1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/aer.h> 6 #include <linux/bitmap.h> 7 #include <linux/dma-mapping.h> 8 #include <linux/idr.h> 9 #include <linux/io.h> 10 #include <linux/irqreturn.h> 11 #include <linux/log2.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/seq_file.h> 14 #include <linux/slab.h> 15 #include <linux/uacce.h> 16 #include <linux/uaccess.h> 17 #include <uapi/misc/uacce/hisi_qm.h> 18 #include <linux/hisi_acc_qm.h> 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 26 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 27 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_SHIFT 16 29 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 30 31 /* mailbox */ 32 #define QM_MB_PING_ALL_VFS 0xffff 33 #define QM_MB_CMD_DATA_SHIFT 32 34 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 35 #define QM_MB_STATUS_MASK GENMASK(12, 9) 36 37 /* sqc shift */ 38 #define QM_SQ_HOP_NUM_SHIFT 0 39 #define QM_SQ_PAGE_SIZE_SHIFT 4 40 #define QM_SQ_BUF_SIZE_SHIFT 8 41 #define QM_SQ_SQE_SIZE_SHIFT 12 42 #define QM_SQ_PRIORITY_SHIFT 0 43 #define QM_SQ_ORDERS_SHIFT 4 44 #define QM_SQ_TYPE_SHIFT 8 45 #define QM_QC_PASID_ENABLE 0x1 46 #define QM_QC_PASID_ENABLE_SHIFT 7 47 48 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 49 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) 50 51 /* cqc shift */ 52 #define QM_CQ_HOP_NUM_SHIFT 0 53 #define QM_CQ_PAGE_SIZE_SHIFT 4 54 #define QM_CQ_BUF_SIZE_SHIFT 8 55 #define QM_CQ_CQE_SIZE_SHIFT 12 56 #define QM_CQ_PHASE_SHIFT 0 57 #define QM_CQ_FLAG_SHIFT 1 58 59 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 60 #define QM_QC_CQE_SIZE 4 61 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) 62 63 /* eqc shift */ 64 #define QM_EQE_AEQE_SIZE (2UL << 12) 65 #define QM_EQC_PHASE_SHIFT 16 66 67 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 68 #define QM_EQE_CQN_MASK GENMASK(15, 0) 69 70 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 71 #define QM_AEQE_TYPE_SHIFT 17 72 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 73 #define QM_CQ_OVERFLOW 0 74 #define QM_EQ_OVERFLOW 1 75 #define QM_CQE_ERROR 2 76 77 #define QM_XQ_DEPTH_SHIFT 16 78 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 79 80 #define QM_DOORBELL_CMD_SQ 0 81 #define QM_DOORBELL_CMD_CQ 1 82 #define QM_DOORBELL_CMD_EQ 2 83 #define QM_DOORBELL_CMD_AEQ 3 84 85 #define QM_DOORBELL_BASE_V1 0x340 86 #define QM_DB_CMD_SHIFT_V1 16 87 #define QM_DB_INDEX_SHIFT_V1 32 88 #define QM_DB_PRIORITY_SHIFT_V1 48 89 #define QM_PAGE_SIZE 0x0034 90 #define QM_QP_DB_INTERVAL 0x10000 91 92 #define QM_MEM_START_INIT 0x100040 93 #define QM_MEM_INIT_DONE 0x100044 94 #define QM_VFT_CFG_RDY 0x10006c 95 #define QM_VFT_CFG_OP_WR 0x100058 96 #define QM_VFT_CFG_TYPE 0x10005c 97 #define QM_SQC_VFT 0x0 98 #define QM_CQC_VFT 0x1 99 #define QM_VFT_CFG 0x100060 100 #define QM_VFT_CFG_OP_ENABLE 0x100054 101 #define QM_PM_CTRL 0x100148 102 #define QM_IDLE_DISABLE BIT(9) 103 104 #define QM_VFT_CFG_DATA_L 0x100064 105 #define QM_VFT_CFG_DATA_H 0x100068 106 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 107 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 108 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 109 #define QM_SQC_VFT_START_SQN_SHIFT 28 110 #define QM_SQC_VFT_VALID (1ULL << 44) 111 #define QM_SQC_VFT_SQN_SHIFT 45 112 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 113 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 114 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 115 #define QM_CQC_VFT_VALID (1ULL << 28) 116 117 #define QM_SQC_VFT_BASE_SHIFT_V2 28 118 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 119 #define QM_SQC_VFT_NUM_SHIFT_V2 45 120 #define QM_SQC_VFT_NUM_MASK_v2 GENMASK(9, 0) 121 122 #define QM_DFX_CNT_CLR_CE 0x100118 123 124 #define QM_ABNORMAL_INT_SOURCE 0x100000 125 #define QM_ABNORMAL_INT_MASK 0x100004 126 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 127 #define QM_ABNORMAL_INT_STATUS 0x100008 128 #define QM_ABNORMAL_INT_SET 0x10000c 129 #define QM_ABNORMAL_INF00 0x100010 130 #define QM_FIFO_OVERFLOW_TYPE 0xc0 131 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 132 #define QM_FIFO_OVERFLOW_VF 0x3f 133 #define QM_ABNORMAL_INF01 0x100014 134 #define QM_DB_TIMEOUT_TYPE 0xc0 135 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 136 #define QM_DB_TIMEOUT_VF 0x3f 137 #define QM_RAS_CE_ENABLE 0x1000ec 138 #define QM_RAS_FE_ENABLE 0x1000f0 139 #define QM_RAS_NFE_ENABLE 0x1000f4 140 #define QM_RAS_CE_THRESHOLD 0x1000f8 141 #define QM_RAS_CE_TIMES_PER_IRQ 1 142 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 143 #define QM_ECC_MBIT BIT(2) 144 #define QM_DB_TIMEOUT BIT(10) 145 #define QM_OF_FIFO_OF BIT(11) 146 147 #define QM_RESET_WAIT_TIMEOUT 400 148 #define QM_PEH_VENDOR_ID 0x1000d8 149 #define ACC_VENDOR_ID_VALUE 0x5a5a 150 #define QM_PEH_DFX_INFO0 0x1000fc 151 #define QM_PEH_DFX_INFO1 0x100100 152 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 153 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 154 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 155 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 156 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 157 #define ACC_MASTER_TRANS_RETURN_RW 3 158 #define ACC_MASTER_TRANS_RETURN 0x300150 159 #define ACC_MASTER_GLOBAL_CTRL 0x300000 160 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 161 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 162 #define ACC_AM_ROB_ECC_INT_STS 0x300104 163 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 164 #define QM_MSI_CAP_ENABLE BIT(16) 165 166 /* interfunction communication */ 167 #define QM_IFC_READY_STATUS 0x100128 168 #define QM_IFC_C_STS_M 0x10012C 169 #define QM_IFC_INT_SET_P 0x100130 170 #define QM_IFC_INT_CFG 0x100134 171 #define QM_IFC_INT_SOURCE_P 0x100138 172 #define QM_IFC_INT_SOURCE_V 0x0020 173 #define QM_IFC_INT_MASK 0x0024 174 #define QM_IFC_INT_STATUS 0x0028 175 #define QM_IFC_INT_SET_V 0x002C 176 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 177 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 178 #define QM_IFC_INT_SOURCE_MASK BIT(0) 179 #define QM_IFC_INT_DISABLE BIT(0) 180 #define QM_IFC_INT_STATUS_MASK BIT(0) 181 #define QM_IFC_INT_SET_MASK BIT(0) 182 #define QM_WAIT_DST_ACK 10 183 #define QM_MAX_PF_WAIT_COUNT 10 184 #define QM_MAX_VF_WAIT_COUNT 40 185 #define QM_VF_RESET_WAIT_US 20000 186 #define QM_VF_RESET_WAIT_CNT 3000 187 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 188 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 189 190 #define QM_DFX_MB_CNT_VF 0x104010 191 #define QM_DFX_DB_CNT_VF 0x104020 192 #define QM_DFX_SQE_CNT_VF_SQN 0x104030 193 #define QM_DFX_CQE_CNT_VF_CQN 0x104040 194 #define QM_DFX_QN_SHIFT 16 195 #define CURRENT_FUN_MASK GENMASK(5, 0) 196 #define CURRENT_Q_MASK GENMASK(31, 16) 197 198 #define POLL_PERIOD 10 199 #define POLL_TIMEOUT 1000 200 #define WAIT_PERIOD_US_MAX 200 201 #define WAIT_PERIOD_US_MIN 100 202 #define MAX_WAIT_COUNTS 1000 203 #define QM_CACHE_WB_START 0x204 204 #define QM_CACHE_WB_DONE 0x208 205 #define QM_FUNC_CAPS_REG 0x3100 206 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 207 208 #define PCI_BAR_2 2 209 #define PCI_BAR_4 4 210 #define QM_SQE_DATA_ALIGN_MASK GENMASK(6, 0) 211 #define QMC_ALIGN(sz) ALIGN(sz, 32) 212 213 #define QM_DBG_READ_LEN 256 214 #define QM_DBG_WRITE_LEN 1024 215 #define QM_DBG_TMP_BUF_LEN 22 216 #define QM_PCI_COMMAND_INVALID ~0 217 #define QM_RESET_STOP_TX_OFFSET 1 218 #define QM_RESET_STOP_RX_OFFSET 2 219 220 #define WAIT_PERIOD 20 221 #define REMOVE_WAIT_DELAY 10 222 #define QM_SQE_ADDR_MASK GENMASK(7, 0) 223 224 #define QM_DRIVER_REMOVING 0 225 #define QM_RST_SCHED 1 226 #define QM_RESETTING 2 227 #define QM_QOS_PARAM_NUM 2 228 #define QM_QOS_VAL_NUM 1 229 #define QM_QOS_BDF_PARAM_NUM 4 230 #define QM_QOS_MAX_VAL 1000 231 #define QM_QOS_RATE 100 232 #define QM_QOS_EXPAND_RATE 1000 233 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 234 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 235 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 236 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 237 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 238 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 239 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 240 #define QM_SHAPER_CBS_B 1 241 #define QM_SHAPER_CBS_S 16 242 #define QM_SHAPER_VFT_OFFSET 6 243 #define WAIT_FOR_QOS_VF 100 244 #define QM_QOS_MIN_ERROR_RATE 5 245 #define QM_QOS_TYPICAL_NUM 8 246 #define QM_SHAPER_MIN_CBS_S 8 247 #define QM_QOS_TICK 0x300U 248 #define QM_QOS_DIVISOR_CLK 0x1f40U 249 #define QM_QOS_MAX_CIR_B 200 250 #define QM_QOS_MIN_CIR_B 100 251 #define QM_QOS_MAX_CIR_U 6 252 #define QM_QOS_MAX_CIR_S 11 253 #define QM_QOS_VAL_MAX_LEN 32 254 #define QM_DFX_BASE 0x0100000 255 #define QM_DFX_STATE1 0x0104000 256 #define QM_DFX_STATE2 0x01040C8 257 #define QM_DFX_COMMON 0x0000 258 #define QM_DFX_BASE_LEN 0x5A 259 #define QM_DFX_STATE1_LEN 0x2E 260 #define QM_DFX_STATE2_LEN 0x11 261 #define QM_DFX_COMMON_LEN 0xC3 262 #define QM_DFX_REGS_LEN 4UL 263 #define QM_AUTOSUSPEND_DELAY 3000 264 265 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 266 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 267 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 268 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 269 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 270 271 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 272 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 273 274 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 275 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 276 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 277 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 278 279 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 280 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 281 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 282 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 283 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 284 285 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 286 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 287 288 #define INIT_QC_COMMON(qc, base, pasid) do { \ 289 (qc)->head = 0; \ 290 (qc)->tail = 0; \ 291 (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ 292 (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ 293 (qc)->dw3 = 0; \ 294 (qc)->w8 = 0; \ 295 (qc)->rsvd0 = 0; \ 296 (qc)->pasid = cpu_to_le16(pasid); \ 297 (qc)->w11 = 0; \ 298 (qc)->rsvd1 = 0; \ 299 } while (0) 300 301 enum vft_type { 302 SQC_VFT = 0, 303 CQC_VFT, 304 SHAPER_VFT, 305 }; 306 307 enum acc_err_result { 308 ACC_ERR_NONE, 309 ACC_ERR_NEED_RESET, 310 ACC_ERR_RECOVERED, 311 }; 312 313 enum qm_alg_type { 314 ALG_TYPE_0, 315 ALG_TYPE_1, 316 }; 317 318 enum qm_mb_cmd { 319 QM_PF_FLR_PREPARE = 0x01, 320 QM_PF_SRST_PREPARE, 321 QM_PF_RESET_DONE, 322 QM_VF_PREPARE_DONE, 323 QM_VF_PREPARE_FAIL, 324 QM_VF_START_DONE, 325 QM_VF_START_FAIL, 326 QM_PF_SET_QOS, 327 QM_VF_GET_QOS, 328 }; 329 330 enum qm_basic_type { 331 QM_TOTAL_QP_NUM_CAP = 0x0, 332 QM_FUNC_MAX_QP_CAP, 333 QM_XEQ_DEPTH_CAP, 334 QM_QP_DEPTH_CAP, 335 QM_EQ_IRQ_TYPE_CAP, 336 QM_AEQ_IRQ_TYPE_CAP, 337 QM_ABN_IRQ_TYPE_CAP, 338 QM_PF2VF_IRQ_TYPE_CAP, 339 QM_PF_IRQ_NUM_CAP, 340 QM_VF_IRQ_NUM_CAP, 341 }; 342 343 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 344 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 345 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 346 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 347 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 348 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 349 }; 350 351 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 352 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 353 }; 354 355 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 356 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 357 }; 358 359 static const struct hisi_qm_cap_info qm_basic_info[] = { 360 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 361 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 362 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(15, 0), 0x800, 0x4000800, 0x4000800}, 363 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 364 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 365 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 366 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 367 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 368 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 369 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 370 }; 371 372 struct qm_cqe { 373 __le32 rsvd0; 374 __le16 cmd_id; 375 __le16 rsvd1; 376 __le16 sq_head; 377 __le16 sq_num; 378 __le16 rsvd2; 379 __le16 w7; 380 }; 381 382 struct qm_eqe { 383 __le32 dw0; 384 }; 385 386 struct qm_aeqe { 387 __le32 dw0; 388 }; 389 390 struct qm_sqc { 391 __le16 head; 392 __le16 tail; 393 __le32 base_l; 394 __le32 base_h; 395 __le32 dw3; 396 __le16 w8; 397 __le16 rsvd0; 398 __le16 pasid; 399 __le16 w11; 400 __le16 cq_num; 401 __le16 w13; 402 __le32 rsvd1; 403 }; 404 405 struct qm_cqc { 406 __le16 head; 407 __le16 tail; 408 __le32 base_l; 409 __le32 base_h; 410 __le32 dw3; 411 __le16 w8; 412 __le16 rsvd0; 413 __le16 pasid; 414 __le16 w11; 415 __le32 dw6; 416 __le32 rsvd1; 417 }; 418 419 struct qm_eqc { 420 __le16 head; 421 __le16 tail; 422 __le32 base_l; 423 __le32 base_h; 424 __le32 dw3; 425 __le32 rsvd[2]; 426 __le32 dw6; 427 }; 428 429 struct qm_aeqc { 430 __le16 head; 431 __le16 tail; 432 __le32 base_l; 433 __le32 base_h; 434 __le32 dw3; 435 __le32 rsvd[2]; 436 __le32 dw6; 437 }; 438 439 struct qm_mailbox { 440 __le16 w0; 441 __le16 queue_num; 442 __le32 base_l; 443 __le32 base_h; 444 __le32 rsvd; 445 }; 446 447 struct qm_doorbell { 448 __le16 queue_num; 449 __le16 cmd; 450 __le16 index; 451 __le16 priority; 452 }; 453 454 struct hisi_qm_resource { 455 struct hisi_qm *qm; 456 int distance; 457 struct list_head list; 458 }; 459 460 struct hisi_qm_hw_ops { 461 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 462 void (*qm_db)(struct hisi_qm *qm, u16 qn, 463 u8 cmd, u16 index, u8 priority); 464 int (*debug_init)(struct hisi_qm *qm); 465 void (*hw_error_init)(struct hisi_qm *qm); 466 void (*hw_error_uninit)(struct hisi_qm *qm); 467 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 468 int (*set_msi)(struct hisi_qm *qm, bool set); 469 }; 470 471 struct qm_dfx_item { 472 const char *name; 473 u32 offset; 474 }; 475 476 static struct qm_dfx_item qm_dfx_files[] = { 477 {"err_irq", offsetof(struct qm_dfx, err_irq_cnt)}, 478 {"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)}, 479 {"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)}, 480 {"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)}, 481 {"mb_err", offsetof(struct qm_dfx, mb_err_cnt)}, 482 }; 483 484 static const char * const qm_debug_file_name[] = { 485 [CURRENT_QM] = "current_qm", 486 [CURRENT_Q] = "current_q", 487 [CLEAR_ENABLE] = "clear_enable", 488 }; 489 490 struct hisi_qm_hw_error { 491 u32 int_msk; 492 const char *msg; 493 }; 494 495 static const struct hisi_qm_hw_error qm_hw_error[] = { 496 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 497 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 498 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 499 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 500 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 501 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 502 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 503 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 504 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 505 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 506 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 507 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 508 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 509 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 510 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 511 { /* sentinel */ } 512 }; 513 514 /* define the QM's dfx regs region and region length */ 515 static struct dfx_diff_registers qm_diff_regs[] = { 516 { 517 .reg_offset = QM_DFX_BASE, 518 .reg_len = QM_DFX_BASE_LEN, 519 }, { 520 .reg_offset = QM_DFX_STATE1, 521 .reg_len = QM_DFX_STATE1_LEN, 522 }, { 523 .reg_offset = QM_DFX_STATE2, 524 .reg_len = QM_DFX_STATE2_LEN, 525 }, { 526 .reg_offset = QM_DFX_COMMON, 527 .reg_len = QM_DFX_COMMON_LEN, 528 }, 529 }; 530 531 static const char * const qm_db_timeout[] = { 532 "sq", "cq", "eq", "aeq", 533 }; 534 535 static const char * const qm_fifo_overflow[] = { 536 "cq", "eq", "aeq", 537 }; 538 539 static const char * const qm_s[] = { 540 "init", "start", "close", "stop", 541 }; 542 543 static const char * const qp_s[] = { 544 "none", "init", "start", "stop", "close", 545 }; 546 547 struct qm_typical_qos_table { 548 u32 start; 549 u32 end; 550 u32 val; 551 }; 552 553 /* the qos step is 100 */ 554 static struct qm_typical_qos_table shaper_cir_s[] = { 555 {100, 100, 4}, 556 {200, 200, 3}, 557 {300, 500, 2}, 558 {600, 1000, 1}, 559 {1100, 100000, 0}, 560 }; 561 562 static struct qm_typical_qos_table shaper_cbs_s[] = { 563 {100, 200, 9}, 564 {300, 500, 11}, 565 {600, 1000, 12}, 566 {1100, 10000, 16}, 567 {10100, 25000, 17}, 568 {25100, 50000, 18}, 569 {50100, 100000, 19} 570 }; 571 572 static void qm_irqs_unregister(struct hisi_qm *qm); 573 574 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 575 { 576 enum qm_state curr = atomic_read(&qm->status.flags); 577 bool avail = false; 578 579 switch (curr) { 580 case QM_INIT: 581 if (new == QM_START || new == QM_CLOSE) 582 avail = true; 583 break; 584 case QM_START: 585 if (new == QM_STOP) 586 avail = true; 587 break; 588 case QM_STOP: 589 if (new == QM_CLOSE || new == QM_START) 590 avail = true; 591 break; 592 default: 593 break; 594 } 595 596 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 597 qm_s[curr], qm_s[new]); 598 599 if (!avail) 600 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 601 qm_s[curr], qm_s[new]); 602 603 return avail; 604 } 605 606 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 607 enum qp_state new) 608 { 609 enum qm_state qm_curr = atomic_read(&qm->status.flags); 610 enum qp_state qp_curr = 0; 611 bool avail = false; 612 613 if (qp) 614 qp_curr = atomic_read(&qp->qp_status.flags); 615 616 switch (new) { 617 case QP_INIT: 618 if (qm_curr == QM_START || qm_curr == QM_INIT) 619 avail = true; 620 break; 621 case QP_START: 622 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 623 (qm_curr == QM_START && qp_curr == QP_STOP)) 624 avail = true; 625 break; 626 case QP_STOP: 627 if ((qm_curr == QM_START && qp_curr == QP_START) || 628 (qp_curr == QP_INIT)) 629 avail = true; 630 break; 631 case QP_CLOSE: 632 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 633 (qm_curr == QM_START && qp_curr == QP_STOP) || 634 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 635 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 636 avail = true; 637 break; 638 default: 639 break; 640 } 641 642 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 643 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 644 645 if (!avail) 646 dev_warn(&qm->pdev->dev, 647 "Can not change qp state from %s to %s in QM %s\n", 648 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 649 650 return avail; 651 } 652 653 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 654 { 655 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 656 } 657 658 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 659 { 660 return qm->err_ini->get_dev_hw_err_status(qm); 661 } 662 663 /* Check if the error causes the master ooo block */ 664 static bool qm_check_dev_error(struct hisi_qm *qm) 665 { 666 u32 val, dev_val; 667 668 if (qm->fun_type == QM_HW_VF) 669 return false; 670 671 val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask; 672 dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask; 673 674 return val || dev_val; 675 } 676 677 static int qm_wait_reset_finish(struct hisi_qm *qm) 678 { 679 int delay = 0; 680 681 /* All reset requests need to be queued for processing */ 682 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 683 msleep(++delay); 684 if (delay > QM_RESET_WAIT_TIMEOUT) 685 return -EBUSY; 686 } 687 688 return 0; 689 } 690 691 static int qm_reset_prepare_ready(struct hisi_qm *qm) 692 { 693 struct pci_dev *pdev = qm->pdev; 694 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 695 696 /* 697 * PF and VF on host doesnot support resetting at the 698 * same time on Kunpeng920. 699 */ 700 if (qm->ver < QM_HW_V3) 701 return qm_wait_reset_finish(pf_qm); 702 703 return qm_wait_reset_finish(qm); 704 } 705 706 static void qm_reset_bit_clear(struct hisi_qm *qm) 707 { 708 struct pci_dev *pdev = qm->pdev; 709 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 710 711 if (qm->ver < QM_HW_V3) 712 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 713 714 clear_bit(QM_RESETTING, &qm->misc_ctl); 715 } 716 717 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 718 u64 base, u16 queue, bool op) 719 { 720 mailbox->w0 = cpu_to_le16((cmd) | 721 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 722 (0x1 << QM_MB_BUSY_SHIFT)); 723 mailbox->queue_num = cpu_to_le16(queue); 724 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 725 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 726 mailbox->rsvd = 0; 727 } 728 729 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 730 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 731 { 732 u32 val; 733 734 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 735 val, !