1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/aer.h> 6 #include <linux/bitmap.h> 7 #include <linux/dma-mapping.h> 8 #include <linux/idr.h> 9 #include <linux/io.h> 10 #include <linux/irqreturn.h> 11 #include <linux/log2.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/seq_file.h> 14 #include <linux/slab.h> 15 #include <linux/uacce.h> 16 #include <linux/uaccess.h> 17 #include <uapi/misc/uacce/hisi_qm.h> 18 #include "qm.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 #define QM_IRQ_NUM_V1 1 26 #define QM_IRQ_NUM_PF_V2 4 27 #define QM_IRQ_NUM_VF_V2 2 28 #define QM_IRQ_NUM_VF_V3 3 29 30 #define QM_EQ_EVENT_IRQ_VECTOR 0 31 #define QM_AEQ_EVENT_IRQ_VECTOR 1 32 #define QM_CMD_EVENT_IRQ_VECTOR 2 33 #define QM_ABNORMAL_EVENT_IRQ_VECTOR 3 34 35 /* mailbox */ 36 #define QM_MB_CMD_SQC 0x0 37 #define QM_MB_CMD_CQC 0x1 38 #define QM_MB_CMD_EQC 0x2 39 #define QM_MB_CMD_AEQC 0x3 40 #define QM_MB_CMD_SQC_BT 0x4 41 #define QM_MB_CMD_CQC_BT 0x5 42 #define QM_MB_CMD_SQC_VFT_V2 0x6 43 #define QM_MB_CMD_STOP_QP 0x8 44 #define QM_MB_CMD_SRC 0xc 45 #define QM_MB_CMD_DST 0xd 46 47 #define QM_MB_CMD_SEND_BASE 0x300 48 #define QM_MB_EVENT_SHIFT 8 49 #define QM_MB_BUSY_SHIFT 13 50 #define QM_MB_OP_SHIFT 14 51 #define QM_MB_CMD_DATA_ADDR_L 0x304 52 #define QM_MB_CMD_DATA_ADDR_H 0x308 53 #define QM_MB_PING_ALL_VFS 0xffff 54 #define QM_MB_CMD_DATA_SHIFT 32 55 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 56 57 /* sqc shift */ 58 #define QM_SQ_HOP_NUM_SHIFT 0 59 #define QM_SQ_PAGE_SIZE_SHIFT 4 60 #define QM_SQ_BUF_SIZE_SHIFT 8 61 #define QM_SQ_SQE_SIZE_SHIFT 12 62 #define QM_SQ_PRIORITY_SHIFT 0 63 #define QM_SQ_ORDERS_SHIFT 4 64 #define QM_SQ_TYPE_SHIFT 8 65 #define QM_QC_PASID_ENABLE 0x1 66 #define QM_QC_PASID_ENABLE_SHIFT 7 67 68 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 69 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) 70 71 /* cqc shift */ 72 #define QM_CQ_HOP_NUM_SHIFT 0 73 #define QM_CQ_PAGE_SIZE_SHIFT 4 74 #define QM_CQ_BUF_SIZE_SHIFT 8 75 #define QM_CQ_CQE_SIZE_SHIFT 12 76 #define QM_CQ_PHASE_SHIFT 0 77 #define QM_CQ_FLAG_SHIFT 1 78 79 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 80 #define QM_QC_CQE_SIZE 4 81 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) 82 83 /* eqc shift */ 84 #define QM_EQE_AEQE_SIZE (2UL << 12) 85 #define QM_EQC_PHASE_SHIFT 16 86 87 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 88 #define QM_EQE_CQN_MASK GENMASK(15, 0) 89 90 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 91 #define QM_AEQE_TYPE_SHIFT 17 92 93 #define QM_DOORBELL_CMD_SQ 0 94 #define QM_DOORBELL_CMD_CQ 1 95 #define QM_DOORBELL_CMD_EQ 2 96 #define QM_DOORBELL_CMD_AEQ 3 97 98 #define QM_DOORBELL_BASE_V1 0x340 99 #define QM_DB_CMD_SHIFT_V1 16 100 #define QM_DB_INDEX_SHIFT_V1 32 101 #define QM_DB_PRIORITY_SHIFT_V1 48 102 #define QM_DOORBELL_SQ_CQ_BASE_V2 0x1000 103 #define QM_DOORBELL_EQ_AEQ_BASE_V2 0x2000 104 #define QM_QUE_ISO_CFG_V 0x0030 105 #define QM_PAGE_SIZE 0x0034 106 #define QM_QUE_ISO_EN 0x100154 107 #define QM_CAPBILITY 0x100158 108 #define QM_QP_NUN_MASK GENMASK(10, 0) 109 #define QM_QP_DB_INTERVAL 0x10000 110 #define QM_QP_MAX_NUM_SHIFT 11 111 #define QM_DB_CMD_SHIFT_V2 12 112 #define QM_DB_RAND_SHIFT_V2 16 113 #define QM_DB_INDEX_SHIFT_V2 32 114 #define QM_DB_PRIORITY_SHIFT_V2 48 115 116 #define QM_MEM_START_INIT 0x100040 117 #define QM_MEM_INIT_DONE 0x100044 118 #define QM_VFT_CFG_RDY 0x10006c 119 #define QM_VFT_CFG_OP_WR 0x100058 120 #define QM_VFT_CFG_TYPE 0x10005c 121 #define QM_SQC_VFT 0x0 122 #define QM_CQC_VFT 0x1 123 #define QM_VFT_CFG 0x100060 124 #define QM_VFT_CFG_OP_ENABLE 0x100054 125 126 #define QM_VFT_CFG_DATA_L 0x100064 127 #define QM_VFT_CFG_DATA_H 0x100068 128 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 129 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 130 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 131 #define QM_SQC_VFT_START_SQN_SHIFT 28 132 #define QM_SQC_VFT_VALID (1ULL << 44) 133 #define QM_SQC_VFT_SQN_SHIFT 45 134 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 135 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 136 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 137 #define QM_CQC_VFT_VALID (1ULL << 28) 138 139 #define QM_SQC_VFT_BASE_SHIFT_V2 28 140 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 141 #define QM_SQC_VFT_NUM_SHIFT_V2 45 142 #define QM_SQC_VFT_NUM_MASK_v2 GENMASK(9, 0) 143 144 #define QM_DFX_CNT_CLR_CE 0x100118 145 146 #define QM_ABNORMAL_INT_SOURCE 0x100000 147 #define QM_ABNORMAL_INT_SOURCE_CLR GENMASK(14, 0) 148 #define QM_ABNORMAL_INT_MASK 0x100004 149 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 150 #define QM_ABNORMAL_INT_STATUS 0x100008 151 #define QM_ABNORMAL_INT_SET 0x10000c 152 #define QM_ABNORMAL_INF00 0x100010 153 #define QM_FIFO_OVERFLOW_TYPE 0xc0 154 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 155 #define QM_FIFO_OVERFLOW_VF 0x3f 156 #define QM_ABNORMAL_INF01 0x100014 157 #define QM_DB_TIMEOUT_TYPE 0xc0 158 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 159 #define QM_DB_TIMEOUT_VF 0x3f 160 #define QM_RAS_CE_ENABLE 0x1000ec 161 #define QM_RAS_FE_ENABLE 0x1000f0 162 #define QM_RAS_NFE_ENABLE 0x1000f4 163 #define QM_RAS_CE_THRESHOLD 0x1000f8 164 #define QM_RAS_CE_TIMES_PER_IRQ 1 165 #define QM_RAS_MSI_INT_SEL 0x1040f4 166 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 167 168 #define QM_RESET_WAIT_TIMEOUT 400 169 #define QM_PEH_VENDOR_ID 0x1000d8 170 #define ACC_VENDOR_ID_VALUE 0x5a5a 171 #define QM_PEH_DFX_INFO0 0x1000fc 172 #define QM_PEH_DFX_INFO1 0x100100 173 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 174 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 175 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 176 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 177 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 178 #define ACC_MASTER_TRANS_RETURN_RW 3 179 #define ACC_MASTER_TRANS_RETURN 0x300150 180 #define ACC_MASTER_GLOBAL_CTRL 0x300000 181 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 182 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 183 #define ACC_AM_ROB_ECC_INT_STS 0x300104 184 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 185 #define QM_MSI_CAP_ENABLE BIT(16) 186 187 /* interfunction communication */ 188 #define QM_IFC_READY_STATUS 0x100128 189 #define QM_IFC_C_STS_M 0x10012C 190 #define QM_IFC_INT_SET_P 0x100130 191 #define QM_IFC_INT_CFG 0x100134 192 #define QM_IFC_INT_SOURCE_P 0x100138 193 #define QM_IFC_INT_SOURCE_V 0x0020 194 #define QM_IFC_INT_MASK 0x0024 195 #define QM_IFC_INT_STATUS 0x0028 196 #define QM_IFC_INT_SET_V 0x002C 197 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 198 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 199 #define QM_IFC_INT_SOURCE_MASK BIT(0) 200 #define QM_IFC_INT_DISABLE BIT(0) 201 #define QM_IFC_INT_STATUS_MASK BIT(0) 202 #define QM_IFC_INT_SET_MASK BIT(0) 203 #define QM_WAIT_DST_ACK 10 204 #define QM_MAX_PF_WAIT_COUNT 10 205 #define QM_MAX_VF_WAIT_COUNT 40 206 #define QM_VF_RESET_WAIT_US 20000 207 #define QM_VF_RESET_WAIT_CNT 3000 208 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 209 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 210 211 #define QM_DFX_MB_CNT_VF 0x104010 212 #define QM_DFX_DB_CNT_VF 0x104020 213 #define QM_DFX_SQE_CNT_VF_SQN 0x104030 214 #define QM_DFX_CQE_CNT_VF_CQN 0x104040 215 #define QM_DFX_QN_SHIFT 16 216 #define CURRENT_FUN_MASK GENMASK(5, 0) 217 #define CURRENT_Q_MASK GENMASK(31, 16) 218 219 #define POLL_PERIOD 10 220 #define POLL_TIMEOUT 1000 221 #define WAIT_PERIOD_US_MAX 200 222 #define WAIT_PERIOD_US_MIN 100 223 #define MAX_WAIT_COUNTS 1000 224 #define QM_CACHE_WB_START 0x204 225 #define QM_CACHE_WB_DONE 0x208 226 227 #define PCI_BAR_2 2 228 #define PCI_BAR_4 4 229 #define QM_SQE_DATA_ALIGN_MASK GENMASK(6, 0) 230 #define QMC_ALIGN(sz) ALIGN(sz, 32) 231 232 #define QM_DBG_READ_LEN 256 233 #define QM_DBG_WRITE_LEN 1024 234 #define QM_DBG_TMP_BUF_LEN 22 235 #define QM_PCI_COMMAND_INVALID ~0 236 237 #define WAIT_PERIOD 20 238 #define REMOVE_WAIT_DELAY 10 239 #define QM_SQE_ADDR_MASK GENMASK(7, 0) 240 #define QM_EQ_DEPTH (1024 * 2) 241 242 #define QM_DRIVER_REMOVING 0 243 #define QM_RST_SCHED 1 244 #define QM_RESETTING 2 245 #define QM_QOS_PARAM_NUM 2 246 #define QM_QOS_VAL_NUM 1 247 #define QM_QOS_BDF_PARAM_NUM 4 248 #define QM_QOS_MAX_VAL 1000 249 #define QM_QOS_RATE 100 250 #define QM_QOS_EXPAND_RATE 1000 251 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 252 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 253 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 254 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 255 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 256 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 257 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 258 #define QM_SHAPER_CBS_B 1 259 #define QM_SHAPER_CBS_S 16 260 #define QM_SHAPER_VFT_OFFSET 6 261 #define WAIT_FOR_QOS_VF 100 262 #define QM_QOS_MIN_ERROR_RATE 5 263 #define QM_QOS_TYPICAL_NUM 8 264 #define QM_SHAPER_MIN_CBS_S 8 265 #define QM_QOS_TICK 0x300U 266 #define QM_QOS_DIVISOR_CLK 0x1f40U 267 #define QM_QOS_MAX_CIR_B 200 268 #define QM_QOS_MIN_CIR_B 100 269 #define QM_QOS_MAX_CIR_U 6 270 #define QM_QOS_MAX_CIR_S 11 271 #define QM_QOS_VAL_MAX_LEN 32 272 273 #define QM_AUTOSUSPEND_DELAY 3000 274 275 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 276 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 277 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 278 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 279 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 280 281 #define QM_MK_CQC_DW3_V2(cqe_sz) \ 282 ((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 283 284 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 285 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 286 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 287 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 288 289 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 290 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 291 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 292 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 293 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 294 295 #define QM_MK_SQC_DW3_V2(sqe_sz) \ 296 ((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 297 298 #define INIT_QC_COMMON(qc, base, pasid) do { \ 299 (qc)->head = 0; \ 300 (qc)->tail = 0; \ 301 (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ 302 (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ 303 (qc)->dw3 = 0; \ 304 (qc)->w8 = 0; \ 305 (qc)->rsvd0 = 0; \ 306 (qc)->pasid = cpu_to_le16(pasid); \ 307 (qc)->w11 = 0; \ 308 (qc)->rsvd1 = 0; \ 309 } while (0) 310 311 enum vft_type { 312 SQC_VFT = 0, 313 CQC_VFT, 314 SHAPER_VFT, 315 }; 316 317 enum acc_err_result { 318 ACC_ERR_NONE, 319 ACC_ERR_NEED_RESET, 320 ACC_ERR_RECOVERED, 321 }; 322 323 enum qm_alg_type { 324 ALG_TYPE_0, 325 ALG_TYPE_1, 326 }; 327 328 enum qm_mb_cmd { 329 QM_PF_FLR_PREPARE = 0x01, 330 QM_PF_SRST_PREPARE, 331 QM_PF_RESET_DONE, 332 QM_VF_PREPARE_DONE, 333 QM_VF_PREPARE_FAIL, 334 QM_VF_START_DONE, 335 QM_VF_START_FAIL, 336 QM_PF_SET_QOS, 337 QM_VF_GET_QOS, 338 }; 339 340 struct qm_cqe { 341 __le32 rsvd0; 342 __le16 cmd_id; 343 __le16 rsvd1; 344 __le16 sq_head; 345 __le16 sq_num; 346 __le16 rsvd2; 347 __le16 w7; 348 }; 349 350 struct qm_eqe { 351 __le32 dw0; 352 }; 353 354 struct qm_aeqe { 355 __le32 dw0; 356 }; 357 358 struct qm_sqc { 359 __le16 head; 360 __le16 tail; 361 __le32 base_l; 362 __le32 base_h; 363 __le32 dw3; 364 __le16 w8; 365 __le16 rsvd0; 366 __le16 pasid; 367 __le16 w11; 368 __le16 cq_num; 369 __le16 w13; 370 __le32 rsvd1; 371 }; 372 373 struct qm_cqc { 374 __le16 head; 375 __le16 tail; 376 __le32 base_l; 377 __le32 base_h; 378 __le32 dw3; 379 __le16 w8; 380 __le16 rsvd0; 381 __le16 pasid; 382 __le16 w11; 383 __le32 dw6; 384 __le32 rsvd1; 385 }; 386 387 struct qm_eqc { 388 __le16 head; 389 __le16 tail; 390 __le32 base_l; 391 __le32 base_h; 392 __le32 dw3; 393 __le32 rsvd[2]; 394 __le32 dw6; 395 }; 396 397 struct qm_aeqc { 398 __le16 head; 399 __le16 tail; 400 __le32 base_l; 401 __le32 base_h; 402 __le32 dw3; 403 __le32 rsvd[2]; 404 __le32 dw6; 405 }; 406 407 struct qm_mailbox { 408 __le16 w0; 409 __le16 queue_num; 410 __le32 base_l; 411 __le32 base_h; 412 __le32 rsvd; 413 }; 414 415 struct qm_doorbell { 416 __le16 queue_num; 417 __le16 cmd; 418 __le16 index; 419 __le16 priority; 420 }; 421 422 struct hisi_qm_resource { 423 struct hisi_qm *qm; 424 int distance; 425 struct list_head list; 426 }; 427 428 struct hisi_qm_hw_ops { 429 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 430 void (*qm_db)(struct hisi_qm *qm, u16 qn, 431 u8 cmd, u16 index, u8 priority); 432 u32 (*get_irq_num)(struct hisi_qm *qm); 433 int (*debug_init)(struct hisi_qm *qm); 434 void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe); 435 void (*hw_error_uninit)(struct hisi_qm *qm); 436 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 437 int (*stop_qp)(struct hisi_qp *qp); 438 int (*set_msi)(struct hisi_qm *qm, bool set); 439 int (*ping_all_vfs)(struct hisi_qm *qm, u64 cmd); 440 int (*ping_pf)(struct hisi_qm *qm, u64 cmd); 441 }; 442 443 struct qm_dfx_item { 444 const char *name; 445 u32 offset; 446 }; 447 448 static struct qm_dfx_item qm_dfx_files[] = { 449 {"err_irq", offsetof(struct qm_dfx, err_irq_cnt)}, 450 {"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)}, 451 {"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)}, 452 {"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)}, 453 {"mb_err", offsetof(struct qm_dfx, mb_err_cnt)}, 454 }; 455 456 static const char * const qm_debug_file_name[] = { 457 [CURRENT_QM] = "current_qm", 458 [CURRENT_Q] = "current_q", 459 [CLEAR_ENABLE] = "clear_enable", 460 }; 461 462 struct hisi_qm_hw_error { 463 u32 int_msk; 464 const char *msg; 465 }; 466 467 static const struct hisi_qm_hw_error qm_hw_error[] = { 468 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 469 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 470 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 471 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 472 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 473 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 474 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 475 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 476 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 477 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 478 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 479 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 480 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 481 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 482 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 483 { /* sentinel */ } 484 }; 485 486 static const char * const qm_db_timeout[] = { 487 "sq", "cq", "eq", "aeq", 488 }; 489 490 static const char * const qm_fifo_overflow[] = { 491 "cq", "eq", "aeq", 492 }; 493 494 static const char * const qm_s[] = { 495 "init", "start", "close", "stop", 496 }; 497 498 static const char * const qp_s[] = { 499 "none", "init", "start", "stop", "close", 500 }; 501 502 static const u32 typical_qos_val[QM_QOS_TYPICAL_NUM] = {100, 250, 500, 1000, 503 10000, 25000, 50000, 100000}; 504 static const u32 typical_qos_cbs_s[QM_QOS_TYPICAL_NUM] = {9, 10, 11, 12, 16, 505 17, 18, 19}; 506 507 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 508 { 509 enum qm_state curr = atomic_read(&qm->status.flags); 510 bool avail = false; 511 512 switch (curr) { 513 case QM_INIT: 514 if (new == QM_START || new == QM_CLOSE) 515 avail = true; 516 break; 517 case QM_START: 518 if (new == QM_STOP) 519 avail = true; 520 break; 521 case QM_STOP: 522 if (new == QM_CLOSE || new == QM_START) 523 avail = true; 524 break; 525 default: 526 break; 527 } 528 529 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 530 qm_s[curr], qm_s[new]); 531 532 if (!avail) 533 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 534 qm_s[curr], qm_s[new]); 535 536 return avail; 537 } 538 539 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 540 enum qp_state new) 541 { 542 enum qm_state qm_curr = atomic_read(&qm->status.flags); 543 enum qp_state qp_curr = 0; 544 bool avail = false; 545 546 if (qp) 547 qp_curr = atomic_read(&qp->qp_status.flags); 548 549 switch (new) { 550 case QP_INIT: 551 if (qm_curr == QM_START || qm_curr == QM_INIT) 552 avail = true; 553 break; 554 case QP_START: 555 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 556 (qm_curr == QM_START && qp_curr == QP_STOP)) 557 avail = true; 558 break; 559 case QP_STOP: 560 if ((qm_curr == QM_START && qp_curr == QP_START) || 561 (qp_curr == QP_INIT)) 562 avail = true; 563 break; 564 case QP_CLOSE: 565 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 566 (qm_curr == QM_START && qp_curr == QP_STOP) || 567 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 568 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 569 avail = true; 570 break; 571 default: 572 break; 573 } 574 575 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 576 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 577 578 if (!avail) 579 dev_warn(&qm->pdev->dev, 580 "Can not change qp state from %s to %s in QM %s\n", 581 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 582 583 return avail; 584 } 585 586 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 587 u64 base, u16 queue, bool op) 588 { 589 mailbox->w0 = cpu_to_le16((cmd) | 590 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 591 (0x1 << QM_MB_BUSY_SHIFT)); 592 mailbox->queue_num = cpu_to_le16(queue); 593 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 594 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 595 mailbox->rsvd = 0; 596 } 597 598 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 599 static int qm_wait_mb_ready(struct hisi_qm *qm) 600 { 601 u32 val; 602 603 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 604 val, !((val >> QM_MB_BUSY_SHIFT) & 605 0x1), POLL_PERIOD, POLL_TIMEOUT); 606 } 607 608 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 609 static void qm_mb_write(struct hisi_qm *qm, const void *src) 610 { 611 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 612 unsigned long tmp0 = 0, tmp1 = 0; 613 614 if (!IS_ENABLED(CONFIG_ARM64)) { 615 memcpy_toio(fun_base, src, 16); 616 wmb(); 617 return; 618 } 619 620 asm volatile("ldp %0, %1, %3\n" 621 "stp %0, %1, %2\n" 622 "dsb sy\n" 623 : "=&r" (tmp0), 624 "=&r" (tmp1), 625 "+Q" (*((char __iomem *)fun_base)) 626 : "Q" (*((char *)src)) 627 : "memory"); 628 } 629 630 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 631 { 632 if (unlikely(qm_wait_mb_ready(qm))) { 633 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 634 goto mb_busy; 635 } 636 637 qm_mb_write(qm, mailbox); 638 639 if (unlikely(qm_wait_mb_ready(qm))) { 640 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 641 goto mb_busy; 642 } 643 644 return 0; 645 646 mb_busy: 647 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 648 return -EBUSY; 649 } 650 651 static int qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 652 bool op) 653 { 654 struct qm_mailbox mailbox; 655 int ret; 656 657 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 658 queue, cmd, (unsigned long long)dma_addr); 659 660 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 661 662 mutex_lock(&qm->mailbox_lock); 663 ret = qm_mb_nolock(qm, &mailbox); 664 mutex_unlock(&qm->mailbox_lock); 665 666 return ret; 667 } 668 669 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 670 { 671 u64 doorbell; 672 673 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 674 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 675 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 676 677 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 678 } 679 680 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 681 { 682 void __iomem *io_base = qm->io_base; 683 u16 randata = 0; 684 u64 doorbell; 685 686 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 687 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 688 QM_DOORBELL_SQ_CQ_BASE_V2; 689 else 690 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 691 692 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 693 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 694 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 695 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 696 697 writeq(doorbell, io_base); 698 } 699 700 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 701 { 702 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 703 qn, cmd, index); 704 705 qm->ops->qm_db(qm, qn, cmd, index, priority); 706 } 707 708 static int qm_dev_mem_reset(struct hisi_qm *qm) 709 { 710 u32 val; 711 712 writel(0x1, qm->io_base + QM_MEM_START_INIT); 713 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 714 val & BIT(0), POLL_PERIOD, 715 POLL_TIMEOUT); 716 } 717 718 static u32 qm_get_irq_num_v1(struct hisi_qm *qm) 719 { 720 return QM_IRQ_NUM_V1; 721 } 722 723 static u32 qm_get_irq_num_v2(struct hisi_qm *qm) 724 { 725 if (qm->fun_type == QM_HW_PF) 726 return QM_IRQ_NUM_PF_V2; 727 else 728 return QM_IRQ_NUM_VF_V2; 729 } 730 731 static u32 qm_get_irq_num_v3(struct hisi_qm *qm) 732 { 733 if (qm->fun_type == QM_HW_PF) 734 return QM_IRQ_NUM_PF_V2; 735 736 return QM_IRQ_NUM_VF_V3; 737 } 738 739 static int qm_pm_get_sync(struct hisi_qm *qm) 740 { 741 struct device *dev = &qm->pdev->dev; 742 int ret; 743 744 if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3) 745 return 0; 746 747 ret = pm_runtime_resume_and_get(dev); 748 if (ret < 0) { 749 dev_err(dev, "failed to get_sync(%d).