1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/bitmap.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/idr.h> 8 #include <linux/io.h> 9 #include <linux/irqreturn.h> 10 #include <linux/log2.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/uacce.h> 15 #include <linux/uaccess.h> 16 #include <uapi/misc/uacce/hisi_qm.h> 17 #include <linux/hisi_acc_qm.h> 18 #include "qm_common.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 26 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 27 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_SHIFT 16 29 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 30 31 /* mailbox */ 32 #define QM_MB_PING_ALL_VFS 0xffff 33 #define QM_MB_CMD_DATA_SHIFT 32 34 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 35 #define QM_MB_STATUS_MASK GENMASK(12, 9) 36 37 /* sqc shift */ 38 #define QM_SQ_HOP_NUM_SHIFT 0 39 #define QM_SQ_PAGE_SIZE_SHIFT 4 40 #define QM_SQ_BUF_SIZE_SHIFT 8 41 #define QM_SQ_SQE_SIZE_SHIFT 12 42 #define QM_SQ_PRIORITY_SHIFT 0 43 #define QM_SQ_ORDERS_SHIFT 4 44 #define QM_SQ_TYPE_SHIFT 8 45 #define QM_QC_PASID_ENABLE 0x1 46 #define QM_QC_PASID_ENABLE_SHIFT 7 47 48 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 49 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) 50 51 /* cqc shift */ 52 #define QM_CQ_HOP_NUM_SHIFT 0 53 #define QM_CQ_PAGE_SIZE_SHIFT 4 54 #define QM_CQ_BUF_SIZE_SHIFT 8 55 #define QM_CQ_CQE_SIZE_SHIFT 12 56 #define QM_CQ_PHASE_SHIFT 0 57 #define QM_CQ_FLAG_SHIFT 1 58 59 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 60 #define QM_QC_CQE_SIZE 4 61 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) 62 63 /* eqc shift */ 64 #define QM_EQE_AEQE_SIZE (2UL << 12) 65 #define QM_EQC_PHASE_SHIFT 16 66 67 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 68 #define QM_EQE_CQN_MASK GENMASK(15, 0) 69 70 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 71 #define QM_AEQE_TYPE_SHIFT 17 72 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 73 #define QM_CQ_OVERFLOW 0 74 #define QM_EQ_OVERFLOW 1 75 #define QM_CQE_ERROR 2 76 77 #define QM_XQ_DEPTH_SHIFT 16 78 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 79 80 #define QM_DOORBELL_CMD_SQ 0 81 #define QM_DOORBELL_CMD_CQ 1 82 #define QM_DOORBELL_CMD_EQ 2 83 #define QM_DOORBELL_CMD_AEQ 3 84 85 #define QM_DOORBELL_BASE_V1 0x340 86 #define QM_DB_CMD_SHIFT_V1 16 87 #define QM_DB_INDEX_SHIFT_V1 32 88 #define QM_DB_PRIORITY_SHIFT_V1 48 89 #define QM_PAGE_SIZE 0x0034 90 #define QM_QP_DB_INTERVAL 0x10000 91 #define QM_DB_TIMEOUT_CFG 0x100074 92 #define QM_DB_TIMEOUT_SET 0x1fffff 93 94 #define QM_MEM_START_INIT 0x100040 95 #define QM_MEM_INIT_DONE 0x100044 96 #define QM_VFT_CFG_RDY 0x10006c 97 #define QM_VFT_CFG_OP_WR 0x100058 98 #define QM_VFT_CFG_TYPE 0x10005c 99 #define QM_VFT_CFG 0x100060 100 #define QM_VFT_CFG_OP_ENABLE 0x100054 101 #define QM_PM_CTRL 0x100148 102 #define QM_IDLE_DISABLE BIT(9) 103 104 #define QM_VFT_CFG_DATA_L 0x100064 105 #define QM_VFT_CFG_DATA_H 0x100068 106 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 107 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 108 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 109 #define QM_SQC_VFT_START_SQN_SHIFT 28 110 #define QM_SQC_VFT_VALID (1ULL << 44) 111 #define QM_SQC_VFT_SQN_SHIFT 45 112 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 113 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 114 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 115 #define QM_CQC_VFT_VALID (1ULL << 28) 116 117 #define QM_SQC_VFT_BASE_SHIFT_V2 28 118 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 119 #define QM_SQC_VFT_NUM_SHIFT_V2 45 120 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) 121 122 #define QM_ABNORMAL_INT_SOURCE 0x100000 123 #define QM_ABNORMAL_INT_MASK 0x100004 124 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 125 #define QM_ABNORMAL_INT_STATUS 0x100008 126 #define QM_ABNORMAL_INT_SET 0x10000c 127 #define QM_ABNORMAL_INF00 0x100010 128 #define QM_FIFO_OVERFLOW_TYPE 0xc0 129 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 130 #define QM_FIFO_OVERFLOW_VF 0x3f 131 #define QM_ABNORMAL_INF01 0x100014 132 #define QM_DB_TIMEOUT_TYPE 0xc0 133 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 134 #define QM_DB_TIMEOUT_VF 0x3f 135 #define QM_RAS_CE_ENABLE 0x1000ec 136 #define QM_RAS_FE_ENABLE 0x1000f0 137 #define QM_RAS_NFE_ENABLE 0x1000f4 138 #define QM_RAS_CE_THRESHOLD 0x1000f8 139 #define QM_RAS_CE_TIMES_PER_IRQ 1 140 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 141 #define QM_ECC_MBIT BIT(2) 142 #define QM_DB_TIMEOUT BIT(10) 143 #define QM_OF_FIFO_OF BIT(11) 144 145 #define QM_RESET_WAIT_TIMEOUT 400 146 #define QM_PEH_VENDOR_ID 0x1000d8 147 #define ACC_VENDOR_ID_VALUE 0x5a5a 148 #define QM_PEH_DFX_INFO0 0x1000fc 149 #define QM_PEH_DFX_INFO1 0x100100 150 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 151 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 152 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 153 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 154 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 155 #define ACC_MASTER_TRANS_RETURN_RW 3 156 #define ACC_MASTER_TRANS_RETURN 0x300150 157 #define ACC_MASTER_GLOBAL_CTRL 0x300000 158 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 159 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 160 #define ACC_AM_ROB_ECC_INT_STS 0x300104 161 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 162 #define QM_MSI_CAP_ENABLE BIT(16) 163 164 /* interfunction communication */ 165 #define QM_IFC_READY_STATUS 0x100128 166 #define QM_IFC_INT_SET_P 0x100130 167 #define QM_IFC_INT_CFG 0x100134 168 #define QM_IFC_INT_SOURCE_P 0x100138 169 #define QM_IFC_INT_SOURCE_V 0x0020 170 #define QM_IFC_INT_MASK 0x0024 171 #define QM_IFC_INT_STATUS 0x0028 172 #define QM_IFC_INT_SET_V 0x002C 173 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 174 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 175 #define QM_IFC_INT_SOURCE_MASK BIT(0) 176 #define QM_IFC_INT_DISABLE BIT(0) 177 #define QM_IFC_INT_STATUS_MASK BIT(0) 178 #define QM_IFC_INT_SET_MASK BIT(0) 179 #define QM_WAIT_DST_ACK 10 180 #define QM_MAX_PF_WAIT_COUNT 10 181 #define QM_MAX_VF_WAIT_COUNT 40 182 #define QM_VF_RESET_WAIT_US 20000 183 #define QM_VF_RESET_WAIT_CNT 3000 184 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 185 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 186 187 #define POLL_PERIOD 10 188 #define POLL_TIMEOUT 1000 189 #define WAIT_PERIOD_US_MAX 200 190 #define WAIT_PERIOD_US_MIN 100 191 #define MAX_WAIT_COUNTS 1000 192 #define QM_CACHE_WB_START 0x204 193 #define QM_CACHE_WB_DONE 0x208 194 #define QM_FUNC_CAPS_REG 0x3100 195 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 196 197 #define PCI_BAR_2 2 198 #define PCI_BAR_4 4 199 #define QMC_ALIGN(sz) ALIGN(sz, 32) 200 201 #define QM_DBG_READ_LEN 256 202 #define QM_PCI_COMMAND_INVALID ~0 203 #define QM_RESET_STOP_TX_OFFSET 1 204 #define QM_RESET_STOP_RX_OFFSET 2 205 206 #define WAIT_PERIOD 20 207 #define REMOVE_WAIT_DELAY 10 208 209 #define QM_QOS_PARAM_NUM 2 210 #define QM_QOS_MAX_VAL 1000 211 #define QM_QOS_RATE 100 212 #define QM_QOS_EXPAND_RATE 1000 213 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 214 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 215 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 216 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 217 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 218 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 219 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 220 #define QM_SHAPER_CBS_B 1 221 #define QM_SHAPER_VFT_OFFSET 6 222 #define QM_QOS_MIN_ERROR_RATE 5 223 #define QM_SHAPER_MIN_CBS_S 8 224 #define QM_QOS_TICK 0x300U 225 #define QM_QOS_DIVISOR_CLK 0x1f40U 226 #define QM_QOS_MAX_CIR_B 200 227 #define QM_QOS_MIN_CIR_B 100 228 #define QM_QOS_MAX_CIR_U 6 229 #define QM_AUTOSUSPEND_DELAY 3000 230 231 #define QM_DEV_ALG_MAX_LEN 256 232 233 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 234 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 235 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 236 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 237 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 238 239 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 240 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 241 242 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 243 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 244 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 245 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 246 247 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 248 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 249 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 250 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 251 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 252 253 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 254 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 255 256 #define INIT_QC_COMMON(qc, base, pasid) do { \ 257 (qc)->head = 0; \ 258 (qc)->tail = 0; \ 259 (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ 260 (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ 261 (qc)->dw3 = 0; \ 262 (qc)->w8 = 0; \ 263 (qc)->rsvd0 = 0; \ 264 (qc)->pasid = cpu_to_le16(pasid); \ 265 (qc)->w11 = 0; \ 266 (qc)->rsvd1 = 0; \ 267 } while (0) 268 269 enum vft_type { 270 SQC_VFT = 0, 271 CQC_VFT, 272 SHAPER_VFT, 273 }; 274 275 enum acc_err_result { 276 ACC_ERR_NONE, 277 ACC_ERR_NEED_RESET, 278 ACC_ERR_RECOVERED, 279 }; 280 281 enum qm_alg_type { 282 ALG_TYPE_0, 283 ALG_TYPE_1, 284 }; 285 286 enum qm_mb_cmd { 287 QM_PF_FLR_PREPARE = 0x01, 288 QM_PF_SRST_PREPARE, 289 QM_PF_RESET_DONE, 290 QM_VF_PREPARE_DONE, 291 QM_VF_PREPARE_FAIL, 292 QM_VF_START_DONE, 293 QM_VF_START_FAIL, 294 QM_PF_SET_QOS, 295 QM_VF_GET_QOS, 296 }; 297 298 enum qm_basic_type { 299 QM_TOTAL_QP_NUM_CAP = 0x0, 300 QM_FUNC_MAX_QP_CAP, 301 QM_XEQ_DEPTH_CAP, 302 QM_QP_DEPTH_CAP, 303 QM_EQ_IRQ_TYPE_CAP, 304 QM_AEQ_IRQ_TYPE_CAP, 305 QM_ABN_IRQ_TYPE_CAP, 306 QM_PF2VF_IRQ_TYPE_CAP, 307 QM_PF_IRQ_NUM_CAP, 308 QM_VF_IRQ_NUM_CAP, 309 }; 310 311 enum qm_pre_store_cap_idx { 312 QM_EQ_IRQ_TYPE_CAP_IDX = 0x0, 313 QM_AEQ_IRQ_TYPE_CAP_IDX, 314 QM_ABN_IRQ_TYPE_CAP_IDX, 315 QM_PF2VF_IRQ_TYPE_CAP_IDX, 316 }; 317 318 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 319 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 320 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 321 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 322 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 323 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 324 }; 325 326 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 327 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 328 }; 329 330 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 331 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 332 }; 333 334 static const struct hisi_qm_cap_info qm_basic_info[] = { 335 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 336 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 337 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, 338 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 339 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 340 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 341 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 342 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 343 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 344 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 345 }; 346 347 static const u32 qm_pre_store_caps[] = { 348 QM_EQ_IRQ_TYPE_CAP, 349 QM_AEQ_IRQ_TYPE_CAP, 350 QM_ABN_IRQ_TYPE_CAP, 351 QM_PF2VF_IRQ_TYPE_CAP, 352 }; 353 354 struct qm_mailbox { 355 __le16 w0; 356 __le16 queue_num; 357 __le32 base_l; 358 __le32 base_h; 359 __le32 rsvd; 360 }; 361 362 struct qm_doorbell { 363 __le16 queue_num; 364 __le16 cmd; 365 __le16 index; 366 __le16 priority; 367 }; 368 369 struct hisi_qm_resource { 370 struct hisi_qm *qm; 371 int distance; 372 struct list_head list; 373 }; 374 375 /** 376 * struct qm_hw_err - Structure describing the device errors 377 * @list: hardware error list 378 * @timestamp: timestamp when the error occurred 379 */ 380 struct qm_hw_err { 381 struct list_head list; 382 unsigned long long timestamp; 383 }; 384 385 struct hisi_qm_hw_ops { 386 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 387 void (*qm_db)(struct hisi_qm *qm, u16 qn, 388 u8 cmd, u16 index, u8 priority); 389 int (*debug_init)(struct hisi_qm *qm); 390 void (*hw_error_init)(struct hisi_qm *qm); 391 void (*hw_error_uninit)(struct hisi_qm *qm); 392 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 393 int (*set_msi)(struct hisi_qm *qm, bool set); 394 }; 395 396 struct hisi_qm_hw_error { 397 u32 int_msk; 398 const char *msg; 399 }; 400 401 static const struct hisi_qm_hw_error qm_hw_error[] = { 402 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 403 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 404 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 405 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 406 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 407 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 408 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 409 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 410 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 411 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 412 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 413 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 414 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 415 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 416 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 417 { /* sentinel */ } 418 }; 419 420 static const char * const qm_db_timeout[] = { 421 "sq", "cq", "eq", "aeq", 422 }; 423 424 static const char * const qm_fifo_overflow[] = { 425 "cq", "eq", "aeq", 426 }; 427 428 static const char * const qp_s[] = { 429 "none", "init", "start", "stop", "close", 430 }; 431 432 struct qm_typical_qos_table { 433 u32 start; 434 u32 end; 435 u32 val; 436 }; 437 438 /* the qos step is 100 */ 439 static struct qm_typical_qos_table shaper_cir_s[] = { 440 {100, 100, 4}, 441 {200, 200, 3}, 442 {300, 500, 2}, 443 {600, 1000, 1}, 444 {1100, 100000, 0}, 445 }; 446 447 static struct qm_typical_qos_table shaper_cbs_s[] = { 448 {100, 200, 9}, 449 {300, 500, 11}, 450 {600, 1000, 12}, 451 {1100, 10000, 16}, 452 {10100, 25000, 17}, 453 {25100, 50000, 18}, 454 {50100, 100000, 19} 455 }; 456 457 static void qm_irqs_unregister(struct hisi_qm *qm); 458 459 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 460 { 461 enum qm_state curr = atomic_read(&qm->status.flags); 462 bool avail = false; 463 464 switch (curr) { 465 case QM_INIT: 466 if (new == QM_START || new == QM_CLOSE) 467 avail = true; 468 break; 469 case QM_START: 470 if (new == QM_STOP) 471 avail = true; 472 break; 473 case QM_STOP: 474 if (new == QM_CLOSE || new == QM_START) 475 avail = true; 476 break; 477 default: 478 break; 479 } 480 481 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 482 qm_s[curr], qm_s[new]); 483 484 if (!avail) 485 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 486 qm_s[curr], qm_s[new]); 487 488 return avail; 489 } 490 491 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 492 enum qp_state new) 493 { 494 enum qm_state qm_curr = atomic_read(&qm->status.flags); 495 enum qp_state qp_curr = 0; 496 bool avail = false; 497 498 if (qp) 499 qp_curr = atomic_read(&qp->qp_status.flags); 500 501 switch (new) { 502 case QP_INIT: 503 if (qm_curr == QM_START || qm_curr == QM_INIT) 504 avail = true; 505 break; 506 case QP_START: 507 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 508 (qm_curr == QM_START && qp_curr == QP_STOP)) 509 avail = true; 510 break; 511 case QP_STOP: 512 if ((qm_curr == QM_START && qp_curr == QP_START) || 513 (qp_curr == QP_INIT)) 514 avail = true; 515 break; 516 case QP_CLOSE: 517 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 518 (qm_curr == QM_START && qp_curr == QP_STOP) || 519 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 520 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 521 avail = true; 522 break; 523 default: 524 break; 525 } 526 527 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 528 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 529 530 if (!avail) 531 dev_warn(&qm->pdev->dev, 532 "Can not change qp state from %s to %s in QM %s\n", 533 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 534 535 return avail; 536 } 537 538 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 539 { 540 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 541 } 542 543 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 544 { 545 return qm->err_ini->get_dev_hw_err_status(qm); 546 } 547 548 /* Check if the error causes the master ooo block */ 549 static bool qm_check_dev_error(struct hisi_qm *qm) 550 { 551 u32 val, dev_val; 552 553 if (qm->fun_type == QM_HW_VF) 554 return false; 555 556 val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask; 557 dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask; 558 559 return val || dev_val; 560 } 561 562 static int qm_wait_reset_finish(struct hisi_qm *qm) 563 { 564 int delay = 0; 565 566 /* All reset requests need to be queued for processing */ 567 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 568 msleep(++delay); 569 if (delay > QM_RESET_WAIT_TIMEOUT) 570 return -EBUSY; 571 } 572 573 return 0; 574 } 575 576 static int qm_reset_prepare_ready(struct hisi_qm *qm) 577 { 578 struct pci_dev *pdev = qm->pdev; 579 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 580 581 /* 582 * PF and VF on host doesnot support resetting at the 583 * same time on Kunpeng920. 584 */ 585 if (qm->ver < QM_HW_V3) 586 return qm_wait_reset_finish(pf_qm); 587 588 return qm_wait_reset_finish(qm); 589 } 590 591 static void qm_reset_bit_clear(struct hisi_qm *qm) 592 { 593 struct pci_dev *pdev = qm->pdev; 594 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 595 596 if (qm->ver < QM_HW_V3) 597 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 598 599 clear_bit(QM_RESETTING, &qm->misc_ctl); 600 } 601 602 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 603 u64 base, u16 queue, bool op) 604 { 605 mailbox->w0 = cpu_to_le16((cmd) | 606 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 607 (0x1 << QM_MB_BUSY_SHIFT)); 608 mailbox->queue_num = cpu_to_le16(queue); 609 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 610 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 611 mailbox->rsvd = 0; 612 } 613 614 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 615 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 616 { 617 u32 val; 618 619 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 620 val, !