((val >> QM_MB_BUSY_SHIFT) & 736 0x1), POLL_PERIOD, POLL_TIMEOUT); 737 } 738 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 739 740 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 741 static void qm_mb_write(struct hisi_qm *qm, const void *src) 742 { 743 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 744 unsigned long tmp0 = 0, tmp1 = 0; 745 746 if (!IS_ENABLED(CONFIG_ARM64)) { 747 memcpy_toio(fun_base, src, 16); 748 dma_wmb(); 749 return; 750 } 751 752 asm volatile("ldp %0, %1, %3\n" 753 "stp %0, %1, %2\n" 754 "dmb oshst\n" 755 : "=&r" (tmp0), 756 "=&r" (tmp1), 757 "+Q" (*((char __iomem *)fun_base)) 758 : "Q" (*((char *)src)) 759 : "memory"); 760 } 761 762 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 763 { 764 int ret; 765 u32 val; 766 767 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 768 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 769 ret = -EBUSY; 770 goto mb_busy; 771 } 772 773 qm_mb_write(qm, mailbox); 774 775 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 776 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 777 ret = -ETIMEDOUT; 778 goto mb_busy; 779 } 780 781 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 782 if (val & QM_MB_STATUS_MASK) { 783 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 784 ret = -EIO; 785 goto mb_busy; 786 } 787 788 return 0; 789 790 mb_busy: 791 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 792 return ret; 793 } 794 795 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 796 bool op) 797 { 798 struct qm_mailbox mailbox; 799 int ret; 800 801 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 802 queue, cmd, (unsigned long long)dma_addr); 803 804 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 805 806 mutex_lock(&qm->mailbox_lock); 807 ret = qm_mb_nolock(qm, &mailbox); 808 mutex_unlock(&qm->mailbox_lock); 809 810 return ret; 811 } 812 EXPORT_SYMBOL_GPL(hisi_qm_mb); 813 814 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 815 { 816 u64 doorbell; 817 818 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 819 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 820 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 821 822 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 823 } 824 825 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 826 { 827 void __iomem *io_base = qm->io_base; 828 u16 randata = 0; 829 u64 doorbell; 830 831 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 832 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 833 QM_DOORBELL_SQ_CQ_BASE_V2; 834 else 835 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 836 837 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 838 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 839 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 840 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 841 842 writeq(doorbell, io_base); 843 } 844 845 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 846 { 847 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 848 qn, cmd, index); 849 850 qm->ops->qm_db(qm, qn, cmd, index, priority); 851 } 852 853 static void qm_disable_clock_gate(struct hisi_qm *qm) 854 { 855 u32 val; 856 857 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 858 if (qm->ver < QM_HW_V3) 859 return; 860 861 val = readl(qm->io_base + QM_PM_CTRL); 862 val |= QM_IDLE_DISABLE; 863 writel(val, qm->io_base + QM_PM_CTRL); 864 } 865 866 static int qm_dev_mem_reset(struct hisi_qm *qm) 867 { 868 u32 val; 869 870 writel(0x1, qm->io_base + QM_MEM_START_INIT); 871 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 872 val & BIT(0), POLL_PERIOD, 873 POLL_TIMEOUT); 874 } 875 876 /** 877 * hisi_qm_get_hw_info() - Get device information. 878 * @qm: The qm which want to get information. 879 * @info_table: Array for storing device information. 880 * @index: Index in info_table. 881 * @is_read: Whether read from reg, 0: not support read from reg. 882 * 883 * This function returns device information the caller needs. 884 */ 885 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 886 const struct hisi_qm_cap_info *info_table, 887 u32 index, bool is_read) 888 { 889 u32 val; 890 891 switch (qm->ver) { 892 case QM_HW_V1: 893 return info_table[index].v1_val; 894 case QM_HW_V2: 895 return info_table[index].v2_val; 896 default: 897 if (!is_read) 898 return info_table[index].v3_val; 899 900 val = readl(qm->io_base + info_table[index].offset); 901 return (val >> info_table[index].shift) & info_table[index].mask; 902 } 903 } 904 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 905 906 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 907 u16 *high_bits, enum qm_basic_type type) 908 { 909 u32 depth; 910 911 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 912 *high_bits = depth & QM_XQ_DEPTH_MASK; 913 *low_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 914 } 915 916 static u32 qm_get_irq_num(struct hisi_qm *qm) 917 { 918 if (qm->fun_type == QM_HW_PF) 919 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 920 921 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 922 } 923 924 static int qm_pm_get_sync(struct hisi_qm *qm) 925 { 926 struct device *dev = &qm->pdev->dev; 927 int ret; 928 929 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 930 return 0; 931 932 ret = pm_runtime_resume_and_get(dev); 933 if (ret < 0) { 934 dev_err(dev, "failed to get_sync(%d).\n", ret); 935 return ret; 936 } 937 938 return 0; 939 } 940 941 static void qm_pm_put_sync(struct hisi_qm *qm) 942 { 943 struct device *dev = &qm->pdev->dev; 944 945 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 946 return; 947 948 pm_runtime_mark_last_busy(dev); 949 pm_runtime_put_autosuspend(dev); 950 } 951 952 static void qm_cq_head_update(struct hisi_qp *qp) 953 { 954 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 955 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 956 qp->qp_status.cq_head = 0; 957 } else { 958 qp->qp_status.cq_head++; 959 } 960 } 961 962 static void qm_poll_req_cb(struct hisi_qp *qp) 963 { 964 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 965 struct hisi_qm *qm = qp->qm; 966 967 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 968 dma_rmb(); 969 qp->req_cb(qp, qp->sqe + qm->sqe_size * 970 le16_to_cpu(cqe->sq_head)); 971 qm_cq_head_update(qp); 972 cqe = qp->cqe + qp->qp_status.cq_head; 973 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 974 qp->qp_status.cq_head, 0); 975 atomic_dec(&qp->qp_status.used); 976 } 977 978 /* set c_flag */ 979 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 980 } 981 982 static int qm_get_complete_eqe_num(struct hisi_qm_poll_data *poll_data) 983 { 984 struct hisi_qm *qm = poll_data->qm; 985 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 986 u16 eq_depth = qm->eq_depth; 987 int eqe_num = 0; 988 u16 cqn; 989 990 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 991 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 992 poll_data->qp_finish_id[eqe_num] = cqn; 993 eqe_num++; 994 995 if (qm->status.eq_head == eq_depth - 1) { 996 qm->status.eqc_phase = !qm->status.eqc_phase; 997 eqe = qm->eqe; 998 qm->status.eq_head = 0; 999 } else { 1000 eqe++; 1001 qm->status.eq_head++; 1002 } 1003 1004 if (eqe_num == (eq_depth >> 1) - 1) 1005 break; 1006 } 1007 1008 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 1009 1010 return eqe_num; 1011 } 1012 1013 static void qm_work_process(struct work_struct *work) 1014 { 1015 struct hisi_qm_poll_data *poll_data = 1016 container_of(work, struct hisi_qm_poll_data, work); 1017 struct hisi_qm *qm = poll_data->qm; 1018 struct hisi_qp *qp; 1019 int eqe_num, i; 1020 1021 /* Get qp id of completed tasks and re-enable the interrupt. */ 1022 eqe_num = qm_get_complete_eqe_num(poll_data); 1023 for (i = eqe_num - 1; i >= 0; i--) { 1024 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 1025 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 1026 continue; 1027 1028 if (qp->event_cb) { 1029 qp->event_cb(qp); 1030 continue; 1031 } 1032 1033 if (likely(qp->req_cb)) 1034 qm_poll_req_cb(qp); 1035 } 1036 } 1037 1038 static bool do_qm_irq(struct hisi_qm *qm) 1039 { 1040 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 1041 struct hisi_qm_poll_data *poll_data; 1042 u16 cqn; 1043 1044 if (!readl(qm->io_base + QM_VF_EQ_INT_SOURCE)) 1045 return false; 1046 1047 if (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 1048 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 1049 poll_data = &qm->poll_data[cqn]; 1050 queue_work(qm->wq, &poll_data->work); 1051 1052 return true; 1053 } 1054 1055 return false; 1056 } 1057 1058 static irqreturn_t qm_irq(int irq, void *data) 1059 { 1060 struct hisi_qm *qm = data; 1061 bool ret; 1062 1063 ret = do_qm_irq(qm); 1064 if (ret) 1065 return IRQ_HANDLED; 1066 1067 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 1068 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 1069 1070 return IRQ_NONE; 1071 } 1072 1073 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 1074 { 1075 struct hisi_qm *qm = data; 1076 u32 val; 1077 1078 val = readl(qm->io_base + QM_IFC_INT_STATUS); 1079 val &= QM_IFC_INT_STATUS_MASK; 1080 if (!val) 1081 return IRQ_NONE; 1082 1083 schedule_work(&qm->cmd_process); 1084 1085 return IRQ_HANDLED; 1086 } 1087 1088 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 1089 { 1090 u32 *addr; 1091 1092 if (qp->is_in_kernel) 1093 return; 1094 1095 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 1096 *addr = 1; 1097 1098 /* make sure setup is completed */ 1099 smp_wmb(); 1100 } 1101 1102 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 1103 { 1104 struct hisi_qp *qp = &qm->qp_array[qp_id]; 1105 1106 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 1107 hisi_qm_stop_qp(qp); 1108 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 1109 } 1110 1111 static void qm_reset_function(struct hisi_qm *qm) 1112 { 1113 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 1114 struct device *dev = &qm->pdev->dev; 1115 int ret; 1116 1117 if (qm_check_dev_error(pf_qm)) 1118 return; 1119 1120 ret = qm_reset_prepare_ready(qm); 1121 if (ret) { 1122 dev_err(dev, "reset function not ready\n"); 1123 return; 1124 } 1125 1126 ret = hisi_qm_stop(qm, QM_FLR); 1127 if (ret) { 1128 dev_err(dev, "failed to stop qm when reset function\n"); 1129 goto clear_bit; 1130 } 1131 1132 ret = hisi_qm_start(qm); 1133 if (ret) 1134 dev_err(dev, "failed to start qm when reset function\n"); 1135 1136 clear_bit: 1137 qm_reset_bit_clear(qm); 1138 } 1139 1140 static irqreturn_t qm_aeq_thread(int irq, void *data) 1141 { 1142 struct hisi_qm *qm = data; 1143 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1144 u16 aeq_depth = qm->aeq_depth; 1145 u32 type, qp_id; 1146 1147 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1148 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; 1149 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1150 1151 switch (type) { 1152 case QM_EQ_OVERFLOW: 1153 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1154 qm_reset_function(qm); 1155 return IRQ_HANDLED; 1156 case QM_CQ_OVERFLOW: 1157 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1158 qp_id); 1159 fallthrough; 1160 case QM_CQE_ERROR: 1161 qm_disable_qp(qm, qp_id); 1162 break; 1163 default: 1164 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1165 type); 1166 break; 1167 } 1168 1169 if (qm->status.aeq_head == aeq_depth - 1) { 1170 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1171 aeqe = qm->aeqe; 1172 qm->status.aeq_head = 0; 1173 } else { 1174 aeqe++; 1175 qm->status.aeq_head++; 1176 } 1177 } 1178 1179 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1180 1181 return IRQ_HANDLED; 1182 } 1183 1184 static irqreturn_t qm_aeq_irq(int irq, void *data) 1185 { 1186 struct hisi_qm *qm = data; 1187 1188 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1189 if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE)) 1190 return IRQ_NONE; 1191 1192 return IRQ_WAKE_THREAD; 1193 } 1194 1195 static void qm_init_qp_status(struct hisi_qp *qp) 1196 { 1197 struct hisi_qp_status *qp_status = &qp->qp_status; 1198 1199 qp_status->sq_tail = 0; 1200 qp_status->cq_head = 0; 1201 qp_status->cqc_phase = true; 1202 atomic_set(&qp_status->used, 0); 1203 } 1204 1205 static void qm_init_prefetch(struct hisi_qm *qm) 1206 { 1207 struct device *dev = &qm->pdev->dev; 1208 u32 page_type = 0x0; 1209 1210 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1211 return; 1212 1213 switch (PAGE_SIZE) { 1214 case SZ_4K: 1215 page_type = 0x0; 1216 break; 1217 case SZ_16K: 1218 page_type = 0x1; 1219 break; 1220 case SZ_64K: 1221 page_type = 0x2; 1222 break; 1223 default: 1224 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1225 PAGE_SIZE); 1226 } 1227 1228 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1229 } 1230 1231 /* 1232 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1233 * is the expected qos calculated. 1234 * the formula: 1235 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1236 * 1237 * IR_b * (2 ^ IR_u) * 8000 1238 * IR(Mbps) = ------------------------- 1239 * Tick * (2 ^ IR_s) 1240 */ 1241 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1242 { 1243 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1244 (QM_QOS_TICK * (1 << cir_s)); 1245 } 1246 1247 static u32 acc_shaper_calc_cbs_s(u32 ir) 1248 { 1249 int table_size = ARRAY_SIZE(shaper_cbs_s); 1250 int i; 1251 1252 for (i = 0; i < table_size; i++) { 1253 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1254 return shaper_cbs_s[i].val; 1255 } 1256 1257 return QM_SHAPER_MIN_CBS_S; 1258 } 1259 1260 static u32 acc_shaper_calc_cir_s(u32 ir) 1261 { 1262 int table_size = ARRAY_SIZE(shaper_cir_s); 1263 int i; 1264 1265 for (i = 0; i < table_size; i++) { 1266 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1267 return shaper_cir_s[i].val; 1268 } 1269 1270 return 0; 1271 } 1272 1273 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1274 { 1275 u32 cir_b, cir_u, cir_s, ir_calc; 1276 u32 error_rate; 1277 1278 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1279 cir_s = acc_shaper_calc_cir_s(ir); 1280 1281 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1282 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1283 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1284 1285 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1286 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1287 factor->cir_b = cir_b; 1288 factor->cir_u = cir_u; 1289 factor->cir_s = cir_s; 1290 return 0; 1291 } 1292 } 1293 } 1294 1295 return -EINVAL; 1296 } 1297 1298 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1299 u32 number, struct qm_shaper_factor *factor) 1300 { 1301 u64 tmp = 0; 1302 1303 if (number > 0) { 1304 switch (type) { 1305 case SQC_VFT: 1306 if (qm->ver == QM_HW_V1) { 1307 tmp = QM_SQC_VFT_BUF_SIZE | 1308 QM_SQC_VFT_SQC_SIZE | 1309 QM_SQC_VFT_INDEX_NUMBER | 1310 QM_SQC_VFT_VALID | 1311 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1312 } else { 1313 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1314 QM_SQC_VFT_VALID | 1315 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1316 } 1317 break; 1318 case CQC_VFT: 1319 if (qm->ver == QM_HW_V1) { 1320 tmp = QM_CQC_VFT_BUF_SIZE | 1321 QM_CQC_VFT_SQC_SIZE | 1322 QM_CQC_VFT_INDEX_NUMBER | 1323 QM_CQC_VFT_VALID; 1324 } else { 1325 tmp = QM_CQC_VFT_VALID; 1326 } 1327 break; 1328 case SHAPER_VFT: 1329 if (factor) { 1330 tmp = factor->cir_b | 1331 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1332 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1333 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1334 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1335 } 1336 break; 1337 } 1338 } 1339 1340 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1341 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1342 } 1343 1344 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1345 u32 fun_num, u32 base, u32 number) 1346 { 1347 struct qm_shaper_factor *factor = NULL; 1348 unsigned int val; 1349 int ret; 1350 1351 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1352 factor = &qm->factor[fun_num]; 1353 1354 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1355 val & BIT(0), POLL_PERIOD, 1356 POLL_TIMEOUT); 1357 if (ret) 1358 return ret; 1359 1360 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1361 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1362 if (type == SHAPER_VFT) 1363 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1364 1365 writel(fun_num, qm->io_base + QM_VFT_CFG); 1366 1367 qm_vft_data_cfg(qm, type, base, number, factor); 1368 1369 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1370 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1371 1372 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1373 val & BIT(0), POLL_PERIOD, 1374 POLL_TIMEOUT); 1375 } 1376 1377 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1378 { 1379 u32 qos = qm->factor[fun_num].func_qos; 1380 int ret, i; 1381 1382 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1383 if (ret) { 1384 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1385 return ret; 1386 } 1387 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1388 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1389 /* The base number of queue reuse for different alg type */ 1390 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1391 if (ret) 1392 return ret; 1393 } 1394 1395 return 0; 1396 } 1397 1398 /* The config should be conducted after qm_dev_mem_reset() */ 1399 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1400 u32 number) 1401 { 1402 int ret, i; 1403 1404 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1405 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1406 if (ret) 1407 return ret; 1408 } 1409 1410 /* init default shaper qos val */ 1411 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1412 ret = qm_shaper_init_vft(qm, fun_num); 1413 if (ret) 1414 goto back_sqc_cqc; 1415 } 1416 1417 return 0; 1418 back_sqc_cqc: 1419 for (i = SQC_VFT; i <= CQC_VFT; i++) 1420 qm_set_vft_common(qm, i, fun_num, 0, 0); 1421 1422 return ret; 1423 } 1424 1425 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1426 { 1427 u64 sqc_vft; 1428 int ret; 1429 1430 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1431 if (ret) 1432 return ret; 1433 1434 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1435 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1436 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1437 *number = (QM_SQC_VFT_NUM_MASK_v2 & 1438 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1439 1440 return 0; 1441 } 1442 1443 static int qm_get_vf_qp_num(struct hisi_qm *qm, u32 fun_num) 1444 { 1445 u32 remain_q_num, vfq_num; 1446 u32 num_vfs = qm->vfs_num; 1447 1448 vfq_num = (qm->ctrl_qp_num - qm->qp_num) / num_vfs; 1449 if (vfq_num >= qm->max_qp_num) 1450 return qm->max_qp_num; 1451 1452 remain_q_num = (qm->ctrl_qp_num - qm->qp_num) % num_vfs; 1453 if (vfq_num + remain_q_num <= qm->max_qp_num) 1454 return fun_num == num_vfs ? vfq_num + remain_q_num : vfq_num; 1455 1456 /* 1457 * if vfq_num + remain_q_num > max_qp_num, the last VFs, 1458 * each with one more queue. 1459 */ 1460 return fun_num + remain_q_num > num_vfs ? vfq_num + 1 : vfq_num; 1461 } 1462 1463 static struct hisi_qm *file_to_qm(struct debugfs_file *file) 1464 { 1465 struct qm_debug *debug = file->debug; 1466 1467 return container_of(debug, struct hisi_qm, debug); 1468 } 1469 1470 static u32 current_q_read(struct hisi_qm *qm) 1471 { 1472 return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT; 1473 } 1474 1475 static int current_q_write(struct hisi_qm *qm, u32 val) 1476 { 1477 u32 tmp; 1478 1479 if (val >= qm->debug.curr_qm_qp_num) 1480 return -EINVAL; 1481 1482 tmp = val << QM_DFX_QN_SHIFT | 1483 (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK); 1484 writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 1485 1486 tmp = val << QM_DFX_QN_SHIFT | 1487 (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK); 1488 writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 1489 1490 return 0; 1491 } 1492 1493 static u32 clear_enable_read(struct hisi_qm *qm) 1494 { 1495 return readl(qm->io_base + QM_DFX_CNT_CLR_CE); 1496 } 1497 1498 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */ 1499 static int clear_enable_write(struct hisi_qm *qm, u32 rd_clr_ctrl) 1500 { 1501 if (rd_clr_ctrl > 1) 1502 return -EINVAL; 1503 1504 writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE); 1505 1506 return 0; 1507 } 1508 1509 static u32 current_qm_read(struct hisi_qm *qm) 1510 { 1511 return readl(qm->io_base + QM_DFX_MB_CNT_VF); 1512 } 1513 1514 static int current_qm_write(struct hisi_qm *qm, u32 val) 1515 { 1516 u32 tmp; 1517 1518 if (val > qm->vfs_num) 1519 return -EINVAL; 1520 1521 /* According PF or VF Dev ID to calculation curr_qm_qp_num and store */ 1522 if (!val) 1523 qm->debug.curr_qm_qp_num = qm->qp_num; 1524 else 1525 qm->debug.curr_qm_qp_num = qm_get_vf_qp_num(qm, val); 1526 1527 writel(val, qm->io_base + QM_DFX_MB_CNT_VF); 1528 writel(val, qm->io_base + QM_DFX_DB_CNT_VF); 1529 1530 tmp = val | 1531 (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_Q_MASK); 1532 writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 1533 1534 tmp = val | 1535 (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_Q_MASK); 1536 writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 1537 1538 return 0; 1539 } 1540 1541 static ssize_t qm_debug_read(struct file *filp, char __user *buf, 1542 size_t count, loff_t *pos) 1543 { 1544 struct debugfs_file *file = filp->private_data; 1545 enum qm_debug_file index = file->index; 1546 struct hisi_qm *qm = file_to_qm(file); 1547 char tbuf[QM_DBG_TMP_BUF_LEN]; 1548 u32 val; 1549 int ret; 1550 1551 ret = hisi_qm_get_dfx_access(qm); 1552 if (ret) 1553 return ret; 1554 1555 mutex_lock(&file->lock); 1556 switch (index) { 1557 case CURRENT_QM: 1558 val = current_qm_read(qm); 1559 break; 1560 case CURRENT_Q: 1561 val = current_q_read(qm); 1562 break; 1563 case CLEAR_ENABLE: 1564 val = clear_enable_read(qm); 1565 break; 1566 default: 1567 goto err_input; 1568 } 1569 mutex_unlock(&file->lock); 1570 1571 hisi_qm_put_dfx_access(qm); 1572 ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val); 1573 return simple_read_from_buffer(buf, count, pos, tbuf, ret); 1574 1575 err_input: 1576 mutex_unlock(&file->lock); 1577 hisi_qm_put_dfx_access(qm); 1578 return -EINVAL; 1579 } 1580 1581 static ssize_t qm_debug_write(struct file *filp, const char __user *buf, 1582 size_t count, loff_t *pos) 1583 { 1584 struct debugfs_file *file = filp->private_data; 1585 enum qm_debug_file index = file->index; 1586 struct hisi_qm *qm = file_to_qm(file); 1587 unsigned long val; 1588 char tbuf[QM_DBG_TMP_BUF_LEN]; 1589 int len, ret; 1590 1591 if (*pos != 0) 1592 return 0; 1593 1594 if (count >= QM_DBG_TMP_BUF_LEN) 1595 return -ENOSPC; 1596 1597 len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf, 1598 count); 1599 if (len < 0) 1600 return len; 1601 1602 tbuf[len] = '\0'; 1603 if (kstrtoul(tbuf, 0, &val)) 1604 return -EFAULT; 1605 1606 ret = hisi_qm_get_dfx_access(qm); 1607 if (ret) 1608 return ret; 1609 1610 mutex_lock(&file->lock); 1611 switch (index) { 1612 case CURRENT_QM: 1613 ret = current_qm_write(qm, val); 1614 break; 1615 case CURRENT_Q: 1616 ret = current_q_write(qm, val); 1617 break; 1618 case CLEAR_ENABLE: 1619 ret = clear_enable_write(qm, val); 1620 break; 1621 default: 1622 ret = -EINVAL; 1623 } 1624 mutex_unlock(&file->lock); 1625 1626 hisi_qm_put_dfx_access(qm); 1627 1628 if (ret) 1629 return ret; 1630 1631 return count; 1632 } 1633 1634 static const struct file_operations qm_debug_fops = { 1635 .owner = THIS_MODULE, 1636 .open = simple_open, 1637 .read = qm_debug_read, 1638 .write = qm_debug_write, 1639 }; 1640 1641 #define CNT_CYC_REGS_NUM 10 1642 static const struct debugfs_reg32 qm_dfx_regs[] = { 1643 /* XXX_CNT are reading clear register */ 1644 {"QM_ECC_1BIT_CNT ", 0x104000ull}, 1645 {"QM_ECC_MBIT_CNT ", 0x104008ull}, 1646 {"QM_DFX_MB_CNT ", 0x104018ull}, 1647 {"QM_DFX_DB_CNT ", 0x104028ull}, 1648 {"QM_DFX_SQE_CNT ", 0x104038ull}, 1649 {"QM_DFX_CQE_CNT ", 0x104048ull}, 1650 {"QM_DFX_SEND_SQE_TO_ACC_CNT ", 0x104050ull}, 1651 {"QM_DFX_WB_SQE_FROM_ACC_CNT ", 0x104058ull}, 1652 {"QM_DFX_ACC_FINISH_CNT ", 0x104060ull}, 1653 {"QM_DFX_CQE_ERR_CNT ", 0x1040b4ull}, 1654 {"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull}, 1655 {"QM_ECC_1BIT_INF ", 0x104004ull}, 1656 {"QM_ECC_MBIT_INF ", 0x10400cull}, 1657 {"QM_DFX_ACC_RDY_VLD0 ", 0x1040a0ull}, 1658 {"QM_DFX_ACC_RDY_VLD1 ", 0x1040a4ull}, 1659 {"QM_DFX_AXI_RDY_VLD ", 0x1040a8ull}, 1660 {"QM_DFX_FF_ST0 ", 0x1040c8ull}, 1661 {"QM_DFX_FF_ST1 ", 0x1040ccull}, 1662 {"QM_DFX_FF_ST2 ", 0x1040d0ull}, 1663 {"QM_DFX_FF_ST3 ", 0x1040d4ull}, 1664 {"QM_DFX_FF_ST4 ", 0x1040d8ull}, 1665 {"QM_DFX_FF_ST5 ", 0x1040dcull}, 1666 {"QM_DFX_FF_ST6 ", 0x1040e0ull}, 1667 {"QM_IN_IDLE_ST ", 0x1040e4ull}, 1668 }; 1669 1670 static const struct debugfs_reg32 qm_vf_dfx_regs[] = { 1671 {"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull}, 1672 }; 1673 1674 /** 1675 * hisi_qm_regs_dump() - Dump registers's value. 