\n", ret); 750 return ret; 751 } 752 753 return 0; 754 } 755 756 static void qm_pm_put_sync(struct hisi_qm *qm) 757 { 758 struct device *dev = &qm->pdev->dev; 759 760 if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3) 761 return; 762 763 pm_runtime_mark_last_busy(dev); 764 pm_runtime_put_autosuspend(dev); 765 } 766 767 static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe) 768 { 769 u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 770 771 return &qm->qp_array[cqn]; 772 } 773 774 static void qm_cq_head_update(struct hisi_qp *qp) 775 { 776 if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) { 777 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 778 qp->qp_status.cq_head = 0; 779 } else { 780 qp->qp_status.cq_head++; 781 } 782 } 783 784 static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm) 785 { 786 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 787 return; 788 789 if (qp->event_cb) { 790 qp->event_cb(qp); 791 return; 792 } 793 794 if (qp->req_cb) { 795 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 796 797 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 798 dma_rmb(); 799 qp->req_cb(qp, qp->sqe + qm->sqe_size * 800 le16_to_cpu(cqe->sq_head)); 801 qm_cq_head_update(qp); 802 cqe = qp->cqe + qp->qp_status.cq_head; 803 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 804 qp->qp_status.cq_head, 0); 805 atomic_dec(&qp->qp_status.used); 806 } 807 808 /* set c_flag */ 809 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 810 qp->qp_status.cq_head, 1); 811 } 812 } 813 814 static void qm_work_process(struct work_struct *work) 815 { 816 struct hisi_qm *qm = container_of(work, struct hisi_qm, work); 817 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 818 struct hisi_qp *qp; 819 int eqe_num = 0; 820 821 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 822 eqe_num++; 823 qp = qm_to_hisi_qp(qm, eqe); 824 qm_poll_qp(qp, qm); 825 826 if (qm->status.eq_head == QM_EQ_DEPTH - 1) { 827 qm->status.eqc_phase = !qm->status.eqc_phase; 828 eqe = qm->eqe; 829 qm->status.eq_head = 0; 830 } else { 831 eqe++; 832 qm->status.eq_head++; 833 } 834 835 if (eqe_num == QM_EQ_DEPTH / 2 - 1) { 836 eqe_num = 0; 837 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 838 } 839 } 840 841 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 842 } 843 844 static irqreturn_t do_qm_irq(int irq, void *data) 845 { 846 struct hisi_qm *qm = (struct hisi_qm *)data; 847 848 /* the workqueue created by device driver of QM */ 849 if (qm->wq) 850 queue_work(qm->wq, &qm->work); 851 else 852 schedule_work(&qm->work); 853 854 return IRQ_HANDLED; 855 } 856 857 static irqreturn_t qm_irq(int irq, void *data) 858 { 859 struct hisi_qm *qm = data; 860 861 if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE)) 862 return do_qm_irq(irq, data); 863 864 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 865 dev_err(&qm->pdev->dev, "invalid int source\n"); 866 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 867 868 return IRQ_NONE; 869 } 870 871 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 872 { 873 struct hisi_qm *qm = data; 874 u32 val; 875 876 val = readl(qm->io_base + QM_IFC_INT_STATUS); 877 val &= QM_IFC_INT_STATUS_MASK; 878 if (!val) 879 return IRQ_NONE; 880 881 schedule_work(&qm->cmd_process); 882 883 return IRQ_HANDLED; 884 } 885 886 static irqreturn_t qm_aeq_irq(int irq, void *data) 887 { 888 struct hisi_qm *qm = data; 889 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 890 u32 type; 891 892 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 893 if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE)) 894 return IRQ_NONE; 895 896 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 897 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; 898 if (type < ARRAY_SIZE(qm_fifo_overflow)) 899 dev_err(&qm->pdev->dev, "%s overflow\n", 900 qm_fifo_overflow[type]); 901 else 902 dev_err(&qm->pdev->dev, "unknown error type %u\n", 903 type); 904 905 if (qm->status.aeq_head == QM_Q_DEPTH - 1) { 906 qm->status.aeqc_phase = !qm->status.aeqc_phase; 907 aeqe = qm->aeqe; 908 qm->status.aeq_head = 0; 909 } else { 910 aeqe++; 911 qm->status.aeq_head++; 912 } 913 914 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 915 } 916 917 return IRQ_HANDLED; 918 } 919 920 static void qm_irq_unregister(struct hisi_qm *qm) 921 { 922 struct pci_dev *pdev = qm->pdev; 923 924 free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm); 925 926 if (qm->ver > QM_HW_V1) { 927 free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm); 928 929 if (qm->fun_type == QM_HW_PF) 930 free_irq(pci_irq_vector(pdev, 931 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm); 932 } 933 934 if (qm->ver > QM_HW_V2) 935 free_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR), qm); 936 } 937 938 static void qm_init_qp_status(struct hisi_qp *qp) 939 { 940 struct hisi_qp_status *qp_status = &qp->qp_status; 941 942 qp_status->sq_tail = 0; 943 qp_status->cq_head = 0; 944 qp_status->cqc_phase = true; 945 atomic_set(&qp_status->used, 0); 946 } 947 948 static void qm_init_prefetch(struct hisi_qm *qm) 949 { 950 struct device *dev = &qm->pdev->dev; 951 u32 page_type = 0x0; 952 953 if (qm->ver < QM_HW_V3) 954 return; 955 956 switch (PAGE_SIZE) { 957 case SZ_4K: 958 page_type = 0x0; 959 break; 960 case SZ_16K: 961 page_type = 0x1; 962 break; 963 case SZ_64K: 964 page_type = 0x2; 965 break; 966 default: 967 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 968 PAGE_SIZE); 969 } 970 971 writel(page_type, qm->io_base + QM_PAGE_SIZE); 972 } 973 974 /* 975 * the formula: 976 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 977 * 978 * IR_b * (2 ^ IR_u) * 8 979 * IR(Mbps) * 10 ^ -3 = ------------------------- 980 * Tick * (2 ^ IR_s) 981 */ 982 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 983 { 984 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 985 (QM_QOS_TICK * (1 << cir_s)); 986 } 987 988 static u32 acc_shaper_calc_cbs_s(u32 ir) 989 { 990 int i; 991 992 if (ir < typical_qos_val[0]) 993 return QM_SHAPER_MIN_CBS_S; 994 995 for (i = 1; i < QM_QOS_TYPICAL_NUM; i++) { 996 if (ir >= typical_qos_val[i - 1] && ir < typical_qos_val[i]) 997 return typical_qos_cbs_s[i - 1]; 998 } 999 1000 return typical_qos_cbs_s[QM_QOS_TYPICAL_NUM - 1]; 1001 } 1002 1003 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1004 { 1005 u32 cir_b, cir_u, cir_s, ir_calc; 1006 u32 error_rate; 1007 1008 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1009 1010 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1011 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1012 for (cir_s = 0; cir_s <= QM_QOS_MAX_CIR_S; cir_s++) { 1013 /** the formula is changed to: 1014 * IR_b * (2 ^ IR_u) * DIVISOR_CLK 1015 * IR(Mbps) = ------------------------- 1016 * 768 * (2 ^ IR_s) 1017 */ 1018 ir_calc = acc_shaper_para_calc(cir_b, cir_u, 1019 cir_s); 1020 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1021 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1022 factor->cir_b = cir_b; 1023 factor->cir_u = cir_u; 1024 factor->cir_s = cir_s; 1025 1026 return 0; 1027 } 1028 } 1029 } 1030 } 1031 1032 return -EINVAL; 1033 } 1034 1035 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1036 u32 number, struct qm_shaper_factor *factor) 1037 { 1038 u64 tmp = 0; 1039 1040 if (number > 0) { 1041 switch (type) { 1042 case SQC_VFT: 1043 if (qm->ver == QM_HW_V1) { 1044 tmp = QM_SQC_VFT_BUF_SIZE | 1045 QM_SQC_VFT_SQC_SIZE | 1046 QM_SQC_VFT_INDEX_NUMBER | 1047 QM_SQC_VFT_VALID | 1048 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1049 } else { 1050 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1051 QM_SQC_VFT_VALID | 1052 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1053 } 1054 break; 1055 case CQC_VFT: 1056 if (qm->ver == QM_HW_V1) { 1057 tmp = QM_CQC_VFT_BUF_SIZE | 1058 QM_CQC_VFT_SQC_SIZE | 1059 QM_CQC_VFT_INDEX_NUMBER | 1060 QM_CQC_VFT_VALID; 1061 } else { 1062 tmp = QM_CQC_VFT_VALID; 1063 } 1064 break; 1065 case SHAPER_VFT: 1066 if (qm->ver >= QM_HW_V3) { 1067 tmp = factor->cir_b | 1068 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1069 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1070 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1071 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1072 } 1073 break; 1074 } 1075 } 1076 1077 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1078 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1079 } 1080 1081 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1082 u32 fun_num, u32 base, u32 number) 1083 { 1084 struct qm_shaper_factor *factor = &qm->factor[fun_num]; 1085 unsigned int val; 1086 int ret; 1087 1088 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1089 val & BIT(0), POLL_PERIOD, 1090 POLL_TIMEOUT); 1091 if (ret) 1092 return ret; 1093 1094 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1095 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1096 if (type == SHAPER_VFT) 1097 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1098 1099 writel(fun_num, qm->io_base + QM_VFT_CFG); 1100 1101 qm_vft_data_cfg(qm, type, base, number, factor); 1102 1103 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1104 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1105 1106 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1107 val & BIT(0), POLL_PERIOD, 1108 POLL_TIMEOUT); 1109 } 1110 1111 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1112 { 1113 int ret, i; 1114 1115 qm->factor[fun_num].func_qos = QM_QOS_MAX_VAL; 1116 ret = qm_get_shaper_para(QM_QOS_MAX_VAL * QM_QOS_RATE, &qm->factor[fun_num]); 1117 if (ret) { 1118 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1119 return ret; 1120 } 1121 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1122 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1123 /* The base number of queue reuse for different alg type */ 1124 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1125 if (ret) 1126 return ret; 1127 } 1128 1129 return 0; 1130 } 1131 1132 /* The config should be conducted after qm_dev_mem_reset() */ 1133 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1134 u32 number) 1135 { 1136 int ret, i; 1137 1138 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1139 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1140 if (ret) 1141 return ret; 1142 } 1143 1144 /* init default shaper qos val */ 1145 if (qm->ver >= QM_HW_V3) { 1146 ret = qm_shaper_init_vft(qm, fun_num); 1147 if (ret) 1148 goto back_sqc_cqc; 1149 } 1150 1151 return 0; 1152 back_sqc_cqc: 1153 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1154 ret = qm_set_vft_common(qm, i, fun_num, 0, 0); 1155 if (ret) 1156 return ret; 1157 } 1158 return ret; 1159 } 1160 1161 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1162 { 1163 u64 sqc_vft; 1164 int ret; 1165 1166 ret = qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1167 if (ret) 1168 return ret; 1169 1170 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1171 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1172 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1173 *number = (QM_SQC_VFT_NUM_MASK_v2 & 1174 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1175 1176 return 0; 1177 } 1178 1179 static int qm_get_vf_qp_num(struct hisi_qm *qm, u32 fun_num) 1180 { 1181 u32 remain_q_num, vfq_num; 1182 u32 num_vfs = qm->vfs_num; 1183 1184 vfq_num = (qm->ctrl_qp_num - qm->qp_num) / num_vfs; 1185 if (vfq_num >= qm->max_qp_num) 1186 return qm->max_qp_num; 1187 1188 remain_q_num = (qm->ctrl_qp_num - qm->qp_num) % num_vfs; 1189 if (vfq_num + remain_q_num <= qm->max_qp_num) 1190 return fun_num == num_vfs ? vfq_num + remain_q_num : vfq_num; 1191 1192 /* 1193 * if vfq_num + remain_q_num > max_qp_num, the last VFs, 1194 * each with one more queue. 1195 */ 1196 return fun_num + remain_q_num > num_vfs ? vfq_num + 1 : vfq_num; 1197 } 1198 1199 static struct hisi_qm *file_to_qm(struct debugfs_file *file) 1200 { 1201 struct qm_debug *debug = file->debug; 1202 1203 return container_of(debug, struct hisi_qm, debug); 1204 } 1205 1206 static u32 current_q_read(struct hisi_qm *qm) 1207 { 1208 return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT; 1209 } 1210 1211 static int current_q_write(struct hisi_qm *qm, u32 val) 1212 { 1213 u32 tmp; 1214 1215 if (val >= qm->debug.curr_qm_qp_num) 1216 return -EINVAL; 1217 1218 tmp = val << QM_DFX_QN_SHIFT | 1219 (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK); 1220 writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 1221 1222 tmp = val << QM_DFX_QN_SHIFT | 1223 (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK); 1224 writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 1225 1226 return 0; 1227 } 1228 1229 static u32 clear_enable_read(struct hisi_qm *qm) 1230 { 1231 return readl(qm->io_base + QM_DFX_CNT_CLR_CE); 1232 } 1233 1234 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */ 1235 static int clear_enable_write(struct hisi_qm *qm, u32 rd_clr_ctrl) 1236 { 1237 if (rd_clr_ctrl > 1) 1238 return -EINVAL; 1239 1240 writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE); 1241 1242 return 0; 1243 } 1244 1245 static u32 current_qm_read(struct hisi_qm *qm) 1246 { 1247 return readl(qm->io_base + QM_DFX_MB_CNT_VF); 1248 } 1249 1250 static int current_qm_write(struct hisi_qm *qm, u32 val) 1251 { 1252 u32 tmp; 1253 1254 if (val > qm->vfs_num) 1255 return -EINVAL; 1256 1257 /* According PF or VF Dev ID to calculation curr_qm_qp_num and store */ 1258 if (!val) 1259 qm->debug.curr_qm_qp_num = qm->qp_num; 1260 else 1261 qm->debug.curr_qm_qp_num = qm_get_vf_qp_num(qm, val); 1262 1263 writel(val, qm->io_base + QM_DFX_MB_CNT_VF); 1264 writel(val, qm->io_base + QM_DFX_DB_CNT_VF); 1265 1266 tmp = val | 1267 (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_Q_MASK); 1268 writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 1269 1270 tmp = val | 1271 (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_Q_MASK); 1272 writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 1273 1274 return 0; 1275 } 1276 1277 static ssize_t qm_debug_read(struct file *filp, char __user *buf, 1278 size_t count, loff_t *pos) 1279 { 1280 struct debugfs_file *file = filp->private_data; 1281 enum qm_debug_file index = file->index; 1282 struct hisi_qm *qm = file_to_qm(file); 1283 char tbuf[QM_DBG_TMP_BUF_LEN]; 1284 u32 val; 1285 int ret; 1286 1287 ret = hisi_qm_get_dfx_access(qm); 1288 if (ret) 1289 return ret; 1290 1291 mutex_lock(&file->lock); 1292 switch (index) { 1293 case CURRENT_QM: 1294 val = current_qm_read(qm); 1295 break; 1296 case CURRENT_Q: 1297 val = current_q_read(qm); 1298 break; 1299 case CLEAR_ENABLE: 1300 val = clear_enable_read(qm); 1301 break; 1302 default: 1303 goto err_input; 1304 } 1305 mutex_unlock(&file->lock); 1306 1307 hisi_qm_put_dfx_access(qm); 1308 ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val); 1309 return simple_read_from_buffer(buf, count, pos, tbuf, ret); 1310 1311 err_input: 1312 mutex_unlock(&file->lock); 1313 hisi_qm_put_dfx_access(qm); 1314 return -EINVAL; 1315 } 1316 1317 static ssize_t qm_debug_write(struct file *filp, const char __user *buf, 1318 size_t count, loff_t *pos) 1319 { 1320 struct debugfs_file *file = filp->private_data; 1321 enum qm_debug_file index = file->index; 1322 struct hisi_qm *qm = file_to_qm(file); 1323 unsigned long val; 1324 char tbuf[QM_DBG_TMP_BUF_LEN]; 1325 int len, ret; 1326 1327 if (*pos != 0) 1328 return 0; 1329 1330 if (count >= QM_DBG_TMP_BUF_LEN) 1331 return -ENOSPC; 1332 1333 len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf, 1334 count); 1335 if (len < 0) 1336 return len; 1337 1338 tbuf[len] = '\0'; 1339 if (kstrtoul(tbuf, 0, &val)) 1340 return -EFAULT; 1341 1342 ret = hisi_qm_get_dfx_access(qm); 1343 if (ret) 1344 return ret; 1345 1346 mutex_lock(&file->lock); 1347 switch (index) { 1348 case CURRENT_QM: 1349 ret = current_qm_write(qm, val); 1350 break; 1351 case CURRENT_Q: 1352 ret = current_q_write(qm, val); 1353 break; 1354 case CLEAR_ENABLE: 1355 ret = clear_enable_write(qm, val); 1356 break; 1357 default: 1358 ret = -EINVAL; 1359 } 1360 mutex_unlock(&file->lock); 1361 1362 hisi_qm_put_dfx_access(qm); 1363 1364 if (ret) 1365 return ret; 1366 1367 return count; 1368 } 1369 1370 static const struct file_operations qm_debug_fops = { 1371 .owner = THIS_MODULE, 1372 .open = simple_open, 1373 .read = qm_debug_read, 1374 .write = qm_debug_write, 1375 }; 1376 1377 #define CNT_CYC_REGS_NUM 10 1378 static const struct debugfs_reg32 qm_dfx_regs[] = { 1379 /* XXX_CNT are reading clear register */ 1380 {"QM_ECC_1BIT_CNT ", 0x104000ull}, 1381 {"QM_ECC_MBIT_CNT ", 0x104008ull}, 1382 {"QM_DFX_MB_CNT ", 0x104018ull}, 1383 {"QM_DFX_DB_CNT ", 0x104028ull}, 1384 {"QM_DFX_SQE_CNT ", 0x104038ull}, 1385 {"QM_DFX_CQE_CNT ", 0x104048ull}, 1386 {"QM_DFX_SEND_SQE_TO_ACC_CNT ", 0x104050ull}, 1387 {"QM_DFX_WB_SQE_FROM_ACC_CNT ", 0x104058ull}, 1388 {"QM_DFX_ACC_FINISH_CNT ", 0x104060ull}, 1389 {"QM_DFX_CQE_ERR_CNT ", 0x1040b4ull}, 1390 {"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull}, 1391 {"QM_ECC_1BIT_INF ", 0x104004ull}, 1392 {"QM_ECC_MBIT_INF ", 0x10400cull}, 1393 {"QM_DFX_ACC_RDY_VLD0 ", 0x1040a0ull}, 1394 {"QM_DFX_ACC_RDY_VLD1 ", 0x1040a4ull}, 1395 {"QM_DFX_AXI_RDY_VLD ", 0x1040a8ull}, 1396 {"QM_DFX_FF_ST0 ", 0x1040c8ull}, 1397 {"QM_DFX_FF_ST1 ", 0x1040ccull}, 1398 {"QM_DFX_FF_ST2 ", 0x1040d0ull}, 1399 {"QM_DFX_FF_ST3 ", 0x1040d4ull}, 1400 {"QM_DFX_FF_ST4 ", 0x1040d8ull}, 1401 {"QM_DFX_FF_ST5 ", 0x1040dcull}, 1402 {"QM_DFX_FF_ST6 ", 0x1040e0ull}, 1403 {"QM_IN_IDLE_ST ", 0x1040e4ull}, 1404 }; 1405 1406 static const struct debugfs_reg32 qm_vf_dfx_regs[] = { 1407 {"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull}, 1408 }; 1409 1410 /** 1411 * hisi_qm_regs_dump() - Dump registers's value. 1412 * @s: debugfs file handle. 1413 * @regset: accelerator registers information. 1414 * 1415 * Dump accelerator registers. 