((val >> QM_MB_BUSY_SHIFT) & 621 0x1), POLL_PERIOD, POLL_TIMEOUT); 622 } 623 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 624 625 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 626 static void qm_mb_write(struct hisi_qm *qm, const void *src) 627 { 628 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 629 630 #if IS_ENABLED(CONFIG_ARM64) 631 unsigned long tmp0 = 0, tmp1 = 0; 632 #endif 633 634 if (!IS_ENABLED(CONFIG_ARM64)) { 635 memcpy_toio(fun_base, src, 16); 636 dma_wmb(); 637 return; 638 } 639 640 #if IS_ENABLED(CONFIG_ARM64) 641 asm volatile("ldp %0, %1, %3\n" 642 "stp %0, %1, %2\n" 643 "dmb oshst\n" 644 : "=&r" (tmp0), 645 "=&r" (tmp1), 646 "+Q" (*((char __iomem *)fun_base)) 647 : "Q" (*((char *)src)) 648 : "memory"); 649 #endif 650 } 651 652 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 653 { 654 int ret; 655 u32 val; 656 657 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 658 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 659 ret = -EBUSY; 660 goto mb_busy; 661 } 662 663 qm_mb_write(qm, mailbox); 664 665 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 666 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 667 ret = -ETIMEDOUT; 668 goto mb_busy; 669 } 670 671 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 672 if (val & QM_MB_STATUS_MASK) { 673 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 674 ret = -EIO; 675 goto mb_busy; 676 } 677 678 return 0; 679 680 mb_busy: 681 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 682 return ret; 683 } 684 685 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 686 bool op) 687 { 688 struct qm_mailbox mailbox; 689 int ret; 690 691 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 692 queue, cmd, (unsigned long long)dma_addr); 693 694 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 695 696 mutex_lock(&qm->mailbox_lock); 697 ret = qm_mb_nolock(qm, &mailbox); 698 mutex_unlock(&qm->mailbox_lock); 699 700 return ret; 701 } 702 EXPORT_SYMBOL_GPL(hisi_qm_mb); 703 704 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 705 { 706 u64 doorbell; 707 708 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 709 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 710 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 711 712 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 713 } 714 715 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 716 { 717 void __iomem *io_base = qm->io_base; 718 u16 randata = 0; 719 u64 doorbell; 720 721 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 722 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 723 QM_DOORBELL_SQ_CQ_BASE_V2; 724 else 725 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 726 727 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 728 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 729 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 730 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 731 732 writeq(doorbell, io_base); 733 } 734 735 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 736 { 737 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 738 qn, cmd, index); 739 740 qm->ops->qm_db(qm, qn, cmd, index, priority); 741 } 742 743 static void qm_disable_clock_gate(struct hisi_qm *qm) 744 { 745 u32 val; 746 747 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 748 if (qm->ver < QM_HW_V3) 749 return; 750 751 val = readl(qm->io_base + QM_PM_CTRL); 752 val |= QM_IDLE_DISABLE; 753 writel(val, qm->io_base + QM_PM_CTRL); 754 } 755 756 static int qm_dev_mem_reset(struct hisi_qm *qm) 757 { 758 u32 val; 759 760 writel(0x1, qm->io_base + QM_MEM_START_INIT); 761 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 762 val & BIT(0), POLL_PERIOD, 763 POLL_TIMEOUT); 764 } 765 766 /** 767 * hisi_qm_get_hw_info() - Get device information. 768 * @qm: The qm which want to get information. 769 * @info_table: Array for storing device information. 770 * @index: Index in info_table. 771 * @is_read: Whether read from reg, 0: not support read from reg. 772 * 773 * This function returns device information the caller needs. 774 */ 775 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 776 const struct hisi_qm_cap_info *info_table, 777 u32 index, bool is_read) 778 { 779 u32 val; 780 781 switch (qm->ver) { 782 case QM_HW_V1: 783 return info_table[index].v1_val; 784 case QM_HW_V2: 785 return info_table[index].v2_val; 786 default: 787 if (!is_read) 788 return info_table[index].v3_val; 789 790 val = readl(qm->io_base + info_table[index].offset); 791 return (val >> info_table[index].shift) & info_table[index].mask; 792 } 793 } 794 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 795 796 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 797 u16 *high_bits, enum qm_basic_type type) 798 { 799 u32 depth; 800 801 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 802 *low_bits = depth & QM_XQ_DEPTH_MASK; 803 *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 804 } 805 806 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs, 807 u32 dev_algs_size) 808 { 809 struct device *dev = &qm->pdev->dev; 810 char *algs, *ptr; 811 int i; 812 813 if (!qm->uacce) 814 return 0; 815 816 if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) { 817 dev_err(dev, "algs size %u is equal or larger than %d.\n", 818 dev_algs_size, QM_DEV_ALG_MAX_LEN); 819 return -EINVAL; 820 } 821 822 algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN * sizeof(char), GFP_KERNEL); 823 if (!algs) 824 return -ENOMEM; 825 826 for (i = 0; i < dev_algs_size; i++) 827 if (alg_msk & dev_algs[i].alg_msk) 828 strcat(algs, dev_algs[i].alg); 829 830 ptr = strrchr(algs, '\n'); 831 if (ptr) { 832 *ptr = '\0'; 833 qm->uacce->algs = algs; 834 } 835 836 return 0; 837 } 838 EXPORT_SYMBOL_GPL(hisi_qm_set_algs); 839 840 static u32 qm_get_irq_num(struct hisi_qm *qm) 841 { 842 if (qm->fun_type == QM_HW_PF) 843 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 844 845 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 846 } 847 848 static int qm_pm_get_sync(struct hisi_qm *qm) 849 { 850 struct device *dev = &qm->pdev->dev; 851 int ret; 852 853 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 854 return 0; 855 856 ret = pm_runtime_resume_and_get(dev); 857 if (ret < 0) { 858 dev_err(dev, "failed to get_sync(%d).\n", ret); 859 return ret; 860 } 861 862 return 0; 863 } 864 865 static void qm_pm_put_sync(struct hisi_qm *qm) 866 { 867 struct device *dev = &qm->pdev->dev; 868 869 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 870 return; 871 872 pm_runtime_mark_last_busy(dev); 873 pm_runtime_put_autosuspend(dev); 874 } 875 876 static void qm_cq_head_update(struct hisi_qp *qp) 877 { 878 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 879 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 880 qp->qp_status.cq_head = 0; 881 } else { 882 qp->qp_status.cq_head++; 883 } 884 } 885 886 static void qm_poll_req_cb(struct hisi_qp *qp) 887 { 888 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 889 struct hisi_qm *qm = qp->qm; 890 891 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 892 dma_rmb(); 893 qp->req_cb(qp, qp->sqe + qm->sqe_size * 894 le16_to_cpu(cqe->sq_head)); 895 qm_cq_head_update(qp); 896 cqe = qp->cqe + qp->qp_status.cq_head; 897 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 898 qp->qp_status.cq_head, 0); 899 atomic_dec(&qp->qp_status.used); 900 901 cond_resched(); 902 } 903 904 /* set c_flag */ 905 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 906 } 907 908 static void qm_work_process(struct work_struct *work) 909 { 910 struct hisi_qm_poll_data *poll_data = 911 container_of(work, struct hisi_qm_poll_data, work); 912 struct hisi_qm *qm = poll_data->qm; 913 u16 eqe_num = poll_data->eqe_num; 914 struct hisi_qp *qp; 915 int i; 916 917 for (i = eqe_num - 1; i >= 0; i--) { 918 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 919 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 920 continue; 921 922 if (qp->event_cb) { 923 qp->event_cb(qp); 924 continue; 925 } 926 927 if (likely(qp->req_cb)) 928 qm_poll_req_cb(qp); 929 } 930 } 931 932 static void qm_get_complete_eqe_num(struct hisi_qm *qm) 933 { 934 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 935 struct hisi_qm_poll_data *poll_data = NULL; 936 u16 eq_depth = qm->eq_depth; 937 u16 cqn, eqe_num = 0; 938 939 if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) { 940 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 941 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 942 return; 943 } 944 945 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 946 if (unlikely(cqn >= qm->qp_num)) 947 return; 948 poll_data = &qm->poll_data[cqn]; 949 950 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 951 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 952 poll_data->qp_finish_id[eqe_num] = cqn; 953 eqe_num++; 954 955 if (qm->status.eq_head == eq_depth - 1) { 956 qm->status.eqc_phase = !qm->status.eqc_phase; 957 eqe = qm->eqe; 958 qm->status.eq_head = 0; 959 } else { 960 eqe++; 961 qm->status.eq_head++; 962 } 963 964 if (eqe_num == (eq_depth >> 1) - 1) 965 break; 966 } 967 968 poll_data->eqe_num = eqe_num; 969 queue_work(qm->wq, &poll_data->work); 970 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 971 } 972 973 static irqreturn_t qm_eq_irq(int irq, void *data) 974 { 975 struct hisi_qm *qm = data; 976 977 /* Get qp id of completed tasks and re-enable the interrupt */ 978 qm_get_complete_eqe_num(qm); 979 980 return IRQ_HANDLED; 981 } 982 983 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 984 { 985 struct hisi_qm *qm = data; 986 u32 val; 987 988 val = readl(qm->io_base + QM_IFC_INT_STATUS); 989 val &= QM_IFC_INT_STATUS_MASK; 990 if (!val) 991 return IRQ_NONE; 992 993 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) { 994 dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n"); 995 return IRQ_HANDLED; 996 } 997 998 schedule_work(&qm->cmd_process); 999 1000 return IRQ_HANDLED; 1001 } 1002 1003 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 1004 { 1005 u32 *addr; 1006 1007 if (qp->is_in_kernel) 1008 return; 1009 1010 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 1011 *addr = 1; 1012 1013 /* make sure setup is completed */ 1014 smp_wmb(); 1015 } 1016 1017 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 1018 { 1019 struct hisi_qp *qp = &qm->qp_array[qp_id]; 1020 1021 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 1022 hisi_qm_stop_qp(qp); 1023 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 1024 } 1025 1026 static void qm_reset_function(struct hisi_qm *qm) 1027 { 1028 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 1029 struct device *dev = &qm->pdev->dev; 1030 int ret; 1031 1032 if (qm_check_dev_error(pf_qm)) 1033 return; 1034 1035 ret = qm_reset_prepare_ready(qm); 1036 if (ret) { 1037 dev_err(dev, "reset function not ready\n"); 1038 return; 1039 } 1040 1041 ret = hisi_qm_stop(qm, QM_DOWN); 1042 if (ret) { 1043 dev_err(dev, "failed to stop qm when reset function\n"); 1044 goto clear_bit; 1045 } 1046 1047 ret = hisi_qm_start(qm); 1048 if (ret) 1049 dev_err(dev, "failed to start qm when reset function\n"); 1050 1051 clear_bit: 1052 qm_reset_bit_clear(qm); 1053 } 1054 1055 static irqreturn_t qm_aeq_thread(int irq, void *data) 1056 { 1057 struct hisi_qm *qm = data; 1058 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1059 u16 aeq_depth = qm->aeq_depth; 1060 u32 type, qp_id; 1061 1062 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1063 1064 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1065 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; 1066 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1067 1068 switch (type) { 1069 case QM_EQ_OVERFLOW: 1070 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1071 qm_reset_function(qm); 1072 return IRQ_HANDLED; 1073 case QM_CQ_OVERFLOW: 1074 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1075 qp_id); 1076 fallthrough; 1077 case QM_CQE_ERROR: 1078 qm_disable_qp(qm, qp_id); 1079 break; 1080 default: 1081 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1082 type); 1083 break; 1084 } 1085 1086 if (qm->status.aeq_head == aeq_depth - 1) { 1087 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1088 aeqe = qm->aeqe; 1089 qm->status.aeq_head = 0; 1090 } else { 1091 aeqe++; 1092 qm->status.aeq_head++; 1093 } 1094 } 1095 1096 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1097 1098 return IRQ_HANDLED; 1099 } 1100 1101 static void qm_init_qp_status(struct hisi_qp *qp) 1102 { 1103 struct hisi_qp_status *qp_status = &qp->qp_status; 1104 1105 qp_status->sq_tail = 0; 1106 qp_status->cq_head = 0; 1107 qp_status->cqc_phase = true; 1108 atomic_set(&qp_status->used, 0); 1109 } 1110 1111 static void qm_init_prefetch(struct hisi_qm *qm) 1112 { 1113 struct device *dev = &qm->pdev->dev; 1114 u32 page_type = 0x0; 1115 1116 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1117 return; 1118 1119 switch (PAGE_SIZE) { 1120 case SZ_4K: 1121 page_type = 0x0; 1122 break; 1123 case SZ_16K: 1124 page_type = 0x1; 1125 break; 1126 case SZ_64K: 1127 page_type = 0x2; 1128 break; 1129 default: 1130 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1131 PAGE_SIZE); 1132 } 1133 1134 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1135 } 1136 1137 /* 1138 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1139 * is the expected qos calculated. 1140 * the formula: 1141 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1142 * 1143 * IR_b * (2 ^ IR_u) * 8000 1144 * IR(Mbps) = ------------------------- 1145 * Tick * (2 ^ IR_s) 1146 */ 1147 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1148 { 1149 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1150 (QM_QOS_TICK * (1 << cir_s)); 1151 } 1152 1153 static u32 acc_shaper_calc_cbs_s(u32 ir) 1154 { 1155 int table_size = ARRAY_SIZE(shaper_cbs_s); 1156 int i; 1157 1158 for (i = 0; i < table_size; i++) { 1159 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1160 return shaper_cbs_s[i].val; 1161 } 1162 1163 return QM_SHAPER_MIN_CBS_S; 1164 } 1165 1166 static u32 acc_shaper_calc_cir_s(u32 ir) 1167 { 1168 int table_size = ARRAY_SIZE(shaper_cir_s); 1169 int i; 1170 1171 for (i = 0; i < table_size; i++) { 1172 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1173 return shaper_cir_s[i].val; 1174 } 1175 1176 return 0; 1177 } 1178 1179 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1180 { 1181 u32 cir_b, cir_u, cir_s, ir_calc; 1182 u32 error_rate; 1183 1184 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1185 cir_s = acc_shaper_calc_cir_s(ir); 1186 1187 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1188 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1189 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1190 1191 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1192 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1193 factor->cir_b = cir_b; 1194 factor->cir_u = cir_u; 1195 factor->cir_s = cir_s; 1196 return 0; 1197 } 1198 } 1199 } 1200 1201 return -EINVAL; 1202 } 1203 1204 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1205 u32 number, struct qm_shaper_factor *factor) 1206 { 1207 u64 tmp = 0; 1208 1209 if (number > 0) { 1210 switch (type) { 1211 case SQC_VFT: 1212 if (qm->ver == QM_HW_V1) { 1213 tmp = QM_SQC_VFT_BUF_SIZE | 1214 QM_SQC_VFT_SQC_SIZE | 1215 QM_SQC_VFT_INDEX_NUMBER | 1216 QM_SQC_VFT_VALID | 1217 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1218 } else { 1219 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1220 QM_SQC_VFT_VALID | 1221 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1222 } 1223 break; 1224 case CQC_VFT: 1225 if (qm->ver == QM_HW_V1) { 1226 tmp = QM_CQC_VFT_BUF_SIZE | 1227 QM_CQC_VFT_SQC_SIZE | 1228 QM_CQC_VFT_INDEX_NUMBER | 1229 QM_CQC_VFT_VALID; 1230 } else { 1231 tmp = QM_CQC_VFT_VALID; 1232 } 1233 break; 1234 case SHAPER_VFT: 1235 if (factor) { 1236 tmp = factor->cir_b | 1237 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1238 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1239 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1240 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1241 } 1242 break; 1243 } 1244 } 1245 1246 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1247 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1248 } 1249 1250 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1251 u32 fun_num, u32 base, u32 number) 1252 { 1253 struct qm_shaper_factor *factor = NULL; 1254 unsigned int val; 1255 int ret; 1256 1257 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1258 factor = &qm->factor[fun_num]; 1259 1260 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1261 val & BIT(0), POLL_PERIOD, 1262 POLL_TIMEOUT); 1263 if (ret) 1264 return ret; 1265 1266 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1267 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1268 if (type == SHAPER_VFT) 1269 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1270 1271 writel(fun_num, qm->io_base + QM_VFT_CFG); 1272 1273 qm_vft_data_cfg(qm, type, base, number, factor); 1274 1275 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1276 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1277 1278 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1279 val & BIT(0), POLL_PERIOD, 1280 POLL_TIMEOUT); 1281 } 1282 1283 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1284 { 1285 u32 qos = qm->factor[fun_num].func_qos; 1286 int ret, i; 1287 1288 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1289 if (ret) { 1290 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1291 return ret; 1292 } 1293 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1294 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1295 /* The base number of queue reuse for different alg type */ 1296 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1297 if (ret) 1298 return ret; 1299 } 1300 1301 return 0; 1302 } 1303 1304 /* The config should be conducted after qm_dev_mem_reset() */ 1305 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1306 u32 number) 1307 { 1308 int ret, i; 1309 1310 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1311 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1312 if (ret) 1313 return ret; 1314 } 1315 1316 /* init default shaper qos val */ 1317 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1318 ret = qm_shaper_init_vft(qm, fun_num); 1319 if (ret) 1320 goto back_sqc_cqc; 1321 } 1322 1323 return 0; 1324 back_sqc_cqc: 1325 for (i = SQC_VFT; i <= CQC_VFT; i++) 1326 qm_set_vft_common(qm, i, fun_num, 0, 0); 1327 1328 return ret; 1329 } 1330 1331 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1332 { 1333 u64 sqc_vft; 1334 int ret; 1335 1336 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1337 if (ret) 1338 return ret; 1339 1340 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1341 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1342 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1343 *number = (QM_SQC_VFT_NUM_MASK_V2 & 1344 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1345 1346 return 0; 1347 } 1348 1349 void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, 1350 dma_addr_t *dma_addr) 1351 { 1352 struct device *dev = &qm->pdev->dev; 1353 void *ctx_addr; 1354 1355 ctx_addr = kzalloc(ctx_size, GFP_KERNEL); 1356 if (!ctx_addr) 1357 return ERR_PTR(-ENOMEM); 1358 1359 *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); 1360 if (dma_mapping_error(dev, *dma_addr)) { 1361 dev_err(dev, "DMA mapping error!