xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision 9659281c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/debugfs.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/idr.h>
10 #include <linux/io.h>
11 #include <linux/irqreturn.h>
12 #include <linux/log2.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include "qm.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 #define QM_IRQ_NUM_V1			1
26 #define QM_IRQ_NUM_PF_V2		4
27 #define QM_IRQ_NUM_VF_V2		2
28 #define QM_IRQ_NUM_VF_V3		3
29 
30 #define QM_EQ_EVENT_IRQ_VECTOR		0
31 #define QM_AEQ_EVENT_IRQ_VECTOR		1
32 #define QM_CMD_EVENT_IRQ_VECTOR		2
33 #define QM_ABNORMAL_EVENT_IRQ_VECTOR	3
34 
35 /* mailbox */
36 #define QM_MB_CMD_SQC			0x0
37 #define QM_MB_CMD_CQC			0x1
38 #define QM_MB_CMD_EQC			0x2
39 #define QM_MB_CMD_AEQC			0x3
40 #define QM_MB_CMD_SQC_BT		0x4
41 #define QM_MB_CMD_CQC_BT		0x5
42 #define QM_MB_CMD_SQC_VFT_V2		0x6
43 #define QM_MB_CMD_STOP_QP		0x8
44 #define QM_MB_CMD_SRC			0xc
45 #define QM_MB_CMD_DST			0xd
46 
47 #define QM_MB_CMD_SEND_BASE		0x300
48 #define QM_MB_EVENT_SHIFT		8
49 #define QM_MB_BUSY_SHIFT		13
50 #define QM_MB_OP_SHIFT			14
51 #define QM_MB_CMD_DATA_ADDR_L		0x304
52 #define QM_MB_CMD_DATA_ADDR_H		0x308
53 #define QM_MB_PING_ALL_VFS		0xffff
54 #define QM_MB_CMD_DATA_SHIFT		32
55 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
56 
57 /* sqc shift */
58 #define QM_SQ_HOP_NUM_SHIFT		0
59 #define QM_SQ_PAGE_SIZE_SHIFT		4
60 #define QM_SQ_BUF_SIZE_SHIFT		8
61 #define QM_SQ_SQE_SIZE_SHIFT		12
62 #define QM_SQ_PRIORITY_SHIFT		0
63 #define QM_SQ_ORDERS_SHIFT		4
64 #define QM_SQ_TYPE_SHIFT		8
65 #define QM_QC_PASID_ENABLE		0x1
66 #define QM_QC_PASID_ENABLE_SHIFT	7
67 
68 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
69 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
70 
71 /* cqc shift */
72 #define QM_CQ_HOP_NUM_SHIFT		0
73 #define QM_CQ_PAGE_SIZE_SHIFT		4
74 #define QM_CQ_BUF_SIZE_SHIFT		8
75 #define QM_CQ_CQE_SIZE_SHIFT		12
76 #define QM_CQ_PHASE_SHIFT		0
77 #define QM_CQ_FLAG_SHIFT		1
78 
79 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
80 #define QM_QC_CQE_SIZE			4
81 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
82 
83 /* eqc shift */
84 #define QM_EQE_AEQE_SIZE		(2UL << 12)
85 #define QM_EQC_PHASE_SHIFT		16
86 
87 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
88 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
89 
90 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
91 #define QM_AEQE_TYPE_SHIFT		17
92 
93 #define QM_DOORBELL_CMD_SQ		0
94 #define QM_DOORBELL_CMD_CQ		1
95 #define QM_DOORBELL_CMD_EQ		2
96 #define QM_DOORBELL_CMD_AEQ		3
97 
98 #define QM_DOORBELL_BASE_V1		0x340
99 #define QM_DB_CMD_SHIFT_V1		16
100 #define QM_DB_INDEX_SHIFT_V1		32
101 #define QM_DB_PRIORITY_SHIFT_V1		48
102 #define QM_DOORBELL_SQ_CQ_BASE_V2	0x1000
103 #define QM_DOORBELL_EQ_AEQ_BASE_V2	0x2000
104 #define QM_QUE_ISO_CFG_V		0x0030
105 #define QM_PAGE_SIZE			0x0034
106 #define QM_QUE_ISO_EN			0x100154
107 #define QM_CAPBILITY			0x100158
108 #define QM_QP_NUN_MASK			GENMASK(10, 0)
109 #define QM_QP_DB_INTERVAL		0x10000
110 #define QM_QP_MAX_NUM_SHIFT		11
111 #define QM_DB_CMD_SHIFT_V2		12
112 #define QM_DB_RAND_SHIFT_V2		16
113 #define QM_DB_INDEX_SHIFT_V2		32
114 #define QM_DB_PRIORITY_SHIFT_V2		48
115 
116 #define QM_MEM_START_INIT		0x100040
117 #define QM_MEM_INIT_DONE		0x100044
118 #define QM_VFT_CFG_RDY			0x10006c
119 #define QM_VFT_CFG_OP_WR		0x100058
120 #define QM_VFT_CFG_TYPE			0x10005c
121 #define QM_SQC_VFT			0x0
122 #define QM_CQC_VFT			0x1
123 #define QM_VFT_CFG			0x100060
124 #define QM_VFT_CFG_OP_ENABLE		0x100054
125 
126 #define QM_VFT_CFG_DATA_L		0x100064
127 #define QM_VFT_CFG_DATA_H		0x100068
128 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
129 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
130 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
131 #define QM_SQC_VFT_START_SQN_SHIFT	28
132 #define QM_SQC_VFT_VALID		(1ULL << 44)
133 #define QM_SQC_VFT_SQN_SHIFT		45
134 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
135 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