1416 */ 1417 void hisi_qm_regs_dump(struct seq_file *s, struct debugfs_regset32 *regset) 1418 { 1419 struct pci_dev *pdev = to_pci_dev(regset->dev); 1420 struct hisi_qm *qm = pci_get_drvdata(pdev); 1421 const struct debugfs_reg32 *regs = regset->regs; 1422 int regs_len = regset->nregs; 1423 int i, ret; 1424 u32 val; 1425 1426 ret = hisi_qm_get_dfx_access(qm); 1427 if (ret) 1428 return; 1429 1430 for (i = 0; i < regs_len; i++) { 1431 val = readl(regset->base + regs[i].offset); 1432 seq_printf(s, "%s= 0x%08x\n", regs[i].name, val); 1433 } 1434 1435 hisi_qm_put_dfx_access(qm); 1436 } 1437 EXPORT_SYMBOL_GPL(hisi_qm_regs_dump); 1438 1439 static int qm_regs_show(struct seq_file *s, void *unused) 1440 { 1441 struct hisi_qm *qm = s->private; 1442 struct debugfs_regset32 regset; 1443 1444 if (qm->fun_type == QM_HW_PF) { 1445 regset.regs = qm_dfx_regs; 1446 regset.nregs = ARRAY_SIZE(qm_dfx_regs); 1447 } else { 1448 regset.regs = qm_vf_dfx_regs; 1449 regset.nregs = ARRAY_SIZE(qm_vf_dfx_regs); 1450 } 1451 1452 regset.base = qm->io_base; 1453 regset.dev = &qm->pdev->dev; 1454 1455 hisi_qm_regs_dump(s, ®set); 1456 1457 return 0; 1458 } 1459 1460 DEFINE_SHOW_ATTRIBUTE(qm_regs); 1461 1462 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer, 1463 size_t count, loff_t *pos) 1464 { 1465 char buf[QM_DBG_READ_LEN]; 1466 int len; 1467 1468 len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", 1469 "Please echo help to cmd to get help information"); 1470 1471 return simple_read_from_buffer(buffer, count, pos, buf, len); 1472 } 1473 1474 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, 1475 dma_addr_t *dma_addr) 1476 { 1477 struct device *dev = &qm->pdev->dev; 1478 void *ctx_addr; 1479 1480 ctx_addr = kzalloc(ctx_size, GFP_KERNEL); 1481 if (!ctx_addr) 1482 return ERR_PTR(-ENOMEM); 1483 1484 *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); 1485 if (dma_mapping_error(dev, *dma_addr)) { 1486 dev_err(dev, "DMA mapping error!\n"); 1487 kfree(ctx_addr); 1488 return ERR_PTR(-ENOMEM); 1489 } 1490 1491 return ctx_addr; 1492 } 1493 1494 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, 1495 const void *ctx_addr, dma_addr_t *dma_addr) 1496 { 1497 struct device *dev = &qm->pdev->dev; 1498 1499 dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); 1500 kfree(ctx_addr); 1501 } 1502 1503 static int dump_show(struct hisi_qm *qm, void *info, 1504 unsigned int info_size, char *info_name) 1505 { 1506 struct device *dev = &qm->pdev->dev; 1507 u8 *info_buf, *info_curr = info; 1508 u32 i; 1509 #define BYTE_PER_DW 4 1510 1511 info_buf = kzalloc(info_size, GFP_KERNEL); 1512 if (!info_buf) 1513 return -ENOMEM; 1514 1515 for (i = 0; i < info_size; i++, info_curr++) { 1516 if (i % BYTE_PER_DW == 0) 1517 info_buf[i + 3UL] = *info_curr; 1518 else if (i % BYTE_PER_DW == 1) 1519 info_buf[i + 1UL] = *info_curr; 1520 else if (i % BYTE_PER_DW == 2) 1521 info_buf[i - 1] = *info_curr; 1522 else if (i % BYTE_PER_DW == 3) 1523 info_buf[i - 3] = *info_curr; 1524 } 1525 1526 dev_info(dev, "%s DUMP\n", info_name); 1527 for (i = 0; i < info_size; i += BYTE_PER_DW) { 1528 pr_info("DW%u: %02X%02X %02X%02X\n", i / BYTE_PER_DW, 1529 info_buf[i], info_buf[i + 1UL], 1530 info_buf[i + 2UL], info_buf[i + 3UL]); 1531 } 1532 1533 kfree(info_buf); 1534 1535 return 0; 1536 } 1537 1538 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1539 { 1540 return qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); 1541 } 1542 1543 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1544 { 1545 return qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); 1546 } 1547 1548 static int qm_sqc_dump(struct hisi_qm *qm, const char *s) 1549 { 1550 struct device *dev = &qm->pdev->dev; 1551 struct qm_sqc *sqc, *sqc_curr; 1552 dma_addr_t sqc_dma; 1553 u32 qp_id; 1554 int ret; 1555 1556 if (!s) 1557 return -EINVAL; 1558 1559 ret = kstrtou32(s, 0, &qp_id); 1560 if (ret || qp_id >= qm->qp_num) { 1561 dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1); 1562 return -EINVAL; 1563 } 1564 1565 sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma); 1566 if (IS_ERR(sqc)) 1567 return PTR_ERR(sqc); 1568 1569 ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id); 1570 if (ret) { 1571 down_read(&qm->qps_lock); 1572 if (qm->sqc) { 1573 sqc_curr = qm->sqc + qp_id; 1574 1575 ret = dump_show(qm, sqc_curr, sizeof(*sqc), 1576 "SOFT SQC"); 1577 if (ret) 1578 dev_info(dev, "Show soft sqc failed!\n"); 1579 } 1580 up_read(&qm->qps_lock); 1581 1582 goto err_free_ctx; 1583 } 1584 1585 ret = dump_show(qm, sqc, sizeof(*sqc), "SQC"); 1586 if (ret) 1587 dev_info(dev, "Show hw sqc failed!\n"); 1588 1589 err_free_ctx: 1590 qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma); 1591 return ret; 1592 } 1593 1594 static int qm_cqc_dump(struct hisi_qm *qm, const char *s) 1595 { 1596 struct device *dev = &qm->pdev->dev; 1597 struct qm_cqc *cqc, *cqc_curr; 1598 dma_addr_t cqc_dma; 1599 u32 qp_id; 1600 int ret; 1601 1602 if (!s) 1603 return -EINVAL; 1604 1605 ret = kstrtou32(s, 0, &qp_id); 1606 if (ret || qp_id >= qm->qp_num) { 1607 dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1); 1608 return -EINVAL; 1609 } 1610 1611 cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma); 1612 if (IS_ERR(cqc)) 1613 return PTR_ERR(cqc); 1614 1615 ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id); 1616 if (ret) { 1617 down_read(&qm->qps_lock); 1618 if (qm->cqc) { 1619 cqc_curr = qm->cqc + qp_id; 1620 1621 ret = dump_show(qm, cqc_curr, sizeof(*cqc), 1622 "SOFT CQC"); 1623 if (ret) 1624 dev_info(dev, "Show soft cqc failed!\n"); 1625 } 1626 up_read(&qm->qps_lock); 1627 1628 goto err_free_ctx; 1629 } 1630 1631 ret = dump_show(qm, cqc, sizeof(*cqc), "CQC"); 1632 if (ret) 1633 dev_info(dev, "Show hw cqc failed!\n"); 1634 1635 err_free_ctx: 1636 qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma); 1637 return ret; 1638 } 1639 1640 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size, 1641 int cmd, char *name) 1642 { 1643 struct device *dev = &qm->pdev->dev; 1644 dma_addr_t xeqc_dma; 1645 void *xeqc; 1646 int ret; 1647 1648 if (strsep(&s, " ")) { 1649 dev_err(dev, "Please do not input extra characters!\n"); 1650 return -EINVAL; 1651 } 1652 1653 xeqc = qm_ctx_alloc(qm, size, &xeqc_dma); 1654 if (IS_ERR(xeqc)) 1655 return PTR_ERR(xeqc); 1656 1657 ret = qm_mb(qm, cmd, xeqc_dma, 0, 1); 1658 if (ret) 1659 goto err_free_ctx; 1660 1661 ret = dump_show(qm, xeqc, size, name); 1662 if (ret) 1663 dev_info(dev, "Show hw %s failed!\n", name); 1664 1665 err_free_ctx: 1666 qm_ctx_free(qm, size, xeqc, &xeqc_dma); 1667 return ret; 1668 } 1669 1670 static int q_dump_param_parse(struct hisi_qm *qm, char *s, 1671 u32 *e_id, u32 *q_id) 1672 { 1673 struct device *dev = &qm->pdev->dev; 1674 unsigned int qp_num = qm->qp_num; 1675 char *presult; 1676 int ret; 1677 1678 presult = strsep(&s, " "); 1679 if (!presult) { 1680 dev_err(dev, "Please input qp number!\n"); 1681 return -EINVAL; 1682 } 1683 1684 ret = kstrtou32(presult, 0, q_id); 1685 if (ret || *q_id >= qp_num) { 1686 dev_err(dev, "Please input qp num (0-%u)", qp_num - 1); 1687 return -EINVAL; 1688 } 1689 1690 presult = strsep(&s, " "); 1691 if (!presult) { 1692 dev_err(dev, "Please input sqe number!\n"); 1693 return -EINVAL; 1694 } 1695 1696 ret = kstrtou32(presult, 0, e_id); 1697 if (ret || *e_id >= QM_Q_DEPTH) { 1698 dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1); 1699 return -EINVAL; 1700 } 1701 1702 if (strsep(&s, " ")) { 1703 dev_err(dev, "Please do not input extra characters!\n"); 1704 return -EINVAL; 1705 } 1706 1707 return 0; 1708 } 1709 1710 static int qm_sq_dump(struct hisi_qm *qm, char *s) 1711 { 1712 struct device *dev = &qm->pdev->dev; 1713 void *sqe, *sqe_curr; 1714 struct hisi_qp *qp; 1715 u32 qp_id, sqe_id; 1716 int ret; 1717 1718 ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id); 1719 if (ret) 1720 return ret; 1721 1722 sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL); 1723 if (!sqe) 1724 return -ENOMEM; 1725 1726 qp = &qm->qp_array[qp_id]; 1727 memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH); 1728 sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size); 1729 memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK, 1730 qm->debug.sqe_mask_len); 1731 1732 ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE"); 1733 if (ret) 1734 dev_info(dev, "Show sqe failed!\n"); 1735 1736 kfree(sqe); 1737 1738 return ret; 1739 } 1740 1741 static int qm_cq_dump(struct hisi_qm *qm, char *s) 1742 { 1743 struct device *dev = &qm->pdev->dev; 1744 struct qm_cqe *cqe_curr; 1745 struct hisi_qp *qp; 1746 u32 qp_id, cqe_id; 1747 int ret; 1748 1749 ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id); 1750 if (ret) 1751 return ret; 1752 1753 qp = &qm->qp_array[qp_id]; 1754 cqe_curr = qp->cqe + cqe_id; 1755 ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE"); 1756 if (ret) 1757 dev_info(dev, "Show cqe failed!\n"); 1758 1759 return ret; 1760 } 1761 1762 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s, 1763 size_t size, char *name) 1764 { 1765 struct device *dev = &qm->pdev->dev; 1766 void *xeqe; 1767 u32 xeqe_id; 1768 int ret; 1769 1770 if (!s) 1771 return -EINVAL; 1772 1773 ret = kstrtou32(s, 0, &xeqe_id); 1774 if (ret) 1775 return -EINVAL; 1776 1777 if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) { 1778 dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1); 1779 return -EINVAL; 1780 } else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) { 1781 dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1); 1782 return -EINVAL; 1783 } 1784 1785 down_read(&qm->qps_lock); 1786 1787 if (qm->eqe && !strcmp(name, "EQE")) { 1788 xeqe = qm->eqe + xeqe_id; 1789 } else if (qm->aeqe && !strcmp(name, "AEQE")) { 1790 xeqe = qm->aeqe + xeqe_id; 1791 } else { 1792 ret = -EINVAL; 1793 goto err_unlock; 1794 } 1795 1796 ret = dump_show(qm, xeqe, size, name); 1797 if (ret) 1798 dev_info(dev, "Show %s failed!\n", name); 1799 1800 err_unlock: 1801 up_read(&qm->qps_lock); 1802 return ret; 1803 } 1804 1805 static int qm_dbg_help(struct hisi_qm *qm, char *s) 1806 { 1807 struct device *dev = &qm->pdev->dev; 1808 1809 if (strsep(&s, " ")) { 1810 dev_err(dev, "Please do not input extra characters!\n"); 1811 return -EINVAL; 1812 } 1813 1814 dev_info(dev, "available commands:\n"); 1815 dev_info(dev, "sqc <num>\n"); 1816 dev_info(dev, "cqc <num>\n"); 1817 dev_info(dev, "eqc\n"); 1818 dev_info(dev, "aeqc\n"); 1819 dev_info(dev, "sq <num> <e>\n"); 1820 dev_info(dev, "cq <num> <e>\n"); 1821 dev_info(dev, "eq <e>\n"); 1822 dev_info(dev, "aeq <e>\n"); 1823 1824 return 0; 1825 } 1826 1827 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf) 1828 { 1829 struct device *dev = &qm->pdev->dev; 1830 char *presult, *s, *s_tmp; 1831 int ret; 1832 1833 s = kstrdup(cmd_buf, GFP_KERNEL); 1834 if (!s) 1835 return -ENOMEM; 1836 1837 s_tmp = s; 1838 presult = strsep(&s, " "); 1839 if (!presult) { 1840 ret = -EINVAL; 1841 goto err_buffer_free; 1842 } 1843 1844 if (!strcmp(presult, "sqc")) 1845 ret = qm_sqc_dump(qm, s); 1846 else if (!strcmp(presult, "cqc")) 1847 ret = qm_cqc_dump(qm, s); 1848 else if (!strcmp(presult, "eqc")) 1849 ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc), 1850 QM_MB_CMD_EQC, "EQC"); 1851 else if (!strcmp(presult, "aeqc")) 1852 ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc), 1853 QM_MB_CMD_AEQC, "AEQC"); 1854 else if (!strcmp(presult, "sq")) 1855 ret = qm_sq_dump(qm, s); 1856 else if (!strcmp(presult, "cq")) 1857 ret = qm_cq_dump(qm, s); 1858 else if (!strcmp(presult, "eq")) 1859 ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE"); 1860 else if (!strcmp(presult, "aeq")) 1861 ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE"); 1862 else if (!strcmp(presult, "help")) 1863 ret = qm_dbg_help(qm, s); 1864 else 1865 ret = -EINVAL; 1866 1867 if (ret) 1868 dev_info(dev, "Please echo help\n"); 1869 1870 err_buffer_free: 1871 kfree(s_tmp); 1872 1873 return ret; 1874 } 1875 1876 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer, 1877 size_t count, loff_t *pos) 1878 { 1879 struct hisi_qm *qm = filp->private_data; 1880 char *cmd_buf, *cmd_buf_tmp; 1881 int ret; 1882 1883 if (*pos) 1884 return 0; 1885 1886 ret = hisi_qm_get_dfx_access(qm); 1887 if (ret) 1888 return ret; 1889 1890 /* Judge if the instance is being reset. */ 1891 if (unlikely(atomic_read(&qm->status.flags) == QM_STOP)) 1892 return 0; 1893 1894 if (count > QM_DBG_WRITE_LEN) { 1895 ret = -ENOSPC; 1896 goto put_dfx_access; 1897 } 1898 1899 cmd_buf = memdup_user_nul(buffer, count); 1900 if (IS_ERR(cmd_buf)) { 1901 ret = PTR_ERR(cmd_buf); 1902 goto put_dfx_access; 1903 } 1904 1905 cmd_buf_tmp = strchr(cmd_buf, '\n'); 1906 if (cmd_buf_tmp) { 1907 *cmd_buf_tmp = '\0'; 1908 count = cmd_buf_tmp - cmd_buf + 1; 1909 } 1910 1911 ret = qm_cmd_write_dump(qm, cmd_buf); 1912 if (ret) { 1913 kfree(cmd_buf); 1914 goto put_dfx_access; 1915 } 1916 1917 kfree(cmd_buf); 1918 1919 ret = count; 1920 1921 put_dfx_access: 1922 hisi_qm_put_dfx_access(qm); 1923 return ret; 1924 } 1925 1926 static const struct file_operations qm_cmd_fops = { 1927 .owner = THIS_MODULE, 1928 .open = simple_open, 1929 .read = qm_cmd_read, 1930 .write = qm_cmd_write, 1931 }; 1932 1933 static void qm_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir, 1934 enum qm_debug_file index) 1935 { 1936 struct debugfs_file *file = qm->debug.files + index; 1937 1938 debugfs_create_file(qm_debug_file_name[index], 0600, dir, file, 1939 &qm_debug_fops); 1940 1941 file->index = index; 1942 mutex_init(&file->lock); 1943 file->debug = &qm->debug; 1944 } 1945 1946 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 1947 { 1948 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1949 } 1950 1951 static void qm_hw_error_cfg(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 1952 { 1953 qm->error_mask = ce | nfe | fe; 1954 /* clear QM hw residual error source */ 1955 writel(QM_ABNORMAL_INT_SOURCE_CLR, 1956 qm->io_base + QM_ABNORMAL_INT_SOURCE); 1957 1958 /* configure error type */ 1959 writel(ce, qm->io_base + QM_RAS_CE_ENABLE); 1960 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1961 writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1962 writel(fe, qm->io_base + QM_RAS_FE_ENABLE); 1963 } 1964 1965 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 1966 { 1967 u32 irq_enable = ce | nfe | fe; 1968 u32 irq_unmask = ~irq_enable; 1969 1970 qm_hw_error_cfg(qm, ce, nfe, fe); 1971 1972 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1973 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1974 } 1975 1976 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1977 { 1978 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1979 } 1980 1981 static void qm_hw_error_init_v3(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 1982 { 1983 u32 irq_enable = ce | nfe | fe; 1984 u32 irq_unmask = ~irq_enable; 1985 1986 qm_hw_error_cfg(qm, ce, nfe, fe); 1987 1988 /* enable close master ooo when hardware error happened */ 1989 writel(nfe & (~QM_DB_RANDOM_INVALID), qm->io_base + QM_OOO_SHUTDOWN_SEL); 1990 1991 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1992 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1993 } 1994 1995 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1996 { 1997 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1998 1999 /* disable close master ooo when hardware error happened */ 2000 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 2001 } 2002 2003 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 2004 { 2005 const struct hisi_qm_hw_error *err; 2006 struct device *dev = &qm->pdev->dev; 2007 u32 reg_val, type, vf_num; 2008 int i; 2009 2010 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 2011 err = &qm_hw_error[i]; 2012 if (!(err->int_msk & error_status)) 2013 continue; 2014 2015 dev_err(dev, "%s [error status=0x%x] found\n", 2016 err->msg, err->int_msk); 2017 2018 if (err->int_msk & QM_DB_TIMEOUT) { 2019 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 2020 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 2021 QM_DB_TIMEOUT_TYPE_SHIFT; 2022 vf_num = reg_val & QM_DB_TIMEOUT_VF; 2023 dev_err(dev, "qm %s doorbell timeout in function %u\n", 2024 qm_db_timeout[type], vf_num); 2025 } else if (err->int_msk & QM_OF_FIFO_OF) { 2026 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 2027 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 2028 QM_FIFO_OVERFLOW_TYPE_SHIFT; 2029 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 2030 2031 if (type < ARRAY_SIZE(qm_fifo_overflow)) 2032 dev_err(dev, "qm %s fifo overflow in function %u\n", 2033 qm_fifo_overflow[type], vf_num); 2034 else 2035 dev_err(dev, "unknown error type\n"); 2036 } 2037 } 2038 } 2039 2040 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 2041 { 2042 u32 error_status, tmp, val; 2043 2044 /* read err sts */ 2045 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 2046 error_status = qm->error_mask & tmp; 2047 2048 if (error_status) { 2049 if (error_status & QM_ECC_MBIT) 2050 qm->err_status.is_qm_ecc_mbit = true; 2051 2052 qm_log_hw_error(qm, error_status); 2053 val = error_status | QM_DB_RANDOM_INVALID | QM_BASE_CE; 2054 /* ce error does not need to be reset */ 2055 if (val == (QM_DB_RANDOM_INVALID | QM_BASE_CE)) { 2056 writel(error_status, qm->io_base + 2057 QM_ABNORMAL_INT_SOURCE); 2058 writel(qm->err_info.nfe, 2059 qm->io_base + QM_RAS_NFE_ENABLE); 2060 return ACC_ERR_RECOVERED; 2061 } 2062 2063 return ACC_ERR_NEED_RESET; 2064 } 2065 2066 return ACC_ERR_RECOVERED; 2067 } 2068 2069 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 2070 { 2071 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 2072 } 2073 2074 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 2075 { 2076 return qm->err_ini->get_dev_hw_err_status(qm); 2077 } 2078 2079 /* Check if the error causes the master ooo block */ 2080 static int qm_check_dev_error(struct hisi_qm *qm) 2081 { 2082 u32 val, dev_val; 2083 2084 if (qm->fun_type == QM_HW_VF) 2085 return 0; 2086 2087 val = qm_get_hw_error_status(qm); 2088 dev_val = qm_get_dev_err_status(qm); 2089 2090 if (qm->ver < QM_HW_V3) 2091 return (val & QM_ECC_MBIT) || 2092 (dev_val & qm->err_info.ecc_2bits_mask); 2093 2094 return (val & readl(qm->io_base + QM_OOO_SHUTDOWN_SEL)) || 2095 (dev_val & (~qm->err_info.dev_ce_mask)); 2096 } 2097 2098 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 2099 { 2100 struct qm_mailbox mailbox; 2101 int ret; 2102 2103 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 2104 mutex_lock(&qm->mailbox_lock); 2105 ret = qm_mb_nolock(qm, &mailbox); 2106 if (ret) 2107 goto err_unlock; 2108 2109 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 2110 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 2111 2112 err_unlock: 2113 mutex_unlock(&qm->mailbox_lock); 2114 return ret; 2115 } 2116 2117 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 2118 { 2119 u32 val; 2120 2121 if (qm->fun_type == QM_HW_PF) 2122 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 2123 2124 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 2125 val |= QM_IFC_INT_SOURCE_MASK; 2126 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 2127 } 2128 2129 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 2130 { 2131 struct device *dev = &qm->pdev->dev; 2132 u32 cmd; 2133 u64 msg; 2134 int ret; 2135 2136 ret = qm_get_mb_cmd(qm, &msg, vf_id); 2137 if (ret) { 2138 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 2139 return; 2140 } 2141 2142 cmd = msg & QM_MB_CMD_DATA_MASK; 2143 switch (cmd) { 2144 case QM_VF_PREPARE_FAIL: 2145 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 2146 break; 2147 case QM_VF_START_FAIL: 2148 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 2149 break; 2150 case QM_VF_PREPARE_DONE: 2151 case QM_VF_START_DONE: 2152 break; 2153 default: 2154 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 2155 break; 2156 } 2157 } 2158 2159 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 2160 { 2161 struct device *dev = &qm->pdev->dev; 2162 u32 vfs_num = qm->vfs_num; 2163 int cnt = 0; 2164 int ret = 0; 2165 u64 val; 2166 u32 i; 2167 2168 if (!qm->vfs_num || qm->ver < QM_HW_V3) 2169 return 0; 2170 2171 while (true) { 2172 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 2173 /* All VFs send command to PF, break */ 2174 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 2175 break; 2176 2177 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 2178 ret = -EBUSY; 2179 break; 2180 } 2181 2182 msleep(QM_WAIT_DST_ACK); 2183 } 2184 2185 /* PF check VFs msg */ 2186 for (i = 1; i <= vfs_num; i++) { 2187 if (val & BIT(i)) 2188 qm_handle_vf_msg(qm, i); 2189 else 2190 dev_err(dev, "VF(%u) not ping PF!