1676 * @s: debugfs file handle. 1677 * @regset: accelerator registers information. 1678 * 1679 * Dump accelerator registers. 1680 */ 1681 void hisi_qm_regs_dump(struct seq_file *s, struct debugfs_regset32 *regset) 1682 { 1683 struct pci_dev *pdev = to_pci_dev(regset->dev); 1684 struct hisi_qm *qm = pci_get_drvdata(pdev); 1685 const struct debugfs_reg32 *regs = regset->regs; 1686 int regs_len = regset->nregs; 1687 int i, ret; 1688 u32 val; 1689 1690 ret = hisi_qm_get_dfx_access(qm); 1691 if (ret) 1692 return; 1693 1694 for (i = 0; i < regs_len; i++) { 1695 val = readl(regset->base + regs[i].offset); 1696 seq_printf(s, "%s= 0x%08x\n", regs[i].name, val); 1697 } 1698 1699 hisi_qm_put_dfx_access(qm); 1700 } 1701 EXPORT_SYMBOL_GPL(hisi_qm_regs_dump); 1702 1703 static int qm_regs_show(struct seq_file *s, void *unused) 1704 { 1705 struct hisi_qm *qm = s->private; 1706 struct debugfs_regset32 regset; 1707 1708 if (qm->fun_type == QM_HW_PF) { 1709 regset.regs = qm_dfx_regs; 1710 regset.nregs = ARRAY_SIZE(qm_dfx_regs); 1711 } else { 1712 regset.regs = qm_vf_dfx_regs; 1713 regset.nregs = ARRAY_SIZE(qm_vf_dfx_regs); 1714 } 1715 1716 regset.base = qm->io_base; 1717 regset.dev = &qm->pdev->dev; 1718 1719 hisi_qm_regs_dump(s, ®set); 1720 1721 return 0; 1722 } 1723 1724 DEFINE_SHOW_ATTRIBUTE(qm_regs); 1725 1726 static struct dfx_diff_registers *dfx_regs_init(struct hisi_qm *qm, 1727 const struct dfx_diff_registers *cregs, int reg_len) 1728 { 1729 struct dfx_diff_registers *diff_regs; 1730 u32 j, base_offset; 1731 int i; 1732 1733 diff_regs = kcalloc(reg_len, sizeof(*diff_regs), GFP_KERNEL); 1734 if (!diff_regs) 1735 return ERR_PTR(-ENOMEM); 1736 1737 for (i = 0; i < reg_len; i++) { 1738 if (!cregs[i].reg_len) 1739 continue; 1740 1741 diff_regs[i].reg_offset = cregs[i].reg_offset; 1742 diff_regs[i].reg_len = cregs[i].reg_len; 1743 diff_regs[i].regs = kcalloc(QM_DFX_REGS_LEN, cregs[i].reg_len, 1744 GFP_KERNEL); 1745 if (!diff_regs[i].regs) 1746 goto alloc_error; 1747 1748 for (j = 0; j < diff_regs[i].reg_len; j++) { 1749 base_offset = diff_regs[i].reg_offset + 1750 j * QM_DFX_REGS_LEN; 1751 diff_regs[i].regs[j] = readl(qm->io_base + base_offset); 1752 } 1753 } 1754 1755 return diff_regs; 1756 1757 alloc_error: 1758 while (i > 0) { 1759 i--; 1760 kfree(diff_regs[i].regs); 1761 } 1762 kfree(diff_regs); 1763 return ERR_PTR(-ENOMEM); 1764 } 1765 1766 static void dfx_regs_uninit(struct hisi_qm *qm, 1767 struct dfx_diff_registers *dregs, int reg_len) 1768 { 1769 int i; 1770 1771 /* Setting the pointer is NULL to prevent double free */ 1772 for (i = 0; i < reg_len; i++) { 1773 kfree(dregs[i].regs); 1774 dregs[i].regs = NULL; 1775 } 1776 kfree(dregs); 1777 dregs = NULL; 1778 } 1779 1780 /** 1781 * hisi_qm_diff_regs_init() - Allocate memory for registers. 1782 * @qm: device qm handle. 1783 * @dregs: diff registers handle. 1784 * @reg_len: diff registers region length. 1785 */ 1786 int hisi_qm_diff_regs_init(struct hisi_qm *qm, 1787 struct dfx_diff_registers *dregs, int reg_len) 1788 { 1789 if (!qm || !dregs || reg_len <= 0) 1790 return -EINVAL; 1791 1792 if (qm->fun_type != QM_HW_PF) 1793 return 0; 1794 1795 qm->debug.qm_diff_regs = dfx_regs_init(qm, qm_diff_regs, 1796 ARRAY_SIZE(qm_diff_regs)); 1797 if (IS_ERR(qm->debug.qm_diff_regs)) 1798 return PTR_ERR(qm->debug.qm_diff_regs); 1799 1800 qm->debug.acc_diff_regs = dfx_regs_init(qm, dregs, reg_len); 1801 if (IS_ERR(qm->debug.acc_diff_regs)) { 1802 dfx_regs_uninit(qm, qm->debug.qm_diff_regs, 1803 ARRAY_SIZE(qm_diff_regs)); 1804 return PTR_ERR(qm->debug.acc_diff_regs); 1805 } 1806 1807 return 0; 1808 } 1809 EXPORT_SYMBOL_GPL(hisi_qm_diff_regs_init); 1810 1811 /** 1812 * hisi_qm_diff_regs_uninit() - Free memory for registers. 1813 * @qm: device qm handle. 1814 * @reg_len: diff registers region length. 1815 */ 1816 void hisi_qm_diff_regs_uninit(struct hisi_qm *qm, int reg_len) 1817 { 1818 if (!qm || reg_len <= 0 || qm->fun_type != QM_HW_PF) 1819 return; 1820 1821 dfx_regs_uninit(qm, qm->debug.acc_diff_regs, reg_len); 1822 dfx_regs_uninit(qm, qm->debug.qm_diff_regs, ARRAY_SIZE(qm_diff_regs)); 1823 } 1824 EXPORT_SYMBOL_GPL(hisi_qm_diff_regs_uninit); 1825 1826 /** 1827 * hisi_qm_acc_diff_regs_dump() - Dump registers's value. 1828 * @qm: device qm handle. 1829 * @s: Debugfs file handle. 1830 * @dregs: diff registers handle. 1831 * @regs_len: diff registers region length. 1832 */ 1833 void hisi_qm_acc_diff_regs_dump(struct hisi_qm *qm, struct seq_file *s, 1834 struct dfx_diff_registers *dregs, int regs_len) 1835 { 1836 u32 j, val, base_offset; 1837 int i, ret; 1838 1839 if (!qm || !s || !dregs || regs_len <= 0) 1840 return; 1841 1842 ret = hisi_qm_get_dfx_access(qm); 1843 if (ret) 1844 return; 1845 1846 down_read(&qm->qps_lock); 1847 for (i = 0; i < regs_len; i++) { 1848 if (!dregs[i].reg_len) 1849 continue; 1850 1851 for (j = 0; j < dregs[i].reg_len; j++) { 1852 base_offset = dregs[i].reg_offset + j * QM_DFX_REGS_LEN; 1853 val = readl(qm->io_base + base_offset); 1854 if (val != dregs[i].regs[j]) 1855 seq_printf(s, "0x%08x = 0x%08x ---> 0x%08x\n", 1856 base_offset, dregs[i].regs[j], val); 1857 } 1858 } 1859 up_read(&qm->qps_lock); 1860 1861 hisi_qm_put_dfx_access(qm); 1862 } 1863 EXPORT_SYMBOL_GPL(hisi_qm_acc_diff_regs_dump); 1864 1865 static int qm_diff_regs_show(struct seq_file *s, void *unused) 1866 { 1867 struct hisi_qm *qm = s->private; 1868 1869 hisi_qm_acc_diff_regs_dump(qm, s, qm->debug.qm_diff_regs, 1870 ARRAY_SIZE(qm_diff_regs)); 1871 1872 return 0; 1873 } 1874 DEFINE_SHOW_ATTRIBUTE(qm_diff_regs); 1875 1876 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer, 1877 size_t count, loff_t *pos) 1878 { 1879 char buf[QM_DBG_READ_LEN]; 1880 int len; 1881 1882 len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", 1883 "Please echo help to cmd to get help information"); 1884 1885 return simple_read_from_buffer(buffer, count, pos, buf, len); 1886 } 1887 1888 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, 1889 dma_addr_t *dma_addr) 1890 { 1891 struct device *dev = &qm->pdev->dev; 1892 void *ctx_addr; 1893 1894 ctx_addr = kzalloc(ctx_size, GFP_KERNEL); 1895 if (!ctx_addr) 1896 return ERR_PTR(-ENOMEM); 1897 1898 *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); 1899 if (dma_mapping_error(dev, *dma_addr)) { 1900 dev_err(dev, "DMA mapping error!\n"); 1901 kfree(ctx_addr); 1902 return ERR_PTR(-ENOMEM); 1903 } 1904 1905 return ctx_addr; 1906 } 1907 1908 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, 1909 const void *ctx_addr, dma_addr_t *dma_addr) 1910 { 1911 struct device *dev = &qm->pdev->dev; 1912 1913 dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); 1914 kfree(ctx_addr); 1915 } 1916 1917 static void dump_show(struct hisi_qm *qm, void *info, 1918 unsigned int info_size, char *info_name) 1919 { 1920 struct device *dev = &qm->pdev->dev; 1921 u8 *info_curr = info; 1922 u32 i; 1923 #define BYTE_PER_DW 4 1924 1925 dev_info(dev, "%s DUMP\n", info_name); 1926 for (i = 0; i < info_size; i += BYTE_PER_DW, info_curr += BYTE_PER_DW) { 1927 pr_info("DW%u: %02X%02X %02X%02X\n", i / BYTE_PER_DW, 1928 *(info_curr + 3), *(info_curr + 2), *(info_curr + 1), *(info_curr)); 1929 } 1930 } 1931 1932 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1933 { 1934 return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); 1935 } 1936 1937 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1938 { 1939 return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); 1940 } 1941 1942 static int qm_sqc_dump(struct hisi_qm *qm, const char *s) 1943 { 1944 struct device *dev = &qm->pdev->dev; 1945 struct qm_sqc *sqc, *sqc_curr; 1946 dma_addr_t sqc_dma; 1947 u32 qp_id; 1948 int ret; 1949 1950 if (!s) 1951 return -EINVAL; 1952 1953 ret = kstrtou32(s, 0, &qp_id); 1954 if (ret || qp_id >= qm->qp_num) { 1955 dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1); 1956 return -EINVAL; 1957 } 1958 1959 sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma); 1960 if (IS_ERR(sqc)) 1961 return PTR_ERR(sqc); 1962 1963 ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id); 1964 if (ret) { 1965 down_read(&qm->qps_lock); 1966 if (qm->sqc) { 1967 sqc_curr = qm->sqc + qp_id; 1968 1969 dump_show(qm, sqc_curr, sizeof(*sqc), "SOFT SQC"); 1970 } 1971 up_read(&qm->qps_lock); 1972 1973 goto free_ctx; 1974 } 1975 1976 dump_show(qm, sqc, sizeof(*sqc), "SQC"); 1977 1978 free_ctx: 1979 qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma); 1980 return 0; 1981 } 1982 1983 static int qm_cqc_dump(struct hisi_qm *qm, const char *s) 1984 { 1985 struct device *dev = &qm->pdev->dev; 1986 struct qm_cqc *cqc, *cqc_curr; 1987 dma_addr_t cqc_dma; 1988 u32 qp_id; 1989 int ret; 1990 1991 if (!s) 1992 return -EINVAL; 1993 1994 ret = kstrtou32(s, 0, &qp_id); 1995 if (ret || qp_id >= qm->qp_num) { 1996 dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1); 1997 return -EINVAL; 1998 } 1999 2000 cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma); 2001 if (IS_ERR(cqc)) 2002 return PTR_ERR(cqc); 2003 2004 ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id); 2005 if (ret) { 2006 down_read(&qm->qps_lock); 2007 if (qm->cqc) { 2008 cqc_curr = qm->cqc + qp_id; 2009 2010 dump_show(qm, cqc_curr, sizeof(*cqc), "SOFT CQC"); 2011 } 2012 up_read(&qm->qps_lock); 2013 2014 goto free_ctx; 2015 } 2016 2017 dump_show(qm, cqc, sizeof(*cqc), "CQC"); 2018 2019 free_ctx: 2020 qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma); 2021 return 0; 2022 } 2023 2024 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size, 2025 int cmd, char *name) 2026 { 2027 struct device *dev = &qm->pdev->dev; 2028 dma_addr_t xeqc_dma; 2029 void *xeqc; 2030 int ret; 2031 2032 if (strsep(&s, " ")) { 2033 dev_err(dev, "Please do not input extra characters!\n"); 2034 return -EINVAL; 2035 } 2036 2037 xeqc = qm_ctx_alloc(qm, size, &xeqc_dma); 2038 if (IS_ERR(xeqc)) 2039 return PTR_ERR(xeqc); 2040 2041 ret = hisi_qm_mb(qm, cmd, xeqc_dma, 0, 1); 2042 if (ret) 2043 goto err_free_ctx; 2044 2045 dump_show(qm, xeqc, size, name); 2046 2047 err_free_ctx: 2048 qm_ctx_free(qm, size, xeqc, &xeqc_dma); 2049 return ret; 2050 } 2051 2052 static int q_dump_param_parse(struct hisi_qm *qm, char *s, 2053 u32 *e_id, u32 *q_id, u16 q_depth) 2054 { 2055 struct device *dev = &qm->pdev->dev; 2056 unsigned int qp_num = qm->qp_num; 2057 char *presult; 2058 int ret; 2059 2060 presult = strsep(&s, " "); 2061 if (!presult) { 2062 dev_err(dev, "Please input qp number!\n"); 2063 return -EINVAL; 2064 } 2065 2066 ret = kstrtou32(presult, 0, q_id); 2067 if (ret || *q_id >= qp_num) { 2068 dev_err(dev, "Please input qp num (0-%u)", qp_num - 1); 2069 return -EINVAL; 2070 } 2071 2072 presult = strsep(&s, " "); 2073 if (!presult) { 2074 dev_err(dev, "Please input sqe number!\n"); 2075 return -EINVAL; 2076 } 2077 2078 ret = kstrtou32(presult, 0, e_id); 2079 if (ret || *e_id >= q_depth) { 2080 dev_err(dev, "Please input sqe num (0-%u)", q_depth - 1); 2081 return -EINVAL; 2082 } 2083 2084 if (strsep(&s, " ")) { 2085 dev_err(dev, "Please do not input extra characters!\n"); 2086 return -EINVAL; 2087 } 2088 2089 return 0; 2090 } 2091 2092 static int qm_sq_dump(struct hisi_qm *qm, char *s) 2093 { 2094 u16 sq_depth = qm->qp_array->cq_depth; 2095 void *sqe, *sqe_curr; 2096 struct hisi_qp *qp; 2097 u32 qp_id, sqe_id; 2098 int ret; 2099 2100 ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id, sq_depth); 2101 if (ret) 2102 return ret; 2103 2104 sqe = kzalloc(qm->sqe_size * sq_depth, GFP_KERNEL); 2105 if (!sqe) 2106 return -ENOMEM; 2107 2108 qp = &qm->qp_array[qp_id]; 2109 memcpy(sqe, qp->sqe, qm->sqe_size * sq_depth); 2110 sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size); 2111 memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK, 2112 qm->debug.sqe_mask_len); 2113 2114 dump_show(qm, sqe_curr, qm->sqe_size, "SQE"); 2115 2116 kfree(sqe); 2117 2118 return 0; 2119 } 2120 2121 static int qm_cq_dump(struct hisi_qm *qm, char *s) 2122 { 2123 struct qm_cqe *cqe_curr; 2124 struct hisi_qp *qp; 2125 u32 qp_id, cqe_id; 2126 int ret; 2127 2128 ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id, qm->qp_array->cq_depth); 2129 if (ret) 2130 return ret; 2131 2132 qp = &qm->qp_array[qp_id]; 2133 cqe_curr = qp->cqe + cqe_id; 2134 dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE"); 2135 2136 return 0; 2137 } 2138 2139 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s, 2140 size_t size, char *name) 2141 { 2142 struct device *dev = &qm->pdev->dev; 2143 void *xeqe; 2144 u32 xeqe_id; 2145 int ret; 2146 2147 if (!s) 2148 return -EINVAL; 2149 2150 ret = kstrtou32(s, 0, &xeqe_id); 2151 if (ret) 2152 return -EINVAL; 2153 2154 if (!strcmp(name, "EQE") && xeqe_id >= qm->eq_depth) { 2155 dev_err(dev, "Please input eqe num (0-%u)", qm->eq_depth - 1); 2156 return -EINVAL; 2157 } else if (!strcmp(name, "AEQE") && xeqe_id >= qm->aeq_depth) { 2158 dev_err(dev, "Please input aeqe num (0-%u)", qm->eq_depth - 1); 2159 return -EINVAL; 2160 } 2161 2162 down_read(&qm->qps_lock); 2163 2164 if (qm->eqe && !strcmp(name, "EQE")) { 2165 xeqe = qm->eqe + xeqe_id; 2166 } else if (qm->aeqe && !strcmp(name, "AEQE")) { 2167 xeqe = qm->aeqe + xeqe_id; 2168 } else { 2169 ret = -EINVAL; 2170 goto err_unlock; 2171 } 2172 2173 dump_show(qm, xeqe, size, name); 2174 2175 err_unlock: 2176 up_read(&qm->qps_lock); 2177 return ret; 2178 } 2179 2180 static int qm_dbg_help(struct hisi_qm *qm, char *s) 2181 { 2182 struct device *dev = &qm->pdev->dev; 2183 2184 if (strsep(&s, " ")) { 2185 dev_err(dev, "Please do not input extra characters!\n"); 2186 return -EINVAL; 2187 } 2188 2189 dev_info(dev, "available commands:\n"); 2190 dev_info(dev, "sqc <num>\n"); 2191 dev_info(dev, "cqc <num>\n"); 2192 dev_info(dev, "eqc\n"); 2193 dev_info(dev, "aeqc\n"); 2194 dev_info(dev, "sq <num> <e>\n"); 2195 dev_info(dev, "cq <num> <e>\n"); 2196 dev_info(dev, "eq <e>\n"); 2197 dev_info(dev, "aeq <e>\n"); 2198 2199 return 0; 2200 } 2201 2202 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf) 2203 { 2204 struct device *dev = &qm->pdev->dev; 2205 char *presult, *s, *s_tmp; 2206 int ret; 2207 2208 s = kstrdup(cmd_buf, GFP_KERNEL); 2209 if (!s) 2210 return -ENOMEM; 2211 2212 s_tmp = s; 2213 presult = strsep(&s, " "); 2214 if (!presult) { 2215 ret = -EINVAL; 2216 goto err_buffer_free; 2217 } 2218 2219 if (!strcmp(presult, "sqc")) 2220 ret = qm_sqc_dump(qm, s); 2221 else if (!strcmp(presult, "cqc")) 2222 ret = qm_cqc_dump(qm, s); 2223 else if (!strcmp(presult, "eqc")) 2224 ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc), 2225 QM_MB_CMD_EQC, "EQC"); 2226 else if (!strcmp(presult, "aeqc")) 2227 ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc), 2228 QM_MB_CMD_AEQC, "AEQC"); 2229 else if (!strcmp(presult, "sq")) 2230 ret = qm_sq_dump(qm, s); 2231 else if (!strcmp(presult, "cq")) 2232 ret = qm_cq_dump(qm, s); 2233 else if (!strcmp(presult, "eq")) 2234 ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE"); 2235 else if (!strcmp(presult, "aeq")) 2236 ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE"); 2237 else if (!strcmp(presult, "help")) 2238 ret = qm_dbg_help(qm, s); 2239 else 2240 ret = -EINVAL; 2241 2242 if (ret) 2243 dev_info(dev, "Please echo help\n"); 2244 2245 err_buffer_free: 2246 kfree(s_tmp); 2247 2248 return ret; 2249 } 2250 2251 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer, 2252 size_t count, loff_t *pos) 2253 { 2254 struct hisi_qm *qm = filp->private_data; 2255 char *cmd_buf, *cmd_buf_tmp; 2256 int ret; 2257 2258 if (*pos) 2259 return 0; 2260 2261 ret = hisi_qm_get_dfx_access(qm); 2262 if (ret) 2263 return ret; 2264 2265 /* Judge if the instance is being reset. */ 2266 if (unlikely(atomic_read(&qm->status.flags) == QM_STOP)) { 2267 ret = 0; 2268 goto put_dfx_access; 2269 } 2270 2271 if (count > QM_DBG_WRITE_LEN) { 2272 ret = -ENOSPC; 2273 goto put_dfx_access; 2274 } 2275 2276 cmd_buf = memdup_user_nul(buffer, count); 2277 if (IS_ERR(cmd_buf)) { 2278 ret = PTR_ERR(cmd_buf); 2279 goto put_dfx_access; 2280 } 2281 2282 cmd_buf_tmp = strchr(cmd_buf, '\n'); 2283 if (cmd_buf_tmp) { 2284 *cmd_buf_tmp = '\0'; 2285 count = cmd_buf_tmp - cmd_buf + 1; 2286 } 2287 2288 ret = qm_cmd_write_dump(qm, cmd_buf); 2289 if (ret) { 2290 kfree(cmd_buf); 2291 goto put_dfx_access; 2292 } 2293 2294 kfree(cmd_buf); 2295 2296 ret = count; 2297 2298 put_dfx_access: 2299 hisi_qm_put_dfx_access(qm); 2300 return ret; 2301 } 2302 2303 static const struct file_operations qm_cmd_fops = { 2304 .owner = THIS_MODULE, 2305 .open = simple_open, 2306 .read = qm_cmd_read, 2307 .write = qm_cmd_write, 2308 }; 2309 2310 static void qm_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir, 2311 enum qm_debug_file index) 2312 { 2313 struct debugfs_file *file = qm->debug.files + index; 2314 2315 debugfs_create_file(qm_debug_file_name[index], 0600, dir, file, 2316 &qm_debug_fops); 2317 2318 file->index = index; 2319 mutex_init(&file->lock); 2320 file->debug = &qm->debug; 2321 } 2322 2323 static void qm_hw_error_init_v1(struct hisi_qm *qm) 2324 { 2325 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 2326 } 2327 2328 static void qm_hw_error_cfg(struct hisi_qm *qm) 2329 { 2330 struct hisi_qm_err_info *err_info = &qm->err_info; 2331 2332 qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; 2333 /* clear QM hw residual error source */ 2334 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 2335 2336 /* configure error type */ 2337 writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); 2338 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 2339 writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 2340 writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); 2341 } 2342 2343 static void qm_hw_error_init_v2(struct hisi_qm *qm) 2344 { 2345 u32 irq_unmask; 2346 2347 qm_hw_error_cfg(qm); 2348 2349 irq_unmask = ~qm->error_mask; 2350 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 2351 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 2352 } 2353 2354 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 2355 { 2356 u32 irq_mask = qm->error_mask; 2357 2358 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 2359 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 2360 } 2361 2362 static void qm_hw_error_init_v3(struct hisi_qm *qm) 2363 { 2364 u32 irq_unmask; 2365 2366 qm_hw_error_cfg(qm); 2367 2368 /* enable close master ooo when hardware error happened */ 2369 writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 2370 2371 irq_unmask = ~qm->error_mask; 2372 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 2373 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 2374 } 2375 2376 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 2377 { 2378 u32 irq_mask = qm->error_mask; 2379 2380 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 2381 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 2382 2383 /* disable close master ooo when hardware error happened */ 2384 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 2385 } 2386 2387 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 2388 { 2389 const struct hisi_qm_hw_error *err; 2390 struct device *dev = &qm->pdev->dev; 2391 u32 reg_val, type, vf_num; 2392 int i; 2393 2394 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 2395 err = &qm_hw_error[i]; 2396 if (!