COUNTS 1000 230 #define QM_CACHE_WB_START 0x204 231 #define QM_CACHE_WB_DONE 0x208 232 233 #define PCI_BAR_2 2 234 #define PCI_BAR_4 4 235 #define QM_SQE_DATA_ALIGN_MASK GENMASK(6, 0) 236 #define QMC_ALIGN(sz) ALIGN(sz, 32) 237 238 #define QM_DBG_READ_LEN 256 239 #define QM_DBG_WRITE_LEN 1024 240 #define QM_DBG_TMP_BUF_LEN 22 241 #define QM_PCI_COMMAND_INVALID ~0 242 #define QM_RESET_STOP_TX_OFFSET 1 243 #define QM_RESET_STOP_RX_OFFSET 2 244 245 #define WAIT_PERIOD 20 246 #define REMOVE_WAIT_DELAY 10 247 #define QM_SQE_ADDR_MASK GENMASK(7, 0) 248 #define QM_EQ_DEPTH (1024 * 2) 249 250 #define QM_DRIVER_REMOVING 0 251 #define QM_RST_SCHED 1 252 #define QM_RESETTING 2 253 #define QM_QOS_PARAM_NUM 2 254 #define QM_QOS_VAL_NUM 1 255 #define QM_QOS_BDF_PARAM_NUM 4 256 #define QM_QOS_MAX_VAL 1000 257 #define QM_QOS_RATE 100 258 #define QM_QOS_EXPAND_RATE 1000 259 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 260 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 261 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 262 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 263 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 264 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 265 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 266 #define QM_SHAPER_CBS_B 1 267 #define QM_SHAPER_CBS_S 16 268 #define QM_SHAPER_VFT_OFFSET 6 269 #define WAIT_FOR_QOS_VF 100 270 #define QM_QOS_MIN_ERROR_RATE 5 271 #define QM_QOS_TYPICAL_NUM 8 272 #define QM_SHAPER_MIN_CBS_S 8 273 #define QM_QOS_TICK 0x300U 274 #define QM_QOS_DIVISOR_CLK 0x1f40U 275 #define QM_QOS_MAX_CIR_B 200 276 #define QM_QOS_MIN_CIR_B 100 277 #define QM_QOS_MAX_CIR_U 6 278 #define QM_QOS_MAX_CIR_S 11 279 #define QM_QOS_VAL_MAX_LEN 32 280 281 #define QM_AUTOSUSPEND_DELAY 3000 282 283 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 284 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 285 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 286 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 287 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 288 289 #define QM_MK_CQC_DW3_V2(cqe_sz) \ 290 ((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 291 292 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 293 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 294 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 295 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 296 297 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 298 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 299 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 300 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 301 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 302 303 #define QM_MK_SQC_DW3_V2(sqe_sz) \ 304 ((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 305 306 #define INIT_QC_COMMON(qc, base, pasid) do { \ 307 (qc)->head = 0; \ 308 (qc)->tail = 0; \ 309 (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ 310 (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ 311 (qc)->dw3 = 0; \ 312 (qc)->w8 = 0; \ 313 (qc)->rsvd0 = 0; \ 314 (qc)->pasid = cpu_to_le16(pasid); \ 315 (qc)->w11 = 0; \ 316 (qc)->rsvd1 = 0; \ 317 } while (0) 318 319 enum vft_type { 320 SQC_VFT = 0, 321 CQC_VFT, 322 SHAPER_VFT, 323 }; 324 325 enum acc_err_result { 326 ACC_ERR_NONE, 327 ACC_ERR_NEED_RESET, 328 ACC_ERR_RECOVERED, 329 }; 330 331 enum qm_alg_type { 332 ALG_TYPE_0, 333 ALG_TYPE_1, 334 }; 335 336 enum qm_mb_cmd { 337 QM_PF_FLR_PREPARE = 0x01, 338 QM_PF_SRST_PREPARE, 339 QM_PF_RESET_DONE, 340 QM_VF_PREPARE_DONE, 341 QM_VF_PREPARE_FAIL, 342 QM_VF_START_DONE, 343 QM_VF_START_FAIL, 344 QM_PF_SET_QOS, 345 QM_VF_GET_QOS, 346 }; 347 348 struct qm_cqe { 349 __le32 rsvd0; 350 __le16 cmd_id; 351 __le16 rsvd1; 352 __le16 sq_head; 353 __le16 sq_num; 354 __le16 rsvd2; 355 __le16 w7; 356 }; 357 358 struct qm_eqe { 359 __le32 dw0; 360 }; 361 362 struct qm_aeqe { 363 __le32 dw0; 364 }; 365 366 struct qm_sqc { 367 __le16 head; 368 __le16 tail; 369 __le32 base_l; 370 __le32 base_h; 371 __le32 dw3; 372 __le16 w8; 373 __le16 rsvd0; 374 __le16 pasid; 375 __le16 w11; 376 __le16 cq_num; 377 __le16 w13; 378 __le32 rsvd1; 379 }; 380 381 struct qm_cqc { 382 __le16 head; 383 __le16 tail; 384 __le32 base_l; 385 __le32 base_h; 386 __le32 dw3; 387 __le16 w8; 388 __le16 rsvd0; 389 __le16 pasid; 390 __le16 w11; 391 __le32 dw6; 392 __le32 rsvd1; 393 }; 394 395 struct qm_eqc { 396 __le16 head; 397 __le16 tail; 398 __le32 base_l; 399 __le32 base_h; 400 __le32 dw3; 401 __le32 rsvd[2]; 402 __le32 dw6; 403 }; 404 405 struct qm_aeqc { 406 __le16 head; 407 __le16 tail; 408 __le32 base_l; 409 __le32 base_h; 410 __le32 dw3; 411 __le32 rsvd[2]; 412 __le32 dw6; 413 }; 414 415 struct qm_mailbox { 416 __le16 w0; 417 __le16 queue_num; 418 __le32 base_l; 419 __le32 base_h; 420 __le32 rsvd; 421 }; 422 423 struct qm_doorbell { 424 __le16 queue_num; 425 __le16 cmd; 426 __le16 index; 427 __le16 priority; 428 }; 429 430 struct hisi_qm_resource { 431 struct hisi_qm *qm; 432 int distance; 433 struct list_head list; 434 }; 435 436 struct hisi_qm_hw_ops { 437 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 438 void (*qm_db)(struct hisi_qm *qm, u16 qn, 439 u8 cmd, u16 index, u8 priority); 440 u32 (*get_irq_num)(struct hisi_qm *qm); 441 int (*debug_init)(struct hisi_qm *qm); 442 void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe); 443 void (*hw_error_uninit)(struct hisi_qm *qm); 444 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 445 int (*stop_qp)(struct hisi_qp *qp); 446 int (*set_msi)(struct hisi_qm *qm, bool set); 447 int (*ping_all_vfs)(struct hisi_qm *qm, u64 cmd); 448 int (*ping_pf)(struct hisi_qm *qm, u64 cmd); 449 }; 450 451 struct qm_dfx_item { 452 const char *name; 453 u32 offset; 454 }; 455 456 static struct qm_dfx_item qm_dfx_files[] = { 457 {"err_irq", offsetof(struct qm_dfx, err_irq_cnt)}, 458 {"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)}, 459 {"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)}, 460 {"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)}, 461 {"mb_err", offsetof(struct qm_dfx, mb_err_cnt)}, 462 }; 463 464 static const char * const qm_debug_file_name[] = { 465 [CURRENT_QM] = "current_qm", 466 [CURRENT_Q] = "current_q", 467 [CLEAR_ENABLE] = "clear_enable", 468 }; 469 470 struct hisi_qm_hw_error { 471 u32 int_msk; 472 const char *msg; 473 }; 474 475 static const struct hisi_qm_hw_error qm_hw_error[] = { 476 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 477 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 478 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 479 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 480 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 481 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 482 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 483 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 484 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 485 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 486 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 487 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 488 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 489 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 490 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 491 { /* sentinel */ } 492 }; 493 494 static const char * const qm_db_timeout[] = { 495 "sq", "cq", "eq", "aeq", 496 }; 497 498 static const char * const qm_fifo_overflow[] = { 499 "cq", "eq", "aeq", 500 }; 501 502 static const char * const qm_s[] = { 503 "init", "start", "close", "stop", 504 }; 505 506 static const char * const qp_s[] = { 507 "none", "init", "start", "stop", "close", 508 }; 509 510 struct qm_typical_qos_table { 511 u32 start; 512 u32 end; 513 u32 val; 514 }; 515 516 /* the qos step is 100 */ 517 static struct qm_typical_qos_table shaper_cir_s[] = { 518 {100, 100, 4}, 519 {200, 200, 3}, 520 {300, 500, 2}, 521 {600, 1000, 1}, 522 {1100, 100000, 0}, 523 }; 524 525 static struct qm_typical_qos_table shaper_cbs_s[] = { 526 {100, 200, 9}, 527 {300, 500, 11}, 528 {600, 1000, 12}, 529 {1100, 10000, 16}, 530 {10100, 25000, 17}, 531 {25100, 50000, 18}, 532 {50100, 100000, 19} 533 }; 534 535 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 536 { 537 enum qm_state curr = atomic_read(&qm->status.flags); 538 bool avail = false; 539 540 switch (curr) { 541 case QM_INIT: 542 if (new == QM_START || new == QM_CLOSE) 543 avail = true; 544 break; 545 case QM_START: 546 if (new == QM_STOP) 547 avail = true; 548 break; 549 case QM_STOP: 550 if (new == QM_CLOSE || new == QM_START) 551 avail = true; 552 break; 553 default: 554 break; 555 } 556 557 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 558 qm_s[curr], qm_s[new]); 559 560 if (!avail) 561 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 562 qm_s[curr], qm_s[new]); 563 564 return avail; 565 } 566 567 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 568 enum qp_state new) 569 { 570 enum qm_state qm_curr = atomic_read(&qm->status.flags); 571 enum qp_state qp_curr = 0; 572 bool avail = false; 573 574 if (qp) 575 qp_curr = atomic_read(&qp->qp_status.flags); 576 577 switch (new) { 578 case QP_INIT: 579 if (qm_curr == QM_START || qm_curr == QM_INIT) 580 avail = true; 581 break; 582 case QP_START: 583 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 584 (qm_curr == QM_START && qp_curr == QP_STOP)) 585 avail = true; 586 break; 587 case QP_STOP: 588 if ((qm_curr == QM_START && qp_curr == QP_START) || 589 (qp_curr == QP_INIT)) 590 avail = true; 591 break; 592 case QP_CLOSE: 593 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 594 (qm_curr == QM_START && qp_curr == QP_STOP) || 595 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 596 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 597 avail = true; 598 break; 599 default: 600 break; 601 } 602 603 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 604 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 605 606 if (!avail) 607 dev_warn(&qm->pdev->dev, 608 "Can not change qp state from %s to %s in QM %s\n", 609 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 610 611 return avail; 612 } 613 614 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 615 { 616 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 617 } 618 619 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 620 { 621 return qm->err_ini->get_dev_hw_err_status(qm); 622 } 623 624 /* Check if the error causes the master ooo block */ 625 static int qm_check_dev_error(struct hisi_qm *qm) 626 { 627 u32 val, dev_val; 628 629 if (qm->fun_type == QM_HW_VF) 630 return 0; 631 632 val = qm_get_hw_error_status(qm); 633 dev_val = qm_get_dev_err_status(qm); 634 635 if (qm->ver < QM_HW_V3) 636 return (val & QM_ECC_MBIT) || 637 (dev_val & qm->err_info.ecc_2bits_mask); 638 639 return (val & readl(qm->io_base + QM_OOO_SHUTDOWN_SEL)) || 640 (dev_val & (~qm->err_info.dev_ce_mask)); 641 } 642 643 static int qm_wait_reset_finish(struct hisi_qm *qm) 644 { 645 int delay = 0; 646 647 /* All reset requests need to be queued for processing */ 648 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 649 msleep(++delay); 650 if (delay > QM_RESET_WAIT_TIMEOUT) 651 return -EBUSY; 652 } 653 654 return 0; 655 } 656 657 static int qm_reset_prepare_ready(struct hisi_qm *qm) 658 { 659 struct pci_dev *pdev = qm->pdev; 660 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 661 662 /* 663 * PF and VF on host doesnot support resetting at the 664 * same time on Kunpeng920. 665 */ 666 if (qm->ver < QM_HW_V3) 667 return qm_wait_reset_finish(pf_qm); 668 669 return qm_wait_reset_finish(qm); 670 } 671 672 static void qm_reset_bit_clear(struct hisi_qm *qm) 673 { 674 struct pci_dev *pdev = qm->pdev; 675 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 676 677 if (qm->ver < QM_HW_V3) 678 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 679 680 clear_bit(QM_RESETTING, &qm->misc_ctl); 681 } 682 683 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 684 u64 base, u16 queue, bool op) 685 { 686 mailbox->w0 = cpu_to_le16((cmd) | 687 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 688 (0x1 << QM_MB_BUSY_SHIFT)); 689 mailbox->queue_num = cpu_to_le16(queue); 690 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 691 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 692 mailbox->rsvd = 0; 693 } 694 695 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 696 static int qm_wait_mb_ready(struct hisi_qm *qm) 697 { 698 u32 val; 699 700 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 701 val, !((val >> QM_MB_BUSY_SHIFT) & 702 0x1), POLL_PERIOD, POLL_TIMEOUT); 703 } 704 705 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 706 static void qm_mb_write(struct hisi_qm *qm, const void *src) 707 { 708 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 709 unsigned long tmp0 = 0, tmp1 = 0; 710 711 if (!IS_ENABLED(CONFIG_ARM64)) { 712 memcpy_toio(fun_base, src, 16); 713 wmb(); 714 return; 715 } 716 717 asm volatile("ldp %0, %1, %3\n" 718 "stp %0, %1, %2\n" 719 "dsb sy\n" 720 : "=&r" (tmp0), 721 "=&r" (tmp1), 722 "+Q" (*((char __iomem *)fun_base)) 723 : "Q" (*((char *)src)) 724 : "memory"); 725 } 726 727 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 728 { 729 if (unlikely(qm_wait_mb_ready(qm))) { 730 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 731 goto mb_busy; 732 } 733 734 qm_mb_write(qm, mailbox); 735 736 if (unlikely(qm_wait_mb_ready(qm))) { 737 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 738 goto mb_busy; 739 } 740 741 return 0; 742 743 mb_busy: 744 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 745 return -EBUSY; 746 } 747 748 static int qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 749 bool op) 750 { 751 struct qm_mailbox mailbox; 752 int ret; 753 754 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 755 queue, cmd, (unsigned long long)dma_addr); 756 757 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 758 759 mutex_lock(&qm->mailbox_lock); 760 ret = qm_mb_nolock(qm, &mailbox); 761 mutex_unlock(&qm->mailbox_lock); 762 763 return ret; 764 } 765 766 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 767 { 768 u64 doorbell; 769 770 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 771 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 772 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 773 774 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 775 } 776 777 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 778 { 779 void __iomem *io_base = qm->io_base; 780 u16 randata = 0; 781 u64 doorbell; 782 783 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 784 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 785 QM_DOORBELL_SQ_CQ_BASE_V2; 786 else 787 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 788 789 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 790 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 791 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 792 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 793 794 writeq(doorbell, io_base); 795 } 796 797 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 798 { 799 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 800 qn, cmd, index); 801 802 qm->ops->qm_db(qm, qn, cmd, index, priority); 803 } 804 805 static void qm_disable_clock_gate(struct hisi_qm *qm) 806 { 807 u32 val; 808 809 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 810 if (qm->ver < QM_HW_V3) 811 return; 812 813 val = readl(qm->io_base + QM_PM_CTRL); 814 val |= QM_IDLE_DISABLE; 815 writel(val, qm->io_base + QM_PM_CTRL); 816 } 817 818 static int qm_dev_mem_reset(struct hisi_qm *qm) 819 { 820 u32 val; 821 822 writel(0x1, qm->io_base + QM_MEM_START_INIT); 823 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 824 val & BIT(0), POLL_PERIOD, 825 POLL_TIMEOUT); 826 } 827 828 static u32 qm_get_irq_num_v1(struct hisi_qm *qm) 829 { 830 return QM_IRQ_NUM_V1; 831 } 832 833 static u32 qm_get_irq_num_v2(struct hisi_qm *qm) 834 { 835 if (qm->fun_type == QM_HW_PF) 836 return QM_IRQ_NUM_PF_V2; 837 else 838 return QM_IRQ_NUM_VF_V2; 839 } 840 841 static u32 qm_get_irq_num_v3(struct hisi_qm *qm) 842 { 843 if (qm->fun_type == QM_HW_PF) 844 return QM_IRQ_NUM_PF_V2; 845 846 return QM_IRQ_NUM_VF_V3; 847 } 848 849 static int qm_pm_get_sync(struct hisi_qm *qm) 850 { 851 struct device *dev = &qm->pdev->dev; 852 int ret; 853 854 if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3) 855 return 0; 856 857 ret = pm_runtime_resume_and_get(dev); 858 if (ret < 0) { 859 dev_err(dev, "failed to get_sync(%d).\n", ret); 860 return ret; 861 } 862 863 return 0; 864 } 865 866 static void qm_pm_put_sync(struct hisi_qm *qm) 867 { 868 struct device *dev = &qm->pdev->dev; 869 870 if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3) 871 return; 872 873 pm_runtime_mark_last_busy(dev); 874 pm_runtime_put_autosuspend(dev); 875 } 876 877 static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe) 878 { 879 u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 880 881 return &qm->qp_array[cqn]; 882 } 883 884 static void qm_cq_head_update(struct hisi_qp *qp) 885 { 886 if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) { 887 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 888 qp->qp_status.cq_head = 0; 889 } else { 890 qp->qp_status.cq_head++; 891 } 892 } 893 894 static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm) 895 { 896 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 897 return; 898 899 if (qp->event_cb) { 900 qp->event_cb(qp); 901 return; 902 } 903 904 if (qp->req_cb) { 905 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 906 907 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 908 dma_rmb(); 909 qp->req_cb(qp, qp->sqe + qm->sqe_size * 910 le16_to_cpu(cqe->sq_head)); 911 qm_cq_head_update(qp); 912 cqe = qp->cqe + qp->qp_status.cq_head; 913 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 914 qp->qp_status.cq_head, 0); 915 atomic_dec(&qp->qp_status.used); 916 } 917 918 /* set c_flag */ 919 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 920 qp->qp_status.cq_head, 1); 921 } 922 } 923 924 static void qm_work_process(struct work_struct *work) 925 { 926 struct hisi_qm *qm = container_of(work, struct hisi_qm, work); 927 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 928 struct hisi_qp *qp; 929 int eqe_num = 0; 930 931 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 932 eqe_num++; 933 qp = qm_to_hisi_qp(qm, eqe); 934 qm_poll_qp(qp, qm); 935 936 if (qm->status.eq_head == QM_EQ_DEPTH - 1) { 937 qm->status.eqc_phase = !qm->status.eqc_phase; 938 eqe = qm->eqe; 939 qm->status.eq_head = 0; 940 } else { 941 eqe++; 942 qm->status.eq_head++; 943 } 944 945 if (eqe_num == QM_EQ_DEPTH / 2 - 1) { 946 eqe_num = 0; 947 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 948 } 949 } 950 951 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 952 } 953 954 static irqreturn_t do_qm_irq(int irq, void *data) 955 { 956 struct hisi_qm *qm = (struct hisi_qm *)data; 957 958 /* the workqueue created by device driver of QM */ 959 if (qm->wq) 960 queue_work(qm->wq, &qm->work); 961 else 962 schedule_work(&qm->work); 963 964 return IRQ_HANDLED; 965 } 966 967 static irqreturn_t qm_irq(int irq, void *data) 968 { 969 struct hisi_qm *qm = data; 970 971 if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE)) 972 return do_qm_irq(irq, data); 973 974 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 975 dev_err(&qm->pdev->dev, "invalid int source\n"); 976 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 977 978 return IRQ_NONE; 979 } 980 981 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 982 { 983 struct hisi_qm *qm = data; 984 u32 val; 985 986 val = readl(qm->io_base + QM_IFC_INT_STATUS); 987 val &= QM_IFC_INT_STATUS_MASK; 988 if (!val) 989 