136 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
137 #define QM_CQC_VFT_VALID		(1ULL << 28)
138 
139 #define QM_SQC_VFT_BASE_SHIFT_V2	28
140 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
141 #define QM_SQC_VFT_NUM_SHIFT_V2		45
142 #define QM_SQC_VFT_NUM_MASK_v2		GENMASK(9, 0)
143 
144 #define QM_DFX_CNT_CLR_CE		0x100118
145 
146 #define QM_ABNORMAL_INT_SOURCE		0x100000
147 #define QM_ABNORMAL_INT_SOURCE_CLR	GENMASK(14, 0)
148 #define QM_ABNORMAL_INT_MASK		0x100004
149 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
150 #define QM_ABNORMAL_INT_STATUS		0x100008
151 #define QM_ABNORMAL_INT_SET		0x10000c
152 #define QM_ABNORMAL_INF00		0x100010
153 #define QM_FIFO_OVERFLOW_TYPE		0xc0
154 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
155 #define QM_FIFO_OVERFLOW_VF		0x3f
156 #define QM_ABNORMAL_INF01		0x100014
157 #define QM_DB_TIMEOUT_TYPE		0xc0
158 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
159 #define QM_DB_TIMEOUT_VF		0x3f
160 #define QM_RAS_CE_ENABLE		0x1000ec
161 #define QM_RAS_FE_ENABLE		0x1000f0
162 #define QM_RAS_NFE_ENABLE		0x1000f4
163 #define QM_RAS_CE_THRESHOLD		0x1000f8
164 #define QM_RAS_CE_TIMES_PER_IRQ		1
165 #define QM_RAS_MSI_INT_SEL		0x1040f4
166 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
167 
168 #define QM_RESET_WAIT_TIMEOUT		400
169 #define QM_PEH_VENDOR_ID		0x1000d8
170 #define ACC_VENDOR_ID_VALUE		0x5a5a
171 #define QM_PEH_DFX_INFO0		0x1000fc
172 #define QM_PEH_DFX_INFO1		0x100100
173 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
174 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
175 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
176 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
177 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
178 #define ACC_MASTER_TRANS_RETURN_RW	3
179 #define ACC_MASTER_TRANS_RETURN		0x300150
180 #define ACC_MASTER_GLOBAL_CTRL		0x300000
181 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
182 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
183 #define ACC_AM_ROB_ECC_INT_STS		0x300104
184 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
185 #define QM_MSI_CAP_ENABLE		BIT(16)
186 
187 /* interfunction communication */
188 #define QM_IFC_READY_STATUS		0x100128
189 #define QM_IFC_C_STS_M			0x10012C
190 #define QM_IFC_INT_SET_P		0x100130
191 #define QM_IFC_INT_CFG			0x100134
192 #define QM_IFC_INT_SOURCE_P		0x100138
193 #define QM_IFC_INT_SOURCE_V		0x0020
194 #define QM_IFC_INT_MASK			0x0024
195 #define QM_IFC_INT_STATUS		0x0028
196 #define QM_IFC_INT_SET_V		0x002C
197 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
198 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
199 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
200 #define QM_IFC_INT_DISABLE		BIT(0)
201 #define QM_IFC_INT_STATUS_MASK		BIT(0)
202 #define QM_IFC_INT_SET_MASK		BIT(0)
203 #define QM_WAIT_DST_ACK			10
204 #define QM_MAX_PF_WAIT_COUNT		10
205 #define QM_MAX_VF_WAIT_COUNT		40
206 #define QM_VF_RESET_WAIT_US            20000
207 #define QM_VF_RESET_WAIT_CNT           3000
208 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
209 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
210 
211 #define QM_DFX_MB_CNT_VF		0x104010
212 #define QM_DFX_DB_CNT_VF		0x104020
213 #define QM_DFX_SQE_CNT_VF_SQN		0x104030
214 #define QM_DFX_CQE_CNT_VF_CQN		0x104040
215 #define QM_DFX_QN_SHIFT			16
216 #define CURRENT_FUN_MASK		GENMASK(5, 0)
217 #define CURRENT_Q_MASK			GENMASK(31, 16)
218 
219 #define POLL_PERIOD			10
220 #define POLL_TIMEOUT			1000
221 #define WAIT_PERIOD_US_MAX		200
222 #define WAIT_PERIOD_US_MIN		100
223 #define MAX_WAIT_COUNTS			1000
224 #define QM_CACHE_WB_START		0x204
225 #define QM_CACHE_WB_DONE		0x208
226 
227 #define PCI_BAR_2			2
228 #define PCI_BAR_4			4
229 #define QM_SQE_DATA_ALIGN_MASK		GENMASK(6, 0)
230 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
231 
232 #define QM_DBG_READ_LEN		256
233 #define QM_DBG_WRITE_LEN		1024
234 #define QM_DBG_TMP_BUF_LEN		22
235 #define QM_PCI_COMMAND_INVALID		~0
236 
237 #define WAIT_PERIOD			20
238 #define REMOVE_WAIT_DELAY		10
239 #define QM_SQE_ADDR_MASK		GENMASK(7, 0)
240 #define QM_EQ_DEPTH			(1024 * 2)
