xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision b11e1930)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/idr.h>
9 #include <linux/io.h>
10 #include <linux/irqreturn.h>
11 #include <linux/log2.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include <linux/hisi_acc_qm.h>
19 #include "qm_common.h"
20 
21 /* eq/aeq irq enable */
22 #define QM_VF_AEQ_INT_SOURCE		0x0
23 #define QM_VF_AEQ_INT_MASK		0x4
24 #define QM_VF_EQ_INT_SOURCE		0x8
25 #define QM_VF_EQ_INT_MASK		0xc
26 
27 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
29 #define QM_IRQ_TYPE_SHIFT		16
30 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
31 
32 /* mailbox */
33 #define QM_MB_PING_ALL_VFS		0xffff
34 #define QM_MB_CMD_DATA_SHIFT		32
35 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
36 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
37 
38 /* sqc shift */
39 #define QM_SQ_HOP_NUM_SHIFT		0
40 #define QM_SQ_PAGE_SIZE_SHIFT		4
41 #define QM_SQ_BUF_SIZE_SHIFT		8
42 #define QM_SQ_SQE_SIZE_SHIFT		12
43 #define QM_SQ_PRIORITY_SHIFT		0
44 #define QM_SQ_ORDERS_SHIFT		4
45 #define QM_SQ_TYPE_SHIFT		8
46 #define QM_QC_PASID_ENABLE		0x1
47 #define QM_QC_PASID_ENABLE_SHIFT	7
48 
49 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
50 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
51 
52 /* cqc shift */
53 #define QM_CQ_HOP_NUM_SHIFT		0
54 #define QM_CQ_PAGE_SIZE_SHIFT		4
55 #define QM_CQ_BUF_SIZE_SHIFT		8
56 #define QM_CQ_CQE_SIZE_SHIFT		12
57 #define QM_CQ_PHASE_SHIFT		0
58 #define QM_CQ_FLAG_SHIFT		1
59 
60 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
61 #define QM_QC_CQE_SIZE			4
62 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
63 
64 /* eqc shift */
65 #define QM_EQE_AEQE_SIZE		(2UL << 12)
66 #define QM_EQC_PHASE_SHIFT		16
67 
68 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
69 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
70 
71 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
72 #define QM_AEQE_TYPE_SHIFT		17
73 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
74 #define QM_CQ_OVERFLOW			0
75 #define QM_EQ_OVERFLOW			1
76 #define QM_CQE_ERROR			2
77 
78 #define QM_XQ_DEPTH_SHIFT		16
79 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
80 
81 #define QM_DOORBELL_CMD_SQ		0
82 #define QM_DOORBELL_CMD_CQ		1
83 #define QM_DOORBELL_CMD_EQ		2
84 #define QM_DOORBELL_CMD_AEQ		3
85 
86 #define QM_DOORBELL_BASE_V1		0x340
87 #define QM_DB_CMD_SHIFT_V1		16
88 #define QM_DB_INDEX_SHIFT_V1		32
89 #define QM_DB_PRIORITY_SHIFT_V1		48
90 #define QM_PAGE_SIZE			0x0034
91 #define QM_QP_DB_INTERVAL		0x10000
92 
93 #define QM_MEM_START_INIT		0x100040
94 #define QM_MEM_INIT_DONE		0x100044
95 #define QM_VFT_CFG_RDY			0x10006c
96 #define QM_VFT_CFG_OP_WR		0x100058
97 #define QM_VFT_CFG_TYPE			0x10005c
98 #define QM_VFT_CFG			0x100060
99 #define QM_VFT_CFG_OP_ENABLE		0x100054
100 #define QM_PM_CTRL			0x100148
101 #define QM_IDLE_DISABLE			BIT(9)
102 
103 #define QM_VFT_CFG_DATA_L		0x100064
104 #define QM_VFT_CFG_DATA_H		0x100068
105 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
106 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
107 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
108 #define QM_SQC_VFT_START_SQN_SHIFT	28
109 #define QM_SQC_VFT_VALID		(1ULL << 44)
110 #define QM_SQC_VFT_SQN_SHIFT		45
111 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
112 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
113 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
114 #define QM_CQC_VFT_VALID		(1ULL << 28)
115 
116 #define QM_SQC_VFT_BASE_SHIFT_V2	28
117 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
118 #define QM_SQC_VFT_NUM_SHIFT_V2		45
119 #define QM_SQC_VFT_NUM_MASK_V2		GENMASK(9, 0)
120 
121 #define QM_ABNORMAL_INT_SOURCE		0x100000
122 #define QM_ABNORMAL_INT_MASK		0x100004
123 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
124 #define QM_ABNORMAL_INT_STATUS		0x100008
125 #define QM_ABNORMAL_INT_SET		0x10000c
126 #define QM_ABNORMAL_INF00		0x100010
127 #define QM_FIFO_OVERFLOW_TYPE		0xc0
128 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
129 #define QM_FIFO_OVERFLOW_VF		0x3f
130 #define QM_ABNORMAL_INF01		0x100014
131 #define QM_DB_TIMEOUT_TYPE		0xc0
132 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
133 #define QM_DB_TIMEOUT_VF		0x3f
134 #define QM_RAS_CE_ENABLE		0x1000ec
135 #define QM_RAS_FE_ENABLE		0x1000f0
136 #define QM_RAS_NFE_ENABLE		0x1000f4
137 #define QM_RAS_CE_THRESHOLD		0x1000f8
138 #define QM_RAS_CE_TIMES_PER_IRQ		1
139 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
140 #define QM_ECC_MBIT			BIT(2)
141 #define QM_DB_TIMEOUT			BIT(10)
142 #define QM_OF_FIFO_OF			BIT(11)
143 
144 #define QM_RESET_WAIT_TIMEOUT		400
145 #define QM_PEH_VENDOR_ID		0x1000d8
146 #define ACC_VENDOR_ID_VALUE		0x5a5a
147 #define QM_PEH_DFX_INFO0		0x1000fc
148 #define QM_PEH_DFX_INFO1		0x100100
149 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
150 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
151 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
152 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
153 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
154 #define ACC_MASTER_TRANS_RETURN_RW	3
155 #define ACC_MASTER_TRANS_RETURN		0x300150
156 #define ACC_MASTER_GLOBAL_CTRL		0x300000
157 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
158 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
159 #define ACC_AM_ROB_ECC_INT_STS		0x300104
160 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
161 #define QM_MSI_CAP_ENABLE		BIT(16)
162 
163 /* interfunction communication */
164 #define QM_IFC_READY_STATUS		0x100128
165 #define QM_IFC_INT_SET_P		0x100130
166 #define QM_IFC_INT_CFG			0x100134
167 #define QM_IFC_INT_SOURCE_P		0x100138
168 #define QM_IFC_INT_SOURCE_V		0x0020
169 #define QM_IFC_INT_MASK			0x0024
170 #define QM_IFC_INT_STATUS		0x0028
171 #define QM_IFC_INT_SET_V		0x002C
172 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
173 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
174 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
175 #define QM_IFC_INT_DISABLE		BIT(0)
176 #define QM_IFC_INT_STATUS_MASK		BIT(0)
177 #define QM_IFC_INT_SET_MASK		BIT(0)
178 #define QM_WAIT_DST_ACK			10
179 #define QM_MAX_PF_WAIT_COUNT		10
180 #define QM_MAX_VF_WAIT_COUNT		40
181 #define QM_VF_RESET_WAIT_US            20000
182 #define QM_VF_RESET_WAIT_CNT           3000
183 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
184 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
185 
186 #define POLL_PERIOD			10
187 #define POLL_TIMEOUT			1000
188 #define WAIT_PERIOD_US_MAX		200
189 #define WAIT_PERIOD_US_MIN		100
190 #define MAX_WAIT_COUNTS			1000
191 #define QM_CACHE_WB_START		0x204
192 #define QM_CACHE_WB_DONE		0x208
193 #define QM_FUNC_CAPS_REG		0x3100
194 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
195 
196 #define PCI_BAR_2			2
197 #define PCI_BAR_4			4
198 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
199 
200 #define QM_DBG_READ_LEN		256
201 #define QM_PCI_COMMAND_INVALID		~0
202 #define QM_RESET_STOP_TX_OFFSET		1
203 #define QM_RESET_STOP_RX_OFFSET		2
204 
205 #define WAIT_PERIOD			20
206 #define REMOVE_WAIT_DELAY		10
207 
208 #define QM_DRIVER_REMOVING		0
209 #define QM_RST_SCHED			1
210 #define QM_QOS_PARAM_NUM		2
211 #define QM_QOS_MAX_VAL			1000
212 #define QM_QOS_RATE			100
213 #define QM_QOS_EXPAND_RATE		1000
214 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
215 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
216 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
217 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
218 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
219 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
220 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
221 #define QM_SHAPER_CBS_B			1
222 #define QM_SHAPER_VFT_OFFSET		6
223 #define QM_QOS_MIN_ERROR_RATE		5
224 #define QM_SHAPER_MIN_CBS_S		8
225 #define QM_QOS_TICK			0x300U
226 #define QM_QOS_DIVISOR_CLK		0x1f40U
227 #define QM_QOS_MAX_CIR_B		200
228 #define QM_QOS_MIN_CIR_B		100
229 #define QM_QOS_MAX_CIR_U		6
230 #define QM_AUTOSUSPEND_DELAY		3000
231 
232 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
233 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
234 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
235 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
236 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
237 
238 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
239 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
240 
241 #define QM_MK_SQC_W13(priority, orders, alg_type) \
242 	(((priority) << QM_SQ_PRIORITY_SHIFT) | \
243 	((orders) << QM_SQ_ORDERS_SHIFT) | \
244 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
245 
246 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
247 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
248 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
249 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
250 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
251 
252 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
253 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
254 
255 #define INIT_QC_COMMON(qc, base, pasid) do {			\
256 	(qc)->head = 0;						\
257 	(qc)->tail = 0;						\
258 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
259 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
260 	(qc)->dw3 = 0;						\
261 	(qc)->w8 = 0;						\
262 	(qc)->rsvd0 = 0;					\
263 	(qc)->pasid = cpu_to_le16(pasid);			\
264 	(qc)->w11 = 0;						\
265 	(qc)->rsvd1 = 0;					\
266 } while (0)
267 
268 enum vft_type {
269 	SQC_VFT = 0,
270 	CQC_VFT,
271 	SHAPER_VFT,
272 };
273 
274 enum acc_err_result {
275 	ACC_ERR_NONE,
276 	ACC_ERR_NEED_RESET,
277 	ACC_ERR_RECOVERED,
278 };
279 
280 enum qm_alg_type {
281 	ALG_TYPE_0,
282 	ALG_TYPE_1,
283 };
284 
285 enum qm_mb_cmd {
286 	QM_PF_FLR_PREPARE = 0x01,
287 	QM_PF_SRST_PREPARE,
288 	QM_PF_RESET_DONE,
289 	QM_VF_PREPARE_DONE,
290 	QM_VF_PREPARE_FAIL,
291 	QM_VF_START_DONE,
292 	QM_VF_START_FAIL,
293 	QM_PF_SET_QOS,
294 	QM_VF_GET_QOS,
295 };
296 
297 enum qm_basic_type {
298 	QM_TOTAL_QP_NUM_CAP = 0x0,
299 	QM_FUNC_MAX_QP_CAP,
300 	QM_XEQ_DEPTH_CAP,
301 	QM_QP_DEPTH_CAP,
302 	QM_EQ_IRQ_TYPE_CAP,
303 	QM_AEQ_IRQ_TYPE_CAP,
304 	QM_ABN_IRQ_TYPE_CAP,
305 	QM_PF2VF_IRQ_TYPE_CAP,
306 	QM_PF_IRQ_NUM_CAP,
307 	QM_VF_IRQ_NUM_CAP,
308 };
309 
310 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
311 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
312 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
313 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
314 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
315 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
316 };
317 
318 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
319 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
320 };
321 
322 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
323 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
324 };
325 
326 static const struct hisi_qm_cap_info qm_basic_info[] = {
327 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
328 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
329 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(31, 0), 0x800,     0x4000800, 0x4000800},
330 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
331 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
332 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
333 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
334 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
335 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
336 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
337 };
338 
339 struct qm_mailbox {
340 	__le16 w0;
341 	__le16 queue_num;
342 	__le32 base_l;
343 	__le32 base_h;
344 	__le32 rsvd;
345 };
346 
347 struct qm_doorbell {
348 	__le16 queue_num;
349 	__le16 cmd;
350 	__le16 index;
351 	__le16 priority;
352 };
353 
354 struct hisi_qm_resource {
355 	struct hisi_qm *qm;
356 	int distance;
357 	struct list_head list;
358 };
359 
360 /**
361  * struct qm_hw_err - Structure describing the device errors
362  * @list: hardware error list
363  * @timestamp: timestamp when the error occurred
364  */
365 struct qm_hw_err {
366 	struct list_head list;
367 	unsigned long long timestamp;
368 };
369 
370 struct hisi_qm_hw_ops {
371 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
372 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
373 		      u8 cmd, u16 index, u8 priority);
374 	int (*debug_init)(struct hisi_qm *qm);
375 	void (*hw_error_init)(struct hisi_qm *qm);
376 	void (*hw_error_uninit)(struct hisi_qm *qm);
377 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
378 	int (*set_msi)(struct hisi_qm *qm, bool set);
379 };
380 
381 struct hisi_qm_hw_error {
382 	u32 int_msk;
383 	const char *msg;
384 };
385 
386 static const struct hisi_qm_hw_error qm_hw_error[] = {
387 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
388 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
389 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
390 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
391 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
392 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
393 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
394 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
395 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
396 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
397 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
398 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
399 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
400 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
401 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
402 	{ /* sentinel */ }
403 };
404 
405 static const char * const qm_db_timeout[] = {
406 	"sq", "cq", "eq", "aeq",
407 };
408 
409 static const char * const qm_fifo_overflow[] = {
410 	"cq", "eq", "aeq",
411 };
412 
413 static const char * const qp_s[] = {
414 	"none", "init", "start", "stop", "close",
415 };
416 
417 struct qm_typical_qos_table {
418 	u32 start;
419 	u32 end;
420 	u32 val;
421 };
422 
423 /* the qos step is 100 */
424 static struct qm_typical_qos_table shaper_cir_s[] = {
425 	{100, 100, 4},
426 	{200, 200, 3},
427 	{300, 500, 2},
428 	{600, 1000, 1},
429 	{1100, 100000, 0},
430 };
431 
432 static struct qm_typical_qos_table shaper_cbs_s[] = {
433 	{100, 200, 9},
434 	{300, 500, 11},
435 	{600, 1000, 12},
436 	{1100, 10000, 16},
437 	{10100, 25000, 17},
438 	{25100, 50000, 18},
439 	{50100, 100000, 19}
440 };
441 
442 static void qm_irqs_unregister(struct hisi_qm *qm);
443 
444 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
445 {
446 	enum qm_state curr = atomic_read(&qm->status.flags);
447 	bool avail = false;
448 
449 	switch (curr) {
450 	case QM_INIT:
451 		if (new == QM_START || new == QM_CLOSE)
452 			avail = true;
453 		break;
454 	case QM_START:
455 		if (new == QM_STOP)
456 			avail = true;
457 		break;
458 	case QM_STOP:
459 		if (new == QM_CLOSE || new == QM_START)
460 			avail = true;
461 		break;
462 	default:
463 		break;
464 	}
465 
466 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
467 		qm_s[curr], qm_s[new]);
468 
469 	if (!avail)
470 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
471 			 qm_s[curr], qm_s[new]);
472 
473 	return avail;
474 }
475 
476 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
477 			      enum qp_state new)
478 {
479 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
480 	enum qp_state qp_curr = 0;
481 	bool avail = false;
482 
483 	if (qp)
484 		qp_curr = atomic_read(&qp->qp_status.flags);
485 
486 	switch (new) {
487 	case QP_INIT:
488 		if (qm_curr == QM_START || qm_curr == QM_INIT)
489 			avail = true;
490 		break;
491 	case QP_START:
492 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
493 		    (qm_curr == QM_START && qp_curr == QP_STOP))
494 			avail = true;
495 		break;
496 	case QP_STOP:
497 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
498 		    (qp_curr == QP_INIT))
499 			avail = true;
500 		break;
501 	case QP_CLOSE:
502 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
503 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
504 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
505 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
506 			avail = true;
507 		break;
508 	default:
509 		break;
510 	}
511 
512 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
513 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
514 
515 	if (!avail)
516 		dev_warn(&qm->pdev->dev,
517 			 "Can not change qp state from %s to %s in QM %s\n",
518 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
519 
520 	return avail;
521 }
522 
523 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
524 {
525 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
526 }
527 
528 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
529 {
530 	return qm->err_ini->get_dev_hw_err_status(qm);
531 }
532 
533 /* Check if the error causes the master ooo block */
534 static bool qm_check_dev_error(struct hisi_qm *qm)
535 {
536 	u32 val, dev_val;
537 
538 	if (qm->fun_type == QM_HW_VF)
539 		return false;
540 
541 	val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
542 	dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
543 
544 	return val || dev_val;
545 }
546 
547 static int qm_wait_reset_finish(struct hisi_qm *qm)
548 {
549 	int delay = 0;
550 
551 	/* All reset requests need to be queued for processing */
552 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
553 		msleep(++delay);
554 		if (delay > QM_RESET_WAIT_TIMEOUT)
555 			return -EBUSY;
556 	}
557 
558 	return 0;
559 }
560 
561 static int qm_reset_prepare_ready(struct hisi_qm *qm)
562 {
563 	struct pci_dev *pdev = qm->pdev;
564 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
565 
566 	/*
567 	 * PF and VF on host doesnot support resetting at the
568 	 * same time on Kunpeng920.