\n"); 1362 kfree(ctx_addr); 1363 return ERR_PTR(-ENOMEM); 1364 } 1365 1366 return ctx_addr; 1367 } 1368 1369 void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, 1370 const void *ctx_addr, dma_addr_t *dma_addr) 1371 { 1372 struct device *dev = &qm->pdev->dev; 1373 1374 dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); 1375 kfree(ctx_addr); 1376 } 1377 1378 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1379 { 1380 return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); 1381 } 1382 1383 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1384 { 1385 return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); 1386 } 1387 1388 static void qm_hw_error_init_v1(struct hisi_qm *qm) 1389 { 1390 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1391 } 1392 1393 static void qm_hw_error_cfg(struct hisi_qm *qm) 1394 { 1395 struct hisi_qm_err_info *err_info = &qm->err_info; 1396 1397 qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; 1398 /* clear QM hw residual error source */ 1399 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1400 1401 /* configure error type */ 1402 writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); 1403 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1404 writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1405 writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); 1406 } 1407 1408 static void qm_hw_error_init_v2(struct hisi_qm *qm) 1409 { 1410 u32 irq_unmask; 1411 1412 qm_hw_error_cfg(qm); 1413 1414 irq_unmask = ~qm->error_mask; 1415 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1416 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1417 } 1418 1419 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1420 { 1421 u32 irq_mask = qm->error_mask; 1422 1423 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1424 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1425 } 1426 1427 static void qm_hw_error_init_v3(struct hisi_qm *qm) 1428 { 1429 u32 irq_unmask; 1430 1431 qm_hw_error_cfg(qm); 1432 1433 /* enable close master ooo when hardware error happened */ 1434 writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1435 1436 irq_unmask = ~qm->error_mask; 1437 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1438 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1439 } 1440 1441 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1442 { 1443 u32 irq_mask = qm->error_mask; 1444 1445 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1446 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1447 1448 /* disable close master ooo when hardware error happened */ 1449 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1450 } 1451 1452 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1453 { 1454 const struct hisi_qm_hw_error *err; 1455 struct device *dev = &qm->pdev->dev; 1456 u32 reg_val, type, vf_num; 1457 int i; 1458 1459 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1460 err = &qm_hw_error[i]; 1461 if (!(err->int_msk & error_status)) 1462 continue; 1463 1464 dev_err(dev, "%s [error status=0x%x] found\n", 1465 err->msg, err->int_msk); 1466 1467 if (err->int_msk & QM_DB_TIMEOUT) { 1468 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1469 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1470 QM_DB_TIMEOUT_TYPE_SHIFT; 1471 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1472 dev_err(dev, "qm %s doorbell timeout in function %u\n", 1473 qm_db_timeout[type], vf_num); 1474 } else if (err->int_msk & QM_OF_FIFO_OF) { 1475 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1476 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1477 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1478 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1479 1480 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1481 dev_err(dev, "qm %s fifo overflow in function %u\n", 1482 qm_fifo_overflow[type], vf_num); 1483 else 1484 dev_err(dev, "unknown error type\n"); 1485 } 1486 } 1487 } 1488 1489 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1490 { 1491 u32 error_status, tmp; 1492 1493 /* read err sts */ 1494 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 1495 error_status = qm->error_mask & tmp; 1496 1497 if (error_status) { 1498 if (error_status & QM_ECC_MBIT) 1499 qm->err_status.is_qm_ecc_mbit = true; 1500 1501 qm_log_hw_error(qm, error_status); 1502 if (error_status & qm->err_info.qm_reset_mask) 1503 return ACC_ERR_NEED_RESET; 1504 1505 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1506 writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1507 } 1508 1509 return ACC_ERR_RECOVERED; 1510 } 1511 1512 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 1513 { 1514 struct qm_mailbox mailbox; 1515 int ret; 1516 1517 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 1518 mutex_lock(&qm->mailbox_lock); 1519 ret = qm_mb_nolock(qm, &mailbox); 1520 if (ret) 1521 goto err_unlock; 1522 1523 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1524 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1525 1526 err_unlock: 1527 mutex_unlock(&qm->mailbox_lock); 1528 return ret; 1529 } 1530 1531 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 1532 { 1533 u32 val; 1534 1535 if (qm->fun_type == QM_HW_PF) 1536 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 1537 1538 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 1539 val |= QM_IFC_INT_SOURCE_MASK; 1540 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 1541 } 1542 1543 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 1544 { 1545 struct device *dev = &qm->pdev->dev; 1546 u32 cmd; 1547 u64 msg; 1548 int ret; 1549 1550 ret = qm_get_mb_cmd(qm, &msg, vf_id); 1551 if (ret) { 1552 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 1553 return; 1554 } 1555 1556 cmd = msg & QM_MB_CMD_DATA_MASK; 1557 switch (cmd) { 1558 case QM_VF_PREPARE_FAIL: 1559 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 1560 break; 1561 case QM_VF_START_FAIL: 1562 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 1563 break; 1564 case QM_VF_PREPARE_DONE: 1565 case QM_VF_START_DONE: 1566 break; 1567 default: 1568 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 1569 break; 1570 } 1571 } 1572 1573 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 1574 { 1575 struct device *dev = &qm->pdev->dev; 1576 u32 vfs_num = qm->vfs_num; 1577 int cnt = 0; 1578 int ret = 0; 1579 u64 val; 1580 u32 i; 1581 1582 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 1583 return 0; 1584 1585 while (true) { 1586 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 1587 /* All VFs send command to PF, break */ 1588 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 1589 break; 1590 1591 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1592 ret = -EBUSY; 1593 break; 1594 } 1595 1596 msleep(QM_WAIT_DST_ACK); 1597 } 1598 1599 /* PF check VFs msg */ 1600 for (i = 1; i <= vfs_num; i++) { 1601 if (val & BIT(i)) 1602 qm_handle_vf_msg(qm, i); 1603 else 1604 dev_err(dev, "VF(%u) not ping PF!\n", i); 1605 } 1606 1607 /* PF clear interrupt to ack VFs */ 1608 qm_clear_cmd_interrupt(qm, val); 1609 1610 return ret; 1611 } 1612 1613 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 1614 { 1615 u32 val; 1616 1617 val = readl(qm->io_base + QM_IFC_INT_CFG); 1618 val &= ~QM_IFC_SEND_ALL_VFS; 1619 val |= fun_num; 1620 writel(val, qm->io_base + QM_IFC_INT_CFG); 1621 1622 val = readl(qm->io_base + QM_IFC_INT_SET_P); 1623 val |= QM_IFC_INT_SET_MASK; 1624 writel(val, qm->io_base + QM_IFC_INT_SET_P); 1625 } 1626 1627 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 1628 { 1629 u32 val; 1630 1631 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1632 val |= QM_IFC_INT_SET_MASK; 1633 writel(val, qm->io_base + QM_IFC_INT_SET_V); 1634 } 1635 1636 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 1637 { 1638 struct device *dev = &qm->pdev->dev; 1639 struct qm_mailbox mailbox; 1640 int cnt = 0; 1641 u64 val; 1642 int ret; 1643 1644 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 1645 mutex_lock(&qm->mailbox_lock); 1646 ret = qm_mb_nolock(qm, &mailbox); 1647 if (ret) { 1648 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 1649 goto err_unlock; 1650 } 1651 1652 qm_trigger_vf_interrupt(qm, fun_num); 1653 while (true) { 1654 msleep(QM_WAIT_DST_ACK); 1655 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1656 /* if VF respond, PF notifies VF successfully. */ 1657 if (!(val & BIT(fun_num))) 1658 goto err_unlock; 1659 1660 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1661 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 1662 ret = -ETIMEDOUT; 1663 break; 1664 } 1665 } 1666 1667 err_unlock: 1668 mutex_unlock(&qm->mailbox_lock); 1669 return ret; 1670 } 1671 1672 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 1673 { 1674 struct device *dev = &qm->pdev->dev; 1675 u32 vfs_num = qm->vfs_num; 1676 struct qm_mailbox mailbox; 1677 u64 val = 0; 1678 int cnt = 0; 1679 int ret; 1680 u32 i; 1681 1682 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 1683 mutex_lock(&qm->mailbox_lock); 1684 /* PF sends command to all VFs by mailbox */ 1685 ret = qm_mb_nolock(qm, &mailbox); 1686 if (ret) { 1687 dev_err(dev, "failed to send command to VFs!\n"); 1688 mutex_unlock(&qm->mailbox_lock); 1689 return ret; 1690 } 1691 1692 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 1693 while (true) { 1694 msleep(QM_WAIT_DST_ACK); 1695 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1696 /* If all VFs acked, PF notifies VFs successfully. */ 1697 if (!(val & GENMASK(vfs_num, 1))) { 1698 mutex_unlock(&qm->mailbox_lock); 1699 return 0; 1700 } 1701 1702 if (++cnt > QM_MAX_PF_WAIT_COUNT) 1703 break; 1704 } 1705 1706 mutex_unlock(&qm->mailbox_lock); 1707 1708 /* Check which vf respond timeout. */ 1709 for (i = 1; i <= vfs_num; i++) { 1710 if (val & BIT(i)) 1711 dev_err(dev, "failed to get response from VF(%u)!\n", i); 1712 } 1713 1714 return -ETIMEDOUT; 1715 } 1716 1717 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 1718 { 1719 struct qm_mailbox mailbox; 1720 int cnt = 0; 1721 u32 val; 1722 int ret; 1723 1724 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 1725 mutex_lock(&qm->mailbox_lock); 1726 ret = qm_mb_nolock(qm, &mailbox); 1727 if (ret) { 1728 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 1729 goto unlock; 1730 } 1731 1732 qm_trigger_pf_interrupt(qm); 1733 /* Waiting for PF response */ 1734 while (true) { 1735 msleep(QM_WAIT_DST_ACK); 1736 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1737 if (!(val & QM_IFC_INT_STATUS_MASK)) 1738 break; 1739 1740 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 1741 ret = -ETIMEDOUT; 1742 break; 1743 } 1744 } 1745 1746 unlock: 1747 mutex_unlock(&qm->mailbox_lock); 1748 return ret; 1749 } 1750 1751 static int qm_stop_qp(struct hisi_qp *qp) 1752 { 1753 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1754 } 1755 1756 static int qm_set_msi(struct hisi_qm *qm, bool set) 1757 { 1758 struct pci_dev *pdev = qm->pdev; 1759 1760 if (set) { 1761 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1762 0); 1763 } else { 1764 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1765 ACC_PEH_MSI_DISABLE); 1766 if (qm->err_status.is_qm_ecc_mbit || 1767 qm->err_status.is_dev_ecc_mbit) 1768 return 0; 1769 1770 mdelay(1); 1771 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 1772 return -EFAULT; 1773 } 1774 1775 return 0; 1776 } 1777 1778 static void qm_wait_msi_finish(struct hisi_qm *qm) 1779 { 1780 struct pci_dev *pdev = qm->pdev; 1781 u32 cmd = ~0; 1782 int cnt = 0; 1783 u32 val; 1784 int ret; 1785 1786 while (true) { 1787 pci_read_config_dword(pdev, pdev->msi_cap + 1788 PCI_MSI_PENDING_64, &cmd); 1789 if (!cmd) 1790 break; 1791 1792 if (++cnt > MAX_WAIT_COUNTS) { 1793 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 1794 break; 1795 } 1796 1797 udelay(1); 1798 } 1799 1800 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 1801 val, !(val & QM_PEH_DFX_MASK), 1802 POLL_PERIOD, POLL_TIMEOUT); 1803 if (ret) 1804 pci_warn(pdev, "failed to empty PEH MSI!\n"); 1805 1806 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 1807 val, !(val & QM_PEH_MSI_FINISH_MASK), 1808 POLL_PERIOD, POLL_TIMEOUT); 1809 if (ret) 1810 pci_warn(pdev, "failed to finish MSI operation!\n"); 1811 } 1812 1813 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 1814 { 1815 struct pci_dev *pdev = qm->pdev; 1816 int ret = -ETIMEDOUT; 1817 u32 cmd, i; 1818 1819 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1820 if (set) 1821 cmd |= QM_MSI_CAP_ENABLE; 1822 else 1823 cmd &= ~QM_MSI_CAP_ENABLE; 1824 1825 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 1826 if (set) { 1827 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 1828 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1829 if (cmd & QM_MSI_CAP_ENABLE) 1830 return 0; 1831 1832 udelay(1); 1833 } 1834 } else { 1835 udelay(WAIT_PERIOD_US_MIN); 1836 qm_wait_msi_finish(qm); 1837 ret = 0; 1838 } 1839 1840 return ret; 1841 } 1842 1843 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1844 .qm_db = qm_db_v1, 1845 .hw_error_init = qm_hw_error_init_v1, 1846 .set_msi = qm_set_msi, 1847 }; 1848 1849 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1850 .get_vft = qm_get_vft_v2, 1851 .qm_db = qm_db_v2, 1852 .hw_error_init = qm_hw_error_init_v2, 1853 .hw_error_uninit = qm_hw_error_uninit_v2, 1854 .hw_error_handle = qm_hw_error_handle_v2, 1855 .set_msi = qm_set_msi, 1856 }; 1857 1858 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1859 .get_vft = qm_get_vft_v2, 1860 .qm_db = qm_db_v2, 1861 .hw_error_init = qm_hw_error_init_v3, 1862 .hw_error_uninit = qm_hw_error_uninit_v3, 1863 .hw_error_handle = qm_hw_error_handle_v2, 1864 .set_msi = qm_set_msi_v3, 1865 }; 1866 1867 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1868 { 1869 struct hisi_qp_status *qp_status = &qp->qp_status; 1870 u16 sq_tail = qp_status->sq_tail; 1871 1872 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 1873 return NULL; 1874 1875 return qp->sqe + sq_tail * qp->qm->sqe_size; 1876 } 1877 1878 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 1879 { 1880 u64 *addr; 1881 1882 /* Use last 64 bits of DUS to reset status. */ 1883 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 1884 *addr = 0; 1885 } 1886 1887 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1888 { 1889 struct device *dev = &qm->pdev->dev; 1890 struct hisi_qp *qp; 1891 int qp_id; 1892 1893 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 1894 return ERR_PTR(-EPERM); 1895 1896 if (qm->qp_in_used == qm->qp_num) { 1897 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1898 qm->qp_num); 1899 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1900 return ERR_PTR(-EBUSY); 1901 } 1902 1903 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 1904 if (qp_id < 0) { 1905 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1906 qm->qp_num); 1907 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1908 return ERR_PTR(-EBUSY); 1909 } 1910 1911 qp = &qm->qp_array[qp_id]; 1912 hisi_qm_unset_hw_reset(qp); 1913 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 1914 1915 qp->event_cb = NULL; 1916 qp->req_cb = NULL; 1917 qp->qp_id = qp_id; 1918 qp->alg_type = alg_type; 1919 qp->is_in_kernel = true; 1920 qm->qp_in_used++; 1921 atomic_set(&qp->qp_status.flags, QP_INIT); 1922 1923 return qp; 1924 } 1925 1926 /** 1927 * hisi_qm_create_qp() - Create a queue pair from qm. 1928 * @qm: The qm we create a qp from. 1929 * @alg_type: Accelerator specific algorithm type in sqc. 1930 * 1931 * Return created qp, negative error code if failed. 1932 */ 1933 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 1934 { 1935 struct hisi_qp *qp; 1936 int ret; 1937 1938 ret = qm_pm_get_sync(qm); 1939 if (ret) 1940 return ERR_PTR(ret); 1941 1942 down_write(&qm->qps_lock); 1943 qp = qm_create_qp_nolock(qm, alg_type); 1944 up_write(&qm->qps_lock); 1945 1946 if (IS_ERR(qp)) 1947 qm_pm_put_sync(qm); 1948 1949 return qp; 1950 } 1951 1952 /** 1953 * hisi_qm_release_qp() - Release a qp back to its qm. 1954 * @qp: The qp we want to release. 1955 * 1956 * This function releases the resource of a qp. 1957 */ 1958 static void hisi_qm_release_qp(struct hisi_qp *qp) 1959 { 1960 struct hisi_qm *qm = qp->qm; 1961 1962 down_write(&qm->qps_lock); 1963 1964 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 1965 up_write(&qm->qps_lock); 1966 return; 1967 } 1968 1969 qm->qp_in_used--; 1970 idr_remove(&qm->qp_idr, qp->qp_id); 1971 1972 up_write(&qm->qps_lock); 1973 1974 qm_pm_put_sync(qm); 1975 } 1976 1977 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1978 { 1979 struct hisi_qm *qm = qp->qm; 1980 struct device *dev = &qm->pdev->dev; 1981 enum qm_hw_ver ver = qm->ver; 1982 struct qm_sqc *sqc; 1983 dma_addr_t sqc_dma; 1984 int ret; 1985 1986 sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); 1987 if (!sqc) 1988 return -ENOMEM; 1989 1990 INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); 1991 if (ver == QM_HW_V1) { 1992 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 1993 sqc->w8 = cpu_to_le16(qp->sq_depth - 1); 1994 } else { 1995 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 1996 sqc->w8 = 0; /* rand_qc */ 1997 } 1998 sqc->cq_num = cpu_to_le16(qp_id); 1999 sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 2000 2001 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2002 sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 2003 QM_QC_PASID_ENABLE_SHIFT); 2004 2005 sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), 2006 DMA_TO_DEVICE); 2007 if (dma_mapping_error(dev, sqc_dma)) { 2008 kfree(sqc); 2009 return -ENOMEM; 2010 } 2011 2012 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); 2013 dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); 2014 kfree(sqc); 2015 2016 return ret; 2017 } 2018 2019 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2020 { 2021 struct hisi_qm *qm = qp->qm; 2022 struct device *dev = &qm->pdev->dev; 2023 enum qm_hw_ver ver = qm->ver; 2024 struct qm_cqc *cqc; 2025 dma_addr_t cqc_dma; 2026 int ret; 2027 2028 cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); 2029 if (!cqc) 2030 return -ENOMEM; 2031 2032 INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); 2033 if (ver == QM_HW_V1) { 2034 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 2035 QM_QC_CQE_SIZE)); 2036 cqc->w8 = cpu_to_le16(qp->cq_depth - 1); 2037 } else { 2038 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 2039 cqc->w8 = 0; /* rand_qc */ 2040 } 2041 cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 2042 2043 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2044 cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 2045 2046 cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), 2047 DMA_TO_DEVICE); 2048 if (dma_mapping_error(dev, cqc_dma)) { 2049 kfree(cqc); 2050 return -ENOMEM; 2051 } 2052 2053 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); 2054 dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); 2055 kfree(cqc); 2056 2057 return ret; 2058 } 2059 2060 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2061 { 2062 int ret; 2063 2064 qm_init_qp_status(qp); 2065 2066 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2067 if (ret) 2068 return ret; 2069 2070 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2071 } 2072 2073 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2074 { 2075 struct hisi_qm *qm = qp->qm; 2076 struct device *dev = &qm->pdev->dev; 2077 int qp_id = qp->qp_id; 2078 u32 pasid = arg; 2079 int ret; 2080 2081 if (!qm_qp_avail_state(qm, qp, QP_START)) 2082 return -EPERM; 2083 2084 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2085 if (ret) 2086 return ret; 2087 2088 atomic_set(&qp->qp_status.flags, QP_START); 2089 dev_dbg(dev, "queue %d started\n", qp_id); 2090 2091 return 0; 2092 } 2093 2094 /** 2095 * hisi_qm_start_qp() - Start a qp into running. 