(err->int_msk & error_status)) 2397 continue; 2398 2399 dev_err(dev, "%s [error status=0x%x] found\n", 2400 err->msg, err->int_msk); 2401 2402 if (err->int_msk & QM_DB_TIMEOUT) { 2403 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 2404 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 2405 QM_DB_TIMEOUT_TYPE_SHIFT; 2406 vf_num = reg_val & QM_DB_TIMEOUT_VF; 2407 dev_err(dev, "qm %s doorbell timeout in function %u\n", 2408 qm_db_timeout[type], vf_num); 2409 } else if (err->int_msk & QM_OF_FIFO_OF) { 2410 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 2411 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 2412 QM_FIFO_OVERFLOW_TYPE_SHIFT; 2413 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 2414 2415 if (type < ARRAY_SIZE(qm_fifo_overflow)) 2416 dev_err(dev, "qm %s fifo overflow in function %u\n", 2417 qm_fifo_overflow[type], vf_num); 2418 else 2419 dev_err(dev, "unknown error type\n"); 2420 } 2421 } 2422 } 2423 2424 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 2425 { 2426 u32 error_status, tmp; 2427 2428 /* read err sts */ 2429 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 2430 error_status = qm->error_mask & tmp; 2431 2432 if (error_status) { 2433 if (error_status & QM_ECC_MBIT) 2434 qm->err_status.is_qm_ecc_mbit = true; 2435 2436 qm_log_hw_error(qm, error_status); 2437 if (error_status & qm->err_info.qm_reset_mask) 2438 return ACC_ERR_NEED_RESET; 2439 2440 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 2441 writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); 2442 } 2443 2444 return ACC_ERR_RECOVERED; 2445 } 2446 2447 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 2448 { 2449 struct qm_mailbox mailbox; 2450 int ret; 2451 2452 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 2453 mutex_lock(&qm->mailbox_lock); 2454 ret = qm_mb_nolock(qm, &mailbox); 2455 if (ret) 2456 goto err_unlock; 2457 2458 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 2459 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 2460 2461 err_unlock: 2462 mutex_unlock(&qm->mailbox_lock); 2463 return ret; 2464 } 2465 2466 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 2467 { 2468 u32 val; 2469 2470 if (qm->fun_type == QM_HW_PF) 2471 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 2472 2473 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 2474 val |= QM_IFC_INT_SOURCE_MASK; 2475 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 2476 } 2477 2478 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 2479 { 2480 struct device *dev = &qm->pdev->dev; 2481 u32 cmd; 2482 u64 msg; 2483 int ret; 2484 2485 ret = qm_get_mb_cmd(qm, &msg, vf_id); 2486 if (ret) { 2487 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 2488 return; 2489 } 2490 2491 cmd = msg & QM_MB_CMD_DATA_MASK; 2492 switch (cmd) { 2493 case QM_VF_PREPARE_FAIL: 2494 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 2495 break; 2496 case QM_VF_START_FAIL: 2497 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 2498 break; 2499 case QM_VF_PREPARE_DONE: 2500 case QM_VF_START_DONE: 2501 break; 2502 default: 2503 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 2504 break; 2505 } 2506 } 2507 2508 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 2509 { 2510 struct device *dev = &qm->pdev->dev; 2511 u32 vfs_num = qm->vfs_num; 2512 int cnt = 0; 2513 int ret = 0; 2514 u64 val; 2515 u32 i; 2516 2517 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2518 return 0; 2519 2520 while (true) { 2521 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 2522 /* All VFs send command to PF, break */ 2523 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 2524 break; 2525 2526 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 2527 ret = -EBUSY; 2528 break; 2529 } 2530 2531 msleep(QM_WAIT_DST_ACK); 2532 } 2533 2534 /* PF check VFs msg */ 2535 for (i = 1; i <= vfs_num; i++) { 2536 if (val & BIT(i)) 2537 qm_handle_vf_msg(qm, i); 2538 else 2539 dev_err(dev, "VF(%u) not ping PF!\n", i); 2540 } 2541 2542 /* PF clear interrupt to ack VFs */ 2543 qm_clear_cmd_interrupt(qm, val); 2544 2545 return ret; 2546 } 2547 2548 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 2549 { 2550 u32 val; 2551 2552 val = readl(qm->io_base + QM_IFC_INT_CFG); 2553 val &= ~QM_IFC_SEND_ALL_VFS; 2554 val |= fun_num; 2555 writel(val, qm->io_base + QM_IFC_INT_CFG); 2556 2557 val = readl(qm->io_base + QM_IFC_INT_SET_P); 2558 val |= QM_IFC_INT_SET_MASK; 2559 writel(val, qm->io_base + QM_IFC_INT_SET_P); 2560 } 2561 2562 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 2563 { 2564 u32 val; 2565 2566 val = readl(qm->io_base + QM_IFC_INT_SET_V); 2567 val |= QM_IFC_INT_SET_MASK; 2568 writel(val, qm->io_base + QM_IFC_INT_SET_V); 2569 } 2570 2571 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 2572 { 2573 struct device *dev = &qm->pdev->dev; 2574 struct qm_mailbox mailbox; 2575 int cnt = 0; 2576 u64 val; 2577 int ret; 2578 2579 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 2580 mutex_lock(&qm->mailbox_lock); 2581 ret = qm_mb_nolock(qm, &mailbox); 2582 if (ret) { 2583 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 2584 goto err_unlock; 2585 } 2586 2587 qm_trigger_vf_interrupt(qm, fun_num); 2588 while (true) { 2589 msleep(QM_WAIT_DST_ACK); 2590 val = readq(qm->io_base + QM_IFC_READY_STATUS); 2591 /* if VF respond, PF notifies VF successfully. */ 2592 if (!(val & BIT(fun_num))) 2593 goto err_unlock; 2594 2595 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 2596 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 2597 ret = -ETIMEDOUT; 2598 break; 2599 } 2600 } 2601 2602 err_unlock: 2603 mutex_unlock(&qm->mailbox_lock); 2604 return ret; 2605 } 2606 2607 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 2608 { 2609 struct device *dev = &qm->pdev->dev; 2610 u32 vfs_num = qm->vfs_num; 2611 struct qm_mailbox mailbox; 2612 u64 val = 0; 2613 int cnt = 0; 2614 int ret; 2615 u32 i; 2616 2617 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 2618 mutex_lock(&qm->mailbox_lock); 2619 /* PF sends command to all VFs by mailbox */ 2620 ret = qm_mb_nolock(qm, &mailbox); 2621 if (ret) { 2622 dev_err(dev, "failed to send command to VFs!\n"); 2623 mutex_unlock(&qm->mailbox_lock); 2624 return ret; 2625 } 2626 2627 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 2628 while (true) { 2629 msleep(QM_WAIT_DST_ACK); 2630 val = readq(qm->io_base + QM_IFC_READY_STATUS); 2631 /* If all VFs acked, PF notifies VFs successfully. */ 2632 if (!(val & GENMASK(vfs_num, 1))) { 2633 mutex_unlock(&qm->mailbox_lock); 2634 return 0; 2635 } 2636 2637 if (++cnt > QM_MAX_PF_WAIT_COUNT) 2638 break; 2639 } 2640 2641 mutex_unlock(&qm->mailbox_lock); 2642 2643 /* Check which vf respond timeout. */ 2644 for (i = 1; i <= vfs_num; i++) { 2645 if (val & BIT(i)) 2646 dev_err(dev, "failed to get response from VF(%u)!\n", i); 2647 } 2648 2649 return -ETIMEDOUT; 2650 } 2651 2652 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 2653 { 2654 struct qm_mailbox mailbox; 2655 int cnt = 0; 2656 u32 val; 2657 int ret; 2658 2659 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 2660 mutex_lock(&qm->mailbox_lock); 2661 ret = qm_mb_nolock(qm, &mailbox); 2662 if (ret) { 2663 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 2664 goto unlock; 2665 } 2666 2667 qm_trigger_pf_interrupt(qm); 2668 /* Waiting for PF response */ 2669 while (true) { 2670 msleep(QM_WAIT_DST_ACK); 2671 val = readl(qm->io_base + QM_IFC_INT_SET_V); 2672 if (!(val & QM_IFC_INT_STATUS_MASK)) 2673 break; 2674 2675 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 2676 ret = -ETIMEDOUT; 2677 break; 2678 } 2679 } 2680 2681 unlock: 2682 mutex_unlock(&qm->mailbox_lock); 2683 return ret; 2684 } 2685 2686 static int qm_stop_qp(struct hisi_qp *qp) 2687 { 2688 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 2689 } 2690 2691 static int qm_set_msi(struct hisi_qm *qm, bool set) 2692 { 2693 struct pci_dev *pdev = qm->pdev; 2694 2695 if (set) { 2696 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 2697 0); 2698 } else { 2699 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 2700 ACC_PEH_MSI_DISABLE); 2701 if (qm->err_status.is_qm_ecc_mbit || 2702 qm->err_status.is_dev_ecc_mbit) 2703 return 0; 2704 2705 mdelay(1); 2706 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 2707 return -EFAULT; 2708 } 2709 2710 return 0; 2711 } 2712 2713 static void qm_wait_msi_finish(struct hisi_qm *qm) 2714 { 2715 struct pci_dev *pdev = qm->pdev; 2716 u32 cmd = ~0; 2717 int cnt = 0; 2718 u32 val; 2719 int ret; 2720 2721 while (true) { 2722 pci_read_config_dword(pdev, pdev->msi_cap + 2723 PCI_MSI_PENDING_64, &cmd); 2724 if (!cmd) 2725 break; 2726 2727 if (++cnt > MAX_WAIT_COUNTS) { 2728 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 2729 break; 2730 } 2731 2732 udelay(1); 2733 } 2734 2735 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 2736 val, !(val & QM_PEH_DFX_MASK), 2737 POLL_PERIOD, POLL_TIMEOUT); 2738 if (ret) 2739 pci_warn(pdev, "failed to empty PEH MSI!\n"); 2740 2741 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 2742 val, !(val & QM_PEH_MSI_FINISH_MASK), 2743 POLL_PERIOD, POLL_TIMEOUT); 2744 if (ret) 2745 pci_warn(pdev, "failed to finish MSI operation!\n"); 2746 } 2747 2748 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 2749 { 2750 struct pci_dev *pdev = qm->pdev; 2751 int ret = -ETIMEDOUT; 2752 u32 cmd, i; 2753 2754 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 2755 if (set) 2756 cmd |= QM_MSI_CAP_ENABLE; 2757 else 2758 cmd &= ~QM_MSI_CAP_ENABLE; 2759 2760 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 2761 if (set) { 2762 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 2763 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 2764 if (cmd & QM_MSI_CAP_ENABLE) 2765 return 0; 2766 2767 udelay(1); 2768 } 2769 } else { 2770 udelay(WAIT_PERIOD_US_MIN); 2771 qm_wait_msi_finish(qm); 2772 ret = 0; 2773 } 2774 2775 return ret; 2776 } 2777 2778 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 2779 .qm_db = qm_db_v1, 2780 .hw_error_init = qm_hw_error_init_v1, 2781 .set_msi = qm_set_msi, 2782 }; 2783 2784 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 2785 .get_vft = qm_get_vft_v2, 2786 .qm_db = qm_db_v2, 2787 .hw_error_init = qm_hw_error_init_v2, 2788 .hw_error_uninit = qm_hw_error_uninit_v2, 2789 .hw_error_handle = qm_hw_error_handle_v2, 2790 .set_msi = qm_set_msi, 2791 }; 2792 2793 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 2794 .get_vft = qm_get_vft_v2, 2795 .qm_db = qm_db_v2, 2796 .hw_error_init = qm_hw_error_init_v3, 2797 .hw_error_uninit = qm_hw_error_uninit_v3, 2798 .hw_error_handle = qm_hw_error_handle_v2, 2799 .set_msi = qm_set_msi_v3, 2800 }; 2801 2802 static void *qm_get_avail_sqe(struct hisi_qp *qp) 2803 { 2804 struct hisi_qp_status *qp_status = &qp->qp_status; 2805 u16 sq_tail = qp_status->sq_tail; 2806 2807 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 2808 return NULL; 2809 2810 return qp->sqe + sq_tail * qp->qm->sqe_size; 2811 } 2812 2813 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 2814 { 2815 u64 *addr; 2816 2817 /* Use last 64 bits of DUS to reset status. */ 2818 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 2819 *addr = 0; 2820 } 2821 2822 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 2823 { 2824 struct device *dev = &qm->pdev->dev; 2825 struct hisi_qp *qp; 2826 int qp_id; 2827 2828 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 2829 return ERR_PTR(-EPERM); 2830 2831 if (qm->qp_in_used == qm->qp_num) { 2832 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 2833 qm->qp_num); 2834 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 2835 return ERR_PTR(-EBUSY); 2836 } 2837 2838 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 2839 if (qp_id < 0) { 2840 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 2841 qm->qp_num); 2842 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 2843 return ERR_PTR(-EBUSY); 2844 } 2845 2846 qp = &qm->qp_array[qp_id]; 2847 hisi_qm_unset_hw_reset(qp); 2848 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 2849 2850 qp->event_cb = NULL; 2851 qp->req_cb = NULL; 2852 qp->qp_id = qp_id; 2853 qp->alg_type = alg_type; 2854 qp->is_in_kernel = true; 2855 qm->qp_in_used++; 2856 atomic_set(&qp->qp_status.flags, QP_INIT); 2857 2858 return qp; 2859 } 2860 2861 /** 2862 * hisi_qm_create_qp() - Create a queue pair from qm. 2863 * @qm: The qm we create a qp from. 2864 * @alg_type: Accelerator specific algorithm type in sqc. 2865 * 2866 * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating 2867 * qp memory fails. 2868 */ 2869 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 2870 { 2871 struct hisi_qp *qp; 2872 int ret; 2873 2874 ret = qm_pm_get_sync(qm); 2875 if (ret) 2876 return ERR_PTR(ret); 2877 2878 down_write(&qm->qps_lock); 2879 qp = qm_create_qp_nolock(qm, alg_type); 2880 up_write(&qm->qps_lock); 2881 2882 if (IS_ERR(qp)) 2883 qm_pm_put_sync(qm); 2884 2885 return qp; 2886 } 2887 2888 /** 2889 * hisi_qm_release_qp() - Release a qp back to its qm. 2890 * @qp: The qp we want to release. 2891 * 2892 * This function releases the resource of a qp. 2893 */ 2894 static void hisi_qm_release_qp(struct hisi_qp *qp) 2895 { 2896 struct hisi_qm *qm = qp->qm; 2897 2898 down_write(&qm->qps_lock); 2899 2900 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 2901 up_write(&qm->qps_lock); 2902 return; 2903 } 2904 2905 qm->qp_in_used--; 2906 idr_remove(&qm->qp_idr, qp->qp_id); 2907 2908 up_write(&qm->qps_lock); 2909 2910 qm_pm_put_sync(qm); 2911 } 2912 2913 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2914 { 2915 struct hisi_qm *qm = qp->qm; 2916 struct device *dev = &qm->pdev->dev; 2917 enum qm_hw_ver ver = qm->ver; 2918 struct qm_sqc *sqc; 2919 dma_addr_t sqc_dma; 2920 int ret; 2921 2922 sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); 2923 if (!sqc) 2924 return -ENOMEM; 2925 2926 INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); 2927 if (ver == QM_HW_V1) { 2928 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 2929 sqc->w8 = cpu_to_le16(qp->sq_depth - 1); 2930 } else { 2931 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 2932 sqc->w8 = 0; /* rand_qc */ 2933 } 2934 sqc->cq_num = cpu_to_le16(qp_id); 2935 sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 2936 2937 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2938 sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 2939 QM_QC_PASID_ENABLE_SHIFT); 2940 2941 sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), 2942 DMA_TO_DEVICE); 2943 if (dma_mapping_error(dev, sqc_dma)) { 2944 kfree(sqc); 2945 return -ENOMEM; 2946 } 2947 2948 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); 2949 dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); 2950 kfree(sqc); 2951 2952 return ret; 2953 } 2954 2955 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2956 { 2957 struct hisi_qm *qm = qp->qm; 2958 struct device *dev = &qm->pdev->dev; 2959 enum qm_hw_ver ver = qm->ver; 2960 struct qm_cqc *cqc; 2961 dma_addr_t cqc_dma; 2962 int ret; 2963 2964 cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); 2965 if (!cqc) 2966 return -ENOMEM; 2967 2968 INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); 2969 if (ver == QM_HW_V1) { 2970 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 2971 QM_QC_CQE_SIZE)); 2972 cqc->w8 = cpu_to_le16(qp->cq_depth - 1); 2973 } else { 2974 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 2975 cqc->w8 = 0; /* rand_qc */ 2976 } 2977 cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 2978 2979 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2980 cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 2981 2982 cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), 2983 DMA_TO_DEVICE); 2984 if (dma_mapping_error(dev, cqc_dma)) { 2985 kfree(cqc); 2986 return -ENOMEM; 2987 } 2988 2989 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); 2990 dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); 2991 kfree(cqc); 2992 2993 return ret; 2994 } 2995 2996 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2997 { 2998 int ret; 2999 3000 qm_init_qp_status(qp); 3001 3002 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 3003 if (ret) 3004 return ret; 3005 3006 return qm_cq_ctx_cfg(qp, qp_id, pasid); 3007 } 3008 3009 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 3010 { 3011 struct hisi_qm *qm = qp->qm; 3012 struct device *dev = &qm->pdev->dev; 3013 int qp_id = qp->qp_id; 3014 u32 pasid = arg; 3015 int ret; 3016 3017 if (!qm_qp_avail_state(qm, qp, QP_START)) 3018 return -EPERM; 3019 3020 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 3021 if (ret) 3022 return ret; 3023 3024 atomic_set(&qp->qp_status.flags, QP_START); 3025 dev_dbg(dev, "queue %d started\n", qp_id); 3026 3027 return 0; 3028 } 3029 3030 /** 3031 * hisi_qm_start_qp() - Start a qp into running. 3032 * @qp: The qp we want to start to run. 3033 * @arg: Accelerator specific argument. 3034 * 3035 * After this function, qp can receive request from user. Return 0 if 3036 * successful, Return -EBUSY if failed. 3037 */ 3038 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 3039 { 3040 struct hisi_qm *qm = qp->qm; 3041 int ret; 3042 3043 down_write(&qm->qps_lock); 3044 ret = qm_start_qp_nolock(qp, arg); 3045 up_write(&qm->qps_lock); 3046 3047 return ret; 3048 } 3049 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 3050 3051 /** 3052 * qp_stop_fail_cb() - call request cb. 3053 * @qp: stopped failed qp. 3054 * 3055 * Callback function should be called whether task completed or not. 3056 */ 3057 static void qp_stop_fail_cb(struct hisi_qp *qp) 3058 { 3059 int qp_used = atomic_read(&qp->qp_status.used); 3060 u16 cur_tail = qp->qp_status.sq_tail; 3061 u16 sq_depth = qp->sq_depth; 3062 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 3063 struct hisi_qm *qm = qp->qm; 3064 u16 pos; 3065 int i; 3066 3067 for (i = 0; i < qp_used; i++) { 3068 pos = (i + cur_head) % sq_depth; 3069 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 3070 atomic_dec(&qp->qp_status.used); 3071 } 3072 } 3073 3074 /** 3075 * qm_drain_qp() - Drain a qp. 3076 * @qp: The qp we want to drain. 3077 * 3078 * Determine whether the queue is cleared by judging the tail pointers of 3079 * sq and cq. 3080 */ 3081 static int qm_drain_qp(struct hisi_qp *qp) 3082 { 3083 size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); 3084 struct hisi_qm *qm = qp->qm; 3085 struct device *dev = &qm->pdev->dev; 3086 struct qm_sqc *sqc; 3087 struct qm_cqc *cqc; 3088 dma_addr_t dma_addr; 3089 int ret = 0, i = 0; 3090 void *addr; 3091 3092 /* No need to judge if master OOO is blocked. */ 3093 if (qm_check_dev_error(qm)) 3094 return 0; 3095 3096 /* Kunpeng930 supports drain qp by device */ 3097 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 3098 ret = qm_stop_qp(qp); 3099 if (ret) 3100 dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); 3101 return ret; 3102 } 3103 3104 addr = qm_ctx_alloc(qm, size, &dma_addr); 3105 if (IS_ERR(addr)) { 3106 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); 3107 return -ENOMEM; 3108 } 3109 3110 while (++i) { 3111 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); 3112 if (ret) { 3113 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 3114 break; 3115 } 3116 sqc = addr; 3117 3118 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), 3119 qp->qp_id); 3120 if (ret) { 3121 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 3122 break; 3123 } 3124 cqc = addr + sizeof(struct qm_sqc); 3125 3126 if ((sqc->tail == cqc->tail) && 3127 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 3128 break; 3129 3130 if (i == MAX_WAIT_COUNTS) { 3131 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 3132 ret = -EBUSY; 3133 break; 3134 } 3135 3136 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 3137 } 3138 3139 qm_ctx_free(qm, size, addr, &dma_addr); 3140 3141 return ret; 3142 } 3143 3144 static int qm_stop_qp_nolock(struct hisi_qp *qp) 3145 { 3146 struct device *dev = &qp->qm->pdev->dev; 3147 int ret; 3148 3149 /* 3150 * It is allowed to stop and release qp when reset, If the qp is 3151 * stopped when reset but still want to be released then, the 3152 * is_resetting flag should be set negative so that this qp will not 3153 * be restarted after reset. 3154 */ 3155 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 3156 qp->is_resetting = false; 3157 return 0; 3158 } 3159 3160 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 3161 return -EPERM; 3162 3163 atomic_set(&qp->qp_status.flags, QP_STOP); 3164 3165 ret = qm_drain_qp(qp); 3166 if (ret) 3167 dev_err(dev, "Failed to drain out data for stopping!\n"); 3168 3169 3170 flush_workqueue(qp->qm->wq); 3171 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 3172 qp_stop_fail_cb(qp); 3173 3174 dev_dbg(dev, "stop queue %u!", qp->qp_id); 3175 3176 return 0; 3177 } 3178 3179 /** 3180 * hisi_qm_stop_qp() - Stop a qp in qm. 3181 * @qp: The qp we want to stop. 3182 * 3183 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 3184 */ 3185 int hisi_qm_stop_qp(struct hisi_qp *qp) 3186 { 3187 int ret; 3188 3189 down_write(&qp->qm->qps_lock); 3190 ret = qm_stop_qp_nolock(qp); 3191 up_write(&qp->qm->qps_lock); 3192 3193 return ret; 3194 } 3195 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 3196 3197 /** 3198 * hisi_qp_send() - Queue up a task in the hardware queue. 3199 * @qp: The qp in which to put the message. 3200 * @msg: The message. 3201 * 3202 * This function will return -EBUSY if qp is currently full, and -EAGAIN 3203 * if qp related qm is resetting. 3204 * 3205 * Note: This function may run with qm_irq_thread and ACC reset at same time. 3206 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 3207 * reset may happen, we have no lock here considering performance. This 3208 * causes current qm_db sending fail or can not receive sended sqe. QM 3209 * sync/async receive function should handle the error sqe. ACC reset 3210 * done function should clear used sqe to 0. 