569 	 */
570 	if (qm->ver < QM_HW_V3)
571 		return qm_wait_reset_finish(pf_qm);
572 
573 	return qm_wait_reset_finish(qm);
574 }
575 
576 static void qm_reset_bit_clear(struct hisi_qm *qm)
577 {
578 	struct pci_dev *pdev = qm->pdev;
579 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
580 
581 	if (qm->ver < QM_HW_V3)
582 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
583 
584 	clear_bit(QM_RESETTING, &qm->misc_ctl);
585 }
586 
587 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
588 			   u64 base, u16 queue, bool op)
589 {
590 	mailbox->w0 = cpu_to_le16((cmd) |
591 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
592 		(0x1 << QM_MB_BUSY_SHIFT));
593 	mailbox->queue_num = cpu_to_le16(queue);
594 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
595 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
596 	mailbox->rsvd = 0;
597 }
598 
599 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
600 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
601 {
602 	u32 val;
603 
604 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
605 					  val, !((val >> QM_MB_BUSY_SHIFT) &
606 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
607 }
608 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
609 
610 /* 128 bit should be written to hardware at one time to trigger a mailbox */
611 static void qm_mb_write(struct hisi_qm *qm, const void *src)
612 {
613 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
614 	unsigned long tmp0 = 0, tmp1 = 0;
615 
616 	if (!IS_ENABLED(CONFIG_ARM64)) {
617 		memcpy_toio(fun_base, src, 16);
618 		dma_wmb();
619 		return;
620 	}
621 
622 	asm volatile("ldp %0, %1, %3\n"
623 		     "stp %0, %1, %2\n"
624 		     "dmb oshst\n"
625 		     : "=&r" (tmp0),
626 		       "=&r" (tmp1),
627 		       "+Q" (*((char __iomem *)fun_base))
628 		     : "Q" (*((char *)src))
629 		     : "memory");
630 }
631 
632 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
633 {
634 	int ret;
635 	u32 val;
636 
637 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
638 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
639 		ret = -EBUSY;
640 		goto mb_busy;
641 	}
642 
643 	qm_mb_write(qm, mailbox);
644 
645 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
646 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
647 		ret = -ETIMEDOUT;
648 		goto mb_busy;
649 	}
650 
651 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
652 	if (val & QM_MB_STATUS_MASK) {
653 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
654 		ret = -EIO;
655 		goto mb_busy;
656 	}
657 
658 	return 0;
659 
660 mb_busy:
661 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
662 	return ret;
663 }
664 
665 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
666 	       bool op)
667 {
668 	struct qm_mailbox mailbox;
669 	int ret;
670 
671 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
672 		queue, cmd, (unsigned long long)dma_addr);
673 
674 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
675 
676 	mutex_lock(&qm->mailbox_lock);
677 	ret = qm_mb_nolock(qm, &mailbox);
678 	mutex_unlock(&qm->mailbox_lock);
679 
680 	return ret;
681 }
682 EXPORT_SYMBOL_GPL(hisi_qm_mb);
683 
684 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
685 {
686 	u64 doorbell;
687 
688 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
689 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
690 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
691 
692 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
693 }
694 
695 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
696 {
697 	void __iomem *io_base = qm->io_base;
698 	u16 randata = 0;
699 	u64 doorbell;
700 
701 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
702 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
703 			  QM_DOORBELL_SQ_CQ_BASE_V2;
704 	else
705 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
706 
707 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
708 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
709 		   ((u64)index << QM_DB_INDEX_SHIFT_V2) |
710 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
711 
712 	writeq(doorbell, io_base);
713 }
714 
715 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
716 {
717 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
718 		qn, cmd, index);
719 
720 	qm->ops->qm_db(qm, qn, cmd, index, priority);
721 }
722 
723 static void qm_disable_clock_gate(struct hisi_qm *qm)
724 {
725 	u32 val;
726 
727 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
728 	if (qm->ver < QM_HW_V3)
729 		return;
730 
731 	val = readl(qm->io_base + QM_PM_CTRL);
732 	val |= QM_IDLE_DISABLE;
733 	writel(val, qm->io_base +  QM_PM_CTRL);
734 }
735 
736 static int qm_dev_mem_reset(struct hisi_qm *qm)
737 {
738 	u32 val;
739 
740 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
741 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
742 					  val & BIT(0), POLL_PERIOD,
743 					  POLL_TIMEOUT);
744 }
745 
746 /**
747  * hisi_qm_get_hw_info() - Get device information.
748  * @qm: The qm which want to get information.
749  * @info_table: Array for storing device information.
750  * @index: Index in info_table.
751  * @is_read: Whether read from reg, 0: not support read from reg.
752  *
753  * This function returns device information the caller needs.
754  */
755 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
756 			const struct hisi_qm_cap_info *info_table,
757 			u32 index, bool is_read)
758 {
759 	u32 val;
760 
761 	switch (qm->ver) {
762 	case QM_HW_V1:
763 		return info_table[index].v1_val;
764 	case QM_HW_V2:
765 		return info_table[index].v2_val;
766 	default:
767 		if (!is_read)
768 			return info_table[index].v3_val;
769 
770 		val = readl(qm->io_base + info_table[index].offset);
771 		return (val >> info_table[index].shift) & info_table[index].mask;
772 	}
773 }
774 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
775 
776 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
777 			     u16 *high_bits, enum qm_basic_type type)
778 {
779 	u32 depth;
780 
781 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
782 	*low_bits = depth & QM_XQ_DEPTH_MASK;
783 	*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
784 }
785 
786 static u32 qm_get_irq_num(struct hisi_qm *qm)
787 {
788 	if (qm->fun_type == QM_HW_PF)
789 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
790 
791 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
792 }
793 
794 static int qm_pm_get_sync(struct hisi_qm *qm)
795 {
796 	struct device *dev = &qm->pdev->dev;
797 	int ret;
798 
799 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
800 		return 0;
801 
802 	ret = pm_runtime_resume_and_get(dev);
803 	if (ret < 0) {
804 		dev_err(dev, "failed to get_sync(%d).\n", ret);
805 		return ret;
806 	}
807 
808 	return 0;
809 }
810 
811 static void qm_pm_put_sync(struct hisi_qm *qm)
812 {
813 	struct device *dev = &qm->pdev->dev;
814 
815 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
816 		return;
817 
818 	pm_runtime_mark_last_busy(dev);
819 	pm_runtime_put_autosuspend(dev);
820 }
821 
822 static void qm_cq_head_update(struct hisi_qp *qp)
823 {
824 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
825 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
826 		qp->qp_status.cq_head = 0;
827 	} else {
828 		qp->qp_status.cq_head++;
829 	}
830 }
831 
832 static void qm_poll_req_cb(struct hisi_qp *qp)
833 {
834 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
835 	struct hisi_qm *qm = qp->qm;
836 
837 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
838 		dma_rmb();
839 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
840 			   le16_to_cpu(cqe->sq_head));
841 		qm_cq_head_update(qp);
842 		cqe = qp->cqe + qp->qp_status.cq_head;
843 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
844 		      qp->qp_status.cq_head, 0);
845 		atomic_dec(&qp->qp_status.used);
846 	}
847 
848 	/* set c_flag */
849 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
850 }
851 
852 static int qm_get_complete_eqe_num(struct hisi_qm_poll_data *poll_data)
853 {
854 	struct hisi_qm *qm = poll_data->qm;
855 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
856 	u16 eq_depth = qm->eq_depth;
857 	int eqe_num = 0;
858 	u16 cqn;
859 
860 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
861 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
862 		poll_data->qp_finish_id[eqe_num] = cqn;
863 		eqe_num++;
864 
865 		if (qm->status.eq_head == eq_depth - 1) {
866 			qm->status.eqc_phase = !qm->status.eqc_phase;
867 			eqe = qm->eqe;
868 			qm->status.eq_head = 0;
869 		} else {
870 			eqe++;
871 			qm->status.eq_head++;
872 		}
873 
874 		if (eqe_num == (eq_depth >> 1) - 1)
875 			break;
876 	}
877 
878 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
879 
880 	return eqe_num;
881 }
882 
883 static void qm_work_process(struct work_struct *work)
884 {
885 	struct hisi_qm_poll_data *poll_data =
886 		container_of(work, struct hisi_qm_poll_data, work);
887 	struct hisi_qm *qm = poll_data->qm;
888 	struct hisi_qp *qp;
889 	int eqe_num, i;
890 
891 	/* Get qp id of completed tasks and re-enable the interrupt. */
892 	eqe_num = qm_get_complete_eqe_num(poll_data);
893 	for (i = eqe_num - 1; i >= 0; i--) {
894 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
895 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
896 			continue;
897 
898 		if (qp->event_cb) {
899 			qp->event_cb(qp);
900 			continue;
901 		}
902 
903 		if (likely(qp->req_cb))
904 			qm_poll_req_cb(qp);
905 	}
906 }
907 
908 static bool do_qm_eq_irq(struct hisi_qm *qm)
909 {
910 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
911 	struct hisi_qm_poll_data *poll_data;
912 	u16 cqn;
913 
914 	if (!readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
915 		return false;
916 
917 	if (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
918 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
919 		poll_data = &qm->poll_data[cqn];
920 		queue_work(qm->wq, &poll_data->work);
921 
922 		return true;
923 	}
924 
925 	return false;
926 }
927 
928 static irqreturn_t qm_eq_irq(int irq, void *data)
929 {
930 	struct hisi_qm *qm = data;
931 	bool ret;
932 
933 	ret = do_qm_eq_irq(qm);
934 	if (ret)
935 		return IRQ_HANDLED;
936 
937 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
938 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
939 
940 	return IRQ_NONE;
941 }
942 
943 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
944 {
945 	struct hisi_qm *qm = data;
946 	u32 val;
947 
948 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
949 	val &= QM_IFC_INT_STATUS_MASK;
950 	if (!val)
951 		return IRQ_NONE;
952 
953 	schedule_work(&qm->cmd_process);
954 
955 	return IRQ_HANDLED;
956 }
957 
958 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
959 {
960 	u32 *addr;
961 
962 	if (qp->is_in_kernel)
963 		return;
964 
965 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
966 	*addr = 1;
967 
968 	/* make sure setup is completed */
969 	smp_wmb();
970 }
971 
972 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
973 {
974 	struct hisi_qp *qp = &qm->qp_array[qp_id];
975 
976 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
977 	hisi_qm_stop_qp(qp);
978 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
979 }
980 
981 static void qm_reset_function(struct hisi_qm *qm)
982 {
983 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
984 	struct device *dev = &qm->pdev->dev;
985 	int ret;
986 
987 	if (qm_check_dev_error(pf_qm))
988 		return;
989 
990 	ret = qm_reset_prepare_ready(qm);
991 	if (ret) {
992 		dev_err(dev, "reset function not ready\n");
993 		return;
994 	}
995 
996 	ret = hisi_qm_stop(qm, QM_FLR);
997 	if (ret) {
998 		dev_err(dev, "failed to stop qm when reset function\n");
999 		goto clear_bit;
1000 	}
1001 
1002 	ret = hisi_qm_start(qm);
1003 	if (ret)
1004 		dev_err(dev, "failed to start qm when reset function\n");
1005 
1006 clear_bit:
1007 	qm_reset_bit_clear(qm);
1008 }
1009 
1010 static irqreturn_t qm_aeq_thread(int irq, void *data)
1011 {
1012 	struct hisi_qm *qm = data;
1013 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1014 	u16 aeq_depth = qm->aeq_depth;
1015 	u32 type, qp_id;
1016 
1017 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1018 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
1019 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1020 
1021 		switch (type) {
1022 		case QM_EQ_OVERFLOW:
1023 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1024 			qm_reset_function(qm);
1025 			return IRQ_HANDLED;
1026 		case QM_CQ_OVERFLOW:
1027 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1028 				qp_id);
1029 			fallthrough;
1030 		case QM_CQE_ERROR:
1031 			qm_disable_qp(qm, qp_id);
1032 			break;
1033 		default:
1034 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1035 				type);
1036 			break;
1037 		}
1038 
1039 		if (qm->status.aeq_head == aeq_depth - 1) {
1040 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1041 			aeqe = qm->aeqe;
1042 			qm->status.aeq_head = 0;
1043 		} else {
1044 			aeqe++;
1045 			qm->status.aeq_head++;
1046 		}
1047 	}
1048 
1049 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1050 
1051 	return IRQ_HANDLED;
1052 }
1053 
1054 static irqreturn_t qm_aeq_irq(int irq, void *data)
1055 {
1056 	struct hisi_qm *qm = data;
1057 
1058 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1059 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
1060 		return IRQ_NONE;
1061 
1062 	return IRQ_WAKE_THREAD;
1063 }
1064 
1065 static void qm_init_qp_status(struct hisi_qp *qp)
1066 {
1067 	struct hisi_qp_status *qp_status = &qp->qp_status;
1068 
1069 	qp_status->sq_tail = 0;
1070 	qp_status->cq_head = 0;
1071 	qp_status->cqc_phase = true;
1072 	atomic_set(&qp_status->used, 0);
1073 }
1074 
1075 static void qm_init_prefetch(struct hisi_qm *qm)
1076 {
1077 	struct device *dev = &qm->pdev->dev;
1078 	u32 page_type = 0x0;
1079 
1080 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1081 		return;
1082 
1083 	switch (PAGE_SIZE) {
1084 	case SZ_4K:
1085 		page_type = 0x0;
1086 		break;
1087 	case SZ_16K:
1088 		page_type = 0x1;
1089 		break;
1090 	case SZ_64K:
1091 		page_type = 0x2;
1092 		break;
1093 	default:
1094 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1095 			PAGE_SIZE);
1096 	}
1097 
1098 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1099 }
1100 
1101 /*
1102  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1103  * is the expected qos calculated.
1104  * the formula:
1105  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1106  *
1107  *		IR_b * (2 ^ IR_u) * 8000
1108  * IR(Mbps) = -------------------------
1109  *		  Tick * (2 ^ IR_s)
1110  */
1111 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1112 {
1113 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1114 					(QM_QOS_TICK * (1 << cir_s));
1115 }
1116 
1117 static u32 acc_shaper_calc_cbs_s(u32 ir)
1118 {
1119 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1120 	int i;
1121 
1122 	for (i = 0; i < table_size; i++) {
1123 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1124 			return shaper_cbs_s[i].val;
1125 	}
1126 
1127 	return QM_SHAPER_MIN_CBS_S;
1128 }
1129 
1130 static u32 acc_shaper_calc_cir_s(u32 ir)
1131 {
1132 	int table_size = ARRAY_SIZE(shaper_cir_s);
1133 	int i;
1134 
1135 	for (i = 0; i < table_size; i++) {
1136 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1137 			return shaper_cir_s[i].val;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1144 {
1145 	u32 cir_b, cir_u, cir_s, ir_calc;
1146 	u32 error_rate;
1147 
1148 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1149 	cir_s = acc_shaper_calc_cir_s(ir);
1150 
1151 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1152 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1153 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1154 
1155 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1156 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1157 				factor->cir_b = cir_b;
1158 				factor->cir_u = cir_u;
1159 				factor->cir_s = cir_s;
1160 				return 0;
1161 			}
1162 		}
1163 	}
1164 
1165 	return -EINVAL;
1166 }
1167 
1168 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1169 			    u32 number, struct qm_shaper_factor *factor)
1170 {
1171 	u64 tmp = 0;
1172 
1173 	if (number > 0) {
1174 		switch (type) {
1175 		case SQC_VFT:
1176 			if (qm->ver == QM_HW_V1) {
1177 				tmp = QM_SQC_VFT_BUF_SIZE	|
1178 				      QM_SQC_VFT_SQC_SIZE	|
1179 				      QM_SQC_VFT_INDEX_NUMBER	|
1180 				      QM_SQC_VFT_VALID		|
1181 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1182 			} else {
1183 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1184 				      QM_SQC_VFT_VALID |
1185 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1186 			}
1187 			break;
1188 		case CQC_VFT:
1189 			if (qm->ver == QM_HW_V1) {
1190 				tmp = QM_CQC_VFT_BUF_SIZE	|
1191 				      QM_CQC_VFT_SQC_SIZE	|
1192 				      QM_CQC_VFT_INDEX_NUMBER	|
1193 				      QM_CQC_VFT_VALID;
1194 			} else {
1195 				tmp = QM_CQC_VFT_VALID;
1196 			}
1197 			break;
1198 		case SHAPER_VFT:
1199 			if (factor) {
1200 				tmp = factor->cir_b |
1201 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1202 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1203 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1204 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1205 			}
1206 			break;
1207 		}
1208 	}
1209 
1210 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1211 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1212 }
1213 
1214 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1215 			     u32 fun_num, u32 base, u32 number)
1216 {
1217 	struct qm_shaper_factor *factor = NULL;
1218 	unsigned int val;
1219 	int ret;
1220 
1221 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1222 		factor = &qm->factor[fun_num];
1223 
1224 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1225 					 val & BIT(0), POLL_PERIOD,
1226 					 POLL_TIMEOUT);
1227 	if (ret)
1228 		return ret;
1229 
1230 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1231 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1232 	if (type == SHAPER_VFT)
1233 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1234 
1235 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1236 
1237 	qm_vft_data_cfg(qm, type, base, number, factor);
1238 
1239 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1240 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1241 
1242 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1243 					  val & BIT(0), POLL_PERIOD,
1244 					  POLL_TIMEOUT);
1245 }
1246 
1247 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1248 {
1249 	u32 qos = qm->factor[fun_num].func_qos;
1250 	int ret, i;
1251 
1252 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1253 	if (ret) {
1254 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1255 		return ret;
1256 	}
1257 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1258 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1259 		/* The base number of queue reuse for different alg type */
1260 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1261 		if (ret)
1262 			return ret;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 /* The config should be conducted after qm_dev_mem_reset() */
1269 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1270 			      u32 number)
1271 {
1272 	int ret, i;
1273 
1274 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1275 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1276 		if (ret)
1277 			return ret;
1278 	}
1279 
1280 	/* init default shaper qos val */
1281 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1282 		ret = qm_shaper_init_vft(qm, fun_num);
1283 		if (ret)
1284 			goto back_sqc_cqc;
1285 	}
1286 
1287 	return 0;
1288 back_sqc_cqc:
1289 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1290 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1291 
1292 	return ret;
1293 }
1294 
1295 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1296 {
1297 	u64 sqc_vft;
1298 	int ret;
1299 
1300 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1301 	if (ret)
1302 		return ret;
1303 
1304 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1305 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1306 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1307 	*number = (QM_SQC_VFT_NUM_MASK_V2 &
1308 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1309 
1310 	return 0;
1311 }
1312 
1313 void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1314 			  dma_addr_t *dma_addr)
1315 {
1316 	struct device *dev = &qm->pdev->dev;
1317 	void *ctx_addr;
1318 
1319 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1320 	if (!ctx_addr)
1321 		return ERR_PTR(-ENOMEM);
1322 
1323 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1324 	if (dma_mapping_error(dev, *dma_addr)) {
1325 		dev_err(dev, "DMA mapping error!\n");
1326 		kfree(ctx_addr);
1327 		return ERR_PTR(-ENOMEM);
1328 	}
1329 
1330 	return ctx_addr;
1331 }
1332 
1333 void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1334 			const void *ctx_addr, dma_addr_t *dma_addr)
1335 {
1336 	struct device *dev = &qm->pdev->dev;
1337 
1338 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1339 	kfree(ctx_addr);
1340 }
1341 
1342 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1343 {
1344 	return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1345 }
1346 
1347 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1348 {