2096 * @qp: The qp we want to start to run. 2097 * @arg: Accelerator specific argument. 2098 * 2099 * After this function, qp can receive request from user. Return 0 if 2100 * successful, negative error code if failed. 2101 */ 2102 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2103 { 2104 struct hisi_qm *qm = qp->qm; 2105 int ret; 2106 2107 down_write(&qm->qps_lock); 2108 ret = qm_start_qp_nolock(qp, arg); 2109 up_write(&qm->qps_lock); 2110 2111 return ret; 2112 } 2113 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2114 2115 /** 2116 * qp_stop_fail_cb() - call request cb. 2117 * @qp: stopped failed qp. 2118 * 2119 * Callback function should be called whether task completed or not. 2120 */ 2121 static void qp_stop_fail_cb(struct hisi_qp *qp) 2122 { 2123 int qp_used = atomic_read(&qp->qp_status.used); 2124 u16 cur_tail = qp->qp_status.sq_tail; 2125 u16 sq_depth = qp->sq_depth; 2126 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 2127 struct hisi_qm *qm = qp->qm; 2128 u16 pos; 2129 int i; 2130 2131 for (i = 0; i < qp_used; i++) { 2132 pos = (i + cur_head) % sq_depth; 2133 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2134 atomic_dec(&qp->qp_status.used); 2135 } 2136 } 2137 2138 /** 2139 * qm_drain_qp() - Drain a qp. 2140 * @qp: The qp we want to drain. 2141 * 2142 * Determine whether the queue is cleared by judging the tail pointers of 2143 * sq and cq. 2144 */ 2145 static int qm_drain_qp(struct hisi_qp *qp) 2146 { 2147 size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); 2148 struct hisi_qm *qm = qp->qm; 2149 struct device *dev = &qm->pdev->dev; 2150 struct qm_sqc *sqc; 2151 struct qm_cqc *cqc; 2152 dma_addr_t dma_addr; 2153 int ret = 0, i = 0; 2154 void *addr; 2155 2156 /* No need to judge if master OOO is blocked. */ 2157 if (qm_check_dev_error(qm)) 2158 return 0; 2159 2160 /* Kunpeng930 supports drain qp by device */ 2161 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 2162 ret = qm_stop_qp(qp); 2163 if (ret) 2164 dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); 2165 return ret; 2166 } 2167 2168 addr = hisi_qm_ctx_alloc(qm, size, &dma_addr); 2169 if (IS_ERR(addr)) { 2170 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); 2171 return -ENOMEM; 2172 } 2173 2174 while (++i) { 2175 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); 2176 if (ret) { 2177 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2178 break; 2179 } 2180 sqc = addr; 2181 2182 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), 2183 qp->qp_id); 2184 if (ret) { 2185 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2186 break; 2187 } 2188 cqc = addr + sizeof(struct qm_sqc); 2189 2190 if ((sqc->tail == cqc->tail) && 2191 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2192 break; 2193 2194 if (i == MAX_WAIT_COUNTS) { 2195 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 2196 ret = -EBUSY; 2197 break; 2198 } 2199 2200 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2201 } 2202 2203 hisi_qm_ctx_free(qm, size, addr, &dma_addr); 2204 2205 return ret; 2206 } 2207 2208 static int qm_stop_qp_nolock(struct hisi_qp *qp) 2209 { 2210 struct device *dev = &qp->qm->pdev->dev; 2211 int ret; 2212 2213 /* 2214 * It is allowed to stop and release qp when reset, If the qp is 2215 * stopped when reset but still want to be released then, the 2216 * is_resetting flag should be set negative so that this qp will not 2217 * be restarted after reset. 2218 */ 2219 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 2220 qp->is_resetting = false; 2221 return 0; 2222 } 2223 2224 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 2225 return -EPERM; 2226 2227 atomic_set(&qp->qp_status.flags, QP_STOP); 2228 2229 ret = qm_drain_qp(qp); 2230 if (ret) 2231 dev_err(dev, "Failed to drain out data for stopping!\n"); 2232 2233 2234 flush_workqueue(qp->qm->wq); 2235 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2236 qp_stop_fail_cb(qp); 2237 2238 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2239 2240 return 0; 2241 } 2242 2243 /** 2244 * hisi_qm_stop_qp() - Stop a qp in qm. 2245 * @qp: The qp we want to stop. 2246 * 2247 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 2248 */ 2249 int hisi_qm_stop_qp(struct hisi_qp *qp) 2250 { 2251 int ret; 2252 2253 down_write(&qp->qm->qps_lock); 2254 ret = qm_stop_qp_nolock(qp); 2255 up_write(&qp->qm->qps_lock); 2256 2257 return ret; 2258 } 2259 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2260 2261 /** 2262 * hisi_qp_send() - Queue up a task in the hardware queue. 2263 * @qp: The qp in which to put the message. 2264 * @msg: The message. 2265 * 2266 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2267 * if qp related qm is resetting. 2268 * 2269 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2270 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2271 * reset may happen, we have no lock here considering performance. This 2272 * causes current qm_db sending fail or can not receive sended sqe. QM 2273 * sync/async receive function should handle the error sqe. ACC reset 2274 * done function should clear used sqe to 0. 2275 */ 2276 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2277 { 2278 struct hisi_qp_status *qp_status = &qp->qp_status; 2279 u16 sq_tail = qp_status->sq_tail; 2280 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 2281 void *sqe = qm_get_avail_sqe(qp); 2282 2283 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2284 atomic_read(&qp->qm->status.flags) == QM_STOP || 2285 qp->is_resetting)) { 2286 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2287 return -EAGAIN; 2288 } 2289 2290 if (!sqe) 2291 return -EBUSY; 2292 2293 memcpy(sqe, msg, qp->qm->sqe_size); 2294 2295 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2296 atomic_inc(&qp->qp_status.used); 2297 qp_status->sq_tail = sq_tail_next; 2298 2299 return 0; 2300 } 2301 EXPORT_SYMBOL_GPL(hisi_qp_send); 2302 2303 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2304 { 2305 unsigned int val; 2306 2307 if (qm->ver == QM_HW_V1) 2308 return; 2309 2310 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2311 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2312 val, val & BIT(0), POLL_PERIOD, 2313 POLL_TIMEOUT)) 2314 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2315 } 2316 2317 static void qm_qp_event_notifier(struct hisi_qp *qp) 2318 { 2319 wake_up_interruptible(&qp->uacce_q->wait); 2320 } 2321 2322 /* This function returns free number of qp in qm. */ 2323 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2324 { 2325 struct hisi_qm *qm = uacce->priv; 2326 int ret; 2327 2328 down_read(&qm->qps_lock); 2329 ret = qm->qp_num - qm->qp_in_used; 2330 up_read(&qm->qps_lock); 2331 2332 return ret; 2333 } 2334 2335 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 2336 { 2337 int i; 2338 2339 for (i = 0; i < qm->qp_num; i++) 2340 qm_set_qp_disable(&qm->qp_array[i], offset); 2341 } 2342 2343 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2344 unsigned long arg, 2345 struct uacce_queue *q) 2346 { 2347 struct hisi_qm *qm = uacce->priv; 2348 struct hisi_qp *qp; 2349 u8 alg_type = 0; 2350 2351 qp = hisi_qm_create_qp(qm, alg_type); 2352 if (IS_ERR(qp)) 2353 return PTR_ERR(qp); 2354 2355 q->priv = qp; 2356 q->uacce = uacce; 2357 qp->uacce_q = q; 2358 qp->event_cb = qm_qp_event_notifier; 2359 qp->pasid = arg; 2360 qp->is_in_kernel = false; 2361 2362 return 0; 2363 } 2364 2365 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2366 { 2367 struct hisi_qp *qp = q->priv; 2368 2369 hisi_qm_release_qp(qp); 2370 } 2371 2372 /* map sq/cq/doorbell to user space */ 2373 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2374 struct vm_area_struct *vma, 2375 struct uacce_qfile_region *qfr) 2376 { 2377 struct hisi_qp *qp = q->priv; 2378 struct hisi_qm *qm = qp->qm; 2379 resource_size_t phys_base = qm->db_phys_base + 2380 qp->qp_id * qm->db_interval; 2381 size_t sz = vma->vm_end - vma->vm_start; 2382 struct pci_dev *pdev = qm->pdev; 2383 struct device *dev = &pdev->dev; 2384 unsigned long vm_pgoff; 2385 int ret; 2386 2387 switch (qfr->type) { 2388 case UACCE_QFRT_MMIO: 2389 if (qm->ver == QM_HW_V1) { 2390 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2391 return -EINVAL; 2392 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 2393 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2394 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2395 return -EINVAL; 2396 } else { 2397 if (sz > qm->db_interval) 2398 return -EINVAL; 2399 } 2400 2401 vm_flags_set(vma, VM_IO); 2402 2403 return remap_pfn_range(vma, vma->vm_start, 2404 phys_base >> PAGE_SHIFT, 2405 sz, pgprot_noncached(vma->vm_page_prot)); 2406 case UACCE_QFRT_DUS: 2407 if (sz != qp->qdma.size) 2408 return -EINVAL; 2409 2410 /* 2411 * dma_mmap_coherent() requires vm_pgoff as 0 2412 * restore vm_pfoff to initial value for mmap() 2413 */ 2414 vm_pgoff = vma->vm_pgoff; 2415 vma->vm_pgoff = 0; 2416 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2417 qp->qdma.dma, sz); 2418 vma->vm_pgoff = vm_pgoff; 2419 return ret; 2420 2421 default: 2422 return -EINVAL; 2423 } 2424 } 2425 2426 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2427 { 2428 struct hisi_qp *qp = q->priv; 2429 2430 return hisi_qm_start_qp(qp, qp->pasid); 2431 } 2432 2433 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2434 { 2435 hisi_qm_stop_qp(q->priv); 2436 } 2437 2438 static int hisi_qm_is_q_updated(struct uacce_queue *q) 2439 { 2440 struct hisi_qp *qp = q->priv; 2441 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 2442 int updated = 0; 2443 2444 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 2445 /* make sure to read data from memory */ 2446 dma_rmb(); 2447 qm_cq_head_update(qp); 2448 cqe = qp->cqe + qp->qp_status.cq_head; 2449 updated = 1; 2450 } 2451 2452 return updated; 2453 } 2454 2455 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2456 { 2457 struct hisi_qm *qm = q->uacce->priv; 2458 struct hisi_qp *qp = q->priv; 2459 2460 down_write(&qm->qps_lock); 2461 qp->alg_type = type; 2462 up_write(&qm->qps_lock); 2463 } 2464 2465 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2466 unsigned long arg) 2467 { 2468 struct hisi_qp *qp = q->priv; 2469 struct hisi_qp_info qp_info; 2470 struct hisi_qp_ctx qp_ctx; 2471 2472 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2473 if (copy_from_user(&qp_ctx, (void __user *)arg, 2474 sizeof(struct hisi_qp_ctx))) 2475 return -EFAULT; 2476 2477 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 2478 return -EINVAL; 2479 2480 qm_set_sqctype(q, qp_ctx.qc_type); 2481 qp_ctx.id = qp->qp_id; 2482 2483 if (copy_to_user((void __user *)arg, &qp_ctx, 2484 sizeof(struct hisi_qp_ctx))) 2485 return -EFAULT; 2486 2487 return 0; 2488 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 2489 if (copy_from_user(&qp_info, (void __user *)arg, 2490 sizeof(struct hisi_qp_info))) 2491 return -EFAULT; 2492 2493 qp_info.sqe_size = qp->qm->sqe_size; 2494 qp_info.sq_depth = qp->sq_depth; 2495 qp_info.cq_depth = qp->cq_depth; 2496 2497 if (copy_to_user((void __user *)arg, &qp_info, 2498 sizeof(struct hisi_qp_info))) 2499 return -EFAULT; 2500 2501 return 0; 2502 } 2503 2504 return -EINVAL; 2505 } 2506 2507 /** 2508 * qm_hw_err_isolate() - Try to set the isolation status of the uacce device 2509 * according to user's configuration of error threshold. 2510 * @qm: the uacce device 2511 */ 2512 static int qm_hw_err_isolate(struct hisi_qm *qm) 2513 { 2514 struct qm_hw_err *err, *tmp, *hw_err; 2515 struct qm_err_isolate *isolate; 2516 u32 count = 0; 2517 2518 isolate = &qm->isolate_data; 2519 2520 #define SECONDS_PER_HOUR 3600 2521 2522 /* All the hw errs are processed by PF driver */ 2523 if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold) 2524 return 0; 2525 2526 hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL); 2527 if (!hw_err) 2528 return -ENOMEM; 2529 2530 /* 2531 * Time-stamp every slot AER error. Then check the AER error log when the 2532 * next device AER error occurred. if the device slot AER error count exceeds 2533 * the setting error threshold in one hour, the isolated state will be set 2534 * to true. And the AER error logs that exceed one hour will be cleared. 2535 */ 2536 mutex_lock(&isolate->isolate_lock); 2537 hw_err->timestamp = jiffies; 2538 list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) { 2539 if ((hw_err->timestamp - err->timestamp) / HZ > 2540 SECONDS_PER_HOUR) { 2541 list_del(&err->list); 2542 kfree(err); 2543 } else { 2544 count++; 2545 } 2546 } 2547 list_add(&hw_err->list, &isolate->qm_hw_errs); 2548 mutex_unlock(&isolate->isolate_lock); 2549 2550 if (count >= isolate->err_threshold) 2551 isolate->is_isolate = true; 2552 2553 return 0; 2554 } 2555 2556 static void qm_hw_err_destroy(struct hisi_qm *qm) 2557 { 2558 struct qm_hw_err *err, *tmp; 2559 2560 mutex_lock(&qm->isolate_data.isolate_lock); 2561 list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) { 2562 list_del(&err->list); 2563 kfree(err); 2564 } 2565 mutex_unlock(&qm->isolate_data.isolate_lock); 2566 } 2567 2568 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce) 2569 { 2570 struct hisi_qm *qm = uacce->priv; 2571 struct hisi_qm *pf_qm; 2572 2573 if (uacce->is_vf) 2574 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2575 else 2576 pf_qm = qm; 2577 2578 return pf_qm->isolate_data.is_isolate ? 2579 UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL; 2580 } 2581 2582 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num) 2583 { 2584 struct hisi_qm *qm = uacce->priv; 2585 2586 /* Must be set by PF */ 2587 if (uacce->is_vf) 2588 return -EPERM; 2589 2590 if (qm->isolate_data.is_isolate) 2591 return -EPERM; 2592 2593 qm->isolate_data.err_threshold = num; 2594 2595 /* After the policy is updated, need to reset the hardware err list */ 2596 qm_hw_err_destroy(qm); 2597 2598 return 0; 2599 } 2600 2601 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce) 2602 { 2603 struct hisi_qm *qm = uacce->priv; 2604 struct hisi_qm *pf_qm; 2605 2606 if (uacce->is_vf) { 2607 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2608 return pf_qm->isolate_data.err_threshold; 2609 } 2610 2611 return qm->isolate_data.err_threshold; 2612 } 2613 2614 static const struct uacce_ops uacce_qm_ops = { 2615 .get_available_instances = hisi_qm_get_available_instances, 2616 .get_queue = hisi_qm_uacce_get_queue, 2617 .put_queue = hisi_qm_uacce_put_queue, 2618 .start_queue = hisi_qm_uacce_start_queue, 2619 .stop_queue = hisi_qm_uacce_stop_queue, 2620 .mmap = hisi_qm_uacce_mmap, 2621 .ioctl = hisi_qm_uacce_ioctl, 2622 .is_q_updated = hisi_qm_is_q_updated, 2623 .get_isolate_state = hisi_qm_get_isolate_state, 2624 .isolate_err_threshold_write = hisi_qm_isolate_threshold_write, 2625 .isolate_err_threshold_read = hisi_qm_isolate_threshold_read, 2626 }; 2627 2628 static void qm_remove_uacce(struct hisi_qm *qm) 2629 { 2630 struct uacce_device *uacce = qm->uacce; 2631 2632 if (qm->use_sva) { 2633 qm_hw_err_destroy(qm); 2634 uacce_remove(uacce); 2635 qm->uacce = NULL; 2636 } 2637 } 2638 2639 static int qm_alloc_uacce(struct hisi_qm *qm) 2640 { 2641 struct pci_dev *pdev = qm->pdev; 2642 struct uacce_device *uacce; 2643 unsigned long mmio_page_nr; 2644 unsigned long dus_page_nr; 2645 u16 sq_depth, cq_depth; 2646 struct uacce_interface interface = { 2647 .flags = UACCE_DEV_SVA, 2648 .ops = &uacce_qm_ops, 2649 }; 2650 int ret; 2651 2652 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 2653 sizeof(interface.name)); 2654 if (ret < 0) 2655 return -ENAMETOOLONG; 2656 2657 uacce = uacce_alloc(&pdev->dev, &interface); 2658 if (IS_ERR(uacce)) 2659 return PTR_ERR(uacce); 2660 2661 if (uacce->flags & UACCE_DEV_SVA) { 2662 qm->use_sva = true; 2663 } else { 2664 /* only consider sva case */ 2665 qm_remove_uacce(qm); 2666 return -EINVAL; 2667 } 2668 2669 uacce->is_vf = pdev->is_virtfn; 2670 uacce->priv = qm; 2671 2672 if (qm->ver == QM_HW_V1) 2673 uacce->api_ver = HISI_QM_API_VER_BASE; 2674 else if (qm->ver == QM_HW_V2) 2675 uacce->api_ver = HISI_QM_API_VER2_BASE; 2676 else 2677 uacce->api_ver = HISI_QM_API_VER3_BASE; 2678 2679 if (qm->ver == QM_HW_V1) 2680 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2681 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2682 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2683 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2684 else 2685 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2686 2687 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 2688 2689 /* Add one more page for device or qp status */ 2690 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 2691 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 2692 PAGE_SHIFT; 2693 2694 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2695 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2696 2697 qm->uacce = uacce; 2698 INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs); 2699 mutex_init(&qm->isolate_data.isolate_lock); 2700 2701 return 0; 2702 } 2703 2704 /** 2705 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2706 * there is user on the QM, return failure without doing anything. 2707 * @qm: The qm needed to be fronzen. 2708 * 2709 * This function frozes QM, then we can do SRIOV disabling. 2710 */ 2711 static int qm_frozen(struct hisi_qm *qm) 2712 { 2713 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2714 return 0; 2715 2716 down_write(&qm->qps_lock); 2717 2718 if (!qm->qp_in_used) { 2719 qm->qp_in_used = qm->qp_num; 2720 up_write(&qm->qps_lock); 2721 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2722 return 0; 2723 } 2724 2725 up_write(&qm->qps_lock); 2726 2727 return -EBUSY; 2728 } 2729 2730 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2731 struct hisi_qm_list *qm_list) 2732 { 2733 struct hisi_qm *qm, *vf_qm; 2734 struct pci_dev *dev; 2735 int ret = 0; 2736 2737 if (!qm_list || !pdev) 2738 return -EINVAL; 2739 2740 /* Try to frozen all the VFs as disable SRIOV */ 2741 mutex_lock(&qm_list->lock); 2742 list_for_each_entry(qm, &qm_list->list, list) { 2743 dev = qm->pdev; 2744 if (dev == pdev) 2745 continue; 2746 if (pci_physfn(dev) == pdev) { 2747 vf_qm = pci_get_drvdata(dev); 2748 ret = qm_frozen(vf_qm); 2749 if (ret) 2750 goto frozen_fail; 2751 } 2752 } 2753 2754 frozen_fail: 2755 mutex_unlock(&qm_list->lock); 2756 2757 return ret; 2758 } 2759 2760 /** 2761 * hisi_qm_wait_task_finish() - Wait until the task is finished 2762 * when removing the driver. 2763 * @qm: The qm needed to wait for the task to finish. 2764 * @qm_list: The list of all available devices. 