241 
242 #define QM_DRIVER_REMOVING		0
243 #define QM_RST_SCHED			1
244 #define QM_RESETTING			2
245 #define QM_QOS_PARAM_NUM		2
246 #define QM_QOS_VAL_NUM			1
247 #define QM_QOS_BDF_PARAM_NUM		4
248 #define QM_QOS_MAX_VAL			1000
249 #define QM_QOS_RATE			100
250 #define QM_QOS_EXPAND_RATE		1000
251 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
252 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
253 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
254 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
255 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
256 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
257 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
258 #define QM_SHAPER_CBS_B			1
259 #define QM_SHAPER_CBS_S			16
260 #define QM_SHAPER_VFT_OFFSET		6
261 #define WAIT_FOR_QOS_VF			100
262 #define QM_QOS_MIN_ERROR_RATE		5
263 #define QM_QOS_TYPICAL_NUM		8
264 #define QM_SHAPER_MIN_CBS_S		8
265 #define QM_QOS_TICK			0x300U
266 #define QM_QOS_DIVISOR_CLK		0x1f40U
267 #define QM_QOS_MAX_CIR_B		200
268 #define QM_QOS_MIN_CIR_B		100
269 #define QM_QOS_MAX_CIR_U		6
270 #define QM_QOS_MAX_CIR_S		11
271 #define QM_QOS_VAL_MAX_LEN		32
272 
273 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
274 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT)	| \
275 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT)	| \
276 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT)	| \
277 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
278 
279 #define QM_MK_CQC_DW3_V2(cqe_sz) \
280 	((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
281 
282 #define QM_MK_SQC_W13(priority, orders, alg_type) \
283 	(((priority) << QM_SQ_PRIORITY_SHIFT)	| \
284 	((orders) << QM_SQ_ORDERS_SHIFT)	| \
285 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
286 
287 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
288 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT)	| \
289 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT)	| \
290 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT)	| \
291 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
292 
293 #define QM_MK_SQC_DW3_V2(sqe_sz) \
294 	((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
295 
296 #define INIT_QC_COMMON(qc, base, pasid) do {			\
297 	(qc)->head = 0;						\
298 	(qc)->tail = 0;						\
299 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
300 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
301 	(qc)->dw3 = 0;						\
302 	(qc)->w8 = 0;						\
303 	(qc)->rsvd0 = 0;					\
304 	(qc)->pasid = cpu_to_le16(pasid);			\
305 	(qc)->w11 = 0;						\
306 	(qc)->rsvd1 = 0;					\
307 } while (0)
308 
309 enum vft_type {
310 	SQC_VFT = 0,
311 	CQC_VFT,
312 	SHAPER_VFT,
313 };
314 
315 enum acc_err_result {
316 	ACC_ERR_NONE,
317 	ACC_ERR_NEED_RESET,
318 	ACC_ERR_RECOVERED,
319 };
320 
321 enum qm_alg_type {
322 	ALG_TYPE_0,
323 	ALG_TYPE_1,
324 };
325 
326 enum qm_mb_cmd {
327 	QM_PF_FLR_PREPARE = 0x01,
328 	QM_PF_SRST_PREPARE,
329 	QM_PF_RESET_DONE,
330 	QM_VF_PREPARE_DONE,
331 	QM_VF_PREPARE_FAIL,
332 	QM_VF_START_DONE,
333 	QM_VF_START_FAIL,
334 	QM_PF_SET_QOS,
335 	QM_VF_GET_QOS,
336 };
337 
338 struct qm_cqe {
339 	__le32 rsvd0;
340 	__le16 cmd_id;
341 	__le16 rsvd1;
342 	__le16 sq_head;
343 	__le16 sq_num;
344 	__le16 rsvd2;
345 	__le16 w7;
346 };
347 
348 struct qm_eqe {
349 	__le32 dw0;
350 };
351 
352 struct qm_aeqe {
353 	__le32 dw0;
354 };
355 
356 struct qm_sqc {
357 	__le16 head;
358 	__le16 tail;
359 	__le32 base_l;
360 	__le32 base_h;
361 	__le32 dw3;
362 	__le16 w8;
363 	__le16 rsvd0;
364 	__le16 pasid;
365 	__le16 w11;
366 	__le16 cq_num;
367 	__le16 w13;
368 	__le32 rsvd1;
369 };
370 
371 struct qm_cqc {
372 	__le16 head;
373 	__le16 tail;
374 	__le32 base_l;
375 	__le32 base_h;
376 	__le32 dw3;
377 	__le16 w8;
378 	__le16 rsvd0;
379 	__le16 pasid;
380 	__le16 w11;
381 	__le32 dw6;
382 	__le32 rsvd1;
383 };
384 
385 struct qm_eqc {
386 	__le16 head;
387 	__le16 tail;
388 	__le32 base_l;
389 	__le32 base_h;
390 	__le32 dw3;
391 	__le32 rsvd[2];
392 	__le32 dw6;
393 };
394 
395 struct qm_aeqc {
396 	__le16 head;