1349 	return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1350 }
1351 
1352 static void qm_hw_error_init_v1(struct hisi_qm *qm)
1353 {
1354 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1355 }
1356 
1357 static void qm_hw_error_cfg(struct hisi_qm *qm)
1358 {
1359 	struct hisi_qm_err_info *err_info = &qm->err_info;
1360 
1361 	qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
1362 	/* clear QM hw residual error source */
1363 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1364 
1365 	/* configure error type */
1366 	writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
1367 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1368 	writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1369 	writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
1370 }
1371 
1372 static void qm_hw_error_init_v2(struct hisi_qm *qm)
1373 {
1374 	u32 irq_unmask;
1375 
1376 	qm_hw_error_cfg(qm);
1377 
1378 	irq_unmask = ~qm->error_mask;
1379 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1380 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1381 }
1382 
1383 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1384 {
1385 	u32 irq_mask = qm->error_mask;
1386 
1387 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1388 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1389 }
1390 
1391 static void qm_hw_error_init_v3(struct hisi_qm *qm)
1392 {
1393 	u32 irq_unmask;
1394 
1395 	qm_hw_error_cfg(qm);
1396 
1397 	/* enable close master ooo when hardware error happened */
1398 	writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1399 
1400 	irq_unmask = ~qm->error_mask;
1401 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1402 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1403 }
1404 
1405 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1406 {
1407 	u32 irq_mask = qm->error_mask;
1408 
1409 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1410 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1411 
1412 	/* disable close master ooo when hardware error happened */
1413 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1414 }
1415 
1416 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1417 {
1418 	const struct hisi_qm_hw_error *err;
1419 	struct device *dev = &qm->pdev->dev;
1420 	u32 reg_val, type, vf_num;
1421 	int i;
1422 
1423 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1424 		err = &qm_hw_error[i];
1425 		if (!(err->int_msk & error_status))
1426 			continue;
1427 
1428 		dev_err(dev, "%s [error status=0x%x] found\n",
1429 			err->msg, err->int_msk);
1430 
1431 		if (err->int_msk & QM_DB_TIMEOUT) {
1432 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1433 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1434 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1435 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1436 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
1437 				qm_db_timeout[type], vf_num);
1438 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1439 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1440 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1441 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1442 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1443 
1444 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1445 				dev_err(dev, "qm %s fifo overflow in function %u\n",
1446 					qm_fifo_overflow[type], vf_num);
1447 			else
1448 				dev_err(dev, "unknown error type\n");
1449 		}
1450 	}
1451 }
1452 
1453 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1454 {
1455 	u32 error_status, tmp;
1456 
1457 	/* read err sts */
1458 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1459 	error_status = qm->error_mask & tmp;
1460 
1461 	if (error_status) {
1462 		if (error_status & QM_ECC_MBIT)
1463 			qm->err_status.is_qm_ecc_mbit = true;
1464 
1465 		qm_log_hw_error(qm, error_status);
1466 		if (error_status & qm->err_info.qm_reset_mask)
1467 			return ACC_ERR_NEED_RESET;
1468 
1469 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1470 		writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1471 	}
1472 
1473 	return ACC_ERR_RECOVERED;
1474 }
1475 
1476 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1477 {
1478 	struct qm_mailbox mailbox;
1479 	int ret;
1480 
1481 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1482 	mutex_lock(&qm->mailbox_lock);
1483 	ret = qm_mb_nolock(qm, &mailbox);
1484 	if (ret)
1485 		goto err_unlock;
1486 
1487 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1488 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1489 
1490 err_unlock:
1491 	mutex_unlock(&qm->mailbox_lock);
1492 	return ret;
1493 }
1494 
1495 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1496 {
1497 	u32 val;
1498 
1499 	if (qm->fun_type == QM_HW_PF)
1500 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1501 
1502 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1503 	val |= QM_IFC_INT_SOURCE_MASK;
1504 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1505 }
1506 
1507 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1508 {
1509 	struct device *dev = &qm->pdev->dev;
1510 	u32 cmd;
1511 	u64 msg;
1512 	int ret;
1513 
1514 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
1515 	if (ret) {
1516 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
1517 		return;
1518 	}
1519 
1520 	cmd = msg & QM_MB_CMD_DATA_MASK;
1521 	switch (cmd) {
1522 	case QM_VF_PREPARE_FAIL:
1523 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1524 		break;
1525 	case QM_VF_START_FAIL:
1526 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1527 		break;
1528 	case QM_VF_PREPARE_DONE:
1529 	case QM_VF_START_DONE:
1530 		break;
1531 	default:
1532 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
1533 		break;
1534 	}
1535 }
1536 
1537 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1538 {
1539 	struct device *dev = &qm->pdev->dev;
1540 	u32 vfs_num = qm->vfs_num;
1541 	int cnt = 0;
1542 	int ret = 0;
1543 	u64 val;
1544 	u32 i;
1545 
1546 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1547 		return 0;
1548 
1549 	while (true) {
1550 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1551 		/* All VFs send command to PF, break */
1552 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1553 			break;
1554 
1555 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1556 			ret = -EBUSY;
1557 			break;
1558 		}
1559 
1560 		msleep(QM_WAIT_DST_ACK);
1561 	}
1562 
1563 	/* PF check VFs msg */
1564 	for (i = 1; i <= vfs_num; i++) {
1565 		if (val & BIT(i))
1566 			qm_handle_vf_msg(qm, i);
1567 		else
1568 			dev_err(dev, "VF(%u) not ping PF!\n", i);
1569 	}
1570 
1571 	/* PF clear interrupt to ack VFs */
1572 	qm_clear_cmd_interrupt(qm, val);
1573 
1574 	return ret;
1575 }
1576 
1577 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1578 {
1579 	u32 val;
1580 
1581 	val = readl(qm->io_base + QM_IFC_INT_CFG);
1582 	val &= ~QM_IFC_SEND_ALL_VFS;
1583 	val |= fun_num;
1584 	writel(val, qm->io_base + QM_IFC_INT_CFG);
1585 
1586 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
1587 	val |= QM_IFC_INT_SET_MASK;
1588 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
1589 }
1590 
1591 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1592 {
1593 	u32 val;
1594 
1595 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
1596 	val |= QM_IFC_INT_SET_MASK;
1597 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
1598 }
1599 
1600 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
1601 {
1602 	struct device *dev = &qm->pdev->dev;
1603 	struct qm_mailbox mailbox;
1604 	int cnt = 0;
1605 	u64 val;
1606 	int ret;
1607 
1608 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
1609 	mutex_lock(&qm->mailbox_lock);
1610 	ret = qm_mb_nolock(qm, &mailbox);
1611 	if (ret) {
1612 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1613 		goto err_unlock;
1614 	}
1615 
1616 	qm_trigger_vf_interrupt(qm, fun_num);
1617 	while (true) {
1618 		msleep(QM_WAIT_DST_ACK);
1619 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1620 		/* if VF respond, PF notifies VF successfully. */
1621 		if (!(val & BIT(fun_num)))
1622 			goto err_unlock;
1623 
1624 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1625 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1626 			ret = -ETIMEDOUT;
1627 			break;
1628 		}
1629 	}
1630 
1631 err_unlock:
1632 	mutex_unlock(&qm->mailbox_lock);
1633 	return ret;
1634 }
1635 
1636 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
1637 {
1638 	struct device *dev = &qm->pdev->dev;
1639 	u32 vfs_num = qm->vfs_num;
1640 	struct qm_mailbox mailbox;
1641 	u64 val = 0;
1642 	int cnt = 0;
1643 	int ret;
1644 	u32 i;
1645 
1646 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
1647 	mutex_lock(&qm->mailbox_lock);
1648 	/* PF sends command to all VFs by mailbox */
1649 	ret = qm_mb_nolock(qm, &mailbox);
1650 	if (ret) {
1651 		dev_err(dev, "failed to send command to VFs!\n");
1652 		mutex_unlock(&qm->mailbox_lock);
1653 		return ret;
1654 	}
1655 
1656 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1657 	while (true) {
1658 		msleep(QM_WAIT_DST_ACK);
1659 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1660 		/* If all VFs acked, PF notifies VFs successfully. */
1661 		if (!(val & GENMASK(vfs_num, 1))) {
1662 			mutex_unlock(&qm->mailbox_lock);
1663 			return 0;
1664 		}
1665 
1666 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
1667 			break;
1668 	}
1669 
1670 	mutex_unlock(&qm->mailbox_lock);
1671 
1672 	/* Check which vf respond timeout. */
1673 	for (i = 1; i <= vfs_num; i++) {
1674 		if (val & BIT(i))
1675 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
1676 	}
1677 
1678 	return -ETIMEDOUT;
1679 }
1680 
1681 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
1682 {
1683 	struct qm_mailbox mailbox;
1684 	int cnt = 0;
1685 	u32 val;
1686 	int ret;
1687 
1688 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
1689 	mutex_lock(&qm->mailbox_lock);
1690 	ret = qm_mb_nolock(qm, &mailbox);
1691 	if (ret) {
1692 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
1693 		goto unlock;
1694 	}
1695 
1696 	qm_trigger_pf_interrupt(qm);
1697 	/* Waiting for PF response */
1698 	while (true) {
1699 		msleep(QM_WAIT_DST_ACK);
1700 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
1701 		if (!(val & QM_IFC_INT_STATUS_MASK))
1702 			break;
1703 
1704 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1705 			ret = -ETIMEDOUT;
1706 			break;
1707 		}
1708 	}
1709 
1710 unlock:
1711 	mutex_unlock(&qm->mailbox_lock);
1712 	return ret;
1713 }
1714 
1715 static int qm_stop_qp(struct hisi_qp *qp)
1716 {
1717 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1718 }
1719 
1720 static int qm_set_msi(struct hisi_qm *qm, bool set)
1721 {
1722 	struct pci_dev *pdev = qm->pdev;
1723 
1724 	if (set) {
1725 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1726 				       0);
1727 	} else {
1728 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1729 				       ACC_PEH_MSI_DISABLE);
1730 		if (qm->err_status.is_qm_ecc_mbit ||
1731 		    qm->err_status.is_dev_ecc_mbit)
1732 			return 0;
1733 
1734 		mdelay(1);
1735 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1736 			return -EFAULT;
1737 	}
1738 
1739 	return 0;
1740 }
1741 
1742 static void qm_wait_msi_finish(struct hisi_qm *qm)
1743 {
1744 	struct pci_dev *pdev = qm->pdev;
1745 	u32 cmd = ~0;
1746 	int cnt = 0;
1747 	u32 val;
1748 	int ret;
1749 
1750 	while (true) {
1751 		pci_read_config_dword(pdev, pdev->msi_cap +
1752 				      PCI_MSI_PENDING_64, &cmd);
1753 		if (!cmd)
1754 			break;
1755 
1756 		if (++cnt > MAX_WAIT_COUNTS) {
1757 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
1758 			break;
1759 		}
1760 
1761 		udelay(1);
1762 	}
1763 
1764 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1765 					 val, !(val & QM_PEH_DFX_MASK),
1766 					 POLL_PERIOD, POLL_TIMEOUT);
1767 	if (ret)
1768 		pci_warn(pdev, "failed to empty PEH MSI!\n");
1769 
1770 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1771 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
1772 					 POLL_PERIOD, POLL_TIMEOUT);
1773 	if (ret)
1774 		pci_warn(pdev, "failed to finish MSI operation!\n");
1775 }
1776 
1777 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1778 {
1779 	struct pci_dev *pdev = qm->pdev;
1780 	int ret = -ETIMEDOUT;
1781 	u32 cmd, i;
1782 
1783 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1784 	if (set)
1785 		cmd |= QM_MSI_CAP_ENABLE;
1786 	else
1787 		cmd &= ~QM_MSI_CAP_ENABLE;
1788 
1789 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1790 	if (set) {
1791 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1792 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1793 			if (cmd & QM_MSI_CAP_ENABLE)
1794 				return 0;
1795 
1796 			udelay(1);
1797 		}
1798 	} else {
1799 		udelay(WAIT_PERIOD_US_MIN);
1800 		qm_wait_msi_finish(qm);
1801 		ret = 0;
1802 	}
1803 
1804 	return ret;
1805 }
1806 
1807 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1808 	.qm_db = qm_db_v1,
1809 	.hw_error_init = qm_hw_error_init_v1,
1810 	.set_msi = qm_set_msi,
1811 };
1812 
1813 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1814 	.get_vft = qm_get_vft_v2,
1815 	.qm_db = qm_db_v2,
1816 	.hw_error_init = qm_hw_error_init_v2,
1817 	.hw_error_uninit = qm_hw_error_uninit_v2,
1818 	.hw_error_handle = qm_hw_error_handle_v2,
1819 	.set_msi = qm_set_msi,
1820 };
1821 
1822 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1823 	.get_vft = qm_get_vft_v2,
1824 	.qm_db = qm_db_v2,
1825 	.hw_error_init = qm_hw_error_init_v3,
1826 	.hw_error_uninit = qm_hw_error_uninit_v3,
1827 	.hw_error_handle = qm_hw_error_handle_v2,
1828 	.set_msi = qm_set_msi_v3,
1829 };
1830 
1831 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1832 {
1833 	struct hisi_qp_status *qp_status = &qp->qp_status;
1834 	u16 sq_tail = qp_status->sq_tail;
1835 
1836 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1837 		return NULL;
1838 
1839 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1840 }
1841 
1842 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1843 {
1844 	u64 *addr;
1845 
1846 	/* Use last 64 bits of DUS to reset status. */
1847 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
1848 	*addr = 0;
1849 }
1850 
1851 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1852 {
1853 	struct device *dev = &qm->pdev->dev;
1854 	struct hisi_qp *qp;
1855 	int qp_id;
1856 
1857 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
1858 		return ERR_PTR(-EPERM);
1859 
1860 	if (qm->qp_in_used == qm->qp_num) {
1861 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1862 				     qm->qp_num);
1863 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1864 		return ERR_PTR(-EBUSY);
1865 	}
1866 
1867 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1868 	if (qp_id < 0) {
1869 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1870 				    qm->qp_num);
1871 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1872 		return ERR_PTR(-EBUSY);
1873 	}
1874 
1875 	qp = &qm->qp_array[qp_id];
1876 	hisi_qm_unset_hw_reset(qp);
1877 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
1878 
1879 	qp->event_cb = NULL;
1880 	qp->req_cb = NULL;
1881 	qp->qp_id = qp_id;
1882 	qp->alg_type = alg_type;
1883 	qp->is_in_kernel = true;
1884 	qm->qp_in_used++;
1885 	atomic_set(&qp->qp_status.flags, QP_INIT);
1886 
1887 	return qp;
1888 }
1889 
1890 /**
1891  * hisi_qm_create_qp() - Create a queue pair from qm.
1892  * @qm: The qm we create a qp from.
1893  * @alg_type: Accelerator specific algorithm type in sqc.
1894  *
1895  * Return created qp, negative error code if failed.
1896  */
1897 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1898 {
1899 	struct hisi_qp *qp;
1900 	int ret;
1901 
1902 	ret = qm_pm_get_sync(qm);
1903 	if (ret)
1904 		return ERR_PTR(ret);
1905 
1906 	down_write(&qm->qps_lock);
1907 	qp = qm_create_qp_nolock(qm, alg_type);
1908 	up_write(&qm->qps_lock);
1909 
1910 	if (IS_ERR(qp))
1911 		qm_pm_put_sync(qm);
1912 
1913 	return qp;
1914 }
1915 
1916 /**
1917  * hisi_qm_release_qp() - Release a qp back to its qm.
1918  * @qp: The qp we want to release.
1919  *
1920  * This function releases the resource of a qp.
1921  */
1922 static void hisi_qm_release_qp(struct hisi_qp *qp)
1923 {
1924 	struct hisi_qm *qm = qp->qm;
1925 
1926 	down_write(&qm->qps_lock);
1927 
1928 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
1929 		up_write(&qm->qps_lock);
1930 		return;
1931 	}
1932 
1933 	qm->qp_in_used--;
1934 	idr_remove(&qm->qp_idr, qp->qp_id);
1935 
1936 	up_write(&qm->qps_lock);
1937 
1938 	qm_pm_put_sync(qm);
1939 }
1940 
1941 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1942 {
1943 	struct hisi_qm *qm = qp->qm;
1944 	struct device *dev = &qm->pdev->dev;
1945 	enum qm_hw_ver ver = qm->ver;
1946 	struct qm_sqc *sqc;
1947 	dma_addr_t sqc_dma;
1948 	int ret;
1949 
1950 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
1951 	if (!sqc)
1952 		return -ENOMEM;
1953 
1954 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
1955 	if (ver == QM_HW_V1) {
1956 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1957 		sqc->w8 = cpu_to_le16(qp->sq_depth - 1);
1958 	} else {
1959 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
1960 		sqc->w8 = 0; /* rand_qc */
1961 	}
1962 	sqc->cq_num = cpu_to_le16(qp_id);
1963 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1964 
1965 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1966 		sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
1967 				       QM_QC_PASID_ENABLE_SHIFT);
1968 
1969 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
1970 				 DMA_TO_DEVICE);
1971 	if (dma_mapping_error(dev, sqc_dma)) {
1972 		kfree(sqc);
1973 		return -ENOMEM;
1974 	}
1975 
1976 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
1977 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
1978 	kfree(sqc);
1979 
1980 	return ret;
1981 }
1982 
1983 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1984 {
1985 	struct hisi_qm *qm = qp->qm;
1986 	struct device *dev = &qm->pdev->dev;
1987 	enum qm_hw_ver ver = qm->ver;
1988 	struct qm_cqc *cqc;
1989 	dma_addr_t cqc_dma;
1990 	int ret;
1991 
1992 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
1993 	if (!cqc)
1994 		return -ENOMEM;
1995 
1996 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
1997 	if (ver == QM_HW_V1) {
1998 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
1999 							QM_QC_CQE_SIZE));
2000 		cqc->w8 = cpu_to_le16(qp->cq_depth - 1);
2001 	} else {
2002 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
2003 		cqc->w8 = 0; /* rand_qc */
2004 	}
2005 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2006 
2007 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2008 		cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2009 
2010 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
2011 				 DMA_TO_DEVICE);
2012 	if (dma_mapping_error(dev, cqc_dma)) {
2013 		kfree(cqc);
2014 		return -ENOMEM;
2015 	}
2016 
2017 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
2018 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
2019 	kfree(cqc);
2020 
2021 	return ret;
2022 }
2023 
2024 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2025 {
2026 	int ret;
2027 
2028 	qm_init_qp_status(qp);
2029 
2030 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2031 	if (ret)
2032 		return ret;
2033 
2034 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
2035 }
2036 
2037 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2038 {
2039 	struct hisi_qm *qm = qp->qm;
2040 	struct device *dev = &qm->pdev->dev;
2041 	int qp_id = qp->qp_id;
2042 	u32 pasid = arg;
2043 	int ret;
2044 
2045 	if (!qm_qp_avail_state(qm, qp, QP_START))
2046 		return -EPERM;
2047 
2048 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2049 	if (ret)
2050 		return ret;
2051 
2052 	atomic_set(&qp->qp_status.flags, QP_START);
2053 	dev_dbg(dev, "queue %d started\n", qp_id);
2054 
2055 	return 0;
2056 }
2057 
2058 /**
2059  * hisi_qm_start_qp() - Start a qp into running.
2060  * @qp: The qp we want to start to run.
2061  * @arg: Accelerator specific argument.
2062  *
2063  * After this function, qp can receive request from user. Return 0 if
2064  * successful, negative error code if failed.
2065  */
2066 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2067 {
2068 	struct hisi_qm *qm = qp->qm;
2069 	int ret;
2070 
2071 	down_write(&qm->qps_lock);
2072 	ret = qm_start_qp_nolock(qp, arg);
2073 	up_write(&qm->qps_lock);
2074 
2075 	return ret;
2076 }
2077 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2078 
2079 /**
2080  * qp_stop_fail_cb() - call request cb.
2081  * @qp: stopped failed qp.
2082  *
2083  * Callback function should be called whether task completed or not.
2084  */
2085 static void qp_stop_fail_cb(struct hisi_qp *qp)
2086 {
2087 	int qp_used = atomic_read(&qp->qp_status.used);
2088 	u16 cur_tail = qp->qp_status.sq_tail;
2089 	u16 sq_depth = qp->sq_depth;
2090 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2091 	struct hisi_qm *qm = qp->qm;
2092 	u16 pos;
2093 	int i;
2094 
2095 	for (i = 0; i < qp_used; i++) {
2096 		pos = (i + cur_head) % sq_depth;
2097 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2098 		atomic_dec(&qp->qp_status.used);
2099 	}
2100 }
2101 
2102 /**
2103  * qm_drain_qp() - Drain a qp.
2104  * @qp: The qp we want to drain.
2105  *
2106  * Determine whether the queue is cleared by judging the tail pointers of
2107  * sq and cq.