2765 */ 2766 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2767 { 2768 while (qm_frozen(qm) || 2769 ((qm->fun_type == QM_HW_PF) && 2770 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2771 msleep(WAIT_PERIOD); 2772 } 2773 2774 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2775 test_bit(QM_RESETTING, &qm->misc_ctl)) 2776 msleep(WAIT_PERIOD); 2777 2778 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2779 flush_work(&qm->cmd_process); 2780 2781 udelay(REMOVE_WAIT_DELAY); 2782 } 2783 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2784 2785 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2786 { 2787 struct device *dev = &qm->pdev->dev; 2788 struct qm_dma *qdma; 2789 int i; 2790 2791 for (i = num - 1; i >= 0; i--) { 2792 qdma = &qm->qp_array[i].qdma; 2793 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2794 kfree(qm->poll_data[i].qp_finish_id); 2795 } 2796 2797 kfree(qm->poll_data); 2798 kfree(qm->qp_array); 2799 } 2800 2801 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 2802 u16 sq_depth, u16 cq_depth) 2803 { 2804 struct device *dev = &qm->pdev->dev; 2805 size_t off = qm->sqe_size * sq_depth; 2806 struct hisi_qp *qp; 2807 int ret = -ENOMEM; 2808 2809 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 2810 GFP_KERNEL); 2811 if (!qm->poll_data[id].qp_finish_id) 2812 return -ENOMEM; 2813 2814 qp = &qm->qp_array[id]; 2815 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2816 GFP_KERNEL); 2817 if (!qp->qdma.va) 2818 goto err_free_qp_finish_id; 2819 2820 qp->sqe = qp->qdma.va; 2821 qp->sqe_dma = qp->qdma.dma; 2822 qp->cqe = qp->qdma.va + off; 2823 qp->cqe_dma = qp->qdma.dma + off; 2824 qp->qdma.size = dma_size; 2825 qp->sq_depth = sq_depth; 2826 qp->cq_depth = cq_depth; 2827 qp->qm = qm; 2828 qp->qp_id = id; 2829 2830 return 0; 2831 2832 err_free_qp_finish_id: 2833 kfree(qm->poll_data[id].qp_finish_id); 2834 return ret; 2835 } 2836 2837 static void hisi_qm_pre_init(struct hisi_qm *qm) 2838 { 2839 struct pci_dev *pdev = qm->pdev; 2840 2841 if (qm->ver == QM_HW_V1) 2842 qm->ops = &qm_hw_ops_v1; 2843 else if (qm->ver == QM_HW_V2) 2844 qm->ops = &qm_hw_ops_v2; 2845 else 2846 qm->ops = &qm_hw_ops_v3; 2847 2848 pci_set_drvdata(pdev, qm); 2849 mutex_init(&qm->mailbox_lock); 2850 init_rwsem(&qm->qps_lock); 2851 qm->qp_in_used = 0; 2852 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 2853 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 2854 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 2855 } 2856 } 2857 2858 static void qm_cmd_uninit(struct hisi_qm *qm) 2859 { 2860 u32 val; 2861 2862 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2863 return; 2864 2865 val = readl(qm->io_base + QM_IFC_INT_MASK); 2866 val |= QM_IFC_INT_DISABLE; 2867 writel(val, qm->io_base + QM_IFC_INT_MASK); 2868 } 2869 2870 static void qm_cmd_init(struct hisi_qm *qm) 2871 { 2872 u32 val; 2873 2874 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2875 return; 2876 2877 /* Clear communication interrupt source */ 2878 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 2879 2880 /* Enable pf to vf communication reg. */ 2881 val = readl(qm->io_base + QM_IFC_INT_MASK); 2882 val &= ~QM_IFC_INT_DISABLE; 2883 writel(val, qm->io_base + QM_IFC_INT_MASK); 2884 } 2885 2886 static void qm_put_pci_res(struct hisi_qm *qm) 2887 { 2888 struct pci_dev *pdev = qm->pdev; 2889 2890 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2891 iounmap(qm->db_io_base); 2892 2893 iounmap(qm->io_base); 2894 pci_release_mem_regions(pdev); 2895 } 2896 2897 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 2898 { 2899 struct pci_dev *pdev = qm->pdev; 2900 2901 pci_free_irq_vectors(pdev); 2902 qm_put_pci_res(qm); 2903 pci_disable_device(pdev); 2904 } 2905 2906 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 2907 { 2908 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 2909 writel(state, qm->io_base + QM_VF_STATE); 2910 } 2911 2912 static void hisi_qm_unint_work(struct hisi_qm *qm) 2913 { 2914 destroy_workqueue(qm->wq); 2915 } 2916 2917 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 2918 { 2919 struct device *dev = &qm->pdev->dev; 2920 2921 hisi_qp_memory_uninit(qm, qm->qp_num); 2922 if (qm->qdma.va) { 2923 hisi_qm_cache_wb(qm); 2924 dma_free_coherent(dev, qm->qdma.size, 2925 qm->qdma.va, qm->qdma.dma); 2926 } 2927 2928 idr_destroy(&qm->qp_idr); 2929 2930 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 2931 kfree(qm->factor); 2932 } 2933 2934 /** 2935 * hisi_qm_uninit() - Uninitialize qm. 2936 * @qm: The qm needed uninit. 2937 * 2938 * This function uninits qm related device resources. 2939 */ 2940 void hisi_qm_uninit(struct hisi_qm *qm) 2941 { 2942 qm_cmd_uninit(qm); 2943 hisi_qm_unint_work(qm); 2944 down_write(&qm->qps_lock); 2945 2946 if (!qm_avail_state(qm, QM_CLOSE)) { 2947 up_write(&qm->qps_lock); 2948 return; 2949 } 2950 2951 hisi_qm_memory_uninit(qm); 2952 hisi_qm_set_state(qm, QM_NOT_READY); 2953 up_write(&qm->qps_lock); 2954 2955 qm_remove_uacce(qm); 2956 qm_irqs_unregister(qm); 2957 hisi_qm_pci_uninit(qm); 2958 } 2959 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 2960 2961 /** 2962 * hisi_qm_get_vft() - Get vft from a qm. 2963 * @qm: The qm we want to get its vft. 2964 * @base: The base number of queue in vft. 2965 * @number: The number of queues in vft. 2966 * 2967 * We can allocate multiple queues to a qm by configuring virtual function 2968 * table. We get related configures by this function. Normally, we call this 2969 * function in VF driver to get the queue information. 2970 * 2971 * qm hw v1 does not support this interface. 2972 */ 2973 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 2974 { 2975 if (!base || !number) 2976 return -EINVAL; 2977 2978 if (!qm->ops->get_vft) { 2979 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 2980 return -EINVAL; 2981 } 2982 2983 return qm->ops->get_vft(qm, base, number); 2984 } 2985 2986 /** 2987 * hisi_qm_set_vft() - Set vft to a qm. 2988 * @qm: The qm we want to set its vft. 2989 * @fun_num: The function number. 2990 * @base: The base number of queue in vft. 2991 * @number: The number of queues in vft. 2992 * 2993 * This function is alway called in PF driver, it is used to assign queues 2994 * among PF and VFs. 2995 * 2996 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 2997 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 2998 * (VF function number 0x2) 2999 */ 3000 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 3001 u32 number) 3002 { 3003 u32 max_q_num = qm->ctrl_qp_num; 3004 3005 if (base >= max_q_num || number > max_q_num || 3006 (base + number) > max_q_num) 3007 return -EINVAL; 3008 3009 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 3010 } 3011 3012 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 3013 { 3014 struct hisi_qm_status *status = &qm->status; 3015 3016 status->eq_head = 0; 3017 status->aeq_head = 0; 3018 status->eqc_phase = true; 3019 status->aeqc_phase = true; 3020 } 3021 3022 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 3023 { 3024 /* Clear eq/aeq interrupt source */ 3025 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 3026 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 3027 3028 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 3029 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 3030 } 3031 3032 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 3033 { 3034 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 3035 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 3036 } 3037 3038 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 3039 { 3040 struct device *dev = &qm->pdev->dev; 3041 struct qm_eqc *eqc; 3042 dma_addr_t eqc_dma; 3043 int ret; 3044 3045 eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); 3046 if (!eqc) 3047 return -ENOMEM; 3048 3049 eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3050 eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3051 if (qm->ver == QM_HW_V1) 3052 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3053 eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3054 3055 eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), 3056 DMA_TO_DEVICE); 3057 if (dma_mapping_error(dev, eqc_dma)) { 3058 kfree(eqc); 3059 return -ENOMEM; 3060 } 3061 3062 ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); 3063 dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); 3064 kfree(eqc); 3065 3066 return ret; 3067 } 3068 3069 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3070 { 3071 struct device *dev = &qm->pdev->dev; 3072 struct qm_aeqc *aeqc; 3073 dma_addr_t aeqc_dma; 3074 int ret; 3075 3076 aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); 3077 if (!aeqc) 3078 return -ENOMEM; 3079 3080 aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3081 aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3082 aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3083 3084 aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), 3085 DMA_TO_DEVICE); 3086 if (dma_mapping_error(dev, aeqc_dma)) { 3087 kfree(aeqc); 3088 return -ENOMEM; 3089 } 3090 3091 ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); 3092 dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); 3093 kfree(aeqc); 3094 3095 return ret; 3096 } 3097 3098 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3099 { 3100 struct device *dev = &qm->pdev->dev; 3101 int ret; 3102 3103 qm_init_eq_aeq_status(qm); 3104 3105 ret = qm_eq_ctx_cfg(qm); 3106 if (ret) { 3107 dev_err(dev, "Set eqc failed!\n"); 3108 return ret; 3109 } 3110 3111 return qm_aeq_ctx_cfg(qm); 3112 } 3113 3114 static int __hisi_qm_start(struct hisi_qm *qm) 3115 { 3116 int ret; 3117 3118 WARN_ON(!qm->qdma.va); 3119 3120 if (qm->fun_type == QM_HW_PF) { 3121 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3122 if (ret) 3123 return ret; 3124 } 3125 3126 ret = qm_eq_aeq_ctx_cfg(qm); 3127 if (ret) 3128 return ret; 3129 3130 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3131 if (ret) 3132 return ret; 3133 3134 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3135 if (ret) 3136 return ret; 3137 3138 qm_init_prefetch(qm); 3139 qm_enable_eq_aeq_interrupts(qm); 3140 3141 return 0; 3142 } 3143 3144 /** 3145 * hisi_qm_start() - start qm 3146 * @qm: The qm to be started. 3147 * 3148 * This function starts a qm, then we can allocate qp from this qm. 3149 */ 3150 int hisi_qm_start(struct hisi_qm *qm) 3151 { 3152 struct device *dev = &qm->pdev->dev; 3153 int ret = 0; 3154 3155 down_write(&qm->qps_lock); 3156 3157 if (!qm_avail_state(qm, QM_START)) { 3158 up_write(&qm->qps_lock); 3159 return -EPERM; 3160 } 3161 3162 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3163 3164 if (!qm->qp_num) { 3165 dev_err(dev, "qp_num should not be 0\n"); 3166 ret = -EINVAL; 3167 goto err_unlock; 3168 } 3169 3170 ret = __hisi_qm_start(qm); 3171 if (!ret) 3172 atomic_set(&qm->status.flags, QM_START); 3173 3174 hisi_qm_set_state(qm, QM_READY); 3175 err_unlock: 3176 up_write(&qm->qps_lock); 3177 return ret; 3178 } 3179 EXPORT_SYMBOL_GPL(hisi_qm_start); 3180 3181 static int qm_restart(struct hisi_qm *qm) 3182 { 3183 struct device *dev = &qm->pdev->dev; 3184 struct hisi_qp *qp; 3185 int ret, i; 3186 3187 ret = hisi_qm_start(qm); 3188 if (ret < 0) 3189 return ret; 3190 3191 down_write(&qm->qps_lock); 3192 for (i = 0; i < qm->qp_num; i++) { 3193 qp = &qm->qp_array[i]; 3194 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3195 qp->is_resetting == true) { 3196 ret = qm_start_qp_nolock(qp, 0); 3197 if (ret < 0) { 3198 dev_err(dev, "Failed to start qp%d!\n", i); 3199 3200 up_write(&qm->qps_lock); 3201 return ret; 3202 } 3203 qp->is_resetting = false; 3204 } 3205 } 3206 up_write(&qm->qps_lock); 3207 3208 return 0; 3209 } 3210 3211 /* Stop started qps in reset flow */ 3212 static int qm_stop_started_qp(struct hisi_qm *qm) 3213 { 3214 struct device *dev = &qm->pdev->dev; 3215 struct hisi_qp *qp; 3216 int i, ret; 3217 3218 for (i = 0; i < qm->qp_num; i++) { 3219 qp = &qm->qp_array[i]; 3220 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 3221 qp->is_resetting = true; 3222 ret = qm_stop_qp_nolock(qp); 3223 if (ret < 0) { 3224 dev_err(dev, "Failed to stop qp%d!\n", i); 3225 return ret; 3226 } 3227 } 3228 } 3229 3230 return 0; 3231 } 3232 3233 /** 3234 * qm_clear_queues() - Clear all queues memory in a qm. 3235 * @qm: The qm in which the queues will be cleared. 3236 * 3237 * This function clears all queues memory in a qm. Reset of accelerator can 3238 * use this to clear queues. 3239 */ 3240 static void qm_clear_queues(struct hisi_qm *qm) 3241 { 3242 struct hisi_qp *qp; 3243 int i; 3244 3245 for (i = 0; i < qm->qp_num; i++) { 3246 qp = &qm->qp_array[i]; 3247 if (qp->is_in_kernel && qp->is_resetting) 3248 memset(qp->qdma.va, 0, qp->qdma.size); 3249 } 3250 3251 memset(qm->qdma.va, 0, qm->qdma.size); 3252 } 3253 3254 /** 3255 * hisi_qm_stop() - Stop a qm. 3256 * @qm: The qm which will be stopped. 3257 * @r: The reason to stop qm. 3258 * 3259 * This function stops qm and its qps, then qm can not accept request. 3260 * Related resources are not released at this state, we can use hisi_qm_start 3261 * to let qm start again. 3262 */ 3263 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3264 { 3265 struct device *dev = &qm->pdev->dev; 3266 int ret = 0; 3267 3268 down_write(&qm->qps_lock); 3269 3270 qm->status.stop_reason = r; 3271 if (!qm_avail_state(qm, QM_STOP)) { 3272 ret = -EPERM; 3273 goto err_unlock; 3274 } 3275 3276 if (qm->status.stop_reason == QM_SOFT_RESET || 3277 qm->status.stop_reason == QM_DOWN) { 3278 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3279 ret = qm_stop_started_qp(qm); 3280 if (ret < 0) { 3281 dev_err(dev, "Failed to stop started qp!\n"); 3282 goto err_unlock; 3283 } 3284 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3285 } 3286 3287 qm_disable_eq_aeq_interrupts(qm); 3288 if (qm->fun_type == QM_HW_PF) { 3289 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3290 if (ret < 0) { 3291 dev_err(dev, "Failed to set vft!\n"); 3292 ret = -EBUSY; 3293 goto err_unlock; 3294 } 3295 } 3296 3297 qm_clear_queues(qm); 3298 atomic_set(&qm->status.flags, QM_STOP); 3299 3300 err_unlock: 3301 up_write(&qm->qps_lock); 3302 return ret; 3303 } 3304 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3305 3306 static void qm_hw_error_init(struct hisi_qm *qm) 3307 { 3308 if (!qm->ops->hw_error_init) { 3309 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3310 return; 3311 } 3312 3313 qm->ops->hw_error_init(qm); 3314 } 3315 3316 static void qm_hw_error_uninit(struct hisi_qm *qm) 3317 { 3318 if (!qm->ops->hw_error_uninit) { 3319 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3320 return; 3321 } 3322 3323 qm->ops->hw_error_uninit(qm); 3324 } 3325 3326 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3327 { 3328 if (!qm->ops->hw_error_handle) { 3329 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3330 return ACC_ERR_NONE; 3331 } 3332 3333 return qm->ops->hw_error_handle(qm); 3334 } 3335 3336 /** 3337 * hisi_qm_dev_err_init() - Initialize device error configuration. 3338 * @qm: The qm for which we want to do error initialization. 3339 * 3340 * Initialize QM and device error related configuration. 3341 */ 3342 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3343 { 3344 if (qm->fun_type == QM_HW_VF) 3345 return; 3346 3347 qm_hw_error_init(qm); 3348 3349 if (!qm->err_ini->hw_err_enable) { 3350 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3351 return; 3352 } 3353 qm->err_ini->hw_err_enable(qm); 3354 } 3355 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3356 3357 /** 3358 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3359 * @qm: The qm for which we want to do error uninitialization. 3360 * 3361 * Uninitialize QM and device error related configuration. 3362 */ 3363 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3364 { 3365 if (qm->fun_type == QM_HW_VF) 3366 return; 3367 3368 qm_hw_error_uninit(qm); 3369 3370 if (!qm->err_ini->hw_err_disable) { 3371 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3372 return; 3373 } 3374 qm->err_ini->hw_err_disable(qm); 3375 } 3376 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3377 3378 /** 3379 * hisi_qm_free_qps() - free multiple queue pairs. 3380 * @qps: The queue pairs need to be freed. 3381 * @qp_num: The num of queue pairs. 3382 */ 3383 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3384 { 3385 int i; 3386 3387 if (!qps || qp_num <= 0) 3388 return; 3389 3390 for (i = qp_num - 1; i >= 0; i--) 3391 hisi_qm_release_qp(qps[i]); 3392 } 3393 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3394 3395 static void free_list(struct list_head *head) 3396 { 3397 struct hisi_qm_resource *res, *tmp; 3398 3399 list_for_each_entry_safe(res, tmp, head, list) { 3400 list_del(&res->list); 3401 kfree(res); 3402 } 3403 } 3404 3405 static int hisi_qm_sort_devices(int node, struct list_head *head, 3406 struct hisi_qm_list *qm_list) 3407 { 3408 struct hisi_qm_resource *res, *tmp; 3409 struct hisi_qm *qm; 3410 struct list_head *n; 3411 struct device *dev; 3412 int dev_node; 3413 3414 list_for_each_entry(qm, &qm_list->list, list) { 3415 dev = &qm->pdev->dev; 3416 3417 dev_node = dev_to_node(dev); 3418 if (dev_node < 0) 3419 dev_node = 0; 3420 3421 res = kzalloc(sizeof(*res), GFP_KERNEL); 3422 if (!res) 3423 return -ENOMEM; 3424 3425 res->qm = qm; 3426 res->distance = node_distance(dev_node, node); 3427 n = head; 3428 list_for_each_entry(tmp, head, list) { 3429 if (res->distance < tmp->distance) { 3430 n = &tmp->list; 3431 break; 3432 } 3433 } 3434 list_add_tail(&res->list, n); 3435 } 3436 3437 return 0; 3438 } 3439 3440 /** 3441 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3442 * @qm_list: The list of all available devices. 3443 * @qp_num: The number of queue pairs need created. 3444 * @alg_type: The algorithm type. 3445 * @node: The numa node. 3446 * @qps: The queue pairs need created. 3447 * 3448 * This function will sort all available device according to numa distance. 3449 * Then try to create all queue pairs from one device, if all devices do 3450 * not meet the requirements will return error. 3451 */ 3452 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3453 u8 alg_type, int node, struct hisi_qp **qps) 3454 { 3455 struct hisi_qm_resource *tmp; 3456 int ret = -ENODEV; 3457 LIST_HEAD(head); 3458 int i; 3459 3460 if (!qps || !qm_list || qp_num <= 0) 3461 return -EINVAL; 3462 3463 mutex_lock(&qm_list->lock); 3464 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3465 mutex_unlock(&qm_list->lock); 3466 goto err; 3467 } 3468 3469 list_for_each_entry(tmp, &head, list) { 3470 for (i = 0; i < qp_num; i++) { 3471 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3472 if (IS_ERR(qps[i])) { 3473 hisi_qm_free_qps(qps, i); 3474 break; 3475 } 3476 } 3477 3478 if (i == qp_num) { 3479 ret = 0; 3480 break; 3481 } 3482 } 3483 3484 mutex_unlock(&qm_list->lock); 3485 if (ret) 3486 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3487 node, alg_type, qp_num); 3488 3489 err: 3490 free_list(&head); 3491 return ret; 3492 } 3493 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3494 3495 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3496 { 3497 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3498 u32 max_qp_num = qm->max_qp_num; 3499 u32 q_base = qm->qp_num; 3500 int ret; 3501 3502 if (!num_vfs) 3503 return -EINVAL; 3504 3505 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3506 3507 /* If vfs_q_num is less than num_vfs, return error. */ 3508 if (vfs_q_num < num_vfs) 3509 return -EINVAL; 3510 3511 q_num = vfs_q_num / num_vfs; 3512 remain_q_num = vfs_q_num % num_vfs; 3513 3514 for (i = num_vfs; i > 0; i--) { 3515 /* 3516 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3517 * remaining queues equally. 