3211 */ 3212 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 3213 { 3214 struct hisi_qp_status *qp_status = &qp->qp_status; 3215 u16 sq_tail = qp_status->sq_tail; 3216 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 3217 void *sqe = qm_get_avail_sqe(qp); 3218 3219 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 3220 atomic_read(&qp->qm->status.flags) == QM_STOP || 3221 qp->is_resetting)) { 3222 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 3223 return -EAGAIN; 3224 } 3225 3226 if (!sqe) 3227 return -EBUSY; 3228 3229 memcpy(sqe, msg, qp->qm->sqe_size); 3230 3231 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 3232 atomic_inc(&qp->qp_status.used); 3233 qp_status->sq_tail = sq_tail_next; 3234 3235 return 0; 3236 } 3237 EXPORT_SYMBOL_GPL(hisi_qp_send); 3238 3239 static void hisi_qm_cache_wb(struct hisi_qm *qm) 3240 { 3241 unsigned int val; 3242 3243 if (qm->ver == QM_HW_V1) 3244 return; 3245 3246 writel(0x1, qm->io_base + QM_CACHE_WB_START); 3247 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 3248 val, val & BIT(0), POLL_PERIOD, 3249 POLL_TIMEOUT)) 3250 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 3251 } 3252 3253 static void qm_qp_event_notifier(struct hisi_qp *qp) 3254 { 3255 wake_up_interruptible(&qp->uacce_q->wait); 3256 } 3257 3258 /* This function returns free number of qp in qm. */ 3259 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 3260 { 3261 struct hisi_qm *qm = uacce->priv; 3262 int ret; 3263 3264 down_read(&qm->qps_lock); 3265 ret = qm->qp_num - qm->qp_in_used; 3266 up_read(&qm->qps_lock); 3267 3268 return ret; 3269 } 3270 3271 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 3272 { 3273 int i; 3274 3275 for (i = 0; i < qm->qp_num; i++) 3276 qm_set_qp_disable(&qm->qp_array[i], offset); 3277 } 3278 3279 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 3280 unsigned long arg, 3281 struct uacce_queue *q) 3282 { 3283 struct hisi_qm *qm = uacce->priv; 3284 struct hisi_qp *qp; 3285 u8 alg_type = 0; 3286 3287 qp = hisi_qm_create_qp(qm, alg_type); 3288 if (IS_ERR(qp)) 3289 return PTR_ERR(qp); 3290 3291 q->priv = qp; 3292 q->uacce = uacce; 3293 qp->uacce_q = q; 3294 qp->event_cb = qm_qp_event_notifier; 3295 qp->pasid = arg; 3296 qp->is_in_kernel = false; 3297 3298 return 0; 3299 } 3300 3301 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 3302 { 3303 struct hisi_qp *qp = q->priv; 3304 3305 hisi_qm_release_qp(qp); 3306 } 3307 3308 /* map sq/cq/doorbell to user space */ 3309 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 3310 struct vm_area_struct *vma, 3311 struct uacce_qfile_region *qfr) 3312 { 3313 struct hisi_qp *qp = q->priv; 3314 struct hisi_qm *qm = qp->qm; 3315 resource_size_t phys_base = qm->db_phys_base + 3316 qp->qp_id * qm->db_interval; 3317 size_t sz = vma->vm_end - vma->vm_start; 3318 struct pci_dev *pdev = qm->pdev; 3319 struct device *dev = &pdev->dev; 3320 unsigned long vm_pgoff; 3321 int ret; 3322 3323 switch (qfr->type) { 3324 case UACCE_QFRT_MMIO: 3325 if (qm->ver == QM_HW_V1) { 3326 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 3327 return -EINVAL; 3328 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 3329 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 3330 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 3331 return -EINVAL; 3332 } else { 3333 if (sz > qm->db_interval) 3334 return -EINVAL; 3335 } 3336 3337 vma->vm_flags |= VM_IO; 3338 3339 return remap_pfn_range(vma, vma->vm_start, 3340 phys_base >> PAGE_SHIFT, 3341 sz, pgprot_noncached(vma->vm_page_prot)); 3342 case UACCE_QFRT_DUS: 3343 if (sz != qp->qdma.size) 3344 return -EINVAL; 3345 3346 /* 3347 * dma_mmap_coherent() requires vm_pgoff as 0 3348 * restore vm_pfoff to initial value for mmap() 3349 */ 3350 vm_pgoff = vma->vm_pgoff; 3351 vma->vm_pgoff = 0; 3352 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 3353 qp->qdma.dma, sz); 3354 vma->vm_pgoff = vm_pgoff; 3355 return ret; 3356 3357 default: 3358 return -EINVAL; 3359 } 3360 } 3361 3362 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 3363 { 3364 struct hisi_qp *qp = q->priv; 3365 3366 return hisi_qm_start_qp(qp, qp->pasid); 3367 } 3368 3369 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 3370 { 3371 hisi_qm_stop_qp(q->priv); 3372 } 3373 3374 static int hisi_qm_is_q_updated(struct uacce_queue *q) 3375 { 3376 struct hisi_qp *qp = q->priv; 3377 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 3378 int updated = 0; 3379 3380 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 3381 /* make sure to read data from memory */ 3382 dma_rmb(); 3383 qm_cq_head_update(qp); 3384 cqe = qp->cqe + qp->qp_status.cq_head; 3385 updated = 1; 3386 } 3387 3388 return updated; 3389 } 3390 3391 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 3392 { 3393 struct hisi_qm *qm = q->uacce->priv; 3394 struct hisi_qp *qp = q->priv; 3395 3396 down_write(&qm->qps_lock); 3397 qp->alg_type = type; 3398 up_write(&qm->qps_lock); 3399 } 3400 3401 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 3402 unsigned long arg) 3403 { 3404 struct hisi_qp *qp = q->priv; 3405 struct hisi_qp_info qp_info; 3406 struct hisi_qp_ctx qp_ctx; 3407 3408 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 3409 if (copy_from_user(&qp_ctx, (void __user *)arg, 3410 sizeof(struct hisi_qp_ctx))) 3411 return -EFAULT; 3412 3413 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 3414 return -EINVAL; 3415 3416 qm_set_sqctype(q, qp_ctx.qc_type); 3417 qp_ctx.id = qp->qp_id; 3418 3419 if (copy_to_user((void __user *)arg, &qp_ctx, 3420 sizeof(struct hisi_qp_ctx))) 3421 return -EFAULT; 3422 3423 return 0; 3424 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 3425 if (copy_from_user(&qp_info, (void __user *)arg, 3426 sizeof(struct hisi_qp_info))) 3427 return -EFAULT; 3428 3429 qp_info.sqe_size = qp->qm->sqe_size; 3430 qp_info.sq_depth = qp->sq_depth; 3431 qp_info.cq_depth = qp->cq_depth; 3432 3433 if (copy_to_user((void __user *)arg, &qp_info, 3434 sizeof(struct hisi_qp_info))) 3435 return -EFAULT; 3436 3437 return 0; 3438 } 3439 3440 return -EINVAL; 3441 } 3442 3443 static const struct uacce_ops uacce_qm_ops = { 3444 .get_available_instances = hisi_qm_get_available_instances, 3445 .get_queue = hisi_qm_uacce_get_queue, 3446 .put_queue = hisi_qm_uacce_put_queue, 3447 .start_queue = hisi_qm_uacce_start_queue, 3448 .stop_queue = hisi_qm_uacce_stop_queue, 3449 .mmap = hisi_qm_uacce_mmap, 3450 .ioctl = hisi_qm_uacce_ioctl, 3451 .is_q_updated = hisi_qm_is_q_updated, 3452 }; 3453 3454 static int qm_alloc_uacce(struct hisi_qm *qm) 3455 { 3456 struct pci_dev *pdev = qm->pdev; 3457 struct uacce_device *uacce; 3458 unsigned long mmio_page_nr; 3459 unsigned long dus_page_nr; 3460 u16 sq_depth, cq_depth; 3461 struct uacce_interface interface = { 3462 .flags = UACCE_DEV_SVA, 3463 .ops = &uacce_qm_ops, 3464 }; 3465 int ret; 3466 3467 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 3468 sizeof(interface.name)); 3469 if (ret < 0) 3470 return -ENAMETOOLONG; 3471 3472 uacce = uacce_alloc(&pdev->dev, &interface); 3473 if (IS_ERR(uacce)) 3474 return PTR_ERR(uacce); 3475 3476 if (uacce->flags & UACCE_DEV_SVA) { 3477 qm->use_sva = true; 3478 } else { 3479 /* only consider sva case */ 3480 uacce_remove(uacce); 3481 qm->uacce = NULL; 3482 return -EINVAL; 3483 } 3484 3485 uacce->is_vf = pdev->is_virtfn; 3486 uacce->priv = qm; 3487 3488 if (qm->ver == QM_HW_V1) 3489 uacce->api_ver = HISI_QM_API_VER_BASE; 3490 else if (qm->ver == QM_HW_V2) 3491 uacce->api_ver = HISI_QM_API_VER2_BASE; 3492 else 3493 uacce->api_ver = HISI_QM_API_VER3_BASE; 3494 3495 if (qm->ver == QM_HW_V1) 3496 mmio_page_nr = QM_DOORBELL_PAGE_NR; 3497 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 3498 mmio_page_nr = QM_DOORBELL_PAGE_NR + 3499 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 3500 else 3501 mmio_page_nr = qm->db_interval / PAGE_SIZE; 3502 3503 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 3504 3505 /* Add one more page for device or qp status */ 3506 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 3507 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 3508 PAGE_SHIFT; 3509 3510 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 3511 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 3512 3513 qm->uacce = uacce; 3514 3515 return 0; 3516 } 3517 3518 /** 3519 * qm_frozen() - Try to froze QM to cut continuous queue request. If 3520 * there is user on the QM, return failure without doing anything. 3521 * @qm: The qm needed to be fronzen. 3522 * 3523 * This function frozes QM, then we can do SRIOV disabling. 3524 */ 3525 static int qm_frozen(struct hisi_qm *qm) 3526 { 3527 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 3528 return 0; 3529 3530 down_write(&qm->qps_lock); 3531 3532 if (!qm->qp_in_used) { 3533 qm->qp_in_used = qm->qp_num; 3534 up_write(&qm->qps_lock); 3535 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 3536 return 0; 3537 } 3538 3539 up_write(&qm->qps_lock); 3540 3541 return -EBUSY; 3542 } 3543 3544 static int qm_try_frozen_vfs(struct pci_dev *pdev, 3545 struct hisi_qm_list *qm_list) 3546 { 3547 struct hisi_qm *qm, *vf_qm; 3548 struct pci_dev *dev; 3549 int ret = 0; 3550 3551 if (!qm_list || !pdev) 3552 return -EINVAL; 3553 3554 /* Try to frozen all the VFs as disable SRIOV */ 3555 mutex_lock(&qm_list->lock); 3556 list_for_each_entry(qm, &qm_list->list, list) { 3557 dev = qm->pdev; 3558 if (dev == pdev) 3559 continue; 3560 if (pci_physfn(dev) == pdev) { 3561 vf_qm = pci_get_drvdata(dev); 3562 ret = qm_frozen(vf_qm); 3563 if (ret) 3564 goto frozen_fail; 3565 } 3566 } 3567 3568 frozen_fail: 3569 mutex_unlock(&qm_list->lock); 3570 3571 return ret; 3572 } 3573 3574 /** 3575 * hisi_qm_wait_task_finish() - Wait until the task is finished 3576 * when removing the driver. 3577 * @qm: The qm needed to wait for the task to finish. 3578 * @qm_list: The list of all available devices. 3579 */ 3580 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 3581 { 3582 while (qm_frozen(qm) || 3583 ((qm->fun_type == QM_HW_PF) && 3584 qm_try_frozen_vfs(qm->pdev, qm_list))) { 3585 msleep(WAIT_PERIOD); 3586 } 3587 3588 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 3589 test_bit(QM_RESETTING, &qm->misc_ctl)) 3590 msleep(WAIT_PERIOD); 3591 3592 udelay(REMOVE_WAIT_DELAY); 3593 } 3594 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 3595 3596 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 3597 { 3598 struct device *dev = &qm->pdev->dev; 3599 struct qm_dma *qdma; 3600 int i; 3601 3602 for (i = num - 1; i >= 0; i--) { 3603 qdma = &qm->qp_array[i].qdma; 3604 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 3605 kfree(qm->poll_data[i].qp_finish_id); 3606 } 3607 3608 kfree(qm->poll_data); 3609 kfree(qm->qp_array); 3610 } 3611 3612 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 3613 u16 sq_depth, u16 cq_depth) 3614 { 3615 struct device *dev = &qm->pdev->dev; 3616 size_t off = qm->sqe_size * sq_depth; 3617 struct hisi_qp *qp; 3618 int ret = -ENOMEM; 3619 3620 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 3621 GFP_KERNEL); 3622 if (!qm->poll_data[id].qp_finish_id) 3623 return -ENOMEM; 3624 3625 qp = &qm->qp_array[id]; 3626 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 3627 GFP_KERNEL); 3628 if (!qp->qdma.va) 3629 goto err_free_qp_finish_id; 3630 3631 qp->sqe = qp->qdma.va; 3632 qp->sqe_dma = qp->qdma.dma; 3633 qp->cqe = qp->qdma.va + off; 3634 qp->cqe_dma = qp->qdma.dma + off; 3635 qp->qdma.size = dma_size; 3636 qp->sq_depth = sq_depth; 3637 qp->cq_depth = cq_depth; 3638 qp->qm = qm; 3639 qp->qp_id = id; 3640 3641 return 0; 3642 3643 err_free_qp_finish_id: 3644 kfree(qm->poll_data[id].qp_finish_id); 3645 return ret; 3646 } 3647 3648 static void hisi_qm_pre_init(struct hisi_qm *qm) 3649 { 3650 struct pci_dev *pdev = qm->pdev; 3651 3652 if (qm->ver == QM_HW_V1) 3653 qm->ops = &qm_hw_ops_v1; 3654 else if (qm->ver == QM_HW_V2) 3655 qm->ops = &qm_hw_ops_v2; 3656 else 3657 qm->ops = &qm_hw_ops_v3; 3658 3659 pci_set_drvdata(pdev, qm); 3660 mutex_init(&qm->mailbox_lock); 3661 init_rwsem(&qm->qps_lock); 3662 qm->qp_in_used = 0; 3663 qm->misc_ctl = false; 3664 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 3665 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 3666 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 3667 } 3668 } 3669 3670 static void qm_cmd_uninit(struct hisi_qm *qm) 3671 { 3672 u32 val; 3673 3674 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3675 return; 3676 3677 val = readl(qm->io_base + QM_IFC_INT_MASK); 3678 val |= QM_IFC_INT_DISABLE; 3679 writel(val, qm->io_base + QM_IFC_INT_MASK); 3680 } 3681 3682 static void qm_cmd_init(struct hisi_qm *qm) 3683 { 3684 u32 val; 3685 3686 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3687 return; 3688 3689 /* Clear communication interrupt source */ 3690 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 3691 3692 /* Enable pf to vf communication reg. */ 3693 val = readl(qm->io_base + QM_IFC_INT_MASK); 3694 val &= ~QM_IFC_INT_DISABLE; 3695 writel(val, qm->io_base + QM_IFC_INT_MASK); 3696 } 3697 3698 static void qm_put_pci_res(struct hisi_qm *qm) 3699 { 3700 struct pci_dev *pdev = qm->pdev; 3701 3702 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 3703 iounmap(qm->db_io_base); 3704 3705 iounmap(qm->io_base); 3706 pci_release_mem_regions(pdev); 3707 } 3708 3709 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 3710 { 3711 struct pci_dev *pdev = qm->pdev; 3712 3713 pci_free_irq_vectors(pdev); 3714 qm_put_pci_res(qm); 3715 pci_disable_device(pdev); 3716 } 3717 3718 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 3719 { 3720 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 3721 writel(state, qm->io_base + QM_VF_STATE); 3722 } 3723 3724 static void qm_last_regs_uninit(struct hisi_qm *qm) 3725 { 3726 struct qm_debug *debug = &qm->debug; 3727 3728 if (qm->fun_type == QM_HW_VF || !debug->qm_last_words) 3729 return; 3730 3731 kfree(debug->qm_last_words); 3732 debug->qm_last_words = NULL; 3733 } 3734 3735 static void hisi_qm_unint_work(struct hisi_qm *qm) 3736 { 3737 destroy_workqueue(qm->wq); 3738 } 3739 3740 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 3741 { 3742 struct device *dev = &qm->pdev->dev; 3743 3744 hisi_qp_memory_uninit(qm, qm->qp_num); 3745 if (qm->qdma.va) { 3746 hisi_qm_cache_wb(qm); 3747 dma_free_coherent(dev, qm->qdma.size, 3748 qm->qdma.va, qm->qdma.dma); 3749 } 3750 3751 idr_destroy(&qm->qp_idr); 3752 3753 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3754 kfree(qm->factor); 3755 } 3756 3757 /** 3758 * hisi_qm_uninit() - Uninitialize qm. 3759 * @qm: The qm needed uninit. 3760 * 3761 * This function uninits qm related device resources. 3762 */ 3763 void hisi_qm_uninit(struct hisi_qm *qm) 3764 { 3765 qm_last_regs_uninit(qm); 3766 3767 qm_cmd_uninit(qm); 3768 hisi_qm_unint_work(qm); 3769 down_write(&qm->qps_lock); 3770 3771 if (!qm_avail_state(qm, QM_CLOSE)) { 3772 up_write(&qm->qps_lock); 3773 return; 3774 } 3775 3776 hisi_qm_memory_uninit(qm); 3777 hisi_qm_set_state(qm, QM_NOT_READY); 3778 up_write(&qm->qps_lock); 3779 3780 qm_irqs_unregister(qm); 3781 hisi_qm_pci_uninit(qm); 3782 if (qm->use_sva) { 3783 uacce_remove(qm->uacce); 3784 qm->uacce = NULL; 3785 } 3786 } 3787 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 3788 3789 /** 3790 * hisi_qm_get_vft() - Get vft from a qm. 3791 * @qm: The qm we want to get its vft. 3792 * @base: The base number of queue in vft. 3793 * @number: The number of queues in vft. 3794 * 3795 * We can allocate multiple queues to a qm by configuring virtual function 3796 * table. We get related configures by this function. Normally, we call this 3797 * function in VF driver to get the queue information. 3798 * 3799 * qm hw v1 does not support this interface. 3800 */ 3801 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 3802 { 3803 if (!base || !number) 3804 return -EINVAL; 3805 3806 if (!qm->ops->get_vft) { 3807 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 3808 return -EINVAL; 3809 } 3810 3811 return qm->ops->get_vft(qm, base, number); 3812 } 3813 3814 /** 3815 * hisi_qm_set_vft() - Set vft to a qm. 3816 * @qm: The qm we want to set its vft. 3817 * @fun_num: The function number. 3818 * @base: The base number of queue in vft. 3819 * @number: The number of queues in vft. 3820 * 3821 * This function is alway called in PF driver, it is used to assign queues 3822 * among PF and VFs. 3823 * 3824 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 3825 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 3826 * (VF function number 0x2) 3827 */ 3828 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 3829 u32 number) 3830 { 3831 u32 max_q_num = qm->ctrl_qp_num; 3832 3833 if (base >= max_q_num || number > max_q_num || 3834 (base + number) > max_q_num) 3835 return -EINVAL; 3836 3837 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 3838 } 3839 3840 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 3841 { 3842 struct hisi_qm_status *status = &qm->status; 3843 3844 status->eq_head = 0; 3845 status->aeq_head = 0; 3846 status->eqc_phase = true; 3847 status->aeqc_phase = true; 3848 } 3849 3850 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 3851 { 3852 /* Clear eq/aeq interrupt source */ 3853 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 3854 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 3855 3856 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 3857 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 3858 } 3859 3860 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 3861 { 3862 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 3863 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 3864 } 3865 3866 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 3867 { 3868 struct device *dev = &qm->pdev->dev; 3869 struct qm_eqc *eqc; 3870 dma_addr_t eqc_dma; 3871 int ret; 3872 3873 eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); 3874 if (!eqc) 3875 return -ENOMEM; 3876 3877 eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3878 eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3879 if (qm->ver == QM_HW_V1) 3880 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3881 eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3882 3883 eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), 3884 DMA_TO_DEVICE); 3885 if (dma_mapping_error(dev, eqc_dma)) { 3886 kfree(eqc); 3887 return -ENOMEM; 3888 } 3889 3890 ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); 3891 dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); 3892 kfree(eqc); 3893 3894 return ret; 3895 } 3896 3897 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3898 { 3899 struct device *dev = &qm->pdev->dev; 3900 struct qm_aeqc *aeqc; 3901 dma_addr_t aeqc_dma; 3902 int ret; 3903 3904 aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); 3905 if (!aeqc) 3906 return -ENOMEM; 3907 3908 aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3909 aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3910 aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3911 3912 aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), 3913 DMA_TO_DEVICE); 3914 if (dma_mapping_error(dev, aeqc_dma)) { 3915 kfree(aeqc); 3916 return -ENOMEM; 3917 } 3918 3919 ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); 3920 dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); 3921 kfree(aeqc); 3922 3923 return ret; 3924 } 3925 3926 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3927 { 3928 struct device *dev = &qm->pdev->dev; 3929 int ret; 3930 3931 qm_init_eq_aeq_status(qm); 3932 3933 ret = qm_eq_ctx_cfg(qm); 3934 if (ret) { 3935 dev_err(dev, "Set eqc failed!\n"); 3936 return ret; 3937 } 3938 3939 return qm_aeq_ctx_cfg(qm); 3940 } 3941 3942 static int __hisi_qm_start(struct hisi_qm *qm) 3943 { 3944 int ret; 3945 3946 WARN_ON(!qm->qdma.va); 3947 3948 if (qm->fun_type == QM_HW_PF) { 3949 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3950 if (ret) 3951 return ret; 3952 } 3953 3954 ret = qm_eq_aeq_ctx_cfg(qm); 3955 if (ret) 3956 return ret; 3957 3958 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3959 if (ret) 3960 return ret; 3961 3962 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3963 if (ret) 3964 return ret; 3965 3966 qm_init_prefetch(qm); 3967 qm_enable_eq_aeq_interrupts(qm); 3968 3969 return 0; 3970 } 3971 3972 /** 3973 * hisi_qm_start() - start qm 3974 * @qm: The qm to be started. 3975 * 3976 * This function starts a qm, then we can allocate qp from this qm. 3977 */ 3978 int hisi_qm_start(struct hisi_qm *qm) 3979 { 3980 struct device *dev = &qm->pdev->dev; 3981 int ret = 0; 3982 3983 down_write(&qm->qps_lock); 3984 3985 if (!qm_avail_state(qm, QM_START)) { 3986 up_write(&qm->qps_lock); 3987 return -EPERM; 3988 } 3989 3990 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3991 3992 if (!qm->qp_num) { 3993 dev_err(dev, "qp_num should not be 0\n"); 3994 ret = -EINVAL; 3995 goto err_unlock; 3996 } 3997 3998 ret = __hisi_qm_start(qm); 3999 if (!ret) 4000 atomic_set(&qm->status.flags, QM_START); 4001 4002 hisi_qm_set_state(qm, QM_READY); 4003 err_unlock: 4004 up_write(&qm->qps_lock); 4005 return ret; 4006 } 4007 EXPORT_SYMBOL_GPL(hisi_qm_start); 4008 4009 static int qm_restart(struct hisi_qm *qm) 4010 { 4011 struct device *dev = &qm->pdev->dev; 4012 struct hisi_qp *qp; 4013 int ret, i; 4014 4015 ret = hisi_qm_start(qm); 4016 if (ret < 0) 4017 return ret; 4018 4019 down_write(&qm->qps_lock); 4020 for (i = 0; i < qm->qp_num; i++) { 4021 qp = &qm->qp_array[i]; 4022 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 4023 qp->is_resetting == true) { 4024 ret = qm_start_qp_nolock(qp, 0); 4025 if (ret < 0) { 4026 dev_err(dev, "Failed to start qp%d!\n", i); 4027 4028 up_write(&qm->qps_lock); 4029 return ret; 4030 } 4031 qp->is_resetting = false; 4032 } 4033 } 4034 up_write(&qm->qps_lock); 4035 4036 return 0; 4037 } 4038 4039 /* Stop started qps in reset flow */ 4040 static int qm_stop_started_qp(struct hisi_qm *qm) 4041 { 4042 struct device *dev = &qm->pdev->dev; 4043 struct hisi_qp *qp; 4044 int i, ret; 4045 4046 for (i = 0; i < qm->qp_num; i++) { 4047 qp = &qm->qp_array[i]; 4048 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 4049 qp->is_resetting = true; 4050 ret = qm_stop_qp_nolock(qp); 4051 if (ret < 0) { 4052 dev_err(dev, "Failed to stop qp%d!\n", i); 4053 return ret; 4054 } 4055 } 4056 } 4057 4058 return 0; 4059 } 4060 4061 4062 /** 4063 * qm_clear_queues() - Clear all queues memory in a qm. 4064 * @qm: The qm in which the queues will be cleared. 4065 * 4066 * This function clears all queues memory in a qm. Reset of accelerator can 4067 * use this to clear queues. 4068 */ 4069 static void qm_clear_queues(struct hisi_qm *qm) 4070 { 4071 struct hisi_qp *qp; 4072 int i; 4073 4074 for (i = 0; i < qm->qp_num; i++) { 4075 qp = &qm->qp_array[i]; 4076 if (qp->is_in_kernel && qp->is_resetting) 4077 memset(qp->qdma.va, 0, qp->qdma.size); 4078 } 4079 4080 memset(qm->qdma.va, 0, qm->qdma.size); 4081 } 4082 4083 /** 4084 * hisi_qm_stop() - Stop a qm. 4085 * @qm: The qm which will be stopped. 4086 * @r: The reason to stop qm. 4087 * 4088 * This function stops qm and its qps, then qm can not accept request. 4089 * Related resources are not released at this state, we can use hisi_qm_start 4090 * to let qm start again. 4091 */ 4092 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 4093 { 4094 struct device *dev = &qm->pdev->dev; 4095 int ret = 0; 4096 4097 down_write(&qm->qps_lock); 4098 4099 qm->status.stop_reason = r; 4100 if (!qm_avail_state(qm, QM_STOP)) { 4101 ret = -EPERM; 4102 goto err_unlock; 4103 } 4104 4105 if (qm->status.stop_reason == QM_SOFT_RESET || 4106 qm->status.stop_reason == QM_FLR) { 4107 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4108 ret = qm_stop_started_qp(qm); 4109 if (ret < 0) { 4110 dev_err(dev, "Failed to stop started qp!\n"); 4111 goto err_unlock; 4112 } 4113 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4114 } 4115 4116 qm_disable_eq_aeq_interrupts(qm); 4117 if (qm->fun_type == QM_HW_PF) { 4118 ret = hisi_qm_set_vft(qm, 0, 0, 0); 4119 if (ret < 0) { 4120 dev_err(dev, "Failed to set vft!