\n", i); 2191 } 2192 2193 /* PF clear interrupt to ack VFs */ 2194 qm_clear_cmd_interrupt(qm, val); 2195 2196 return ret; 2197 } 2198 2199 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 2200 { 2201 u32 val; 2202 2203 val = readl(qm->io_base + QM_IFC_INT_CFG); 2204 val &= ~QM_IFC_SEND_ALL_VFS; 2205 val |= fun_num; 2206 writel(val, qm->io_base + QM_IFC_INT_CFG); 2207 2208 val = readl(qm->io_base + QM_IFC_INT_SET_P); 2209 val |= QM_IFC_INT_SET_MASK; 2210 writel(val, qm->io_base + QM_IFC_INT_SET_P); 2211 } 2212 2213 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 2214 { 2215 u32 val; 2216 2217 val = readl(qm->io_base + QM_IFC_INT_SET_V); 2218 val |= QM_IFC_INT_SET_MASK; 2219 writel(val, qm->io_base + QM_IFC_INT_SET_V); 2220 } 2221 2222 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 2223 { 2224 struct device *dev = &qm->pdev->dev; 2225 struct qm_mailbox mailbox; 2226 int cnt = 0; 2227 u64 val; 2228 int ret; 2229 2230 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 2231 mutex_lock(&qm->mailbox_lock); 2232 ret = qm_mb_nolock(qm, &mailbox); 2233 if (ret) { 2234 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 2235 goto err_unlock; 2236 } 2237 2238 qm_trigger_vf_interrupt(qm, fun_num); 2239 while (true) { 2240 msleep(QM_WAIT_DST_ACK); 2241 val = readq(qm->io_base + QM_IFC_READY_STATUS); 2242 /* if VF respond, PF notifies VF successfully. */ 2243 if (!(val & BIT(fun_num))) 2244 goto err_unlock; 2245 2246 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 2247 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 2248 ret = -ETIMEDOUT; 2249 break; 2250 } 2251 } 2252 2253 err_unlock: 2254 mutex_unlock(&qm->mailbox_lock); 2255 return ret; 2256 } 2257 2258 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 2259 { 2260 struct device *dev = &qm->pdev->dev; 2261 u32 vfs_num = qm->vfs_num; 2262 struct qm_mailbox mailbox; 2263 u64 val = 0; 2264 int cnt = 0; 2265 int ret; 2266 u32 i; 2267 2268 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 2269 mutex_lock(&qm->mailbox_lock); 2270 /* PF sends command to all VFs by mailbox */ 2271 ret = qm_mb_nolock(qm, &mailbox); 2272 if (ret) { 2273 dev_err(dev, "failed to send command to VFs!\n"); 2274 mutex_unlock(&qm->mailbox_lock); 2275 return ret; 2276 } 2277 2278 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 2279 while (true) { 2280 msleep(QM_WAIT_DST_ACK); 2281 val = readq(qm->io_base + QM_IFC_READY_STATUS); 2282 /* If all VFs acked, PF notifies VFs successfully. */ 2283 if (!(val & GENMASK(vfs_num, 1))) { 2284 mutex_unlock(&qm->mailbox_lock); 2285 return 0; 2286 } 2287 2288 if (++cnt > QM_MAX_PF_WAIT_COUNT) 2289 break; 2290 } 2291 2292 mutex_unlock(&qm->mailbox_lock); 2293 2294 /* Check which vf respond timeout. */ 2295 for (i = 1; i <= vfs_num; i++) { 2296 if (val & BIT(i)) 2297 dev_err(dev, "failed to get response from VF(%u)!\n", i); 2298 } 2299 2300 return -ETIMEDOUT; 2301 } 2302 2303 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 2304 { 2305 struct qm_mailbox mailbox; 2306 int cnt = 0; 2307 u32 val; 2308 int ret; 2309 2310 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 2311 mutex_lock(&qm->mailbox_lock); 2312 ret = qm_mb_nolock(qm, &mailbox); 2313 if (ret) { 2314 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 2315 goto unlock; 2316 } 2317 2318 qm_trigger_pf_interrupt(qm); 2319 /* Waiting for PF response */ 2320 while (true) { 2321 msleep(QM_WAIT_DST_ACK); 2322 val = readl(qm->io_base + QM_IFC_INT_SET_V); 2323 if (!(val & QM_IFC_INT_STATUS_MASK)) 2324 break; 2325 2326 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 2327 ret = -ETIMEDOUT; 2328 break; 2329 } 2330 } 2331 2332 unlock: 2333 mutex_unlock(&qm->mailbox_lock); 2334 return ret; 2335 } 2336 2337 static int qm_stop_qp(struct hisi_qp *qp) 2338 { 2339 return qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 2340 } 2341 2342 static int qm_set_msi(struct hisi_qm *qm, bool set) 2343 { 2344 struct pci_dev *pdev = qm->pdev; 2345 2346 if (set) { 2347 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 2348 0); 2349 } else { 2350 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 2351 ACC_PEH_MSI_DISABLE); 2352 if (qm->err_status.is_qm_ecc_mbit || 2353 qm->err_status.is_dev_ecc_mbit) 2354 return 0; 2355 2356 mdelay(1); 2357 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 2358 return -EFAULT; 2359 } 2360 2361 return 0; 2362 } 2363 2364 static void qm_wait_msi_finish(struct hisi_qm *qm) 2365 { 2366 struct pci_dev *pdev = qm->pdev; 2367 u32 cmd = ~0; 2368 int cnt = 0; 2369 u32 val; 2370 int ret; 2371 2372 while (true) { 2373 pci_read_config_dword(pdev, pdev->msi_cap + 2374 PCI_MSI_PENDING_64, &cmd); 2375 if (!cmd) 2376 break; 2377 2378 if (++cnt > MAX_WAIT_COUNTS) { 2379 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 2380 break; 2381 } 2382 2383 udelay(1); 2384 } 2385 2386 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 2387 val, !(val & QM_PEH_DFX_MASK), 2388 POLL_PERIOD, POLL_TIMEOUT); 2389 if (ret) 2390 pci_warn(pdev, "failed to empty PEH MSI!\n"); 2391 2392 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 2393 val, !(val & QM_PEH_MSI_FINISH_MASK), 2394 POLL_PERIOD, POLL_TIMEOUT); 2395 if (ret) 2396 pci_warn(pdev, "failed to finish MSI operation!\n"); 2397 } 2398 2399 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 2400 { 2401 struct pci_dev *pdev = qm->pdev; 2402 int ret = -ETIMEDOUT; 2403 u32 cmd, i; 2404 2405 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 2406 if (set) 2407 cmd |= QM_MSI_CAP_ENABLE; 2408 else 2409 cmd &= ~QM_MSI_CAP_ENABLE; 2410 2411 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 2412 if (set) { 2413 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 2414 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 2415 if (cmd & QM_MSI_CAP_ENABLE) 2416 return 0; 2417 2418 udelay(1); 2419 } 2420 } else { 2421 udelay(WAIT_PERIOD_US_MIN); 2422 qm_wait_msi_finish(qm); 2423 ret = 0; 2424 } 2425 2426 return ret; 2427 } 2428 2429 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 2430 .qm_db = qm_db_v1, 2431 .get_irq_num = qm_get_irq_num_v1, 2432 .hw_error_init = qm_hw_error_init_v1, 2433 .set_msi = qm_set_msi, 2434 }; 2435 2436 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 2437 .get_vft = qm_get_vft_v2, 2438 .qm_db = qm_db_v2, 2439 .get_irq_num = qm_get_irq_num_v2, 2440 .hw_error_init = qm_hw_error_init_v2, 2441 .hw_error_uninit = qm_hw_error_uninit_v2, 2442 .hw_error_handle = qm_hw_error_handle_v2, 2443 .set_msi = qm_set_msi, 2444 }; 2445 2446 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 2447 .get_vft = qm_get_vft_v2, 2448 .qm_db = qm_db_v2, 2449 .get_irq_num = qm_get_irq_num_v3, 2450 .hw_error_init = qm_hw_error_init_v3, 2451 .hw_error_uninit = qm_hw_error_uninit_v3, 2452 .hw_error_handle = qm_hw_error_handle_v2, 2453 .stop_qp = qm_stop_qp, 2454 .set_msi = qm_set_msi_v3, 2455 .ping_all_vfs = qm_ping_all_vfs, 2456 .ping_pf = qm_ping_pf, 2457 }; 2458 2459 static void *qm_get_avail_sqe(struct hisi_qp *qp) 2460 { 2461 struct hisi_qp_status *qp_status = &qp->qp_status; 2462 u16 sq_tail = qp_status->sq_tail; 2463 2464 if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1)) 2465 return NULL; 2466 2467 return qp->sqe + sq_tail * qp->qm->sqe_size; 2468 } 2469 2470 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 2471 { 2472 struct device *dev = &qm->pdev->dev; 2473 struct hisi_qp *qp; 2474 int qp_id; 2475 2476 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 2477 return ERR_PTR(-EPERM); 2478 2479 if (qm->qp_in_used == qm->qp_num) { 2480 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 2481 qm->qp_num); 2482 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 2483 return ERR_PTR(-EBUSY); 2484 } 2485 2486 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 2487 if (qp_id < 0) { 2488 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 2489 qm->qp_num); 2490 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 2491 return ERR_PTR(-EBUSY); 2492 } 2493 2494 qp = &qm->qp_array[qp_id]; 2495 2496 memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH); 2497 2498 qp->event_cb = NULL; 2499 qp->req_cb = NULL; 2500 qp->qp_id = qp_id; 2501 qp->alg_type = alg_type; 2502 qp->is_in_kernel = true; 2503 qm->qp_in_used++; 2504 atomic_set(&qp->qp_status.flags, QP_INIT); 2505 2506 return qp; 2507 } 2508 2509 /** 2510 * hisi_qm_create_qp() - Create a queue pair from qm. 2511 * @qm: The qm we create a qp from. 2512 * @alg_type: Accelerator specific algorithm type in sqc. 2513 * 2514 * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating 2515 * qp memory fails. 2516 */ 2517 struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 2518 { 2519 struct hisi_qp *qp; 2520 int ret; 2521 2522 ret = qm_pm_get_sync(qm); 2523 if (ret) 2524 return ERR_PTR(ret); 2525 2526 down_write(&qm->qps_lock); 2527 qp = qm_create_qp_nolock(qm, alg_type); 2528 up_write(&qm->qps_lock); 2529 2530 if (IS_ERR(qp)) 2531 qm_pm_put_sync(qm); 2532 2533 return qp; 2534 } 2535 EXPORT_SYMBOL_GPL(hisi_qm_create_qp); 2536 2537 /** 2538 * hisi_qm_release_qp() - Release a qp back to its qm. 2539 * @qp: The qp we want to release. 2540 * 2541 * This function releases the resource of a qp. 2542 */ 2543 void hisi_qm_release_qp(struct hisi_qp *qp) 2544 { 2545 struct hisi_qm *qm = qp->qm; 2546 2547 down_write(&qm->qps_lock); 2548 2549 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 2550 up_write(&qm->qps_lock); 2551 return; 2552 } 2553 2554 qm->qp_in_used--; 2555 idr_remove(&qm->qp_idr, qp->qp_id); 2556 2557 up_write(&qm->qps_lock); 2558 2559 qm_pm_put_sync(qm); 2560 } 2561 EXPORT_SYMBOL_GPL(hisi_qm_release_qp); 2562 2563 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2564 { 2565 struct hisi_qm *qm = qp->qm; 2566 struct device *dev = &qm->pdev->dev; 2567 enum qm_hw_ver ver = qm->ver; 2568 struct qm_sqc *sqc; 2569 dma_addr_t sqc_dma; 2570 int ret; 2571 2572 sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); 2573 if (!sqc) 2574 return -ENOMEM; 2575 2576 INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); 2577 if (ver == QM_HW_V1) { 2578 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 2579 sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1); 2580 } else { 2581 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size)); 2582 sqc->w8 = 0; /* rand_qc */ 2583 } 2584 sqc->cq_num = cpu_to_le16(qp_id); 2585 sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 2586 2587 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2588 sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 2589 QM_QC_PASID_ENABLE_SHIFT); 2590 2591 sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), 2592 DMA_TO_DEVICE); 2593 if (dma_mapping_error(dev, sqc_dma)) { 2594 kfree(sqc); 2595 return -ENOMEM; 2596 } 2597 2598 ret = qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); 2599 dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); 2600 kfree(sqc); 2601 2602 return ret; 2603 } 2604 2605 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2606 { 2607 struct hisi_qm *qm = qp->qm; 2608 struct device *dev = &qm->pdev->dev; 2609 enum qm_hw_ver ver = qm->ver; 2610 struct qm_cqc *cqc; 2611 dma_addr_t cqc_dma; 2612 int ret; 2613 2614 cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); 2615 if (!cqc) 2616 return -ENOMEM; 2617 2618 INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); 2619 if (ver == QM_HW_V1) { 2620 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 2621 QM_QC_CQE_SIZE)); 2622 cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1); 2623 } else { 2624 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE)); 2625 cqc->w8 = 0; /* rand_qc */ 2626 } 2627 cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 2628 2629 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2630 cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 2631 2632 cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), 2633 DMA_TO_DEVICE); 2634 if (dma_mapping_error(dev, cqc_dma)) { 2635 kfree(cqc); 2636 return -ENOMEM; 2637 } 2638 2639 ret = qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); 2640 dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); 2641 kfree(cqc); 2642 2643 return ret; 2644 } 2645 2646 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2647 { 2648 int ret; 2649 2650 qm_init_qp_status(qp); 2651 2652 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2653 if (ret) 2654 return ret; 2655 2656 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2657 } 2658 2659 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2660 { 2661 struct hisi_qm *qm = qp->qm; 2662 struct device *dev = &qm->pdev->dev; 2663 int qp_id = qp->qp_id; 2664 u32 pasid = arg; 2665 int ret; 2666 2667 if (!qm_qp_avail_state(qm, qp, QP_START)) 2668 return -EPERM; 2669 2670 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2671 if (ret) 2672 return ret; 2673 2674 atomic_set(&qp->qp_status.flags, QP_START); 2675 dev_dbg(dev, "queue %d started\n", qp_id); 2676 2677 return 0; 2678 } 2679 2680 /** 2681 * hisi_qm_start_qp() - Start a qp into running. 2682 * @qp: The qp we want to start to run. 2683 * @arg: Accelerator specific argument. 2684 * 2685 * After this function, qp can receive request from user. Return 0 if 2686 * successful, Return -EBUSY if failed. 2687 */ 2688 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2689 { 2690 struct hisi_qm *qm = qp->qm; 2691 int ret; 2692 2693 down_write(&qm->qps_lock); 2694 ret = qm_start_qp_nolock(qp, arg); 2695 up_write(&qm->qps_lock); 2696 2697 return ret; 2698 } 2699 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2700 2701 /** 2702 * qp_stop_fail_cb() - call request cb. 2703 * @qp: stopped failed qp. 2704 * 2705 * Callback function should be called whether task completed or not. 2706 */ 2707 static void qp_stop_fail_cb(struct hisi_qp *qp) 2708 { 2709 int qp_used = atomic_read(&qp->qp_status.used); 2710 u16 cur_tail = qp->qp_status.sq_tail; 2711 u16 cur_head = (cur_tail + QM_Q_DEPTH - qp_used) % QM_Q_DEPTH; 2712 struct hisi_qm *qm = qp->qm; 2713 u16 pos; 2714 int i; 2715 2716 for (i = 0; i < qp_used; i++) { 2717 pos = (i + cur_head) % QM_Q_DEPTH; 2718 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2719 atomic_dec(&qp->qp_status.used); 2720 } 2721 } 2722 2723 /** 2724 * qm_drain_qp() - Drain a qp. 2725 * @qp: The qp we want to drain. 2726 * 2727 * Determine whether the queue is cleared by judging the tail pointers of 2728 * sq and cq. 2729 */ 2730 static int qm_drain_qp(struct hisi_qp *qp) 2731 { 2732 size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); 2733 struct hisi_qm *qm = qp->qm; 2734 struct device *dev = &qm->pdev->dev; 2735 struct qm_sqc *sqc; 2736 struct qm_cqc *cqc; 2737 dma_addr_t dma_addr; 2738 int ret = 0, i = 0; 2739 void *addr; 2740 2741 /* No need to judge if master OOO is blocked. */ 2742 if (qm_check_dev_error(qm)) 2743 return 0; 2744 2745 /* Kunpeng930 supports drain qp by device */ 2746 if (qm->ops->stop_qp) { 2747 ret = qm->ops->stop_qp(qp); 2748 if (ret) 2749 dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); 2750 return ret; 2751 } 2752 2753 addr = qm_ctx_alloc(qm, size, &dma_addr); 2754 if (IS_ERR(addr)) { 2755 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); 2756 return -ENOMEM; 2757 } 2758 2759 while (++i) { 2760 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); 2761 if (ret) { 2762 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2763 break; 2764 } 2765 sqc = addr; 2766 2767 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), 2768 qp->qp_id); 2769 if (ret) { 2770 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2771 break; 2772 } 2773 cqc = addr + sizeof(struct qm_sqc); 2774 2775 if ((sqc->tail == cqc->tail) && 2776 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2777 break; 2778 2779 if (i == MAX_WAIT_COUNTS) { 2780 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 2781 ret = -EBUSY; 2782 break; 2783 } 2784 2785 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2786 } 2787 2788 qm_ctx_free(qm, size, addr, &dma_addr); 2789 2790 return ret; 2791 } 2792 2793 static int qm_stop_qp_nolock(struct hisi_qp *qp) 2794 { 2795 struct device *dev = &qp->qm->pdev->dev; 2796 int ret; 2797 2798 /* 2799 * It is allowed to stop and release qp when reset, If the qp is 2800 * stopped when reset but still want to be released then, the 2801 * is_resetting flag should be set negative so that this qp will not 2802 * be restarted after reset. 2803 */ 2804 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 2805 qp->is_resetting = false; 2806 return 0; 2807 } 2808 2809 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 2810 return -EPERM; 2811 2812 atomic_set(&qp->qp_status.flags, QP_STOP); 2813 2814 ret = qm_drain_qp(qp); 2815 if (ret) 2816 dev_err(dev, "Failed to drain out data for stopping!\n"); 2817 2818 if (qp->qm->wq) 2819 flush_workqueue(qp->qm->wq); 2820 else 2821 flush_work(&qp->qm->work); 2822 2823 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2824 qp_stop_fail_cb(qp); 2825 2826 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2827 2828 return 0; 2829 } 2830 2831 /** 2832 * hisi_qm_stop_qp() - Stop a qp in qm. 2833 * @qp: The qp we want to stop. 2834 * 2835 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 2836 */ 2837 int hisi_qm_stop_qp(struct hisi_qp *qp) 2838 { 2839 int ret; 2840 2841 down_write(&qp->qm->qps_lock); 2842 ret = qm_stop_qp_nolock(qp); 2843 up_write(&qp->qm->qps_lock); 2844 2845 return ret; 2846 } 2847 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2848 2849 /** 2850 * hisi_qp_send() - Queue up a task in the hardware queue. 2851 * @qp: The qp in which to put the message. 2852 * @msg: The message. 2853 * 2854 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2855 * if qp related qm is resetting. 2856 * 2857 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2858 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2859 * reset may happen, we have no lock here considering performance. This 2860 * causes current qm_db sending fail or can not receive sended sqe. QM 2861 * sync/async receive function should handle the error sqe. ACC reset 2862 * done function should clear used sqe to 0. 