3518 */ 3519 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3520 act_q_num = q_num + remain_q_num; 3521 remain_q_num = 0; 3522 } else if (remain_q_num > 0) { 3523 act_q_num = q_num + 1; 3524 remain_q_num--; 3525 } else { 3526 act_q_num = q_num; 3527 } 3528 3529 act_q_num = min(act_q_num, max_qp_num); 3530 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3531 if (ret) { 3532 for (j = num_vfs; j > i; j--) 3533 hisi_qm_set_vft(qm, j, 0, 0); 3534 return ret; 3535 } 3536 q_base += act_q_num; 3537 } 3538 3539 return 0; 3540 } 3541 3542 static int qm_clear_vft_config(struct hisi_qm *qm) 3543 { 3544 int ret; 3545 u32 i; 3546 3547 for (i = 1; i <= qm->vfs_num; i++) { 3548 ret = hisi_qm_set_vft(qm, i, 0, 0); 3549 if (ret) 3550 return ret; 3551 } 3552 qm->vfs_num = 0; 3553 3554 return 0; 3555 } 3556 3557 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 3558 { 3559 struct device *dev = &qm->pdev->dev; 3560 u32 ir = qos * QM_QOS_RATE; 3561 int ret, total_vfs, i; 3562 3563 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 3564 if (fun_index > total_vfs) 3565 return -EINVAL; 3566 3567 qm->factor[fun_index].func_qos = qos; 3568 3569 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 3570 if (ret) { 3571 dev_err(dev, "failed to calculate shaper parameter!\n"); 3572 return -EINVAL; 3573 } 3574 3575 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 3576 /* The base number of queue reuse for different alg type */ 3577 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 3578 if (ret) { 3579 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 3580 return -EINVAL; 3581 } 3582 } 3583 3584 return 0; 3585 } 3586 3587 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 3588 { 3589 u64 cir_u = 0, cir_b = 0, cir_s = 0; 3590 u64 shaper_vft, ir_calc, ir; 3591 unsigned int val; 3592 u32 error_rate; 3593 int ret; 3594 3595 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3596 val & BIT(0), POLL_PERIOD, 3597 POLL_TIMEOUT); 3598 if (ret) 3599 return 0; 3600 3601 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 3602 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 3603 writel(fun_index, qm->io_base + QM_VFT_CFG); 3604 3605 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 3606 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 3607 3608 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3609 val & BIT(0), POLL_PERIOD, 3610 POLL_TIMEOUT); 3611 if (ret) 3612 return 0; 3613 3614 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 3615 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 3616 3617 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 3618 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 3619 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 3620 3621 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 3622 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 3623 3624 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 3625 3626 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 3627 3628 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 3629 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 3630 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 3631 return 0; 3632 } 3633 3634 return ir; 3635 } 3636 3637 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 3638 { 3639 struct device *dev = &qm->pdev->dev; 3640 u64 mb_cmd; 3641 u32 qos; 3642 int ret; 3643 3644 qos = qm_get_shaper_vft_qos(qm, fun_num); 3645 if (!qos) { 3646 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 3647 return; 3648 } 3649 3650 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 3651 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 3652 if (ret) 3653 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 3654 } 3655 3656 static int qm_vf_read_qos(struct hisi_qm *qm) 3657 { 3658 int cnt = 0; 3659 int ret = -EINVAL; 3660 3661 /* reset mailbox qos val */ 3662 qm->mb_qos = 0; 3663 3664 /* vf ping pf to get function qos */ 3665 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 3666 if (ret) { 3667 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 3668 return ret; 3669 } 3670 3671 while (true) { 3672 msleep(QM_WAIT_DST_ACK); 3673 if (qm->mb_qos) 3674 break; 3675 3676 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 3677 pci_err(qm->pdev, "PF ping VF timeout!\n"); 3678 return -ETIMEDOUT; 3679 } 3680 } 3681 3682 return ret; 3683 } 3684 3685 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 3686 size_t count, loff_t *pos) 3687 { 3688 struct hisi_qm *qm = filp->private_data; 3689 char tbuf[QM_DBG_READ_LEN]; 3690 u32 qos_val, ir; 3691 int ret; 3692 3693 ret = hisi_qm_get_dfx_access(qm); 3694 if (ret) 3695 return ret; 3696 3697 /* Mailbox and reset cannot be operated at the same time */ 3698 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3699 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 3700 ret = -EAGAIN; 3701 goto err_put_dfx_access; 3702 } 3703 3704 if (qm->fun_type == QM_HW_PF) { 3705 ir = qm_get_shaper_vft_qos(qm, 0); 3706 } else { 3707 ret = qm_vf_read_qos(qm); 3708 if (ret) 3709 goto err_get_status; 3710 ir = qm->mb_qos; 3711 } 3712 3713 qos_val = ir / QM_QOS_RATE; 3714 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 3715 3716 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 3717 3718 err_get_status: 3719 clear_bit(QM_RESETTING, &qm->misc_ctl); 3720 err_put_dfx_access: 3721 hisi_qm_put_dfx_access(qm); 3722 return ret; 3723 } 3724 3725 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 3726 unsigned long *val, 3727 unsigned int *fun_index) 3728 { 3729 const struct bus_type *bus_type = qm->pdev->dev.bus; 3730 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 3731 char val_buf[QM_DBG_READ_LEN] = {0}; 3732 struct pci_dev *pdev; 3733 struct device *dev; 3734 int ret; 3735 3736 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 3737 if (ret != QM_QOS_PARAM_NUM) 3738 return -EINVAL; 3739 3740 ret = kstrtoul(val_buf, 10, val); 3741 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 3742 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 3743 return -EINVAL; 3744 } 3745 3746 dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); 3747 if (!dev) { 3748 pci_err(qm->pdev, "input pci bdf number is error!\n"); 3749 return -ENODEV; 3750 } 3751 3752 pdev = container_of(dev, struct pci_dev, dev); 3753 3754 *fun_index = pdev->devfn; 3755 3756 return 0; 3757 } 3758 3759 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 3760 size_t count, loff_t *pos) 3761 { 3762 struct hisi_qm *qm = filp->private_data; 3763 char tbuf[QM_DBG_READ_LEN]; 3764 unsigned int fun_index; 3765 unsigned long val; 3766 int len, ret; 3767 3768 if (*pos != 0) 3769 return 0; 3770 3771 if (count >= QM_DBG_READ_LEN) 3772 return -ENOSPC; 3773 3774 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 3775 if (len < 0) 3776 return len; 3777 3778 tbuf[len] = '\0'; 3779 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 3780 if (ret) 3781 return ret; 3782 3783 /* Mailbox and reset cannot be operated at the same time */ 3784 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3785 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 3786 return -EAGAIN; 3787 } 3788 3789 ret = qm_pm_get_sync(qm); 3790 if (ret) { 3791 ret = -EINVAL; 3792 goto err_get_status; 3793 } 3794 3795 ret = qm_func_shaper_enable(qm, fun_index, val); 3796 if (ret) { 3797 pci_err(qm->pdev, "failed to enable function shaper!\n"); 3798 ret = -EINVAL; 3799 goto err_put_sync; 3800 } 3801 3802 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 3803 fun_index, val); 3804 ret = count; 3805 3806 err_put_sync: 3807 qm_pm_put_sync(qm); 3808 err_get_status: 3809 clear_bit(QM_RESETTING, &qm->misc_ctl); 3810 return ret; 3811 } 3812 3813 static const struct file_operations qm_algqos_fops = { 3814 .owner = THIS_MODULE, 3815 .open = simple_open, 3816 .read = qm_algqos_read, 3817 .write = qm_algqos_write, 3818 }; 3819 3820 /** 3821 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 3822 * @qm: The qm for which we want to add debugfs files. 3823 * 3824 * Create function qos debugfs files, VF ping PF to get function qos. 3825 */ 3826 void hisi_qm_set_algqos_init(struct hisi_qm *qm) 3827 { 3828 if (qm->fun_type == QM_HW_PF) 3829 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 3830 qm, &qm_algqos_fops); 3831 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3832 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 3833 qm, &qm_algqos_fops); 3834 } 3835 3836 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 3837 { 3838 int i; 3839 3840 for (i = 1; i <= total_func; i++) 3841 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 3842 } 3843 3844 /** 3845 * hisi_qm_sriov_enable() - enable virtual functions 3846 * @pdev: the PCIe device 3847 * @max_vfs: the number of virtual functions to enable 3848 * 3849 * Returns the number of enabled VFs. If there are VFs enabled already or 3850 * max_vfs is more than the total number of device can be enabled, returns 3851 * failure. 3852 */ 3853 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3854 { 3855 struct hisi_qm *qm = pci_get_drvdata(pdev); 3856 int pre_existing_vfs, num_vfs, total_vfs, ret; 3857 3858 ret = qm_pm_get_sync(qm); 3859 if (ret) 3860 return ret; 3861 3862 total_vfs = pci_sriov_get_totalvfs(pdev); 3863 pre_existing_vfs = pci_num_vf(pdev); 3864 if (pre_existing_vfs) { 3865 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3866 pre_existing_vfs); 3867 goto err_put_sync; 3868 } 3869 3870 if (max_vfs > total_vfs) { 3871 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 3872 ret = -ERANGE; 3873 goto err_put_sync; 3874 } 3875 3876 num_vfs = max_vfs; 3877 3878 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3879 hisi_qm_init_vf_qos(qm, num_vfs); 3880 3881 ret = qm_vf_q_assign(qm, num_vfs); 3882 if (ret) { 3883 pci_err(pdev, "Can't assign queues for VF!\n"); 3884 goto err_put_sync; 3885 } 3886 3887 qm->vfs_num = num_vfs; 3888 3889 ret = pci_enable_sriov(pdev, num_vfs); 3890 if (ret) { 3891 pci_err(pdev, "Can't enable VF!\n"); 3892 qm_clear_vft_config(qm); 3893 goto err_put_sync; 3894 } 3895 3896 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3897 3898 return num_vfs; 3899 3900 err_put_sync: 3901 qm_pm_put_sync(qm); 3902 return ret; 3903 } 3904 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3905 3906 /** 3907 * hisi_qm_sriov_disable - disable virtual functions 3908 * @pdev: the PCI device. 3909 * @is_frozen: true when all the VFs are frozen. 3910 * 3911 * Return failure if there are VFs assigned already or VF is in used. 3912 */ 3913 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3914 { 3915 struct hisi_qm *qm = pci_get_drvdata(pdev); 3916 int ret; 3917 3918 if (pci_vfs_assigned(pdev)) { 3919 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3920 return -EPERM; 3921 } 3922 3923 /* While VF is in used, SRIOV cannot be disabled. */ 3924 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 3925 pci_err(pdev, "Task is using its VF!\n"); 3926 return -EBUSY; 3927 } 3928 3929 pci_disable_sriov(pdev); 3930 3931 ret = qm_clear_vft_config(qm); 3932 if (ret) 3933 return ret; 3934 3935 qm_pm_put_sync(qm); 3936 3937 return 0; 3938 } 3939 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 3940 3941 /** 3942 * hisi_qm_sriov_configure - configure the number of VFs 3943 * @pdev: The PCI device 3944 * @num_vfs: The number of VFs need enabled 3945 * 3946 * Enable SR-IOV according to num_vfs, 0 means disable. 3947 */ 3948 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 3949 { 3950 if (num_vfs == 0) 3951 return hisi_qm_sriov_disable(pdev, false); 3952 else 3953 return hisi_qm_sriov_enable(pdev, num_vfs); 3954 } 3955 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 3956 3957 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 3958 { 3959 u32 err_sts; 3960 3961 if (!qm->err_ini->get_dev_hw_err_status) { 3962 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 3963 return ACC_ERR_NONE; 3964 } 3965 3966 /* get device hardware error status */ 3967 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 3968 if (err_sts) { 3969 if (err_sts & qm->err_info.ecc_2bits_mask) 3970 qm->err_status.is_dev_ecc_mbit = true; 3971 3972 if (qm->err_ini->log_dev_hw_err) 3973 qm->err_ini->log_dev_hw_err(qm, err_sts); 3974 3975 if (err_sts & qm->err_info.dev_reset_mask) 3976 return ACC_ERR_NEED_RESET; 3977 3978 if (qm->err_ini->clear_dev_hw_err_status) 3979 qm->err_ini->clear_dev_hw_err_status(qm, err_sts); 3980 } 3981 3982 return ACC_ERR_RECOVERED; 3983 } 3984 3985 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 3986 { 3987 enum acc_err_result qm_ret, dev_ret; 3988 3989 /* log qm error */ 3990 qm_ret = qm_hw_error_handle(qm); 3991 3992 /* log device error */ 3993 dev_ret = qm_dev_err_handle(qm); 3994 3995 return (qm_ret == ACC_ERR_NEED_RESET || 3996 dev_ret == ACC_ERR_NEED_RESET) ? 3997 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 3998 } 3999 4000 /** 4001 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 4002 * @pdev: The PCI device which need report error. 4003 * @state: The connectivity between CPU and device. 4004 * 4005 * We register this function into PCIe AER handlers, It will report device or 4006 * qm hardware error status when error occur. 4007 */ 4008 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 4009 pci_channel_state_t state) 4010 { 4011 struct hisi_qm *qm = pci_get_drvdata(pdev); 4012 enum acc_err_result ret; 4013 4014 if (pdev->is_virtfn) 4015 return PCI_ERS_RESULT_NONE; 4016 4017 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 4018 if (state == pci_channel_io_perm_failure) 4019 return PCI_ERS_RESULT_DISCONNECT; 4020 4021 ret = qm_process_dev_error(qm); 4022 if (ret == ACC_ERR_NEED_RESET) 4023 return PCI_ERS_RESULT_NEED_RESET; 4024 4025 return PCI_ERS_RESULT_RECOVERED; 4026 } 4027 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 4028 4029 static int qm_check_req_recv(struct hisi_qm *qm) 4030 { 4031 struct pci_dev *pdev = qm->pdev; 4032 int ret; 4033 u32 val; 4034 4035 if (qm->ver >= QM_HW_V3) 4036 return 0; 4037 4038 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 4039 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4040 (val == ACC_VENDOR_ID_VALUE), 4041 POLL_PERIOD, POLL_TIMEOUT); 4042 if (ret) { 4043 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 4044 return ret; 4045 } 4046 4047 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 4048 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4049 (val == PCI_VENDOR_ID_HUAWEI), 4050 POLL_PERIOD, POLL_TIMEOUT); 4051 if (ret) 4052 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 4053 4054 return ret; 4055 } 4056 4057 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 4058 { 4059 struct pci_dev *pdev = qm->pdev; 4060 u16 cmd; 4061 int i; 4062 4063 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4064 if (set) 4065 cmd |= PCI_COMMAND_MEMORY; 4066 else 4067 cmd &= ~PCI_COMMAND_MEMORY; 4068 4069 pci_write_config_word(pdev, PCI_COMMAND, cmd); 4070 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4071 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4072 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 4073 return 0; 4074 4075 udelay(1); 4076 } 4077 4078 return -ETIMEDOUT; 4079 } 4080 4081 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 4082 { 4083 struct pci_dev *pdev = qm->pdev; 4084 u16 sriov_ctrl; 4085 int pos; 4086 int i; 4087 4088 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 4089 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4090 if (set) 4091 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4092 else 4093 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4094 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4095 4096 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4097 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4098 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4099 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4100 return 0; 4101 4102 udelay(1); 4103 } 4104 4105 return -ETIMEDOUT; 4106 } 4107 4108 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4109 enum qm_stop_reason stop_reason) 4110 { 4111 struct hisi_qm_list *qm_list = qm->qm_list; 4112 struct pci_dev *pdev = qm->pdev; 4113 struct pci_dev *virtfn; 4114 struct hisi_qm *vf_qm; 4115 int ret = 0; 4116 4117 mutex_lock(&qm_list->lock); 4118 list_for_each_entry(vf_qm, &qm_list->list, list) { 4119 virtfn = vf_qm->pdev; 4120 if (virtfn == pdev) 4121 continue; 4122 4123 if (pci_physfn(virtfn) == pdev) { 4124 /* save VFs PCIE BAR configuration */ 4125 pci_save_state(virtfn); 4126 4127 ret = hisi_qm_stop(vf_qm, stop_reason); 4128 if (ret) 4129 goto stop_fail; 4130 } 4131 } 4132 4133 stop_fail: 4134 mutex_unlock(&qm_list->lock); 4135 return ret; 4136 } 4137 4138 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 4139 enum qm_stop_reason stop_reason) 4140 { 4141 struct pci_dev *pdev = qm->pdev; 4142 int ret; 4143 4144 if (!qm->vfs_num) 4145 return 0; 4146 4147 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4148 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4149 ret = qm_ping_all_vfs(qm, cmd); 4150 if (ret) 4151 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 4152 } else { 4153 ret = qm_vf_reset_prepare(qm, stop_reason); 4154 if (ret) 4155 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4156 } 4157 4158 return ret; 4159 } 4160 4161 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4162 { 4163 struct pci_dev *pdev = qm->pdev; 4164 int ret; 4165 4166 ret = qm_reset_prepare_ready(qm); 4167 if (ret) { 4168 pci_err(pdev, "Controller reset not ready!\n"); 4169 return ret; 4170 } 4171 4172 /* PF obtains the information of VF by querying the register. */ 4173 qm_cmd_uninit(qm); 4174 4175 /* Whether VFs stop successfully, soft reset will continue. */ 4176 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4177 if (ret) 4178 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4179 4180 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4181 if (ret) { 4182 pci_err(pdev, "Fails to stop QM!\n"); 4183 qm_reset_bit_clear(qm); 4184 return ret; 4185 } 4186 4187 if (qm->use_sva) { 4188 ret = qm_hw_err_isolate(qm); 4189 if (ret) 4190 pci_err(pdev, "failed to isolate hw err!\n"); 4191 } 4192 4193 ret = qm_wait_vf_prepare_finish(qm); 4194 if (ret) 4195 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4196 4197 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4198 4199 return 0; 4200 } 4201 4202 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4203 { 4204 u32 nfe_enb = 0; 4205 4206 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4207 if (qm->ver >= QM_HW_V3) 4208 return; 4209 4210 if (!qm->err_status.is_dev_ecc_mbit && 4211 qm->err_status.is_qm_ecc_mbit && 4212 qm->err_ini->close_axi_master_ooo) { 4213 qm->err_ini->close_axi_master_ooo(qm); 4214 } else if (qm->err_status.is_dev_ecc_mbit && 4215 !qm->err_status.is_qm_ecc_mbit && 4216 !qm->err_ini->close_axi_master_ooo) { 4217 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4218 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4219 qm->io_base + QM_RAS_NFE_ENABLE); 4220 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4221 } 4222 } 4223 4224 static int qm_soft_reset(struct hisi_qm *qm) 4225 { 4226 struct pci_dev *pdev = qm->pdev; 4227 int ret; 4228 u32 val; 4229 4230 /* Ensure all doorbells and mailboxes received by QM */ 4231 ret = qm_check_req_recv(qm); 4232 if (ret) 4233 return ret; 4234 4235 if (qm->vfs_num) { 4236 ret = qm_set_vf_mse(qm, false); 4237 if (ret) { 4238 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4239 return ret; 4240 } 4241 } 4242 4243 ret = qm->ops->set_msi(qm, false); 4244 if (ret) { 4245 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4246 return ret; 4247 } 4248 4249 qm_dev_ecc_mbit_handle(qm); 4250 4251 /* OOO register set and check */ 4252 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 4253 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4254 4255 /* If bus lock, reset chip */ 4256 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4257 val, 4258 (val == ACC_MASTER_TRANS_RETURN_RW), 4259 POLL_PERIOD, POLL_TIMEOUT); 4260 if (ret) { 4261 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 4262 return ret; 4263 } 4264 4265 if (qm->err_ini->close_sva_prefetch) 4266 qm->err_ini->close_sva_prefetch(qm); 4267 4268 ret = qm_set_pf_mse(qm, false); 4269 if (ret) { 4270 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4271 return ret; 4272 } 4273 4274 /* The reset related sub-control registers are not in PCI BAR */ 4275 if (ACPI_HANDLE(&pdev->dev)) { 4276 unsigned long long value = 0; 4277 acpi_status s; 4278 4279 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4280 qm->err_info.acpi_rst, 4281 NULL, &value); 4282 if (ACPI_FAILURE(s)) { 4283 pci_err(pdev, "NO controller reset method!