\n"); 4121 ret = -EBUSY; 4122 goto err_unlock; 4123 } 4124 } 4125 4126 qm_clear_queues(qm); 4127 atomic_set(&qm->status.flags, QM_STOP); 4128 4129 err_unlock: 4130 up_write(&qm->qps_lock); 4131 return ret; 4132 } 4133 EXPORT_SYMBOL_GPL(hisi_qm_stop); 4134 4135 static ssize_t qm_status_read(struct file *filp, char __user *buffer, 4136 size_t count, loff_t *pos) 4137 { 4138 struct hisi_qm *qm = filp->private_data; 4139 char buf[QM_DBG_READ_LEN]; 4140 int val, len; 4141 4142 val = atomic_read(&qm->status.flags); 4143 len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]); 4144 4145 return simple_read_from_buffer(buffer, count, pos, buf, len); 4146 } 4147 4148 static const struct file_operations qm_status_fops = { 4149 .owner = THIS_MODULE, 4150 .open = simple_open, 4151 .read = qm_status_read, 4152 }; 4153 4154 static int qm_debugfs_atomic64_set(void *data, u64 val) 4155 { 4156 if (val) 4157 return -EINVAL; 4158 4159 atomic64_set((atomic64_t *)data, 0); 4160 4161 return 0; 4162 } 4163 4164 static int qm_debugfs_atomic64_get(void *data, u64 *val) 4165 { 4166 *val = atomic64_read((atomic64_t *)data); 4167 4168 return 0; 4169 } 4170 4171 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get, 4172 qm_debugfs_atomic64_set, "%llu\n"); 4173 4174 static void qm_hw_error_init(struct hisi_qm *qm) 4175 { 4176 if (!qm->ops->hw_error_init) { 4177 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 4178 return; 4179 } 4180 4181 qm->ops->hw_error_init(qm); 4182 } 4183 4184 static void qm_hw_error_uninit(struct hisi_qm *qm) 4185 { 4186 if (!qm->ops->hw_error_uninit) { 4187 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 4188 return; 4189 } 4190 4191 qm->ops->hw_error_uninit(qm); 4192 } 4193 4194 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 4195 { 4196 if (!qm->ops->hw_error_handle) { 4197 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 4198 return ACC_ERR_NONE; 4199 } 4200 4201 return qm->ops->hw_error_handle(qm); 4202 } 4203 4204 /** 4205 * hisi_qm_dev_err_init() - Initialize device error configuration. 4206 * @qm: The qm for which we want to do error initialization. 4207 * 4208 * Initialize QM and device error related configuration. 4209 */ 4210 void hisi_qm_dev_err_init(struct hisi_qm *qm) 4211 { 4212 if (qm->fun_type == QM_HW_VF) 4213 return; 4214 4215 qm_hw_error_init(qm); 4216 4217 if (!qm->err_ini->hw_err_enable) { 4218 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 4219 return; 4220 } 4221 qm->err_ini->hw_err_enable(qm); 4222 } 4223 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 4224 4225 /** 4226 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 4227 * @qm: The qm for which we want to do error uninitialization. 4228 * 4229 * Uninitialize QM and device error related configuration. 4230 */ 4231 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 4232 { 4233 if (qm->fun_type == QM_HW_VF) 4234 return; 4235 4236 qm_hw_error_uninit(qm); 4237 4238 if (!qm->err_ini->hw_err_disable) { 4239 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 4240 return; 4241 } 4242 qm->err_ini->hw_err_disable(qm); 4243 } 4244 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 4245 4246 /** 4247 * hisi_qm_free_qps() - free multiple queue pairs. 4248 * @qps: The queue pairs need to be freed. 4249 * @qp_num: The num of queue pairs. 4250 */ 4251 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 4252 { 4253 int i; 4254 4255 if (!qps || qp_num <= 0) 4256 return; 4257 4258 for (i = qp_num - 1; i >= 0; i--) 4259 hisi_qm_release_qp(qps[i]); 4260 } 4261 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 4262 4263 static void free_list(struct list_head *head) 4264 { 4265 struct hisi_qm_resource *res, *tmp; 4266 4267 list_for_each_entry_safe(res, tmp, head, list) { 4268 list_del(&res->list); 4269 kfree(res); 4270 } 4271 } 4272 4273 static int hisi_qm_sort_devices(int node, struct list_head *head, 4274 struct hisi_qm_list *qm_list) 4275 { 4276 struct hisi_qm_resource *res, *tmp; 4277 struct hisi_qm *qm; 4278 struct list_head *n; 4279 struct device *dev; 4280 int dev_node = 0; 4281 4282 list_for_each_entry(qm, &qm_list->list, list) { 4283 dev = &qm->pdev->dev; 4284 4285 if (IS_ENABLED(CONFIG_NUMA)) { 4286 dev_node = dev_to_node(dev); 4287 if (dev_node < 0) 4288 dev_node = 0; 4289 } 4290 4291 res = kzalloc(sizeof(*res), GFP_KERNEL); 4292 if (!res) 4293 return -ENOMEM; 4294 4295 res->qm = qm; 4296 res->distance = node_distance(dev_node, node); 4297 n = head; 4298 list_for_each_entry(tmp, head, list) { 4299 if (res->distance < tmp->distance) { 4300 n = &tmp->list; 4301 break; 4302 } 4303 } 4304 list_add_tail(&res->list, n); 4305 } 4306 4307 return 0; 4308 } 4309 4310 /** 4311 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 4312 * @qm_list: The list of all available devices. 4313 * @qp_num: The number of queue pairs need created. 4314 * @alg_type: The algorithm type. 4315 * @node: The numa node. 4316 * @qps: The queue pairs need created. 4317 * 4318 * This function will sort all available device according to numa distance. 4319 * Then try to create all queue pairs from one device, if all devices do 4320 * not meet the requirements will return error. 4321 */ 4322 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 4323 u8 alg_type, int node, struct hisi_qp **qps) 4324 { 4325 struct hisi_qm_resource *tmp; 4326 int ret = -ENODEV; 4327 LIST_HEAD(head); 4328 int i; 4329 4330 if (!qps || !qm_list || qp_num <= 0) 4331 return -EINVAL; 4332 4333 mutex_lock(&qm_list->lock); 4334 if (hisi_qm_sort_devices(node, &head, qm_list)) { 4335 mutex_unlock(&qm_list->lock); 4336 goto err; 4337 } 4338 4339 list_for_each_entry(tmp, &head, list) { 4340 for (i = 0; i < qp_num; i++) { 4341 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 4342 if (IS_ERR(qps[i])) { 4343 hisi_qm_free_qps(qps, i); 4344 break; 4345 } 4346 } 4347 4348 if (i == qp_num) { 4349 ret = 0; 4350 break; 4351 } 4352 } 4353 4354 mutex_unlock(&qm_list->lock); 4355 if (ret) 4356 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 4357 node, alg_type, qp_num); 4358 4359 err: 4360 free_list(&head); 4361 return ret; 4362 } 4363 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 4364 4365 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 4366 { 4367 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 4368 u32 max_qp_num = qm->max_qp_num; 4369 u32 q_base = qm->qp_num; 4370 int ret; 4371 4372 if (!num_vfs) 4373 return -EINVAL; 4374 4375 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 4376 4377 /* If vfs_q_num is less than num_vfs, return error. */ 4378 if (vfs_q_num < num_vfs) 4379 return -EINVAL; 4380 4381 q_num = vfs_q_num / num_vfs; 4382 remain_q_num = vfs_q_num % num_vfs; 4383 4384 for (i = num_vfs; i > 0; i--) { 4385 /* 4386 * if q_num + remain_q_num > max_qp_num in last vf, divide the 4387 * remaining queues equally. 4388 */ 4389 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 4390 act_q_num = q_num + remain_q_num; 4391 remain_q_num = 0; 4392 } else if (remain_q_num > 0) { 4393 act_q_num = q_num + 1; 4394 remain_q_num--; 4395 } else { 4396 act_q_num = q_num; 4397 } 4398 4399 act_q_num = min_t(int, act_q_num, max_qp_num); 4400 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 4401 if (ret) { 4402 for (j = num_vfs; j > i; j--) 4403 hisi_qm_set_vft(qm, j, 0, 0); 4404 return ret; 4405 } 4406 q_base += act_q_num; 4407 } 4408 4409 return 0; 4410 } 4411 4412 static int qm_clear_vft_config(struct hisi_qm *qm) 4413 { 4414 int ret; 4415 u32 i; 4416 4417 for (i = 1; i <= qm->vfs_num; i++) { 4418 ret = hisi_qm_set_vft(qm, i, 0, 0); 4419 if (ret) 4420 return ret; 4421 } 4422 qm->vfs_num = 0; 4423 4424 return 0; 4425 } 4426 4427 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 4428 { 4429 struct device *dev = &qm->pdev->dev; 4430 u32 ir = qos * QM_QOS_RATE; 4431 int ret, total_vfs, i; 4432 4433 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 4434 if (fun_index > total_vfs) 4435 return -EINVAL; 4436 4437 qm->factor[fun_index].func_qos = qos; 4438 4439 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 4440 if (ret) { 4441 dev_err(dev, "failed to calculate shaper parameter!\n"); 4442 return -EINVAL; 4443 } 4444 4445 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 4446 /* The base number of queue reuse for different alg type */ 4447 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 4448 if (ret) { 4449 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 4450 return -EINVAL; 4451 } 4452 } 4453 4454 return 0; 4455 } 4456 4457 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 4458 { 4459 u64 cir_u = 0, cir_b = 0, cir_s = 0; 4460 u64 shaper_vft, ir_calc, ir; 4461 unsigned int val; 4462 u32 error_rate; 4463 int ret; 4464 4465 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 4466 val & BIT(0), POLL_PERIOD, 4467 POLL_TIMEOUT); 4468 if (ret) 4469 return 0; 4470 4471 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 4472 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 4473 writel(fun_index, qm->io_base + QM_VFT_CFG); 4474 4475 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 4476 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 4477 4478 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 4479 val & BIT(0), POLL_PERIOD, 4480 POLL_TIMEOUT); 4481 if (ret) 4482 return 0; 4483 4484 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 4485 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 4486 4487 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 4488 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 4489 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 4490 4491 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 4492 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 4493 4494 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 4495 4496 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 4497 4498 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 4499 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 4500 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 4501 return 0; 4502 } 4503 4504 return ir; 4505 } 4506 4507 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 4508 { 4509 struct device *dev = &qm->pdev->dev; 4510 u64 mb_cmd; 4511 u32 qos; 4512 int ret; 4513 4514 qos = qm_get_shaper_vft_qos(qm, fun_num); 4515 if (!qos) { 4516 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 4517 return; 4518 } 4519 4520 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 4521 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 4522 if (ret) 4523 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 4524 } 4525 4526 static int qm_vf_read_qos(struct hisi_qm *qm) 4527 { 4528 int cnt = 0; 4529 int ret = -EINVAL; 4530 4531 /* reset mailbox qos val */ 4532 qm->mb_qos = 0; 4533 4534 /* vf ping pf to get function qos */ 4535 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 4536 if (ret) { 4537 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 4538 return ret; 4539 } 4540 4541 while (true) { 4542 msleep(QM_WAIT_DST_ACK); 4543 if (qm->mb_qos) 4544 break; 4545 4546 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 4547 pci_err(qm->pdev, "PF ping VF timeout!\n"); 4548 return -ETIMEDOUT; 4549 } 4550 } 4551 4552 return ret; 4553 } 4554 4555 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 4556 size_t count, loff_t *pos) 4557 { 4558 struct hisi_qm *qm = filp->private_data; 4559 char tbuf[QM_DBG_READ_LEN]; 4560 u32 qos_val, ir; 4561 int ret; 4562 4563 ret = hisi_qm_get_dfx_access(qm); 4564 if (ret) 4565 return ret; 4566 4567 /* Mailbox and reset cannot be operated at the same time */ 4568 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 4569 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 4570 ret = -EAGAIN; 4571 goto err_put_dfx_access; 4572 } 4573 4574 if (qm->fun_type == QM_HW_PF) { 4575 ir = qm_get_shaper_vft_qos(qm, 0); 4576 } else { 4577 ret = qm_vf_read_qos(qm); 4578 if (ret) 4579 goto err_get_status; 4580 ir = qm->mb_qos; 4581 } 4582 4583 qos_val = ir / QM_QOS_RATE; 4584 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 4585 4586 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 4587 4588 err_get_status: 4589 clear_bit(QM_RESETTING, &qm->misc_ctl); 4590 err_put_dfx_access: 4591 hisi_qm_put_dfx_access(qm); 4592 return ret; 4593 } 4594 4595 static ssize_t qm_qos_value_init(const char *buf, unsigned long *val) 4596 { 4597 int buflen = strlen(buf); 4598 int ret, i; 4599 4600 for (i = 0; i < buflen; i++) { 4601 if (!isdigit(buf[i])) 4602 return -EINVAL; 4603 } 4604 4605 ret = sscanf(buf, "%lu", val); 4606 if (ret != QM_QOS_VAL_NUM) 4607 return -EINVAL; 4608 4609 return 0; 4610 } 4611 4612 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 4613 unsigned long *val, 4614 unsigned int *fun_index) 4615 { 4616 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 4617 char val_buf[QM_QOS_VAL_MAX_LEN] = {0}; 4618 u32 tmp1, device, function; 4619 int ret, bus; 4620 4621 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 4622 if (ret != QM_QOS_PARAM_NUM) 4623 return -EINVAL; 4624 4625 ret = qm_qos_value_init(val_buf, val); 4626 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 4627 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 4628 return -EINVAL; 4629 } 4630 4631 ret = sscanf(tbuf_bdf, "%u:%x:%u.%u", &tmp1, &bus, &device, &function); 4632 if (ret != QM_QOS_BDF_PARAM_NUM) { 4633 pci_err(qm->pdev, "input pci bdf value is error!\n"); 4634 return -EINVAL; 4635 } 4636 4637 *fun_index = PCI_DEVFN(device, function); 4638 4639 return 0; 4640 } 4641 4642 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 4643 size_t count, loff_t *pos) 4644 { 4645 struct hisi_qm *qm = filp->private_data; 4646 char tbuf[QM_DBG_READ_LEN]; 4647 unsigned int fun_index; 4648 unsigned long val; 4649 int len, ret; 4650 4651 if (qm->fun_type == QM_HW_VF) 4652 return -EINVAL; 4653 4654 if (*pos != 0) 4655 return 0; 4656 4657 if (count >= QM_DBG_READ_LEN) 4658 return -ENOSPC; 4659 4660 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 4661 if (len < 0) 4662 return len; 4663 4664 tbuf[len] = '\0'; 4665 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 4666 if (ret) 4667 return ret; 4668 4669 /* Mailbox and reset cannot be operated at the same time */ 4670 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 4671 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 4672 return -EAGAIN; 4673 } 4674 4675 ret = qm_pm_get_sync(qm); 4676 if (ret) { 4677 ret = -EINVAL; 4678 goto err_get_status; 4679 } 4680 4681 ret = qm_func_shaper_enable(qm, fun_index, val); 4682 if (ret) { 4683 pci_err(qm->pdev, "failed to enable function shaper!\n"); 4684 ret = -EINVAL; 4685 goto err_put_sync; 4686 } 4687 4688 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 4689 fun_index, val); 4690 ret = count; 4691 4692 err_put_sync: 4693 qm_pm_put_sync(qm); 4694 err_get_status: 4695 clear_bit(QM_RESETTING, &qm->misc_ctl); 4696 return ret; 4697 } 4698 4699 static const struct file_operations qm_algqos_fops = { 4700 .owner = THIS_MODULE, 4701 .open = simple_open, 4702 .read = qm_algqos_read, 4703 .write = qm_algqos_write, 4704 }; 4705 4706 /** 4707 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 4708 * @qm: The qm for which we want to add debugfs files. 4709 * 4710 * Create function qos debugfs files, VF ping PF to get function qos. 4711 */ 4712 static void hisi_qm_set_algqos_init(struct hisi_qm *qm) 4713 { 4714 if (qm->fun_type == QM_HW_PF) 4715 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 4716 qm, &qm_algqos_fops); 4717 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 4718 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 4719 qm, &qm_algqos_fops); 4720 } 4721 4722 /** 4723 * hisi_qm_debug_init() - Initialize qm related debugfs files. 4724 * @qm: The qm for which we want to add debugfs files. 4725 * 4726 * Create qm related debugfs files. 4727 */ 4728 void hisi_qm_debug_init(struct hisi_qm *qm) 4729 { 4730 struct dfx_diff_registers *qm_regs = qm->debug.qm_diff_regs; 4731 struct qm_dfx *dfx = &qm->debug.dfx; 4732 struct dentry *qm_d; 4733 void *data; 4734 int i; 4735 4736 qm_d = debugfs_create_dir("qm", qm->debug.debug_root); 4737 qm->debug.qm_d = qm_d; 4738 4739 /* only show this in PF */ 4740 if (qm->fun_type == QM_HW_PF) { 4741 qm_create_debugfs_file(qm, qm->debug.debug_root, CURRENT_QM); 4742 for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++) 4743 qm_create_debugfs_file(qm, qm->debug.qm_d, i); 4744 } 4745 4746 if (qm_regs) 4747 debugfs_create_file("diff_regs", 0444, qm->debug.qm_d, 4748 qm, &qm_diff_regs_fops); 4749 4750 debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops); 4751 4752 debugfs_create_file("cmd", 0600, qm->debug.qm_d, qm, &qm_cmd_fops); 4753 4754 debugfs_create_file("status", 0444, qm->debug.qm_d, qm, 4755 &qm_status_fops); 4756 for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) { 4757 data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset); 4758 debugfs_create_file(qm_dfx_files[i].name, 4759 0644, 4760 qm_d, 4761 data, 4762 &qm_atomic64_ops); 4763 } 4764 4765 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 4766 hisi_qm_set_algqos_init(qm); 4767 } 4768 EXPORT_SYMBOL_GPL(hisi_qm_debug_init); 4769 4770 /** 4771 * hisi_qm_debug_regs_clear() - clear qm debug related registers. 4772 * @qm: The qm for which we want to clear its debug registers. 4773 */ 4774 void hisi_qm_debug_regs_clear(struct hisi_qm *qm) 4775 { 4776 const struct debugfs_reg32 *regs; 4777 int i; 4778 4779 /* clear current_qm */ 4780 writel(0x0, qm->io_base + QM_DFX_MB_CNT_VF); 4781 writel(0x0, qm->io_base + QM_DFX_DB_CNT_VF); 4782 4783 /* clear current_q */ 4784 writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 4785 writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 4786 4787 /* 4788 * these registers are reading and clearing, so clear them after 4789 * reading them. 4790 */ 4791 writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE); 4792 4793 regs = qm_dfx_regs; 4794 for (i = 0; i < CNT_CYC_REGS_NUM; i++) { 4795 readl(qm->io_base + regs->offset); 4796 regs++; 4797 } 4798 4799 /* clear clear_enable */ 4800 writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE); 4801 } 4802 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear); 4803 4804 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 4805 { 4806 int i; 4807 4808 for (i = 1; i <= total_func; i++) 4809 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 4810 } 4811 4812 /** 4813 * hisi_qm_sriov_enable() - enable virtual functions 4814 * @pdev: the PCIe device 4815 * @max_vfs: the number of virtual functions to enable 4816 * 4817 * Returns the number of enabled VFs. If there are VFs enabled already or 4818 * max_vfs is more than the total number of device can be enabled, returns 4819 * failure. 4820 */ 4821 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 4822 { 4823 struct hisi_qm *qm = pci_get_drvdata(pdev); 4824 int pre_existing_vfs, num_vfs, total_vfs, ret; 4825 4826 ret = qm_pm_get_sync(qm); 4827 if (ret) 4828 return ret; 4829 4830 total_vfs = pci_sriov_get_totalvfs(pdev); 4831 pre_existing_vfs = pci_num_vf(pdev); 4832 if (pre_existing_vfs) { 4833 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 4834 pre_existing_vfs); 4835 goto err_put_sync; 4836 } 4837 4838 if (max_vfs > total_vfs) { 4839 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 4840 ret = -ERANGE; 4841 goto err_put_sync; 4842 } 4843 4844 num_vfs = max_vfs; 4845 4846 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 4847 hisi_qm_init_vf_qos(qm, num_vfs); 4848 4849 ret = qm_vf_q_assign(qm, num_vfs); 4850 if (ret) { 4851 pci_err(pdev, "Can't assign queues for VF!\n"); 4852 goto err_put_sync; 4853 } 4854 4855 qm->vfs_num = num_vfs; 4856 4857 ret = pci_enable_sriov(pdev, num_vfs); 4858 if (ret) { 4859 pci_err(pdev, "Can't enable VF!\n"); 4860 qm_clear_vft_config(qm); 4861 goto err_put_sync; 4862 } 4863 4864 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 4865 4866 return num_vfs; 4867 4868 err_put_sync: 4869 qm_pm_put_sync(qm); 4870 return ret; 4871 } 4872 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 4873 4874 /** 4875 * hisi_qm_sriov_disable - disable virtual functions 4876 * @pdev: the PCI device. 4877 * @is_frozen: true when all the VFs are frozen. 4878 * 4879 * Return failure if there are VFs assigned already or VF is in used. 4880 */ 4881 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 4882 { 4883 struct hisi_qm *qm = pci_get_drvdata(pdev); 4884 int ret; 4885 4886 if (pci_vfs_assigned(pdev)) { 4887 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 4888 return -EPERM; 4889 } 4890 4891 /* While VF is in used, SRIOV cannot be disabled. */ 4892 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 4893 pci_err(pdev, "Task is using its VF!\n"); 4894 return -EBUSY; 4895 } 4896 4897 pci_disable_sriov(pdev); 4898 4899 ret = qm_clear_vft_config(qm); 4900 if (ret) 4901 return ret; 4902 4903 qm_pm_put_sync(qm); 4904 4905 return 0; 4906 } 4907 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 4908 4909 /** 4910 * hisi_qm_sriov_configure - configure the number of VFs 4911 * @pdev: The PCI device 4912 * @num_vfs: The number of VFs need enabled 4913 * 4914 * Enable SR-IOV according to num_vfs, 0 means disable. 4915 */ 4916 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 4917 { 4918 if (num_vfs == 0) 4919 return hisi_qm_sriov_disable(pdev, false); 4920 else 4921 return hisi_qm_sriov_enable(pdev, num_vfs); 4922 } 4923 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 4924 4925 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 4926 { 4927 u32 err_sts; 4928 4929 if (!qm->err_ini->get_dev_hw_err_status) { 4930 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 4931 return ACC_ERR_NONE; 4932 } 4933 4934 /* get device hardware error status */ 4935 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 4936 if (err_sts) { 4937 if (err_sts & qm->err_info.ecc_2bits_mask) 4938 qm->err_status.is_dev_ecc_mbit = true; 4939 4940 if (qm->err_ini->log_dev_hw_err) 4941 qm->err_ini->log_dev_hw_err(qm, err_sts); 4942 4943 if (err_sts & qm->err_info.dev_reset_mask) 4944 return ACC_ERR_NEED_RESET; 4945 4946 if (qm->err_ini->clear_dev_hw_err_status) 4947 qm->err_ini->clear_dev_hw_err_status(qm, err_sts); 4948 } 4949 4950 return ACC_ERR_RECOVERED; 4951 } 4952 4953 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 4954 { 4955 enum acc_err_result qm_ret, dev_ret; 4956 4957 /* log qm error */ 4958 qm_ret = qm_hw_error_handle(qm); 4959 4960 /* log device error */ 4961 dev_ret = qm_dev_err_handle(qm); 4962 4963 return (qm_ret == ACC_ERR_NEED_RESET || 4964 dev_ret == ACC_ERR_NEED_RESET) ? 