2863 */ 2864 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2865 { 2866 struct hisi_qp_status *qp_status = &qp->qp_status; 2867 u16 sq_tail = qp_status->sq_tail; 2868 u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH; 2869 void *sqe = qm_get_avail_sqe(qp); 2870 2871 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2872 atomic_read(&qp->qm->status.flags) == QM_STOP || 2873 qp->is_resetting)) { 2874 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2875 return -EAGAIN; 2876 } 2877 2878 if (!sqe) 2879 return -EBUSY; 2880 2881 memcpy(sqe, msg, qp->qm->sqe_size); 2882 2883 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2884 atomic_inc(&qp->qp_status.used); 2885 qp_status->sq_tail = sq_tail_next; 2886 2887 return 0; 2888 } 2889 EXPORT_SYMBOL_GPL(hisi_qp_send); 2890 2891 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2892 { 2893 unsigned int val; 2894 2895 if (qm->ver == QM_HW_V1) 2896 return; 2897 2898 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2899 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2900 val, val & BIT(0), POLL_PERIOD, 2901 POLL_TIMEOUT)) 2902 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2903 } 2904 2905 static void qm_qp_event_notifier(struct hisi_qp *qp) 2906 { 2907 wake_up_interruptible(&qp->uacce_q->wait); 2908 } 2909 2910 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2911 { 2912 return hisi_qm_get_free_qp_num(uacce->priv); 2913 } 2914 2915 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2916 unsigned long arg, 2917 struct uacce_queue *q) 2918 { 2919 struct hisi_qm *qm = uacce->priv; 2920 struct hisi_qp *qp; 2921 u8 alg_type = 0; 2922 2923 qp = hisi_qm_create_qp(qm, alg_type); 2924 if (IS_ERR(qp)) 2925 return PTR_ERR(qp); 2926 2927 q->priv = qp; 2928 q->uacce = uacce; 2929 qp->uacce_q = q; 2930 qp->event_cb = qm_qp_event_notifier; 2931 qp->pasid = arg; 2932 qp->is_in_kernel = false; 2933 2934 return 0; 2935 } 2936 2937 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2938 { 2939 struct hisi_qp *qp = q->priv; 2940 2941 hisi_qm_cache_wb(qp->qm); 2942 hisi_qm_release_qp(qp); 2943 } 2944 2945 /* map sq/cq/doorbell to user space */ 2946 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2947 struct vm_area_struct *vma, 2948 struct uacce_qfile_region *qfr) 2949 { 2950 struct hisi_qp *qp = q->priv; 2951 struct hisi_qm *qm = qp->qm; 2952 resource_size_t phys_base = qm->db_phys_base + 2953 qp->qp_id * qm->db_interval; 2954 size_t sz = vma->vm_end - vma->vm_start; 2955 struct pci_dev *pdev = qm->pdev; 2956 struct device *dev = &pdev->dev; 2957 unsigned long vm_pgoff; 2958 int ret; 2959 2960 switch (qfr->type) { 2961 case UACCE_QFRT_MMIO: 2962 if (qm->ver == QM_HW_V1) { 2963 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2964 return -EINVAL; 2965 } else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) { 2966 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2967 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2968 return -EINVAL; 2969 } else { 2970 if (sz > qm->db_interval) 2971 return -EINVAL; 2972 } 2973 2974 vma->vm_flags |= VM_IO; 2975 2976 return remap_pfn_range(vma, vma->vm_start, 2977 phys_base >> PAGE_SHIFT, 2978 sz, pgprot_noncached(vma->vm_page_prot)); 2979 case UACCE_QFRT_DUS: 2980 if (sz != qp->qdma.size) 2981 return -EINVAL; 2982 2983 /* 2984 * dma_mmap_coherent() requires vm_pgoff as 0 2985 * restore vm_pfoff to initial value for mmap() 2986 */ 2987 vm_pgoff = vma->vm_pgoff; 2988 vma->vm_pgoff = 0; 2989 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2990 qp->qdma.dma, sz); 2991 vma->vm_pgoff = vm_pgoff; 2992 return ret; 2993 2994 default: 2995 return -EINVAL; 2996 } 2997 } 2998 2999 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 3000 { 3001 struct hisi_qp *qp = q->priv; 3002 3003 return hisi_qm_start_qp(qp, qp->pasid); 3004 } 3005 3006 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 3007 { 3008 hisi_qm_stop_qp(q->priv); 3009 } 3010 3011 static int hisi_qm_is_q_updated(struct uacce_queue *q) 3012 { 3013 struct hisi_qp *qp = q->priv; 3014 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 3015 int updated = 0; 3016 3017 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 3018 /* make sure to read data from memory */ 3019 dma_rmb(); 3020 qm_cq_head_update(qp); 3021 cqe = qp->cqe + qp->qp_status.cq_head; 3022 updated = 1; 3023 } 3024 3025 return updated; 3026 } 3027 3028 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 3029 { 3030 struct hisi_qm *qm = q->uacce->priv; 3031 struct hisi_qp *qp = q->priv; 3032 3033 down_write(&qm->qps_lock); 3034 qp->alg_type = type; 3035 up_write(&qm->qps_lock); 3036 } 3037 3038 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 3039 unsigned long arg) 3040 { 3041 struct hisi_qp *qp = q->priv; 3042 struct hisi_qp_ctx qp_ctx; 3043 3044 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 3045 if (copy_from_user(&qp_ctx, (void __user *)arg, 3046 sizeof(struct hisi_qp_ctx))) 3047 return -EFAULT; 3048 3049 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 3050 return -EINVAL; 3051 3052 qm_set_sqctype(q, qp_ctx.qc_type); 3053 qp_ctx.id = qp->qp_id; 3054 3055 if (copy_to_user((void __user *)arg, &qp_ctx, 3056 sizeof(struct hisi_qp_ctx))) 3057 return -EFAULT; 3058 } else { 3059 return -EINVAL; 3060 } 3061 3062 return 0; 3063 } 3064 3065 static const struct uacce_ops uacce_qm_ops = { 3066 .get_available_instances = hisi_qm_get_available_instances, 3067 .get_queue = hisi_qm_uacce_get_queue, 3068 .put_queue = hisi_qm_uacce_put_queue, 3069 .start_queue = hisi_qm_uacce_start_queue, 3070 .stop_queue = hisi_qm_uacce_stop_queue, 3071 .mmap = hisi_qm_uacce_mmap, 3072 .ioctl = hisi_qm_uacce_ioctl, 3073 .is_q_updated = hisi_qm_is_q_updated, 3074 }; 3075 3076 static int qm_alloc_uacce(struct hisi_qm *qm) 3077 { 3078 struct pci_dev *pdev = qm->pdev; 3079 struct uacce_device *uacce; 3080 unsigned long mmio_page_nr; 3081 unsigned long dus_page_nr; 3082 struct uacce_interface interface = { 3083 .flags = UACCE_DEV_SVA, 3084 .ops = &uacce_qm_ops, 3085 }; 3086 int ret; 3087 3088 ret = strscpy(interface.name, pdev->driver->name, 3089 sizeof(interface.name)); 3090 if (ret < 0) 3091 return -ENAMETOOLONG; 3092 3093 uacce = uacce_alloc(&pdev->dev, &interface); 3094 if (IS_ERR(uacce)) 3095 return PTR_ERR(uacce); 3096 3097 if (uacce->flags & UACCE_DEV_SVA && qm->mode == UACCE_MODE_SVA) { 3098 qm->use_sva = true; 3099 } else { 3100 /* only consider sva case */ 3101 uacce_remove(uacce); 3102 qm->uacce = NULL; 3103 return -EINVAL; 3104 } 3105 3106 uacce->is_vf = pdev->is_virtfn; 3107 uacce->priv = qm; 3108 uacce->algs = qm->algs; 3109 3110 if (qm->ver == QM_HW_V1) 3111 uacce->api_ver = HISI_QM_API_VER_BASE; 3112 else if (qm->ver == QM_HW_V2) 3113 uacce->api_ver = HISI_QM_API_VER2_BASE; 3114 else 3115 uacce->api_ver = HISI_QM_API_VER3_BASE; 3116 3117 if (qm->ver == QM_HW_V1) 3118 mmio_page_nr = QM_DOORBELL_PAGE_NR; 3119 else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) 3120 mmio_page_nr = QM_DOORBELL_PAGE_NR + 3121 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 3122 else 3123 mmio_page_nr = qm->db_interval / PAGE_SIZE; 3124 3125 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH + 3126 sizeof(struct qm_cqe) * QM_Q_DEPTH) >> PAGE_SHIFT; 3127 3128 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 3129 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 3130 3131 qm->uacce = uacce; 3132 3133 return 0; 3134 } 3135 3136 /** 3137 * qm_frozen() - Try to froze QM to cut continuous queue request. If 3138 * there is user on the QM, return failure without doing anything. 3139 * @qm: The qm needed to be fronzen. 3140 * 3141 * This function frozes QM, then we can do SRIOV disabling. 3142 */ 3143 static int qm_frozen(struct hisi_qm *qm) 3144 { 3145 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 3146 return 0; 3147 3148 down_write(&qm->qps_lock); 3149 3150 if (!qm->qp_in_used) { 3151 qm->qp_in_used = qm->qp_num; 3152 up_write(&qm->qps_lock); 3153 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 3154 return 0; 3155 } 3156 3157 up_write(&qm->qps_lock); 3158 3159 return -EBUSY; 3160 } 3161 3162 static int qm_try_frozen_vfs(struct pci_dev *pdev, 3163 struct hisi_qm_list *qm_list) 3164 { 3165 struct hisi_qm *qm, *vf_qm; 3166 struct pci_dev *dev; 3167 int ret = 0; 3168 3169 if (!qm_list || !pdev) 3170 return -EINVAL; 3171 3172 /* Try to frozen all the VFs as disable SRIOV */ 3173 mutex_lock(&qm_list->lock); 3174 list_for_each_entry(qm, &qm_list->list, list) { 3175 dev = qm->pdev; 3176 if (dev == pdev) 3177 continue; 3178 if (pci_physfn(dev) == pdev) { 3179 vf_qm = pci_get_drvdata(dev); 3180 ret = qm_frozen(vf_qm); 3181 if (ret) 3182 goto frozen_fail; 3183 } 3184 } 3185 3186 frozen_fail: 3187 mutex_unlock(&qm_list->lock); 3188 3189 return ret; 3190 } 3191 3192 /** 3193 * hisi_qm_wait_task_finish() - Wait until the task is finished 3194 * when removing the driver. 3195 * @qm: The qm needed to wait for the task to finish. 3196 * @qm_list: The list of all available devices. 3197 */ 3198 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 3199 { 3200 while (qm_frozen(qm) || 3201 ((qm->fun_type == QM_HW_PF) && 3202 qm_try_frozen_vfs(qm->pdev, qm_list))) { 3203 msleep(WAIT_PERIOD); 3204 } 3205 3206 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 3207 test_bit(QM_RESETTING, &qm->misc_ctl)) 3208 msleep(WAIT_PERIOD); 3209 3210 udelay(REMOVE_WAIT_DELAY); 3211 } 3212 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 3213 3214 /** 3215 * hisi_qm_get_free_qp_num() - Get free number of qp in qm. 3216 * @qm: The qm which want to get free qp. 3217 * 3218 * This function return free number of qp in qm. 3219 */ 3220 int hisi_qm_get_free_qp_num(struct hisi_qm *qm) 3221 { 3222 int ret; 3223 3224 down_read(&qm->qps_lock); 3225 ret = qm->qp_num - qm->qp_in_used; 3226 up_read(&qm->qps_lock); 3227 3228 return ret; 3229 } 3230 EXPORT_SYMBOL_GPL(hisi_qm_get_free_qp_num); 3231 3232 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 3233 { 3234 struct device *dev = &qm->pdev->dev; 3235 struct qm_dma *qdma; 3236 int i; 3237 3238 for (i = num - 1; i >= 0; i--) { 3239 qdma = &qm->qp_array[i].qdma; 3240 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 3241 } 3242 3243 kfree(qm->qp_array); 3244 } 3245 3246 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id) 3247 { 3248 struct device *dev = &qm->pdev->dev; 3249 size_t off = qm->sqe_size * QM_Q_DEPTH; 3250 struct hisi_qp *qp; 3251 3252 qp = &qm->qp_array[id]; 3253 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 3254 GFP_KERNEL); 3255 if (!qp->qdma.va) 3256 return -ENOMEM; 3257 3258 qp->sqe = qp->qdma.va; 3259 qp->sqe_dma = qp->qdma.dma; 3260 qp->cqe = qp->qdma.va + off; 3261 qp->cqe_dma = qp->qdma.dma + off; 3262 qp->qdma.size = dma_size; 3263 qp->qm = qm; 3264 qp->qp_id = id; 3265 3266 return 0; 3267 } 3268 3269 static void hisi_qm_pre_init(struct hisi_qm *qm) 3270 { 3271 struct pci_dev *pdev = qm->pdev; 3272 3273 if (qm->ver == QM_HW_V1) 3274 qm->ops = &qm_hw_ops_v1; 3275 else if (qm->ver == QM_HW_V2) 3276 qm->ops = &qm_hw_ops_v2; 3277 else 3278 qm->ops = &qm_hw_ops_v3; 3279 3280 pci_set_drvdata(pdev, qm); 3281 mutex_init(&qm->mailbox_lock); 3282 init_rwsem(&qm->qps_lock); 3283 qm->qp_in_used = 0; 3284 qm->misc_ctl = false; 3285 if (qm->fun_type == QM_HW_PF && qm->ver > QM_HW_V2) { 3286 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 3287 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 3288 } 3289 } 3290 3291 static void qm_cmd_uninit(struct hisi_qm *qm) 3292 { 3293 u32 val; 3294 3295 if (qm->ver < QM_HW_V3) 3296 return; 3297 3298 val = readl(qm->io_base + QM_IFC_INT_MASK); 3299 val |= QM_IFC_INT_DISABLE; 3300 writel(val, qm->io_base + QM_IFC_INT_MASK); 3301 } 3302 3303 static void qm_cmd_init(struct hisi_qm *qm) 3304 { 3305 u32 val; 3306 3307 if (qm->ver < QM_HW_V3) 3308 return; 3309 3310 /* Clear communication interrupt source */ 3311 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 3312 3313 /* Enable pf to vf communication reg. */ 3314 val = readl(qm->io_base + QM_IFC_INT_MASK); 3315 val &= ~QM_IFC_INT_DISABLE; 3316 writel(val, qm->io_base + QM_IFC_INT_MASK); 3317 } 3318 3319 static void qm_put_pci_res(struct hisi_qm *qm) 3320 { 3321 struct pci_dev *pdev = qm->pdev; 3322 3323 if (qm->use_db_isolation) 3324 iounmap(qm->db_io_base); 3325 3326 iounmap(qm->io_base); 3327 pci_release_mem_regions(pdev); 3328 } 3329 3330 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 3331 { 3332 struct pci_dev *pdev = qm->pdev; 3333 3334 pci_free_irq_vectors(pdev); 3335 qm_put_pci_res(qm); 3336 pci_disable_device(pdev); 3337 } 3338 3339 /** 3340 * hisi_qm_uninit() - Uninitialize qm. 3341 * @qm: The qm needed uninit. 3342 * 3343 * This function uninits qm related device resources. 3344 */ 3345 void hisi_qm_uninit(struct hisi_qm *qm) 3346 { 3347 struct pci_dev *pdev = qm->pdev; 3348 struct device *dev = &pdev->dev; 3349 3350 qm_cmd_uninit(qm); 3351 kfree(qm->factor); 3352 down_write(&qm->qps_lock); 3353 3354 if (!qm_avail_state(qm, QM_CLOSE)) { 3355 up_write(&qm->qps_lock); 3356 return; 3357 } 3358 3359 hisi_qp_memory_uninit(qm, qm->qp_num); 3360 idr_destroy(&qm->qp_idr); 3361 3362 if (qm->qdma.va) { 3363 hisi_qm_cache_wb(qm); 3364 dma_free_coherent(dev, qm->qdma.size, 3365 qm->qdma.va, qm->qdma.dma); 3366 } 3367 3368 qm_irq_unregister(qm); 3369 hisi_qm_pci_uninit(qm); 3370 uacce_remove(qm->uacce); 3371 qm->uacce = NULL; 3372 3373 up_write(&qm->qps_lock); 3374 } 3375 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 3376 3377 /** 3378 * hisi_qm_get_vft() - Get vft from a qm. 3379 * @qm: The qm we want to get its vft. 3380 * @base: The base number of queue in vft. 3381 * @number: The number of queues in vft. 3382 * 3383 * We can allocate multiple queues to a qm by configuring virtual function 3384 * table. We get related configures by this function. Normally, we call this 3385 * function in VF driver to get the queue information. 3386 * 3387 * qm hw v1 does not support this interface. 3388 */ 3389 int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 3390 { 3391 if (!base || !number) 3392 return -EINVAL; 3393 3394 if (!qm->ops->get_vft) { 3395 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 3396 return -EINVAL; 3397 } 3398 3399 return qm->ops->get_vft(qm, base, number); 3400 } 3401 EXPORT_SYMBOL_GPL(hisi_qm_get_vft); 3402 3403 /** 3404 * hisi_qm_set_vft() - Set vft to a qm. 3405 * @qm: The qm we want to set its vft. 3406 * @fun_num: The function number. 3407 * @base: The base number of queue in vft. 3408 * @number: The number of queues in vft. 3409 * 3410 * This function is alway called in PF driver, it is used to assign queues 3411 * among PF and VFs. 3412 * 3413 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 3414 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 3415 * (VF function number 0x2) 3416 */ 3417 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 3418 u32 number) 3419 { 3420 u32 max_q_num = qm->ctrl_qp_num; 3421 3422 if (base >= max_q_num || number > max_q_num || 3423 (base + number) > max_q_num) 3424 return -EINVAL; 3425 3426 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 3427 } 3428 3429 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 3430 { 3431 struct hisi_qm_status *status = &qm->status; 3432 3433 status->eq_head = 0; 3434 status->aeq_head = 0; 3435 status->eqc_phase = true; 3436 status->aeqc_phase = true; 3437 } 3438 3439 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 3440 { 3441 struct device *dev = &qm->pdev->dev; 3442 struct qm_eqc *eqc; 3443 dma_addr_t eqc_dma; 3444 int ret; 3445 3446 eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); 3447 if (!eqc) 3448 return -ENOMEM; 3449 3450 eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3451 eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3452 if (qm->ver == QM_HW_V1) 3453 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3454 eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3455 3456 eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), 3457 DMA_TO_DEVICE); 3458 if (dma_mapping_error(dev, eqc_dma)) { 3459 kfree(eqc); 3460 return -ENOMEM; 3461 } 3462 3463 ret = qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); 3464 dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); 3465 kfree(eqc); 3466 3467 return ret; 3468 } 3469 3470 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3471 { 3472 struct device *dev = &qm->pdev->dev; 3473 struct qm_aeqc *aeqc; 3474 dma_addr_t aeqc_dma; 3475 int ret; 3476 3477 aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); 3478 if (!aeqc) 3479 return -ENOMEM; 3480 3481 aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3482 aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3483 aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3484 3485 aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), 3486 DMA_TO_DEVICE); 3487 if (dma_mapping_error(dev, aeqc_dma)) { 3488 kfree(aeqc); 3489 return -ENOMEM; 3490 } 3491 3492 ret = qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); 3493 dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); 3494 kfree(aeqc); 3495 3496 return ret; 3497 } 3498 3499 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3500 { 3501 struct device *dev = &qm->pdev->dev; 3502 int ret; 3503 3504 qm_init_eq_aeq_status(qm); 3505 3506 ret = qm_eq_ctx_cfg(qm); 3507 if (ret) { 3508 dev_err(dev, "Set eqc failed!\n"); 3509 return ret; 3510 } 3511 3512 return qm_aeq_ctx_cfg(qm); 3513 } 3514 3515 static int __hisi_qm_start(struct hisi_qm *qm) 3516 { 3517 int ret; 3518 3519 WARN_ON(!qm->qdma.va); 3520 3521 if (qm->fun_type == QM_HW_PF) { 3522 ret = qm_dev_mem_reset(qm); 3523 if (ret) 3524 return ret; 3525 3526 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3527 if (ret) 3528 return ret; 3529 } 3530 3531 ret = qm_eq_aeq_ctx_cfg(qm); 3532 if (ret) 3533 return ret; 3534 3535 ret = qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3536 if (ret) 3537 return ret; 3538 3539 ret = qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3540 if (ret) 3541 return ret; 3542 3543 qm_init_prefetch(qm); 3544 3545 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 3546 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 3547 3548 return 0; 3549 } 3550 3551 /** 3552 * hisi_qm_start() - start qm 3553 * @qm: The qm to be started. 3554 * 3555 * This function starts a qm, then we can allocate qp from this qm. 3556 */ 3557 int hisi_qm_start(struct hisi_qm *qm) 3558 { 3559 struct device *dev = &qm->pdev->dev; 3560 int ret = 0; 3561 3562 down_write(&qm->qps_lock); 3563 3564 if (!qm_avail_state(qm, QM_START)) { 3565 up_write(&qm->qps_lock); 3566 return -EPERM; 3567 } 3568 3569 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3570 3571 if (!qm->qp_num) { 3572 dev_err(dev, "qp_num should not be 0\n"); 3573 ret = -EINVAL; 3574 goto err_unlock; 3575 } 3576 3577 ret = __hisi_qm_start(qm); 3578 if (!ret) 3579 atomic_set(&qm->status.flags, QM_START); 3580 3581 err_unlock: 3582 up_write(&qm->qps_lock); 3583 return ret; 3584 } 3585 EXPORT_SYMBOL_GPL(hisi_qm_start); 3586 3587 static int qm_restart(struct hisi_qm *qm) 3588 { 3589 struct device *dev = &qm->pdev->dev; 3590 struct hisi_qp *qp; 3591 int ret, i; 3592 3593 ret = hisi_qm_start(qm); 3594 if (ret < 0) 3595 return ret; 3596 3597 down_write(&qm->qps_lock); 3598 for (i = 0; i < qm->qp_num; i++) { 3599 qp = &qm->qp_array[i]; 3600 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3601 qp->is_resetting == true) { 3602 ret = qm_start_qp_nolock(qp, 0); 3603 if (ret < 0) { 3604 dev_err(dev, "Failed to start qp%d!\n", i); 3605 3606 up_write(&qm->qps_lock); 3607 return ret; 3608 } 3609 qp->is_resetting = false; 3610 } 3611 } 3612 up_write(&qm->qps_lock); 3613 3614 return 0; 3615 } 3616 3617 /* Stop started qps in reset flow */ 3618 static int qm_stop_started_qp(struct hisi_qm *qm) 3619 { 3620 struct device *dev = &qm->pdev->dev; 3621 struct hisi_qp *qp; 3622 int i, ret; 3623 3624 for (i = 0; i < qm->qp_num; i++) { 3625 qp = &qm->qp_array[i]; 3626 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 3627 qp->is_resetting = true; 3628 ret = qm_stop_qp_nolock(qp); 3629 if (ret < 0) { 3630 dev_err(dev, "Failed to stop qp%d!\n", i); 3631 return ret; 3632 } 3633 } 3634 } 3635 3636 return 0; 3637 } 3638 3639 3640 /** 3641 * qm_clear_queues() - Clear all queues memory in a qm. 3642 * @qm: The qm in which the queues will be cleared. 3643 * 3644 * This function clears all queues memory in a qm. Reset of accelerator can 3645 * use this to clear queues. 3646 */ 3647 static void qm_clear_queues(struct hisi_qm *qm) 3648 { 3649 struct hisi_qp *qp; 3650 int i; 3651 3652 for (i = 0; i < qm->qp_num; i++) { 3653 qp = &qm->qp_array[i]; 3654 if (qp->is_resetting) 3655 memset(qp->qdma.va, 0, qp->qdma.size); 3656 } 3657 3658 memset(qm->qdma.va, 0, qm->qdma.size); 3659 } 3660 3661 /** 3662 * hisi_qm_stop() - Stop a qm. 3663 * @qm: The qm which will be stopped. 3664 * @r: The reason to stop qm. 3665 * 3666 * This function stops qm and its qps, then qm can not accept request. 3667 * Related resources are not released at this state, we can use hisi_qm_start 3668 * to let qm start again. 3669 */ 3670 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3671 { 3672 struct device *dev = &qm->pdev->dev; 3673 int ret = 0; 3674 3675 down_write(&qm->qps_lock); 3676 3677 qm->status.stop_reason = r; 3678 if (!qm_avail_state(qm, QM_STOP)) { 3679 ret = -EPERM; 3680 goto err_unlock; 3681 } 3682 3683 if (qm->status.stop_reason == QM_SOFT_RESET || 3684 qm->status.stop_reason == QM_FLR) { 3685 ret = qm_stop_started_qp(qm); 3686 if (ret < 0) { 3687 dev_err(dev, "Failed to stop started qp!\n"); 3688 goto err_unlock; 3689 } 3690 } 3691 3692 /* Mask eq and aeq irq */ 3693 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 3694 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 3695 3696 if (qm->fun_type == QM_HW_PF) { 3697 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3698 if (ret < 0) { 3699 dev_err(dev, "Failed to set vft!