return IRQ_NONE; 990 991 schedule_work(&qm->cmd_process); 992 993 return IRQ_HANDLED; 994 } 995 996 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 997 { 998 u32 *addr; 999 1000 if (qp->is_in_kernel) 1001 return; 1002 1003 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 1004 *addr = 1; 1005 1006 /* make sure setup is completed */ 1007 mb(); 1008 } 1009 1010 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 1011 { 1012 struct hisi_qp *qp = &qm->qp_array[qp_id]; 1013 1014 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 1015 hisi_qm_stop_qp(qp); 1016 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 1017 } 1018 1019 static void qm_reset_function(struct hisi_qm *qm) 1020 { 1021 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 1022 struct device *dev = &qm->pdev->dev; 1023 int ret; 1024 1025 if (qm_check_dev_error(pf_qm)) 1026 return; 1027 1028 ret = qm_reset_prepare_ready(qm); 1029 if (ret) { 1030 dev_err(dev, "reset function not ready\n"); 1031 return; 1032 } 1033 1034 ret = hisi_qm_stop(qm, QM_FLR); 1035 if (ret) { 1036 dev_err(dev, "failed to stop qm when reset function\n"); 1037 goto clear_bit; 1038 } 1039 1040 ret = hisi_qm_start(qm); 1041 if (ret) 1042 dev_err(dev, "failed to start qm when reset function\n"); 1043 1044 clear_bit: 1045 qm_reset_bit_clear(qm); 1046 } 1047 1048 static irqreturn_t qm_aeq_thread(int irq, void *data) 1049 { 1050 struct hisi_qm *qm = data; 1051 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1052 u32 type, qp_id; 1053 1054 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1055 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; 1056 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1057 1058 switch (type) { 1059 case QM_EQ_OVERFLOW: 1060 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1061 qm_reset_function(qm); 1062 return IRQ_HANDLED; 1063 case QM_CQ_OVERFLOW: 1064 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1065 qp_id); 1066 fallthrough; 1067 case QM_CQE_ERROR: 1068 qm_disable_qp(qm, qp_id); 1069 break; 1070 default: 1071 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1072 type); 1073 break; 1074 } 1075 1076 if (qm->status.aeq_head == QM_Q_DEPTH - 1) { 1077 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1078 aeqe = qm->aeqe; 1079 qm->status.aeq_head = 0; 1080 } else { 1081 aeqe++; 1082 qm->status.aeq_head++; 1083 } 1084 } 1085 1086 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1087 1088 return IRQ_HANDLED; 1089 } 1090 1091 static irqreturn_t qm_aeq_irq(int irq, void *data) 1092 { 1093 struct hisi_qm *qm = data; 1094 1095 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1096 if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE)) 1097 return IRQ_NONE; 1098 1099 return IRQ_WAKE_THREAD; 1100 } 1101 1102 static void qm_irq_unregister(struct hisi_qm *qm) 1103 { 1104 struct pci_dev *pdev = qm->pdev; 1105 1106 free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm); 1107 1108 if (qm->ver > QM_HW_V1) { 1109 free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm); 1110 1111 if (qm->fun_type == QM_HW_PF) 1112 free_irq(pci_irq_vector(pdev, 1113 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm); 1114 } 1115 1116 if (qm->ver > QM_HW_V2) 1117 free_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR), qm); 1118 } 1119 1120 static void qm_init_qp_status(struct hisi_qp *qp) 1121 { 1122 struct hisi_qp_status *qp_status = &qp->qp_status; 1123 1124 qp_status->sq_tail = 0; 1125 qp_status->cq_head = 0; 1126 qp_status->cqc_phase = true; 1127 atomic_set(&qp_status->used, 0); 1128 } 1129 1130 static void qm_init_prefetch(struct hisi_qm *qm) 1131 { 1132 struct device *dev = &qm->pdev->dev; 1133 u32 page_type = 0x0; 1134 1135 if (qm->ver < QM_HW_V3) 1136 return; 1137 1138 switch (PAGE_SIZE) { 1139 case SZ_4K: 1140 page_type = 0x0; 1141 break; 1142 case SZ_16K: 1143 page_type = 0x1; 1144 break; 1145 case SZ_64K: 1146 page_type = 0x2; 1147 break; 1148 default: 1149 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1150 PAGE_SIZE); 1151 } 1152 1153 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1154 } 1155 1156 /* 1157 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1158 * is the expected qos calculated. 1159 * the formula: 1160 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1161 * 1162 * IR_b * (2 ^ IR_u) * 8000 1163 * IR(Mbps) = ------------------------- 1164 * Tick * (2 ^ IR_s) 1165 */ 1166 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1167 { 1168 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1169 (QM_QOS_TICK * (1 << cir_s)); 1170 } 1171 1172 static u32 acc_shaper_calc_cbs_s(u32 ir) 1173 { 1174 int table_size = ARRAY_SIZE(shaper_cbs_s); 1175 int i; 1176 1177 for (i = 0; i < table_size; i++) { 1178 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1179 return shaper_cbs_s[i].val; 1180 } 1181 1182 return QM_SHAPER_MIN_CBS_S; 1183 } 1184 1185 static u32 acc_shaper_calc_cir_s(u32 ir) 1186 { 1187 int table_size = ARRAY_SIZE(shaper_cir_s); 1188 int i; 1189 1190 for (i = 0; i < table_size; i++) { 1191 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1192 return shaper_cir_s[i].val; 1193 } 1194 1195 return 0; 1196 } 1197 1198 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1199 { 1200 u32 cir_b, cir_u, cir_s, ir_calc; 1201 u32 error_rate; 1202 1203 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1204 cir_s = acc_shaper_calc_cir_s(ir); 1205 1206 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1207 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1208 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1209 1210 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1211 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1212 factor->cir_b = cir_b; 1213 factor->cir_u = cir_u; 1214 factor->cir_s = cir_s; 1215 return 0; 1216 } 1217 } 1218 } 1219 1220 return -EINVAL; 1221 } 1222 1223 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1224 u32 number, struct qm_shaper_factor *factor) 1225 { 1226 u64 tmp = 0; 1227 1228 if (number > 0) { 1229 switch (type) { 1230 case SQC_VFT: 1231 if (qm->ver == QM_HW_V1) { 1232 tmp = QM_SQC_VFT_BUF_SIZE | 1233 QM_SQC_VFT_SQC_SIZE | 1234 QM_SQC_VFT_INDEX_NUMBER | 1235 QM_SQC_VFT_VALID | 1236 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1237 } else { 1238 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1239 QM_SQC_VFT_VALID | 1240 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1241 } 1242 break; 1243 case CQC_VFT: 1244 if (qm->ver == QM_HW_V1) { 1245 tmp = QM_CQC_VFT_BUF_SIZE | 1246 QM_CQC_VFT_SQC_SIZE | 1247 QM_CQC_VFT_INDEX_NUMBER | 1248 QM_CQC_VFT_VALID; 1249 } else { 1250 tmp = QM_CQC_VFT_VALID; 1251 } 1252 break; 1253 case SHAPER_VFT: 1254 if (qm->ver >= QM_HW_V3) { 1255 tmp = factor->cir_b | 1256 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1257 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1258 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1259 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1260 } 1261 break; 1262 } 1263 } 1264 1265 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1266 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1267 } 1268 1269 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1270 u32 fun_num, u32 base, u32 number) 1271 { 1272 struct qm_shaper_factor *factor = &qm->factor[fun_num]; 1273 unsigned int val; 1274 int ret; 1275 1276 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1277 val & BIT(0), POLL_PERIOD, 1278 POLL_TIMEOUT); 1279 if (ret) 1280 return ret; 1281 1282 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1283 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1284 if (type == SHAPER_VFT) 1285 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1286 1287 writel(fun_num, qm->io_base + QM_VFT_CFG); 1288 1289 qm_vft_data_cfg(qm, type, base, number, factor); 1290 1291 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1292 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1293 1294 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1295 val & BIT(0), POLL_PERIOD, 1296 POLL_TIMEOUT); 1297 } 1298 1299 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1300 { 1301 u32 qos = qm->factor[fun_num].func_qos; 1302 int ret, i; 1303 1304 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1305 if (ret) { 1306 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1307 return ret; 1308 } 1309 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1310 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1311 /* The base number of queue reuse for different alg type */ 1312 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1313 if (ret) 1314 return ret; 1315 } 1316 1317 return 0; 1318 } 1319 1320 /* The config should be conducted after qm_dev_mem_reset() */ 1321 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1322 u32 number) 1323 { 1324 int ret, i; 1325 1326 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1327 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1328 if (ret) 1329 return ret; 1330 } 1331 1332 /* init default shaper qos val */ 1333 if (qm->ver >= QM_HW_V3) { 1334 ret = qm_shaper_init_vft(qm, fun_num); 1335 if (ret) 1336 goto back_sqc_cqc; 1337 } 1338 1339 return 0; 1340 back_sqc_cqc: 1341 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1342 ret = qm_set_vft_common(qm, i, fun_num, 0, 0); 1343 if (ret) 1344 return ret; 1345 } 1346 return ret; 1347 } 1348 1349 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1350 { 1351 u64 sqc_vft; 1352 int ret; 1353 1354 ret = qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1355 if (ret) 1356 return ret; 1357 1358 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1359 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1360 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1361 *number = (QM_SQC_VFT_NUM_MASK_v2 & 1362 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1363 1364 return 0; 1365 } 1366 1367 static int qm_get_vf_qp_num(struct hisi_qm *qm, u32 fun_num) 1368 { 1369 u32 remain_q_num, vfq_num; 1370 u32 num_vfs = qm->vfs_num; 1371 1372 vfq_num = (qm->ctrl_qp_num - qm->qp_num) / num_vfs; 1373 if (vfq_num >= qm->max_qp_num) 1374 return qm->max_qp_num; 1375 1376 remain_q_num = (qm->ctrl_qp_num - qm->qp_num) % num_vfs; 1377 if (vfq_num + remain_q_num <= qm->max_qp_num) 1378 return fun_num == num_vfs ? vfq_num + remain_q_num : vfq_num; 1379 1380 /* 1381 * if vfq_num + remain_q_num > max_qp_num, the last VFs, 1382 * each with one more queue. 1383 */ 1384 return fun_num + remain_q_num > num_vfs ? vfq_num + 1 : vfq_num; 1385 } 1386 1387 static struct hisi_qm *file_to_qm(struct debugfs_file *file) 1388 { 1389 struct qm_debug *debug = file->debug; 1390 1391 return container_of(debug, struct hisi_qm, debug); 1392 } 1393 1394 static u32 current_q_read(struct hisi_qm *qm) 1395 { 1396 return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT; 1397 } 1398 1399 static int current_q_write(struct hisi_qm *qm, u32 val) 1400 { 1401 u32 tmp; 1402 1403 if (val >= qm->debug.curr_qm_qp_num) 1404 return -EINVAL; 1405 1406 tmp = val << QM_DFX_QN_SHIFT | 1407 (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK); 1408 writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 1409 1410 tmp = val << QM_DFX_QN_SHIFT | 1411 (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK); 1412 writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 1413 1414 return 0; 1415 } 1416 1417 static u32 clear_enable_read(struct hisi_qm *qm) 1418 { 1419 return readl(qm->io_base + QM_DFX_CNT_CLR_CE); 1420 } 1421 1422 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */ 1423 static int clear_enable_write(struct hisi_qm *qm, u32 rd_clr_ctrl) 1424 { 1425 if (rd_clr_ctrl > 1) 1426 return -EINVAL; 1427 1428 writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE); 1429 1430 return 0; 1431 } 1432 1433 static u32 current_qm_read(struct hisi_qm *qm) 1434 { 1435 return readl(qm->io_base + QM_DFX_MB_CNT_VF); 1436 } 1437 1438 static int current_qm_write(struct hisi_qm *qm, u32 val) 1439 { 1440 u32 tmp; 1441 1442 if (val > qm->vfs_num) 1443 return -EINVAL; 1444 1445 /* According PF or VF Dev ID to calculation curr_qm_qp_num and store */ 1446 if (!val) 1447 qm->debug.curr_qm_qp_num = qm->qp_num; 1448 else 1449 qm->debug.curr_qm_qp_num = qm_get_vf_qp_num(qm, val); 1450 1451 writel(val, qm->io_base + QM_DFX_MB_CNT_VF); 1452 writel(val, qm->io_base + QM_DFX_DB_CNT_VF); 1453 1454 tmp = val | 1455 (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_Q_MASK); 1456 writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 1457 1458 tmp = val | 1459 (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_Q_MASK); 1460 writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 1461 1462 return 0; 1463 } 1464 1465 static ssize_t qm_debug_read(struct file *filp, char __user *buf, 1466 size_t count, loff_t *pos) 1467 { 1468 struct debugfs_file *file = filp->private_data; 1469 enum qm_debug_file index = file->index; 1470 struct hisi_qm *qm = file_to_qm(file); 1471 char tbuf[QM_DBG_TMP_BUF_LEN]; 1472 u32 val; 1473 int ret; 1474 1475 ret = hisi_qm_get_dfx_access(qm); 1476 if (ret) 1477 return ret; 1478 1479 mutex_lock(&file->lock); 1480 switch (index) { 1481 case CURRENT_QM: 1482 val = current_qm_read(qm); 1483 break; 1484 case CURRENT_Q: 1485 val = current_q_read(qm); 1486 break; 1487 case CLEAR_ENABLE: 1488 val = clear_enable_read(qm); 1489 break; 1490 default: 1491 goto err_input; 1492 } 1493 mutex_unlock(&file->lock); 1494 1495 hisi_qm_put_dfx_access(qm); 1496 ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val); 1497 return simple_read_from_buffer(buf, count, pos, tbuf, ret); 1498 1499 err_input: 1500 mutex_unlock(&file->lock); 1501 hisi_qm_put_dfx_access(qm); 1502 return -EINVAL; 1503 } 1504 1505 static ssize_t qm_debug_write(struct file *filp, const char __user *buf, 1506 size_t count, loff_t *pos) 1507 { 1508 struct debugfs_file *file = filp->private_data; 1509 enum qm_debug_file index = file->index; 1510 struct hisi_qm *qm = file_to_qm(file); 1511 unsigned long val; 1512 char tbuf[QM_DBG_TMP_BUF_LEN]; 1513 int len, ret; 1514 1515 if (*pos != 0) 1516 return 0; 1517 1518 if (count >= QM_DBG_TMP_BUF_LEN) 1519 return -ENOSPC; 1520 1521 len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf, 1522 count); 1523 if (len < 0) 1524 return len; 1525 1526 tbuf[len] = '\0'; 1527 if (kstrtoul(tbuf, 0, &val)) 1528 return -EFAULT; 1529 1530 ret = hisi_qm_get_dfx_access(qm); 1531 if (ret) 1532 return ret; 1533 1534 mutex_lock(&file->lock); 1535 switch (index) { 1536 case CURRENT_QM: 1537 ret = current_qm_write(qm, val); 1538 break; 1539 case CURRENT_Q: 1540 ret = current_q_write(qm, val); 1541 break; 1542 case CLEAR_ENABLE: 1543 ret = clear_enable_write(qm, val); 1544 break; 1545 default: 1546 ret = -EINVAL; 1547 } 1548 mutex_unlock(&file->lock); 1549 1550 hisi_qm_put_dfx_access(qm); 1551 1552 if (ret) 1553 return ret; 1554 1555 return count; 1556 } 1557 1558 static const struct file_operations qm_debug_fops = { 1559 .owner = THIS_MODULE, 1560 .open = simple_open, 1561 .read = qm_debug_read, 1562 .write = qm_debug_write, 1563 }; 1564 1565 #define CNT_CYC_REGS_NUM 10 1566 static const struct debugfs_reg32 qm_dfx_regs[] = { 1567 /* XXX_CNT are reading clear register */ 1568 {"QM_ECC_1BIT_CNT ", 0x104000ull}, 1569 {"QM_ECC_MBIT_CNT ", 0x104008ull}, 1570 {"QM_DFX_MB_CNT ", 0x104018ull}, 1571 {"QM_DFX_DB_CNT ", 0x104028ull}, 1572 {"QM_DFX_SQE_CNT ", 0x104038ull}, 1573 {"QM_DFX_CQE_CNT ", 0x104048ull}, 1574 {"QM_DFX_SEND_SQE_TO_ACC_CNT ", 0x104050ull}, 1575 {"QM_DFX_WB_SQE_FROM_ACC_CNT ", 0x104058ull}, 1576 {"QM_DFX_ACC_FINISH_CNT ", 0x104060ull}, 1577 {"QM_DFX_CQE_ERR_CNT ", 0x1040b4ull}, 1578 {"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull}, 1579 {"QM_ECC_1BIT_INF ", 0x104004ull}, 1580 {"QM_ECC_MBIT_INF ", 0x10400cull}, 1581 {"QM_DFX_ACC_RDY_VLD0 ", 0x1040a0ull}, 1582 {"QM_DFX_ACC_RDY_VLD1 ", 0x1040a4ull}, 1583 {"QM_DFX_AXI_RDY_VLD ", 0x1040a8ull}, 1584 {"QM_DFX_FF_ST0 ", 0x1040c8ull}, 1585 {"QM_DFX_FF_ST1 ", 0x1040ccull}, 1586 {"QM_DFX_FF_ST2 ", 0x1040d0ull}, 1587 {"QM_DFX_FF_ST3 ", 0x1040d4ull}, 1588 {"QM_DFX_FF_ST4 ", 0x1040d8ull}, 1589 {"QM_DFX_FF_ST5 ", 0x1040dcull}, 1590 {"QM_DFX_FF_ST6 ", 0x1040e0ull}, 1591 {"QM_IN_IDLE_ST ", 0x1040e4ull}, 1592 }; 1593 1594 static const struct debugfs_reg32 qm_vf_dfx_regs[] = { 1595 {"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull}, 1596 }; 1597 1598 /** 1599 * hisi_qm_regs_dump() - Dump registers's value. 1600 * @s: debugfs file handle. 1601 * @regset: accelerator registers information. 1602 * 1603 * Dump accelerator registers. 1604 */ 1605 void hisi_qm_regs_dump(struct seq_file *s, struct debugfs_regset32 *regset) 1606 { 1607 struct pci_dev *pdev = to_pci_dev(regset->dev); 1608 struct hisi_qm *qm = pci_get_drvdata(pdev); 1609 const struct debugfs_reg32 *regs = regset->regs; 1610 int regs_len = regset->nregs; 1611 int i, ret; 1612 u32 val; 1613 1614 ret = hisi_qm_get_dfx_access(qm); 1615 if (ret) 1616 return; 1617 1618 for (i = 0; i < regs_len; i++) { 1619 val = readl(regset->base + regs[i].offset); 1620 seq_printf(s, "%s= 0x%08x\n", regs[i].name, val); 1621 } 1622 1623 hisi_qm_put_dfx_access(qm); 1624 } 1625 EXPORT_SYMBOL_GPL(hisi_qm_regs_dump); 1626 1627 static int qm_regs_show(struct seq_file *s, void *unused) 1628 { 1629 struct hisi_qm *qm = s->private; 1630 struct debugfs_regset32 regset; 1631 1632 if (qm->fun_type == QM_HW_PF) { 1633 regset.regs = qm_dfx_regs; 1634 regset.nregs = ARRAY_SIZE(qm_dfx_regs); 1635 } else { 1636 regset.regs = qm_vf_dfx_regs; 1637 regset.nregs = ARRAY_SIZE(qm_vf_dfx_regs); 1638 } 1639 1640 regset.base = qm->io_base; 1641 regset.dev = &qm->pdev->dev; 1642 1643 hisi_qm_regs_dump(s, ®set); 1644 1645 return 0; 1646 } 1647 1648 DEFINE_SHOW_ATTRIBUTE(qm_regs); 1649 1650 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer, 1651 size_t count, loff_t *pos) 1652 { 1653 char buf[QM_DBG_READ_LEN]; 1654 int len; 1655 1656 len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", 1657 "Please echo help to cmd to get help information"); 1658 1659 return simple_read_from_buffer(buffer, count, pos, buf, len); 1660 } 1661 1662 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, 1663 dma_addr_t *dma_addr) 1664 { 1665 struct device *dev = &qm->pdev->dev; 1666 void *ctx_addr; 1667 1668 ctx_addr = kzalloc(ctx_size, GFP_KERNEL); 1669 if (!ctx_addr) 1670 return ERR_PTR(-ENOMEM); 1671 1672 *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); 1673 if (dma_mapping_error(dev, *dma_addr)) { 1674 dev_err(dev, "DMA mapping error!\n"); 1675 kfree(ctx_addr); 1676 return ERR_PTR(-ENOMEM); 1677 } 1678 1679 return ctx_addr; 1680 } 1681 1682 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, 1683 const void *ctx_addr, dma_addr_t *dma_addr) 1684 { 1685 struct device *dev = &qm->pdev->dev; 1686 1687 dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); 1688 kfree(ctx_addr); 1689 } 1690 1691 static int dump_show(struct hisi_qm *qm, void *info, 1692 unsigned int info_size, char *info_name) 1693 { 1694 struct device *dev = &qm->pdev->dev; 1695 u8 *info_buf, *info_curr = info; 1696 u32 i; 1697 #define BYTE_PER_DW 4 1698 1699 info_buf = kzalloc(info_size, GFP_KERNEL); 1700 if (!info_buf) 1701 return -ENOMEM; 1702 1703 for (i = 0; i < info_size; i++, info_curr++) { 1704 if (i % BYTE_PER_DW == 0) 1705 info_buf[i + 3UL] = *info_curr; 1706 else if (i % BYTE_PER_DW == 1) 1707 info_buf[i + 1UL] = *info_curr; 1708 else if (i % BYTE_PER_DW == 2) 1709 info_buf[i - 1] = *info_curr; 1710 else if (i % BYTE_PER_DW == 3) 1711 info_buf[i - 3] = *info_curr; 1712 } 1713 1714 dev_info(dev, "%s DUMP\n", info_name); 1715 for (i = 0; i < info_size; i += BYTE_PER_DW) { 1716 pr_info("DW%u: %02X%02X %02X%02X\n", i / BYTE_PER_DW, 1717 info_buf[i], info_buf[i + 1UL], 1718 info_buf[i + 2UL], info_buf[i + 3UL]); 1719 } 1720 1721 kfree(info_buf); 1722 1723 return 0; 1724 } 1725 1726 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1727 { 1728 return qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); 1729 } 1730 1731 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1732 { 1733 return qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); 1734 } 1735 1736 static int qm_sqc_dump(struct hisi_qm *qm, const char *s) 1737 { 1738 struct device *dev = &qm->pdev->dev; 1739 struct qm_sqc *sqc, *sqc_curr; 1740 dma_addr_t sqc_dma; 1741 u32 qp_id; 1742 int ret; 1743 1744 if (!s) 1745 return -EINVAL; 1746 1747 ret = kstrtou32(s, 0, &qp_id); 1748 if (ret || qp_id >= qm->qp_num) { 1749 dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1); 1750 return -EINVAL; 1751 } 1752 1753 sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma); 1754 if (IS_ERR(sqc)) 1755 return PTR_ERR(sqc); 1756 1757 ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id); 1758 if (ret) { 1759 down_read(&qm->qps_lock); 1760 if (qm->sqc) { 1761 sqc_curr = qm->sqc + qp_id; 1762 1763 ret = dump_show(qm, sqc_curr, sizeof(*sqc), 1764 "SOFT SQC"); 1765 if (ret) 1766 dev_info(dev, "Show soft sqc failed!