2108  */
2109 static int qm_drain_qp(struct hisi_qp *qp)
2110 {
2111 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
2112 	struct hisi_qm *qm = qp->qm;
2113 	struct device *dev = &qm->pdev->dev;
2114 	struct qm_sqc *sqc;
2115 	struct qm_cqc *cqc;
2116 	dma_addr_t dma_addr;
2117 	int ret = 0, i = 0;
2118 	void *addr;
2119 
2120 	/* No need to judge if master OOO is blocked. */
2121 	if (qm_check_dev_error(qm))
2122 		return 0;
2123 
2124 	/* Kunpeng930 supports drain qp by device */
2125 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2126 		ret = qm_stop_qp(qp);
2127 		if (ret)
2128 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
2129 		return ret;
2130 	}
2131 
2132 	addr = hisi_qm_ctx_alloc(qm, size, &dma_addr);
2133 	if (IS_ERR(addr)) {
2134 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
2135 		return -ENOMEM;
2136 	}
2137 
2138 	while (++i) {
2139 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
2140 		if (ret) {
2141 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2142 			break;
2143 		}
2144 		sqc = addr;
2145 
2146 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
2147 				      qp->qp_id);
2148 		if (ret) {
2149 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2150 			break;
2151 		}
2152 		cqc = addr + sizeof(struct qm_sqc);
2153 
2154 		if ((sqc->tail == cqc->tail) &&
2155 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2156 			break;
2157 
2158 		if (i == MAX_WAIT_COUNTS) {
2159 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
2160 			ret = -EBUSY;
2161 			break;
2162 		}
2163 
2164 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2165 	}
2166 
2167 	hisi_qm_ctx_free(qm, size, addr, &dma_addr);
2168 
2169 	return ret;
2170 }
2171 
2172 static int qm_stop_qp_nolock(struct hisi_qp *qp)
2173 {
2174 	struct device *dev = &qp->qm->pdev->dev;
2175 	int ret;
2176 
2177 	/*
2178 	 * It is allowed to stop and release qp when reset, If the qp is
2179 	 * stopped when reset but still want to be released then, the
2180 	 * is_resetting flag should be set negative so that this qp will not
2181 	 * be restarted after reset.
2182 	 */
2183 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
2184 		qp->is_resetting = false;
2185 		return 0;
2186 	}
2187 
2188 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
2189 		return -EPERM;
2190 
2191 	atomic_set(&qp->qp_status.flags, QP_STOP);
2192 
2193 	ret = qm_drain_qp(qp);
2194 	if (ret)
2195 		dev_err(dev, "Failed to drain out data for stopping!\n");
2196 
2197 
2198 	flush_workqueue(qp->qm->wq);
2199 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2200 		qp_stop_fail_cb(qp);
2201 
2202 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2203 
2204 	return 0;
2205 }
2206 
2207 /**
2208  * hisi_qm_stop_qp() - Stop a qp in qm.
2209  * @qp: The qp we want to stop.
2210  *
2211  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
2212  */
2213 int hisi_qm_stop_qp(struct hisi_qp *qp)
2214 {
2215 	int ret;
2216 
2217 	down_write(&qp->qm->qps_lock);
2218 	ret = qm_stop_qp_nolock(qp);
2219 	up_write(&qp->qm->qps_lock);
2220 
2221 	return ret;
2222 }
2223 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2224 
2225 /**
2226  * hisi_qp_send() - Queue up a task in the hardware queue.
2227  * @qp: The qp in which to put the message.
2228  * @msg: The message.
2229  *
2230  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2231  * if qp related qm is resetting.
2232  *
2233  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2234  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2235  *       reset may happen, we have no lock here considering performance. This
2236  *       causes current qm_db sending fail or can not receive sended sqe. QM
2237  *       sync/async receive function should handle the error sqe. ACC reset
2238  *       done function should clear used sqe to 0.
2239  */
2240 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2241 {
2242 	struct hisi_qp_status *qp_status = &qp->qp_status;
2243 	u16 sq_tail = qp_status->sq_tail;
2244 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2245 	void *sqe = qm_get_avail_sqe(qp);
2246 
2247 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2248 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2249 		     qp->is_resetting)) {
2250 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2251 		return -EAGAIN;
2252 	}
2253 
2254 	if (!sqe)
2255 		return -EBUSY;
2256 
2257 	memcpy(sqe, msg, qp->qm->sqe_size);
2258 
2259 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2260 	atomic_inc(&qp->qp_status.used);
2261 	qp_status->sq_tail = sq_tail_next;
2262 
2263 	return 0;
2264 }
2265 EXPORT_SYMBOL_GPL(hisi_qp_send);
2266 
2267 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2268 {
2269 	unsigned int val;
2270 
2271 	if (qm->ver == QM_HW_V1)
2272 		return;
2273 
2274 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2275 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2276 				       val, val & BIT(0), POLL_PERIOD,
2277 				       POLL_TIMEOUT))
2278 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2279 }
2280 
2281 static void qm_qp_event_notifier(struct hisi_qp *qp)
2282 {
2283 	wake_up_interruptible(&qp->uacce_q->wait);
2284 }
2285 
2286  /* This function returns free number of qp in qm. */
2287 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2288 {
2289 	struct hisi_qm *qm = uacce->priv;
2290 	int ret;
2291 
2292 	down_read(&qm->qps_lock);
2293 	ret = qm->qp_num - qm->qp_in_used;
2294 	up_read(&qm->qps_lock);
2295 
2296 	return ret;
2297 }
2298 
2299 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2300 {
2301 	int i;
2302 
2303 	for (i = 0; i < qm->qp_num; i++)
2304 		qm_set_qp_disable(&qm->qp_array[i], offset);
2305 }
2306 
2307 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2308 				   unsigned long arg,
2309 				   struct uacce_queue *q)
2310 {
2311 	struct hisi_qm *qm = uacce->priv;
2312 	struct hisi_qp *qp;
2313 	u8 alg_type = 0;
2314 
2315 	qp = hisi_qm_create_qp(qm, alg_type);
2316 	if (IS_ERR(qp))
2317 		return PTR_ERR(qp);
2318 
2319 	q->priv = qp;
2320 	q->uacce = uacce;
2321 	qp->uacce_q = q;
2322 	qp->event_cb = qm_qp_event_notifier;
2323 	qp->pasid = arg;
2324 	qp->is_in_kernel = false;
2325 
2326 	return 0;
2327 }
2328 
2329 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2330 {
2331 	struct hisi_qp *qp = q->priv;
2332 
2333 	hisi_qm_release_qp(qp);
2334 }
2335 
2336 /* map sq/cq/doorbell to user space */
2337 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2338 			      struct vm_area_struct *vma,
2339 			      struct uacce_qfile_region *qfr)
2340 {
2341 	struct hisi_qp *qp = q->priv;
2342 	struct hisi_qm *qm = qp->qm;
2343 	resource_size_t phys_base = qm->db_phys_base +
2344 				    qp->qp_id * qm->db_interval;
2345 	size_t sz = vma->vm_end - vma->vm_start;
2346 	struct pci_dev *pdev = qm->pdev;
2347 	struct device *dev = &pdev->dev;
2348 	unsigned long vm_pgoff;
2349 	int ret;
2350 
2351 	switch (qfr->type) {
2352 	case UACCE_QFRT_MMIO:
2353 		if (qm->ver == QM_HW_V1) {
2354 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2355 				return -EINVAL;
2356 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2357 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2358 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2359 				return -EINVAL;
2360 		} else {
2361 			if (sz > qm->db_interval)
2362 				return -EINVAL;
2363 		}
2364 
2365 		vm_flags_set(vma, VM_IO);
2366 
2367 		return remap_pfn_range(vma, vma->vm_start,
2368 				       phys_base >> PAGE_SHIFT,
2369 				       sz, pgprot_noncached(vma->vm_page_prot));
2370 	case UACCE_QFRT_DUS:
2371 		if (sz != qp->qdma.size)
2372 			return -EINVAL;
2373 
2374 		/*
2375 		 * dma_mmap_coherent() requires vm_pgoff as 0
2376 		 * restore vm_pfoff to initial value for mmap()
2377 		 */
2378 		vm_pgoff = vma->vm_pgoff;
2379 		vma->vm_pgoff = 0;
2380 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2381 					qp->qdma.dma, sz);
2382 		vma->vm_pgoff = vm_pgoff;
2383 		return ret;
2384 
2385 	default:
2386 		return -EINVAL;
2387 	}
2388 }
2389 
2390 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2391 {
2392 	struct hisi_qp *qp = q->priv;
2393 
2394 	return hisi_qm_start_qp(qp, qp->pasid);
2395 }
2396 
2397 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2398 {
2399 	hisi_qm_stop_qp(q->priv);
2400 }
2401 
2402 static int hisi_qm_is_q_updated(struct uacce_queue *q)
2403 {
2404 	struct hisi_qp *qp = q->priv;
2405 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2406 	int updated = 0;
2407 
2408 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2409 		/* make sure to read data from memory */
2410 		dma_rmb();
2411 		qm_cq_head_update(qp);
2412 		cqe = qp->cqe + qp->qp_status.cq_head;
2413 		updated = 1;
2414 	}
2415 
2416 	return updated;
2417 }
2418 
2419 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2420 {
2421 	struct hisi_qm *qm = q->uacce->priv;
2422 	struct hisi_qp *qp = q->priv;
2423 
2424 	down_write(&qm->qps_lock);
2425 	qp->alg_type = type;
2426 	up_write(&qm->qps_lock);
2427 }
2428 
2429 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2430 				unsigned long arg)
2431 {
2432 	struct hisi_qp *qp = q->priv;
2433 	struct hisi_qp_info qp_info;
2434 	struct hisi_qp_ctx qp_ctx;
2435 
2436 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2437 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2438 				   sizeof(struct hisi_qp_ctx)))
2439 			return -EFAULT;
2440 
2441 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2442 			return -EINVAL;
2443 
2444 		qm_set_sqctype(q, qp_ctx.qc_type);
2445 		qp_ctx.id = qp->qp_id;
2446 
2447 		if (copy_to_user((void __user *)arg, &qp_ctx,
2448 				 sizeof(struct hisi_qp_ctx)))
2449 			return -EFAULT;
2450 
2451 		return 0;
2452 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2453 		if (copy_from_user(&qp_info, (void __user *)arg,
2454 				   sizeof(struct hisi_qp_info)))
2455 			return -EFAULT;
2456 
2457 		qp_info.sqe_size = qp->qm->sqe_size;
2458 		qp_info.sq_depth = qp->sq_depth;
2459 		qp_info.cq_depth = qp->cq_depth;
2460 
2461 		if (copy_to_user((void __user *)arg, &qp_info,
2462 				  sizeof(struct hisi_qp_info)))
2463 			return -EFAULT;
2464 
2465 		return 0;
2466 	}
2467 
2468 	return -EINVAL;
2469 }
2470 
2471 /**
2472  * qm_hw_err_isolate() - Try to set the isolation status of the uacce device
2473  * according to user's configuration of error threshold.
2474  * @qm: the uacce device
2475  */
2476 static int qm_hw_err_isolate(struct hisi_qm *qm)
2477 {
2478 	struct qm_hw_err *err, *tmp, *hw_err;
2479 	struct qm_err_isolate *isolate;
2480 	u32 count = 0;
2481 
2482 	isolate = &qm->isolate_data;
2483 
2484 #define SECONDS_PER_HOUR	3600
2485 
2486 	/* All the hw errs are processed by PF driver */
2487 	if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
2488 		return 0;
2489 
2490 	hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
2491 	if (!hw_err)
2492 		return -ENOMEM;
2493 
2494 	/*
2495 	 * Time-stamp every slot AER error. Then check the AER error log when the
2496 	 * next device AER error occurred. if the device slot AER error count exceeds
2497 	 * the setting error threshold in one hour, the isolated state will be set
2498 	 * to true. And the AER error logs that exceed one hour will be cleared.
2499 	 */
2500 	mutex_lock(&isolate->isolate_lock);
2501 	hw_err->timestamp = jiffies;
2502 	list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
2503 		if ((hw_err->timestamp - err->timestamp) / HZ >
2504 		    SECONDS_PER_HOUR) {
2505 			list_del(&err->list);
2506 			kfree(err);
2507 		} else {
2508 			count++;
2509 		}
2510 	}
2511 	list_add(&hw_err->list, &isolate->qm_hw_errs);
2512 	mutex_unlock(&isolate->isolate_lock);
2513 
2514 	if (count >= isolate->err_threshold)
2515 		isolate->is_isolate = true;
2516 
2517 	return 0;
2518 }
2519 
2520 static void qm_hw_err_destroy(struct hisi_qm *qm)
2521 {
2522 	struct qm_hw_err *err, *tmp;
2523 
2524 	mutex_lock(&qm->isolate_data.isolate_lock);
2525 	list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
2526 		list_del(&err->list);
2527 		kfree(err);
2528 	}
2529 	mutex_unlock(&qm->isolate_data.isolate_lock);
2530 }
2531 
2532 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
2533 {
2534 	struct hisi_qm *qm = uacce->priv;
2535 	struct hisi_qm *pf_qm;
2536 
2537 	if (uacce->is_vf)
2538 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2539 	else
2540 		pf_qm = qm;
2541 
2542 	return pf_qm->isolate_data.is_isolate ?
2543 			UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
2544 }
2545 
2546 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
2547 {
2548 	struct hisi_qm *qm = uacce->priv;
2549 
2550 	/* Must be set by PF */
2551 	if (uacce->is_vf)
2552 		return -EPERM;
2553 
2554 	if (qm->isolate_data.is_isolate)
2555 		return -EPERM;
2556 
2557 	qm->isolate_data.err_threshold = num;
2558 
2559 	/* After the policy is updated, need to reset the hardware err list */
2560 	qm_hw_err_destroy(qm);
2561 
2562 	return 0;
2563 }
2564 
2565 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
2566 {
2567 	struct hisi_qm *qm = uacce->priv;
2568 	struct hisi_qm *pf_qm;
2569 
2570 	if (uacce->is_vf) {
2571 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2572 		return pf_qm->isolate_data.err_threshold;
2573 	}
2574 
2575 	return qm->isolate_data.err_threshold;
2576 }
2577 
2578 static const struct uacce_ops uacce_qm_ops = {
2579 	.get_available_instances = hisi_qm_get_available_instances,
2580 	.get_queue = hisi_qm_uacce_get_queue,
2581 	.put_queue = hisi_qm_uacce_put_queue,
2582 	.start_queue = hisi_qm_uacce_start_queue,
2583 	.stop_queue = hisi_qm_uacce_stop_queue,
2584 	.mmap = hisi_qm_uacce_mmap,
2585 	.ioctl = hisi_qm_uacce_ioctl,
2586 	.is_q_updated = hisi_qm_is_q_updated,
2587 	.get_isolate_state = hisi_qm_get_isolate_state,
2588 	.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
2589 	.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
2590 };
2591 
2592 static void qm_remove_uacce(struct hisi_qm *qm)
2593 {
2594 	struct uacce_device *uacce = qm->uacce;
2595 
2596 	if (qm->use_sva) {
2597 		qm_hw_err_destroy(qm);
2598 		uacce_remove(uacce);
2599 		qm->uacce = NULL;
2600 	}
2601 }
2602 
2603 static int qm_alloc_uacce(struct hisi_qm *qm)
2604 {
2605 	struct pci_dev *pdev = qm->pdev;
2606 	struct uacce_device *uacce;
2607 	unsigned long mmio_page_nr;
2608 	unsigned long dus_page_nr;
2609 	u16 sq_depth, cq_depth;
2610 	struct uacce_interface interface = {
2611 		.flags = UACCE_DEV_SVA,
2612 		.ops = &uacce_qm_ops,
2613 	};
2614 	int ret;
2615 
2616 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2617 		      sizeof(interface.name));
2618 	if (ret < 0)
2619 		return -ENAMETOOLONG;
2620 
2621 	uacce = uacce_alloc(&pdev->dev, &interface);
2622 	if (IS_ERR(uacce))
2623 		return PTR_ERR(uacce);
2624 
2625 	if (uacce->flags & UACCE_DEV_SVA) {
2626 		qm->use_sva = true;
2627 	} else {
2628 		/* only consider sva case */
2629 		qm_remove_uacce(qm);
2630 		return -EINVAL;
2631 	}
2632 
2633 	uacce->is_vf = pdev->is_virtfn;
2634 	uacce->priv = qm;
2635 
2636 	if (qm->ver == QM_HW_V1)
2637 		uacce->api_ver = HISI_QM_API_VER_BASE;
2638 	else if (qm->ver == QM_HW_V2)
2639 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2640 	else
2641 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2642 
2643 	if (qm->ver == QM_HW_V1)
2644 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2645 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2646 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2647 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2648 	else
2649 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2650 
2651 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2652 
2653 	/* Add one more page for device or qp status */
2654 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2655 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
2656 					 PAGE_SHIFT;
2657 
2658 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2659 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2660 
2661 	qm->uacce = uacce;
2662 	INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
2663 	mutex_init(&qm->isolate_data.isolate_lock);
2664 
2665 	return 0;
2666 }
2667 
2668 /**
2669  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2670  * there is user on the QM, return failure without doing anything.
2671  * @qm: The qm needed to be fronzen.
2672  *
2673  * This function frozes QM, then we can do SRIOV disabling.
2674  */
2675 static int qm_frozen(struct hisi_qm *qm)
2676 {
2677 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2678 		return 0;
2679 
2680 	down_write(&qm->qps_lock);
2681 
2682 	if (!qm->qp_in_used) {
2683 		qm->qp_in_used = qm->qp_num;
2684 		up_write(&qm->qps_lock);
2685 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2686 		return 0;
2687 	}
2688 
2689 	up_write(&qm->qps_lock);
2690 
2691 	return -EBUSY;
2692 }
2693 
2694 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2695 			     struct hisi_qm_list *qm_list)
2696 {
2697 	struct hisi_qm *qm, *vf_qm;
2698 	struct pci_dev *dev;
2699 	int ret = 0;
2700 
2701 	if (!qm_list || !pdev)
2702 		return -EINVAL;
2703 
2704 	/* Try to frozen all the VFs as disable SRIOV */
2705 	mutex_lock(&qm_list->lock);
2706 	list_for_each_entry(qm, &qm_list->list, list) {
2707 		dev = qm->pdev;
2708 		if (dev == pdev)
2709 			continue;
2710 		if (pci_physfn(dev) == pdev) {
2711 			vf_qm = pci_get_drvdata(dev);
2712 			ret = qm_frozen(vf_qm);
2713 			if (ret)
2714 				goto frozen_fail;
2715 		}
2716 	}
2717 
2718 frozen_fail:
2719 	mutex_unlock(&qm_list->lock);
2720 
2721 	return ret;
2722 }
2723 
2724 /**
2725  * hisi_qm_wait_task_finish() - Wait until the task is finished
2726  * when removing the driver.
2727  * @qm: The qm needed to wait for the task to finish.
2728  * @qm_list: The list of all available devices.