\n"); 3700 ret = -EBUSY; 3701 goto err_unlock; 3702 } 3703 } 3704 3705 qm_clear_queues(qm); 3706 atomic_set(&qm->status.flags, QM_STOP); 3707 3708 err_unlock: 3709 up_write(&qm->qps_lock); 3710 return ret; 3711 } 3712 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3713 3714 static ssize_t qm_status_read(struct file *filp, char __user *buffer, 3715 size_t count, loff_t *pos) 3716 { 3717 struct hisi_qm *qm = filp->private_data; 3718 char buf[QM_DBG_READ_LEN]; 3719 int val, len; 3720 3721 val = atomic_read(&qm->status.flags); 3722 len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]); 3723 3724 return simple_read_from_buffer(buffer, count, pos, buf, len); 3725 } 3726 3727 static const struct file_operations qm_status_fops = { 3728 .owner = THIS_MODULE, 3729 .open = simple_open, 3730 .read = qm_status_read, 3731 }; 3732 3733 static int qm_debugfs_atomic64_set(void *data, u64 val) 3734 { 3735 if (val) 3736 return -EINVAL; 3737 3738 atomic64_set((atomic64_t *)data, 0); 3739 3740 return 0; 3741 } 3742 3743 static int qm_debugfs_atomic64_get(void *data, u64 *val) 3744 { 3745 *val = atomic64_read((atomic64_t *)data); 3746 3747 return 0; 3748 } 3749 3750 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get, 3751 qm_debugfs_atomic64_set, "%llu\n"); 3752 3753 static void qm_hw_error_init(struct hisi_qm *qm) 3754 { 3755 struct hisi_qm_err_info *err_info = &qm->err_info; 3756 3757 if (!qm->ops->hw_error_init) { 3758 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3759 return; 3760 } 3761 3762 qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe); 3763 } 3764 3765 static void qm_hw_error_uninit(struct hisi_qm *qm) 3766 { 3767 if (!qm->ops->hw_error_uninit) { 3768 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3769 return; 3770 } 3771 3772 qm->ops->hw_error_uninit(qm); 3773 } 3774 3775 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3776 { 3777 if (!qm->ops->hw_error_handle) { 3778 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3779 return ACC_ERR_NONE; 3780 } 3781 3782 return qm->ops->hw_error_handle(qm); 3783 } 3784 3785 /** 3786 * hisi_qm_dev_err_init() - Initialize device error configuration. 3787 * @qm: The qm for which we want to do error initialization. 3788 * 3789 * Initialize QM and device error related configuration. 3790 */ 3791 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3792 { 3793 if (qm->fun_type == QM_HW_VF) 3794 return; 3795 3796 qm_hw_error_init(qm); 3797 3798 if (!qm->err_ini->hw_err_enable) { 3799 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3800 return; 3801 } 3802 qm->err_ini->hw_err_enable(qm); 3803 } 3804 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3805 3806 /** 3807 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3808 * @qm: The qm for which we want to do error uninitialization. 3809 * 3810 * Uninitialize QM and device error related configuration. 3811 */ 3812 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3813 { 3814 if (qm->fun_type == QM_HW_VF) 3815 return; 3816 3817 qm_hw_error_uninit(qm); 3818 3819 if (!qm->err_ini->hw_err_disable) { 3820 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3821 return; 3822 } 3823 qm->err_ini->hw_err_disable(qm); 3824 } 3825 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3826 3827 /** 3828 * hisi_qm_free_qps() - free multiple queue pairs. 3829 * @qps: The queue pairs need to be freed. 3830 * @qp_num: The num of queue pairs. 3831 */ 3832 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3833 { 3834 int i; 3835 3836 if (!qps || qp_num <= 0) 3837 return; 3838 3839 for (i = qp_num - 1; i >= 0; i--) 3840 hisi_qm_release_qp(qps[i]); 3841 } 3842 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3843 3844 static void free_list(struct list_head *head) 3845 { 3846 struct hisi_qm_resource *res, *tmp; 3847 3848 list_for_each_entry_safe(res, tmp, head, list) { 3849 list_del(&res->list); 3850 kfree(res); 3851 } 3852 } 3853 3854 static int hisi_qm_sort_devices(int node, struct list_head *head, 3855 struct hisi_qm_list *qm_list) 3856 { 3857 struct hisi_qm_resource *res, *tmp; 3858 struct hisi_qm *qm; 3859 struct list_head *n; 3860 struct device *dev; 3861 int dev_node = 0; 3862 3863 list_for_each_entry(qm, &qm_list->list, list) { 3864 dev = &qm->pdev->dev; 3865 3866 if (IS_ENABLED(CONFIG_NUMA)) { 3867 dev_node = dev_to_node(dev); 3868 if (dev_node < 0) 3869 dev_node = 0; 3870 } 3871 3872 res = kzalloc(sizeof(*res), GFP_KERNEL); 3873 if (!res) 3874 return -ENOMEM; 3875 3876 res->qm = qm; 3877 res->distance = node_distance(dev_node, node); 3878 n = head; 3879 list_for_each_entry(tmp, head, list) { 3880 if (res->distance < tmp->distance) { 3881 n = &tmp->list; 3882 break; 3883 } 3884 } 3885 list_add_tail(&res->list, n); 3886 } 3887 3888 return 0; 3889 } 3890 3891 /** 3892 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3893 * @qm_list: The list of all available devices. 3894 * @qp_num: The number of queue pairs need created. 3895 * @alg_type: The algorithm type. 3896 * @node: The numa node. 3897 * @qps: The queue pairs need created. 3898 * 3899 * This function will sort all available device according to numa distance. 3900 * Then try to create all queue pairs from one device, if all devices do 3901 * not meet the requirements will return error. 3902 */ 3903 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3904 u8 alg_type, int node, struct hisi_qp **qps) 3905 { 3906 struct hisi_qm_resource *tmp; 3907 int ret = -ENODEV; 3908 LIST_HEAD(head); 3909 int i; 3910 3911 if (!qps || !qm_list || qp_num <= 0) 3912 return -EINVAL; 3913 3914 mutex_lock(&qm_list->lock); 3915 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3916 mutex_unlock(&qm_list->lock); 3917 goto err; 3918 } 3919 3920 list_for_each_entry(tmp, &head, list) { 3921 for (i = 0; i < qp_num; i++) { 3922 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3923 if (IS_ERR(qps[i])) { 3924 hisi_qm_free_qps(qps, i); 3925 break; 3926 } 3927 } 3928 3929 if (i == qp_num) { 3930 ret = 0; 3931 break; 3932 } 3933 } 3934 3935 mutex_unlock(&qm_list->lock); 3936 if (ret) 3937 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3938 node, alg_type, qp_num); 3939 3940 err: 3941 free_list(&head); 3942 return ret; 3943 } 3944 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3945 3946 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3947 { 3948 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3949 u32 max_qp_num = qm->max_qp_num; 3950 u32 q_base = qm->qp_num; 3951 int ret; 3952 3953 if (!num_vfs) 3954 return -EINVAL; 3955 3956 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3957 3958 /* If vfs_q_num is less than num_vfs, return error. */ 3959 if (vfs_q_num < num_vfs) 3960 return -EINVAL; 3961 3962 q_num = vfs_q_num / num_vfs; 3963 remain_q_num = vfs_q_num % num_vfs; 3964 3965 for (i = num_vfs; i > 0; i--) { 3966 /* 3967 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3968 * remaining queues equally. 3969 */ 3970 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3971 act_q_num = q_num + remain_q_num; 3972 remain_q_num = 0; 3973 } else if (remain_q_num > 0) { 3974 act_q_num = q_num + 1; 3975 remain_q_num--; 3976 } else { 3977 act_q_num = q_num; 3978 } 3979 3980 act_q_num = min_t(int, act_q_num, max_qp_num); 3981 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3982 if (ret) { 3983 for (j = num_vfs; j > i; j--) 3984 hisi_qm_set_vft(qm, j, 0, 0); 3985 return ret; 3986 } 3987 q_base += act_q_num; 3988 } 3989 3990 return 0; 3991 } 3992 3993 static int qm_clear_vft_config(struct hisi_qm *qm) 3994 { 3995 int ret; 3996 u32 i; 3997 3998 for (i = 1; i <= qm->vfs_num; i++) { 3999 ret = hisi_qm_set_vft(qm, i, 0, 0); 4000 if (ret) 4001 return ret; 4002 } 4003 qm->vfs_num = 0; 4004 4005 return 0; 4006 } 4007 4008 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 4009 { 4010 struct device *dev = &qm->pdev->dev; 4011 u32 ir = qos * QM_QOS_RATE; 4012 int ret, total_vfs, i; 4013 4014 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 4015 if (fun_index > total_vfs) 4016 return -EINVAL; 4017 4018 qm->factor[fun_index].func_qos = qos; 4019 4020 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 4021 if (ret) { 4022 dev_err(dev, "failed to calculate shaper parameter!\n"); 4023 return -EINVAL; 4024 } 4025 4026 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 4027 /* The base number of queue reuse for different alg type */ 4028 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 4029 if (ret) { 4030 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 4031 return -EINVAL; 4032 } 4033 } 4034 4035 return 0; 4036 } 4037 4038 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 4039 { 4040 u64 cir_u = 0, cir_b = 0, cir_s = 0; 4041 u64 shaper_vft, ir_calc, ir; 4042 unsigned int val; 4043 u32 error_rate; 4044 int ret; 4045 4046 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 4047 val & BIT(0), POLL_PERIOD, 4048 POLL_TIMEOUT); 4049 if (ret) 4050 return 0; 4051 4052 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 4053 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 4054 writel(fun_index, qm->io_base + QM_VFT_CFG); 4055 4056 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 4057 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 4058 4059 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 4060 val & BIT(0), POLL_PERIOD, 4061 POLL_TIMEOUT); 4062 if (ret) 4063 return 0; 4064 4065 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 4066 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 4067 4068 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 4069 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 4070 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 4071 4072 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 4073 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 4074 4075 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 4076 4077 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 4078 4079 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 4080 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 4081 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 4082 return 0; 4083 } 4084 4085 return ir; 4086 } 4087 4088 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 4089 { 4090 struct device *dev = &qm->pdev->dev; 4091 u64 mb_cmd; 4092 u32 qos; 4093 int ret; 4094 4095 qos = qm_get_shaper_vft_qos(qm, fun_num); 4096 if (!qos) { 4097 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 4098 return; 4099 } 4100 4101 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 4102 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 4103 if (ret) 4104 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 4105 } 4106 4107 static int qm_vf_read_qos(struct hisi_qm *qm) 4108 { 4109 int cnt = 0; 4110 int ret; 4111 4112 /* reset mailbox qos val */ 4113 qm->mb_qos = 0; 4114 4115 /* vf ping pf to get function qos */ 4116 if (qm->ops->ping_pf) { 4117 ret = qm->ops->ping_pf(qm, QM_VF_GET_QOS); 4118 if (ret) { 4119 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 4120 return ret; 4121 } 4122 } 4123 4124 while (true) { 4125 msleep(QM_WAIT_DST_ACK); 4126 if (qm->mb_qos) 4127 break; 4128 4129 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 4130 pci_err(qm->pdev, "PF ping VF timeout!\n"); 4131 return -ETIMEDOUT; 4132 } 4133 } 4134 4135 return ret; 4136 } 4137 4138 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 4139 size_t count, loff_t *pos) 4140 { 4141 struct hisi_qm *qm = filp->private_data; 4142 char tbuf[QM_DBG_READ_LEN]; 4143 u32 qos_val, ir; 4144 int ret; 4145 4146 ret = hisi_qm_get_dfx_access(qm); 4147 if (ret) 4148 return ret; 4149 4150 /* Mailbox and reset cannot be operated at the same time */ 4151 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 4152 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 4153 ret = -EAGAIN; 4154 goto err_put_dfx_access; 4155 } 4156 4157 if (qm->fun_type == QM_HW_PF) { 4158 ir = qm_get_shaper_vft_qos(qm, 0); 4159 } else { 4160 ret = qm_vf_read_qos(qm); 4161 if (ret) 4162 goto err_get_status; 4163 ir = qm->mb_qos; 4164 } 4165 4166 qos_val = ir / QM_QOS_RATE; 4167 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 4168 4169 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 4170 4171 err_get_status: 4172 clear_bit(QM_RESETTING, &qm->misc_ctl); 4173 err_put_dfx_access: 4174 hisi_qm_put_dfx_access(qm); 4175 return ret; 4176 } 4177 4178 static ssize_t qm_qos_value_init(const char *buf, unsigned long *val) 4179 { 4180 int buflen = strlen(buf); 4181 int ret, i; 4182 4183 for (i = 0; i < buflen; i++) { 4184 if (!isdigit(buf[i])) 4185 return -EINVAL; 4186 } 4187 4188 ret = sscanf(buf, "%ld", val); 4189 if (ret != QM_QOS_VAL_NUM) 4190 return -EINVAL; 4191 4192 return 0; 4193 } 4194 4195 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 4196 size_t count, loff_t *pos) 4197 { 4198 struct hisi_qm *qm = filp->private_data; 4199 char tbuf[QM_DBG_READ_LEN]; 4200 int tmp1, bus, device, function; 4201 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 4202 char val_buf[QM_QOS_VAL_MAX_LEN] = {0}; 4203 unsigned int fun_index; 4204 unsigned long val = 0; 4205 int len, ret; 4206 4207 if (qm->fun_type == QM_HW_VF) 4208 return -EINVAL; 4209 4210 /* Mailbox and reset cannot be operated at the same time */ 4211 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 4212 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 4213 return -EAGAIN; 4214 } 4215 4216 if (*pos != 0) { 4217 ret = 0; 4218 goto err_get_status; 4219 } 4220 4221 if (count >= QM_DBG_READ_LEN) { 4222 ret = -ENOSPC; 4223 goto err_get_status; 4224 } 4225 4226 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 4227 if (len < 0) { 4228 ret = len; 4229 goto err_get_status; 4230 } 4231 4232 tbuf[len] = '\0'; 4233 ret = sscanf(tbuf, "%s %s", tbuf_bdf, val_buf); 4234 if (ret != QM_QOS_PARAM_NUM) { 4235 ret = -EINVAL; 4236 goto err_get_status; 4237 } 4238 4239 ret = qm_qos_value_init(val_buf, &val); 4240 if (val == 0 || val > QM_QOS_MAX_VAL || ret) { 4241 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 4242 ret = -EINVAL; 4243 goto err_get_status; 4244 } 4245 4246 ret = sscanf(tbuf_bdf, "%d:%x:%d.%d", &tmp1, &bus, &device, &function); 4247 if (ret != QM_QOS_BDF_PARAM_NUM) { 4248 pci_err(qm->pdev, "input pci bdf value is error!\n"); 4249 ret = -EINVAL; 4250 goto err_get_status; 4251 } 4252 4253 fun_index = device * 8 + function; 4254 4255 ret = qm_pm_get_sync(qm); 4256 if (ret) { 4257 ret = -EINVAL; 4258 goto err_get_status; 4259 } 4260 4261 ret = qm_func_shaper_enable(qm, fun_index, val); 4262 if (ret) { 4263 pci_err(qm->pdev, "failed to enable function shaper!\n"); 4264 ret = -EINVAL; 4265 goto err_put_sync; 4266 } 4267 4268 ret = count; 4269 4270 err_put_sync: 4271 qm_pm_put_sync(qm); 4272 err_get_status: 4273 clear_bit(QM_RESETTING, &qm->misc_ctl); 4274 return ret; 4275 } 4276 4277 static const struct file_operations qm_algqos_fops = { 4278 .owner = THIS_MODULE, 4279 .open = simple_open, 4280 .read = qm_algqos_read, 4281 .write = qm_algqos_write, 4282 }; 4283 4284 /** 4285 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 4286 * @qm: The qm for which we want to add debugfs files. 4287 * 4288 * Create function qos debugfs files. 4289 */ 4290 static void hisi_qm_set_algqos_init(struct hisi_qm *qm) 4291 { 4292 if (qm->fun_type == QM_HW_PF) 4293 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 4294 qm, &qm_algqos_fops); 4295 else 4296 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 4297 qm, &qm_algqos_fops); 4298 } 4299 4300 /** 4301 * hisi_qm_debug_init() - Initialize qm related debugfs files. 4302 * @qm: The qm for which we want to add debugfs files. 4303 * 4304 * Create qm related debugfs files. 4305 */ 4306 void hisi_qm_debug_init(struct hisi_qm *qm) 4307 { 4308 struct qm_dfx *dfx = &qm->debug.dfx; 4309 struct dentry *qm_d; 4310 void *data; 4311 int i; 4312 4313 qm_d = debugfs_create_dir("qm", qm->debug.debug_root); 4314 qm->debug.qm_d = qm_d; 4315 4316 /* only show this in PF */ 4317 if (qm->fun_type == QM_HW_PF) { 4318 qm_create_debugfs_file(qm, qm->debug.debug_root, CURRENT_QM); 4319 for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++) 4320 qm_create_debugfs_file(qm, qm->debug.qm_d, i); 4321 } 4322 4323 debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops); 4324 4325 debugfs_create_file("cmd", 0600, qm->debug.qm_d, qm, &qm_cmd_fops); 4326 4327 debugfs_create_file("status", 0444, qm->debug.qm_d, qm, 4328 &qm_status_fops); 4329 for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) { 4330 data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset); 4331 debugfs_create_file(qm_dfx_files[i].name, 4332 0644, 4333 qm_d, 4334 data, 4335 &qm_atomic64_ops); 4336 } 4337 4338 if (qm->ver >= QM_HW_V3) 4339 hisi_qm_set_algqos_init(qm); 4340 } 4341 EXPORT_SYMBOL_GPL(hisi_qm_debug_init); 4342 4343 /** 4344 * hisi_qm_debug_regs_clear() - clear qm debug related registers. 4345 * @qm: The qm for which we want to clear its debug registers. 4346 */ 4347 void hisi_qm_debug_regs_clear(struct hisi_qm *qm) 4348 { 4349 const struct debugfs_reg32 *regs; 4350 int i; 4351 4352 /* clear current_qm */ 4353 writel(0x0, qm->io_base + QM_DFX_MB_CNT_VF); 4354 writel(0x0, qm->io_base + QM_DFX_DB_CNT_VF); 4355 4356 /* clear current_q */ 4357 writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 4358 writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 4359 4360 /* 4361 * these registers are reading and clearing, so clear them after 4362 * reading them. 4363 */ 4364 writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE); 4365 4366 regs = qm_dfx_regs; 4367 for (i = 0; i < CNT_CYC_REGS_NUM; i++) { 4368 readl(qm->io_base + regs->offset); 4369 regs++; 4370 } 4371 4372 /* clear clear_enable */ 4373 writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE); 4374 } 4375 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear); 4376 4377 /** 4378 * hisi_qm_sriov_enable() - enable virtual functions 4379 * @pdev: the PCIe device 4380 * @max_vfs: the number of virtual functions to enable 4381 * 4382 * Returns the number of enabled VFs. If there are VFs enabled already or 4383 * max_vfs is more than the total number of device can be enabled, returns 4384 * failure. 4385 */ 4386 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 4387 { 4388 struct hisi_qm *qm = pci_get_drvdata(pdev); 4389 int pre_existing_vfs, num_vfs, total_vfs, ret; 4390 4391 ret = qm_pm_get_sync(qm); 4392 if (ret) 4393 return ret; 4394 4395 total_vfs = pci_sriov_get_totalvfs(pdev); 4396 pre_existing_vfs = pci_num_vf(pdev); 4397 if (pre_existing_vfs) { 4398 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 4399 pre_existing_vfs); 4400 goto err_put_sync; 4401 } 4402 4403 num_vfs = min_t(int, max_vfs, total_vfs); 4404 ret = qm_vf_q_assign(qm, num_vfs); 4405 if (ret) { 4406 pci_err(pdev, "Can't assign queues for VF!\n"); 4407 goto err_put_sync; 4408 } 4409 4410 qm->vfs_num = num_vfs; 4411 4412 ret = pci_enable_sriov(pdev, num_vfs); 4413 if (ret) { 4414 pci_err(pdev, "Can't enable VF!\n"); 4415 qm_clear_vft_config(qm); 4416 goto err_put_sync; 4417 } 4418 4419 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 4420 4421 return num_vfs; 4422 4423 err_put_sync: 4424 qm_pm_put_sync(qm); 4425 return ret; 4426 } 4427 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 4428 4429 /** 4430 * hisi_qm_sriov_disable - disable virtual functions 4431 * @pdev: the PCI device. 4432 * @is_frozen: true when all the VFs are frozen. 4433 * 4434 * Return failure if there are VFs assigned already or VF is in used. 4435 */ 4436 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 4437 { 4438 struct hisi_qm *qm = pci_get_drvdata(pdev); 4439 int total_vfs = pci_sriov_get_totalvfs(qm->pdev); 4440 int ret; 4441 4442 if (pci_vfs_assigned(pdev)) { 4443 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 4444 return -EPERM; 4445 } 4446 4447 /* While VF is in used, SRIOV cannot be disabled. */ 4448 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 4449 pci_err(pdev, "Task is using its VF!\n"); 4450 return -EBUSY; 4451 } 4452 4453 pci_disable_sriov(pdev); 4454 /* clear vf function shaper configure array */ 4455 memset(qm->factor + 1, 0, sizeof(struct qm_shaper_factor) * total_vfs); 4456 ret = qm_clear_vft_config(qm); 4457 if (ret) 4458 return ret; 4459 4460 qm_pm_put_sync(qm); 4461 4462 return 0; 4463 } 4464 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 4465 4466 /** 4467 * hisi_qm_sriov_configure - configure the number of VFs 4468 * @pdev: The PCI device 4469 * @num_vfs: The number of VFs need enabled 4470 * 4471 * Enable SR-IOV according to num_vfs, 0 means disable. 