\n"); 1767 } 1768 up_read(&qm->qps_lock); 1769 1770 goto err_free_ctx; 1771 } 1772 1773 ret = dump_show(qm, sqc, sizeof(*sqc), "SQC"); 1774 if (ret) 1775 dev_info(dev, "Show hw sqc failed!\n"); 1776 1777 err_free_ctx: 1778 qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma); 1779 return ret; 1780 } 1781 1782 static int qm_cqc_dump(struct hisi_qm *qm, const char *s) 1783 { 1784 struct device *dev = &qm->pdev->dev; 1785 struct qm_cqc *cqc, *cqc_curr; 1786 dma_addr_t cqc_dma; 1787 u32 qp_id; 1788 int ret; 1789 1790 if (!s) 1791 return -EINVAL; 1792 1793 ret = kstrtou32(s, 0, &qp_id); 1794 if (ret || qp_id >= qm->qp_num) { 1795 dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1); 1796 return -EINVAL; 1797 } 1798 1799 cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma); 1800 if (IS_ERR(cqc)) 1801 return PTR_ERR(cqc); 1802 1803 ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id); 1804 if (ret) { 1805 down_read(&qm->qps_lock); 1806 if (qm->cqc) { 1807 cqc_curr = qm->cqc + qp_id; 1808 1809 ret = dump_show(qm, cqc_curr, sizeof(*cqc), 1810 "SOFT CQC"); 1811 if (ret) 1812 dev_info(dev, "Show soft cqc failed!\n"); 1813 } 1814 up_read(&qm->qps_lock); 1815 1816 goto err_free_ctx; 1817 } 1818 1819 ret = dump_show(qm, cqc, sizeof(*cqc), "CQC"); 1820 if (ret) 1821 dev_info(dev, "Show hw cqc failed!\n"); 1822 1823 err_free_ctx: 1824 qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma); 1825 return ret; 1826 } 1827 1828 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size, 1829 int cmd, char *name) 1830 { 1831 struct device *dev = &qm->pdev->dev; 1832 dma_addr_t xeqc_dma; 1833 void *xeqc; 1834 int ret; 1835 1836 if (strsep(&s, " ")) { 1837 dev_err(dev, "Please do not input extra characters!\n"); 1838 return -EINVAL; 1839 } 1840 1841 xeqc = qm_ctx_alloc(qm, size, &xeqc_dma); 1842 if (IS_ERR(xeqc)) 1843 return PTR_ERR(xeqc); 1844 1845 ret = qm_mb(qm, cmd, xeqc_dma, 0, 1); 1846 if (ret) 1847 goto err_free_ctx; 1848 1849 ret = dump_show(qm, xeqc, size, name); 1850 if (ret) 1851 dev_info(dev, "Show hw %s failed!\n", name); 1852 1853 err_free_ctx: 1854 qm_ctx_free(qm, size, xeqc, &xeqc_dma); 1855 return ret; 1856 } 1857 1858 static int q_dump_param_parse(struct hisi_qm *qm, char *s, 1859 u32 *e_id, u32 *q_id) 1860 { 1861 struct device *dev = &qm->pdev->dev; 1862 unsigned int qp_num = qm->qp_num; 1863 char *presult; 1864 int ret; 1865 1866 presult = strsep(&s, " "); 1867 if (!presult) { 1868 dev_err(dev, "Please input qp number!\n"); 1869 return -EINVAL; 1870 } 1871 1872 ret = kstrtou32(presult, 0, q_id); 1873 if (ret || *q_id >= qp_num) { 1874 dev_err(dev, "Please input qp num (0-%u)", qp_num - 1); 1875 return -EINVAL; 1876 } 1877 1878 presult = strsep(&s, " "); 1879 if (!presult) { 1880 dev_err(dev, "Please input sqe number!\n"); 1881 return -EINVAL; 1882 } 1883 1884 ret = kstrtou32(presult, 0, e_id); 1885 if (ret || *e_id >= QM_Q_DEPTH) { 1886 dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1); 1887 return -EINVAL; 1888 } 1889 1890 if (strsep(&s, " ")) { 1891 dev_err(dev, "Please do not input extra characters!\n"); 1892 return -EINVAL; 1893 } 1894 1895 return 0; 1896 } 1897 1898 static int qm_sq_dump(struct hisi_qm *qm, char *s) 1899 { 1900 struct device *dev = &qm->pdev->dev; 1901 void *sqe, *sqe_curr; 1902 struct hisi_qp *qp; 1903 u32 qp_id, sqe_id; 1904 int ret; 1905 1906 ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id); 1907 if (ret) 1908 return ret; 1909 1910 sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL); 1911 if (!sqe) 1912 return -ENOMEM; 1913 1914 qp = &qm->qp_array[qp_id]; 1915 memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH); 1916 sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size); 1917 memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK, 1918 qm->debug.sqe_mask_len); 1919 1920 ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE"); 1921 if (ret) 1922 dev_info(dev, "Show sqe failed!\n"); 1923 1924 kfree(sqe); 1925 1926 return ret; 1927 } 1928 1929 static int qm_cq_dump(struct hisi_qm *qm, char *s) 1930 { 1931 struct device *dev = &qm->pdev->dev; 1932 struct qm_cqe *cqe_curr; 1933 struct hisi_qp *qp; 1934 u32 qp_id, cqe_id; 1935 int ret; 1936 1937 ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id); 1938 if (ret) 1939 return ret; 1940 1941 qp = &qm->qp_array[qp_id]; 1942 cqe_curr = qp->cqe + cqe_id; 1943 ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE"); 1944 if (ret) 1945 dev_info(dev, "Show cqe failed!\n"); 1946 1947 return ret; 1948 } 1949 1950 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s, 1951 size_t size, char *name) 1952 { 1953 struct device *dev = &qm->pdev->dev; 1954 void *xeqe; 1955 u32 xeqe_id; 1956 int ret; 1957 1958 if (!s) 1959 return -EINVAL; 1960 1961 ret = kstrtou32(s, 0, &xeqe_id); 1962 if (ret) 1963 return -EINVAL; 1964 1965 if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) { 1966 dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1); 1967 return -EINVAL; 1968 } else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) { 1969 dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1); 1970 return -EINVAL; 1971 } 1972 1973 down_read(&qm->qps_lock); 1974 1975 if (qm->eqe && !strcmp(name, "EQE")) { 1976 xeqe = qm->eqe + xeqe_id; 1977 } else if (qm->aeqe && !strcmp(name, "AEQE")) { 1978 xeqe = qm->aeqe + xeqe_id; 1979 } else { 1980 ret = -EINVAL; 1981 goto err_unlock; 1982 } 1983 1984 ret = dump_show(qm, xeqe, size, name); 1985 if (ret) 1986 dev_info(dev, "Show %s failed!\n", name); 1987 1988 err_unlock: 1989 up_read(&qm->qps_lock); 1990 return ret; 1991 } 1992 1993 static int qm_dbg_help(struct hisi_qm *qm, char *s) 1994 { 1995 struct device *dev = &qm->pdev->dev; 1996 1997 if (strsep(&s, " ")) { 1998 dev_err(dev, "Please do not input extra characters!\n"); 1999 return -EINVAL; 2000 } 2001 2002 dev_info(dev, "available commands:\n"); 2003 dev_info(dev, "sqc <num>\n"); 2004 dev_info(dev, "cqc <num>\n"); 2005 dev_info(dev, "eqc\n"); 2006 dev_info(dev, "aeqc\n"); 2007 dev_info(dev, "sq <num> <e>\n"); 2008 dev_info(dev, "cq <num> <e>\n"); 2009 dev_info(dev, "eq <e>\n"); 2010 dev_info(dev, "aeq <e>\n"); 2011 2012 return 0; 2013 } 2014 2015 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf) 2016 { 2017 struct device *dev = &qm->pdev->dev; 2018 char *presult, *s, *s_tmp; 2019 int ret; 2020 2021 s = kstrdup(cmd_buf, GFP_KERNEL); 2022 if (!s) 2023 return -ENOMEM; 2024 2025 s_tmp = s; 2026 presult = strsep(&s, " "); 2027 if (!presult) { 2028 ret = -EINVAL; 2029 goto err_buffer_free; 2030 } 2031 2032 if (!strcmp(presult, "sqc")) 2033 ret = qm_sqc_dump(qm, s); 2034 else if (!strcmp(presult, "cqc")) 2035 ret = qm_cqc_dump(qm, s); 2036 else if (!strcmp(presult, "eqc")) 2037 ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc), 2038 QM_MB_CMD_EQC, "EQC"); 2039 else if (!strcmp(presult, "aeqc")) 2040 ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc), 2041 QM_MB_CMD_AEQC, "AEQC"); 2042 else if (!strcmp(presult, "sq")) 2043 ret = qm_sq_dump(qm, s); 2044 else if (!strcmp(presult, "cq")) 2045 ret = qm_cq_dump(qm, s); 2046 else if (!strcmp(presult, "eq")) 2047 ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE"); 2048 else if (!strcmp(presult, "aeq")) 2049 ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE"); 2050 else if (!strcmp(presult, "help")) 2051 ret = qm_dbg_help(qm, s); 2052 else 2053 ret = -EINVAL; 2054 2055 if (ret) 2056 dev_info(dev, "Please echo help\n"); 2057 2058 err_buffer_free: 2059 kfree(s_tmp); 2060 2061 return ret; 2062 } 2063 2064 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer, 2065 size_t count, loff_t *pos) 2066 { 2067 struct hisi_qm *qm = filp->private_data; 2068 char *cmd_buf, *cmd_buf_tmp; 2069 int ret; 2070 2071 if (*pos) 2072 return 0; 2073 2074 ret = hisi_qm_get_dfx_access(qm); 2075 if (ret) 2076 return ret; 2077 2078 /* Judge if the instance is being reset. */ 2079 if (unlikely(atomic_read(&qm->status.flags) == QM_STOP)) 2080 return 0; 2081 2082 if (count > QM_DBG_WRITE_LEN) { 2083 ret = -ENOSPC; 2084 goto put_dfx_access; 2085 } 2086 2087 cmd_buf = memdup_user_nul(buffer, count); 2088 if (IS_ERR(cmd_buf)) { 2089 ret = PTR_ERR(cmd_buf); 2090 goto put_dfx_access; 2091 } 2092 2093 cmd_buf_tmp = strchr(cmd_buf, '\n'); 2094 if (cmd_buf_tmp) { 2095 *cmd_buf_tmp = '\0'; 2096 count = cmd_buf_tmp - cmd_buf + 1; 2097 } 2098 2099 ret = qm_cmd_write_dump(qm, cmd_buf); 2100 if (ret) { 2101 kfree(cmd_buf); 2102 goto put_dfx_access; 2103 } 2104 2105 kfree(cmd_buf); 2106 2107 ret = count; 2108 2109 put_dfx_access: 2110 hisi_qm_put_dfx_access(qm); 2111 return ret; 2112 } 2113 2114 static const struct file_operations qm_cmd_fops = { 2115 .owner = THIS_MODULE, 2116 .open = simple_open, 2117 .read = qm_cmd_read, 2118 .write = qm_cmd_write, 2119 }; 2120 2121 static void qm_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir, 2122 enum qm_debug_file index) 2123 { 2124 struct debugfs_file *file = qm->debug.files + index; 2125 2126 debugfs_create_file(qm_debug_file_name[index], 0600, dir, file, 2127 &qm_debug_fops); 2128 2129 file->index = index; 2130 mutex_init(&file->lock); 2131 file->debug = &qm->debug; 2132 } 2133 2134 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 2135 { 2136 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 2137 } 2138 2139 static void qm_hw_error_cfg(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 2140 { 2141 qm->error_mask = ce | nfe | fe; 2142 /* clear QM hw residual error source */ 2143 writel(QM_ABNORMAL_INT_SOURCE_CLR, 2144 qm->io_base + QM_ABNORMAL_INT_SOURCE); 2145 2146 /* configure error type */ 2147 writel(ce, qm->io_base + QM_RAS_CE_ENABLE); 2148 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 2149 writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE); 2150 writel(fe, qm->io_base + QM_RAS_FE_ENABLE); 2151 } 2152 2153 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 2154 { 2155 u32 irq_enable = ce | nfe | fe; 2156 u32 irq_unmask = ~irq_enable; 2157 2158 qm_hw_error_cfg(qm, ce, nfe, fe); 2159 2160 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 2161 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 2162 } 2163 2164 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 2165 { 2166 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 2167 } 2168 2169 static void qm_hw_error_init_v3(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 2170 { 2171 u32 irq_enable = ce | nfe | fe; 2172 u32 irq_unmask = ~irq_enable; 2173 2174 qm_hw_error_cfg(qm, ce, nfe, fe); 2175 2176 /* enable close master ooo when hardware error happened */ 2177 writel(nfe & (~QM_DB_RANDOM_INVALID), qm->io_base + QM_OOO_SHUTDOWN_SEL); 2178 2179 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 2180 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 2181 } 2182 2183 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 2184 { 2185 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 2186 2187 /* disable close master ooo when hardware error happened */ 2188 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 2189 } 2190 2191 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 2192 { 2193 const struct hisi_qm_hw_error *err; 2194 struct device *dev = &qm->pdev->dev; 2195 u32 reg_val, type, vf_num; 2196 int i; 2197 2198 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 2199 err = &qm_hw_error[i]; 2200 if (!(err->int_msk & error_status)) 2201 continue; 2202 2203 dev_err(dev, "%s [error status=0x%x] found\n", 2204 err->msg, err->int_msk); 2205 2206 if (err->int_msk & QM_DB_TIMEOUT) { 2207 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 2208 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 2209 QM_DB_TIMEOUT_TYPE_SHIFT; 2210 vf_num = reg_val & QM_DB_TIMEOUT_VF; 2211 dev_err(dev, "qm %s doorbell timeout in function %u\n", 2212 qm_db_timeout[type], vf_num); 2213 } else if (err->int_msk & QM_OF_FIFO_OF) { 2214 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 2215 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 2216 QM_FIFO_OVERFLOW_TYPE_SHIFT; 2217 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 2218 2219 if (type < ARRAY_SIZE(qm_fifo_overflow)) 2220 dev_err(dev, "qm %s fifo overflow in function %u\n", 2221 qm_fifo_overflow[type], vf_num); 2222 else 2223 dev_err(dev, "unknown error type\n"); 2224 } 2225 } 2226 } 2227 2228 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 2229 { 2230 u32 error_status, tmp, val; 2231 2232 /* read err sts */ 2233 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 2234 error_status = qm->error_mask & tmp; 2235 2236 if (error_status) { 2237 if (error_status & QM_ECC_MBIT) 2238 qm->err_status.is_qm_ecc_mbit = true; 2239 2240 qm_log_hw_error(qm, error_status); 2241 val = error_status | QM_DB_RANDOM_INVALID | QM_BASE_CE; 2242 /* ce error does not need to be reset */ 2243 if (val == (QM_DB_RANDOM_INVALID | QM_BASE_CE)) { 2244 writel(error_status, qm->io_base + 2245 QM_ABNORMAL_INT_SOURCE); 2246 writel(qm->err_info.nfe, 2247 qm->io_base + QM_RAS_NFE_ENABLE); 2248 return ACC_ERR_RECOVERED; 2249 } 2250 2251 return ACC_ERR_NEED_RESET; 2252 } 2253 2254 return ACC_ERR_RECOVERED; 2255 } 2256 2257 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 2258 { 2259 struct qm_mailbox mailbox; 2260 int ret; 2261 2262 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 2263 mutex_lock(&qm->mailbox_lock); 2264 ret = qm_mb_nolock(qm, &mailbox); 2265 if (ret) 2266 goto err_unlock; 2267 2268 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 2269 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 2270 2271 err_unlock: 2272 mutex_unlock(&qm->mailbox_lock); 2273 return ret; 2274 } 2275 2276 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 2277 { 2278 u32 val; 2279 2280 if (qm->fun_type == QM_HW_PF) 2281 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 2282 2283 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 2284 val |= QM_IFC_INT_SOURCE_MASK; 2285 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 2286 } 2287 2288 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 2289 { 2290 struct device *dev = &qm->pdev->dev; 2291 u32 cmd; 2292 u64 msg; 2293 int ret; 2294 2295 ret = qm_get_mb_cmd(qm, &msg, vf_id); 2296 if (ret) { 2297 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 2298 return; 2299 } 2300 2301 cmd = msg & QM_MB_CMD_DATA_MASK; 2302 switch (cmd) { 2303 case QM_VF_PREPARE_FAIL: 2304 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 2305 break; 2306 case QM_VF_START_FAIL: 2307 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 2308 break; 2309 case QM_VF_PREPARE_DONE: 2310 case QM_VF_START_DONE: 2311 break; 2312 default: 2313 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 2314 break; 2315 } 2316 } 2317 2318 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 2319 { 2320 struct device *dev = &qm->pdev->dev; 2321 u32 vfs_num = qm->vfs_num; 2322 int cnt = 0; 2323 int ret = 0; 2324 u64 val; 2325 u32 i; 2326 2327 if (!qm->vfs_num || qm->ver < QM_HW_V3) 2328 return 0; 2329 2330 while (true) { 2331 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 2332 /* All VFs send command to PF, break */ 2333 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 2334 break; 2335 2336 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 2337 ret = -EBUSY; 2338 break; 2339 } 2340 2341 msleep(QM_WAIT_DST_ACK); 2342 } 2343 2344 /* PF check VFs msg */ 2345 for (i = 1; i <= vfs_num; i++) { 2346 if (val & BIT(i)) 2347 qm_handle_vf_msg(qm, i); 2348 else 2349 dev_err(dev, "VF(%u) not ping PF!\n", i); 2350 } 2351 2352 /* PF clear interrupt to ack VFs */ 2353 qm_clear_cmd_interrupt(qm, val); 2354 2355 return ret; 2356 } 2357 2358 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 2359 { 2360 u32 val; 2361 2362 val = readl(qm->io_base + QM_IFC_INT_CFG); 2363 val &= ~QM_IFC_SEND_ALL_VFS; 2364 val |= fun_num; 2365 writel(val, qm->io_base + QM_IFC_INT_CFG); 2366 2367 val = readl(qm->io_base + QM_IFC_INT_SET_P); 2368 val |= QM_IFC_INT_SET_MASK; 2369 writel(val, qm->io_base + QM_IFC_INT_SET_P); 2370 } 2371 2372 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 2373 { 2374 u32 val; 2375 2376 val = readl(qm->io_base + QM_IFC_INT_SET_V); 2377 val |= QM_IFC_INT_SET_MASK; 2378 writel(val, qm->io_base + QM_IFC_INT_SET_V); 2379 } 2380 2381 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 2382 { 2383 struct device *dev = &qm->pdev->dev; 2384 struct qm_mailbox mailbox; 2385 int cnt = 0; 2386 u64 val; 2387 int ret; 2388 2389 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 2390 mutex_lock(&qm->mailbox_lock); 2391 ret = qm_mb_nolock(qm, &mailbox); 2392 if (ret) { 2393 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 2394 goto err_unlock; 2395 } 2396 2397 qm_trigger_vf_interrupt(qm, fun_num); 2398 while (true) { 2399 msleep(QM_WAIT_DST_ACK); 2400 val = readq(qm->io_base + QM_IFC_READY_STATUS); 2401 /* if VF respond, PF notifies VF successfully. */ 2402 if (!(val & BIT(fun_num))) 2403 goto err_unlock; 2404 2405 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 2406 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 2407 ret = -ETIMEDOUT; 2408 break; 2409 } 2410 } 2411 2412 err_unlock: 2413 mutex_unlock(&qm->mailbox_lock); 2414 return ret; 2415 } 2416 2417 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 2418 { 2419 struct device *dev = &qm->pdev->dev; 2420 u32 vfs_num = qm->vfs_num; 2421 struct qm_mailbox mailbox; 2422 u64 val = 0; 2423 int cnt = 0; 2424 int ret; 2425 u32 i; 2426 2427 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 2428 mutex_lock(&qm->mailbox_lock); 2429 /* PF sends command to all VFs by mailbox */ 2430 ret = qm_mb_nolock(qm, &mailbox); 2431 if (ret) { 2432 dev_err(dev, "failed to send command to VFs!\n"); 2433 mutex_unlock(&qm->mailbox_lock); 2434 return ret; 2435 } 2436 2437 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 2438 while (true) { 2439 msleep(QM_WAIT_DST_ACK); 2440 val = readq(qm->io_base + QM_IFC_READY_STATUS); 2441 /* If all VFs acked, PF notifies VFs successfully. */ 2442 if (!(val & GENMASK(vfs_num, 1))) { 2443 mutex_unlock(&qm->mailbox_lock); 2444 return 0; 2445 } 2446 2447 if (++cnt > QM_MAX_PF_WAIT_COUNT) 2448 break; 2449 } 2450 2451 mutex_unlock(&qm->mailbox_lock); 2452 2453 /* Check which vf respond timeout. */ 2454 for (i = 1; i <= vfs_num; i++) { 2455 if (val & BIT(i)) 2456 dev_err(dev, "failed to get response from VF(%u)!\n", i); 2457 } 2458 2459 return -ETIMEDOUT; 2460 } 2461 2462 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 2463 { 2464 struct qm_mailbox mailbox; 2465 int cnt = 0; 2466 u32 val; 2467 int ret; 2468 2469 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 2470 mutex_lock(&qm->mailbox_lock); 2471 ret = qm_mb_nolock(qm, &mailbox); 2472 if (ret) { 2473 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 2474 goto unlock; 2475 } 2476 2477 qm_trigger_pf_interrupt(qm); 2478 /* Waiting for PF response */ 2479 while (true) { 2480 msleep(QM_WAIT_DST_ACK); 2481 val = readl(qm->io_base + QM_IFC_INT_SET_V); 2482 if (!