\n"); 4284 return -EIO; 4285 } 4286 4287 if (value) { 4288 pci_err(pdev, "Reset step %llu failed!\n", value); 4289 return -EIO; 4290 } 4291 } else { 4292 pci_err(pdev, "No reset method!\n"); 4293 return -EINVAL; 4294 } 4295 4296 return 0; 4297 } 4298 4299 static int qm_vf_reset_done(struct hisi_qm *qm) 4300 { 4301 struct hisi_qm_list *qm_list = qm->qm_list; 4302 struct pci_dev *pdev = qm->pdev; 4303 struct pci_dev *virtfn; 4304 struct hisi_qm *vf_qm; 4305 int ret = 0; 4306 4307 mutex_lock(&qm_list->lock); 4308 list_for_each_entry(vf_qm, &qm_list->list, list) { 4309 virtfn = vf_qm->pdev; 4310 if (virtfn == pdev) 4311 continue; 4312 4313 if (pci_physfn(virtfn) == pdev) { 4314 /* enable VFs PCIE BAR configuration */ 4315 pci_restore_state(virtfn); 4316 4317 ret = qm_restart(vf_qm); 4318 if (ret) 4319 goto restart_fail; 4320 } 4321 } 4322 4323 restart_fail: 4324 mutex_unlock(&qm_list->lock); 4325 return ret; 4326 } 4327 4328 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 4329 { 4330 struct pci_dev *pdev = qm->pdev; 4331 int ret; 4332 4333 if (!qm->vfs_num) 4334 return 0; 4335 4336 ret = qm_vf_q_assign(qm, qm->vfs_num); 4337 if (ret) { 4338 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4339 return ret; 4340 } 4341 4342 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4343 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4344 ret = qm_ping_all_vfs(qm, cmd); 4345 if (ret) 4346 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4347 } else { 4348 ret = qm_vf_reset_done(qm); 4349 if (ret) 4350 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4351 } 4352 4353 return ret; 4354 } 4355 4356 static int qm_dev_hw_init(struct hisi_qm *qm) 4357 { 4358 return qm->err_ini->hw_init(qm); 4359 } 4360 4361 static void qm_restart_prepare(struct hisi_qm *qm) 4362 { 4363 u32 value; 4364 4365 if (qm->err_ini->open_sva_prefetch) 4366 qm->err_ini->open_sva_prefetch(qm); 4367 4368 if (qm->ver >= QM_HW_V3) 4369 return; 4370 4371 if (!qm->err_status.is_qm_ecc_mbit && 4372 !qm->err_status.is_dev_ecc_mbit) 4373 return; 4374 4375 /* temporarily close the OOO port used for PEH to write out MSI */ 4376 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4377 writel(value & ~qm->err_info.msi_wr_port, 4378 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4379 4380 /* clear dev ecc 2bit error source if having */ 4381 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 4382 if (value && qm->err_ini->clear_dev_hw_err_status) 4383 qm->err_ini->clear_dev_hw_err_status(qm, value); 4384 4385 /* clear QM ecc mbit error source */ 4386 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4387 4388 /* clear AM Reorder Buffer ecc mbit source */ 4389 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4390 } 4391 4392 static void qm_restart_done(struct hisi_qm *qm) 4393 { 4394 u32 value; 4395 4396 if (qm->ver >= QM_HW_V3) 4397 goto clear_flags; 4398 4399 if (!qm->err_status.is_qm_ecc_mbit && 4400 !qm->err_status.is_dev_ecc_mbit) 4401 return; 4402 4403 /* open the OOO port for PEH to write out MSI */ 4404 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4405 value |= qm->err_info.msi_wr_port; 4406 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4407 4408 clear_flags: 4409 qm->err_status.is_qm_ecc_mbit = false; 4410 qm->err_status.is_dev_ecc_mbit = false; 4411 } 4412 4413 static int qm_controller_reset_done(struct hisi_qm *qm) 4414 { 4415 struct pci_dev *pdev = qm->pdev; 4416 int ret; 4417 4418 ret = qm->ops->set_msi(qm, true); 4419 if (ret) { 4420 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4421 return ret; 4422 } 4423 4424 ret = qm_set_pf_mse(qm, true); 4425 if (ret) { 4426 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4427 return ret; 4428 } 4429 4430 if (qm->vfs_num) { 4431 ret = qm_set_vf_mse(qm, true); 4432 if (ret) { 4433 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 4434 return ret; 4435 } 4436 } 4437 4438 ret = qm_dev_hw_init(qm); 4439 if (ret) { 4440 pci_err(pdev, "Failed to init device\n"); 4441 return ret; 4442 } 4443 4444 qm_restart_prepare(qm); 4445 hisi_qm_dev_err_init(qm); 4446 if (qm->err_ini->open_axi_master_ooo) 4447 qm->err_ini->open_axi_master_ooo(qm); 4448 4449 ret = qm_dev_mem_reset(qm); 4450 if (ret) { 4451 pci_err(pdev, "failed to reset device memory\n"); 4452 return ret; 4453 } 4454 4455 ret = qm_restart(qm); 4456 if (ret) { 4457 pci_err(pdev, "Failed to start QM!\n"); 4458 return ret; 4459 } 4460 4461 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4462 if (ret) 4463 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 4464 4465 ret = qm_wait_vf_prepare_finish(qm); 4466 if (ret) 4467 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 4468 4469 qm_cmd_init(qm); 4470 qm_restart_done(qm); 4471 4472 qm_reset_bit_clear(qm); 4473 4474 return 0; 4475 } 4476 4477 static int qm_controller_reset(struct hisi_qm *qm) 4478 { 4479 struct pci_dev *pdev = qm->pdev; 4480 int ret; 4481 4482 pci_info(pdev, "Controller resetting...\n"); 4483 4484 ret = qm_controller_reset_prepare(qm); 4485 if (ret) { 4486 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4487 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4488 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4489 return ret; 4490 } 4491 4492 hisi_qm_show_last_dfx_regs(qm); 4493 if (qm->err_ini->show_last_dfx_regs) 4494 qm->err_ini->show_last_dfx_regs(qm); 4495 4496 ret = qm_soft_reset(qm); 4497 if (ret) 4498 goto err_reset; 4499 4500 ret = qm_controller_reset_done(qm); 4501 if (ret) 4502 goto err_reset; 4503 4504 pci_info(pdev, "Controller reset complete\n"); 4505 4506 return 0; 4507 4508 err_reset: 4509 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4510 qm_reset_bit_clear(qm); 4511 4512 /* if resetting fails, isolate the device */ 4513 if (qm->use_sva) 4514 qm->isolate_data.is_isolate = true; 4515 return ret; 4516 } 4517 4518 /** 4519 * hisi_qm_dev_slot_reset() - slot reset 4520 * @pdev: the PCIe device 4521 * 4522 * This function offers QM relate PCIe device reset interface. Drivers which 4523 * use QM can use this function as slot_reset in its struct pci_error_handlers. 4524 */ 4525 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 4526 { 4527 struct hisi_qm *qm = pci_get_drvdata(pdev); 4528 int ret; 4529 4530 if (pdev->is_virtfn) 4531 return PCI_ERS_RESULT_RECOVERED; 4532 4533 /* reset pcie device controller */ 4534 ret = qm_controller_reset(qm); 4535 if (ret) { 4536 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4537 return PCI_ERS_RESULT_DISCONNECT; 4538 } 4539 4540 return PCI_ERS_RESULT_RECOVERED; 4541 } 4542 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4543 4544 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4545 { 4546 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4547 struct hisi_qm *qm = pci_get_drvdata(pdev); 4548 u32 delay = 0; 4549 int ret; 4550 4551 hisi_qm_dev_err_uninit(pf_qm); 4552 4553 /* 4554 * Check whether there is an ECC mbit error, If it occurs, need to 4555 * wait for soft reset to fix it. 4556 */ 4557 while (qm_check_dev_error(pf_qm)) { 4558 msleep(++delay); 4559 if (delay > QM_RESET_WAIT_TIMEOUT) 4560 return; 4561 } 4562 4563 ret = qm_reset_prepare_ready(qm); 4564 if (ret) { 4565 pci_err(pdev, "FLR not ready!\n"); 4566 return; 4567 } 4568 4569 /* PF obtains the information of VF by querying the register. */ 4570 if (qm->fun_type == QM_HW_PF) 4571 qm_cmd_uninit(qm); 4572 4573 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN); 4574 if (ret) 4575 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 4576 4577 ret = hisi_qm_stop(qm, QM_DOWN); 4578 if (ret) { 4579 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4580 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4581 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4582 return; 4583 } 4584 4585 ret = qm_wait_vf_prepare_finish(qm); 4586 if (ret) 4587 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 4588 4589 pci_info(pdev, "FLR resetting...\n"); 4590 } 4591 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4592 4593 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4594 { 4595 struct pci_dev *pf_pdev = pci_physfn(pdev); 4596 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4597 u32 id; 4598 4599 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4600 if (id == QM_PCI_COMMAND_INVALID) { 4601 pci_err(pdev, "Device can not be used!\n"); 4602 return false; 4603 } 4604 4605 return true; 4606 } 4607 4608 void hisi_qm_reset_done(struct pci_dev *pdev) 4609 { 4610 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4611 struct hisi_qm *qm = pci_get_drvdata(pdev); 4612 int ret; 4613 4614 if (qm->fun_type == QM_HW_PF) { 4615 ret = qm_dev_hw_init(qm); 4616 if (ret) { 4617 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4618 goto flr_done; 4619 } 4620 } 4621 4622 hisi_qm_dev_err_init(pf_qm); 4623 4624 ret = qm_restart(qm); 4625 if (ret) { 4626 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4627 goto flr_done; 4628 } 4629 4630 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4631 if (ret) 4632 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 4633 4634 ret = qm_wait_vf_prepare_finish(qm); 4635 if (ret) 4636 pci_err(pdev, "failed to start by vfs in FLR!\n"); 4637 4638 flr_done: 4639 if (qm->fun_type == QM_HW_PF) 4640 qm_cmd_init(qm); 4641 4642 if (qm_flr_reset_complete(pdev)) 4643 pci_info(pdev, "FLR reset complete\n"); 4644 4645 qm_reset_bit_clear(qm); 4646 } 4647 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4648 4649 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4650 { 4651 struct hisi_qm *qm = data; 4652 enum acc_err_result ret; 4653 4654 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4655 ret = qm_process_dev_error(qm); 4656 if (ret == ACC_ERR_NEED_RESET && 4657 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4658 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4659 schedule_work(&qm->rst_work); 4660 4661 return IRQ_HANDLED; 4662 } 4663 4664 /** 4665 * hisi_qm_dev_shutdown() - Shutdown device. 4666 * @pdev: The device will be shutdown. 4667 * 4668 * This function will stop qm when OS shutdown or rebooting. 4669 */ 4670 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4671 { 4672 struct hisi_qm *qm = pci_get_drvdata(pdev); 4673 int ret; 4674 4675 ret = hisi_qm_stop(qm, QM_DOWN); 4676 if (ret) 4677 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4678 4679 hisi_qm_cache_wb(qm); 4680 } 4681 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4682 4683 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4684 { 4685 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4686 int ret; 4687 4688 ret = qm_pm_get_sync(qm); 4689 if (ret) { 4690 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4691 return; 4692 } 4693 4694 /* reset pcie device controller */ 4695 ret = qm_controller_reset(qm); 4696 if (ret) 4697 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4698 4699 qm_pm_put_sync(qm); 4700 } 4701 4702 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 4703 enum qm_stop_reason stop_reason) 4704 { 4705 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 4706 struct pci_dev *pdev = qm->pdev; 4707 int ret; 4708 4709 ret = qm_reset_prepare_ready(qm); 4710 if (ret) { 4711 dev_err(&pdev->dev, "reset prepare not ready!\n"); 4712 atomic_set(&qm->status.flags, QM_STOP); 4713 cmd = QM_VF_PREPARE_FAIL; 4714 goto err_prepare; 4715 } 4716 4717 ret = hisi_qm_stop(qm, stop_reason); 4718 if (ret) { 4719 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 4720 atomic_set(&qm->status.flags, QM_STOP); 4721 cmd = QM_VF_PREPARE_FAIL; 4722 goto err_prepare; 4723 } else { 4724 goto out; 4725 } 4726 4727 err_prepare: 4728 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4729 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4730 out: 4731 pci_save_state(pdev); 4732 ret = qm_ping_pf(qm, cmd); 4733 if (ret) 4734 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 4735 } 4736 4737 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 4738 { 4739 enum qm_mb_cmd cmd = QM_VF_START_DONE; 4740 struct pci_dev *pdev = qm->pdev; 4741 int ret; 4742 4743 pci_restore_state(pdev); 4744 ret = hisi_qm_start(qm); 4745 if (ret) { 4746 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 4747 cmd = QM_VF_START_FAIL; 4748 } 4749 4750 qm_cmd_init(qm); 4751 ret = qm_ping_pf(qm, cmd); 4752 if (ret) 4753 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 4754 4755 qm_reset_bit_clear(qm); 4756 } 4757 4758 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 4759 { 4760 struct device *dev = &qm->pdev->dev; 4761 u32 val, cmd; 4762 u64 msg; 4763 int ret; 4764 4765 /* Wait for reset to finish */ 4766 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 4767 val == BIT(0), QM_VF_RESET_WAIT_US, 4768 QM_VF_RESET_WAIT_TIMEOUT_US); 4769 /* hardware completion status should be available by this time */ 4770 if (ret) { 4771 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 4772 return -ETIMEDOUT; 4773 } 4774 4775 /* 4776 * Whether message is got successfully, 4777 * VF needs to ack PF by clearing the interrupt. 4778 */ 4779 ret = qm_get_mb_cmd(qm, &msg, 0); 4780 qm_clear_cmd_interrupt(qm, 0); 4781 if (ret) { 4782 dev_err(dev, "failed to get msg from PF in reset done!\n"); 4783 return ret; 4784 } 4785 4786 cmd = msg & QM_MB_CMD_DATA_MASK; 4787 if (cmd != QM_PF_RESET_DONE) { 4788 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 4789 ret = -EINVAL; 4790 } 4791 4792 return ret; 4793 } 4794 4795 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 4796 enum qm_stop_reason stop_reason) 4797 { 4798 struct device *dev = &qm->pdev->dev; 4799 int ret; 4800 4801 dev_info(dev, "device reset start...\n"); 4802 4803 /* The message is obtained by querying the register during resetting */ 4804 qm_cmd_uninit(qm); 4805 qm_pf_reset_vf_prepare(qm, stop_reason); 4806 4807 ret = qm_wait_pf_reset_finish(qm); 4808 if (ret) 4809 goto err_get_status; 4810 4811 qm_pf_reset_vf_done(qm); 4812 4813 dev_info(dev, "device reset done.\n"); 4814 4815 return; 4816 4817 err_get_status: 4818 qm_cmd_init(qm); 4819 qm_reset_bit_clear(qm); 4820 } 4821 4822 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 4823 { 4824 struct device *dev = &qm->pdev->dev; 4825 u64 msg; 4826 u32 cmd; 4827 int ret; 4828 4829 /* 4830 * Get the msg from source by sending mailbox. Whether message is got 4831 * successfully, destination needs to ack source by clearing the interrupt. 4832 */ 4833 ret = qm_get_mb_cmd(qm, &msg, fun_num); 4834 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 4835 if (ret) { 4836 dev_err(dev, "failed to get msg from source!\n"); 4837 return; 4838 } 4839 4840 cmd = msg & QM_MB_CMD_DATA_MASK; 4841 switch (cmd) { 4842 case QM_PF_FLR_PREPARE: 4843 qm_pf_reset_vf_process(qm, QM_DOWN); 4844 break; 4845 case QM_PF_SRST_PREPARE: 4846 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 4847 break; 4848 case QM_VF_GET_QOS: 4849 qm_vf_get_qos(qm, fun_num); 4850 break; 4851 case QM_PF_SET_QOS: 4852 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 4853 break; 4854 default: 4855 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 4856 break; 4857 } 4858 } 4859 4860 static void qm_cmd_process(struct work_struct *cmd_process) 4861 { 4862 struct hisi_qm *qm = container_of(cmd_process, 4863 struct hisi_qm, cmd_process); 4864 u32 vfs_num = qm->vfs_num; 4865 u64 val; 4866 u32 i; 4867 4868 if (qm->fun_type == QM_HW_PF) { 4869 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 4870 if (!val) 4871 return; 4872 4873 for (i = 1; i <= vfs_num; i++) { 4874 if (val & BIT(i)) 4875 qm_handle_cmd_msg(qm, i); 4876 } 4877 4878 return; 4879 } 4880 4881 qm_handle_cmd_msg(qm, 0); 4882 } 4883 4884 /** 4885 * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. 4886 * @qm: The qm needs add. 4887 * @qm_list: The qm list. 4888 * 4889 * This function adds qm to qm list, and will register algorithm to 4890 * crypto when the qm list is empty. 4891 */ 4892 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4893 { 4894 struct device *dev = &qm->pdev->dev; 4895 int flag = 0; 4896 int ret = 0; 4897 4898 mutex_lock(&qm_list->lock); 4899 if (list_empty(&qm_list->list)) 4900 flag = 1; 4901 list_add_tail(&qm->list, &qm_list->list); 4902 mutex_unlock(&qm_list->lock); 4903 4904 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 4905 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 4906 return 0; 4907 } 4908 4909 if (flag) { 4910 ret = qm_list->register_to_crypto(qm); 4911 if (ret) { 4912 mutex_lock(&qm_list->lock); 4913 list_del(&qm->list); 4914 mutex_unlock(&qm_list->lock); 4915 } 4916 } 4917 4918 return ret; 4919 } 4920 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4921 4922 /** 4923 * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from 4924 * qm list. 4925 * @qm: The qm needs delete. 4926 * @qm_list: The qm list. 4927 * 4928 * This function deletes qm from qm list, and will unregister algorithm 4929 * from crypto when the qm list is empty. 