4965 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 4966 } 4967 4968 /** 4969 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 4970 * @pdev: The PCI device which need report error. 4971 * @state: The connectivity between CPU and device. 4972 * 4973 * We register this function into PCIe AER handlers, It will report device or 4974 * qm hardware error status when error occur. 4975 */ 4976 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 4977 pci_channel_state_t state) 4978 { 4979 struct hisi_qm *qm = pci_get_drvdata(pdev); 4980 enum acc_err_result ret; 4981 4982 if (pdev->is_virtfn) 4983 return PCI_ERS_RESULT_NONE; 4984 4985 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 4986 if (state == pci_channel_io_perm_failure) 4987 return PCI_ERS_RESULT_DISCONNECT; 4988 4989 ret = qm_process_dev_error(qm); 4990 if (ret == ACC_ERR_NEED_RESET) 4991 return PCI_ERS_RESULT_NEED_RESET; 4992 4993 return PCI_ERS_RESULT_RECOVERED; 4994 } 4995 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 4996 4997 static int qm_check_req_recv(struct hisi_qm *qm) 4998 { 4999 struct pci_dev *pdev = qm->pdev; 5000 int ret; 5001 u32 val; 5002 5003 if (qm->ver >= QM_HW_V3) 5004 return 0; 5005 5006 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 5007 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 5008 (val == ACC_VENDOR_ID_VALUE), 5009 POLL_PERIOD, POLL_TIMEOUT); 5010 if (ret) { 5011 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 5012 return ret; 5013 } 5014 5015 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 5016 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 5017 (val == PCI_VENDOR_ID_HUAWEI), 5018 POLL_PERIOD, POLL_TIMEOUT); 5019 if (ret) 5020 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 5021 5022 return ret; 5023 } 5024 5025 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 5026 { 5027 struct pci_dev *pdev = qm->pdev; 5028 u16 cmd; 5029 int i; 5030 5031 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 5032 if (set) 5033 cmd |= PCI_COMMAND_MEMORY; 5034 else 5035 cmd &= ~PCI_COMMAND_MEMORY; 5036 5037 pci_write_config_word(pdev, PCI_COMMAND, cmd); 5038 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 5039 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 5040 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 5041 return 0; 5042 5043 udelay(1); 5044 } 5045 5046 return -ETIMEDOUT; 5047 } 5048 5049 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 5050 { 5051 struct pci_dev *pdev = qm->pdev; 5052 u16 sriov_ctrl; 5053 int pos; 5054 int i; 5055 5056 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 5057 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 5058 if (set) 5059 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 5060 else 5061 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 5062 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 5063 5064 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 5065 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 5066 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 5067 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 5068 return 0; 5069 5070 udelay(1); 5071 } 5072 5073 return -ETIMEDOUT; 5074 } 5075 5076 static int qm_vf_reset_prepare(struct hisi_qm *qm, 5077 enum qm_stop_reason stop_reason) 5078 { 5079 struct hisi_qm_list *qm_list = qm->qm_list; 5080 struct pci_dev *pdev = qm->pdev; 5081 struct pci_dev *virtfn; 5082 struct hisi_qm *vf_qm; 5083 int ret = 0; 5084 5085 mutex_lock(&qm_list->lock); 5086 list_for_each_entry(vf_qm, &qm_list->list, list) { 5087 virtfn = vf_qm->pdev; 5088 if (virtfn == pdev) 5089 continue; 5090 5091 if (pci_physfn(virtfn) == pdev) { 5092 /* save VFs PCIE BAR configuration */ 5093 pci_save_state(virtfn); 5094 5095 ret = hisi_qm_stop(vf_qm, stop_reason); 5096 if (ret) 5097 goto stop_fail; 5098 } 5099 } 5100 5101 stop_fail: 5102 mutex_unlock(&qm_list->lock); 5103 return ret; 5104 } 5105 5106 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 5107 enum qm_stop_reason stop_reason) 5108 { 5109 struct pci_dev *pdev = qm->pdev; 5110 int ret; 5111 5112 if (!qm->vfs_num) 5113 return 0; 5114 5115 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 5116 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 5117 ret = qm_ping_all_vfs(qm, cmd); 5118 if (ret) 5119 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 5120 } else { 5121 ret = qm_vf_reset_prepare(qm, stop_reason); 5122 if (ret) 5123 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 5124 } 5125 5126 return ret; 5127 } 5128 5129 static int qm_controller_reset_prepare(struct hisi_qm *qm) 5130 { 5131 struct pci_dev *pdev = qm->pdev; 5132 int ret; 5133 5134 ret = qm_reset_prepare_ready(qm); 5135 if (ret) { 5136 pci_err(pdev, "Controller reset not ready!\n"); 5137 return ret; 5138 } 5139 5140 /* PF obtains the information of VF by querying the register. */ 5141 qm_cmd_uninit(qm); 5142 5143 /* Whether VFs stop successfully, soft reset will continue. */ 5144 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 5145 if (ret) 5146 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 5147 5148 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 5149 if (ret) { 5150 pci_err(pdev, "Fails to stop QM!\n"); 5151 qm_reset_bit_clear(qm); 5152 return ret; 5153 } 5154 5155 ret = qm_wait_vf_prepare_finish(qm); 5156 if (ret) 5157 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 5158 5159 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 5160 5161 return 0; 5162 } 5163 5164 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 5165 { 5166 u32 nfe_enb = 0; 5167 5168 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 5169 if (qm->ver >= QM_HW_V3) 5170 return; 5171 5172 if (!qm->err_status.is_dev_ecc_mbit && 5173 qm->err_status.is_qm_ecc_mbit && 5174 qm->err_ini->close_axi_master_ooo) { 5175 5176 qm->err_ini->close_axi_master_ooo(qm); 5177 5178 } else if (qm->err_status.is_dev_ecc_mbit && 5179 !qm->err_status.is_qm_ecc_mbit && 5180 !qm->err_ini->close_axi_master_ooo) { 5181 5182 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 5183 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 5184 qm->io_base + QM_RAS_NFE_ENABLE); 5185 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 5186 } 5187 } 5188 5189 static int qm_soft_reset(struct hisi_qm *qm) 5190 { 5191 struct pci_dev *pdev = qm->pdev; 5192 int ret; 5193 u32 val; 5194 5195 /* Ensure all doorbells and mailboxes received by QM */ 5196 ret = qm_check_req_recv(qm); 5197 if (ret) 5198 return ret; 5199 5200 if (qm->vfs_num) { 5201 ret = qm_set_vf_mse(qm, false); 5202 if (ret) { 5203 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 5204 return ret; 5205 } 5206 } 5207 5208 ret = qm->ops->set_msi(qm, false); 5209 if (ret) { 5210 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 5211 return ret; 5212 } 5213 5214 qm_dev_ecc_mbit_handle(qm); 5215 5216 /* OOO register set and check */ 5217 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 5218 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5219 5220 /* If bus lock, reset chip */ 5221 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 5222 val, 5223 (val == ACC_MASTER_TRANS_RETURN_RW), 5224 POLL_PERIOD, POLL_TIMEOUT); 5225 if (ret) { 5226 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 5227 return ret; 5228 } 5229 5230 if (qm->err_ini->close_sva_prefetch) 5231 qm->err_ini->close_sva_prefetch(qm); 5232 5233 ret = qm_set_pf_mse(qm, false); 5234 if (ret) { 5235 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 5236 return ret; 5237 } 5238 5239 /* The reset related sub-control registers are not in PCI BAR */ 5240 if (ACPI_HANDLE(&pdev->dev)) { 5241 unsigned long long value = 0; 5242 acpi_status s; 5243 5244 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 5245 qm->err_info.acpi_rst, 5246 NULL, &value); 5247 if (ACPI_FAILURE(s)) { 5248 pci_err(pdev, "NO controller reset method!\n"); 5249 return -EIO; 5250 } 5251 5252 if (value) { 5253 pci_err(pdev, "Reset step %llu failed!\n", value); 5254 return -EIO; 5255 } 5256 } else { 5257 pci_err(pdev, "No reset method!\n"); 5258 return -EINVAL; 5259 } 5260 5261 return 0; 5262 } 5263 5264 static int qm_vf_reset_done(struct hisi_qm *qm) 5265 { 5266 struct hisi_qm_list *qm_list = qm->qm_list; 5267 struct pci_dev *pdev = qm->pdev; 5268 struct pci_dev *virtfn; 5269 struct hisi_qm *vf_qm; 5270 int ret = 0; 5271 5272 mutex_lock(&qm_list->lock); 5273 list_for_each_entry(vf_qm, &qm_list->list, list) { 5274 virtfn = vf_qm->pdev; 5275 if (virtfn == pdev) 5276 continue; 5277 5278 if (pci_physfn(virtfn) == pdev) { 5279 /* enable VFs PCIE BAR configuration */ 5280 pci_restore_state(virtfn); 5281 5282 ret = qm_restart(vf_qm); 5283 if (ret) 5284 goto restart_fail; 5285 } 5286 } 5287 5288 restart_fail: 5289 mutex_unlock(&qm_list->lock); 5290 return ret; 5291 } 5292 5293 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 5294 { 5295 struct pci_dev *pdev = qm->pdev; 5296 int ret; 5297 5298 if (!qm->vfs_num) 5299 return 0; 5300 5301 ret = qm_vf_q_assign(qm, qm->vfs_num); 5302 if (ret) { 5303 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 5304 return ret; 5305 } 5306 5307 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 5308 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 5309 ret = qm_ping_all_vfs(qm, cmd); 5310 if (ret) 5311 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 5312 } else { 5313 ret = qm_vf_reset_done(qm); 5314 if (ret) 5315 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 5316 } 5317 5318 return ret; 5319 } 5320 5321 static int qm_dev_hw_init(struct hisi_qm *qm) 5322 { 5323 return qm->err_ini->hw_init(qm); 5324 } 5325 5326 static void qm_restart_prepare(struct hisi_qm *qm) 5327 { 5328 u32 value; 5329 5330 if (qm->err_ini->open_sva_prefetch) 5331 qm->err_ini->open_sva_prefetch(qm); 5332 5333 if (qm->ver >= QM_HW_V3) 5334 return; 5335 5336 if (!qm->err_status.is_qm_ecc_mbit && 5337 !qm->err_status.is_dev_ecc_mbit) 5338 return; 5339 5340 /* temporarily close the OOO port used for PEH to write out MSI */ 5341 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 5342 writel(value & ~qm->err_info.msi_wr_port, 5343 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 5344 5345 /* clear dev ecc 2bit error source if having */ 5346 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 5347 if (value && qm->err_ini->clear_dev_hw_err_status) 5348 qm->err_ini->clear_dev_hw_err_status(qm, value); 5349 5350 /* clear QM ecc mbit error source */ 5351 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 5352 5353 /* clear AM Reorder Buffer ecc mbit source */ 5354 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 5355 } 5356 5357 static void qm_restart_done(struct hisi_qm *qm) 5358 { 5359 u32 value; 5360 5361 if (qm->ver >= QM_HW_V3) 5362 goto clear_flags; 5363 5364 if (!qm->err_status.is_qm_ecc_mbit && 5365 !qm->err_status.is_dev_ecc_mbit) 5366 return; 5367 5368 /* open the OOO port for PEH to write out MSI */ 5369 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 5370 value |= qm->err_info.msi_wr_port; 5371 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 5372 5373 clear_flags: 5374 qm->err_status.is_qm_ecc_mbit = false; 5375 qm->err_status.is_dev_ecc_mbit = false; 5376 } 5377 5378 static int qm_controller_reset_done(struct hisi_qm *qm) 5379 { 5380 struct pci_dev *pdev = qm->pdev; 5381 int ret; 5382 5383 ret = qm->ops->set_msi(qm, true); 5384 if (ret) { 5385 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 5386 return ret; 5387 } 5388 5389 ret = qm_set_pf_mse(qm, true); 5390 if (ret) { 5391 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 5392 return ret; 5393 } 5394 5395 if (qm->vfs_num) { 5396 ret = qm_set_vf_mse(qm, true); 5397 if (ret) { 5398 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 5399 return ret; 5400 } 5401 } 5402 5403 ret = qm_dev_hw_init(qm); 5404 if (ret) { 5405 pci_err(pdev, "Failed to init device\n"); 5406 return ret; 5407 } 5408 5409 qm_restart_prepare(qm); 5410 hisi_qm_dev_err_init(qm); 5411 if (qm->err_ini->open_axi_master_ooo) 5412 qm->err_ini->open_axi_master_ooo(qm); 5413 5414 ret = qm_dev_mem_reset(qm); 5415 if (ret) { 5416 pci_err(pdev, "failed to reset device memory\n"); 5417 return ret; 5418 } 5419 5420 ret = qm_restart(qm); 5421 if (ret) { 5422 pci_err(pdev, "Failed to start QM!\n"); 5423 return ret; 5424 } 5425 5426 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 5427 if (ret) 5428 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 5429 5430 ret = qm_wait_vf_prepare_finish(qm); 5431 if (ret) 5432 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 5433 5434 qm_cmd_init(qm); 5435 qm_restart_done(qm); 5436 5437 qm_reset_bit_clear(qm); 5438 5439 return 0; 5440 } 5441 5442 static void qm_show_last_dfx_regs(struct hisi_qm *qm) 5443 { 5444 struct qm_debug *debug = &qm->debug; 5445 struct pci_dev *pdev = qm->pdev; 5446 u32 val; 5447 int i; 5448 5449 if (qm->fun_type == QM_HW_VF || !debug->qm_last_words) 5450 return; 5451 5452 for (i = 0; i < ARRAY_SIZE(qm_dfx_regs); i++) { 5453 val = readl_relaxed(qm->io_base + qm_dfx_regs[i].offset); 5454 if (debug->qm_last_words[i] != val) 5455 pci_info(pdev, "%s \t= 0x%08x => 0x%08x\n", 5456 qm_dfx_regs[i].name, debug->qm_last_words[i], val); 5457 } 5458 } 5459 5460 static int qm_controller_reset(struct hisi_qm *qm) 5461 { 5462 struct pci_dev *pdev = qm->pdev; 5463 int ret; 5464 5465 pci_info(pdev, "Controller resetting...\n"); 5466 5467 ret = qm_controller_reset_prepare(qm); 5468 if (ret) { 5469 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 5470 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 5471 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 5472 return ret; 5473 } 5474 5475 qm_show_last_dfx_regs(qm); 5476 if (qm->err_ini->show_last_dfx_regs) 5477 qm->err_ini->show_last_dfx_regs(qm); 5478 5479 ret = qm_soft_reset(qm); 5480 if (ret) { 5481 pci_err(pdev, "Controller reset failed (%d)\n", ret); 5482 qm_reset_bit_clear(qm); 5483 return ret; 5484 } 5485 5486 ret = qm_controller_reset_done(qm); 5487 if (ret) { 5488 qm_reset_bit_clear(qm); 5489 return ret; 5490 } 5491 5492 pci_info(pdev, "Controller reset complete\n"); 5493 5494 return 0; 5495 } 5496 5497 /** 5498 * hisi_qm_dev_slot_reset() - slot reset 5499 * @pdev: the PCIe device 5500 * 5501 * This function offers QM relate PCIe device reset interface. Drivers which 5502 * use QM can use this function as slot_reset in its struct pci_error_handlers. 5503 */ 5504 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 5505 { 5506 struct hisi_qm *qm = pci_get_drvdata(pdev); 5507 int ret; 5508 5509 if (pdev->is_virtfn) 5510 return PCI_ERS_RESULT_RECOVERED; 5511 5512 /* reset pcie device controller */ 5513 ret = qm_controller_reset(qm); 5514 if (ret) { 5515 pci_err(pdev, "Controller reset failed (%d)\n", ret); 5516 return PCI_ERS_RESULT_DISCONNECT; 5517 } 5518 5519 return PCI_ERS_RESULT_RECOVERED; 5520 } 5521 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 5522 5523 void hisi_qm_reset_prepare(struct pci_dev *pdev) 5524 { 5525 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 5526 struct hisi_qm *qm = pci_get_drvdata(pdev); 5527 u32 delay = 0; 5528 int ret; 5529 5530 hisi_qm_dev_err_uninit(pf_qm); 5531 5532 /* 5533 * Check whether there is an ECC mbit error, If it occurs, need to 5534 * wait for soft reset to fix it. 5535 */ 5536 while (qm_check_dev_error(pf_qm)) { 5537 msleep(++delay); 5538 if (delay > QM_RESET_WAIT_TIMEOUT) 5539 return; 5540 } 5541 5542 ret = qm_reset_prepare_ready(qm); 5543 if (ret) { 5544 pci_err(pdev, "FLR not ready!\n"); 5545 return; 5546 } 5547 5548 /* PF obtains the information of VF by querying the register. */ 5549 if (qm->fun_type == QM_HW_PF) 5550 qm_cmd_uninit(qm); 5551 5552 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR); 5553 if (ret) 5554 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 5555 5556 ret = hisi_qm_stop(qm, QM_FLR); 5557 if (ret) { 5558 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 5559 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 5560 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 5561 return; 5562 } 5563 5564 ret = qm_wait_vf_prepare_finish(qm); 5565 if (ret) 5566 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 5567 5568 pci_info(pdev, "FLR resetting...\n"); 5569 } 5570 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 5571 5572 static bool qm_flr_reset_complete(struct pci_dev *pdev) 5573 { 5574 struct pci_dev *pf_pdev = pci_physfn(pdev); 5575 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 5576 u32 id; 5577 5578 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 5579 if (id == QM_PCI_COMMAND_INVALID) { 5580 pci_err(pdev, "Device can not be used!\n"); 5581 return false; 5582 } 5583 5584 return true; 5585 } 5586 5587 void hisi_qm_reset_done(struct pci_dev *pdev) 5588 { 5589 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 5590 struct hisi_qm *qm = pci_get_drvdata(pdev); 5591 int ret; 5592 5593 if (qm->fun_type == QM_HW_PF) { 5594 ret = qm_dev_hw_init(qm); 5595 if (ret) { 5596 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 5597 goto flr_done; 5598 } 5599 } 5600 5601 hisi_qm_dev_err_init(pf_qm); 5602 5603 ret = qm_restart(qm); 5604 if (ret) { 5605 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 5606 goto flr_done; 5607 } 5608 5609 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 5610 if (ret) 5611 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 5612 5613 ret = qm_wait_vf_prepare_finish(qm); 5614 if (ret) 5615 pci_err(pdev, "failed to start by vfs in FLR!\n"); 5616 5617 flr_done: 5618 if (qm->fun_type == QM_HW_PF) 5619 qm_cmd_init(qm); 5620 5621 if (qm_flr_reset_complete(pdev)) 5622 pci_info(pdev, "FLR reset complete\n"); 5623 5624 qm_reset_bit_clear(qm); 5625 } 5626 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 5627 5628 static irqreturn_t qm_abnormal_irq(int irq, void *data) 5629 { 5630 struct hisi_qm *qm = data; 5631 enum acc_err_result ret; 5632 5633 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 5634 ret = qm_process_dev_error(qm); 5635 if (ret == ACC_ERR_NEED_RESET && 5636 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 5637 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 5638 schedule_work(&qm->rst_work); 5639 5640 return IRQ_HANDLED; 5641 } 5642 5643 5644 /** 5645 * hisi_qm_dev_shutdown() - Shutdown device. 5646 * @pdev: The device will be shutdown. 5647 * 5648 * This function will stop qm when OS shutdown or rebooting. 5649 */ 5650 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 5651 { 5652 struct hisi_qm *qm = pci_get_drvdata(pdev); 5653 int ret; 5654 5655 ret = hisi_qm_stop(qm, QM_NORMAL); 5656 if (ret) 5657 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 5658 } 5659 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 5660 5661 static void hisi_qm_controller_reset(struct work_struct *rst_work) 5662 { 5663 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 5664 int ret; 5665 5666 ret = qm_pm_get_sync(qm); 5667 if (ret) { 5668 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 5669 return; 5670 } 5671 5672 /* reset pcie device controller */ 5673 ret = qm_controller_reset(qm); 5674 if (ret) 5675 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 5676 5677 qm_pm_put_sync(qm); 5678 } 5679 5680 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 5681 enum qm_stop_reason stop_reason) 5682 { 5683 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 5684 struct pci_dev *pdev = qm->pdev; 5685 int ret; 5686 5687 ret = qm_reset_prepare_ready(qm); 5688 if (ret) { 5689 dev_err(&pdev->dev, "reset prepare not ready!\n"); 5690 atomic_set(&qm->status.flags, QM_STOP); 5691 cmd = QM_VF_PREPARE_FAIL; 5692 goto err_prepare; 5693 } 5694 5695 ret = hisi_qm_stop(qm, stop_reason); 5696 if (ret) { 5697 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 5698 atomic_set(&qm->status.flags, QM_STOP); 5699 cmd = QM_VF_PREPARE_FAIL; 5700 goto err_prepare; 5701 } else { 5702 goto out; 5703 } 5704 5705 err_prepare: 5706 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 5707 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 5708 out: 5709 pci_save_state(pdev); 5710 ret = qm_ping_pf(qm, cmd); 5711 if (ret) 5712 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 5713 } 5714 5715 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 5716 { 5717 enum qm_mb_cmd cmd = QM_VF_START_DONE; 5718 struct pci_dev *pdev = qm->pdev; 5719 int ret; 5720 5721 pci_restore_state(pdev); 5722 ret = hisi_qm_start(qm); 5723 if (ret) { 5724 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 5725 cmd = QM_VF_START_FAIL; 5726 } 5727 5728 ret = qm_ping_pf(qm, cmd); 5729 if (ret) 5730 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 5731 5732 qm_reset_bit_clear(qm); 5733 } 5734 5735 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 5736 { 5737 struct device *dev = &qm->pdev->dev; 5738 u32 val, cmd; 5739 u64 msg; 5740 int ret; 5741 5742 /* Wait for reset to finish */ 5743 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 5744 val == BIT(0), QM_VF_RESET_WAIT_US, 5745 QM_VF_RESET_WAIT_TIMEOUT_US); 5746 /* hardware completion status should be available by this time */ 5747 if (ret) { 5748 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 5749 return -ETIMEDOUT; 5750 } 5751 5752 /* 5753 * Whether message is got successfully, 5754 * VF needs to ack PF by clearing the interrupt. 5755 */ 5756 ret = qm_get_mb_cmd(qm, &msg, 0); 5757 qm_clear_cmd_interrupt(qm, 0); 5758 if (ret) { 5759 dev_err(dev, "failed to get msg from PF in reset done!\n"); 5760 return ret; 5761 } 5762 5763 cmd = msg & QM_MB_CMD_DATA_MASK; 5764 if (cmd != QM_PF_RESET_DONE) { 5765 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 5766 ret = -EINVAL; 5767 } 5768 5769 return ret; 5770 } 5771 5772 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 5773 enum qm_stop_reason stop_reason) 5774 { 5775 struct device *dev = &qm->pdev->dev; 5776 int ret; 5777 5778 dev_info(dev, "device reset start...\n"); 5779 5780 /* The message is obtained by querying the register during resetting */ 5781 qm_cmd_uninit(qm); 5782 qm_pf_reset_vf_prepare(qm, stop_reason); 5783 5784 ret = qm_wait_pf_reset_finish(qm); 5785 if (ret) 5786 goto err_get_status; 5787 5788 qm_pf_reset_vf_done(qm); 5789 qm_cmd_init(qm); 5790 5791 dev_info(dev, "device reset done.\n"); 5792 5793 return; 5794 5795 err_get_status: 5796 qm_cmd_init(qm); 5797 qm_reset_bit_clear(qm); 5798 } 5799 5800 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 5801 { 5802 struct device *dev = &qm->pdev->dev; 5803 u64 msg; 5804 u32 cmd; 5805 int ret; 5806 5807 /* 5808 * Get the msg from source by sending mailbox. Whether message is got 5809 * successfully, destination needs to ack source by clearing the interrupt. 