(val & QM_IFC_INT_STATUS_MASK)) 2483 break; 2484 2485 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 2486 ret = -ETIMEDOUT; 2487 break; 2488 } 2489 } 2490 2491 unlock: 2492 mutex_unlock(&qm->mailbox_lock); 2493 return ret; 2494 } 2495 2496 static int qm_stop_qp(struct hisi_qp *qp) 2497 { 2498 return qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 2499 } 2500 2501 static int qm_set_msi(struct hisi_qm *qm, bool set) 2502 { 2503 struct pci_dev *pdev = qm->pdev; 2504 2505 if (set) { 2506 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 2507 0); 2508 } else { 2509 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 2510 ACC_PEH_MSI_DISABLE); 2511 if (qm->err_status.is_qm_ecc_mbit || 2512 qm->err_status.is_dev_ecc_mbit) 2513 return 0; 2514 2515 mdelay(1); 2516 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 2517 return -EFAULT; 2518 } 2519 2520 return 0; 2521 } 2522 2523 static void qm_wait_msi_finish(struct hisi_qm *qm) 2524 { 2525 struct pci_dev *pdev = qm->pdev; 2526 u32 cmd = ~0; 2527 int cnt = 0; 2528 u32 val; 2529 int ret; 2530 2531 while (true) { 2532 pci_read_config_dword(pdev, pdev->msi_cap + 2533 PCI_MSI_PENDING_64, &cmd); 2534 if (!cmd) 2535 break; 2536 2537 if (++cnt > MAX_WAIT_COUNTS) { 2538 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 2539 break; 2540 } 2541 2542 udelay(1); 2543 } 2544 2545 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 2546 val, !(val & QM_PEH_DFX_MASK), 2547 POLL_PERIOD, POLL_TIMEOUT); 2548 if (ret) 2549 pci_warn(pdev, "failed to empty PEH MSI!\n"); 2550 2551 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 2552 val, !(val & QM_PEH_MSI_FINISH_MASK), 2553 POLL_PERIOD, POLL_TIMEOUT); 2554 if (ret) 2555 pci_warn(pdev, "failed to finish MSI operation!\n"); 2556 } 2557 2558 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 2559 { 2560 struct pci_dev *pdev = qm->pdev; 2561 int ret = -ETIMEDOUT; 2562 u32 cmd, i; 2563 2564 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 2565 if (set) 2566 cmd |= QM_MSI_CAP_ENABLE; 2567 else 2568 cmd &= ~QM_MSI_CAP_ENABLE; 2569 2570 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 2571 if (set) { 2572 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 2573 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 2574 if (cmd & QM_MSI_CAP_ENABLE) 2575 return 0; 2576 2577 udelay(1); 2578 } 2579 } else { 2580 udelay(WAIT_PERIOD_US_MIN); 2581 qm_wait_msi_finish(qm); 2582 ret = 0; 2583 } 2584 2585 return ret; 2586 } 2587 2588 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 2589 .qm_db = qm_db_v1, 2590 .get_irq_num = qm_get_irq_num_v1, 2591 .hw_error_init = qm_hw_error_init_v1, 2592 .set_msi = qm_set_msi, 2593 }; 2594 2595 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 2596 .get_vft = qm_get_vft_v2, 2597 .qm_db = qm_db_v2, 2598 .get_irq_num = qm_get_irq_num_v2, 2599 .hw_error_init = qm_hw_error_init_v2, 2600 .hw_error_uninit = qm_hw_error_uninit_v2, 2601 .hw_error_handle = qm_hw_error_handle_v2, 2602 .set_msi = qm_set_msi, 2603 }; 2604 2605 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 2606 .get_vft = qm_get_vft_v2, 2607 .qm_db = qm_db_v2, 2608 .get_irq_num = qm_get_irq_num_v3, 2609 .hw_error_init = qm_hw_error_init_v3, 2610 .hw_error_uninit = qm_hw_error_uninit_v3, 2611 .hw_error_handle = qm_hw_error_handle_v2, 2612 .stop_qp = qm_stop_qp, 2613 .set_msi = qm_set_msi_v3, 2614 .ping_all_vfs = qm_ping_all_vfs, 2615 .ping_pf = qm_ping_pf, 2616 }; 2617 2618 static void *qm_get_avail_sqe(struct hisi_qp *qp) 2619 { 2620 struct hisi_qp_status *qp_status = &qp->qp_status; 2621 u16 sq_tail = qp_status->sq_tail; 2622 2623 if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1)) 2624 return NULL; 2625 2626 return qp->sqe + sq_tail * qp->qm->sqe_size; 2627 } 2628 2629 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 2630 { 2631 u64 *addr; 2632 2633 /* Use last 64 bits of DUS to reset status. */ 2634 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 2635 *addr = 0; 2636 } 2637 2638 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 2639 { 2640 struct device *dev = &qm->pdev->dev; 2641 struct hisi_qp *qp; 2642 int qp_id; 2643 2644 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 2645 return ERR_PTR(-EPERM); 2646 2647 if (qm->qp_in_used == qm->qp_num) { 2648 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 2649 qm->qp_num); 2650 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 2651 return ERR_PTR(-EBUSY); 2652 } 2653 2654 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 2655 if (qp_id < 0) { 2656 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 2657 qm->qp_num); 2658 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 2659 return ERR_PTR(-EBUSY); 2660 } 2661 2662 qp = &qm->qp_array[qp_id]; 2663 hisi_qm_unset_hw_reset(qp); 2664 memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH); 2665 2666 qp->event_cb = NULL; 2667 qp->req_cb = NULL; 2668 qp->qp_id = qp_id; 2669 qp->alg_type = alg_type; 2670 qp->is_in_kernel = true; 2671 qm->qp_in_used++; 2672 atomic_set(&qp->qp_status.flags, QP_INIT); 2673 2674 return qp; 2675 } 2676 2677 /** 2678 * hisi_qm_create_qp() - Create a queue pair from qm. 2679 * @qm: The qm we create a qp from. 2680 * @alg_type: Accelerator specific algorithm type in sqc. 2681 * 2682 * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating 2683 * qp memory fails. 2684 */ 2685 struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 2686 { 2687 struct hisi_qp *qp; 2688 int ret; 2689 2690 ret = qm_pm_get_sync(qm); 2691 if (ret) 2692 return ERR_PTR(ret); 2693 2694 down_write(&qm->qps_lock); 2695 qp = qm_create_qp_nolock(qm, alg_type); 2696 up_write(&qm->qps_lock); 2697 2698 if (IS_ERR(qp)) 2699 qm_pm_put_sync(qm); 2700 2701 return qp; 2702 } 2703 EXPORT_SYMBOL_GPL(hisi_qm_create_qp); 2704 2705 /** 2706 * hisi_qm_release_qp() - Release a qp back to its qm. 2707 * @qp: The qp we want to release. 2708 * 2709 * This function releases the resource of a qp. 2710 */ 2711 void hisi_qm_release_qp(struct hisi_qp *qp) 2712 { 2713 struct hisi_qm *qm = qp->qm; 2714 2715 down_write(&qm->qps_lock); 2716 2717 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 2718 up_write(&qm->qps_lock); 2719 return; 2720 } 2721 2722 qm->qp_in_used--; 2723 idr_remove(&qm->qp_idr, qp->qp_id); 2724 2725 up_write(&qm->qps_lock); 2726 2727 qm_pm_put_sync(qm); 2728 } 2729 EXPORT_SYMBOL_GPL(hisi_qm_release_qp); 2730 2731 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2732 { 2733 struct hisi_qm *qm = qp->qm; 2734 struct device *dev = &qm->pdev->dev; 2735 enum qm_hw_ver ver = qm->ver; 2736 struct qm_sqc *sqc; 2737 dma_addr_t sqc_dma; 2738 int ret; 2739 2740 sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); 2741 if (!sqc) 2742 return -ENOMEM; 2743 2744 INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); 2745 if (ver == QM_HW_V1) { 2746 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 2747 sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1); 2748 } else { 2749 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size)); 2750 sqc->w8 = 0; /* rand_qc */ 2751 } 2752 sqc->cq_num = cpu_to_le16(qp_id); 2753 sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 2754 2755 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2756 sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 2757 QM_QC_PASID_ENABLE_SHIFT); 2758 2759 sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), 2760 DMA_TO_DEVICE); 2761 if (dma_mapping_error(dev, sqc_dma)) { 2762 kfree(sqc); 2763 return -ENOMEM; 2764 } 2765 2766 ret = qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); 2767 dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); 2768 kfree(sqc); 2769 2770 return ret; 2771 } 2772 2773 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2774 { 2775 struct hisi_qm *qm = qp->qm; 2776 struct device *dev = &qm->pdev->dev; 2777 enum qm_hw_ver ver = qm->ver; 2778 struct qm_cqc *cqc; 2779 dma_addr_t cqc_dma; 2780 int ret; 2781 2782 cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); 2783 if (!cqc) 2784 return -ENOMEM; 2785 2786 INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); 2787 if (ver == QM_HW_V1) { 2788 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 2789 QM_QC_CQE_SIZE)); 2790 cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1); 2791 } else { 2792 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE)); 2793 cqc->w8 = 0; /* rand_qc */ 2794 } 2795 cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 2796 2797 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2798 cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 2799 2800 cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), 2801 DMA_TO_DEVICE); 2802 if (dma_mapping_error(dev, cqc_dma)) { 2803 kfree(cqc); 2804 return -ENOMEM; 2805 } 2806 2807 ret = qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); 2808 dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); 2809 kfree(cqc); 2810 2811 return ret; 2812 } 2813 2814 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2815 { 2816 int ret; 2817 2818 qm_init_qp_status(qp); 2819 2820 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2821 if (ret) 2822 return ret; 2823 2824 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2825 } 2826 2827 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2828 { 2829 struct hisi_qm *qm = qp->qm; 2830 struct device *dev = &qm->pdev->dev; 2831 int qp_id = qp->qp_id; 2832 u32 pasid = arg; 2833 int ret; 2834 2835 if (!qm_qp_avail_state(qm, qp, QP_START)) 2836 return -EPERM; 2837 2838 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2839 if (ret) 2840 return ret; 2841 2842 atomic_set(&qp->qp_status.flags, QP_START); 2843 dev_dbg(dev, "queue %d started\n", qp_id); 2844 2845 return 0; 2846 } 2847 2848 /** 2849 * hisi_qm_start_qp() - Start a qp into running. 2850 * @qp: The qp we want to start to run. 2851 * @arg: Accelerator specific argument. 2852 * 2853 * After this function, qp can receive request from user. Return 0 if 2854 * successful, Return -EBUSY if failed. 2855 */ 2856 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2857 { 2858 struct hisi_qm *qm = qp->qm; 2859 int ret; 2860 2861 down_write(&qm->qps_lock); 2862 ret = qm_start_qp_nolock(qp, arg); 2863 up_write(&qm->qps_lock); 2864 2865 return ret; 2866 } 2867 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2868 2869 /** 2870 * qp_stop_fail_cb() - call request cb. 2871 * @qp: stopped failed qp. 2872 * 2873 * Callback function should be called whether task completed or not. 2874 */ 2875 static void qp_stop_fail_cb(struct hisi_qp *qp) 2876 { 2877 int qp_used = atomic_read(&qp->qp_status.used); 2878 u16 cur_tail = qp->qp_status.sq_tail; 2879 u16 cur_head = (cur_tail + QM_Q_DEPTH - qp_used) % QM_Q_DEPTH; 2880 struct hisi_qm *qm = qp->qm; 2881 u16 pos; 2882 int i; 2883 2884 for (i = 0; i < qp_used; i++) { 2885 pos = (i + cur_head) % QM_Q_DEPTH; 2886 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2887 atomic_dec(&qp->qp_status.used); 2888 } 2889 } 2890 2891 /** 2892 * qm_drain_qp() - Drain a qp. 2893 * @qp: The qp we want to drain. 2894 * 2895 * Determine whether the queue is cleared by judging the tail pointers of 2896 * sq and cq. 2897 */ 2898 static int qm_drain_qp(struct hisi_qp *qp) 2899 { 2900 size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); 2901 struct hisi_qm *qm = qp->qm; 2902 struct device *dev = &qm->pdev->dev; 2903 struct qm_sqc *sqc; 2904 struct qm_cqc *cqc; 2905 dma_addr_t dma_addr; 2906 int ret = 0, i = 0; 2907 void *addr; 2908 2909 /* No need to judge if master OOO is blocked. */ 2910 if (qm_check_dev_error(qm)) 2911 return 0; 2912 2913 /* Kunpeng930 supports drain qp by device */ 2914 if (qm->ops->stop_qp) { 2915 ret = qm->ops->stop_qp(qp); 2916 if (ret) 2917 dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); 2918 return ret; 2919 } 2920 2921 addr = qm_ctx_alloc(qm, size, &dma_addr); 2922 if (IS_ERR(addr)) { 2923 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); 2924 return -ENOMEM; 2925 } 2926 2927 while (++i) { 2928 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); 2929 if (ret) { 2930 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2931 break; 2932 } 2933 sqc = addr; 2934 2935 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), 2936 qp->qp_id); 2937 if (ret) { 2938 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2939 break; 2940 } 2941 cqc = addr + sizeof(struct qm_sqc); 2942 2943 if ((sqc->tail == cqc->tail) && 2944 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2945 break; 2946 2947 if (i == MAX_WAIT_COUNTS) { 2948 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 2949 ret = -EBUSY; 2950 break; 2951 } 2952 2953 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2954 } 2955 2956 qm_ctx_free(qm, size, addr, &dma_addr); 2957 2958 return ret; 2959 } 2960 2961 static int qm_stop_qp_nolock(struct hisi_qp *qp) 2962 { 2963 struct device *dev = &qp->qm->pdev->dev; 2964 int ret; 2965 2966 /* 2967 * It is allowed to stop and release qp when reset, If the qp is 2968 * stopped when reset but still want to be released then, the 2969 * is_resetting flag should be set negative so that this qp will not 2970 * be restarted after reset. 2971 */ 2972 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 2973 qp->is_resetting = false; 2974 return 0; 2975 } 2976 2977 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 2978 return -EPERM; 2979 2980 atomic_set(&qp->qp_status.flags, QP_STOP); 2981 2982 ret = qm_drain_qp(qp); 2983 if (ret) 2984 dev_err(dev, "Failed to drain out data for stopping!\n"); 2985 2986 if (qp->qm->wq) 2987 flush_workqueue(qp->qm->wq); 2988 else 2989 flush_work(&qp->qm->work); 2990 2991 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2992 qp_stop_fail_cb(qp); 2993 2994 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2995 2996 return 0; 2997 } 2998 2999 /** 3000 * hisi_qm_stop_qp() - Stop a qp in qm. 3001 * @qp: The qp we want to stop. 3002 * 3003 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 3004 */ 3005 int hisi_qm_stop_qp(struct hisi_qp *qp) 3006 { 3007 int ret; 3008 3009 down_write(&qp->qm->qps_lock); 3010 ret = qm_stop_qp_nolock(qp); 3011 up_write(&qp->qm->qps_lock); 3012 3013 return ret; 3014 } 3015 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 3016 3017 /** 3018 * hisi_qp_send() - Queue up a task in the hardware queue. 3019 * @qp: The qp in which to put the message. 3020 * @msg: The message. 3021 * 3022 * This function will return -EBUSY if qp is currently full, and -EAGAIN 3023 * if qp related qm is resetting. 3024 * 3025 * Note: This function may run with qm_irq_thread and ACC reset at same time. 3026 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 3027 * reset may happen, we have no lock here considering performance. This 3028 * causes current qm_db sending fail or can not receive sended sqe. QM 3029 * sync/async receive function should handle the error sqe. ACC reset 3030 * done function should clear used sqe to 0. 3031 */ 3032 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 3033 { 3034 struct hisi_qp_status *qp_status = &qp->qp_status; 3035 u16 sq_tail = qp_status->sq_tail; 3036 u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH; 3037 void *sqe = qm_get_avail_sqe(qp); 3038 3039 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 3040 atomic_read(&qp->qm->status.flags) == QM_STOP || 3041 qp->is_resetting)) { 3042 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 3043 return -EAGAIN; 3044 } 3045 3046 if (!sqe) 3047 return -EBUSY; 3048 3049 memcpy(sqe, msg, qp->qm->sqe_size); 3050 3051 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 3052 atomic_inc(&qp->qp_status.used); 3053 qp_status->sq_tail = sq_tail_next; 3054 3055 return 0; 3056 } 3057 EXPORT_SYMBOL_GPL(hisi_qp_send); 3058 3059 static void hisi_qm_cache_wb(struct hisi_qm *qm) 3060 { 3061 unsigned int val; 3062 3063 if (qm->ver == QM_HW_V1) 3064 return; 3065 3066 writel(0x1, qm->io_base + QM_CACHE_WB_START); 3067 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 3068 val, val & BIT(0), POLL_PERIOD, 3069 POLL_TIMEOUT)) 3070 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 3071 } 3072 3073 static void qm_qp_event_notifier(struct hisi_qp *qp) 3074 { 3075 wake_up_interruptible(&qp->uacce_q->wait); 3076 } 3077 3078 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 3079 { 3080 return hisi_qm_get_free_qp_num(uacce->priv); 3081 } 3082 3083 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 3084 { 3085 int i; 3086 3087 for (i = 0; i < qm->qp_num; i++) 3088 qm_set_qp_disable(&qm->qp_array[i], offset); 3089 } 3090 3091 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 3092 unsigned long arg, 3093 struct uacce_queue *q) 3094 { 3095 struct hisi_qm *qm = uacce->priv; 3096 struct hisi_qp *qp; 3097 u8 alg_type = 0; 3098 3099 qp = hisi_qm_create_qp(qm, alg_type); 3100 if (IS_ERR(qp)) 3101 return PTR_ERR(qp); 3102 3103 q->priv = qp; 3104 q->uacce = uacce; 3105 qp->uacce_q = q; 3106 qp->event_cb = qm_qp_event_notifier; 3107 qp->pasid = arg; 3108 qp->is_in_kernel = false; 3109 3110 return 0; 3111 } 3112 3113 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 3114 { 3115 struct hisi_qp *qp = q->priv; 3116 3117 hisi_qm_cache_wb(qp->qm); 3118 hisi_qm_release_qp(qp); 3119 } 3120 3121 /* map sq/cq/doorbell to user space */ 3122 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 3123 struct vm_area_struct *vma, 3124 struct uacce_qfile_region *qfr) 3125 { 3126 struct hisi_qp *qp = q->priv; 3127 struct hisi_qm *qm = qp->qm; 3128 resource_size_t phys_base = qm->db_phys_base + 3129 qp->qp_id * qm->db_interval; 3130 size_t sz = vma->vm_end - vma->vm_start; 3131 struct pci_dev *pdev = qm->pdev; 3132 struct device *dev = &pdev->dev; 3133 unsigned long vm_pgoff; 3134 int ret; 3135 3136 switch (qfr->type) { 3137 case UACCE_QFRT_MMIO: 3138 if (qm->ver == QM_HW_V1) { 3139 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 3140 return -EINVAL; 3141 } else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) { 3142 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 3143 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 3144 return -EINVAL; 3145 } else { 3146 if (sz > qm->db_interval) 3147 return -EINVAL; 3148 } 3149 3150 vma->vm_flags |= VM_IO; 3151 3152 return remap_pfn_range(vma, vma->vm_start, 3153 phys_base >> PAGE_SHIFT, 3154 sz, pgprot_noncached(vma->vm_page_prot)); 3155 case UACCE_QFRT_DUS: 3156 if (sz != qp->qdma.size) 3157 return -EINVAL; 3158 3159 /* 3160 * dma_mmap_coherent() requires vm_pgoff as 0 3161 * restore vm_pfoff to initial value for mmap() 3162 */ 3163 vm_pgoff = vma->vm_pgoff; 3164 vma->vm_pgoff = 0; 3165 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 3166 qp->qdma.dma, sz); 3167 vma->vm_pgoff = vm_pgoff; 3168 return ret; 3169 3170 default: 3171 return -EINVAL; 3172 } 3173 } 3174 3175 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 3176 { 3177 struct hisi_qp *qp = q->priv; 3178 3179 return hisi_qm_start_qp(qp, qp->pasid); 3180 } 3181 3182 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 3183 { 3184 hisi_qm_stop_qp(q->priv); 3185 } 3186 3187 static int hisi_qm_is_q_updated(struct uacce_queue *q) 3188 { 3189 struct hisi_qp *qp = q->priv; 3190 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 3191 int updated = 0; 3192 3193 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 3194 /* make sure to read data from memory */ 3195 dma_rmb(); 3196 qm_cq_head_update(qp); 3197 cqe = qp->cqe + qp->qp_status.cq_head; 3198 updated = 1; 3199 } 3200 3201 return updated; 3202 } 3203 3204 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 3205 { 