2729  */
2730 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2731 {
2732 	while (qm_frozen(qm) ||
2733 	       ((qm->fun_type == QM_HW_PF) &&
2734 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2735 		msleep(WAIT_PERIOD);
2736 	}
2737 
2738 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2739 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2740 		msleep(WAIT_PERIOD);
2741 
2742 	udelay(REMOVE_WAIT_DELAY);
2743 }
2744 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2745 
2746 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2747 {
2748 	struct device *dev = &qm->pdev->dev;
2749 	struct qm_dma *qdma;
2750 	int i;
2751 
2752 	for (i = num - 1; i >= 0; i--) {
2753 		qdma = &qm->qp_array[i].qdma;
2754 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2755 		kfree(qm->poll_data[i].qp_finish_id);
2756 	}
2757 
2758 	kfree(qm->poll_data);
2759 	kfree(qm->qp_array);
2760 }
2761 
2762 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2763 			       u16 sq_depth, u16 cq_depth)
2764 {
2765 	struct device *dev = &qm->pdev->dev;
2766 	size_t off = qm->sqe_size * sq_depth;
2767 	struct hisi_qp *qp;
2768 	int ret = -ENOMEM;
2769 
2770 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2771 						 GFP_KERNEL);
2772 	if (!qm->poll_data[id].qp_finish_id)
2773 		return -ENOMEM;
2774 
2775 	qp = &qm->qp_array[id];
2776 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2777 					 GFP_KERNEL);
2778 	if (!qp->qdma.va)
2779 		goto err_free_qp_finish_id;
2780 
2781 	qp->sqe = qp->qdma.va;
2782 	qp->sqe_dma = qp->qdma.dma;
2783 	qp->cqe = qp->qdma.va + off;
2784 	qp->cqe_dma = qp->qdma.dma + off;
2785 	qp->qdma.size = dma_size;
2786 	qp->sq_depth = sq_depth;
2787 	qp->cq_depth = cq_depth;
2788 	qp->qm = qm;
2789 	qp->qp_id = id;
2790 
2791 	return 0;
2792 
2793 err_free_qp_finish_id:
2794 	kfree(qm->poll_data[id].qp_finish_id);
2795 	return ret;
2796 }
2797 
2798 static void hisi_qm_pre_init(struct hisi_qm *qm)
2799 {
2800 	struct pci_dev *pdev = qm->pdev;
2801 
2802 	if (qm->ver == QM_HW_V1)
2803 		qm->ops = &qm_hw_ops_v1;
2804 	else if (qm->ver == QM_HW_V2)
2805 		qm->ops = &qm_hw_ops_v2;
2806 	else
2807 		qm->ops = &qm_hw_ops_v3;
2808 
2809 	pci_set_drvdata(pdev, qm);
2810 	mutex_init(&qm->mailbox_lock);
2811 	init_rwsem(&qm->qps_lock);
2812 	qm->qp_in_used = 0;
2813 	qm->misc_ctl = false;
2814 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2815 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2816 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2817 	}
2818 }
2819 
2820 static void qm_cmd_uninit(struct hisi_qm *qm)
2821 {
2822 	u32 val;
2823 
2824 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2825 		return;
2826 
2827 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2828 	val |= QM_IFC_INT_DISABLE;
2829 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2830 }
2831 
2832 static void qm_cmd_init(struct hisi_qm *qm)
2833 {
2834 	u32 val;
2835 
2836 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2837 		return;
2838 
2839 	/* Clear communication interrupt source */
2840 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
2841 
2842 	/* Enable pf to vf communication reg. */
2843 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2844 	val &= ~QM_IFC_INT_DISABLE;
2845 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2846 }
2847 
2848 static void qm_put_pci_res(struct hisi_qm *qm)
2849 {
2850 	struct pci_dev *pdev = qm->pdev;
2851 
2852 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2853 		iounmap(qm->db_io_base);
2854 
2855 	iounmap(qm->io_base);
2856 	pci_release_mem_regions(pdev);
2857 }
2858 
2859 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
2860 {
2861 	struct pci_dev *pdev = qm->pdev;
2862 
2863 	pci_free_irq_vectors(pdev);
2864 	qm_put_pci_res(qm);
2865 	pci_disable_device(pdev);
2866 }
2867 
2868 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
2869 {
2870 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
2871 		writel(state, qm->io_base + QM_VF_STATE);
2872 }
2873 
2874 static void hisi_qm_unint_work(struct hisi_qm *qm)
2875 {
2876 	destroy_workqueue(qm->wq);
2877 }
2878 
2879 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
2880 {
2881 	struct device *dev = &qm->pdev->dev;
2882 
2883 	hisi_qp_memory_uninit(qm, qm->qp_num);
2884 	if (qm->qdma.va) {
2885 		hisi_qm_cache_wb(qm);
2886 		dma_free_coherent(dev, qm->qdma.size,
2887 				  qm->qdma.va, qm->qdma.dma);
2888 	}
2889 
2890 	idr_destroy(&qm->qp_idr);
2891 
2892 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
2893 		kfree(qm->factor);
2894 }
2895 
2896 /**
2897  * hisi_qm_uninit() - Uninitialize qm.
2898  * @qm: The qm needed uninit.
2899  *
2900  * This function uninits qm related device resources.
2901  */
2902 void hisi_qm_uninit(struct hisi_qm *qm)
2903 {
2904 	qm_cmd_uninit(qm);
2905 	hisi_qm_unint_work(qm);
2906 	down_write(&qm->qps_lock);
2907 
2908 	if (!qm_avail_state(qm, QM_CLOSE)) {
2909 		up_write(&qm->qps_lock);
2910 		return;
2911 	}
2912 
2913 	hisi_qm_memory_uninit(qm);
2914 	hisi_qm_set_state(qm, QM_NOT_READY);
2915 	up_write(&qm->qps_lock);
2916 
2917 	qm_irqs_unregister(qm);
2918 	hisi_qm_pci_uninit(qm);
2919 	if (qm->use_sva) {
2920 		uacce_remove(qm->uacce);
2921 		qm->uacce = NULL;
2922 	}
2923 }
2924 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2925 
2926 /**
2927  * hisi_qm_get_vft() - Get vft from a qm.
2928  * @qm: The qm we want to get its vft.
2929  * @base: The base number of queue in vft.
2930  * @number: The number of queues in vft.
2931  *
2932  * We can allocate multiple queues to a qm by configuring virtual function
2933  * table. We get related configures by this function. Normally, we call this
2934  * function in VF driver to get the queue information.
2935  *
2936  * qm hw v1 does not support this interface.
2937  */
2938 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2939 {
2940 	if (!base || !number)
2941 		return -EINVAL;
2942 
2943 	if (!qm->ops->get_vft) {
2944 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2945 		return -EINVAL;
2946 	}
2947 
2948 	return qm->ops->get_vft(qm, base, number);
2949 }
2950 
2951 /**
2952  * hisi_qm_set_vft() - Set vft to a qm.
2953  * @qm: The qm we want to set its vft.
2954  * @fun_num: The function number.
2955  * @base: The base number of queue in vft.
2956  * @number: The number of queues in vft.
2957  *
2958  * This function is alway called in PF driver, it is used to assign queues
2959  * among PF and VFs.
2960  *
2961  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2962  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2963  * (VF function number 0x2)
2964  */
2965 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2966 		    u32 number)
2967 {
2968 	u32 max_q_num = qm->ctrl_qp_num;
2969 
2970 	if (base >= max_q_num || number > max_q_num ||
2971 	    (base + number) > max_q_num)
2972 		return -EINVAL;
2973 
2974 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2975 }
2976 
2977 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2978 {
2979 	struct hisi_qm_status *status = &qm->status;
2980 
2981 	status->eq_head = 0;
2982 	status->aeq_head = 0;
2983 	status->eqc_phase = true;
2984 	status->aeqc_phase = true;
2985 }
2986 
2987 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
2988 {
2989 	/* Clear eq/aeq interrupt source */
2990 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
2991 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
2992 
2993 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
2994 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
2995 }
2996 
2997 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
2998 {
2999 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
3000 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3001 }
3002 
3003 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3004 {
3005 	struct device *dev = &qm->pdev->dev;
3006 	struct qm_eqc *eqc;
3007 	dma_addr_t eqc_dma;
3008 	int ret;
3009 
3010 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
3011 	if (!eqc)
3012 		return -ENOMEM;
3013 
3014 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3015 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3016 	if (qm->ver == QM_HW_V1)
3017 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3018 	eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3019 
3020 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
3021 				 DMA_TO_DEVICE);
3022 	if (dma_mapping_error(dev, eqc_dma)) {
3023 		kfree(eqc);
3024 		return -ENOMEM;
3025 	}
3026 
3027 	ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
3028 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
3029 	kfree(eqc);
3030 
3031 	return ret;
3032 }
3033 
3034 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3035 {
3036 	struct device *dev = &qm->pdev->dev;
3037 	struct qm_aeqc *aeqc;
3038 	dma_addr_t aeqc_dma;
3039 	int ret;
3040 
3041 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
3042 	if (!aeqc)
3043 		return -ENOMEM;
3044 
3045 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3046 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3047 	aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3048 
3049 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
3050 				  DMA_TO_DEVICE);
3051 	if (dma_mapping_error(dev, aeqc_dma)) {
3052 		kfree(aeqc);
3053 		return -ENOMEM;
3054 	}
3055 
3056 	ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
3057 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
3058 	kfree(aeqc);
3059 
3060 	return ret;
3061 }
3062 
3063 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3064 {
3065 	struct device *dev = &qm->pdev->dev;
3066 	int ret;
3067 
3068 	qm_init_eq_aeq_status(qm);
3069 
3070 	ret = qm_eq_ctx_cfg(qm);
3071 	if (ret) {
3072 		dev_err(dev, "Set eqc failed!\n");
3073 		return ret;
3074 	}
3075 
3076 	return qm_aeq_ctx_cfg(qm);
3077 }
3078 
3079 static int __hisi_qm_start(struct hisi_qm *qm)
3080 {
3081 	int ret;
3082 
3083 	WARN_ON(!qm->qdma.va);
3084 
3085 	if (qm->fun_type == QM_HW_PF) {
3086 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3087 		if (ret)
3088 			return ret;
3089 	}
3090 
3091 	ret = qm_eq_aeq_ctx_cfg(qm);
3092 	if (ret)
3093 		return ret;
3094 
3095 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3096 	if (ret)
3097 		return ret;
3098 
3099 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3100 	if (ret)
3101 		return ret;
3102 
3103 	qm_init_prefetch(qm);
3104 	qm_enable_eq_aeq_interrupts(qm);
3105 
3106 	return 0;
3107 }
3108 
3109 /**
3110  * hisi_qm_start() - start qm
3111  * @qm: The qm to be started.
3112  *
3113  * This function starts a qm, then we can allocate qp from this qm.
3114  */
3115 int hisi_qm_start(struct hisi_qm *qm)
3116 {
3117 	struct device *dev = &qm->pdev->dev;
3118 	int ret = 0;
3119 
3120 	down_write(&qm->qps_lock);
3121 
3122 	if (!qm_avail_state(qm, QM_START)) {
3123 		up_write(&qm->qps_lock);
3124 		return -EPERM;
3125 	}
3126 
3127 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3128 
3129 	if (!qm->qp_num) {
3130 		dev_err(dev, "qp_num should not be 0\n");
3131 		ret = -EINVAL;
3132 		goto err_unlock;
3133 	}
3134 
3135 	ret = __hisi_qm_start(qm);
3136 	if (!ret)
3137 		atomic_set(&qm->status.flags, QM_START);
3138 
3139 	hisi_qm_set_state(qm, QM_READY);
3140 err_unlock:
3141 	up_write(&qm->qps_lock);
3142 	return ret;
3143 }
3144 EXPORT_SYMBOL_GPL(hisi_qm_start);
3145 
3146 static int qm_restart(struct hisi_qm *qm)
3147 {
3148 	struct device *dev = &qm->pdev->dev;
3149 	struct hisi_qp *qp;
3150 	int ret, i;
3151 
3152 	ret = hisi_qm_start(qm);
3153 	if (ret < 0)
3154 		return ret;
3155 
3156 	down_write(&qm->qps_lock);
3157 	for (i = 0; i < qm->qp_num; i++) {
3158 		qp = &qm->qp_array[i];
3159 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3160 		    qp->is_resetting == true) {
3161 			ret = qm_start_qp_nolock(qp, 0);
3162 			if (ret < 0) {
3163 				dev_err(dev, "Failed to start qp%d!\n", i);
3164 
3165 				up_write(&qm->qps_lock);
3166 				return ret;
3167 			}
3168 			qp->is_resetting = false;
3169 		}
3170 	}
3171 	up_write(&qm->qps_lock);
3172 
3173 	return 0;
3174 }
3175 
3176 /* Stop started qps in reset flow */
3177 static int qm_stop_started_qp(struct hisi_qm *qm)
3178 {
3179 	struct device *dev = &qm->pdev->dev;
3180 	struct hisi_qp *qp;
3181 	int i, ret;
3182 
3183 	for (i = 0; i < qm->qp_num; i++) {
3184 		qp = &qm->qp_array[i];
3185 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
3186 			qp->is_resetting = true;
3187 			ret = qm_stop_qp_nolock(qp);
3188 			if (ret < 0) {
3189 				dev_err(dev, "Failed to stop qp%d!\n", i);
3190 				return ret;
3191 			}
3192 		}
3193 	}
3194 
3195 	return 0;
3196 }
3197 
3198 /**
3199  * qm_clear_queues() - Clear all queues memory in a qm.
3200  * @qm: The qm in which the queues will be cleared.
3201  *
3202  * This function clears all queues memory in a qm. Reset of accelerator can
3203  * use this to clear queues.
3204  */
3205 static void qm_clear_queues(struct hisi_qm *qm)
3206 {
3207 	struct hisi_qp *qp;
3208 	int i;
3209 
3210 	for (i = 0; i < qm->qp_num; i++) {
3211 		qp = &qm->qp_array[i];
3212 		if (qp->is_in_kernel && qp->is_resetting)
3213 			memset(qp->qdma.va, 0, qp->qdma.size);
3214 	}
3215 
3216 	memset(qm->qdma.va, 0, qm->qdma.size);
3217 }
3218 
3219 /**
3220  * hisi_qm_stop() - Stop a qm.
3221  * @qm: The qm which will be stopped.
3222  * @r: The reason to stop qm.
3223  *
3224  * This function stops qm and its qps, then qm can not accept request.
3225  * Related resources are not released at this state, we can use hisi_qm_start
3226  * to let qm start again.
3227  */
3228 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3229 {
3230 	struct device *dev = &qm->pdev->dev;
3231 	int ret = 0;
3232 
3233 	down_write(&qm->qps_lock);
3234 
3235 	qm->status.stop_reason = r;
3236 	if (!qm_avail_state(qm, QM_STOP)) {
3237 		ret = -EPERM;
3238 		goto err_unlock;
3239 	}
3240 
3241 	if (qm->status.stop_reason == QM_SOFT_RESET ||
3242 	    qm->status.stop_reason == QM_FLR) {
3243 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3244 		ret = qm_stop_started_qp(qm);
3245 		if (ret < 0) {
3246 			dev_err(dev, "Failed to stop started qp!\n");
3247 			goto err_unlock;
3248 		}
3249 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3250 	}
3251 
3252 	qm_disable_eq_aeq_interrupts(qm);
3253 	if (qm->fun_type == QM_HW_PF) {
3254 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3255 		if (ret < 0) {
3256 			dev_err(dev, "Failed to set vft!\n");
3257 			ret = -EBUSY;
3258 			goto err_unlock;
3259 		}
3260 	}
3261 
3262 	qm_clear_queues(qm);
3263 	atomic_set(&qm->status.flags, QM_STOP);
3264 
3265 err_unlock:
3266 	up_write(&qm->qps_lock);
3267 	return ret;
3268 }
3269 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3270 
3271 static void qm_hw_error_init(struct hisi_qm *qm)
3272 {
3273 	if (!qm->ops->hw_error_init) {
3274 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3275 		return;
3276 	}
3277 
3278 	qm->ops->hw_error_init(qm);
3279 }
3280 
3281 static void qm_hw_error_uninit(struct hisi_qm *qm)
3282 {
3283 	if (!qm->ops->hw_error_uninit) {
3284 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3285 		return;
3286 	}
3287 
3288 	qm->ops->hw_error_uninit(qm);
3289 }
3290 
3291 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3292 {
3293 	if (!qm->ops->hw_error_handle) {
3294 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3295 		return ACC_ERR_NONE;
3296 	}
3297 
3298 	return qm->ops->hw_error_handle(qm);
3299 }
3300 
3301 /**
3302  * hisi_qm_dev_err_init() - Initialize device error configuration.
3303  * @qm: The qm for which we want to do error initialization.
3304  *
3305  * Initialize QM and device error related configuration.
3306  */
3307 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3308 {
3309 	if (qm->fun_type == QM_HW_VF)
3310 		return;
3311 
3312 	qm_hw_error_init(qm);
3313 
3314 	if (!qm->err_ini->hw_err_enable) {
3315 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3316 		return;
3317 	}
3318 	qm->err_ini->hw_err_enable(qm);
3319 }
3320 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3321 
3322 /**
3323  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3324  * @qm: The qm for which we want to do error uninitialization.
3325  *
3326  * Uninitialize QM and device error related configuration.
3327  */
3328 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3329 {
3330 	if (qm->fun_type == QM_HW_VF)
3331 		return;
3332 
3333 	qm_hw_error_uninit(qm);
3334 
3335 	if (!qm->err_ini->hw_err_disable) {
3336 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3337 		return;
3338 	}
3339 	qm->err_ini->hw_err_disable(qm);
3340 }
3341 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3342 
3343 /**
3344  * hisi_qm_free_qps() - free multiple queue pairs.
3345  * @qps: The queue pairs need to be freed.
3346  * @qp_num: The num of queue pairs.
3347  */
3348 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3349 {
3350 	int i;
3351 
3352 	if (!qps || qp_num <= 0)
3353 		return;
3354 
3355 	for (i = qp_num - 1; i >= 0; i--)
3356 		hisi_qm_release_qp(qps[i]);
3357 }
3358 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3359 
3360 static void free_list(struct list_head *head)
3361 {
3362 	struct hisi_qm_resource *res, *tmp;
3363 
3364 	list_for_each_entry_safe(res, tmp, head, list) {
3365 		list_del(&res->list);
3366 		kfree(res);
3367 	}
3368 }
3369 
3370 static int hisi_qm_sort_devices(int node, struct list_head *head,
3371 				struct hisi_qm_list *qm_list)
3372 {
3373 	struct hisi_qm_resource *res, *tmp;
3374 	struct hisi_qm *qm;
3375 	struct list_head *n;
3376 	struct device *dev;
3377 	int dev_node;
3378 
3379 	list_for_each_entry(qm, &qm_list->list, list) {
3380 		dev = &qm->pdev->dev;
3381 
3382 		dev_node = dev_to_node(dev);
3383 		if (dev_node < 0)
3384 			dev_node = 0;
3385 
3386 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3387 		if (!res)
3388 			return -ENOMEM;
3389 
3390 		res->qm = qm;
3391 		res->distance = node_distance(dev_node, node);
3392 		n = head;
3393 		list_for_each_entry(tmp, head, list) {
3394 			if (res->distance < tmp->distance) {
3395 				n = &tmp->list;
3396 				break;
3397 			}
3398 		}
3399 		list_add_tail(&res->list, n);
3400 	}
3401 
3402 	return 0;
3403 }
3404 
3405 /**
3406  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3407  * @qm_list: The list of all available devices.
3408  * @qp_num: The number of queue pairs need created.
3409  * @alg_type: The algorithm type.
3410  * @node: The numa node.
3411  * @qps: The queue pairs need created.
3412  *
3413  * This function will sort all available device according to numa distance.
3414  * Then try to create all queue pairs from one device, if all devices do
3415  * not meet the requirements will return error.
3416  */
3417 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3418 			   u8 alg_type, int node, struct hisi_qp **qps)
3419 {
3420 	struct hisi_qm_resource *tmp;
3421 	int ret = -ENODEV;
3422 	LIST_HEAD(head);
3423 	int i;
3424 
3425 	if (!qps || !qm_list || qp_num <= 0)
3426 		return -EINVAL;
3427 
3428 	mutex_lock(&qm_list->lock);
3429 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3430 		mutex_unlock(&qm_list->lock);
3431 		goto err;
3432 	}
3433 
3434 	list_for_each_entry(tmp, &head, list) {
3435 		for (i = 0; i < qp_num; i++) {
3436 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3437 			if (IS_ERR(qps[i])) {
3438 				hisi_qm_free_qps(qps, i);
3439 				break;
3440 			}
3441 		}
3442 
3443 		if (i == qp_num) {
3444 			ret = 0;
3445 			break;
3446 		}
3447 	}
3448 
3449 	mutex_unlock(&qm_list->lock);
3450 	if (ret)
3451 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3452 			node, alg_type, qp_num);
3453 
3454 err:
3455 	free_list(&head);
3456 	return ret;
3457 }
3458 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3459 
3460 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3461 {
3462 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3463 	u32 max_qp_num = qm->max_qp_num;
3464 	u32 q_base = qm->qp_num;
3465 	int ret;
3466 
3467 	if (!num_vfs)
3468 		return -EINVAL;
3469 
3470 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3471 
3472 	/* If vfs_q_num is less than num_vfs, return error. */
3473 	if (vfs_q_num < num_vfs)
3474 		return -EINVAL;
3475 
3476 	q_num = vfs_q_num / num_vfs;
3477 	remain_q_num = vfs_q_num % num_vfs;
3478 
3479 	for (i = num_vfs; i > 0; i--) {
3480 		/*
3481 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3482 		 * remaining queues equally.