5810 */ 5811 ret = qm_get_mb_cmd(qm, &msg, fun_num); 5812 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 5813 if (ret) { 5814 dev_err(dev, "failed to get msg from source!\n"); 5815 return; 5816 } 5817 5818 cmd = msg & QM_MB_CMD_DATA_MASK; 5819 switch (cmd) { 5820 case QM_PF_FLR_PREPARE: 5821 qm_pf_reset_vf_process(qm, QM_FLR); 5822 break; 5823 case QM_PF_SRST_PREPARE: 5824 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 5825 break; 5826 case QM_VF_GET_QOS: 5827 qm_vf_get_qos(qm, fun_num); 5828 break; 5829 case QM_PF_SET_QOS: 5830 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 5831 break; 5832 default: 5833 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 5834 break; 5835 } 5836 } 5837 5838 static void qm_cmd_process(struct work_struct *cmd_process) 5839 { 5840 struct hisi_qm *qm = container_of(cmd_process, 5841 struct hisi_qm, cmd_process); 5842 u32 vfs_num = qm->vfs_num; 5843 u64 val; 5844 u32 i; 5845 5846 if (qm->fun_type == QM_HW_PF) { 5847 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 5848 if (!val) 5849 return; 5850 5851 for (i = 1; i <= vfs_num; i++) { 5852 if (val & BIT(i)) 5853 qm_handle_cmd_msg(qm, i); 5854 } 5855 5856 return; 5857 } 5858 5859 qm_handle_cmd_msg(qm, 0); 5860 } 5861 5862 /** 5863 * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. 5864 * @qm: The qm needs add. 5865 * @qm_list: The qm list. 5866 * 5867 * This function adds qm to qm list, and will register algorithm to 5868 * crypto when the qm list is empty. 5869 */ 5870 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 5871 { 5872 struct device *dev = &qm->pdev->dev; 5873 int flag = 0; 5874 int ret = 0; 5875 5876 mutex_lock(&qm_list->lock); 5877 if (list_empty(&qm_list->list)) 5878 flag = 1; 5879 list_add_tail(&qm->list, &qm_list->list); 5880 mutex_unlock(&qm_list->lock); 5881 5882 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 5883 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 5884 return 0; 5885 } 5886 5887 if (flag) { 5888 ret = qm_list->register_to_crypto(qm); 5889 if (ret) { 5890 mutex_lock(&qm_list->lock); 5891 list_del(&qm->list); 5892 mutex_unlock(&qm_list->lock); 5893 } 5894 } 5895 5896 return ret; 5897 } 5898 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 5899 5900 /** 5901 * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from 5902 * qm list. 5903 * @qm: The qm needs delete. 5904 * @qm_list: The qm list. 5905 * 5906 * This function deletes qm from qm list, and will unregister algorithm 5907 * from crypto when the qm list is empty. 5908 */ 5909 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 5910 { 5911 mutex_lock(&qm_list->lock); 5912 list_del(&qm->list); 5913 mutex_unlock(&qm_list->lock); 5914 5915 if (qm->ver <= QM_HW_V2 && qm->use_sva) 5916 return; 5917 5918 if (list_empty(&qm_list->list)) 5919 qm_list->unregister_from_crypto(qm); 5920 } 5921 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 5922 5923 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 5924 { 5925 struct pci_dev *pdev = qm->pdev; 5926 u32 irq_vector, val; 5927 5928 if (qm->fun_type == QM_HW_VF) 5929 return; 5930 5931 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver); 5932 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 5933 return; 5934 5935 irq_vector = val & QM_IRQ_VECTOR_MASK; 5936 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5937 } 5938 5939 static int qm_register_abnormal_irq(struct hisi_qm *qm) 5940 { 5941 struct pci_dev *pdev = qm->pdev; 5942 u32 irq_vector, val; 5943 int ret; 5944 5945 if (qm->fun_type == QM_HW_VF) 5946 return 0; 5947 5948 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver); 5949 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 5950 return 0; 5951 5952 irq_vector = val & QM_IRQ_VECTOR_MASK; 5953 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 5954 if (ret) 5955 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); 5956 5957 return ret; 5958 } 5959 5960 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 5961 { 5962 struct pci_dev *pdev = qm->pdev; 5963 u32 irq_vector, val; 5964 5965 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver); 5966 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5967 return; 5968 5969 irq_vector = val & QM_IRQ_VECTOR_MASK; 5970 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5971 } 5972 5973 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 5974 { 5975 struct pci_dev *pdev = qm->pdev; 5976 u32 irq_vector, val; 5977 int ret; 5978 5979 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver); 5980 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5981 return 0; 5982 5983 irq_vector = val & QM_IRQ_VECTOR_MASK; 5984 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 5985 if (ret) 5986 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 5987 5988 return ret; 5989 } 5990 5991 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 5992 { 5993 struct pci_dev *pdev = qm->pdev; 5994 u32 irq_vector, val; 5995 5996 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver); 5997 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5998 return; 5999 6000 irq_vector = val & QM_IRQ_VECTOR_MASK; 6001 free_irq(pci_irq_vector(pdev, irq_vector), qm); 6002 } 6003 6004 static int qm_register_aeq_irq(struct hisi_qm *qm) 6005 { 6006 struct pci_dev *pdev = qm->pdev; 6007 u32 irq_vector, val; 6008 int ret; 6009 6010 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver); 6011 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 6012 return 0; 6013 6014 irq_vector = val & QM_IRQ_VECTOR_MASK; 6015 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), qm_aeq_irq, 6016 qm_aeq_thread, 0, qm->dev_name, qm); 6017 if (ret) 6018 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 6019 6020 return ret; 6021 } 6022 6023 static void qm_unregister_eq_irq(struct hisi_qm *qm) 6024 { 6025 struct pci_dev *pdev = qm->pdev; 6026 u32 irq_vector, val; 6027 6028 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver); 6029 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 6030 return; 6031 6032 irq_vector = val & QM_IRQ_VECTOR_MASK; 6033 free_irq(pci_irq_vector(pdev, irq_vector), qm); 6034 } 6035 6036 static int qm_register_eq_irq(struct hisi_qm *qm) 6037 { 6038 struct pci_dev *pdev = qm->pdev; 6039 u32 irq_vector, val; 6040 int ret; 6041 6042 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver); 6043 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 6044 return 0; 6045 6046 irq_vector = val & QM_IRQ_VECTOR_MASK; 6047 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_irq, 0, qm->dev_name, qm); 6048 if (ret) 6049 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 6050 6051 return ret; 6052 } 6053 6054 static void qm_irqs_unregister(struct hisi_qm *qm) 6055 { 6056 qm_unregister_mb_cmd_irq(qm); 6057 qm_unregister_abnormal_irq(qm); 6058 qm_unregister_aeq_irq(qm); 6059 qm_unregister_eq_irq(qm); 6060 } 6061 6062 static int qm_irqs_register(struct hisi_qm *qm) 6063 { 6064 int ret; 6065 6066 ret = qm_register_eq_irq(qm); 6067 if (ret) 6068 return ret; 6069 6070 ret = qm_register_aeq_irq(qm); 6071 if (ret) 6072 goto free_eq_irq; 6073 6074 ret = qm_register_abnormal_irq(qm); 6075 if (ret) 6076 goto free_aeq_irq; 6077 6078 ret = qm_register_mb_cmd_irq(qm); 6079 if (ret) 6080 goto free_abnormal_irq; 6081 6082 return 0; 6083 6084 free_abnormal_irq: 6085 qm_unregister_abnormal_irq(qm); 6086 free_aeq_irq: 6087 qm_unregister_aeq_irq(qm); 6088 free_eq_irq: 6089 qm_unregister_eq_irq(qm); 6090 return ret; 6091 } 6092 6093 static int qm_get_qp_num(struct hisi_qm *qm) 6094 { 6095 bool is_db_isolation; 6096 6097 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 6098 if (qm->fun_type == QM_HW_VF) { 6099 if (qm->ver != QM_HW_V1) 6100 /* v2 starts to support get vft by mailbox */ 6101 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 6102 6103 return 0; 6104 } 6105 6106 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 6107 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 6108 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 6109 QM_FUNC_MAX_QP_CAP, is_db_isolation); 6110 6111 /* check if qp number is valid */ 6112 if (qm->qp_num > qm->max_qp_num) { 6113 dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n", 6114 qm->qp_num, qm->max_qp_num); 6115 return -EINVAL; 6116 } 6117 6118 return 0; 6119 } 6120 6121 static void qm_get_hw_caps(struct hisi_qm *qm) 6122 { 6123 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 6124 qm_cap_info_pf : qm_cap_info_vf; 6125 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 6126 ARRAY_SIZE(qm_cap_info_vf); 6127 u32 val, i; 6128 6129 /* Doorbell isolate register is a independent register. */ 6130 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 6131 if (val) 6132 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 6133 6134 if (qm->ver >= QM_HW_V3) { 6135 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 6136 qm->cap_ver = val & QM_CAPBILITY_VERSION; 6137 } 6138 6139 /* Get PF/VF common capbility */ 6140 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 6141 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 6142 if (val) 6143 set_bit(qm_cap_info_comm[i].type, &qm->caps); 6144 } 6145 6146 /* Get PF/VF different capbility */ 6147 for (i = 0; i < size; i++) { 6148 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 6149 if (val) 6150 set_bit(cap_info[i].type, &qm->caps); 6151 } 6152 } 6153 6154 static int qm_get_pci_res(struct hisi_qm *qm) 6155 { 6156 struct pci_dev *pdev = qm->pdev; 6157 struct device *dev = &pdev->dev; 6158 int ret; 6159 6160 ret = pci_request_mem_regions(pdev, qm->dev_name); 6161 if (ret < 0) { 6162 dev_err(dev, "Failed to request mem regions!\n"); 6163 return ret; 6164 } 6165 6166 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 6167 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 6168 if (!qm->io_base) { 6169 ret = -EIO; 6170 goto err_request_mem_regions; 6171 } 6172 6173 qm_get_hw_caps(qm); 6174 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 6175 qm->db_interval = QM_QP_DB_INTERVAL; 6176 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 6177 qm->db_io_base = ioremap(qm->db_phys_base, 6178 pci_resource_len(pdev, PCI_BAR_4)); 6179 if (!qm->db_io_base) { 6180 ret = -EIO; 6181 goto err_ioremap; 6182 } 6183 } else { 6184 qm->db_phys_base = qm->phys_base; 6185 qm->db_io_base = qm->io_base; 6186 qm->db_interval = 0; 6187 } 6188 6189 ret = qm_get_qp_num(qm); 6190 if (ret) 6191 goto err_db_ioremap; 6192 6193 return 0; 6194 6195 err_db_ioremap: 6196 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 6197 iounmap(qm->db_io_base); 6198 err_ioremap: 6199 iounmap(qm->io_base); 6200 err_request_mem_regions: 6201 pci_release_mem_regions(pdev); 6202 return ret; 6203 } 6204 6205 static int hisi_qm_pci_init(struct hisi_qm *qm) 6206 { 6207 struct pci_dev *pdev = qm->pdev; 6208 struct device *dev = &pdev->dev; 6209 unsigned int num_vec; 6210 int ret; 6211 6212 ret = pci_enable_device_mem(pdev); 6213 if (ret < 0) { 6214 dev_err(dev, "Failed to enable device mem!\n"); 6215 return ret; 6216 } 6217 6218 ret = qm_get_pci_res(qm); 6219 if (ret) 6220 goto err_disable_pcidev; 6221 6222 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 6223 if (ret < 0) 6224 goto err_get_pci_res; 6225 pci_set_master(pdev); 6226 6227 num_vec = qm_get_irq_num(qm); 6228 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 6229 if (ret < 0) { 6230 dev_err(dev, "Failed to enable MSI vectors!\n"); 6231 goto err_get_pci_res; 6232 } 6233 6234 return 0; 6235 6236 err_get_pci_res: 6237 qm_put_pci_res(qm); 6238 err_disable_pcidev: 6239 pci_disable_device(pdev); 6240 return ret; 6241 } 6242 6243 static int hisi_qm_init_work(struct hisi_qm *qm) 6244 { 6245 int i; 6246 6247 for (i = 0; i < qm->qp_num; i++) 6248 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 6249 6250 if (qm->fun_type == QM_HW_PF) 6251 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 6252 6253 if (qm->ver > QM_HW_V2) 6254 INIT_WORK(&qm->cmd_process, qm_cmd_process); 6255 6256 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 6257 WQ_UNBOUND, num_online_cpus(), 6258 pci_name(qm->pdev)); 6259 if (!qm->wq) { 6260 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 6261 return -ENOMEM; 6262 } 6263 6264 return 0; 6265 } 6266 6267 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 6268 { 6269 struct device *dev = &qm->pdev->dev; 6270 u16 sq_depth, cq_depth; 6271 size_t qp_dma_size; 6272 int i, ret; 6273 6274 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 6275 if (!qm->qp_array) 6276 return -ENOMEM; 6277 6278 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 6279 if (!qm->poll_data) { 6280 kfree(qm->qp_array); 6281 return -ENOMEM; 6282 } 6283 6284 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 6285 6286 /* one more page for device or qp statuses */ 6287 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 6288 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 6289 for (i = 0; i < qm->qp_num; i++) { 6290 qm->poll_data[i].qm = qm; 6291 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 6292 if (ret) 6293 goto err_init_qp_mem; 6294 6295 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 6296 } 6297 6298 return 0; 6299 err_init_qp_mem: 6300 hisi_qp_memory_uninit(qm, i); 6301 6302 return ret; 6303 } 6304 6305 static int hisi_qm_memory_init(struct hisi_qm *qm) 6306 { 6307 struct device *dev = &qm->pdev->dev; 6308 int ret, total_func; 6309 size_t off = 0; 6310 6311 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 6312 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 6313 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 6314 if (!qm->factor) 6315 return -ENOMEM; 6316 6317 /* Only the PF value needs to be initialized */ 6318 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 6319 } 6320 6321 #define QM_INIT_BUF(qm, type, num) do { \ 6322 (qm)->type = ((qm)->qdma.va + (off)); \ 6323 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 6324 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 6325 } while (0) 6326 6327 idr_init(&qm->qp_idr); 6328 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 6329 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 6330 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 6331 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 6332 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 6333 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 6334 GFP_ATOMIC); 6335 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 6336 if (!qm->qdma.va) { 6337 ret = -ENOMEM; 6338 goto err_destroy_idr; 6339 } 6340 6341 QM_INIT_BUF(qm, eqe, qm->eq_depth); 6342 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 6343 QM_INIT_BUF(qm, sqc, qm->qp_num); 6344 QM_INIT_BUF(qm, cqc, qm->qp_num); 6345 6346 ret = hisi_qp_alloc_memory(qm); 6347 if (ret) 6348 goto err_alloc_qp_array; 6349 6350 return 0; 6351 6352 err_alloc_qp_array: 6353 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 6354 err_destroy_idr: 6355 idr_destroy(&qm->qp_idr); 6356 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 6357 kfree(qm->factor); 6358 6359 return ret; 6360 } 6361 6362 static void qm_last_regs_init(struct hisi_qm *qm) 6363 { 6364 int dfx_regs_num = ARRAY_SIZE(qm_dfx_regs); 6365 struct qm_debug *debug = &qm->debug; 6366 int i; 6367 6368 if (qm->fun_type == QM_HW_VF) 6369 return; 6370 6371 debug->qm_last_words = kcalloc(dfx_regs_num, sizeof(unsigned int), 6372 GFP_KERNEL); 6373 if (!debug->qm_last_words) 6374 return; 6375 6376 for (i = 0; i < dfx_regs_num; i++) { 6377 debug->qm_last_words[i] = readl_relaxed(qm->io_base + 6378 qm_dfx_regs[i].offset); 6379 } 6380 } 6381 6382 /** 6383 * hisi_qm_init() - Initialize configures about qm. 6384 * @qm: The qm needing init. 6385 * 6386 * This function init qm, then we can call hisi_qm_start to put qm into work. 6387 */ 6388 int hisi_qm_init(struct hisi_qm *qm) 6389 { 6390 struct pci_dev *pdev = qm->pdev; 6391 struct device *dev = &pdev->dev; 6392 int ret; 6393 6394 hisi_qm_pre_init(qm); 6395 6396 ret = hisi_qm_pci_init(qm); 6397 if (ret) 6398 return ret; 6399 6400 ret = qm_irqs_register(qm); 6401 if (ret) 6402 goto err_pci_init; 6403 6404 if (qm->fun_type == QM_HW_PF) { 6405 qm_disable_clock_gate(qm); 6406 ret = qm_dev_mem_reset(qm); 6407 if (ret) { 6408 dev_err(dev, "failed to reset device memory\n"); 6409 goto err_irq_register; 6410 } 6411 } 6412 6413 if (qm->mode == UACCE_MODE_SVA) { 6414 ret = qm_alloc_uacce(qm); 6415 if (ret < 0) 6416 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 6417 } 6418 6419 ret = hisi_qm_memory_init(qm); 6420 if (ret) 6421 goto err_alloc_uacce; 6422 6423 ret = hisi_qm_init_work(qm); 6424 if (ret) 6425 goto err_free_qm_memory; 6426 6427 qm_cmd_init(qm); 6428 atomic_set(&qm->status.flags, QM_INIT); 6429 6430 qm_last_regs_init(qm); 6431 6432 return 0; 6433 6434 err_free_qm_memory: 6435 hisi_qm_memory_uninit(qm); 6436 err_alloc_uacce: 6437 if (qm->use_sva) { 6438 uacce_remove(qm->uacce); 6439 qm->uacce = NULL; 6440 } 6441 err_irq_register: 6442 qm_irqs_unregister(qm); 6443 err_pci_init: 6444 hisi_qm_pci_uninit(qm); 6445 return ret; 6446 } 6447 EXPORT_SYMBOL_GPL(hisi_qm_init); 6448 6449 /** 6450 * hisi_qm_get_dfx_access() - Try to get dfx access. 6451 * @qm: pointer to accelerator device. 6452 * 6453 * Try to get dfx access, then user can get message. 6454 * 6455 * If device is in suspended, return failure, otherwise 6456 * bump up the runtime PM usage counter. 6457 */ 6458 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 6459 { 6460 struct device *dev = &qm->pdev->dev; 6461 6462 if (pm_runtime_suspended(dev)) { 6463 dev_info(dev, "can not read/write - device in suspended.\n"); 6464 return -EAGAIN; 6465 } 6466 6467 return qm_pm_get_sync(qm); 6468 } 6469 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 6470 6471 /** 6472 * hisi_qm_put_dfx_access() - Put dfx access. 6473 * @qm: pointer to accelerator device. 6474 * 6475 * Put dfx access, drop runtime PM usage counter. 6476 */ 6477 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 6478 { 6479 qm_pm_put_sync(qm); 6480 } 6481 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 6482 6483 /** 6484 * hisi_qm_pm_init() - Initialize qm runtime PM. 6485 * @qm: pointer to accelerator device. 6486 * 6487 * Function that initialize qm runtime PM. 6488 */ 6489 void hisi_qm_pm_init(struct hisi_qm *qm) 6490 { 6491 struct device *dev = &qm->pdev->dev; 6492 6493 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 6494 return; 6495 6496 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 6497 pm_runtime_use_autosuspend(dev); 6498 pm_runtime_put_noidle(dev); 6499 } 6500 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 6501 6502 /** 6503 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 6504 * @qm: pointer to accelerator device. 6505 * 6506 * Function that uninitialize qm runtime PM. 6507 */ 6508 void hisi_qm_pm_uninit(struct hisi_qm *qm) 6509 { 6510 struct device *dev = &qm->pdev->dev; 6511 6512 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 6513 return; 6514 6515 pm_runtime_get_noresume(dev); 6516 pm_runtime_dont_use_autosuspend(dev); 6517 } 6518 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 6519 6520 static int qm_prepare_for_suspend(struct hisi_qm *qm) 6521 { 6522 struct pci_dev *pdev = qm->pdev; 6523 int ret; 6524 u32 val; 6525 6526 ret = qm->ops->set_msi(qm, false); 6527 if (ret) { 6528 pci_err(pdev, "failed to disable MSI before suspending!\n"); 6529 return ret; 6530 } 6531 6532 /* shutdown OOO register */ 6533 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 6534 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 6535 6536 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 6537 val, 6538 (val == ACC_MASTER_TRANS_RETURN_RW), 6539 POLL_PERIOD, POLL_TIMEOUT); 6540 if (ret) { 6541 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 6542 return ret; 6543 } 6544 6545 ret = qm_set_pf_mse(qm, false); 6546 if (ret) 6547 pci_err(pdev, "failed to disable MSE before suspending!\n"); 6548 6549 return ret; 6550 } 6551 6552 static int qm_rebuild_for_resume(struct hisi_qm *qm) 6553 { 6554 struct pci_dev *pdev = qm->pdev; 6555 int ret; 6556 6557 ret = qm_set_pf_mse(qm, true); 6558 if (ret) { 6559 pci_err(pdev, "failed to enable MSE after resuming!\n"); 6560 return ret; 6561 } 6562 6563 ret = qm->ops->set_msi(qm, true); 6564 if (ret) { 6565 pci_err(pdev, "failed to enable MSI after resuming!\n"); 6566 return ret; 6567 } 6568 6569 ret = qm_dev_hw_init(qm); 6570 if (ret) { 6571 pci_err(pdev, "failed to init device after resuming\n"); 6572 return ret; 6573 } 6574 6575 qm_cmd_init(qm); 6576 hisi_qm_dev_err_init(qm); 6577 qm_disable_clock_gate(qm); 6578 ret = qm_dev_mem_reset(qm); 6579 if (ret) 6580 pci_err(pdev, "failed to reset device memory\n"); 6581 6582 return ret; 6583 } 6584 6585 /** 6586 * hisi_qm_suspend() - Runtime suspend of given device. 6587 * @dev: device to suspend. 6588 * 6589 * Function that suspend the device. 6590 */ 6591 int hisi_qm_suspend(struct device *dev) 6592 { 6593 struct pci_dev *pdev = to_pci_dev(dev); 6594 struct hisi_qm *qm = pci_get_drvdata(pdev); 6595 int ret; 6596 6597 pci_info(pdev, "entering suspended state\n"); 6598 6599 ret = hisi_qm_stop(qm, QM_NORMAL); 6600 if (ret) { 6601 pci_err(pdev, "failed to stop qm(%d)\n", ret); 6602 return ret; 6603 } 6604 6605 ret = qm_prepare_for_suspend(qm); 6606 if (ret) 6607 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 6608 6609 return ret; 6610 } 6611 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 6612 6613 /** 6614 * hisi_qm_resume() - Runtime resume of given device. 6615 * @dev: device to resume. 6616 * 6617 * Function that resume the device. 6618 */ 6619 int hisi_qm_resume(struct device *dev) 6620 { 6621 struct pci_dev *pdev = to_pci_dev(dev); 6622 struct hisi_qm *qm = pci_get_drvdata(pdev); 6623 int ret; 6624 6625 pci_info(pdev, "resuming from suspend state\n"); 6626 6627 ret = qm_rebuild_for_resume(qm); 6628 if (ret) { 6629 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 6630 return ret; 6631 } 6632 6633 ret = hisi_qm_start(qm); 6634 if (ret) 6635 pci_err(pdev, "failed to start qm(%d)\n", ret); 6636 6637 return ret; 6638 } 6639 EXPORT_SYMBOL_GPL(hisi_qm_resume); 6640 6641 MODULE_LICENSE("GPL v2"); 6642 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 6643 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 6644