4472 */ 4473 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 4474 { 4475 if (num_vfs == 0) 4476 return hisi_qm_sriov_disable(pdev, false); 4477 else 4478 return hisi_qm_sriov_enable(pdev, num_vfs); 4479 } 4480 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 4481 4482 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 4483 { 4484 u32 err_sts; 4485 4486 if (!qm->err_ini->get_dev_hw_err_status) { 4487 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 4488 return ACC_ERR_NONE; 4489 } 4490 4491 /* get device hardware error status */ 4492 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 4493 if (err_sts) { 4494 if (err_sts & qm->err_info.ecc_2bits_mask) 4495 qm->err_status.is_dev_ecc_mbit = true; 4496 4497 if (qm->err_ini->log_dev_hw_err) 4498 qm->err_ini->log_dev_hw_err(qm, err_sts); 4499 4500 /* ce error does not need to be reset */ 4501 if ((err_sts | qm->err_info.dev_ce_mask) == 4502 qm->err_info.dev_ce_mask) { 4503 if (qm->err_ini->clear_dev_hw_err_status) 4504 qm->err_ini->clear_dev_hw_err_status(qm, 4505 err_sts); 4506 4507 return ACC_ERR_RECOVERED; 4508 } 4509 4510 return ACC_ERR_NEED_RESET; 4511 } 4512 4513 return ACC_ERR_RECOVERED; 4514 } 4515 4516 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 4517 { 4518 enum acc_err_result qm_ret, dev_ret; 4519 4520 /* log qm error */ 4521 qm_ret = qm_hw_error_handle(qm); 4522 4523 /* log device error */ 4524 dev_ret = qm_dev_err_handle(qm); 4525 4526 return (qm_ret == ACC_ERR_NEED_RESET || 4527 dev_ret == ACC_ERR_NEED_RESET) ? 4528 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 4529 } 4530 4531 /** 4532 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 4533 * @pdev: The PCI device which need report error. 4534 * @state: The connectivity between CPU and device. 4535 * 4536 * We register this function into PCIe AER handlers, It will report device or 4537 * qm hardware error status when error occur. 4538 */ 4539 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 4540 pci_channel_state_t state) 4541 { 4542 struct hisi_qm *qm = pci_get_drvdata(pdev); 4543 enum acc_err_result ret; 4544 4545 if (pdev->is_virtfn) 4546 return PCI_ERS_RESULT_NONE; 4547 4548 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 4549 if (state == pci_channel_io_perm_failure) 4550 return PCI_ERS_RESULT_DISCONNECT; 4551 4552 ret = qm_process_dev_error(qm); 4553 if (ret == ACC_ERR_NEED_RESET) 4554 return PCI_ERS_RESULT_NEED_RESET; 4555 4556 return PCI_ERS_RESULT_RECOVERED; 4557 } 4558 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 4559 4560 static int qm_check_req_recv(struct hisi_qm *qm) 4561 { 4562 struct pci_dev *pdev = qm->pdev; 4563 int ret; 4564 u32 val; 4565 4566 if (qm->ver >= QM_HW_V3) 4567 return 0; 4568 4569 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 4570 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4571 (val == ACC_VENDOR_ID_VALUE), 4572 POLL_PERIOD, POLL_TIMEOUT); 4573 if (ret) { 4574 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 4575 return ret; 4576 } 4577 4578 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 4579 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4580 (val == PCI_VENDOR_ID_HUAWEI), 4581 POLL_PERIOD, POLL_TIMEOUT); 4582 if (ret) 4583 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 4584 4585 return ret; 4586 } 4587 4588 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 4589 { 4590 struct pci_dev *pdev = qm->pdev; 4591 u16 cmd; 4592 int i; 4593 4594 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4595 if (set) 4596 cmd |= PCI_COMMAND_MEMORY; 4597 else 4598 cmd &= ~PCI_COMMAND_MEMORY; 4599 4600 pci_write_config_word(pdev, PCI_COMMAND, cmd); 4601 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4602 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4603 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 4604 return 0; 4605 4606 udelay(1); 4607 } 4608 4609 return -ETIMEDOUT; 4610 } 4611 4612 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 4613 { 4614 struct pci_dev *pdev = qm->pdev; 4615 u16 sriov_ctrl; 4616 int pos; 4617 int i; 4618 4619 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 4620 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4621 if (set) 4622 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4623 else 4624 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4625 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4626 4627 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4628 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4629 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4630 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4631 return 0; 4632 4633 udelay(1); 4634 } 4635 4636 return -ETIMEDOUT; 4637 } 4638 4639 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4640 enum qm_stop_reason stop_reason) 4641 { 4642 struct hisi_qm_list *qm_list = qm->qm_list; 4643 struct pci_dev *pdev = qm->pdev; 4644 struct pci_dev *virtfn; 4645 struct hisi_qm *vf_qm; 4646 int ret = 0; 4647 4648 mutex_lock(&qm_list->lock); 4649 list_for_each_entry(vf_qm, &qm_list->list, list) { 4650 virtfn = vf_qm->pdev; 4651 if (virtfn == pdev) 4652 continue; 4653 4654 if (pci_physfn(virtfn) == pdev) { 4655 /* save VFs PCIE BAR configuration */ 4656 pci_save_state(virtfn); 4657 4658 ret = hisi_qm_stop(vf_qm, stop_reason); 4659 if (ret) 4660 goto stop_fail; 4661 } 4662 } 4663 4664 stop_fail: 4665 mutex_unlock(&qm_list->lock); 4666 return ret; 4667 } 4668 4669 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 4670 enum qm_stop_reason stop_reason) 4671 { 4672 struct pci_dev *pdev = qm->pdev; 4673 int ret; 4674 4675 if (!qm->vfs_num) 4676 return 0; 4677 4678 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4679 if (qm->ops->ping_all_vfs) { 4680 ret = qm->ops->ping_all_vfs(qm, cmd); 4681 if (ret) 4682 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 4683 } else { 4684 ret = qm_vf_reset_prepare(qm, stop_reason); 4685 if (ret) 4686 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4687 } 4688 4689 return ret; 4690 } 4691 4692 static int qm_wait_reset_finish(struct hisi_qm *qm) 4693 { 4694 int delay = 0; 4695 4696 /* All reset requests need to be queued for processing */ 4697 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 4698 msleep(++delay); 4699 if (delay > QM_RESET_WAIT_TIMEOUT) 4700 return -EBUSY; 4701 } 4702 4703 return 0; 4704 } 4705 4706 static int qm_reset_prepare_ready(struct hisi_qm *qm) 4707 { 4708 struct pci_dev *pdev = qm->pdev; 4709 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4710 4711 /* 4712 * PF and VF on host doesnot support resetting at the 4713 * same time on Kunpeng920. 4714 */ 4715 if (qm->ver < QM_HW_V3) 4716 return qm_wait_reset_finish(pf_qm); 4717 4718 return qm_wait_reset_finish(qm); 4719 } 4720 4721 static void qm_reset_bit_clear(struct hisi_qm *qm) 4722 { 4723 struct pci_dev *pdev = qm->pdev; 4724 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4725 4726 if (qm->ver < QM_HW_V3) 4727 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 4728 4729 clear_bit(QM_RESETTING, &qm->misc_ctl); 4730 } 4731 4732 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4733 { 4734 struct pci_dev *pdev = qm->pdev; 4735 int ret; 4736 4737 ret = qm_reset_prepare_ready(qm); 4738 if (ret) { 4739 pci_err(pdev, "Controller reset not ready!\n"); 4740 return ret; 4741 } 4742 4743 /* PF obtains the information of VF by querying the register. */ 4744 qm_cmd_uninit(qm); 4745 4746 /* Whether VFs stop successfully, soft reset will continue. */ 4747 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4748 if (ret) 4749 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4750 4751 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4752 if (ret) { 4753 pci_err(pdev, "Fails to stop QM!\n"); 4754 qm_reset_bit_clear(qm); 4755 return ret; 4756 } 4757 4758 ret = qm_wait_vf_prepare_finish(qm); 4759 if (ret) 4760 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4761 4762 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4763 4764 return 0; 4765 } 4766 4767 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4768 { 4769 u32 nfe_enb = 0; 4770 4771 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4772 if (qm->ver >= QM_HW_V3) 4773 return; 4774 4775 if (!qm->err_status.is_dev_ecc_mbit && 4776 qm->err_status.is_qm_ecc_mbit && 4777 qm->err_ini->close_axi_master_ooo) { 4778 4779 qm->err_ini->close_axi_master_ooo(qm); 4780 4781 } else if (qm->err_status.is_dev_ecc_mbit && 4782 !qm->err_status.is_qm_ecc_mbit && 4783 !qm->err_ini->close_axi_master_ooo) { 4784 4785 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4786 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4787 qm->io_base + QM_RAS_NFE_ENABLE); 4788 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4789 } 4790 } 4791 4792 static int qm_soft_reset(struct hisi_qm *qm) 4793 { 4794 struct pci_dev *pdev = qm->pdev; 4795 int ret; 4796 u32 val; 4797 4798 /* Ensure all doorbells and mailboxes received by QM */ 4799 ret = qm_check_req_recv(qm); 4800 if (ret) 4801 return ret; 4802 4803 if (qm->vfs_num) { 4804 ret = qm_set_vf_mse(qm, false); 4805 if (ret) { 4806 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4807 return ret; 4808 } 4809 } 4810 4811 ret = qm->ops->set_msi(qm, false); 4812 if (ret) { 4813 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4814 return ret; 4815 } 4816 4817 qm_dev_ecc_mbit_handle(qm); 4818 4819 /* OOO register set and check */ 4820 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 4821 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4822 4823 /* If bus lock, reset chip */ 4824 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4825 val, 4826 (val == ACC_MASTER_TRANS_RETURN_RW), 4827 POLL_PERIOD, POLL_TIMEOUT); 4828 if (ret) { 4829 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 4830 return ret; 4831 } 4832 4833 if (qm->err_ini->close_sva_prefetch) 4834 qm->err_ini->close_sva_prefetch(qm); 4835 4836 ret = qm_set_pf_mse(qm, false); 4837 if (ret) { 4838 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4839 return ret; 4840 } 4841 4842 /* The reset related sub-control registers are not in PCI BAR */ 4843 if (ACPI_HANDLE(&pdev->dev)) { 4844 unsigned long long value = 0; 4845 acpi_status s; 4846 4847 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4848 qm->err_info.acpi_rst, 4849 NULL, &value); 4850 if (ACPI_FAILURE(s)) { 4851 pci_err(pdev, "NO controller reset method!\n"); 4852 return -EIO; 4853 } 4854 4855 if (value) { 4856 pci_err(pdev, "Reset step %llu failed!\n", value); 4857 return -EIO; 4858 } 4859 } else { 4860 pci_err(pdev, "No reset method!\n"); 4861 return -EINVAL; 4862 } 4863 4864 return 0; 4865 } 4866 4867 static int qm_vf_reset_done(struct hisi_qm *qm) 4868 { 4869 struct hisi_qm_list *qm_list = qm->qm_list; 4870 struct pci_dev *pdev = qm->pdev; 4871 struct pci_dev *virtfn; 4872 struct hisi_qm *vf_qm; 4873 int ret = 0; 4874 4875 mutex_lock(&qm_list->lock); 4876 list_for_each_entry(vf_qm, &qm_list->list, list) { 4877 virtfn = vf_qm->pdev; 4878 if (virtfn == pdev) 4879 continue; 4880 4881 if (pci_physfn(virtfn) == pdev) { 4882 /* enable VFs PCIE BAR configuration */ 4883 pci_restore_state(virtfn); 4884 4885 ret = qm_restart(vf_qm); 4886 if (ret) 4887 goto restart_fail; 4888 } 4889 } 4890 4891 restart_fail: 4892 mutex_unlock(&qm_list->lock); 4893 return ret; 4894 } 4895 4896 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 4897 { 4898 struct pci_dev *pdev = qm->pdev; 4899 int ret; 4900 4901 if (!qm->vfs_num) 4902 return 0; 4903 4904 ret = qm_vf_q_assign(qm, qm->vfs_num); 4905 if (ret) { 4906 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4907 return ret; 4908 } 4909 4910 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4911 if (qm->ops->ping_all_vfs) { 4912 ret = qm->ops->ping_all_vfs(qm, cmd); 4913 if (ret) 4914 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4915 } else { 4916 ret = qm_vf_reset_done(qm); 4917 if (ret) 4918 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4919 } 4920 4921 return ret; 4922 } 4923 4924 static int qm_dev_hw_init(struct hisi_qm *qm) 4925 { 4926 return qm->err_ini->hw_init(qm); 4927 } 4928 4929 static void qm_restart_prepare(struct hisi_qm *qm) 4930 { 4931 u32 value; 4932 4933 if (qm->err_ini->open_sva_prefetch) 4934 qm->err_ini->open_sva_prefetch(qm); 4935 4936 if (qm->ver >= QM_HW_V3) 4937 return; 4938 4939 if (!qm->err_status.is_qm_ecc_mbit && 4940 !qm->err_status.is_dev_ecc_mbit) 4941 return; 4942 4943 /* temporarily close the OOO port used for PEH to write out MSI */ 4944 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4945 writel(value & ~qm->err_info.msi_wr_port, 4946 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4947 4948 /* clear dev ecc 2bit error source if having */ 4949 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 4950 if (value && qm->err_ini->clear_dev_hw_err_status) 4951 qm->err_ini->clear_dev_hw_err_status(qm, value); 4952 4953 /* clear QM ecc mbit error source */ 4954 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4955 4956 /* clear AM Reorder Buffer ecc mbit source */ 4957 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4958 } 4959 4960 static void qm_restart_done(struct hisi_qm *qm) 4961 { 4962 u32 value; 4963 4964 if (qm->ver >= QM_HW_V3) 4965 goto clear_flags; 4966 4967 if (!qm->err_status.is_qm_ecc_mbit && 4968 !qm->err_status.is_dev_ecc_mbit) 4969 return; 4970 4971 /* open the OOO port for PEH to write out MSI */ 4972 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4973 value |= qm->err_info.msi_wr_port; 4974 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4975 4976 clear_flags: 4977 qm->err_status.is_qm_ecc_mbit = false; 4978 qm->err_status.is_dev_ecc_mbit = false; 4979 } 4980 4981 static int qm_controller_reset_done(struct hisi_qm *qm) 4982 { 4983 struct pci_dev *pdev = qm->pdev; 4984 int ret; 4985 4986 ret = qm->ops->set_msi(qm, true); 4987 if (ret) { 4988 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4989 return ret; 4990 } 4991 4992 ret = qm_set_pf_mse(qm, true); 4993 if (ret) { 4994 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4995 return ret; 4996 } 4997 4998 if (qm->vfs_num) { 4999 ret = qm_set_vf_mse(qm, true); 5000 if (ret) { 5001 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 5002 return ret; 5003 } 5004 } 5005 5006 ret = qm_dev_hw_init(qm); 5007 if (ret) { 5008 pci_err(pdev, "Failed to init device\n"); 5009 return ret; 5010 } 5011 5012 qm_restart_prepare(qm); 5013 hisi_qm_dev_err_init(qm); 5014 if (qm->err_ini->open_axi_master_ooo) 5015 qm->err_ini->open_axi_master_ooo(qm); 5016 5017 ret = qm_restart(qm); 5018 if (ret) { 5019 pci_err(pdev, "Failed to start QM!\n"); 5020 return ret; 5021 } 5022 5023 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 5024 if (ret) 5025 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 5026 5027 ret = qm_wait_vf_prepare_finish(qm); 5028 if (ret) 5029 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 5030 5031 qm_cmd_init(qm); 5032 qm_restart_done(qm); 5033 5034 qm_reset_bit_clear(qm); 5035 5036 return 0; 5037 } 5038 5039 static int qm_controller_reset(struct hisi_qm *qm) 5040 { 5041 struct pci_dev *pdev = qm->pdev; 5042 int ret; 5043 5044 pci_info(pdev, "Controller resetting...\n"); 5045 5046 ret = qm_controller_reset_prepare(qm); 5047 if (ret) { 5048 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 5049 return ret; 5050 } 5051 5052 ret = qm_soft_reset(qm); 5053 if (ret) { 5054 pci_err(pdev, "Controller reset failed (%d)\n", ret); 5055 qm_reset_bit_clear(qm); 5056 return ret; 5057 } 5058 5059 ret = qm_controller_reset_done(qm); 5060 if (ret) { 5061 qm_reset_bit_clear(qm); 5062 return ret; 5063 } 5064 5065 pci_info(pdev, "Controller reset complete\n"); 5066 5067 return 0; 5068 } 5069 5070 /** 5071 * hisi_qm_dev_slot_reset() - slot reset 5072 * @pdev: the PCIe device 5073 * 5074 * This function offers QM relate PCIe device reset interface. Drivers which 5075 * use QM can use this function as slot_reset in its struct pci_error_handlers. 5076 */ 5077 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 5078 { 5079 struct hisi_qm *qm = pci_get_drvdata(pdev); 5080 int ret; 5081 5082 if (pdev->is_virtfn) 5083 return PCI_ERS_RESULT_RECOVERED; 5084 5085 pci_aer_clear_nonfatal_status(pdev); 5086 5087 /* reset pcie device controller */ 5088 ret = qm_controller_reset(qm); 5089 if (ret) { 5090 pci_err(pdev, "Controller reset failed (%d)\n", ret); 5091 return PCI_ERS_RESULT_DISCONNECT; 5092 } 5093 5094 return PCI_ERS_RESULT_RECOVERED; 5095 } 5096 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 5097 5098 void hisi_qm_reset_prepare(struct pci_dev *pdev) 5099 { 5100 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 5101 struct hisi_qm *qm = pci_get_drvdata(pdev); 5102 u32 delay = 0; 5103 int ret; 5104 5105 hisi_qm_dev_err_uninit(pf_qm); 5106 5107 /* 5108 * Check whether there is an ECC mbit error, If it occurs, need to 5109 * wait for soft reset to fix it. 5110 */ 5111 while (qm_check_dev_error(pf_qm)) { 5112 msleep(++delay); 5113 if (delay > QM_RESET_WAIT_TIMEOUT) 5114 return; 5115 } 5116 5117 ret = qm_reset_prepare_ready(qm); 5118 if (ret) { 5119 pci_err(pdev, "FLR not ready!\n"); 5120 return; 5121 } 5122 5123 /* PF obtains the information of VF by querying the register. */ 5124 if (qm->fun_type == QM_HW_PF) 5125 qm_cmd_uninit(qm); 5126 5127 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR); 5128 if (ret) 5129 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 5130 5131 ret = hisi_qm_stop(qm, QM_FLR); 5132 if (ret) { 5133 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 5134 return; 5135 } 5136 5137 ret = qm_wait_vf_prepare_finish(qm); 5138 if (ret) 5139 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 5140 5141 pci_info(pdev, "FLR resetting...\n"); 5142 } 5143 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 5144 5145 static bool qm_flr_reset_complete(struct pci_dev *pdev) 5146 { 5147 struct pci_dev *pf_pdev = pci_physfn(pdev); 5148 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 5149 u32 id; 5150 5151 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 5152 if (id == QM_PCI_COMMAND_INVALID) { 5153 pci_err(pdev, "Device can not be used!\n"); 5154 return false; 5155 } 5156 5157 return true; 5158 } 5159 5160 void hisi_qm_reset_done(struct pci_dev *pdev) 5161 { 5162 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 5163 struct hisi_qm *qm = pci_get_drvdata(pdev); 5164 int ret; 5165 5166 if (qm->fun_type == QM_HW_PF) { 5167 ret = qm_dev_hw_init(qm); 5168 if (ret) { 5169 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 5170 goto flr_done; 5171 } 5172 } 5173 5174 hisi_qm_dev_err_init(pf_qm); 5175 5176 ret = qm_restart(qm); 5177 if (ret) { 5178 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 5179 goto flr_done; 5180 } 5181 5182 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 5183 if (ret) 5184 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 5185 5186 ret = qm_wait_vf_prepare_finish(qm); 5187 if (ret) 5188 pci_err(pdev, "failed to start by vfs in FLR!\n"); 5189 5190 flr_done: 5191 if (qm->fun_type == QM_HW_PF) 5192 qm_cmd_init(qm); 5193 5194 if (qm_flr_reset_complete(pdev)) 5195 pci_info(pdev, "FLR reset complete\n"); 5196 5197 qm_reset_bit_clear(qm); 5198 } 5199 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 5200 5201 static irqreturn_t qm_abnormal_irq(int irq, void *data) 5202 { 5203 struct hisi_qm *qm = data; 5204 enum acc_err_result ret; 5205 5206 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 5207 ret = qm_process_dev_error(qm); 5208 if (ret == ACC_ERR_NEED_RESET && 5209 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 5210 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 5211 schedule_work(&qm->rst_work); 5212 5213 return IRQ_HANDLED; 5214 } 5215 5216 static int qm_irq_register(struct hisi_qm *qm) 5217 { 5218 struct pci_dev *pdev = qm->pdev; 5219 int ret; 5220 5221 ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), 5222 qm_irq, 0, qm->dev_name, qm); 5223 if (ret) 5224 return ret; 5225 5226 if (qm->ver > QM_HW_V1) { 5227 ret = request_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), 5228 qm_aeq_irq, 0, qm->dev_name, qm); 5229 if (ret) 5230 goto err_aeq_irq; 5231 5232 if (qm->fun_type == QM_HW_PF) { 5233 ret = request_irq(pci_irq_vector(pdev, 5234 QM_ABNORMAL_EVENT_IRQ_VECTOR), 5235 qm_abnormal_irq, 0, qm->dev_name, qm); 5236 if (ret) 5237 goto err_abonormal_irq; 5238 } 5239 } 5240 5241 if (qm->ver > QM_HW_V2) { 5242 ret = request_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR), 5243 qm_mb_cmd_irq, 0, qm->dev_name, qm); 5244 if (ret) 5245 goto err_mb_cmd_irq; 5246 } 5247 5248 return 0; 5249 5250 err_mb_cmd_irq: 5251 if (qm->fun_type == QM_HW_PF) 5252 free_irq(pci_irq_vector(pdev, QM_ABNORMAL_EVENT_IRQ_VECTOR), qm); 5253 err_abonormal_irq: 5254 free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm); 5255 err_aeq_irq: 5256 free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm); 5257 return ret; 5258 } 5259 5260 /** 5261 * hisi_qm_dev_shutdown() - Shutdown device. 