397 	__le16 tail;
398 	__le32 base_l;
399 	__le32 base_h;
400 	__le32 dw3;
401 	__le32 rsvd[2];
402 	__le32 dw6;
403 };
404 
405 struct qm_mailbox {
406 	__le16 w0;
407 	__le16 queue_num;
408 	__le32 base_l;
409 	__le32 base_h;
410 	__le32 rsvd;
411 };
412 
413 struct qm_doorbell {
414 	__le16 queue_num;
415 	__le16 cmd;
416 	__le16 index;
417 	__le16 priority;
418 };
419 
420 struct hisi_qm_resource {
421 	struct hisi_qm *qm;
422 	int distance;
423 	struct list_head list;
424 };
425 
426 struct hisi_qm_hw_ops {
427 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
428 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
429 		      u8 cmd, u16 index, u8 priority);
430 	u32 (*get_irq_num)(struct hisi_qm *qm);
431 	int (*debug_init)(struct hisi_qm *qm);
432 	void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe);
433 	void (*hw_error_uninit)(struct hisi_qm *qm);
434 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
435 	int (*stop_qp)(struct hisi_qp *qp);
436 	int (*set_msi)(struct hisi_qm *qm, bool set);
437 	int (*ping_all_vfs)(struct hisi_qm *qm, u64 cmd);
438 	int (*ping_pf)(struct hisi_qm *qm, u64 cmd);
439 };
440 
441 struct qm_dfx_item {
442 	const char *name;
443 	u32 offset;
444 };
445 
446 static struct qm_dfx_item qm_dfx_files[] = {
447 	{"err_irq", offsetof(struct qm_dfx, err_irq_cnt)},
448 	{"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)},
449 	{"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)},
450 	{"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)},
451 	{"mb_err", offsetof(struct qm_dfx, mb_err_cnt)},
452 };
453 
454 static const char * const qm_debug_file_name[] = {
455 	[CURRENT_QM]   = "current_qm",
456 	[CURRENT_Q]    = "current_q",
457 	[CLEAR_ENABLE] = "clear_enable",
458 };
459 
460 struct hisi_qm_hw_error {
461 	u32 int_msk;
462 	const char *msg;
463 };
464 
465 static const struct hisi_qm_hw_error qm_hw_error[] = {
466 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
467 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
468 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
469 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
470 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
471 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
472 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
473 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
474 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
475 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
476 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
477 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
478 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
479 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
480 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
481 	{ /* sentinel */ }
482 };
483 
484 static const char * const qm_db_timeout[] = {
485 	"sq", "cq", "eq", "aeq",
486 };
487 
488 static const char * const qm_fifo_overflow[] = {
489 	"cq", "eq", "aeq",
490 };
491 
492 static const char * const qm_s[] = {
493 	"init", "start", "close", "stop",
494 };
495 
496 static const char * const qp_s[] = {
497 	"none", "init", "start", "stop", "close",
498 };
499 
500 static const u32 typical_qos_val[QM_QOS_TYPICAL_NUM] = {100, 250, 500, 1000,
501 						10000, 25000, 50000, 100000};
502 static const u32 typical_qos_cbs_s[QM_QOS_TYPICAL_NUM] = {9, 10, 11, 12, 16,
503 							 17, 18, 19};
504 
505 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
506 {
507 	enum qm_state curr = atomic_read(&qm->status.flags);
508 	bool avail = false;
509 
510 	switch (curr) {
511 	case QM_INIT:
512 		if (new == QM_START || new == QM_CLOSE)
513 			avail = true;
514 		break;
515 	case QM_START:
516 		if (new == QM_STOP)
517 			avail = true;
518 		break;
519 	case QM_STOP:
520 		if (new == QM_CLOSE || new == QM_START)
521 			avail = true;
522 		break;
523 	default:
524 		break;
525 	}
526 
527 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
528 		qm_s[curr], qm_s[new]);
529 
530 	if (!avail)
531 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
532 			 qm_s[curr], qm_s[new]);
533 
534 	return avail;
535 }
536 