3483 		 */
3484 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3485 			act_q_num = q_num + remain_q_num;
3486 			remain_q_num = 0;
3487 		} else if (remain_q_num > 0) {
3488 			act_q_num = q_num + 1;
3489 			remain_q_num--;
3490 		} else {
3491 			act_q_num = q_num;
3492 		}
3493 
3494 		act_q_num = min(act_q_num, max_qp_num);
3495 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3496 		if (ret) {
3497 			for (j = num_vfs; j > i; j--)
3498 				hisi_qm_set_vft(qm, j, 0, 0);
3499 			return ret;
3500 		}
3501 		q_base += act_q_num;
3502 	}
3503 
3504 	return 0;
3505 }
3506 
3507 static int qm_clear_vft_config(struct hisi_qm *qm)
3508 {
3509 	int ret;
3510 	u32 i;
3511 
3512 	for (i = 1; i <= qm->vfs_num; i++) {
3513 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3514 		if (ret)
3515 			return ret;
3516 	}
3517 	qm->vfs_num = 0;
3518 
3519 	return 0;
3520 }
3521 
3522 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3523 {
3524 	struct device *dev = &qm->pdev->dev;
3525 	u32 ir = qos * QM_QOS_RATE;
3526 	int ret, total_vfs, i;
3527 
3528 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3529 	if (fun_index > total_vfs)
3530 		return -EINVAL;
3531 
3532 	qm->factor[fun_index].func_qos = qos;
3533 
3534 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3535 	if (ret) {
3536 		dev_err(dev, "failed to calculate shaper parameter!\n");
3537 		return -EINVAL;
3538 	}
3539 
3540 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3541 		/* The base number of queue reuse for different alg type */
3542 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3543 		if (ret) {
3544 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3545 			return -EINVAL;
3546 		}
3547 	}
3548 
3549 	return 0;
3550 }
3551 
3552 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3553 {
3554 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
3555 	u64 shaper_vft, ir_calc, ir;
3556 	unsigned int val;
3557 	u32 error_rate;
3558 	int ret;
3559 
3560 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3561 					 val & BIT(0), POLL_PERIOD,
3562 					 POLL_TIMEOUT);
3563 	if (ret)
3564 		return 0;
3565 
3566 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3567 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3568 	writel(fun_index, qm->io_base + QM_VFT_CFG);
3569 
3570 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3571 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3572 
3573 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3574 					 val & BIT(0), POLL_PERIOD,
3575 					 POLL_TIMEOUT);
3576 	if (ret)
3577 		return 0;
3578 
3579 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3580 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3581 
3582 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3583 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3584 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3585 
3586 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3587 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3588 
3589 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3590 
3591 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3592 
3593 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3594 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3595 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3596 		return 0;
3597 	}
3598 
3599 	return ir;
3600 }
3601 
3602 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3603 {
3604 	struct device *dev = &qm->pdev->dev;
3605 	u64 mb_cmd;
3606 	u32 qos;
3607 	int ret;
3608 
3609 	qos = qm_get_shaper_vft_qos(qm, fun_num);
3610 	if (!qos) {
3611 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3612 		return;
3613 	}
3614 
3615 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
3616 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
3617 	if (ret)
3618 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
3619 }
3620 
3621 static int qm_vf_read_qos(struct hisi_qm *qm)
3622 {
3623 	int cnt = 0;
3624 	int ret = -EINVAL;
3625 
3626 	/* reset mailbox qos val */
3627 	qm->mb_qos = 0;
3628 
3629 	/* vf ping pf to get function qos */
3630 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3631 	if (ret) {
3632 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3633 		return ret;
3634 	}
3635 
3636 	while (true) {
3637 		msleep(QM_WAIT_DST_ACK);
3638 		if (qm->mb_qos)
3639 			break;
3640 
3641 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3642 			pci_err(qm->pdev, "PF ping VF timeout!\n");
3643 			return  -ETIMEDOUT;
3644 		}
3645 	}
3646 
3647 	return ret;
3648 }
3649 
3650 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3651 			       size_t count, loff_t *pos)
3652 {
3653 	struct hisi_qm *qm = filp->private_data;
3654 	char tbuf[QM_DBG_READ_LEN];
3655 	u32 qos_val, ir;
3656 	int ret;
3657 
3658 	ret = hisi_qm_get_dfx_access(qm);
3659 	if (ret)
3660 		return ret;
3661 
3662 	/* Mailbox and reset cannot be operated at the same time */
3663 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3664 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3665 		ret = -EAGAIN;
3666 		goto err_put_dfx_access;
3667 	}
3668 
3669 	if (qm->fun_type == QM_HW_PF) {
3670 		ir = qm_get_shaper_vft_qos(qm, 0);
3671 	} else {
3672 		ret = qm_vf_read_qos(qm);
3673 		if (ret)
3674 			goto err_get_status;
3675 		ir = qm->mb_qos;
3676 	}
3677 
3678 	qos_val = ir / QM_QOS_RATE;
3679 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3680 
3681 	ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
3682 
3683 err_get_status:
3684 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3685 err_put_dfx_access:
3686 	hisi_qm_put_dfx_access(qm);
3687 	return ret;
3688 }
3689 
3690 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3691 			       unsigned long *val,
3692 			       unsigned int *fun_index)
3693 {
3694 	struct bus_type *bus_type = qm->pdev->dev.bus;
3695 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3696 	char val_buf[QM_DBG_READ_LEN] = {0};
3697 	struct pci_dev *pdev;
3698 	struct device *dev;
3699 	int ret;
3700 
3701 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3702 	if (ret != QM_QOS_PARAM_NUM)
3703 		return -EINVAL;
3704 
3705 	ret = kstrtoul(val_buf, 10, val);
3706 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3707 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3708 		return -EINVAL;
3709 	}
3710 
3711 	dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3712 	if (!dev) {
3713 		pci_err(qm->pdev, "input pci bdf number is error!\n");
3714 		return -ENODEV;
3715 	}
3716 
3717 	pdev = container_of(dev, struct pci_dev, dev);
3718 
3719 	*fun_index = pdev->devfn;
3720 
3721 	return 0;
3722 }
3723 
3724 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3725 			       size_t count, loff_t *pos)
3726 {
3727 	struct hisi_qm *qm = filp->private_data;
3728 	char tbuf[QM_DBG_READ_LEN];
3729 	unsigned int fun_index;
3730 	unsigned long val;
3731 	int len, ret;
3732 
3733 	if (*pos != 0)
3734 		return 0;
3735 
3736 	if (count >= QM_DBG_READ_LEN)
3737 		return -ENOSPC;
3738 
3739 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3740 	if (len < 0)
3741 		return len;
3742 
3743 	tbuf[len] = '\0';
3744 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3745 	if (ret)
3746 		return ret;
3747 
3748 	/* Mailbox and reset cannot be operated at the same time */
3749 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3750 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3751 		return -EAGAIN;
3752 	}
3753 
3754 	ret = qm_pm_get_sync(qm);
3755 	if (ret) {
3756 		ret = -EINVAL;
3757 		goto err_get_status;
3758 	}
3759 
3760 	ret = qm_func_shaper_enable(qm, fun_index, val);
3761 	if (ret) {
3762 		pci_err(qm->pdev, "failed to enable function shaper!\n");
3763 		ret = -EINVAL;
3764 		goto err_put_sync;
3765 	}
3766 
3767 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3768 		 fun_index, val);
3769 	ret = count;
3770 
3771 err_put_sync:
3772 	qm_pm_put_sync(qm);
3773 err_get_status:
3774 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3775 	return ret;
3776 }
3777 
3778 static const struct file_operations qm_algqos_fops = {
3779 	.owner = THIS_MODULE,
3780 	.open = simple_open,
3781 	.read = qm_algqos_read,
3782 	.write = qm_algqos_write,
3783 };
3784 
3785 /**
3786  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3787  * @qm: The qm for which we want to add debugfs files.
3788  *
3789  * Create function qos debugfs files, VF ping PF to get function qos.
3790  */
3791 void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3792 {
3793 	if (qm->fun_type == QM_HW_PF)
3794 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3795 				    qm, &qm_algqos_fops);
3796 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3797 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3798 				    qm, &qm_algqos_fops);
3799 }
3800 
3801 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3802 {
3803 	int i;
3804 
3805 	for (i = 1; i <= total_func; i++)
3806 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3807 }
3808 
3809 /**
3810  * hisi_qm_sriov_enable() - enable virtual functions
3811  * @pdev: the PCIe device
3812  * @max_vfs: the number of virtual functions to enable
3813  *
3814  * Returns the number of enabled VFs. If there are VFs enabled already or
3815  * max_vfs is more than the total number of device can be enabled, returns
3816  * failure.
3817  */
3818 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3819 {
3820 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3821 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3822 
3823 	ret = qm_pm_get_sync(qm);
3824 	if (ret)
3825 		return ret;
3826 
3827 	total_vfs = pci_sriov_get_totalvfs(pdev);
3828 	pre_existing_vfs = pci_num_vf(pdev);
3829 	if (pre_existing_vfs) {
3830 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3831 			pre_existing_vfs);
3832 		goto err_put_sync;
3833 	}
3834 
3835 	if (max_vfs > total_vfs) {
3836 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
3837 		ret = -ERANGE;
3838 		goto err_put_sync;
3839 	}
3840 
3841 	num_vfs = max_vfs;
3842 
3843 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3844 		hisi_qm_init_vf_qos(qm, num_vfs);
3845 
3846 	ret = qm_vf_q_assign(qm, num_vfs);
3847 	if (ret) {
3848 		pci_err(pdev, "Can't assign queues for VF!\n");
3849 		goto err_put_sync;
3850 	}
3851 
3852 	qm->vfs_num = num_vfs;
3853 
3854 	ret = pci_enable_sriov(pdev, num_vfs);
3855 	if (ret) {
3856 		pci_err(pdev, "Can't enable VF!\n");
3857 		qm_clear_vft_config(qm);
3858 		goto err_put_sync;
3859 	}
3860 
3861 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3862 
3863 	return num_vfs;
3864 
3865 err_put_sync:
3866 	qm_pm_put_sync(qm);
3867 	return ret;
3868 }
3869 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3870 
3871 /**
3872  * hisi_qm_sriov_disable - disable virtual functions
3873  * @pdev: the PCI device.
3874  * @is_frozen: true when all the VFs are frozen.
3875  *
3876  * Return failure if there are VFs assigned already or VF is in used.
3877  */
3878 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3879 {
3880 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3881 	int ret;
3882 
3883 	if (pci_vfs_assigned(pdev)) {
3884 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3885 		return -EPERM;
3886 	}
3887 
3888 	/* While VF is in used, SRIOV cannot be disabled. */
3889 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3890 		pci_err(pdev, "Task is using its VF!\n");
3891 		return -EBUSY;
3892 	}
3893 
3894 	pci_disable_sriov(pdev);
3895 
3896 	ret = qm_clear_vft_config(qm);
3897 	if (ret)
3898 		return ret;
3899 
3900 	qm_pm_put_sync(qm);
3901 
3902 	return 0;
3903 }
3904 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3905 
3906 /**
3907  * hisi_qm_sriov_configure - configure the number of VFs
3908  * @pdev: The PCI device
3909  * @num_vfs: The number of VFs need enabled
3910  *
3911  * Enable SR-IOV according to num_vfs, 0 means disable.
3912  */
3913 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3914 {
3915 	if (num_vfs == 0)
3916 		return hisi_qm_sriov_disable(pdev, false);
3917 	else
3918 		return hisi_qm_sriov_enable(pdev, num_vfs);
3919 }
3920 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3921 
3922 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3923 {
3924 	u32 err_sts;
3925 
3926 	if (!qm->err_ini->get_dev_hw_err_status) {
3927 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3928 		return ACC_ERR_NONE;
3929 	}
3930 
3931 	/* get device hardware error status */
3932 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3933 	if (err_sts) {
3934 		if (err_sts & qm->err_info.ecc_2bits_mask)
3935 			qm->err_status.is_dev_ecc_mbit = true;
3936 
3937 		if (qm->err_ini->log_dev_hw_err)
3938 			qm->err_ini->log_dev_hw_err(qm, err_sts);
3939 
3940 		if (err_sts & qm->err_info.dev_reset_mask)
3941 			return ACC_ERR_NEED_RESET;
3942 
3943 		if (qm->err_ini->clear_dev_hw_err_status)
3944 			qm->err_ini->clear_dev_hw_err_status(qm, err_sts);
3945 	}
3946 
3947 	return ACC_ERR_RECOVERED;
3948 }
3949 
3950 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3951 {
3952 	enum acc_err_result qm_ret, dev_ret;
3953 
3954 	/* log qm error */
3955 	qm_ret = qm_hw_error_handle(qm);
3956 
3957 	/* log device error */
3958 	dev_ret = qm_dev_err_handle(qm);
3959 
3960 	return (qm_ret == ACC_ERR_NEED_RESET ||
3961 		dev_ret == ACC_ERR_NEED_RESET) ?
3962 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3963 }
3964 
3965 /**
3966  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3967  * @pdev: The PCI device which need report error.
3968  * @state: The connectivity between CPU and device.
3969  *
3970  * We register this function into PCIe AER handlers, It will report device or
3971  * qm hardware error status when error occur.