3206 struct hisi_qm *qm = q->uacce->priv; 3207 struct hisi_qp *qp = q->priv; 3208 3209 down_write(&qm->qps_lock); 3210 qp->alg_type = type; 3211 up_write(&qm->qps_lock); 3212 } 3213 3214 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 3215 unsigned long arg) 3216 { 3217 struct hisi_qp *qp = q->priv; 3218 struct hisi_qp_ctx qp_ctx; 3219 3220 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 3221 if (copy_from_user(&qp_ctx, (void __user *)arg, 3222 sizeof(struct hisi_qp_ctx))) 3223 return -EFAULT; 3224 3225 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 3226 return -EINVAL; 3227 3228 qm_set_sqctype(q, qp_ctx.qc_type); 3229 qp_ctx.id = qp->qp_id; 3230 3231 if (copy_to_user((void __user *)arg, &qp_ctx, 3232 sizeof(struct hisi_qp_ctx))) 3233 return -EFAULT; 3234 } else { 3235 return -EINVAL; 3236 } 3237 3238 return 0; 3239 } 3240 3241 static const struct uacce_ops uacce_qm_ops = { 3242 .get_available_instances = hisi_qm_get_available_instances, 3243 .get_queue = hisi_qm_uacce_get_queue, 3244 .put_queue = hisi_qm_uacce_put_queue, 3245 .start_queue = hisi_qm_uacce_start_queue, 3246 .stop_queue = hisi_qm_uacce_stop_queue, 3247 .mmap = hisi_qm_uacce_mmap, 3248 .ioctl = hisi_qm_uacce_ioctl, 3249 .is_q_updated = hisi_qm_is_q_updated, 3250 }; 3251 3252 static int qm_alloc_uacce(struct hisi_qm *qm) 3253 { 3254 struct pci_dev *pdev = qm->pdev; 3255 struct uacce_device *uacce; 3256 unsigned long mmio_page_nr; 3257 unsigned long dus_page_nr; 3258 struct uacce_interface interface = { 3259 .flags = UACCE_DEV_SVA, 3260 .ops = &uacce_qm_ops, 3261 }; 3262 int ret; 3263 3264 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 3265 sizeof(interface.name)); 3266 if (ret < 0) 3267 return -ENAMETOOLONG; 3268 3269 uacce = uacce_alloc(&pdev->dev, &interface); 3270 if (IS_ERR(uacce)) 3271 return PTR_ERR(uacce); 3272 3273 if (uacce->flags & UACCE_DEV_SVA) { 3274 qm->use_sva = true; 3275 } else { 3276 /* only consider sva case */ 3277 uacce_remove(uacce); 3278 qm->uacce = NULL; 3279 return -EINVAL; 3280 } 3281 3282 uacce->is_vf = pdev->is_virtfn; 3283 uacce->priv = qm; 3284 uacce->algs = qm->algs; 3285 3286 if (qm->ver == QM_HW_V1) 3287 uacce->api_ver = HISI_QM_API_VER_BASE; 3288 else if (qm->ver == QM_HW_V2) 3289 uacce->api_ver = HISI_QM_API_VER2_BASE; 3290 else 3291 uacce->api_ver = HISI_QM_API_VER3_BASE; 3292 3293 if (qm->ver == QM_HW_V1) 3294 mmio_page_nr = QM_DOORBELL_PAGE_NR; 3295 else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) 3296 mmio_page_nr = QM_DOORBELL_PAGE_NR + 3297 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 3298 else 3299 mmio_page_nr = qm->db_interval / PAGE_SIZE; 3300 3301 /* Add one more page for device or qp status */ 3302 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH + 3303 sizeof(struct qm_cqe) * QM_Q_DEPTH + PAGE_SIZE) >> 3304 PAGE_SHIFT; 3305 3306 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 3307 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 3308 3309 qm->uacce = uacce; 3310 3311 return 0; 3312 } 3313 3314 /** 3315 * qm_frozen() - Try to froze QM to cut continuous queue request. If 3316 * there is user on the QM, return failure without doing anything. 3317 * @qm: The qm needed to be fronzen. 3318 * 3319 * This function frozes QM, then we can do SRIOV disabling. 3320 */ 3321 static int qm_frozen(struct hisi_qm *qm) 3322 { 3323 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 3324 return 0; 3325 3326 down_write(&qm->qps_lock); 3327 3328 if (!qm->qp_in_used) { 3329 qm->qp_in_used = qm->qp_num; 3330 up_write(&qm->qps_lock); 3331 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 3332 return 0; 3333 } 3334 3335 up_write(&qm->qps_lock); 3336 3337 return -EBUSY; 3338 } 3339 3340 static int qm_try_frozen_vfs(struct pci_dev *pdev, 3341 struct hisi_qm_list *qm_list) 3342 { 3343 struct hisi_qm *qm, *vf_qm; 3344 struct pci_dev *dev; 3345 int ret = 0; 3346 3347 if (!qm_list || !pdev) 3348 return -EINVAL; 3349 3350 /* Try to frozen all the VFs as disable SRIOV */ 3351 mutex_lock(&qm_list->lock); 3352 list_for_each_entry(qm, &qm_list->list, list) { 3353 dev = qm->pdev; 3354 if (dev == pdev) 3355 continue; 3356 if (pci_physfn(dev) == pdev) { 3357 vf_qm = pci_get_drvdata(dev); 3358 ret = qm_frozen(vf_qm); 3359 if (ret) 3360 goto frozen_fail; 3361 } 3362 } 3363 3364 frozen_fail: 3365 mutex_unlock(&qm_list->lock); 3366 3367 return ret; 3368 } 3369 3370 /** 3371 * hisi_qm_wait_task_finish() - Wait until the task is finished 3372 * when removing the driver. 3373 * @qm: The qm needed to wait for the task to finish. 3374 * @qm_list: The list of all available devices. 3375 */ 3376 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 3377 { 3378 while (qm_frozen(qm) || 3379 ((qm->fun_type == QM_HW_PF) && 3380 qm_try_frozen_vfs(qm->pdev, qm_list))) { 3381 msleep(WAIT_PERIOD); 3382 } 3383 3384 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 3385 test_bit(QM_RESETTING, &qm->misc_ctl)) 3386 msleep(WAIT_PERIOD); 3387 3388 udelay(REMOVE_WAIT_DELAY); 3389 } 3390 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 3391 3392 /** 3393 * hisi_qm_get_free_qp_num() - Get free number of qp in qm. 3394 * @qm: The qm which want to get free qp. 3395 * 3396 * This function return free number of qp in qm. 3397 */ 3398 int hisi_qm_get_free_qp_num(struct hisi_qm *qm) 3399 { 3400 int ret; 3401 3402 down_read(&qm->qps_lock); 3403 ret = qm->qp_num - qm->qp_in_used; 3404 up_read(&qm->qps_lock); 3405 3406 return ret; 3407 } 3408 EXPORT_SYMBOL_GPL(hisi_qm_get_free_qp_num); 3409 3410 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 3411 { 3412 struct device *dev = &qm->pdev->dev; 3413 struct qm_dma *qdma; 3414 int i; 3415 3416 for (i = num - 1; i >= 0; i--) { 3417 qdma = &qm->qp_array[i].qdma; 3418 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 3419 } 3420 3421 kfree(qm->qp_array); 3422 } 3423 3424 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id) 3425 { 3426 struct device *dev = &qm->pdev->dev; 3427 size_t off = qm->sqe_size * QM_Q_DEPTH; 3428 struct hisi_qp *qp; 3429 3430 qp = &qm->qp_array[id]; 3431 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 3432 GFP_KERNEL); 3433 if (!qp->qdma.va) 3434 return -ENOMEM; 3435 3436 qp->sqe = qp->qdma.va; 3437 qp->sqe_dma = qp->qdma.dma; 3438 qp->cqe = qp->qdma.va + off; 3439 qp->cqe_dma = qp->qdma.dma + off; 3440 qp->qdma.size = dma_size; 3441 qp->qm = qm; 3442 qp->qp_id = id; 3443 3444 return 0; 3445 } 3446 3447 static void hisi_qm_pre_init(struct hisi_qm *qm) 3448 { 3449 struct pci_dev *pdev = qm->pdev; 3450 3451 if (qm->ver == QM_HW_V1) 3452 qm->ops = &qm_hw_ops_v1; 3453 else if (qm->ver == QM_HW_V2) 3454 qm->ops = &qm_hw_ops_v2; 3455 else 3456 qm->ops = &qm_hw_ops_v3; 3457 3458 pci_set_drvdata(pdev, qm); 3459 mutex_init(&qm->mailbox_lock); 3460 init_rwsem(&qm->qps_lock); 3461 qm->qp_in_used = 0; 3462 qm->misc_ctl = false; 3463 if (qm->fun_type == QM_HW_PF && qm->ver > QM_HW_V2) { 3464 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 3465 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 3466 } 3467 } 3468 3469 static void qm_cmd_uninit(struct hisi_qm *qm) 3470 { 3471 u32 val; 3472 3473 if (qm->ver < QM_HW_V3) 3474 return; 3475 3476 val = readl(qm->io_base + QM_IFC_INT_MASK); 3477 val |= QM_IFC_INT_DISABLE; 3478 writel(val, qm->io_base + QM_IFC_INT_MASK); 3479 } 3480 3481 static void qm_cmd_init(struct hisi_qm *qm) 3482 { 3483 u32 val; 3484 3485 if (qm->ver < QM_HW_V3) 3486 return; 3487 3488 /* Clear communication interrupt source */ 3489 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 3490 3491 /* Enable pf to vf communication reg. */ 3492 val = readl(qm->io_base + QM_IFC_INT_MASK); 3493 val &= ~QM_IFC_INT_DISABLE; 3494 writel(val, qm->io_base + QM_IFC_INT_MASK); 3495 } 3496 3497 static void qm_put_pci_res(struct hisi_qm *qm) 3498 { 3499 struct pci_dev *pdev = qm->pdev; 3500 3501 if (qm->use_db_isolation) 3502 iounmap(qm->db_io_base); 3503 3504 iounmap(qm->io_base); 3505 pci_release_mem_regions(pdev); 3506 } 3507 3508 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 3509 { 3510 struct pci_dev *pdev = qm->pdev; 3511 3512 pci_free_irq_vectors(pdev); 3513 qm_put_pci_res(qm); 3514 pci_disable_device(pdev); 3515 } 3516 3517 /** 3518 * hisi_qm_uninit() - Uninitialize qm. 3519 * @qm: The qm needed uninit. 3520 * 3521 * This function uninits qm related device resources. 3522 */ 3523 void hisi_qm_uninit(struct hisi_qm *qm) 3524 { 3525 struct pci_dev *pdev = qm->pdev; 3526 struct device *dev = &pdev->dev; 3527 3528 qm_cmd_uninit(qm); 3529 kfree(qm->factor); 3530 down_write(&qm->qps_lock); 3531 3532 if (!qm_avail_state(qm, QM_CLOSE)) { 3533 up_write(&qm->qps_lock); 3534 return; 3535 } 3536 3537 hisi_qp_memory_uninit(qm, qm->qp_num); 3538 idr_destroy(&qm->qp_idr); 3539 3540 if (qm->qdma.va) { 3541 hisi_qm_cache_wb(qm); 3542 dma_free_coherent(dev, qm->qdma.size, 3543 qm->qdma.va, qm->qdma.dma); 3544 } 3545 up_write(&qm->qps_lock); 3546 3547 qm_irq_unregister(qm); 3548 hisi_qm_pci_uninit(qm); 3549 if (qm->use_sva) { 3550 uacce_remove(qm->uacce); 3551 qm->uacce = NULL; 3552 } 3553 } 3554 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 3555 3556 /** 3557 * hisi_qm_get_vft() - Get vft from a qm. 3558 * @qm: The qm we want to get its vft. 3559 * @base: The base number of queue in vft. 3560 * @number: The number of queues in vft. 3561 * 3562 * We can allocate multiple queues to a qm by configuring virtual function 3563 * table. We get related configures by this function. Normally, we call this 3564 * function in VF driver to get the queue information. 3565 * 3566 * qm hw v1 does not support this interface. 3567 */ 3568 int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 3569 { 3570 if (!base || !number) 3571 return -EINVAL; 3572 3573 if (!qm->ops->get_vft) { 3574 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 3575 return -EINVAL; 3576 } 3577 3578 return qm->ops->get_vft(qm, base, number); 3579 } 3580 EXPORT_SYMBOL_GPL(hisi_qm_get_vft); 3581 3582 /** 3583 * hisi_qm_set_vft() - Set vft to a qm. 3584 * @qm: The qm we want to set its vft. 3585 * @fun_num: The function number. 3586 * @base: The base number of queue in vft. 3587 * @number: The number of queues in vft. 3588 * 3589 * This function is alway called in PF driver, it is used to assign queues 3590 * among PF and VFs. 3591 * 3592 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 3593 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 3594 * (VF function number 0x2) 3595 */ 3596 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 3597 u32 number) 3598 { 3599 u32 max_q_num = qm->ctrl_qp_num; 3600 3601 if (base >= max_q_num || number > max_q_num || 3602 (base + number) > max_q_num) 3603 return -EINVAL; 3604 3605 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 3606 } 3607 3608 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 3609 { 3610 struct hisi_qm_status *status = &qm->status; 3611 3612 status->eq_head = 0; 3613 status->aeq_head = 0; 3614 status->eqc_phase = true; 3615 status->aeqc_phase = true; 3616 } 3617 3618 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 3619 { 3620 /* Clear eq/aeq interrupt source */ 3621 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 3622 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 3623 3624 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 3625 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 3626 } 3627 3628 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 3629 { 3630 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 3631 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 3632 } 3633 3634 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 3635 { 3636 struct device *dev = &qm->pdev->dev; 3637 struct qm_eqc *eqc; 3638 dma_addr_t eqc_dma; 3639 int ret; 3640 3641 eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); 3642 if (!eqc) 3643 return -ENOMEM; 3644 3645 eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3646 eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3647 if (qm->ver == QM_HW_V1) 3648 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3649 eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3650 3651 eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), 3652 DMA_TO_DEVICE); 3653 if (dma_mapping_error(dev, eqc_dma)) { 3654 kfree(eqc); 3655 return -ENOMEM; 3656 } 3657 3658 ret = qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); 3659 dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); 3660 kfree(eqc); 3661 3662 return ret; 3663 } 3664 3665 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3666 { 3667 struct device *dev = &qm->pdev->dev; 3668 struct qm_aeqc *aeqc; 3669 dma_addr_t aeqc_dma; 3670 int ret; 3671 3672 aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); 3673 if (!aeqc) 3674 return -ENOMEM; 3675 3676 aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3677 aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3678 aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3679 3680 aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), 3681 DMA_TO_DEVICE); 3682 if (dma_mapping_error(dev, aeqc_dma)) { 3683 kfree(aeqc); 3684 return -ENOMEM; 3685 } 3686 3687 ret = qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); 3688 dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); 3689 kfree(aeqc); 3690 3691 return ret; 3692 } 3693 3694 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3695 { 3696 struct device *dev = &qm->pdev->dev; 3697 int ret; 3698 3699 qm_init_eq_aeq_status(qm); 3700 3701 ret = qm_eq_ctx_cfg(qm); 3702 if (ret) { 3703 dev_err(dev, "Set eqc failed!\n"); 3704 return ret; 3705 } 3706 3707 return qm_aeq_ctx_cfg(qm); 3708 } 3709 3710 static int __hisi_qm_start(struct hisi_qm *qm) 3711 { 3712 int ret; 3713 3714 WARN_ON(!qm->qdma.va); 3715 3716 if (qm->fun_type == QM_HW_PF) { 3717 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3718 if (ret) 3719 return ret; 3720 } 3721 3722 ret = qm_eq_aeq_ctx_cfg(qm); 3723 if (ret) 3724 return ret; 3725 3726 ret = qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3727 if (ret) 3728 return ret; 3729 3730 ret = qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3731 if (ret) 3732 return ret; 3733 3734 qm_init_prefetch(qm); 3735 qm_enable_eq_aeq_interrupts(qm); 3736 3737 return 0; 3738 } 3739 3740 /** 3741 * hisi_qm_start() - start qm 3742 * @qm: The qm to be started. 3743 * 3744 * This function starts a qm, then we can allocate qp from this qm. 3745 */ 3746 int hisi_qm_start(struct hisi_qm *qm) 3747 { 3748 struct device *dev = &qm->pdev->dev; 3749 int ret = 0; 3750 3751 down_write(&qm->qps_lock); 3752 3753 if (!qm_avail_state(qm, QM_START)) { 3754 up_write(&qm->qps_lock); 3755 return -EPERM; 3756 } 3757 3758 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3759 3760 if (!qm->qp_num) { 3761 dev_err(dev, "qp_num should not be 0\n"); 3762 ret = -EINVAL; 3763 goto err_unlock; 3764 } 3765 3766 ret = __hisi_qm_start(qm); 3767 if (!ret) 3768 atomic_set(&qm->status.flags, QM_START); 3769 3770 err_unlock: 3771 up_write(&qm->qps_lock); 3772 return ret; 3773 } 3774 EXPORT_SYMBOL_GPL(hisi_qm_start); 3775 3776 static int qm_restart(struct hisi_qm *qm) 3777 { 3778 struct device *dev = &qm->pdev->dev; 3779 struct hisi_qp *qp; 3780 int ret, i; 3781 3782 ret = hisi_qm_start(qm); 3783 if (ret < 0) 3784 return ret; 3785 3786 down_write(&qm->qps_lock); 3787 for (i = 0; i < qm->qp_num; i++) { 3788 qp = &qm->qp_array[i]; 3789 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3790 qp->is_resetting == true) { 3791 ret = qm_start_qp_nolock(qp, 0); 3792 if (ret < 0) { 3793 dev_err(dev, "Failed to start qp%d!\n", i); 3794 3795 up_write(&qm->qps_lock); 3796 return ret; 3797 } 3798 qp->is_resetting = false; 3799 } 3800 } 3801 up_write(&qm->qps_lock); 3802 3803 return 0; 3804 } 3805 3806 /* Stop started qps in reset flow */ 3807 static int qm_stop_started_qp(struct hisi_qm *qm) 3808 { 3809 struct device *dev = &qm->pdev->dev; 3810 struct hisi_qp *qp; 3811 int i, ret; 3812 3813 for (i = 0; i < qm->qp_num; i++) { 3814 qp = &qm->qp_array[i]; 3815 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 3816 qp->is_resetting = true; 3817 ret = qm_stop_qp_nolock(qp); 3818 if (ret < 0) { 3819 dev_err(dev, "Failed to stop qp%d!\n", i); 3820 return ret; 3821 } 3822 } 3823 } 3824 3825 return 0; 3826 } 3827 3828 3829 /** 3830 * qm_clear_queues() - Clear all queues memory in a qm. 3831 * @qm: The qm in which the queues will be cleared. 3832 * 3833 * This function clears all queues memory in a qm. Reset of accelerator can 3834 * use this to clear queues. 3835 */ 3836 static void qm_clear_queues(struct hisi_qm *qm) 3837 { 3838 struct hisi_qp *qp; 3839 int i; 3840 3841 for (i = 0; i < qm->qp_num; i++) { 3842 qp = &qm->qp_array[i]; 3843 if (qp->is_resetting) 3844 memset(qp->qdma.va, 0, qp->qdma.size); 3845 } 3846 3847 memset(qm->qdma.va, 0, qm->qdma.size); 3848 } 3849 3850 /** 3851 * hisi_qm_stop() - Stop a qm. 3852 * @qm: The qm which will be stopped. 3853 * @r: The reason to stop qm. 3854 * 3855 * This function stops qm and its qps, then qm can not accept request. 3856 * Related resources are not released at this state, we can use hisi_qm_start 3857 * to let qm start again. 3858 */ 3859 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3860 { 3861 struct device *dev = &qm->pdev->dev; 3862 int ret = 0; 3863 3864 down_write(&qm->qps_lock); 3865 3866 qm->status.stop_reason = r; 3867 if (!qm_avail_state(qm, QM_STOP)) { 3868 ret = -EPERM; 3869 goto err_unlock; 3870 } 3871 3872 if (qm->status.stop_reason == QM_SOFT_RESET || 3873 qm->status.stop_reason == QM_FLR) { 3874 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3875 ret = qm_stop_started_qp(qm); 3876 if (ret < 0) { 3877 dev_err(dev, "Failed to stop started qp!\n"); 3878 goto err_unlock; 3879 } 3880 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3881 } 3882 3883 qm_disable_eq_aeq_interrupts(qm); 3884 if (qm->fun_type == QM_HW_PF) { 3885 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3886 if (ret < 0) { 3887 dev_err(dev, "Failed to set vft!\n"); 3888 ret = -EBUSY; 3889 goto err_unlock; 3890 } 3891 } 3892 3893 qm_clear_queues(qm); 3894 atomic_set(&qm->status.flags, QM_STOP); 3895 3896 err_unlock: 3897 up_write(&qm->qps_lock); 3898 return ret; 3899 } 3900 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3901 3902 static ssize_t qm_status_read(struct file *filp, char __user *buffer, 3903 size_t count, loff_t *pos) 3904 { 3905 struct hisi_qm *qm = filp->private_data; 3906 char buf[QM_DBG_READ_LEN]; 3907 int val, len; 3908 3909 val = atomic_read(&qm->status.flags); 3910 len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]); 3911 3912 return simple_read_from_buffer(buffer, count, pos, buf, len); 3913 } 3914 3915 static const struct file_operations qm_status_fops = { 3916 .owner = THIS_MODULE, 3917 .open = simple_open, 3918 .read = qm_status_read, 3919 }; 3920 3921 static int qm_debugfs_atomic64_set(void *data, u64 val) 3922 { 3923 if (val) 3924 return -EINVAL; 3925 3926 atomic64_set((atomic64_t *)data, 0); 3927 3928 return 0; 3929 } 3930 3931 static int qm_debugfs_atomic64_get(void *data, u64 *val) 3932 { 3933 *val = atomic64_read((atomic64_t *)data); 3934 3935 return 0; 3936 } 3937 3938 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get, 3939 qm_debugfs_atomic64_set, "%llu\n"); 3940 3941 static void qm_hw_error_init(struct hisi_qm *qm) 3942 { 3943 struct hisi_qm_err_info *err_info = &qm->err_info; 3944 3945 if (!qm->ops->hw_error_init) { 3946 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3947 return; 3948 } 3949 3950 qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe); 3951 } 3952 3953 static void qm_hw_error_uninit(struct hisi_qm *qm) 3954 { 3955 if (!qm->ops->hw_error_uninit) { 3956 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3957 return; 3958 } 3959 3960 qm->ops->hw_error_uninit(qm); 3961 } 3962 3963 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3964 { 3965 if (!qm->ops->hw_error_handle) { 3966 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3967 return ACC_ERR_NONE; 3968 } 3969 3970 return qm->ops->hw_error_handle(qm); 3971 } 3972 3973 /** 3974 * hisi_qm_dev_err_init() - Initialize device error configuration. 