537 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
538 			      enum qp_state new)
539 {
540 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
541 	enum qp_state qp_curr = 0;
542 	bool avail = false;
543 
544 	if (qp)
545 		qp_curr = atomic_read(&qp->qp_status.flags);
546 
547 	switch (new) {
548 	case QP_INIT:
549 		if (qm_curr == QM_START || qm_curr == QM_INIT)
550 			avail = true;
551 		break;
552 	case QP_START:
553 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
554 		    (qm_curr == QM_START && qp_curr == QP_STOP))
555 			avail = true;
556 		break;
557 	case QP_STOP:
558 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
559 		    (qp_curr == QP_INIT))
560 			avail = true;
561 		break;
562 	case QP_CLOSE:
563 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
564 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
565 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
566 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
567 			avail = true;
568 		break;
569 	default:
570 		break;
571 	}
572 
573 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
574 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
575 
576 	if (!avail)
577 		dev_warn(&qm->pdev->dev,
578 			 "Can not change qp state from %s to %s in QM %s\n",
579 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
580 
581 	return avail;
582 }
583 
584 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
585 			   u64 base, u16 queue, bool op)
586 {
587 	mailbox->w0 = cpu_to_le16((cmd) |
588 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
589 		(0x1 << QM_MB_BUSY_SHIFT));
590 	mailbox->queue_num = cpu_to_le16(queue);
591 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
592 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
593 	mailbox->rsvd = 0;
594 }
595 
596 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
597 static int qm_wait_mb_ready(struct hisi_qm *qm)
598 {
599 	u32 val;
600 
601 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
602 					  val, !((val >> QM_MB_BUSY_SHIFT) &
603 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
604 }
605 
606 /* 128 bit should be written to hardware at one time to trigger a mailbox */
607 static void qm_mb_write(struct hisi_qm *qm, const void *src)
608 {
609 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
610 	unsigned long tmp0 = 0, tmp1 = 0;
611 
612 	if (!IS_ENABLED(CONFIG_ARM64)) {
613 		memcpy_toio(fun_base, src, 16);
614 		wmb();
615 		return;
616 	}
617 
618 	asm volatile("ldp %0, %1, %3\n"
619 		     "stp %0, %1, %2\n"
620 		     "dsb sy\n"
621 		     : "=&r" (tmp0),
622 		       "=&r" (tmp1),
623 		       "+Q" (*((char __iomem *)fun_base))
624 		     : "Q" (*((char *)src))
625 		     : "memory");
626 }
627 
628 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
629 {
630 	if (unlikely(qm_wait_mb_ready(qm))) {
631 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
632 		goto mb_busy;
633 	}
634 
635 	qm_mb_write(qm, mailbox);
636 
637 	if (unlikely(qm_wait_mb_ready(qm))) {
638 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
639 		goto mb_busy;
640 	}
641 
642 	return 0;
643 
644 mb_busy:
645 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
646 	return -EBUSY;
647 }
648 
649 static int qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
650 		 bool op)
651 {
652 	struct qm_mailbox mailbox;
653 	int ret;
654 
655 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
656 		queue, cmd, (unsigned long long)dma_addr);
657 
658 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
659 
660 	mutex_lock(&qm->mailbox_lock);
661 	ret = qm_mb_nolock(qm, &mailbox);
662 	mutex_unlock(&qm->mailbox_lock);
663 
664 	return ret;
665 }
666 
667 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
668 {
669 	u64 doorbell;
670 
671 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
672 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
673 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
674 
675 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
676 }
677 
678 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
679 {
680 	void __iomem *io_base = qm->io_base;