4930 */ 4931 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4932 { 4933 mutex_lock(&qm_list->lock); 4934 list_del(&qm->list); 4935 mutex_unlock(&qm_list->lock); 4936 4937 if (qm->ver <= QM_HW_V2 && qm->use_sva) 4938 return; 4939 4940 if (list_empty(&qm_list->list)) 4941 qm_list->unregister_from_crypto(qm); 4942 } 4943 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 4944 4945 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 4946 { 4947 struct pci_dev *pdev = qm->pdev; 4948 u32 irq_vector, val; 4949 4950 if (qm->fun_type == QM_HW_VF) 4951 return; 4952 4953 val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val; 4954 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4955 return; 4956 4957 irq_vector = val & QM_IRQ_VECTOR_MASK; 4958 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4959 } 4960 4961 static int qm_register_abnormal_irq(struct hisi_qm *qm) 4962 { 4963 struct pci_dev *pdev = qm->pdev; 4964 u32 irq_vector, val; 4965 int ret; 4966 4967 if (qm->fun_type == QM_HW_VF) 4968 return 0; 4969 4970 val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val; 4971 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4972 return 0; 4973 4974 irq_vector = val & QM_IRQ_VECTOR_MASK; 4975 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 4976 if (ret) 4977 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); 4978 4979 return ret; 4980 } 4981 4982 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 4983 { 4984 struct pci_dev *pdev = qm->pdev; 4985 u32 irq_vector, val; 4986 4987 val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val; 4988 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4989 return; 4990 4991 irq_vector = val & QM_IRQ_VECTOR_MASK; 4992 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4993 } 4994 4995 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 4996 { 4997 struct pci_dev *pdev = qm->pdev; 4998 u32 irq_vector, val; 4999 int ret; 5000 5001 val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val; 5002 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5003 return 0; 5004 5005 irq_vector = val & QM_IRQ_VECTOR_MASK; 5006 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 5007 if (ret) 5008 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 5009 5010 return ret; 5011 } 5012 5013 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 5014 { 5015 struct pci_dev *pdev = qm->pdev; 5016 u32 irq_vector, val; 5017 5018 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val; 5019 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5020 return; 5021 5022 irq_vector = val & QM_IRQ_VECTOR_MASK; 5023 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5024 } 5025 5026 static int qm_register_aeq_irq(struct hisi_qm *qm) 5027 { 5028 struct pci_dev *pdev = qm->pdev; 5029 u32 irq_vector, val; 5030 int ret; 5031 5032 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val; 5033 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5034 return 0; 5035 5036 irq_vector = val & QM_IRQ_VECTOR_MASK; 5037 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL, 5038 qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm); 5039 if (ret) 5040 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5041 5042 return ret; 5043 } 5044 5045 static void qm_unregister_eq_irq(struct hisi_qm *qm) 5046 { 5047 struct pci_dev *pdev = qm->pdev; 5048 u32 irq_vector, val; 5049 5050 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val; 5051 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5052 return; 5053 5054 irq_vector = val & QM_IRQ_VECTOR_MASK; 5055 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5056 } 5057 5058 static int qm_register_eq_irq(struct hisi_qm *qm) 5059 { 5060 struct pci_dev *pdev = qm->pdev; 5061 u32 irq_vector, val; 5062 int ret; 5063 5064 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val; 5065 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5066 return 0; 5067 5068 irq_vector = val & QM_IRQ_VECTOR_MASK; 5069 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); 5070 if (ret) 5071 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5072 5073 return ret; 5074 } 5075 5076 static void qm_irqs_unregister(struct hisi_qm *qm) 5077 { 5078 qm_unregister_mb_cmd_irq(qm); 5079 qm_unregister_abnormal_irq(qm); 5080 qm_unregister_aeq_irq(qm); 5081 qm_unregister_eq_irq(qm); 5082 } 5083 5084 static int qm_irqs_register(struct hisi_qm *qm) 5085 { 5086 int ret; 5087 5088 ret = qm_register_eq_irq(qm); 5089 if (ret) 5090 return ret; 5091 5092 ret = qm_register_aeq_irq(qm); 5093 if (ret) 5094 goto free_eq_irq; 5095 5096 ret = qm_register_abnormal_irq(qm); 5097 if (ret) 5098 goto free_aeq_irq; 5099 5100 ret = qm_register_mb_cmd_irq(qm); 5101 if (ret) 5102 goto free_abnormal_irq; 5103 5104 return 0; 5105 5106 free_abnormal_irq: 5107 qm_unregister_abnormal_irq(qm); 5108 free_aeq_irq: 5109 qm_unregister_aeq_irq(qm); 5110 free_eq_irq: 5111 qm_unregister_eq_irq(qm); 5112 return ret; 5113 } 5114 5115 static int qm_get_qp_num(struct hisi_qm *qm) 5116 { 5117 struct device *dev = &qm->pdev->dev; 5118 bool is_db_isolation; 5119 5120 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 5121 if (qm->fun_type == QM_HW_VF) { 5122 if (qm->ver != QM_HW_V1) 5123 /* v2 starts to support get vft by mailbox */ 5124 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 5125 5126 return 0; 5127 } 5128 5129 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5130 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 5131 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 5132 QM_FUNC_MAX_QP_CAP, is_db_isolation); 5133 5134 if (qm->qp_num <= qm->max_qp_num) 5135 return 0; 5136 5137 if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) { 5138 /* Check whether the set qp number is valid */ 5139 dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n", 5140 qm->qp_num, qm->max_qp_num); 5141 return -EINVAL; 5142 } 5143 5144 dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n", 5145 qm->qp_num, qm->max_qp_num); 5146 qm->qp_num = qm->max_qp_num; 5147 qm->debug.curr_qm_qp_num = qm->qp_num; 5148 5149 return 0; 5150 } 5151 5152 static int qm_pre_store_irq_type_caps(struct hisi_qm *qm) 5153 { 5154 struct hisi_qm_cap_record *qm_cap; 5155 struct pci_dev *pdev = qm->pdev; 5156 size_t i, size; 5157 5158 size = ARRAY_SIZE(qm_pre_store_caps); 5159 qm_cap = devm_kzalloc(&pdev->dev, sizeof(*qm_cap) * size, GFP_KERNEL); 5160 if (!qm_cap) 5161 return -ENOMEM; 5162 5163 for (i = 0; i < size; i++) { 5164 qm_cap[i].type = qm_pre_store_caps[i]; 5165 qm_cap[i].cap_val = hisi_qm_get_hw_info(qm, qm_basic_info, 5166 qm_pre_store_caps[i], qm->cap_ver); 5167 } 5168 5169 qm->cap_tables.qm_cap_table = qm_cap; 5170 5171 return 0; 5172 } 5173 5174 static int qm_get_hw_caps(struct hisi_qm *qm) 5175 { 5176 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 5177 qm_cap_info_pf : qm_cap_info_vf; 5178 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 5179 ARRAY_SIZE(qm_cap_info_vf); 5180 u32 val, i; 5181 5182 /* Doorbell isolate register is a independent register. */ 5183 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 5184 if (val) 5185 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5186 5187 if (qm->ver >= QM_HW_V3) { 5188 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 5189 qm->cap_ver = val & QM_CAPBILITY_VERSION; 5190 } 5191 5192 /* Get PF/VF common capbility */ 5193 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 5194 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 5195 if (val) 5196 set_bit(qm_cap_info_comm[i].type, &qm->caps); 5197 } 5198 5199 /* Get PF/VF different capbility */ 5200 for (i = 0; i < size; i++) { 5201 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 5202 if (val) 5203 set_bit(cap_info[i].type, &qm->caps); 5204 } 5205 5206 /* Fetch and save the value of irq type related capability registers */ 5207 return qm_pre_store_irq_type_caps(qm); 5208 } 5209 5210 static int qm_get_pci_res(struct hisi_qm *qm) 5211 { 5212 struct pci_dev *pdev = qm->pdev; 5213 struct device *dev = &pdev->dev; 5214 int ret; 5215 5216 ret = pci_request_mem_regions(pdev, qm->dev_name); 5217 if (ret < 0) { 5218 dev_err(dev, "Failed to request mem regions!\n"); 5219 return ret; 5220 } 5221 5222 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5223 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5224 if (!qm->io_base) { 5225 ret = -EIO; 5226 goto err_request_mem_regions; 5227 } 5228 5229 ret = qm_get_hw_caps(qm); 5230 if (ret) 5231 goto err_ioremap; 5232 5233 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 5234 qm->db_interval = QM_QP_DB_INTERVAL; 5235 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5236 qm->db_io_base = ioremap(qm->db_phys_base, 5237 pci_resource_len(pdev, PCI_BAR_4)); 5238 if (!qm->db_io_base) { 5239 ret = -EIO; 5240 goto err_ioremap; 5241 } 5242 } else { 5243 qm->db_phys_base = qm->phys_base; 5244 qm->db_io_base = qm->io_base; 5245 qm->db_interval = 0; 5246 } 5247 5248 ret = qm_get_qp_num(qm); 5249 if (ret) 5250 goto err_db_ioremap; 5251 5252 return 0; 5253 5254 err_db_ioremap: 5255 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 5256 iounmap(qm->db_io_base); 5257 err_ioremap: 5258 iounmap(qm->io_base); 5259 err_request_mem_regions: 5260 pci_release_mem_regions(pdev); 5261 return ret; 5262 } 5263 5264 static int hisi_qm_pci_init(struct hisi_qm *qm) 5265 { 5266 struct pci_dev *pdev = qm->pdev; 5267 struct device *dev = &pdev->dev; 5268 unsigned int num_vec; 5269 int ret; 5270 5271 ret = pci_enable_device_mem(pdev); 5272 if (ret < 0) { 5273 dev_err(dev, "Failed to enable device mem!\n"); 5274 return ret; 5275 } 5276 5277 ret = qm_get_pci_res(qm); 5278 if (ret) 5279 goto err_disable_pcidev; 5280 5281 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5282 if (ret < 0) 5283 goto err_get_pci_res; 5284 pci_set_master(pdev); 5285 5286 num_vec = qm_get_irq_num(qm); 5287 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5288 if (ret < 0) { 5289 dev_err(dev, "Failed to enable MSI vectors!\n"); 5290 goto err_get_pci_res; 5291 } 5292 5293 return 0; 5294 5295 err_get_pci_res: 5296 qm_put_pci_res(qm); 5297 err_disable_pcidev: 5298 pci_disable_device(pdev); 5299 return ret; 5300 } 5301 5302 static int hisi_qm_init_work(struct hisi_qm *qm) 5303 { 5304 int i; 5305 5306 for (i = 0; i < qm->qp_num; i++) 5307 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 5308 5309 if (qm->fun_type == QM_HW_PF) 5310 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5311 5312 if (qm->ver > QM_HW_V2) 5313 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5314 5315 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 5316 WQ_UNBOUND, num_online_cpus(), 5317 pci_name(qm->pdev)); 5318 if (!qm->wq) { 5319 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 5320 return -ENOMEM; 5321 } 5322 5323 return 0; 5324 } 5325 5326 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5327 { 5328 struct device *dev = &qm->pdev->dev; 5329 u16 sq_depth, cq_depth; 5330 size_t qp_dma_size; 5331 int i, ret; 5332 5333 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5334 if (!qm->qp_array) 5335 return -ENOMEM; 5336 5337 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 5338 if (!qm->poll_data) { 5339 kfree(qm->qp_array); 5340 return -ENOMEM; 5341 } 5342 5343 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 5344 5345 /* one more page for device or qp statuses */ 5346 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 5347 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5348 for (i = 0; i < qm->qp_num; i++) { 5349 qm->poll_data[i].qm = qm; 5350 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 5351 if (ret) 5352 goto err_init_qp_mem; 5353 5354 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5355 } 5356 5357 return 0; 5358 err_init_qp_mem: 5359 hisi_qp_memory_uninit(qm, i); 5360 5361 return ret; 5362 } 5363 5364 static int hisi_qm_memory_init(struct hisi_qm *qm) 5365 { 5366 struct device *dev = &qm->pdev->dev; 5367 int ret, total_func; 5368 size_t off = 0; 5369 5370 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 5371 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5372 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5373 if (!qm->factor) 5374 return -ENOMEM; 5375 5376 /* Only the PF value needs to be initialized */ 5377 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 5378 } 5379 5380 #define QM_INIT_BUF(qm, type, num) do { \ 5381 (qm)->type = ((qm)->qdma.va + (off)); \ 5382 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5383 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5384 } while (0) 5385 5386 idr_init(&qm->qp_idr); 5387 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 5388 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 5389 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 5390 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5391 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5392 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5393 GFP_ATOMIC); 5394 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5395 if (!qm->qdma.va) { 5396 ret = -ENOMEM; 5397 goto err_destroy_idr; 5398 } 5399 5400 QM_INIT_BUF(qm, eqe, qm->eq_depth); 5401 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 5402 QM_INIT_BUF(qm, sqc, qm->qp_num); 5403 QM_INIT_BUF(qm, cqc, qm->qp_num); 5404 5405 ret = hisi_qp_alloc_memory(qm); 5406 if (ret) 5407 goto err_alloc_qp_array; 5408 5409 return 0; 5410 5411 err_alloc_qp_array: 5412 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5413 err_destroy_idr: 5414 idr_destroy(&qm->qp_idr); 5415 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 5416 kfree(qm->factor); 5417 5418 return ret; 5419 } 5420 5421 /** 5422 * hisi_qm_init() - Initialize configures about qm. 5423 * @qm: The qm needing init. 5424 * 5425 * This function init qm, then we can call hisi_qm_start to put qm into work. 5426 */ 5427 int hisi_qm_init(struct hisi_qm *qm) 5428 { 5429 struct pci_dev *pdev = qm->pdev; 5430 struct device *dev = &pdev->dev; 5431 int ret; 5432 5433 hisi_qm_pre_init(qm); 5434 5435 ret = hisi_qm_pci_init(qm); 5436 if (ret) 5437 return ret; 5438 5439 ret = qm_irqs_register(qm); 5440 if (ret) 5441 goto err_pci_init; 5442 5443 if (qm->fun_type == QM_HW_PF) { 5444 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5445 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5446 qm_disable_clock_gate(qm); 5447 ret = qm_dev_mem_reset(qm); 5448 if (ret) { 5449 dev_err(dev, "failed to reset device memory\n"); 5450 goto err_irq_register; 5451 } 5452 } 5453 5454 if (qm->mode == UACCE_MODE_SVA) { 5455 ret = qm_alloc_uacce(qm); 5456 if (ret < 0) 5457 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5458 } 5459 5460 ret = hisi_qm_memory_init(qm); 5461 if (ret) 5462 goto err_alloc_uacce; 5463 5464 ret = hisi_qm_init_work(qm); 5465 if (ret) 5466 goto err_free_qm_memory; 5467 5468 qm_cmd_init(qm); 5469 atomic_set(&qm->status.flags, QM_INIT); 5470 5471 return 0; 5472 5473 err_free_qm_memory: 5474 hisi_qm_memory_uninit(qm); 5475 err_alloc_uacce: 5476 qm_remove_uacce(qm); 5477 err_irq_register: 5478 qm_irqs_unregister(qm); 5479 err_pci_init: 5480 hisi_qm_pci_uninit(qm); 5481 return ret; 5482 } 5483 EXPORT_SYMBOL_GPL(hisi_qm_init); 5484 5485 /** 5486 * hisi_qm_get_dfx_access() - Try to get dfx access. 5487 * @qm: pointer to accelerator device. 5488 * 5489 * Try to get dfx access, then user can get message. 5490 * 5491 * If device is in suspended, return failure, otherwise 5492 * bump up the runtime PM usage counter. 5493 */ 5494 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5495 { 5496 struct device *dev = &qm->pdev->dev; 5497 5498 if (pm_runtime_suspended(dev)) { 5499 dev_info(dev, "can not read/write - device in suspended.\n"); 5500 return -EAGAIN; 5501 } 5502 5503 return qm_pm_get_sync(qm); 5504 } 5505 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5506 5507 /** 5508 * hisi_qm_put_dfx_access() - Put dfx access. 5509 * @qm: pointer to accelerator device. 5510 * 5511 * Put dfx access, drop runtime PM usage counter. 5512 */ 5513 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5514 { 5515 qm_pm_put_sync(qm); 5516 } 5517 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5518 5519 /** 5520 * hisi_qm_pm_init() - Initialize qm runtime PM. 5521 * @qm: pointer to accelerator device. 5522 * 5523 * Function that initialize qm runtime PM. 5524 */ 5525 void hisi_qm_pm_init(struct hisi_qm *qm) 5526 { 5527 struct device *dev = &qm->pdev->dev; 5528 5529 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5530 return; 5531 5532 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5533 pm_runtime_use_autosuspend(dev); 5534 pm_runtime_put_noidle(dev); 5535 } 5536 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5537 5538 /** 5539 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5540 * @qm: pointer to accelerator device. 5541 * 5542 * Function that uninitialize qm runtime PM. 5543 */ 5544 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5545 { 5546 struct device *dev = &qm->pdev->dev; 5547 5548 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5549 return; 5550 5551 pm_runtime_get_noresume(dev); 5552 pm_runtime_dont_use_autosuspend(dev); 5553 } 5554 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5555 5556 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5557 { 5558 struct pci_dev *pdev = qm->pdev; 5559 int ret; 5560 u32 val; 5561 5562 ret = qm->ops->set_msi(qm, false); 5563 if (ret) { 5564 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5565 return ret; 5566 } 5567 5568 /* shutdown OOO register */ 5569 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 5570 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5571 5572 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 5573 val, 5574 (val == ACC_MASTER_TRANS_RETURN_RW), 5575 POLL_PERIOD, POLL_TIMEOUT); 5576 if (ret) { 5577 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 5578 return ret; 5579 } 5580 5581 ret = qm_set_pf_mse(qm, false); 5582 if (ret) 5583 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5584 5585 return ret; 5586 } 5587 5588 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5589 { 5590 struct pci_dev *pdev = qm->pdev; 5591 int ret; 5592 5593 ret = qm_set_pf_mse(qm, true); 5594 if (ret) { 5595 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5596 return ret; 5597 } 5598 5599 ret = qm->ops->set_msi(qm, true); 5600 if (ret) { 5601 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5602 return ret; 5603 } 5604 5605 ret = qm_dev_hw_init(qm); 5606 if (ret) { 5607 pci_err(pdev, "failed to init device after resuming\n"); 5608 return ret; 5609 } 5610 5611 qm_cmd_init(qm); 5612 hisi_qm_dev_err_init(qm); 5613 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5614 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5615 qm_disable_clock_gate(qm); 5616 ret = qm_dev_mem_reset(qm); 5617 if (ret) 5618 pci_err(pdev, "failed to reset device memory\n"); 5619 5620 return ret; 5621 } 5622 5623 /** 5624 * hisi_qm_suspend() - Runtime suspend of given device. 5625 * @dev: device to suspend. 5626 * 5627 * Function that suspend the device. 5628 */ 5629 int hisi_qm_suspend(struct device *dev) 5630 { 5631 struct pci_dev *pdev = to_pci_dev(dev); 5632 struct hisi_qm *qm = pci_get_drvdata(pdev); 5633 int ret; 5634 5635 pci_info(pdev, "entering suspended state\n"); 5636 5637 ret = hisi_qm_stop(qm, QM_NORMAL); 5638 if (ret) { 5639 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5640 return ret; 5641 } 5642 5643 ret = qm_prepare_for_suspend(qm); 5644 if (ret) 5645 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5646 5647 return ret; 5648 } 5649 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5650 5651 /** 5652 * hisi_qm_resume() - Runtime resume of given device. 5653 * @dev: device to resume. 5654 * 5655 * Function that resume the device. 5656 */ 5657 int hisi_qm_resume(struct device *dev) 5658 { 5659 struct pci_dev *pdev = to_pci_dev(dev); 5660 struct hisi_qm *qm = pci_get_drvdata(pdev); 5661 int ret; 5662 5663 pci_info(pdev, "resuming from suspend state\n"); 5664 5665 ret = qm_rebuild_for_resume(qm); 5666 if (ret) { 5667 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5668 return ret; 5669 } 5670 5671 ret = hisi_qm_start(qm); 5672 if (ret) { 5673 if (qm_check_dev_error(qm)) { 5674 pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); 5675 return 0; 5676 } 5677 5678 pci_err(pdev, "failed to start qm(%d)!\n", ret); 5679 } 5680 5681 return ret; 5682 } 5683 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5684 5685 MODULE_LICENSE("GPL v2"); 5686 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5687 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5688