5262 * @pdev: The device will be shutdown. 5263 * 5264 * This function will stop qm when OS shutdown or rebooting. 5265 */ 5266 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 5267 { 5268 struct hisi_qm *qm = pci_get_drvdata(pdev); 5269 int ret; 5270 5271 ret = hisi_qm_stop(qm, QM_NORMAL); 5272 if (ret) 5273 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 5274 } 5275 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 5276 5277 static void hisi_qm_controller_reset(struct work_struct *rst_work) 5278 { 5279 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 5280 int ret; 5281 5282 ret = qm_pm_get_sync(qm); 5283 if (ret) { 5284 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 5285 return; 5286 } 5287 5288 /* reset pcie device controller */ 5289 ret = qm_controller_reset(qm); 5290 if (ret) 5291 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 5292 5293 qm_pm_put_sync(qm); 5294 } 5295 5296 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 5297 enum qm_stop_reason stop_reason) 5298 { 5299 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 5300 struct pci_dev *pdev = qm->pdev; 5301 int ret; 5302 5303 ret = qm_reset_prepare_ready(qm); 5304 if (ret) { 5305 dev_err(&pdev->dev, "reset prepare not ready!\n"); 5306 atomic_set(&qm->status.flags, QM_STOP); 5307 cmd = QM_VF_PREPARE_FAIL; 5308 goto err_prepare; 5309 } 5310 5311 ret = hisi_qm_stop(qm, stop_reason); 5312 if (ret) { 5313 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 5314 atomic_set(&qm->status.flags, QM_STOP); 5315 cmd = QM_VF_PREPARE_FAIL; 5316 goto err_prepare; 5317 } 5318 5319 err_prepare: 5320 pci_save_state(pdev); 5321 ret = qm->ops->ping_pf(qm, cmd); 5322 if (ret) 5323 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 5324 } 5325 5326 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 5327 { 5328 enum qm_mb_cmd cmd = QM_VF_START_DONE; 5329 struct pci_dev *pdev = qm->pdev; 5330 int ret; 5331 5332 pci_restore_state(pdev); 5333 ret = hisi_qm_start(qm); 5334 if (ret) { 5335 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 5336 cmd = QM_VF_START_FAIL; 5337 } 5338 5339 ret = qm->ops->ping_pf(qm, cmd); 5340 if (ret) 5341 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 5342 5343 qm_reset_bit_clear(qm); 5344 } 5345 5346 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 5347 { 5348 struct device *dev = &qm->pdev->dev; 5349 u32 val, cmd; 5350 u64 msg; 5351 int ret; 5352 5353 /* Wait for reset to finish */ 5354 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 5355 val == BIT(0), QM_VF_RESET_WAIT_US, 5356 QM_VF_RESET_WAIT_TIMEOUT_US); 5357 /* hardware completion status should be available by this time */ 5358 if (ret) { 5359 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 5360 return -ETIMEDOUT; 5361 } 5362 5363 /* 5364 * Whether message is got successfully, 5365 * VF needs to ack PF by clearing the interrupt. 5366 */ 5367 ret = qm_get_mb_cmd(qm, &msg, 0); 5368 qm_clear_cmd_interrupt(qm, 0); 5369 if (ret) { 5370 dev_err(dev, "failed to get msg from PF in reset done!\n"); 5371 return ret; 5372 } 5373 5374 cmd = msg & QM_MB_CMD_DATA_MASK; 5375 if (cmd != QM_PF_RESET_DONE) { 5376 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 5377 ret = -EINVAL; 5378 } 5379 5380 return ret; 5381 } 5382 5383 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 5384 enum qm_stop_reason stop_reason) 5385 { 5386 struct device *dev = &qm->pdev->dev; 5387 int ret; 5388 5389 dev_info(dev, "device reset start...\n"); 5390 5391 /* The message is obtained by querying the register during resetting */ 5392 qm_cmd_uninit(qm); 5393 qm_pf_reset_vf_prepare(qm, stop_reason); 5394 5395 ret = qm_wait_pf_reset_finish(qm); 5396 if (ret) 5397 goto err_get_status; 5398 5399 qm_pf_reset_vf_done(qm); 5400 qm_cmd_init(qm); 5401 5402 dev_info(dev, "device reset done.\n"); 5403 5404 return; 5405 5406 err_get_status: 5407 qm_cmd_init(qm); 5408 qm_reset_bit_clear(qm); 5409 } 5410 5411 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 5412 { 5413 struct device *dev = &qm->pdev->dev; 5414 u64 msg; 5415 u32 cmd; 5416 int ret; 5417 5418 /* 5419 * Get the msg from source by sending mailbox. Whether message is got 5420 * successfully, destination needs to ack source by clearing the interrupt. 5421 */ 5422 ret = qm_get_mb_cmd(qm, &msg, fun_num); 5423 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 5424 if (ret) { 5425 dev_err(dev, "failed to get msg from source!\n"); 5426 return; 5427 } 5428 5429 cmd = msg & QM_MB_CMD_DATA_MASK; 5430 switch (cmd) { 5431 case QM_PF_FLR_PREPARE: 5432 qm_pf_reset_vf_process(qm, QM_FLR); 5433 break; 5434 case QM_PF_SRST_PREPARE: 5435 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 5436 break; 5437 case QM_VF_GET_QOS: 5438 qm_vf_get_qos(qm, fun_num); 5439 break; 5440 case QM_PF_SET_QOS: 5441 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 5442 break; 5443 default: 5444 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 5445 break; 5446 } 5447 } 5448 5449 static void qm_cmd_process(struct work_struct *cmd_process) 5450 { 5451 struct hisi_qm *qm = container_of(cmd_process, 5452 struct hisi_qm, cmd_process); 5453 u32 vfs_num = qm->vfs_num; 5454 u64 val; 5455 u32 i; 5456 5457 if (qm->fun_type == QM_HW_PF) { 5458 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 5459 if (!val) 5460 return; 5461 5462 for (i = 1; i <= vfs_num; i++) { 5463 if (val & BIT(i)) 5464 qm_handle_cmd_msg(qm, i); 5465 } 5466 5467 return; 5468 } 5469 5470 qm_handle_cmd_msg(qm, 0); 5471 } 5472 5473 /** 5474 * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. 5475 * @qm: The qm needs add. 5476 * @qm_list: The qm list. 5477 * 5478 * This function adds qm to qm list, and will register algorithm to 5479 * crypto when the qm list is empty. 5480 */ 5481 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 5482 { 5483 struct device *dev = &qm->pdev->dev; 5484 int flag = 0; 5485 int ret = 0; 5486 5487 mutex_lock(&qm_list->lock); 5488 if (list_empty(&qm_list->list)) 5489 flag = 1; 5490 list_add_tail(&qm->list, &qm_list->list); 5491 mutex_unlock(&qm_list->lock); 5492 5493 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 5494 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 5495 return 0; 5496 } 5497 5498 if (flag) { 5499 ret = qm_list->register_to_crypto(qm); 5500 if (ret) { 5501 mutex_lock(&qm_list->lock); 5502 list_del(&qm->list); 5503 mutex_unlock(&qm_list->lock); 5504 } 5505 } 5506 5507 return ret; 5508 } 5509 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 5510 5511 /** 5512 * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from 5513 * qm list. 5514 * @qm: The qm needs delete. 5515 * @qm_list: The qm list. 5516 * 5517 * This function deletes qm from qm list, and will unregister algorithm 5518 * from crypto when the qm list is empty. 5519 */ 5520 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 5521 { 5522 mutex_lock(&qm_list->lock); 5523 list_del(&qm->list); 5524 mutex_unlock(&qm_list->lock); 5525 5526 if (qm->ver <= QM_HW_V2 && qm->use_sva) 5527 return; 5528 5529 if (list_empty(&qm_list->list)) 5530 qm_list->unregister_from_crypto(qm); 5531 } 5532 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 5533 5534 static int qm_get_qp_num(struct hisi_qm *qm) 5535 { 5536 if (qm->ver == QM_HW_V1) 5537 qm->ctrl_qp_num = QM_QNUM_V1; 5538 else if (qm->ver == QM_HW_V2) 5539 qm->ctrl_qp_num = QM_QNUM_V2; 5540 else 5541 qm->ctrl_qp_num = readl(qm->io_base + QM_CAPBILITY) & 5542 QM_QP_NUN_MASK; 5543 5544 if (qm->use_db_isolation) 5545 qm->max_qp_num = (readl(qm->io_base + QM_CAPBILITY) >> 5546 QM_QP_MAX_NUM_SHIFT) & QM_QP_NUN_MASK; 5547 else 5548 qm->max_qp_num = qm->ctrl_qp_num; 5549 5550 /* check if qp number is valid */ 5551 if (qm->qp_num > qm->max_qp_num) { 5552 dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n", 5553 qm->qp_num, qm->max_qp_num); 5554 return -EINVAL; 5555 } 5556 5557 return 0; 5558 } 5559 5560 static int qm_get_pci_res(struct hisi_qm *qm) 5561 { 5562 struct pci_dev *pdev = qm->pdev; 5563 struct device *dev = &pdev->dev; 5564 int ret; 5565 5566 ret = pci_request_mem_regions(pdev, qm->dev_name); 5567 if (ret < 0) { 5568 dev_err(dev, "Failed to request mem regions!\n"); 5569 return ret; 5570 } 5571 5572 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5573 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5574 if (!qm->io_base) { 5575 ret = -EIO; 5576 goto err_request_mem_regions; 5577 } 5578 5579 if (qm->ver > QM_HW_V2) { 5580 if (qm->fun_type == QM_HW_PF) 5581 qm->use_db_isolation = readl(qm->io_base + 5582 QM_QUE_ISO_EN) & BIT(0); 5583 else 5584 qm->use_db_isolation = readl(qm->io_base + 5585 QM_QUE_ISO_CFG_V) & BIT(0); 5586 } 5587 5588 if (qm->use_db_isolation) { 5589 qm->db_interval = QM_QP_DB_INTERVAL; 5590 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5591 qm->db_io_base = ioremap(qm->db_phys_base, 5592 pci_resource_len(pdev, PCI_BAR_4)); 5593 if (!qm->db_io_base) { 5594 ret = -EIO; 5595 goto err_ioremap; 5596 } 5597 } else { 5598 qm->db_phys_base = qm->phys_base; 5599 qm->db_io_base = qm->io_base; 5600 qm->db_interval = 0; 5601 } 5602 5603 if (qm->fun_type == QM_HW_PF) { 5604 ret = qm_get_qp_num(qm); 5605 if (ret) 5606 goto err_db_ioremap; 5607 } 5608 5609 return 0; 5610 5611 err_db_ioremap: 5612 if (qm->use_db_isolation) 5613 iounmap(qm->db_io_base); 5614 err_ioremap: 5615 iounmap(qm->io_base); 5616 err_request_mem_regions: 5617 pci_release_mem_regions(pdev); 5618 return ret; 5619 } 5620 5621 static int hisi_qm_pci_init(struct hisi_qm *qm) 5622 { 5623 struct pci_dev *pdev = qm->pdev; 5624 struct device *dev = &pdev->dev; 5625 unsigned int num_vec; 5626 int ret; 5627 5628 ret = pci_enable_device_mem(pdev); 5629 if (ret < 0) { 5630 dev_err(dev, "Failed to enable device mem!\n"); 5631 return ret; 5632 } 5633 5634 ret = qm_get_pci_res(qm); 5635 if (ret) 5636 goto err_disable_pcidev; 5637 5638 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5639 if (ret < 0) 5640 goto err_get_pci_res; 5641 pci_set_master(pdev); 5642 5643 if (!qm->ops->get_irq_num) { 5644 ret = -EOPNOTSUPP; 5645 goto err_get_pci_res; 5646 } 5647 num_vec = qm->ops->get_irq_num(qm); 5648 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5649 if (ret < 0) { 5650 dev_err(dev, "Failed to enable MSI vectors!\n"); 5651 goto err_get_pci_res; 5652 } 5653 5654 return 0; 5655 5656 err_get_pci_res: 5657 qm_put_pci_res(qm); 5658 err_disable_pcidev: 5659 pci_disable_device(pdev); 5660 return ret; 5661 } 5662 5663 static void hisi_qm_init_work(struct hisi_qm *qm) 5664 { 5665 INIT_WORK(&qm->work, qm_work_process); 5666 if (qm->fun_type == QM_HW_PF) 5667 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5668 5669 if (qm->ver > QM_HW_V2) 5670 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5671 } 5672 5673 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5674 { 5675 struct device *dev = &qm->pdev->dev; 5676 size_t qp_dma_size; 5677 int i, ret; 5678 5679 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5680 if (!qm->qp_array) 5681 return -ENOMEM; 5682 5683 /* one more page for device or qp statuses */ 5684 qp_dma_size = qm->sqe_size * QM_Q_DEPTH + 5685 sizeof(struct qm_cqe) * QM_Q_DEPTH; 5686 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5687 for (i = 0; i < qm->qp_num; i++) { 5688 ret = hisi_qp_memory_init(qm, qp_dma_size, i); 5689 if (ret) 5690 goto err_init_qp_mem; 5691 5692 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5693 } 5694 5695 return 0; 5696 err_init_qp_mem: 5697 hisi_qp_memory_uninit(qm, i); 5698 5699 return ret; 5700 } 5701 5702 static int hisi_qm_memory_init(struct hisi_qm *qm) 5703 { 5704 struct device *dev = &qm->pdev->dev; 5705 int ret, total_vfs; 5706 size_t off = 0; 5707 5708 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 5709 qm->factor = kcalloc(total_vfs + 1, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5710 if (!qm->factor) 5711 return -ENOMEM; 5712 5713 #define QM_INIT_BUF(qm, type, num) do { \ 5714 (qm)->type = ((qm)->qdma.va + (off)); \ 5715 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5716 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5717 } while (0) 5718 5719 idr_init(&qm->qp_idr); 5720 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) + 5721 QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) + 5722 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5723 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5724 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5725 GFP_ATOMIC); 5726 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5727 if (!qm->qdma.va) { 5728 ret = -ENOMEM; 5729 goto err_alloc_qdma; 5730 } 5731 5732 QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH); 5733 QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH); 5734 QM_INIT_BUF(qm, sqc, qm->qp_num); 5735 QM_INIT_BUF(qm, cqc, qm->qp_num); 5736 5737 ret = hisi_qp_alloc_memory(qm); 5738 if (ret) 5739 goto err_alloc_qp_array; 5740 5741 return 0; 5742 5743 err_alloc_qp_array: 5744 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5745 err_alloc_qdma: 5746 kfree(qm->factor); 5747 5748 return ret; 5749 } 5750 5751 /** 5752 * hisi_qm_init() - Initialize configures about qm. 5753 * @qm: The qm needing init. 5754 * 5755 * This function init qm, then we can call hisi_qm_start to put qm into work. 5756 */ 5757 int hisi_qm_init(struct hisi_qm *qm) 5758 { 5759 struct pci_dev *pdev = qm->pdev; 5760 struct device *dev = &pdev->dev; 5761 int ret; 5762 5763 hisi_qm_pre_init(qm); 5764 5765 ret = hisi_qm_pci_init(qm); 5766 if (ret) 5767 return ret; 5768 5769 ret = qm_irq_register(qm); 5770 if (ret) 5771 goto err_pci_init; 5772 5773 if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) { 5774 /* v2 starts to support get vft by mailbox */ 5775 ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 5776 if (ret) 5777 goto err_irq_register; 5778 } 5779 5780 ret = qm_alloc_uacce(qm); 5781 if (ret < 0) 5782 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5783 5784 ret = hisi_qm_memory_init(qm); 5785 if (ret) 5786 goto err_alloc_uacce; 5787 5788 hisi_qm_init_work(qm); 5789 qm_cmd_init(qm); 5790 atomic_set(&qm->status.flags, QM_INIT); 5791 5792 return 0; 5793 5794 err_alloc_uacce: 5795 uacce_remove(qm->uacce); 5796 qm->uacce = NULL; 5797 err_irq_register: 5798 qm_irq_unregister(qm); 5799 err_pci_init: 5800 hisi_qm_pci_uninit(qm); 5801 return ret; 5802 } 5803 EXPORT_SYMBOL_GPL(hisi_qm_init); 5804 5805 /** 5806 * hisi_qm_get_dfx_access() - Try to get dfx access. 5807 * @qm: pointer to accelerator device. 5808 * 5809 * Try to get dfx access, then user can get message. 5810 * 5811 * If device is in suspended, return failure, otherwise 5812 * bump up the runtime PM usage counter. 5813 */ 5814 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5815 { 5816 struct device *dev = &qm->pdev->dev; 5817 5818 if (pm_runtime_suspended(dev)) { 5819 dev_info(dev, "can not read/write - device in suspended.\n"); 5820 return -EAGAIN; 5821 } 5822 5823 return qm_pm_get_sync(qm); 5824 } 5825 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5826 5827 /** 5828 * hisi_qm_put_dfx_access() - Put dfx access. 5829 * @qm: pointer to accelerator device. 5830 * 5831 * Put dfx access, drop runtime PM usage counter. 5832 */ 5833 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5834 { 5835 qm_pm_put_sync(qm); 5836 } 5837 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5838 5839 /** 5840 * hisi_qm_pm_init() - Initialize qm runtime PM. 5841 * @qm: pointer to accelerator device. 5842 * 5843 * Function that initialize qm runtime PM. 5844 */ 5845 void hisi_qm_pm_init(struct hisi_qm *qm) 5846 { 5847 struct device *dev = &qm->pdev->dev; 5848 5849 if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3) 5850 return; 5851 5852 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5853 pm_runtime_use_autosuspend(dev); 5854 pm_runtime_put_noidle(dev); 5855 } 5856 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5857 5858 /** 5859 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5860 * @qm: pointer to accelerator device. 5861 * 5862 * Function that uninitialize qm runtime PM. 5863 */ 5864 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5865 { 5866 struct device *dev = &qm->pdev->dev; 5867 5868 if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3) 5869 return; 5870 5871 pm_runtime_get_noresume(dev); 5872 pm_runtime_dont_use_autosuspend(dev); 5873 } 5874 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5875 5876 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5877 { 5878 struct pci_dev *pdev = qm->pdev; 5879 int ret; 5880 u32 val; 5881 5882 ret = qm->ops->set_msi(qm, false); 5883 if (ret) { 5884 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5885 return ret; 5886 } 5887 5888 /* shutdown OOO register */ 5889 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 5890 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5891 5892 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 5893 val, 5894 (val == ACC_MASTER_TRANS_RETURN_RW), 5895 POLL_PERIOD, POLL_TIMEOUT); 5896 if (ret) { 5897 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 5898 return ret; 5899 } 5900 5901 ret = qm_set_pf_mse(qm, false); 5902 if (ret) 5903 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5904 5905 return ret; 5906 } 5907 5908 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5909 { 5910 struct pci_dev *pdev = qm->pdev; 5911 int ret; 5912 5913 ret = qm_set_pf_mse(qm, true); 5914 if (ret) { 5915 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5916 return ret; 5917 } 5918 5919 ret = qm->ops->set_msi(qm, true); 5920 if (ret) { 5921 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5922 return ret; 5923 } 5924 5925 ret = qm_dev_hw_init(qm); 5926 if (ret) { 5927 pci_err(pdev, "failed to init device after resuming\n"); 5928 return ret; 5929 } 5930 5931 qm_cmd_init(qm); 5932 hisi_qm_dev_err_init(qm); 5933 5934 return 0; 5935 } 5936 5937 /** 5938 * hisi_qm_suspend() - Runtime suspend of given device. 5939 * @dev: device to suspend. 5940 * 5941 * Function that suspend the device. 5942 */ 5943 int hisi_qm_suspend(struct device *dev) 5944 { 5945 struct pci_dev *pdev = to_pci_dev(dev); 5946 struct hisi_qm *qm = pci_get_drvdata(pdev); 5947 int ret; 5948 5949 pci_info(pdev, "entering suspended state\n"); 5950 5951 ret = hisi_qm_stop(qm, QM_NORMAL); 5952 if (ret) { 5953 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5954 return ret; 5955 } 5956 5957 ret = qm_prepare_for_suspend(qm); 5958 if (ret) 5959 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5960 5961 return ret; 5962 } 5963 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5964 5965 /** 5966 * hisi_qm_resume() - Runtime resume of given device. 5967 * @dev: device to resume. 5968 * 5969 * Function that resume the device. 5970 */ 5971 int hisi_qm_resume(struct device *dev) 5972 { 5973 struct pci_dev *pdev = to_pci_dev(dev); 5974 struct hisi_qm *qm = pci_get_drvdata(pdev); 5975 int ret; 5976 5977 pci_info(pdev, "resuming from suspend state\n"); 5978 5979 ret = qm_rebuild_for_resume(qm); 5980 if (ret) { 5981 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5982 return ret; 5983 } 5984 5985 ret = hisi_qm_start(qm); 5986 if (ret) 5987 pci_err(pdev, "failed to start qm(%d)\n", ret); 5988 5989 return 0; 5990 } 5991 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5992 5993 MODULE_LICENSE("GPL v2"); 5994 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5995 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5996