681 	u16 randata = 0;
682 	u64 doorbell;
683 
684 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
685 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
686 			  QM_DOORBELL_SQ_CQ_BASE_V2;
687 	else
688 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
689 
690 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
691 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
692 		   ((u64)index << QM_DB_INDEX_SHIFT_V2)	 |
693 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
694 
695 	writeq(doorbell, io_base);
696 }
697 
698 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
699 {
700 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
701 		qn, cmd, index);
702 
703 	qm->ops->qm_db(qm, qn, cmd, index, priority);
704 }
705 
706 static int qm_dev_mem_reset(struct hisi_qm *qm)
707 {
708 	u32 val;
709 
710 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
711 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
712 					  val & BIT(0), POLL_PERIOD,
713 					  POLL_TIMEOUT);
714 }
715 
716 static u32 qm_get_irq_num_v1(struct hisi_qm *qm)
717 {
718 	return QM_IRQ_NUM_V1;
719 }
720 
721 static u32 qm_get_irq_num_v2(struct hisi_qm *qm)
722 {
723 	if (qm->fun_type == QM_HW_PF)
724 		return QM_IRQ_NUM_PF_V2;
725 	else
726 		return QM_IRQ_NUM_VF_V2;
727 }
728 
729 static u32 qm_get_irq_num_v3(struct hisi_qm *qm)
730 {
731 	if (qm->fun_type == QM_HW_PF)
732 		return QM_IRQ_NUM_PF_V2;
733 
734 	return QM_IRQ_NUM_VF_V3;
735 }
736 
737 static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe)
738 {
739 	u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
740 
741 	return &qm->qp_array[cqn];
742 }
743 
744 static void qm_cq_head_update(struct hisi_qp *qp)
745 {
746 	if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) {
747 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
748 		qp->qp_status.cq_head = 0;
749 	} else {
750 		qp->qp_status.cq_head++;
751 	}
752 }
753 
754 static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm)
755 {
756 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
757 		return;
758 
759 	if (qp->event_cb) {
760 		qp->event_cb(qp);
761 		return;
762 	}
763 
764 	if (qp->req_cb) {
765 		struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
766 
767 		while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
768 			dma_rmb();
769 			qp->req_cb(qp, qp->sqe + qm->sqe_size *
770 				   le16_to_cpu(cqe->sq_head));
771 			qm_cq_head_update(qp);
772 			cqe = qp->cqe + qp->qp_status.cq_head;
773 			qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
774 			      qp->qp_status.cq_head, 0);
775 			atomic_dec(&qp->qp_status.used);
776 		}
777 
778 		/* set c_flag */
779 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
780 		      qp->qp_status.cq_head, 1);
781 	}
782 }
783 
784 static void qm_work_process(struct work_struct *work)
785 {
786 	struct hisi_qm *qm = container_of(work, struct hisi_qm, work);
787 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
788 	struct hisi_qp *qp;
789 	int eqe_num = 0;
790 
791 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
792 		eqe_num++;
793 		qp = qm_to_hisi_qp(qm, eqe);
794 		qm_poll_qp(qp, qm);
795 
796 		if (qm->status.eq_head == QM_EQ_DEPTH - 1) {
797 			qm->status.eqc_phase = !qm->status.eqc_phase;
798 			eqe = qm->eqe;
799 			qm->status.eq_head = 0;
800 		} else {
801 			eqe++;
802 			qm->status.eq_head++;
803 		}
804 
805 		if (eqe_num == QM_EQ_DEPTH / 2 - 1) {
806 			eqe_num = 0;
807 			qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
808 		}
809 	}
810 
811 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
812 }
813 
814 static irqreturn_t do_qm_irq(int irq, void *data)
815 {
816 	struct hisi_qm *qm = (struct hisi_qm *)data;
817 
818 	/* the workqueue created by device driver of QM */
819 	if (qm->wq)
820 		queue_work(qm->wq, &qm->work);
821 	else
822 		schedule_work(&qm->work);
823 
824 	return IRQ_HANDLED;
825 }
826 
827 static irqreturn_t qm_irq(int irq, void *data)
828 {
829 	struct hisi_qm *qm = data;
830 
831 	if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
832 		return do_qm_irq(irq, data);
833 
834 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