3975 * @qm: The qm for which we want to do error initialization. 3976 * 3977 * Initialize QM and device error related configuration. 3978 */ 3979 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3980 { 3981 if (qm->fun_type == QM_HW_VF) 3982 return; 3983 3984 qm_hw_error_init(qm); 3985 3986 if (!qm->err_ini->hw_err_enable) { 3987 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3988 return; 3989 } 3990 qm->err_ini->hw_err_enable(qm); 3991 } 3992 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3993 3994 /** 3995 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3996 * @qm: The qm for which we want to do error uninitialization. 3997 * 3998 * Uninitialize QM and device error related configuration. 3999 */ 4000 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 4001 { 4002 if (qm->fun_type == QM_HW_VF) 4003 return; 4004 4005 qm_hw_error_uninit(qm); 4006 4007 if (!qm->err_ini->hw_err_disable) { 4008 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 4009 return; 4010 } 4011 qm->err_ini->hw_err_disable(qm); 4012 } 4013 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 4014 4015 /** 4016 * hisi_qm_free_qps() - free multiple queue pairs. 4017 * @qps: The queue pairs need to be freed. 4018 * @qp_num: The num of queue pairs. 4019 */ 4020 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 4021 { 4022 int i; 4023 4024 if (!qps || qp_num <= 0) 4025 return; 4026 4027 for (i = qp_num - 1; i >= 0; i--) 4028 hisi_qm_release_qp(qps[i]); 4029 } 4030 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 4031 4032 static void free_list(struct list_head *head) 4033 { 4034 struct hisi_qm_resource *res, *tmp; 4035 4036 list_for_each_entry_safe(res, tmp, head, list) { 4037 list_del(&res->list); 4038 kfree(res); 4039 } 4040 } 4041 4042 static int hisi_qm_sort_devices(int node, struct list_head *head, 4043 struct hisi_qm_list *qm_list) 4044 { 4045 struct hisi_qm_resource *res, *tmp; 4046 struct hisi_qm *qm; 4047 struct list_head *n; 4048 struct device *dev; 4049 int dev_node = 0; 4050 4051 list_for_each_entry(qm, &qm_list->list, list) { 4052 dev = &qm->pdev->dev; 4053 4054 if (IS_ENABLED(CONFIG_NUMA)) { 4055 dev_node = dev_to_node(dev); 4056 if (dev_node < 0) 4057 dev_node = 0; 4058 } 4059 4060 res = kzalloc(sizeof(*res), GFP_KERNEL); 4061 if (!res) 4062 return -ENOMEM; 4063 4064 res->qm = qm; 4065 res->distance = node_distance(dev_node, node); 4066 n = head; 4067 list_for_each_entry(tmp, head, list) { 4068 if (res->distance < tmp->distance) { 4069 n = &tmp->list; 4070 break; 4071 } 4072 } 4073 list_add_tail(&res->list, n); 4074 } 4075 4076 return 0; 4077 } 4078 4079 /** 4080 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 4081 * @qm_list: The list of all available devices. 4082 * @qp_num: The number of queue pairs need created. 4083 * @alg_type: The algorithm type. 4084 * @node: The numa node. 4085 * @qps: The queue pairs need created. 4086 * 4087 * This function will sort all available device according to numa distance. 4088 * Then try to create all queue pairs from one device, if all devices do 4089 * not meet the requirements will return error. 4090 */ 4091 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 4092 u8 alg_type, int node, struct hisi_qp **qps) 4093 { 4094 struct hisi_qm_resource *tmp; 4095 int ret = -ENODEV; 4096 LIST_HEAD(head); 4097 int i; 4098 4099 if (!qps || !qm_list || qp_num <= 0) 4100 return -EINVAL; 4101 4102 mutex_lock(&qm_list->lock); 4103 if (hisi_qm_sort_devices(node, &head, qm_list)) { 4104 mutex_unlock(&qm_list->lock); 4105 goto err; 4106 } 4107 4108 list_for_each_entry(tmp, &head, list) { 4109 for (i = 0; i < qp_num; i++) { 4110 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 4111 if (IS_ERR(qps[i])) { 4112 hisi_qm_free_qps(qps, i); 4113 break; 4114 } 4115 } 4116 4117 if (i == qp_num) { 4118 ret = 0; 4119 break; 4120 } 4121 } 4122 4123 mutex_unlock(&qm_list->lock); 4124 if (ret) 4125 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 4126 node, alg_type, qp_num); 4127 4128 err: 4129 free_list(&head); 4130 return ret; 4131 } 4132 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 4133 4134 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 4135 { 4136 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 4137 u32 max_qp_num = qm->max_qp_num; 4138 u32 q_base = qm->qp_num; 4139 int ret; 4140 4141 if (!num_vfs) 4142 return -EINVAL; 4143 4144 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 4145 4146 /* If vfs_q_num is less than num_vfs, return error. */ 4147 if (vfs_q_num < num_vfs) 4148 return -EINVAL; 4149 4150 q_num = vfs_q_num / num_vfs; 4151 remain_q_num = vfs_q_num % num_vfs; 4152 4153 for (i = num_vfs; i > 0; i--) { 4154 /* 4155 * if q_num + remain_q_num > max_qp_num in last vf, divide the 4156 * remaining queues equally. 4157 */ 4158 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 4159 act_q_num = q_num + remain_q_num; 4160 remain_q_num = 0; 4161 } else if (remain_q_num > 0) { 4162 act_q_num = q_num + 1; 4163 remain_q_num--; 4164 } else { 4165 act_q_num = q_num; 4166 } 4167 4168 act_q_num = min_t(int, act_q_num, max_qp_num); 4169 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 4170 if (ret) { 4171 for (j = num_vfs; j > i; j--) 4172 hisi_qm_set_vft(qm, j, 0, 0); 4173 return ret; 4174 } 4175 q_base += act_q_num; 4176 } 4177 4178 return 0; 4179 } 4180 4181 static int qm_clear_vft_config(struct hisi_qm *qm) 4182 { 4183 int ret; 4184 u32 i; 4185 4186 for (i = 1; i <= qm->vfs_num; i++) { 4187 ret = hisi_qm_set_vft(qm, i, 0, 0); 4188 if (ret) 4189 return ret; 4190 } 4191 qm->vfs_num = 0; 4192 4193 return 0; 4194 } 4195 4196 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 4197 { 4198 struct device *dev = &qm->pdev->dev; 4199 u32 ir = qos * QM_QOS_RATE; 4200 int ret, total_vfs, i; 4201 4202 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 4203 if (fun_index > total_vfs) 4204 return -EINVAL; 4205 4206 qm->factor[fun_index].func_qos = qos; 4207 4208 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 4209 if (ret) { 4210 dev_err(dev, "failed to calculate shaper parameter!\n"); 4211 return -EINVAL; 4212 } 4213 4214 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 4215 /* The base number of queue reuse for different alg type */ 4216 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 4217 if (ret) { 4218 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 4219 return -EINVAL; 4220 } 4221 } 4222 4223 return 0; 4224 } 4225 4226 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 4227 { 4228 u64 cir_u = 0, cir_b = 0, cir_s = 0; 4229 u64 shaper_vft, ir_calc, ir; 4230 unsigned int val; 4231 u32 error_rate; 4232 int ret; 4233 4234 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 4235 val & BIT(0), POLL_PERIOD, 4236 POLL_TIMEOUT); 4237 if (ret) 4238 return 0; 4239 4240 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 4241 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 4242 writel(fun_index, qm->io_base + QM_VFT_CFG); 4243 4244 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 4245 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 4246 4247 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 4248 val & BIT(0), POLL_PERIOD, 4249 POLL_TIMEOUT); 4250 if (ret) 4251 return 0; 4252 4253 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 4254 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 4255 4256 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 4257 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 4258 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 4259 4260 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 4261 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 4262 4263 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 4264 4265 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 4266 4267 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 4268 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 4269 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 4270 return 0; 4271 } 4272 4273 return ir; 4274 } 4275 4276 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 4277 { 4278 struct device *dev = &qm->pdev->dev; 4279 u64 mb_cmd; 4280 u32 qos; 4281 int ret; 4282 4283 qos = qm_get_shaper_vft_qos(qm, fun_num); 4284 if (!qos) { 4285 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 4286 return; 4287 } 4288 4289 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 4290 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 4291 if (ret) 4292 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 4293 } 4294 4295 static int qm_vf_read_qos(struct hisi_qm *qm) 4296 { 4297 int cnt = 0; 4298 int ret; 4299 4300 /* reset mailbox qos val */ 4301 qm->mb_qos = 0; 4302 4303 /* vf ping pf to get function qos */ 4304 if (qm->ops->ping_pf) { 4305 ret = qm->ops->ping_pf(qm, QM_VF_GET_QOS); 4306 if (ret) { 4307 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 4308 return ret; 4309 } 4310 } 4311 4312 while (true) { 4313 msleep(QM_WAIT_DST_ACK); 4314 if (qm->mb_qos) 4315 break; 4316 4317 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 4318 pci_err(qm->pdev, "PF ping VF timeout!\n"); 4319 return -ETIMEDOUT; 4320 } 4321 } 4322 4323 return ret; 4324 } 4325 4326 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 4327 size_t count, loff_t *pos) 4328 { 4329 struct hisi_qm *qm = filp->private_data; 4330 char tbuf[QM_DBG_READ_LEN]; 4331 u32 qos_val, ir; 4332 int ret; 4333 4334 ret = hisi_qm_get_dfx_access(qm); 4335 if (ret) 4336 return ret; 4337 4338 /* Mailbox and reset cannot be operated at the same time */ 4339 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 4340 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 4341 ret = -EAGAIN; 4342 goto err_put_dfx_access; 4343 } 4344 4345 if (qm->fun_type == QM_HW_PF) { 4346 ir = qm_get_shaper_vft_qos(qm, 0); 4347 } else { 4348 ret = qm_vf_read_qos(qm); 4349 if (ret) 4350 goto err_get_status; 4351 ir = qm->mb_qos; 4352 } 4353 4354 qos_val = ir / QM_QOS_RATE; 4355 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 4356 4357 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 4358 4359 err_get_status: 4360 clear_bit(QM_RESETTING, &qm->misc_ctl); 4361 err_put_dfx_access: 4362 hisi_qm_put_dfx_access(qm); 4363 return ret; 4364 } 4365 4366 static ssize_t qm_qos_value_init(const char *buf, unsigned long *val) 4367 { 4368 int buflen = strlen(buf); 4369 int ret, i; 4370 4371 for (i = 0; i < buflen; i++) { 4372 if (!isdigit(buf[i])) 4373 return -EINVAL; 4374 } 4375 4376 ret = sscanf(buf, "%lu", val); 4377 if (ret != QM_QOS_VAL_NUM) 4378 return -EINVAL; 4379 4380 return 0; 4381 } 4382 4383 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 4384 unsigned long *val, 4385 unsigned int *fun_index) 4386 { 4387 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 4388 char val_buf[QM_QOS_VAL_MAX_LEN] = {0}; 4389 u32 tmp1, device, function; 4390 int ret, bus; 4391 4392 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 4393 if (ret != QM_QOS_PARAM_NUM) 4394 return -EINVAL; 4395 4396 ret = qm_qos_value_init(val_buf, val); 4397 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 4398 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 4399 return -EINVAL; 4400 } 4401 4402 ret = sscanf(tbuf_bdf, "%u:%x:%u.%u", &tmp1, &bus, &device, &function); 4403 if (ret != QM_QOS_BDF_PARAM_NUM) { 4404 pci_err(qm->pdev, "input pci bdf value is error!\n"); 4405 return -EINVAL; 4406 } 4407 4408 *fun_index = PCI_DEVFN(device, function); 4409 4410 return 0; 4411 } 4412 4413 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 4414 size_t count, loff_t *pos) 4415 { 4416 struct hisi_qm *qm = filp->private_data; 4417 char tbuf[QM_DBG_READ_LEN]; 4418 unsigned int fun_index; 4419 unsigned long val; 4420 int len, ret; 4421 4422 if (qm->fun_type == QM_HW_VF) 4423 return -EINVAL; 4424 4425 if (*pos != 0) 4426 return 0; 4427 4428 if (count >= QM_DBG_READ_LEN) 4429 return -ENOSPC; 4430 4431 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 4432 if (len < 0) 4433 return len; 4434 4435 tbuf[len] = '\0'; 4436 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 4437 if (ret) 4438 return ret; 4439 4440 /* Mailbox and reset cannot be operated at the same time */ 4441 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 4442 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 4443 return -EAGAIN; 4444 } 4445 4446 ret = qm_pm_get_sync(qm); 4447 if (ret) { 4448 ret = -EINVAL; 4449 goto err_get_status; 4450 } 4451 4452 ret = qm_func_shaper_enable(qm, fun_index, val); 4453 if (ret) { 4454 pci_err(qm->pdev, "failed to enable function shaper!\n"); 4455 ret = -EINVAL; 4456 goto err_put_sync; 4457 } 4458 4459 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 4460 fun_index, val); 4461 ret = count; 4462 4463 err_put_sync: 4464 qm_pm_put_sync(qm); 4465 err_get_status: 4466 clear_bit(QM_RESETTING, &qm->misc_ctl); 4467 return ret; 4468 } 4469 4470 static const struct file_operations qm_algqos_fops = { 4471 .owner = THIS_MODULE, 4472 .open = simple_open, 4473 .read = qm_algqos_read, 4474 .write = qm_algqos_write, 4475 }; 4476 4477 /** 4478 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 4479 * @qm: The qm for which we want to add debugfs files. 4480 * 4481 * Create function qos debugfs files. 4482 */ 4483 static void hisi_qm_set_algqos_init(struct hisi_qm *qm) 4484 { 4485 if (qm->fun_type == QM_HW_PF) 4486 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 4487 qm, &qm_algqos_fops); 4488 else 4489 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 4490 qm, &qm_algqos_fops); 4491 } 4492 4493 /** 4494 * hisi_qm_debug_init() - Initialize qm related debugfs files. 4495 * @qm: The qm for which we want to add debugfs files. 4496 * 4497 * Create qm related debugfs files. 4498 */ 4499 void hisi_qm_debug_init(struct hisi_qm *qm) 4500 { 4501 struct qm_dfx *dfx = &qm->debug.dfx; 4502 struct dentry *qm_d; 4503 void *data; 4504 int i; 4505 4506 qm_d = debugfs_create_dir("qm", qm->debug.debug_root); 4507 qm->debug.qm_d = qm_d; 4508 4509 /* only show this in PF */ 4510 if (qm->fun_type == QM_HW_PF) { 4511 qm_create_debugfs_file(qm, qm->debug.debug_root, CURRENT_QM); 4512 for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++) 4513 qm_create_debugfs_file(qm, qm->debug.qm_d, i); 4514 } 4515 4516 debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops); 4517 4518 debugfs_create_file("cmd", 0600, qm->debug.qm_d, qm, &qm_cmd_fops); 4519 4520 debugfs_create_file("status", 0444, qm->debug.qm_d, qm, 4521 &qm_status_fops); 4522 for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) { 4523 data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset); 4524 debugfs_create_file(qm_dfx_files[i].name, 4525 0644, 4526 qm_d, 4527 data, 4528 &qm_atomic64_ops); 4529 } 4530 4531 if (qm->ver >= QM_HW_V3) 4532 hisi_qm_set_algqos_init(qm); 4533 } 4534 EXPORT_SYMBOL_GPL(hisi_qm_debug_init); 4535 4536 /** 4537 * hisi_qm_debug_regs_clear() - clear qm debug related registers. 4538 * @qm: The qm for which we want to clear its debug registers. 4539 */ 4540 void hisi_qm_debug_regs_clear(struct hisi_qm *qm) 4541 { 4542 const struct debugfs_reg32 *regs; 4543 int i; 4544 4545 /* clear current_qm */ 4546 writel(0x0, qm->io_base + QM_DFX_MB_CNT_VF); 4547 writel(0x0, qm->io_base + QM_DFX_DB_CNT_VF); 4548 4549 /* clear current_q */ 4550 writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 4551 writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 4552 4553 /* 4554 * these registers are reading and clearing, so clear them after 4555 * reading them. 4556 */ 4557 writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE); 4558 4559 regs = qm_dfx_regs; 4560 for (i = 0; i < CNT_CYC_REGS_NUM; i++) { 4561 readl(qm->io_base + regs->offset); 4562 regs++; 4563 } 4564 4565 /* clear clear_enable */ 4566 writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE); 4567 } 4568 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear); 4569 4570 /** 4571 * hisi_qm_sriov_enable() - enable virtual functions 4572 * @pdev: the PCIe device 4573 * @max_vfs: the number of virtual functions to enable 4574 * 4575 * Returns the number of enabled VFs. If there are VFs enabled already or 4576 * max_vfs is more than the total number of device can be enabled, returns 4577 * failure. 4578 */ 4579 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 4580 { 4581 struct hisi_qm *qm = pci_get_drvdata(pdev); 4582 int pre_existing_vfs, num_vfs, total_vfs, ret; 4583 4584 ret = qm_pm_get_sync(qm); 4585 if (ret) 4586 return ret; 4587 4588 total_vfs = pci_sriov_get_totalvfs(pdev); 4589 pre_existing_vfs = pci_num_vf(pdev); 4590 if (pre_existing_vfs) { 4591 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 4592 pre_existing_vfs); 4593 goto err_put_sync; 4594 } 4595 4596 num_vfs = min_t(int, max_vfs, total_vfs); 4597 ret = qm_vf_q_assign(qm, num_vfs); 4598 if (ret) { 4599 pci_err(pdev, "Can't assign queues for VF!\n"); 4600 goto err_put_sync; 4601 } 4602 4603 qm->vfs_num = num_vfs; 4604 4605 ret = pci_enable_sriov(pdev, num_vfs); 4606 if (ret) { 4607 pci_err(pdev, "Can't enable VF!\n"); 4608 qm_clear_vft_config(qm); 4609 goto err_put_sync; 4610 } 4611 4612 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 4613 4614 return num_vfs; 4615 4616 err_put_sync: 4617 qm_pm_put_sync(qm); 4618 return ret; 4619 } 4620 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 4621 4622 /** 4623 * hisi_qm_sriov_disable - disable virtual functions 4624 * @pdev: the PCI device. 4625 * @is_frozen: true when all the VFs are frozen. 4626 * 4627 * Return failure if there are VFs assigned already or VF is in used. 4628 */ 4629 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 4630 { 4631 struct hisi_qm *qm = pci_get_drvdata(pdev); 4632 int total_vfs = pci_sriov_get_totalvfs(qm->pdev); 4633 int ret; 4634 4635 if (pci_vfs_assigned(pdev)) { 4636 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 4637 return -EPERM; 4638 } 4639 4640 /* While VF is in used, SRIOV cannot be disabled. */ 4641 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 4642 pci_err(pdev, "Task is using its VF!\n"); 4643 return -EBUSY; 4644 } 4645 4646 pci_disable_sriov(pdev); 4647 /* clear vf function shaper configure array */ 4648 memset(qm->factor + 1, 0, sizeof(struct qm_shaper_factor) * total_vfs); 4649 ret = qm_clear_vft_config(qm); 4650 if (ret) 4651 return ret; 4652 4653 qm_pm_put_sync(qm); 4654 4655 return 0; 4656 } 4657 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 4658 4659 /** 4660 * hisi_qm_sriov_configure - configure the number of VFs 4661 * @pdev: The PCI device 4662 * @num_vfs: The number of VFs need enabled 4663 * 4664 * Enable SR-IOV according to num_vfs, 0 means disable. 4665 */ 4666 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 4667 { 4668 if (num_vfs == 0) 4669 return hisi_qm_sriov_disable(pdev, false); 4670 else 4671 return hisi_qm_sriov_enable(pdev, num_vfs); 4672 } 4673 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 4674 4675 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 4676 { 4677 u32 err_sts; 4678 4679 if (!qm->err_ini->get_dev_hw_err_status) { 4680 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 4681 return ACC_ERR_NONE; 4682 } 4683 4684 /* get device hardware error status */ 4685 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 4686 if (err_sts) { 4687 if (err_sts & qm->err_info.ecc_2bits_mask) 4688 qm->err_status.is_dev_ecc_mbit = true; 4689 4690 if (qm->err_ini->log_dev_hw_err) 4691 qm->err_ini->log_dev_hw_err(qm, err_sts); 4692 4693 /* ce error does not need to be reset */ 4694 if ((err_sts | qm->err_info.dev_ce_mask) == 4695 qm->err_info.dev_ce_mask) { 4696 if (qm->err_ini->clear_dev_hw_err_status) 4697 qm->err_ini->clear_dev_hw_err_status(qm, 4698 err_sts); 4699 4700 return ACC_ERR_RECOVERED; 4701 } 4702 4703 return ACC_ERR_NEED_RESET; 4704 } 4705 4706 return ACC_ERR_RECOVERED; 4707 } 4708 4709 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 4710 { 4711 enum acc_err_result qm_ret, dev_ret; 4712 4713 /* log qm error */ 4714 qm_ret = qm_hw_error_handle(qm); 4715 4716 /* log device error */ 4717 dev_ret = qm_dev_err_handle(qm); 4718 4719 return (qm_ret == ACC_ERR_NEED_RESET || 4720 dev_ret == ACC_ERR_NEED_RESET) ? 