3972  */
3973 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3974 					  pci_channel_state_t state)
3975 {
3976 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3977 	enum acc_err_result ret;
3978 
3979 	if (pdev->is_virtfn)
3980 		return PCI_ERS_RESULT_NONE;
3981 
3982 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
3983 	if (state == pci_channel_io_perm_failure)
3984 		return PCI_ERS_RESULT_DISCONNECT;
3985 
3986 	ret = qm_process_dev_error(qm);
3987 	if (ret == ACC_ERR_NEED_RESET)
3988 		return PCI_ERS_RESULT_NEED_RESET;
3989 
3990 	return PCI_ERS_RESULT_RECOVERED;
3991 }
3992 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3993 
3994 static int qm_check_req_recv(struct hisi_qm *qm)
3995 {
3996 	struct pci_dev *pdev = qm->pdev;
3997 	int ret;
3998 	u32 val;
3999 
4000 	if (qm->ver >= QM_HW_V3)
4001 		return 0;
4002 
4003 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
4004 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4005 					 (val == ACC_VENDOR_ID_VALUE),
4006 					 POLL_PERIOD, POLL_TIMEOUT);
4007 	if (ret) {
4008 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
4009 		return ret;
4010 	}
4011 
4012 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
4013 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4014 					 (val == PCI_VENDOR_ID_HUAWEI),
4015 					 POLL_PERIOD, POLL_TIMEOUT);
4016 	if (ret)
4017 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
4018 
4019 	return ret;
4020 }
4021 
4022 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
4023 {
4024 	struct pci_dev *pdev = qm->pdev;
4025 	u16 cmd;
4026 	int i;
4027 
4028 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4029 	if (set)
4030 		cmd |= PCI_COMMAND_MEMORY;
4031 	else
4032 		cmd &= ~PCI_COMMAND_MEMORY;
4033 
4034 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
4035 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4036 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4037 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
4038 			return 0;
4039 
4040 		udelay(1);
4041 	}
4042 
4043 	return -ETIMEDOUT;
4044 }
4045 
4046 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
4047 {
4048 	struct pci_dev *pdev = qm->pdev;
4049 	u16 sriov_ctrl;
4050 	int pos;
4051 	int i;
4052 
4053 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4054 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4055 	if (set)
4056 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
4057 	else
4058 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
4059 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
4060 
4061 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4062 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4063 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
4064 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
4065 			return 0;
4066 
4067 		udelay(1);
4068 	}
4069 
4070 	return -ETIMEDOUT;
4071 }
4072 
4073 static int qm_vf_reset_prepare(struct hisi_qm *qm,
4074 			       enum qm_stop_reason stop_reason)
4075 {
4076 	struct hisi_qm_list *qm_list = qm->qm_list;
4077 	struct pci_dev *pdev = qm->pdev;
4078 	struct pci_dev *virtfn;
4079 	struct hisi_qm *vf_qm;
4080 	int ret = 0;
4081 
4082 	mutex_lock(&qm_list->lock);
4083 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4084 		virtfn = vf_qm->pdev;
4085 		if (virtfn == pdev)
4086 			continue;
4087 
4088 		if (pci_physfn(virtfn) == pdev) {
4089 			/* save VFs PCIE BAR configuration */
4090 			pci_save_state(virtfn);
4091 
4092 			ret = hisi_qm_stop(vf_qm, stop_reason);
4093 			if (ret)
4094 				goto stop_fail;
4095 		}
4096 	}
4097 
4098 stop_fail:
4099 	mutex_unlock(&qm_list->lock);
4100 	return ret;
4101 }
4102 
4103 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
4104 			   enum qm_stop_reason stop_reason)
4105 {
4106 	struct pci_dev *pdev = qm->pdev;
4107 	int ret;
4108 
4109 	if (!qm->vfs_num)
4110 		return 0;
4111 
4112 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
4113 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4114 		ret = qm_ping_all_vfs(qm, cmd);
4115 		if (ret)
4116 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
4117 	} else {
4118 		ret = qm_vf_reset_prepare(qm, stop_reason);
4119 		if (ret)
4120 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4121 	}
4122 
4123 	return ret;
4124 }
4125 
4126 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4127 {
4128 	struct pci_dev *pdev = qm->pdev;
4129 	int ret;
4130 
4131 	ret = qm_reset_prepare_ready(qm);
4132 	if (ret) {
4133 		pci_err(pdev, "Controller reset not ready!\n");
4134 		return ret;
4135 	}
4136 
4137 	/* PF obtains the information of VF by querying the register. */
4138 	qm_cmd_uninit(qm);
4139 
4140 	/* Whether VFs stop successfully, soft reset will continue. */
4141 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4142 	if (ret)
4143 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4144 
4145 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4146 	if (ret) {
4147 		pci_err(pdev, "Fails to stop QM!\n");
4148 		qm_reset_bit_clear(qm);
4149 		return ret;
4150 	}
4151 
4152 	if (qm->use_sva) {
4153 		ret = qm_hw_err_isolate(qm);
4154 		if (ret)
4155 			pci_err(pdev, "failed to isolate hw err!\n");
4156 	}
4157 
4158 	ret = qm_wait_vf_prepare_finish(qm);
4159 	if (ret)
4160 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4161 
4162 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4163 
4164 	return 0;
4165 }
4166 
4167 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4168 {
4169 	u32 nfe_enb = 0;
4170 
4171 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4172 	if (qm->ver >= QM_HW_V3)
4173 		return;
4174 
4175 	if (!qm->err_status.is_dev_ecc_mbit &&
4176 	    qm->err_status.is_qm_ecc_mbit &&
4177 	    qm->err_ini->close_axi_master_ooo) {
4178 		qm->err_ini->close_axi_master_ooo(qm);
4179 	} else if (qm->err_status.is_dev_ecc_mbit &&
4180 		   !qm->err_status.is_qm_ecc_mbit &&
4181 		   !qm->err_ini->close_axi_master_ooo) {
4182 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4183 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4184 		       qm->io_base + QM_RAS_NFE_ENABLE);
4185 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4186 	}
4187 }
4188 
4189 static int qm_soft_reset(struct hisi_qm *qm)
4190 {
4191 	struct pci_dev *pdev = qm->pdev;
4192 	int ret;
4193 	u32 val;
4194 
4195 	/* Ensure all doorbells and mailboxes received by QM */
4196 	ret = qm_check_req_recv(qm);
4197 	if (ret)
4198 		return ret;
4199 
4200 	if (qm->vfs_num) {
4201 		ret = qm_set_vf_mse(qm, false);
4202 		if (ret) {
4203 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4204 			return ret;
4205 		}
4206 	}
4207 
4208 	ret = qm->ops->set_msi(qm, false);
4209 	if (ret) {
4210 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4211 		return ret;
4212 	}
4213 
4214 	qm_dev_ecc_mbit_handle(qm);
4215 
4216 	/* OOO register set and check */
4217 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
4218 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4219 
4220 	/* If bus lock, reset chip */
4221 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4222 					 val,
4223 					 (val == ACC_MASTER_TRANS_RETURN_RW),
4224 					 POLL_PERIOD, POLL_TIMEOUT);
4225 	if (ret) {
4226 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
4227 		return ret;
4228 	}
4229 
4230 	if (qm->err_ini->close_sva_prefetch)
4231 		qm->err_ini->close_sva_prefetch(qm);
4232 
4233 	ret = qm_set_pf_mse(qm, false);
4234 	if (ret) {
4235 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4236 		return ret;
4237 	}
4238 
4239 	/* The reset related sub-control registers are not in PCI BAR */
4240 	if (ACPI_HANDLE(&pdev->dev)) {
4241 		unsigned long long value = 0;
4242 		acpi_status s;
4243 
4244 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4245 					  qm->err_info.acpi_rst,
4246 					  NULL, &value);
4247 		if (ACPI_FAILURE(s)) {
4248 			pci_err(pdev, "NO controller reset method!\n");
4249 			return -EIO;
4250 		}
4251 
4252 		if (value) {
4253 			pci_err(pdev, "Reset step %llu failed!\n", value);
4254 			return -EIO;
4255 		}
4256 	} else {
4257 		pci_err(pdev, "No reset method!\n");
4258 		return -EINVAL;
4259 	}
4260 
4261 	return 0;
4262 }
4263 
4264 static int qm_vf_reset_done(struct hisi_qm *qm)
4265 {
4266 	struct hisi_qm_list *qm_list = qm->qm_list;
4267 	struct pci_dev *pdev = qm->pdev;
4268 	struct pci_dev *virtfn;
4269 	struct hisi_qm *vf_qm;
4270 	int ret = 0;
4271 
4272 	mutex_lock(&qm_list->lock);
4273 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4274 		virtfn = vf_qm->pdev;
4275 		if (virtfn == pdev)
4276 			continue;
4277 
4278 		if (pci_physfn(virtfn) == pdev) {
4279 			/* enable VFs PCIE BAR configuration */
4280 			pci_restore_state(virtfn);
4281 
4282 			ret = qm_restart(vf_qm);
4283 			if (ret)
4284 				goto restart_fail;
4285 		}
4286 	}
4287 
4288 restart_fail:
4289 	mutex_unlock(&qm_list->lock);
4290 	return ret;
4291 }
4292 
4293 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
4294 {
4295 	struct pci_dev *pdev = qm->pdev;
4296 	int ret;
4297 
4298 	if (!qm->vfs_num)
4299 		return 0;
4300 
4301 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4302 	if (ret) {
4303 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4304 		return ret;
4305 	}
4306 
4307 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4308 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4309 		ret = qm_ping_all_vfs(qm, cmd);
4310 		if (ret)
4311 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4312 	} else {
4313 		ret = qm_vf_reset_done(qm);
4314 		if (ret)
4315 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4316 	}
4317 
4318 	return ret;
4319 }
4320 
4321 static int qm_dev_hw_init(struct hisi_qm *qm)
4322 {
4323 	return qm->err_ini->hw_init(qm);
4324 }
4325 
4326 static void qm_restart_prepare(struct hisi_qm *qm)
4327 {
4328 	u32 value;
4329 
4330 	if (qm->err_ini->open_sva_prefetch)
4331 		qm->err_ini->open_sva_prefetch(qm);
4332 
4333 	if (qm->ver >= QM_HW_V3)
4334 		return;
4335 
4336 	if (!qm->err_status.is_qm_ecc_mbit &&
4337 	    !qm->err_status.is_dev_ecc_mbit)
4338 		return;
4339 
4340 	/* temporarily close the OOO port used for PEH to write out MSI */
4341 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4342 	writel(value & ~qm->err_info.msi_wr_port,
4343 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4344 
4345 	/* clear dev ecc 2bit error source if having */
4346 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4347 	if (value && qm->err_ini->clear_dev_hw_err_status)
4348 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4349 
4350 	/* clear QM ecc mbit error source */
4351 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4352 
4353 	/* clear AM Reorder Buffer ecc mbit source */
4354 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4355 }
4356 
4357 static void qm_restart_done(struct hisi_qm *qm)
4358 {
4359 	u32 value;
4360 
4361 	if (qm->ver >= QM_HW_V3)
4362 		goto clear_flags;
4363 
4364 	if (!qm->err_status.is_qm_ecc_mbit &&
4365 	    !qm->err_status.is_dev_ecc_mbit)
4366 		return;
4367 
4368 	/* open the OOO port for PEH to write out MSI */
4369 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4370 	value |= qm->err_info.msi_wr_port;
4371 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4372 
4373 clear_flags:
4374 	qm->err_status.is_qm_ecc_mbit = false;
4375 	qm->err_status.is_dev_ecc_mbit = false;
4376 }
4377 
4378 static int qm_controller_reset_done(struct hisi_qm *qm)
4379 {
4380 	struct pci_dev *pdev = qm->pdev;
4381 	int ret;
4382 
4383 	ret = qm->ops->set_msi(qm, true);
4384 	if (ret) {
4385 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4386 		return ret;
4387 	}
4388 
4389 	ret = qm_set_pf_mse(qm, true);
4390 	if (ret) {
4391 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4392 		return ret;
4393 	}
4394 
4395 	if (qm->vfs_num) {
4396 		ret = qm_set_vf_mse(qm, true);
4397 		if (ret) {
4398 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
4399 			return ret;
4400 		}
4401 	}
4402 
4403 	ret = qm_dev_hw_init(qm);
4404 	if (ret) {
4405 		pci_err(pdev, "Failed to init device\n");
4406 		return ret;
4407 	}
4408 
4409 	qm_restart_prepare(qm);
4410 	hisi_qm_dev_err_init(qm);
4411 	if (qm->err_ini->open_axi_master_ooo)
4412 		qm->err_ini->open_axi_master_ooo(qm);
4413 
4414 	ret = qm_dev_mem_reset(qm);
4415 	if (ret) {
4416 		pci_err(pdev, "failed to reset device memory\n");
4417 		return ret;
4418 	}
4419 
4420 	ret = qm_restart(qm);
4421 	if (ret) {
4422 		pci_err(pdev, "Failed to start QM!\n");
4423 		return ret;
4424 	}
4425 
4426 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4427 	if (ret)
4428 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4429 
4430 	ret = qm_wait_vf_prepare_finish(qm);
4431 	if (ret)
4432 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
4433 
4434 	qm_cmd_init(qm);
4435 	qm_restart_done(qm);
4436 
4437 	qm_reset_bit_clear(qm);
4438 
4439 	return 0;
4440 }
4441 
4442 static int qm_controller_reset(struct hisi_qm *qm)
4443 {
4444 	struct pci_dev *pdev = qm->pdev;
4445 	int ret;
4446 
4447 	pci_info(pdev, "Controller resetting...\n");
4448 
4449 	ret = qm_controller_reset_prepare(qm);
4450 	if (ret) {
4451 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4452 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4453 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4454 		return ret;
4455 	}
4456 
4457 	hisi_qm_show_last_dfx_regs(qm);
4458 	if (qm->err_ini->show_last_dfx_regs)
4459 		qm->err_ini->show_last_dfx_regs(qm);
4460 
4461 	ret = qm_soft_reset(qm);
4462 	if (ret)
4463 		goto err_reset;
4464 
4465 	ret = qm_controller_reset_done(qm);
4466 	if (ret)
4467 		goto err_reset;
4468 
4469 	pci_info(pdev, "Controller reset complete\n");
4470 
4471 	return 0;
4472 
4473 err_reset:
4474 	pci_err(pdev, "Controller reset failed (%d)\n", ret);
4475 	qm_reset_bit_clear(qm);
4476 
4477 	/* if resetting fails, isolate the device */
4478 	if (qm->use_sva)
4479 		qm->isolate_data.is_isolate = true;
4480 	return ret;
4481 }
4482 
4483 /**
4484  * hisi_qm_dev_slot_reset() - slot reset
4485  * @pdev: the PCIe device
4486  *
4487  * This function offers QM relate PCIe device reset interface. Drivers which
4488  * use QM can use this function as slot_reset in its struct pci_error_handlers.
4489  */
4490 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4491 {
4492 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4493 	int ret;
4494 
4495 	if (pdev->is_virtfn)
4496 		return PCI_ERS_RESULT_RECOVERED;
4497 
4498 	/* reset pcie device controller */
4499 	ret = qm_controller_reset(qm);
4500 	if (ret) {
4501 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4502 		return PCI_ERS_RESULT_DISCONNECT;
4503 	}
4504 
4505 	return PCI_ERS_RESULT_RECOVERED;
4506 }
4507 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4508 
4509 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4510 {
4511 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4512 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4513 	u32 delay = 0;
4514 	int ret;
4515 
4516 	hisi_qm_dev_err_uninit(pf_qm);
4517 
4518 	/*
4519 	 * Check whether there is an ECC mbit error, If it occurs, need to
4520 	 * wait for soft reset to fix it.
4521 	 */
4522 	while (qm_check_dev_error(pf_qm)) {
4523 		msleep(++delay);
4524 		if (delay > QM_RESET_WAIT_TIMEOUT)
4525 			return;
4526 	}
4527 
4528 	ret = qm_reset_prepare_ready(qm);
4529 	if (ret) {
4530 		pci_err(pdev, "FLR not ready!\n");
4531 		return;
4532 	}
4533 
4534 	/* PF obtains the information of VF by querying the register. */
4535 	if (qm->fun_type == QM_HW_PF)
4536 		qm_cmd_uninit(qm);
4537 
4538 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR);
4539 	if (ret)
4540 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4541 
4542 	ret = hisi_qm_stop(qm, QM_FLR);
4543 	if (ret) {
4544 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4545 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4546 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4547 		return;
4548 	}
4549 
4550 	ret = qm_wait_vf_prepare_finish(qm);
4551 	if (ret)
4552 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
4553 
4554 	pci_info(pdev, "FLR resetting...\n");
4555 }
4556 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4557 
4558 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4559 {
4560 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4561 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4562 	u32 id;
4563 
4564 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4565 	if (id == QM_PCI_COMMAND_INVALID) {
4566 		pci_err(pdev, "Device can not be used!\n");
4567 		return false;
4568 	}
4569 
4570 	return true;
4571 }
4572 
4573 void hisi_qm_reset_done(struct pci_dev *pdev)
4574 {
4575 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4576 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4577 	int ret;
4578 
4579 	if (qm->fun_type == QM_HW_PF) {
4580 		ret = qm_dev_hw_init(qm);
4581 		if (ret) {
4582 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4583 			goto flr_done;
4584 		}
4585 	}
4586 
4587 	hisi_qm_dev_err_init(pf_qm);
4588 
4589 	ret = qm_restart(qm);
4590 	if (ret) {
4591 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4592 		goto flr_done;
4593 	}
4594 
4595 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4596 	if (ret)
4597 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4598 
4599 	ret = qm_wait_vf_prepare_finish(qm);
4600 	if (ret)
4601 		pci_err(pdev, "failed to start by vfs in FLR!\n");
4602 
4603 flr_done:
4604 	if (qm->fun_type == QM_HW_PF)
4605 		qm_cmd_init(qm);
4606 
4607 	if (qm_flr_reset_complete(pdev))
4608 		pci_info(pdev, "FLR reset complete\n");
4609 
4610 	qm_reset_bit_clear(qm);
4611 }
4612 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4613 
4614 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4615 {
4616 	struct hisi_qm *qm = data;
4617 	enum acc_err_result ret;
4618 
4619 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4620 	ret = qm_process_dev_error(qm);
4621 	if (ret == ACC_ERR_NEED_RESET &&
4622 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4623 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4624 		schedule_work(&qm->rst_work);
4625 
4626 	return IRQ_HANDLED;
4627 }
4628 
4629 /**
4630  * hisi_qm_dev_shutdown() - Shutdown device.
4631  * @pdev: The device will be shutdown.
4632  *
4633  * This function will stop qm when OS shutdown or rebooting.
4634  */
4635 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4636 {
4637 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4638 	int ret;
4639 
4640 	ret = hisi_qm_stop(qm, QM_NORMAL);
4641 	if (ret)
4642 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4643 }
4644 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4645 
4646 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4647 {
4648 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4649 	int ret;
4650 
4651 	ret = qm_pm_get_sync(qm);
4652 	if (ret) {
4653 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4654 		return;
4655 	}
4656 
4657 	/* reset pcie device controller */
4658 	ret = qm_controller_reset(qm);
4659 	if (ret)
4660 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4661 
4662 	qm_pm_put_sync(qm);
4663 }
4664 
4665 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4666 				   enum qm_stop_reason stop_reason)
4667 {
4668 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
4669 	struct pci_dev *pdev = qm->pdev;
4670 	int ret;
4671 
4672 	ret = qm_reset_prepare_ready(qm);
4673 	if (ret) {
4674 		dev_err(&pdev->dev, "reset prepare not ready!\n");
4675 		atomic_set(&qm->status.flags, QM_STOP);
4676 		cmd = QM_VF_PREPARE_FAIL;
4677 		goto err_prepare;
4678 	}
4679 
4680 	ret = hisi_qm_stop(qm, stop_reason);
4681 	if (ret) {
4682 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4683 		atomic_set(&qm->status.flags, QM_STOP);
4684 		cmd = QM_VF_PREPARE_FAIL;
4685 		goto err_prepare;
4686 	} else {
4687 		goto out;
4688 	}
4689 
4690 err_prepare:
4691 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4692 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4693 out:
4694 	pci_save_state(pdev);
4695 	ret = qm_ping_pf(qm, cmd);
4696 	if (ret)
4697 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4698 }
4699 
4700 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4701 {
4702 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
4703 	struct pci_dev *pdev = qm->pdev;
4704 	int ret;
4705 
4706 	pci_restore_state(pdev);
4707 	ret = hisi_qm_start(qm);
4708 	if (ret) {
4709 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4710 		cmd = QM_VF_START_FAIL;
4711 	}
4712 
4713 	qm_cmd_init(qm);
4714 	ret = qm_ping_pf(qm, cmd);
4715 	if (ret)
4716 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4717 
4718 	qm_reset_bit_clear(qm);
4719 }
4720 
4721 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4722 {
4723 	struct device *dev = &qm->pdev->dev;
4724 	u32 val, cmd;
4725 	u64 msg;
4726 	int ret;
4727 
4728 	/* Wait for reset to finish */
4729 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4730 					 val == BIT(0), QM_VF_RESET_WAIT_US,
4731 					 QM_VF_RESET_WAIT_TIMEOUT_US);
4732 	/* hardware completion status should be available by this time */
4733 	if (ret) {
4734 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4735 		return -ETIMEDOUT;
4736 	}
4737 
4738 	/*
4739 	 * Whether message is got successfully,
4740 	 * VF needs to ack PF by clearing the interrupt.
4741 	 */
4742 	ret = qm_get_mb_cmd(qm, &msg, 0);
4743 	qm_clear_cmd_interrupt(qm, 0);
4744 	if (ret) {
4745 		dev_err(dev, "failed to get msg from PF in reset done!\n");
4746 		return ret;
4747 	}
4748 
4749 	cmd = msg & QM_MB_CMD_DATA_MASK;
4750 	if (cmd != QM_PF_RESET_DONE) {
4751 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
4752 		ret = -EINVAL;
4753 	}
4754 
4755 	return ret;
4756 }
4757 
4758 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4759 				   enum qm_stop_reason stop_reason)
4760 {
4761 	struct device *dev = &qm->pdev->dev;
4762 	int ret;
4763 
4764 	dev_info(dev, "device reset start...\n");
4765 
4766 	/* The message is obtained by querying the register during resetting */
4767 	qm_cmd_uninit(qm);
4768 	qm_pf_reset_vf_prepare(qm, stop_reason);
4769 
4770 	ret = qm_wait_pf_reset_finish(qm);
4771 	if (ret)
4772 		goto err_get_status;
4773 
4774 	qm_pf_reset_vf_done(qm);
4775 
4776 	dev_info(dev, "device reset done.\n");
4777 
4778 	return;
4779 
4780 err_get_status:
4781 	qm_cmd_init(qm);
4782 	qm_reset_bit_clear(qm);
4783 }
4784 
4785 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
4786 {
4787 	struct device *dev = &qm->pdev->dev;
4788 	u64 msg;
4789 	u32 cmd;
4790 	int ret;
4791 
4792 	/*
4793 	 * Get the msg from source by sending mailbox. Whether message is got
4794 	 * successfully, destination needs to ack source by clearing the interrupt.
4795 	 */
4796 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
4797 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
4798 	if (ret) {
4799 		dev_err(dev, "failed to get msg from source!\n");
4800 		return;
4801 	}
4802 
4803 	cmd = msg & QM_MB_CMD_DATA_MASK;
4804 	switch (cmd) {
4805 	case QM_PF_FLR_PREPARE:
4806 		qm_pf_reset_vf_process(qm, QM_FLR);
4807 		break;
4808 	case QM_PF_SRST_PREPARE:
4809 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
4810 		break;
4811 	case QM_VF_GET_QOS:
4812 		qm_vf_get_qos(qm, fun_num);
4813 		break;
4814 	case QM_PF_SET_QOS:
4815 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
4816 		break;
4817 	default:
4818 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
4819 		break;
4820 	}
4821 }
4822 
4823 static void qm_cmd_process(struct work_struct *cmd_process)
4824 {
4825 	struct hisi_qm *qm = container_of(cmd_process,
4826 					struct hisi_qm, cmd_process);
4827 	u32 vfs_num = qm->vfs_num;
4828 	u64 val;
4829 	u32 i;
4830 
4831 	if (qm->fun_type == QM_HW_PF) {
4832 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
4833 		if (!val)
4834 			return;
4835 
4836 		for (i = 1; i <= vfs_num; i++) {
4837 			if (val & BIT(i))
4838 				qm_handle_cmd_msg(qm, i);
4839 		}
4840 
4841 		return;
4842 	}
4843 
4844 	qm_handle_cmd_msg(qm, 0);
4845 }
4846 
4847 /**
4848  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
4849  * @qm: The qm needs add.
4850  * @qm_list: The qm list.
4851  *
4852  * This function adds qm to qm list, and will register algorithm to
4853  * crypto when the qm list is empty.
4854  */
4855 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4856 {
4857 	struct device *dev = &qm->pdev->dev;
4858 	int flag = 0;
4859 	int ret = 0;
4860 
4861 	mutex_lock(&qm_list->lock);
4862 	if (list_empty(&qm_list->list))
4863 		flag = 1;
4864 	list_add_tail(&qm->list, &qm_list->list);
4865 	mutex_unlock(&qm_list->lock);
4866 
4867 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
4868 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
4869 		return 0;
4870 	}
4871 
4872 	if (flag) {
4873 		ret = qm_list->register_to_crypto(qm);
4874 		if (ret) {
4875 			mutex_lock(&qm_list->lock);
4876 			list_del(&qm->list);
4877 			mutex_unlock(&qm_list->lock);
4878 		}
4879 	}
4880 
4881 	return ret;
4882 }
4883 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4884 
4885 /**
4886  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
4887  * qm list.