835 	dev_err(&qm->pdev->dev, "invalid int source\n");
836 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
837 
838 	return IRQ_NONE;
839 }
840 
841 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
842 {
843 	struct hisi_qm *qm = data;
844 	u32 val;
845 
846 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
847 	val &= QM_IFC_INT_STATUS_MASK;
848 	if (!val)
849 		return IRQ_NONE;
850 
851 	schedule_work(&qm->cmd_process);
852 
853 	return IRQ_HANDLED;
854 }
855 
856 static irqreturn_t qm_aeq_irq(int irq, void *data)
857 {
858 	struct hisi_qm *qm = data;
859 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
860 	u32 type;
861 
862 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
863 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
864 		return IRQ_NONE;
865 
866 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
867 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
868 		if (type < ARRAY_SIZE(qm_fifo_overflow))
869 			dev_err(&qm->pdev->dev, "%s overflow\n",
870 				qm_fifo_overflow[type]);
871 		else
872 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
873 				type);
874 
875 		if (qm->status.aeq_head == QM_Q_DEPTH - 1) {
876 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
877 			aeqe = qm->aeqe;
878 			qm->status.aeq_head = 0;
879 		} else {
880 			aeqe++;
881 			qm->status.aeq_head++;
882 		}
883 
884 		qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
885 	}
886 
887 	return IRQ_HANDLED;
888 }
889 
890 static void qm_irq_unregister(struct hisi_qm *qm)
891 {
892 	struct pci_dev *pdev = qm->pdev;
893 
894 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
895 
896 	if (qm->ver > QM_HW_V1) {
897 		free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
898 
899 		if (qm->fun_type == QM_HW_PF)
900 			free_irq(pci_irq_vector(pdev,
901 				 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
902 	}
903 
904 	if (qm->ver > QM_HW_V2)
905 		free_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR), qm);
906 }
907 
908 static void qm_init_qp_status(struct hisi_qp *qp)
909 {
910 	struct hisi_qp_status *qp_status = &qp->qp_status;
911 
912 	qp_status->sq_tail = 0;
913 	qp_status->cq_head = 0;
914 	qp_status->cqc_phase = true;
915 	atomic_set(&qp_status->used, 0);
916 }
917 
918 static void qm_init_prefetch(struct hisi_qm *qm)
919 {
920 	struct device *dev = &qm->pdev->dev;
921 	u32 page_type = 0x0;
922 
923 	if (qm->ver < QM_HW_V3)
924 		return;
925 
926 	switch (PAGE_SIZE) {
927 	case SZ_4K:
928 		page_type = 0x0;
929 		break;
930 	case SZ_16K:
931 		page_type = 0x1;
932 		break;
933 	case SZ_64K:
934 		page_type = 0x2;
935 		break;
936 	default:
937 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
938 			PAGE_SIZE);
939 	}
940 
941 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
942 }
943 
944 /*
945  * the formula:
946  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
947  *
948  *		        IR_b * (2 ^ IR_u) * 8
949  * IR(Mbps) * 10 ^ -3 = -------------------------
950  *		        Tick * (2 ^ IR_s)
951  */
952 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
953 {
954 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
955 					(QM_QOS_TICK * (1 << cir_s));
956 }
957 
958 static u32 acc_shaper_calc_cbs_s(u32 ir)
959 {
960 	int i;
961 
962 	if (ir < typical_qos_val[0])
963 		return QM_SHAPER_MIN_CBS_S;
964 
965 	for (i = 1; i < QM_QOS_TYPICAL_NUM; i++) {
966 		if (ir >= typical_qos_val[i - 1] && ir < typical_qos_val[i])
967 			return typical_qos_cbs_s[i - 1];
968 	}
969 
970 	return typical_qos_cbs_s[QM_QOS_TYPICAL_NUM - 1];
971 }
972 
973 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
974 {
975 	u32 cir_b, cir_u, cir_s, ir_calc;
976 	u32 error_rate;
977 
978 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
979 
980 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
981 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
982 			for (cir_s = 0; cir_s <= QM_QOS_MAX_CIR_S; cir_s++) {
983 				/** the formula is changed to:
984 				 *	   IR_b * (2 ^ IR_u) * DIVISOR_CLK
985 				 * IR(Mbps) = -------------------------
986 				 *	       768 * (2 ^ IR_s)