4721 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 4722 } 4723 4724 /** 4725 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 4726 * @pdev: The PCI device which need report error. 4727 * @state: The connectivity between CPU and device. 4728 * 4729 * We register this function into PCIe AER handlers, It will report device or 4730 * qm hardware error status when error occur. 4731 */ 4732 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 4733 pci_channel_state_t state) 4734 { 4735 struct hisi_qm *qm = pci_get_drvdata(pdev); 4736 enum acc_err_result ret; 4737 4738 if (pdev->is_virtfn) 4739 return PCI_ERS_RESULT_NONE; 4740 4741 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 4742 if (state == pci_channel_io_perm_failure) 4743 return PCI_ERS_RESULT_DISCONNECT; 4744 4745 ret = qm_process_dev_error(qm); 4746 if (ret == ACC_ERR_NEED_RESET) 4747 return PCI_ERS_RESULT_NEED_RESET; 4748 4749 return PCI_ERS_RESULT_RECOVERED; 4750 } 4751 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 4752 4753 static int qm_check_req_recv(struct hisi_qm *qm) 4754 { 4755 struct pci_dev *pdev = qm->pdev; 4756 int ret; 4757 u32 val; 4758 4759 if (qm->ver >= QM_HW_V3) 4760 return 0; 4761 4762 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 4763 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4764 (val == ACC_VENDOR_ID_VALUE), 4765 POLL_PERIOD, POLL_TIMEOUT); 4766 if (ret) { 4767 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 4768 return ret; 4769 } 4770 4771 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 4772 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4773 (val == PCI_VENDOR_ID_HUAWEI), 4774 POLL_PERIOD, POLL_TIMEOUT); 4775 if (ret) 4776 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 4777 4778 return ret; 4779 } 4780 4781 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 4782 { 4783 struct pci_dev *pdev = qm->pdev; 4784 u16 cmd; 4785 int i; 4786 4787 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4788 if (set) 4789 cmd |= PCI_COMMAND_MEMORY; 4790 else 4791 cmd &= ~PCI_COMMAND_MEMORY; 4792 4793 pci_write_config_word(pdev, PCI_COMMAND, cmd); 4794 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4795 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4796 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 4797 return 0; 4798 4799 udelay(1); 4800 } 4801 4802 return -ETIMEDOUT; 4803 } 4804 4805 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 4806 { 4807 struct pci_dev *pdev = qm->pdev; 4808 u16 sriov_ctrl; 4809 int pos; 4810 int i; 4811 4812 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 4813 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4814 if (set) 4815 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4816 else 4817 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4818 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4819 4820 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4821 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4822 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4823 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4824 return 0; 4825 4826 udelay(1); 4827 } 4828 4829 return -ETIMEDOUT; 4830 } 4831 4832 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4833 enum qm_stop_reason stop_reason) 4834 { 4835 struct hisi_qm_list *qm_list = qm->qm_list; 4836 struct pci_dev *pdev = qm->pdev; 4837 struct pci_dev *virtfn; 4838 struct hisi_qm *vf_qm; 4839 int ret = 0; 4840 4841 mutex_lock(&qm_list->lock); 4842 list_for_each_entry(vf_qm, &qm_list->list, list) { 4843 virtfn = vf_qm->pdev; 4844 if (virtfn == pdev) 4845 continue; 4846 4847 if (pci_physfn(virtfn) == pdev) { 4848 /* save VFs PCIE BAR configuration */ 4849 pci_save_state(virtfn); 4850 4851 ret = hisi_qm_stop(vf_qm, stop_reason); 4852 if (ret) 4853 goto stop_fail; 4854 } 4855 } 4856 4857 stop_fail: 4858 mutex_unlock(&qm_list->lock); 4859 return ret; 4860 } 4861 4862 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 4863 enum qm_stop_reason stop_reason) 4864 { 4865 struct pci_dev *pdev = qm->pdev; 4866 int ret; 4867 4868 if (!qm->vfs_num) 4869 return 0; 4870 4871 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4872 if (qm->ops->ping_all_vfs) { 4873 ret = qm->ops->ping_all_vfs(qm, cmd); 4874 if (ret) 4875 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 4876 } else { 4877 ret = qm_vf_reset_prepare(qm, stop_reason); 4878 if (ret) 4879 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4880 } 4881 4882 return ret; 4883 } 4884 4885 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4886 { 4887 struct pci_dev *pdev = qm->pdev; 4888 int ret; 4889 4890 ret = qm_reset_prepare_ready(qm); 4891 if (ret) { 4892 pci_err(pdev, "Controller reset not ready!\n"); 4893 return ret; 4894 } 4895 4896 /* PF obtains the information of VF by querying the register. */ 4897 qm_cmd_uninit(qm); 4898 4899 /* Whether VFs stop successfully, soft reset will continue. */ 4900 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4901 if (ret) 4902 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4903 4904 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4905 if (ret) { 4906 pci_err(pdev, "Fails to stop QM!\n"); 4907 qm_reset_bit_clear(qm); 4908 return ret; 4909 } 4910 4911 ret = qm_wait_vf_prepare_finish(qm); 4912 if (ret) 4913 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4914 4915 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4916 4917 return 0; 4918 } 4919 4920 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4921 { 4922 u32 nfe_enb = 0; 4923 4924 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4925 if (qm->ver >= QM_HW_V3) 4926 return; 4927 4928 if (!qm->err_status.is_dev_ecc_mbit && 4929 qm->err_status.is_qm_ecc_mbit && 4930 qm->err_ini->close_axi_master_ooo) { 4931 4932 qm->err_ini->close_axi_master_ooo(qm); 4933 4934 } else if (qm->err_status.is_dev_ecc_mbit && 4935 !qm->err_status.is_qm_ecc_mbit && 4936 !qm->err_ini->close_axi_master_ooo) { 4937 4938 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4939 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4940 qm->io_base + QM_RAS_NFE_ENABLE); 4941 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4942 } 4943 } 4944 4945 static int qm_soft_reset(struct hisi_qm *qm) 4946 { 4947 struct pci_dev *pdev = qm->pdev; 4948 int ret; 4949 u32 val; 4950 4951 /* Ensure all doorbells and mailboxes received by QM */ 4952 ret = qm_check_req_recv(qm); 4953 if (ret) 4954 return ret; 4955 4956 if (qm->vfs_num) { 4957 ret = qm_set_vf_mse(qm, false); 4958 if (ret) { 4959 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4960 return ret; 4961 } 4962 } 4963 4964 ret = qm->ops->set_msi(qm, false); 4965 if (ret) { 4966 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4967 return ret; 4968 } 4969 4970 qm_dev_ecc_mbit_handle(qm); 4971 4972 /* OOO register set and check */ 4973 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 4974 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4975 4976 /* If bus lock, reset chip */ 4977 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4978 val, 4979 (val == ACC_MASTER_TRANS_RETURN_RW), 4980 POLL_PERIOD, POLL_TIMEOUT); 4981 if (ret) { 4982 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 4983 return ret; 4984 } 4985 4986 if (qm->err_ini->close_sva_prefetch) 4987 qm->err_ini->close_sva_prefetch(qm); 4988 4989 ret = qm_set_pf_mse(qm, false); 4990 if (ret) { 4991 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4992 return ret; 4993 } 4994 4995 /* The reset related sub-control registers are not in PCI BAR */ 4996 if (ACPI_HANDLE(&pdev->dev)) { 4997 unsigned long long value = 0; 4998 acpi_status s; 4999 5000 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 5001 qm->err_info.acpi_rst, 5002 NULL, &value); 5003 if (ACPI_FAILURE(s)) { 5004 pci_err(pdev, "NO controller reset method!\n"); 5005 return -EIO; 5006 } 5007 5008 if (value) { 5009 pci_err(pdev, "Reset step %llu failed!\n", value); 5010 return -EIO; 5011 } 5012 } else { 5013 pci_err(pdev, "No reset method!\n"); 5014 return -EINVAL; 5015 } 5016 5017 return 0; 5018 } 5019 5020 static int qm_vf_reset_done(struct hisi_qm *qm) 5021 { 5022 struct hisi_qm_list *qm_list = qm->qm_list; 5023 struct pci_dev *pdev = qm->pdev; 5024 struct pci_dev *virtfn; 5025 struct hisi_qm *vf_qm; 5026 int ret = 0; 5027 5028 mutex_lock(&qm_list->lock); 5029 list_for_each_entry(vf_qm, &qm_list->list, list) { 5030 virtfn = vf_qm->pdev; 5031 if (virtfn == pdev) 5032 continue; 5033 5034 if (pci_physfn(virtfn) == pdev) { 5035 /* enable VFs PCIE BAR configuration */ 5036 pci_restore_state(virtfn); 5037 5038 ret = qm_restart(vf_qm); 5039 if (ret) 5040 goto restart_fail; 5041 } 5042 } 5043 5044 restart_fail: 5045 mutex_unlock(&qm_list->lock); 5046 return ret; 5047 } 5048 5049 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 5050 { 5051 struct pci_dev *pdev = qm->pdev; 5052 int ret; 5053 5054 if (!qm->vfs_num) 5055 return 0; 5056 5057 ret = qm_vf_q_assign(qm, qm->vfs_num); 5058 if (ret) { 5059 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 5060 return ret; 5061 } 5062 5063 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 5064 if (qm->ops->ping_all_vfs) { 5065 ret = qm->ops->ping_all_vfs(qm, cmd); 5066 if (ret) 5067 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 5068 } else { 5069 ret = qm_vf_reset_done(qm); 5070 if (ret) 5071 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 5072 } 5073 5074 return ret; 5075 } 5076 5077 static int qm_dev_hw_init(struct hisi_qm *qm) 5078 { 5079 return qm->err_ini->hw_init(qm); 5080 } 5081 5082 static void qm_restart_prepare(struct hisi_qm *qm) 5083 { 5084 u32 value; 5085 5086 if (qm->err_ini->open_sva_prefetch) 5087 qm->err_ini->open_sva_prefetch(qm); 5088 5089 if (qm->ver >= QM_HW_V3) 5090 return; 5091 5092 if (!qm->err_status.is_qm_ecc_mbit && 5093 !qm->err_status.is_dev_ecc_mbit) 5094 return; 5095 5096 /* temporarily close the OOO port used for PEH to write out MSI */ 5097 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 5098 writel(value & ~qm->err_info.msi_wr_port, 5099 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 5100 5101 /* clear dev ecc 2bit error source if having */ 5102 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 5103 if (value && qm->err_ini->clear_dev_hw_err_status) 5104 qm->err_ini->clear_dev_hw_err_status(qm, value); 5105 5106 /* clear QM ecc mbit error source */ 5107 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 5108 5109 /* clear AM Reorder Buffer ecc mbit source */ 5110 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 5111 } 5112 5113 static void qm_restart_done(struct hisi_qm *qm) 5114 { 5115 u32 value; 5116 5117 if (qm->ver >= QM_HW_V3) 5118 goto clear_flags; 5119 5120 if (!qm->err_status.is_qm_ecc_mbit && 5121 !qm->err_status.is_dev_ecc_mbit) 5122 return; 5123 5124 /* open the OOO port for PEH to write out MSI */ 5125 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 5126 value |= qm->err_info.msi_wr_port; 5127 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 5128 5129 clear_flags: 5130 qm->err_status.is_qm_ecc_mbit = false; 5131 qm->err_status.is_dev_ecc_mbit = false; 5132 } 5133 5134 static int qm_controller_reset_done(struct hisi_qm *qm) 5135 { 5136 struct pci_dev *pdev = qm->pdev; 5137 int ret; 5138 5139 ret = qm->ops->set_msi(qm, true); 5140 if (ret) { 5141 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 5142 return ret; 5143 } 5144 5145 ret = qm_set_pf_mse(qm, true); 5146 if (ret) { 5147 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 5148 return ret; 5149 } 5150 5151 if (qm->vfs_num) { 5152 ret = qm_set_vf_mse(qm, true); 5153 if (ret) { 5154 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 5155 return ret; 5156 } 5157 } 5158 5159 ret = qm_dev_hw_init(qm); 5160 if (ret) { 5161 pci_err(pdev, "Failed to init device\n"); 5162 return ret; 5163 } 5164 5165 qm_restart_prepare(qm); 5166 hisi_qm_dev_err_init(qm); 5167 if (qm->err_ini->open_axi_master_ooo) 5168 qm->err_ini->open_axi_master_ooo(qm); 5169 5170 ret = qm_dev_mem_reset(qm); 5171 if (ret) { 5172 pci_err(pdev, "failed to reset device memory\n"); 5173 return ret; 5174 } 5175 5176 ret = qm_restart(qm); 5177 if (ret) { 5178 pci_err(pdev, "Failed to start QM!\n"); 5179 return ret; 5180 } 5181 5182 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 5183 if (ret) 5184 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 5185 5186 ret = qm_wait_vf_prepare_finish(qm); 5187 if (ret) 5188 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 5189 5190 qm_cmd_init(qm); 5191 qm_restart_done(qm); 5192 5193 qm_reset_bit_clear(qm); 5194 5195 return 0; 5196 } 5197 5198 static int qm_controller_reset(struct hisi_qm *qm) 5199 { 5200 struct pci_dev *pdev = qm->pdev; 5201 int ret; 5202 5203 pci_info(pdev, "Controller resetting...\n"); 5204 5205 ret = qm_controller_reset_prepare(qm); 5206 if (ret) { 5207 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 5208 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 5209 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 5210 return ret; 5211 } 5212 5213 ret = qm_soft_reset(qm); 5214 if (ret) { 5215 pci_err(pdev, "Controller reset failed (%d)\n", ret); 5216 qm_reset_bit_clear(qm); 5217 return ret; 5218 } 5219 5220 ret = qm_controller_reset_done(qm); 5221 if (ret) { 5222 qm_reset_bit_clear(qm); 5223 return ret; 5224 } 5225 5226 pci_info(pdev, "Controller reset complete\n"); 5227 5228 return 0; 5229 } 5230 5231 /** 5232 * hisi_qm_dev_slot_reset() - slot reset 5233 * @pdev: the PCIe device 5234 * 5235 * This function offers QM relate PCIe device reset interface. Drivers which 5236 * use QM can use this function as slot_reset in its struct pci_error_handlers. 5237 */ 5238 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 5239 { 5240 struct hisi_qm *qm = pci_get_drvdata(pdev); 5241 int ret; 5242 5243 if (pdev->is_virtfn) 5244 return PCI_ERS_RESULT_RECOVERED; 5245 5246 pci_aer_clear_nonfatal_status(pdev); 5247 5248 /* reset pcie device controller */ 5249 ret = qm_controller_reset(qm); 5250 if (ret) { 5251 pci_err(pdev, "Controller reset failed (%d)\n", ret); 5252 return PCI_ERS_RESULT_DISCONNECT; 5253 } 5254 5255 return PCI_ERS_RESULT_RECOVERED; 5256 } 5257 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 5258 5259 void hisi_qm_reset_prepare(struct pci_dev *pdev) 5260 { 5261 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 5262 struct hisi_qm *qm = pci_get_drvdata(pdev); 5263 u32 delay = 0; 5264 int ret; 5265 5266 hisi_qm_dev_err_uninit(pf_qm); 5267 5268 /* 5269 * Check whether there is an ECC mbit error, If it occurs, need to 5270 * wait for soft reset to fix it. 5271 */ 5272 while (qm_check_dev_error(pf_qm)) { 5273 msleep(++delay); 5274 if (delay > QM_RESET_WAIT_TIMEOUT) 5275 return; 5276 } 5277 5278 ret = qm_reset_prepare_ready(qm); 5279 if (ret) { 5280 pci_err(pdev, "FLR not ready!\n"); 5281 return; 5282 } 5283 5284 /* PF obtains the information of VF by querying the register. */ 5285 if (qm->fun_type == QM_HW_PF) 5286 qm_cmd_uninit(qm); 5287 5288 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR); 5289 if (ret) 5290 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 5291 5292 ret = hisi_qm_stop(qm, QM_FLR); 5293 if (ret) { 5294 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 5295 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 5296 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 5297 return; 5298 } 5299 5300 ret = qm_wait_vf_prepare_finish(qm); 5301 if (ret) 5302 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 5303 5304 pci_info(pdev, "FLR resetting...\n"); 5305 } 5306 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 5307 5308 static bool qm_flr_reset_complete(struct pci_dev *pdev) 5309 { 5310 struct pci_dev *pf_pdev = pci_physfn(pdev); 5311 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 5312 u32 id; 5313 5314 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 5315 if (id == QM_PCI_COMMAND_INVALID) { 5316 pci_err(pdev, "Device can not be used!\n"); 5317 return false; 5318 } 5319 5320 return true; 5321 } 5322 5323 void hisi_qm_reset_done(struct pci_dev *pdev) 5324 { 5325 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 5326 struct hisi_qm *qm = pci_get_drvdata(pdev); 5327 int ret; 5328 5329 if (qm->fun_type == QM_HW_PF) { 5330 ret = qm_dev_hw_init(qm); 5331 if (ret) { 5332 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 5333 goto flr_done; 5334 } 5335 } 5336 5337 hisi_qm_dev_err_init(pf_qm); 5338 5339 ret = qm_restart(qm); 5340 if (ret) { 5341 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 5342 goto flr_done; 5343 } 5344 5345 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 5346 if (ret) 5347 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 5348 5349 ret = qm_wait_vf_prepare_finish(qm); 5350 if (ret) 5351 pci_err(pdev, "failed to start by vfs in FLR!\n"); 5352 5353 flr_done: 5354 if (qm->fun_type == QM_HW_PF) 5355 qm_cmd_init(qm); 5356 5357 if (qm_flr_reset_complete(pdev)) 5358 pci_info(pdev, "FLR reset complete\n"); 5359 5360 qm_reset_bit_clear(qm); 5361 } 5362 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 5363 5364 static irqreturn_t qm_abnormal_irq(int irq, void *data) 5365 { 5366 struct hisi_qm *qm = data; 5367 enum acc_err_result ret; 5368 5369 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 5370 ret = qm_process_dev_error(qm); 5371 if (ret == ACC_ERR_NEED_RESET && 5372 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 5373 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 5374 schedule_work(&qm->rst_work); 5375 5376 return IRQ_HANDLED; 5377 } 5378 5379 static int qm_irq_register(struct hisi_qm *qm) 5380 { 5381 struct pci_dev *pdev = qm->pdev; 5382 int ret; 5383 5384 ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), 5385 qm_irq, 0, qm->dev_name, qm); 5386 if (ret) 5387 return ret; 5388 5389 if (qm->ver > QM_HW_V1) { 5390 ret = request_threaded_irq(pci_irq_vector(pdev, 5391 QM_AEQ_EVENT_IRQ_VECTOR), 5392 qm_aeq_irq, qm_aeq_thread, 5393 0, qm->dev_name, qm); 5394 if (ret) 5395 goto err_aeq_irq; 5396 5397 if (qm->fun_type == QM_HW_PF) { 5398 ret = request_irq(pci_irq_vector(pdev, 5399 QM_ABNORMAL_EVENT_IRQ_VECTOR), 5400 qm_abnormal_irq, 0, qm->dev_name, qm); 5401 if (ret) 5402 goto err_abonormal_irq; 5403 } 5404 } 5405 5406 if (qm->ver > QM_HW_V2) { 5407 ret = request_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR), 5408 qm_mb_cmd_irq, 0, qm->dev_name, qm); 5409 if (ret) 5410 goto err_mb_cmd_irq; 5411 } 5412 5413 return 0; 5414 5415 err_mb_cmd_irq: 5416 if (qm->fun_type == QM_HW_PF) 5417 free_irq(pci_irq_vector(pdev, QM_ABNORMAL_EVENT_IRQ_VECTOR), qm); 5418 err_abonormal_irq: 5419 free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm); 5420 err_aeq_irq: 5421 free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm); 5422 return ret; 5423 } 5424 5425 /** 5426 * hisi_qm_dev_shutdown() - Shutdown device. 5427 * @pdev: The device will be shutdown. 5428 * 5429 * This function will stop qm when OS shutdown or rebooting. 