4888  * @qm: The qm needs delete.
4889  * @qm_list: The qm list.
4890  *
4891  * This function deletes qm from qm list, and will unregister algorithm
4892  * from crypto when the qm list is empty.
4893  */
4894 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4895 {
4896 	mutex_lock(&qm_list->lock);
4897 	list_del(&qm->list);
4898 	mutex_unlock(&qm_list->lock);
4899 
4900 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4901 		return;
4902 
4903 	if (list_empty(&qm_list->list))
4904 		qm_list->unregister_from_crypto(qm);
4905 }
4906 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
4907 
4908 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
4909 {
4910 	struct pci_dev *pdev = qm->pdev;
4911 	u32 irq_vector, val;
4912 
4913 	if (qm->fun_type == QM_HW_VF)
4914 		return;
4915 
4916 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
4917 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4918 		return;
4919 
4920 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4921 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4922 }
4923 
4924 static int qm_register_abnormal_irq(struct hisi_qm *qm)
4925 {
4926 	struct pci_dev *pdev = qm->pdev;
4927 	u32 irq_vector, val;
4928 	int ret;
4929 
4930 	if (qm->fun_type == QM_HW_VF)
4931 		return 0;
4932 
4933 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
4934 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4935 		return 0;
4936 
4937 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4938 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
4939 	if (ret)
4940 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
4941 
4942 	return ret;
4943 }
4944 
4945 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
4946 {
4947 	struct pci_dev *pdev = qm->pdev;
4948 	u32 irq_vector, val;
4949 
4950 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
4951 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4952 		return;
4953 
4954 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4955 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4956 }
4957 
4958 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
4959 {
4960 	struct pci_dev *pdev = qm->pdev;
4961 	u32 irq_vector, val;
4962 	int ret;
4963 
4964 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
4965 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4966 		return 0;
4967 
4968 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4969 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
4970 	if (ret)
4971 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
4972 
4973 	return ret;
4974 }
4975 
4976 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
4977 {
4978 	struct pci_dev *pdev = qm->pdev;
4979 	u32 irq_vector, val;
4980 
4981 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
4982 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4983 		return;
4984 
4985 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4986 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4987 }
4988 
4989 static int qm_register_aeq_irq(struct hisi_qm *qm)
4990 {
4991 	struct pci_dev *pdev = qm->pdev;
4992 	u32 irq_vector, val;
4993 	int ret;
4994 
4995 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
4996 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4997 		return 0;
4998 
4999 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5000 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), qm_aeq_irq,
5001 						   qm_aeq_thread, 0, qm->dev_name, qm);
5002 	if (ret)
5003 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5004 
5005 	return ret;
5006 }
5007 
5008 static void qm_unregister_eq_irq(struct hisi_qm *qm)
5009 {
5010 	struct pci_dev *pdev = qm->pdev;
5011 	u32 irq_vector, val;
5012 
5013 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
5014 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5015 		return;
5016 
5017 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5018 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5019 }
5020 
5021 static int qm_register_eq_irq(struct hisi_qm *qm)
5022 {
5023 	struct pci_dev *pdev = qm->pdev;
5024 	u32 irq_vector, val;
5025 	int ret;
5026 
5027 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
5028 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5029 		return 0;
5030 
5031 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5032 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
5033 	if (ret)
5034 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5035 
5036 	return ret;
5037 }
5038 
5039 static void qm_irqs_unregister(struct hisi_qm *qm)
5040 {
5041 	qm_unregister_mb_cmd_irq(qm);
5042 	qm_unregister_abnormal_irq(qm);
5043 	qm_unregister_aeq_irq(qm);
5044 	qm_unregister_eq_irq(qm);
5045 }
5046 
5047 static int qm_irqs_register(struct hisi_qm *qm)
5048 {
5049 	int ret;
5050 
5051 	ret = qm_register_eq_irq(qm);
5052 	if (ret)
5053 		return ret;
5054 
5055 	ret = qm_register_aeq_irq(qm);
5056 	if (ret)
5057 		goto free_eq_irq;
5058 
5059 	ret = qm_register_abnormal_irq(qm);
5060 	if (ret)
5061 		goto free_aeq_irq;
5062 
5063 	ret = qm_register_mb_cmd_irq(qm);
5064 	if (ret)
5065 		goto free_abnormal_irq;
5066 
5067 	return 0;
5068 
5069 free_abnormal_irq:
5070 	qm_unregister_abnormal_irq(qm);
5071 free_aeq_irq:
5072 	qm_unregister_aeq_irq(qm);
5073 free_eq_irq:
5074 	qm_unregister_eq_irq(qm);
5075 	return ret;
5076 }
5077 
5078 static int qm_get_qp_num(struct hisi_qm *qm)
5079 {
5080 	bool is_db_isolation;
5081 
5082 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
5083 	if (qm->fun_type == QM_HW_VF) {
5084 		if (qm->ver != QM_HW_V1)
5085 			/* v2 starts to support get vft by mailbox */
5086 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
5087 
5088 		return 0;
5089 	}
5090 
5091 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5092 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
5093 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
5094 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
5095 
5096 	/* check if qp number is valid */
5097 	if (qm->qp_num > qm->max_qp_num) {
5098 		dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n",
5099 			qm->qp_num, qm->max_qp_num);
5100 		return -EINVAL;
5101 	}
5102 
5103 	return 0;
5104 }
5105 
5106 static void qm_get_hw_caps(struct hisi_qm *qm)
5107 {
5108 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
5109 						  qm_cap_info_pf : qm_cap_info_vf;
5110 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
5111 				   ARRAY_SIZE(qm_cap_info_vf);
5112 	u32 val, i;
5113 
5114 	/* Doorbell isolate register is a independent register. */
5115 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
5116 	if (val)
5117 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5118 
5119 	if (qm->ver >= QM_HW_V3) {
5120 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
5121 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
5122 	}
5123 
5124 	/* Get PF/VF common capbility */
5125 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
5126 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
5127 		if (val)
5128 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
5129 	}
5130 
5131 	/* Get PF/VF different capbility */
5132 	for (i = 0; i < size; i++) {
5133 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
5134 		if (val)
5135 			set_bit(cap_info[i].type, &qm->caps);
5136 	}
5137 }
5138 
5139 static int qm_get_pci_res(struct hisi_qm *qm)
5140 {
5141 	struct pci_dev *pdev = qm->pdev;
5142 	struct device *dev = &pdev->dev;
5143 	int ret;
5144 
5145 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5146 	if (ret < 0) {
5147 		dev_err(dev, "Failed to request mem regions!\n");
5148 		return ret;
5149 	}
5150 
5151 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5152 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5153 	if (!qm->io_base) {
5154 		ret = -EIO;
5155 		goto err_request_mem_regions;
5156 	}
5157 
5158 	qm_get_hw_caps(qm);
5159 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5160 		qm->db_interval = QM_QP_DB_INTERVAL;
5161 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5162 		qm->db_io_base = ioremap(qm->db_phys_base,
5163 					 pci_resource_len(pdev, PCI_BAR_4));
5164 		if (!qm->db_io_base) {
5165 			ret = -EIO;
5166 			goto err_ioremap;
5167 		}
5168 	} else {
5169 		qm->db_phys_base = qm->phys_base;
5170 		qm->db_io_base = qm->io_base;
5171 		qm->db_interval = 0;
5172 	}
5173 
5174 	ret = qm_get_qp_num(qm);
5175 	if (ret)
5176 		goto err_db_ioremap;
5177 
5178 	return 0;
5179 
5180 err_db_ioremap:
5181 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5182 		iounmap(qm->db_io_base);
5183 err_ioremap:
5184 	iounmap(qm->io_base);
5185 err_request_mem_regions:
5186 	pci_release_mem_regions(pdev);
5187 	return ret;
5188 }
5189 
5190 static int hisi_qm_pci_init(struct hisi_qm *qm)
5191 {
5192 	struct pci_dev *pdev = qm->pdev;
5193 	struct device *dev = &pdev->dev;
5194 	unsigned int num_vec;
5195 	int ret;
5196 
5197 	ret = pci_enable_device_mem(pdev);
5198 	if (ret < 0) {
5199 		dev_err(dev, "Failed to enable device mem!\n");
5200 		return ret;
5201 	}
5202 
5203 	ret = qm_get_pci_res(qm);
5204 	if (ret)
5205 		goto err_disable_pcidev;
5206 
5207 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5208 	if (ret < 0)
5209 		goto err_get_pci_res;
5210 	pci_set_master(pdev);
5211 
5212 	num_vec = qm_get_irq_num(qm);
5213 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5214 	if (ret < 0) {
5215 		dev_err(dev, "Failed to enable MSI vectors!\n");
5216 		goto err_get_pci_res;
5217 	}
5218 
5219 	return 0;
5220 
5221 err_get_pci_res:
5222 	qm_put_pci_res(qm);
5223 err_disable_pcidev:
5224 	pci_disable_device(pdev);
5225 	return ret;
5226 }
5227 
5228 static int hisi_qm_init_work(struct hisi_qm *qm)
5229 {
5230 	int i;
5231 
5232 	for (i = 0; i < qm->qp_num; i++)
5233 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5234 
5235 	if (qm->fun_type == QM_HW_PF)
5236 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5237 
5238 	if (qm->ver > QM_HW_V2)
5239 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5240 
5241 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5242 				 WQ_UNBOUND, num_online_cpus(),
5243 				 pci_name(qm->pdev));
5244 	if (!qm->wq) {
5245 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
5246 		return -ENOMEM;
5247 	}
5248 
5249 	return 0;
5250 }
5251 
5252 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5253 {
5254 	struct device *dev = &qm->pdev->dev;
5255 	u16 sq_depth, cq_depth;
5256 	size_t qp_dma_size;
5257 	int i, ret;
5258 
5259 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5260 	if (!qm->qp_array)
5261 		return -ENOMEM;
5262 
5263 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5264 	if (!qm->poll_data) {
5265 		kfree(qm->qp_array);
5266 		return -ENOMEM;
5267 	}
5268 
5269 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5270 
5271 	/* one more page for device or qp statuses */
5272 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5273 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5274 	for (i = 0; i < qm->qp_num; i++) {
5275 		qm->poll_data[i].qm = qm;
5276 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5277 		if (ret)
5278 			goto err_init_qp_mem;
5279 
5280 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5281 	}
5282 
5283 	return 0;
5284 err_init_qp_mem:
5285 	hisi_qp_memory_uninit(qm, i);
5286 
5287 	return ret;
5288 }
5289 
5290 static int hisi_qm_memory_init(struct hisi_qm *qm)
5291 {
5292 	struct device *dev = &qm->pdev->dev;
5293 	int ret, total_func;
5294 	size_t off = 0;
5295 
5296 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5297 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5298 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5299 		if (!qm->factor)
5300 			return -ENOMEM;
5301 
5302 		/* Only the PF value needs to be initialized */
5303 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5304 	}
5305 
5306 #define QM_INIT_BUF(qm, type, num) do { \
5307 	(qm)->type = ((qm)->qdma.va + (off)); \
5308 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5309 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5310 } while (0)
5311 
5312 	idr_init(&qm->qp_idr);
5313 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5314 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5315 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5316 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5317 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5318 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5319 					 GFP_ATOMIC);
5320 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5321 	if (!qm->qdma.va) {
5322 		ret = -ENOMEM;
5323 		goto err_destroy_idr;
5324 	}
5325 
5326 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
5327 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5328 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5329 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5330 
5331 	ret = hisi_qp_alloc_memory(qm);
5332 	if (ret)
5333 		goto err_alloc_qp_array;
5334 
5335 	return 0;
5336 
5337 err_alloc_qp_array:
5338 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5339 err_destroy_idr:
5340 	idr_destroy(&qm->qp_idr);
5341 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5342 		kfree(qm->factor);
5343 
5344 	return ret;
5345 }
5346 
5347 /**
5348  * hisi_qm_init() - Initialize configures about qm.
5349  * @qm: The qm needing init.
5350  *
5351  * This function init qm, then we can call hisi_qm_start to put qm into work.
5352  */
5353 int hisi_qm_init(struct hisi_qm *qm)
5354 {
5355 	struct pci_dev *pdev = qm->pdev;
5356 	struct device *dev = &pdev->dev;
5357 	int ret;
5358 
5359 	hisi_qm_pre_init(qm);
5360 
5361 	ret = hisi_qm_pci_init(qm);
5362 	if (ret)
5363 		return ret;
5364 
5365 	ret = qm_irqs_register(qm);
5366 	if (ret)
5367 		goto err_pci_init;
5368 
5369 	if (qm->fun_type == QM_HW_PF) {
5370 		qm_disable_clock_gate(qm);
5371 		ret = qm_dev_mem_reset(qm);
5372 		if (ret) {
5373 			dev_err(dev, "failed to reset device memory\n");
5374 			goto err_irq_register;
5375 		}
5376 	}
5377 
5378 	if (qm->mode == UACCE_MODE_SVA) {
5379 		ret = qm_alloc_uacce(qm);
5380 		if (ret < 0)
5381 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5382 	}
5383 
5384 	ret = hisi_qm_memory_init(qm);
5385 	if (ret)
5386 		goto err_alloc_uacce;
5387 
5388 	ret = hisi_qm_init_work(qm);
5389 	if (ret)
5390 		goto err_free_qm_memory;
5391 
5392 	qm_cmd_init(qm);
5393 	atomic_set(&qm->status.flags, QM_INIT);
5394 
5395 	return 0;
5396 
5397 err_free_qm_memory:
5398 	hisi_qm_memory_uninit(qm);
5399 err_alloc_uacce:
5400 	qm_remove_uacce(qm);
5401 err_irq_register:
5402 	qm_irqs_unregister(qm);
5403 err_pci_init:
5404 	hisi_qm_pci_uninit(qm);
5405 	return ret;
5406 }
5407 EXPORT_SYMBOL_GPL(hisi_qm_init);
5408 
5409 /**
5410  * hisi_qm_get_dfx_access() - Try to get dfx access.
5411  * @qm: pointer to accelerator device.
5412  *
5413  * Try to get dfx access, then user can get message.
5414  *
5415  * If device is in suspended, return failure, otherwise
5416  * bump up the runtime PM usage counter.
5417  */
5418 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5419 {
5420 	struct device *dev = &qm->pdev->dev;
5421 
5422 	if (pm_runtime_suspended(dev)) {
5423 		dev_info(dev, "can not read/write - device in suspended.\n");
5424 		return -EAGAIN;
5425 	}
5426 
5427 	return qm_pm_get_sync(qm);
5428 }
5429 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5430 
5431 /**
5432  * hisi_qm_put_dfx_access() - Put dfx access.
5433  * @qm: pointer to accelerator device.
5434  *
5435  * Put dfx access, drop runtime PM usage counter.
5436  */
5437 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5438 {
5439 	qm_pm_put_sync(qm);
5440 }
5441 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5442 
5443 /**
5444  * hisi_qm_pm_init() - Initialize qm runtime PM.
5445  * @qm: pointer to accelerator device.
5446  *
5447  * Function that initialize qm runtime PM.
5448  */
5449 void hisi_qm_pm_init(struct hisi_qm *qm)
5450 {
5451 	struct device *dev = &qm->pdev->dev;
5452 
5453 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5454 		return;
5455 
5456 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5457 	pm_runtime_use_autosuspend(dev);
5458 	pm_runtime_put_noidle(dev);
5459 }
5460 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5461 
5462 /**
5463  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5464  * @qm: pointer to accelerator device.
5465  *
5466  * Function that uninitialize qm runtime PM.
5467  */
5468 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5469 {
5470 	struct device *dev = &qm->pdev->dev;
5471 
5472 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5473 		return;
5474 
5475 	pm_runtime_get_noresume(dev);
5476 	pm_runtime_dont_use_autosuspend(dev);
5477 }
5478 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5479 
5480 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5481 {
5482 	struct pci_dev *pdev = qm->pdev;
5483 	int ret;
5484 	u32 val;
5485 
5486 	ret = qm->ops->set_msi(qm, false);
5487 	if (ret) {
5488 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5489 		return ret;
5490 	}
5491 
5492 	/* shutdown OOO register */
5493 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
5494 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5495 
5496 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
5497 					 val,
5498 					 (val == ACC_MASTER_TRANS_RETURN_RW),
5499 					 POLL_PERIOD, POLL_TIMEOUT);
5500 	if (ret) {
5501 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
5502 		return ret;
5503 	}
5504 
5505 	ret = qm_set_pf_mse(qm, false);
5506 	if (ret)
5507 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5508 
5509 	return ret;
5510 }
5511 
5512 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5513 {
5514 	struct pci_dev *pdev = qm->pdev;
5515 	int ret;
5516 
5517 	ret = qm_set_pf_mse(qm, true);
5518 	if (ret) {
5519 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5520 		return ret;
5521 	}
5522 
5523 	ret = qm->ops->set_msi(qm, true);
5524 	if (ret) {
5525 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5526 		return ret;
5527 	}
5528 
5529 	ret = qm_dev_hw_init(qm);
5530 	if (ret) {
5531 		pci_err(pdev, "failed to init device after resuming\n");
5532 		return ret;
5533 	}
5534 
5535 	qm_cmd_init(qm);
5536 	hisi_qm_dev_err_init(qm);
5537 	qm_disable_clock_gate(qm);
5538 	ret = qm_dev_mem_reset(qm);
5539 	if (ret)
5540 		pci_err(pdev, "failed to reset device memory\n");
5541 
5542 	return ret;
5543 }
5544 
5545 /**
5546  * hisi_qm_suspend() - Runtime suspend of given device.
5547  * @dev: device to suspend.
5548  *
5549  * Function that suspend the device.
5550  */
5551 int hisi_qm_suspend(struct device *dev)
5552 {
5553 	struct pci_dev *pdev = to_pci_dev(dev);
5554 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5555 	int ret;
5556 
5557 	pci_info(pdev, "entering suspended state\n");
5558 
5559 	ret = hisi_qm_stop(qm, QM_NORMAL);
5560 	if (ret) {
5561 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
5562 		return ret;
5563 	}
5564 
5565 	ret = qm_prepare_for_suspend(qm);
5566 	if (ret)
5567 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5568 
5569 	return ret;
5570 }
5571 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5572 
5573 /**
5574  * hisi_qm_resume() - Runtime resume of given device.
5575  * @dev: device to resume.
5576  *
5577  * Function that resume the device.
5578  */
5579 int hisi_qm_resume(struct device *dev)
5580 {
5581 	struct pci_dev *pdev = to_pci_dev(dev);
5582 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5583 	int ret;
5584 
5585 	pci_info(pdev, "resuming from suspend state\n");
5586 
5587 	ret = qm_rebuild_for_resume(qm);
5588 	if (ret) {
5589 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5590 		return ret;
5591 	}
5592 
5593 	ret = hisi_qm_start(qm);
5594 	if (ret) {
5595 		if (qm_check_dev_error(qm)) {
5596 			pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5597 			return 0;
5598 		}
5599 
5600 		pci_err(pdev, "failed to start qm(%d)!\n", ret);
5601 	}
5602 
5603 	return ret;
5604 }
5605 EXPORT_SYMBOL_GPL(hisi_qm_resume);
5606 
5607 MODULE_LICENSE("GPL v2");
5608 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5609 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5610