5430 */ 5431 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 5432 { 5433 struct hisi_qm *qm = pci_get_drvdata(pdev); 5434 int ret; 5435 5436 ret = hisi_qm_stop(qm, QM_NORMAL); 5437 if (ret) 5438 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 5439 } 5440 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 5441 5442 static void hisi_qm_controller_reset(struct work_struct *rst_work) 5443 { 5444 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 5445 int ret; 5446 5447 ret = qm_pm_get_sync(qm); 5448 if (ret) { 5449 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 5450 return; 5451 } 5452 5453 /* reset pcie device controller */ 5454 ret = qm_controller_reset(qm); 5455 if (ret) 5456 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 5457 5458 qm_pm_put_sync(qm); 5459 } 5460 5461 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 5462 enum qm_stop_reason stop_reason) 5463 { 5464 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 5465 struct pci_dev *pdev = qm->pdev; 5466 int ret; 5467 5468 ret = qm_reset_prepare_ready(qm); 5469 if (ret) { 5470 dev_err(&pdev->dev, "reset prepare not ready!\n"); 5471 atomic_set(&qm->status.flags, QM_STOP); 5472 cmd = QM_VF_PREPARE_FAIL; 5473 goto err_prepare; 5474 } 5475 5476 ret = hisi_qm_stop(qm, stop_reason); 5477 if (ret) { 5478 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 5479 atomic_set(&qm->status.flags, QM_STOP); 5480 cmd = QM_VF_PREPARE_FAIL; 5481 goto err_prepare; 5482 } else { 5483 goto out; 5484 } 5485 5486 err_prepare: 5487 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 5488 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 5489 out: 5490 pci_save_state(pdev); 5491 ret = qm->ops->ping_pf(qm, cmd); 5492 if (ret) 5493 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 5494 } 5495 5496 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 5497 { 5498 enum qm_mb_cmd cmd = QM_VF_START_DONE; 5499 struct pci_dev *pdev = qm->pdev; 5500 int ret; 5501 5502 pci_restore_state(pdev); 5503 ret = hisi_qm_start(qm); 5504 if (ret) { 5505 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 5506 cmd = QM_VF_START_FAIL; 5507 } 5508 5509 ret = qm->ops->ping_pf(qm, cmd); 5510 if (ret) 5511 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 5512 5513 qm_reset_bit_clear(qm); 5514 } 5515 5516 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 5517 { 5518 struct device *dev = &qm->pdev->dev; 5519 u32 val, cmd; 5520 u64 msg; 5521 int ret; 5522 5523 /* Wait for reset to finish */ 5524 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 5525 val == BIT(0), QM_VF_RESET_WAIT_US, 5526 QM_VF_RESET_WAIT_TIMEOUT_US); 5527 /* hardware completion status should be available by this time */ 5528 if (ret) { 5529 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 5530 return -ETIMEDOUT; 5531 } 5532 5533 /* 5534 * Whether message is got successfully, 5535 * VF needs to ack PF by clearing the interrupt. 5536 */ 5537 ret = qm_get_mb_cmd(qm, &msg, 0); 5538 qm_clear_cmd_interrupt(qm, 0); 5539 if (ret) { 5540 dev_err(dev, "failed to get msg from PF in reset done!\n"); 5541 return ret; 5542 } 5543 5544 cmd = msg & QM_MB_CMD_DATA_MASK; 5545 if (cmd != QM_PF_RESET_DONE) { 5546 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 5547 ret = -EINVAL; 5548 } 5549 5550 return ret; 5551 } 5552 5553 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 5554 enum qm_stop_reason stop_reason) 5555 { 5556 struct device *dev = &qm->pdev->dev; 5557 int ret; 5558 5559 dev_info(dev, "device reset start...\n"); 5560 5561 /* The message is obtained by querying the register during resetting */ 5562 qm_cmd_uninit(qm); 5563 qm_pf_reset_vf_prepare(qm, stop_reason); 5564 5565 ret = qm_wait_pf_reset_finish(qm); 5566 if (ret) 5567 goto err_get_status; 5568 5569 qm_pf_reset_vf_done(qm); 5570 qm_cmd_init(qm); 5571 5572 dev_info(dev, "device reset done.\n"); 5573 5574 return; 5575 5576 err_get_status: 5577 qm_cmd_init(qm); 5578 qm_reset_bit_clear(qm); 5579 } 5580 5581 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 5582 { 5583 struct device *dev = &qm->pdev->dev; 5584 u64 msg; 5585 u32 cmd; 5586 int ret; 5587 5588 /* 5589 * Get the msg from source by sending mailbox. Whether message is got 5590 * successfully, destination needs to ack source by clearing the interrupt. 5591 */ 5592 ret = qm_get_mb_cmd(qm, &msg, fun_num); 5593 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 5594 if (ret) { 5595 dev_err(dev, "failed to get msg from source!\n"); 5596 return; 5597 } 5598 5599 cmd = msg & QM_MB_CMD_DATA_MASK; 5600 switch (cmd) { 5601 case QM_PF_FLR_PREPARE: 5602 qm_pf_reset_vf_process(qm, QM_FLR); 5603 break; 5604 case QM_PF_SRST_PREPARE: 5605 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 5606 break; 5607 case QM_VF_GET_QOS: 5608 qm_vf_get_qos(qm, fun_num); 5609 break; 5610 case QM_PF_SET_QOS: 5611 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 5612 break; 5613 default: 5614 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 5615 break; 5616 } 5617 } 5618 5619 static void qm_cmd_process(struct work_struct *cmd_process) 5620 { 5621 struct hisi_qm *qm = container_of(cmd_process, 5622 struct hisi_qm, cmd_process); 5623 u32 vfs_num = qm->vfs_num; 5624 u64 val; 5625 u32 i; 5626 5627 if (qm->fun_type == QM_HW_PF) { 5628 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 5629 if (!val) 5630 return; 5631 5632 for (i = 1; i <= vfs_num; i++) { 5633 if (val & BIT(i)) 5634 qm_handle_cmd_msg(qm, i); 5635 } 5636 5637 return; 5638 } 5639 5640 qm_handle_cmd_msg(qm, 0); 5641 } 5642 5643 /** 5644 * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. 5645 * @qm: The qm needs add. 5646 * @qm_list: The qm list. 5647 * 5648 * This function adds qm to qm list, and will register algorithm to 5649 * crypto when the qm list is empty. 5650 */ 5651 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 5652 { 5653 struct device *dev = &qm->pdev->dev; 5654 int flag = 0; 5655 int ret = 0; 5656 5657 mutex_lock(&qm_list->lock); 5658 if (list_empty(&qm_list->list)) 5659 flag = 1; 5660 list_add_tail(&qm->list, &qm_list->list); 5661 mutex_unlock(&qm_list->lock); 5662 5663 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 5664 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 5665 return 0; 5666 } 5667 5668 if (flag) { 5669 ret = qm_list->register_to_crypto(qm); 5670 if (ret) { 5671 mutex_lock(&qm_list->lock); 5672 list_del(&qm->list); 5673 mutex_unlock(&qm_list->lock); 5674 } 5675 } 5676 5677 return ret; 5678 } 5679 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 5680 5681 /** 5682 * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from 5683 * qm list. 5684 * @qm: The qm needs delete. 5685 * @qm_list: The qm list. 5686 * 5687 * This function deletes qm from qm list, and will unregister algorithm 5688 * from crypto when the qm list is empty. 5689 */ 5690 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 5691 { 5692 mutex_lock(&qm_list->lock); 5693 list_del(&qm->list); 5694 mutex_unlock(&qm_list->lock); 5695 5696 if (qm->ver <= QM_HW_V2 && qm->use_sva) 5697 return; 5698 5699 if (list_empty(&qm_list->list)) 5700 qm_list->unregister_from_crypto(qm); 5701 } 5702 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 5703 5704 static int qm_get_qp_num(struct hisi_qm *qm) 5705 { 5706 if (qm->ver == QM_HW_V1) 5707 qm->ctrl_qp_num = QM_QNUM_V1; 5708 else if (qm->ver == QM_HW_V2) 5709 qm->ctrl_qp_num = QM_QNUM_V2; 5710 else 5711 qm->ctrl_qp_num = readl(qm->io_base + QM_CAPBILITY) & 5712 QM_QP_NUN_MASK; 5713 5714 if (qm->use_db_isolation) 5715 qm->max_qp_num = (readl(qm->io_base + QM_CAPBILITY) >> 5716 QM_QP_MAX_NUM_SHIFT) & QM_QP_NUN_MASK; 5717 else 5718 qm->max_qp_num = qm->ctrl_qp_num; 5719 5720 /* check if qp number is valid */ 5721 if (qm->qp_num > qm->max_qp_num) { 5722 dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n", 5723 qm->qp_num, qm->max_qp_num); 5724 return -EINVAL; 5725 } 5726 5727 return 0; 5728 } 5729 5730 static int qm_get_pci_res(struct hisi_qm *qm) 5731 { 5732 struct pci_dev *pdev = qm->pdev; 5733 struct device *dev = &pdev->dev; 5734 int ret; 5735 5736 ret = pci_request_mem_regions(pdev, qm->dev_name); 5737 if (ret < 0) { 5738 dev_err(dev, "Failed to request mem regions!\n"); 5739 return ret; 5740 } 5741 5742 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5743 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5744 if (!qm->io_base) { 5745 ret = -EIO; 5746 goto err_request_mem_regions; 5747 } 5748 5749 if (qm->ver > QM_HW_V2) { 5750 if (qm->fun_type == QM_HW_PF) 5751 qm->use_db_isolation = readl(qm->io_base + 5752 QM_QUE_ISO_EN) & BIT(0); 5753 else 5754 qm->use_db_isolation = readl(qm->io_base + 5755 QM_QUE_ISO_CFG_V) & BIT(0); 5756 } 5757 5758 if (qm->use_db_isolation) { 5759 qm->db_interval = QM_QP_DB_INTERVAL; 5760 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5761 qm->db_io_base = ioremap(qm->db_phys_base, 5762 pci_resource_len(pdev, PCI_BAR_4)); 5763 if (!qm->db_io_base) { 5764 ret = -EIO; 5765 goto err_ioremap; 5766 } 5767 } else { 5768 qm->db_phys_base = qm->phys_base; 5769 qm->db_io_base = qm->io_base; 5770 qm->db_interval = 0; 5771 } 5772 5773 if (qm->fun_type == QM_HW_PF) { 5774 ret = qm_get_qp_num(qm); 5775 if (ret) 5776 goto err_db_ioremap; 5777 } 5778 5779 return 0; 5780 5781 err_db_ioremap: 5782 if (qm->use_db_isolation) 5783 iounmap(qm->db_io_base); 5784 err_ioremap: 5785 iounmap(qm->io_base); 5786 err_request_mem_regions: 5787 pci_release_mem_regions(pdev); 5788 return ret; 5789 } 5790 5791 static int hisi_qm_pci_init(struct hisi_qm *qm) 5792 { 5793 struct pci_dev *pdev = qm->pdev; 5794 struct device *dev = &pdev->dev; 5795 unsigned int num_vec; 5796 int ret; 5797 5798 ret = pci_enable_device_mem(pdev); 5799 if (ret < 0) { 5800 dev_err(dev, "Failed to enable device mem!\n"); 5801 return ret; 5802 } 5803 5804 ret = qm_get_pci_res(qm); 5805 if (ret) 5806 goto err_disable_pcidev; 5807 5808 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5809 if (ret < 0) 5810 goto err_get_pci_res; 5811 pci_set_master(pdev); 5812 5813 if (!qm->ops->get_irq_num) { 5814 ret = -EOPNOTSUPP; 5815 goto err_get_pci_res; 5816 } 5817 num_vec = qm->ops->get_irq_num(qm); 5818 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5819 if (ret < 0) { 5820 dev_err(dev, "Failed to enable MSI vectors!\n"); 5821 goto err_get_pci_res; 5822 } 5823 5824 return 0; 5825 5826 err_get_pci_res: 5827 qm_put_pci_res(qm); 5828 err_disable_pcidev: 5829 pci_disable_device(pdev); 5830 return ret; 5831 } 5832 5833 static void hisi_qm_init_work(struct hisi_qm *qm) 5834 { 5835 INIT_WORK(&qm->work, qm_work_process); 5836 if (qm->fun_type == QM_HW_PF) 5837 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5838 5839 if (qm->ver > QM_HW_V2) 5840 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5841 } 5842 5843 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5844 { 5845 struct device *dev = &qm->pdev->dev; 5846 size_t qp_dma_size; 5847 int i, ret; 5848 5849 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5850 if (!qm->qp_array) 5851 return -ENOMEM; 5852 5853 /* one more page for device or qp statuses */ 5854 qp_dma_size = qm->sqe_size * QM_Q_DEPTH + 5855 sizeof(struct qm_cqe) * QM_Q_DEPTH; 5856 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5857 for (i = 0; i < qm->qp_num; i++) { 5858 ret = hisi_qp_memory_init(qm, qp_dma_size, i); 5859 if (ret) 5860 goto err_init_qp_mem; 5861 5862 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5863 } 5864 5865 return 0; 5866 err_init_qp_mem: 5867 hisi_qp_memory_uninit(qm, i); 5868 5869 return ret; 5870 } 5871 5872 static int hisi_qm_memory_init(struct hisi_qm *qm) 5873 { 5874 struct device *dev = &qm->pdev->dev; 5875 int ret, total_func, i; 5876 size_t off = 0; 5877 5878 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5879 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5880 if (!qm->factor) 5881 return -ENOMEM; 5882 for (i = 0; i < total_func; i++) 5883 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 5884 5885 #define QM_INIT_BUF(qm, type, num) do { \ 5886 (qm)->type = ((qm)->qdma.va + (off)); \ 5887 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5888 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5889 } while (0) 5890 5891 idr_init(&qm->qp_idr); 5892 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) + 5893 QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) + 5894 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5895 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5896 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5897 GFP_ATOMIC); 5898 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5899 if (!qm->qdma.va) { 5900 ret = -ENOMEM; 5901 goto err_alloc_qdma; 5902 } 5903 5904 QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH); 5905 QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH); 5906 QM_INIT_BUF(qm, sqc, qm->qp_num); 5907 QM_INIT_BUF(qm, cqc, qm->qp_num); 5908 5909 ret = hisi_qp_alloc_memory(qm); 5910 if (ret) 5911 goto err_alloc_qp_array; 5912 5913 return 0; 5914 5915 err_alloc_qp_array: 5916 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5917 err_alloc_qdma: 5918 kfree(qm->factor); 5919 5920 return ret; 5921 } 5922 5923 /** 5924 * hisi_qm_init() - Initialize configures about qm. 5925 * @qm: The qm needing init. 5926 * 5927 * This function init qm, then we can call hisi_qm_start to put qm into work. 5928 */ 5929 int hisi_qm_init(struct hisi_qm *qm) 5930 { 5931 struct pci_dev *pdev = qm->pdev; 5932 struct device *dev = &pdev->dev; 5933 int ret; 5934 5935 hisi_qm_pre_init(qm); 5936 5937 ret = hisi_qm_pci_init(qm); 5938 if (ret) 5939 return ret; 5940 5941 ret = qm_irq_register(qm); 5942 if (ret) 5943 goto err_pci_init; 5944 5945 if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) { 5946 /* v2 starts to support get vft by mailbox */ 5947 ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 5948 if (ret) 5949 goto err_irq_register; 5950 } 5951 5952 if (qm->fun_type == QM_HW_PF) { 5953 qm_disable_clock_gate(qm); 5954 ret = qm_dev_mem_reset(qm); 5955 if (ret) { 5956 dev_err(dev, "failed to reset device memory\n"); 5957 goto err_irq_register; 5958 } 5959 } 5960 5961 if (qm->mode == UACCE_MODE_SVA) { 5962 ret = qm_alloc_uacce(qm); 5963 if (ret < 0) 5964 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5965 } 5966 5967 ret = hisi_qm_memory_init(qm); 5968 if (ret) 5969 goto err_alloc_uacce; 5970 5971 hisi_qm_init_work(qm); 5972 qm_cmd_init(qm); 5973 atomic_set(&qm->status.flags, QM_INIT); 5974 5975 return 0; 5976 5977 err_alloc_uacce: 5978 if (qm->use_sva) { 5979 uacce_remove(qm->uacce); 5980 qm->uacce = NULL; 5981 } 5982 err_irq_register: 5983 qm_irq_unregister(qm); 5984 err_pci_init: 5985 hisi_qm_pci_uninit(qm); 5986 return ret; 5987 } 5988 EXPORT_SYMBOL_GPL(hisi_qm_init); 5989 5990 /** 5991 * hisi_qm_get_dfx_access() - Try to get dfx access. 5992 * @qm: pointer to accelerator device. 5993 * 5994 * Try to get dfx access, then user can get message. 5995 * 5996 * If device is in suspended, return failure, otherwise 5997 * bump up the runtime PM usage counter. 5998 */ 5999 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 6000 { 6001 struct device *dev = &qm->pdev->dev; 6002 6003 if (pm_runtime_suspended(dev)) { 6004 dev_info(dev, "can not read/write - device in suspended.\n"); 6005 return -EAGAIN; 6006 } 6007 6008 return qm_pm_get_sync(qm); 6009 } 6010 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 6011 6012 /** 6013 * hisi_qm_put_dfx_access() - Put dfx access. 6014 * @qm: pointer to accelerator device. 6015 * 6016 * Put dfx access, drop runtime PM usage counter. 6017 */ 6018 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 6019 { 6020 qm_pm_put_sync(qm); 6021 } 6022 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 6023 6024 /** 6025 * hisi_qm_pm_init() - Initialize qm runtime PM. 6026 * @qm: pointer to accelerator device. 6027 * 6028 * Function that initialize qm runtime PM. 6029 */ 6030 void hisi_qm_pm_init(struct hisi_qm *qm) 6031 { 6032 struct device *dev = &qm->pdev->dev; 6033 6034 if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3) 6035 return; 6036 6037 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 6038 pm_runtime_use_autosuspend(dev); 6039 pm_runtime_put_noidle(dev); 6040 } 6041 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 6042 6043 /** 6044 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 6045 * @qm: pointer to accelerator device. 6046 * 6047 * Function that uninitialize qm runtime PM. 6048 */ 6049 void hisi_qm_pm_uninit(struct hisi_qm *qm) 6050 { 6051 struct device *dev = &qm->pdev->dev; 6052 6053 if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3) 6054 return; 6055 6056 pm_runtime_get_noresume(dev); 6057 pm_runtime_dont_use_autosuspend(dev); 6058 } 6059 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 6060 6061 static int qm_prepare_for_suspend(struct hisi_qm *qm) 6062 { 6063 struct pci_dev *pdev = qm->pdev; 6064 int ret; 6065 u32 val; 6066 6067 ret = qm->ops->set_msi(qm, false); 6068 if (ret) { 6069 pci_err(pdev, "failed to disable MSI before suspending!\n"); 6070 return ret; 6071 } 6072 6073 /* shutdown OOO register */ 6074 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 6075 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 6076 6077 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 6078 val, 6079 (val == ACC_MASTER_TRANS_RETURN_RW), 6080 POLL_PERIOD, POLL_TIMEOUT); 6081 if (ret) { 6082 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 6083 return ret; 6084 } 6085 6086 ret = qm_set_pf_mse(qm, false); 6087 if (ret) 6088 pci_err(pdev, "failed to disable MSE before suspending!\n"); 6089 6090 return ret; 6091 } 6092 6093 static int qm_rebuild_for_resume(struct hisi_qm *qm) 6094 { 6095 struct pci_dev *pdev = qm->pdev; 6096 int ret; 6097 6098 ret = qm_set_pf_mse(qm, true); 6099 if (ret) { 6100 pci_err(pdev, "failed to enable MSE after resuming!\n"); 6101 return ret; 6102 } 6103 6104 ret = qm->ops->set_msi(qm, true); 6105 if (ret) { 6106 pci_err(pdev, "failed to enable MSI after resuming!\n"); 6107 return ret; 6108 } 6109 6110 ret = qm_dev_hw_init(qm); 6111 if (ret) { 6112 pci_err(pdev, "failed to init device after resuming\n"); 6113 return ret; 6114 } 6115 6116 qm_cmd_init(qm); 6117 hisi_qm_dev_err_init(qm); 6118 qm_disable_clock_gate(qm); 6119 ret = qm_dev_mem_reset(qm); 6120 if (ret) 6121 pci_err(pdev, "failed to reset device memory\n"); 6122 6123 return ret; 6124 } 6125 6126 /** 6127 * hisi_qm_suspend() - Runtime suspend of given device. 6128 * @dev: device to suspend. 6129 * 6130 * Function that suspend the device. 6131 */ 6132 int hisi_qm_suspend(struct device *dev) 6133 { 6134 struct pci_dev *pdev = to_pci_dev(dev); 6135 struct hisi_qm *qm = pci_get_drvdata(pdev); 6136 int ret; 6137 6138 pci_info(pdev, "entering suspended state\n"); 6139 6140 ret = hisi_qm_stop(qm, QM_NORMAL); 6141 if (ret) { 6142 pci_err(pdev, "failed to stop qm(%d)\n", ret); 6143 return ret; 6144 } 6145 6146 ret = qm_prepare_for_suspend(qm); 6147 if (ret) 6148 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 6149 6150 return ret; 6151 } 6152 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 6153 6154 /** 6155 * hisi_qm_resume() - Runtime resume of given device. 6156 * @dev: device to resume. 6157 * 6158 * Function that resume the device. 6159 */ 6160 int hisi_qm_resume(struct device *dev) 6161 { 6162 struct pci_dev *pdev = to_pci_dev(dev); 6163 struct hisi_qm *qm = pci_get_drvdata(pdev); 6164 int ret; 6165 6166 pci_info(pdev, "resuming from suspend state\n"); 6167 6168 ret = qm_rebuild_for_resume(qm); 6169 if (ret) { 6170 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 6171 return ret; 6172 } 6173 6174 ret = hisi_qm_start(qm); 6175 if (ret) 6176 pci_err(pdev, "failed to start qm(%d)\n", ret); 6177 6178 return ret; 6179 } 6180 EXPORT_SYMBOL_GPL(hisi_qm_resume); 6181 6182 MODULE_LICENSE("GPL v2"); 6183 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 6184 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 6185