987 				 */
988 				ir_calc = acc_shaper_para_calc(cir_b, cir_u,
989 							       cir_s);
990 				error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
991 				if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
992 					factor->cir_b = cir_b;
993 					factor->cir_u = cir_u;
994 					factor->cir_s = cir_s;
995 
996 					return 0;
997 				}
998 			}
999 		}
1000 	}
1001 
1002 	return -EINVAL;
1003 }
1004 
1005 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1006 			    u32 number, struct qm_shaper_factor *factor)
1007 {
1008 	u64 tmp = 0;
1009 
1010 	if (number > 0) {
1011 		switch (type) {
1012 		case SQC_VFT:
1013 			if (qm->ver == QM_HW_V1) {
1014 				tmp = QM_SQC_VFT_BUF_SIZE	|
1015 				      QM_SQC_VFT_SQC_SIZE	|
1016 				      QM_SQC_VFT_INDEX_NUMBER	|
1017 				      QM_SQC_VFT_VALID		|
1018 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1019 			} else {
1020 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1021 				      QM_SQC_VFT_VALID |
1022 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1023 			}
1024 			break;
1025 		case CQC_VFT:
1026 			if (qm->ver == QM_HW_V1) {
1027 				tmp = QM_CQC_VFT_BUF_SIZE	|
1028 				      QM_CQC_VFT_SQC_SIZE	|
1029 				      QM_CQC_VFT_INDEX_NUMBER	|
1030 				      QM_CQC_VFT_VALID;
1031 			} else {
1032 				tmp = QM_CQC_VFT_VALID;
1033 			}
1034 			break;
1035 		case SHAPER_VFT:
1036 			if (qm->ver >= QM_HW_V3) {
1037 				tmp = factor->cir_b |
1038 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1039 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1040 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1041 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1042 			}
1043 			break;
1044 		}
1045 	}
1046 
1047 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1048 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1049 }
1050 
1051 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1052 			     u32 fun_num, u32 base, u32 number)
1053 {
1054 	struct qm_shaper_factor *factor = &qm->factor[fun_num];
1055 	unsigned int val;
1056 	int ret;
1057 
1058 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1059 					 val & BIT(0), POLL_PERIOD,
1060 					 POLL_TIMEOUT);
1061 	if (ret)
1062 		return ret;
1063 
1064 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1065 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1066 	if (type == SHAPER_VFT)
1067 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1068 
1069 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1070 
1071 	qm_vft_data_cfg(qm, type, base, number, factor);
1072 
1073 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1074 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1075 
1076 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1077 					  val & BIT(0), POLL_PERIOD,
1078 					  POLL_TIMEOUT);
1079 }
1080 
1081 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1082 {
1083 	int ret, i;
1084 
1085 	qm->factor[fun_num].func_qos = QM_QOS_MAX_VAL;
1086 	ret = qm_get_shaper_para(QM_QOS_MAX_VAL * QM_QOS_RATE, &qm->factor[fun_num]);
1087 	if (ret) {
1088 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1089 		return ret;
1090 	}
1091 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1092 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1093 		/* The base number of queue reuse for different alg type */
1094 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1095 		if (ret)
1096 			return ret;
1097 	}
1098 
1099 	return 0;
1100 }
1101 
1102 /* The config should be conducted after qm_dev_mem_reset() */
1103 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1104 			      u32 number)
1105 {
1106 	int ret, i;
1107 
1108 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1109 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1110 		if (ret)
1111 			return ret;
1112 	}
1113 
1114 	/* init default shaper qos val */
1115 	if (qm->ver >= QM_HW_V3) {
1116 		ret = qm_shaper_init_vft(qm, fun_num);
1117 		if (ret)
1118 			goto back_sqc_cqc;
1119 	}
1120 
1121 	return 0;
1122 back_sqc_cqc:
1123 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1124 		ret = qm_set_vft_common(qm, i, fun_num, 0, 0);
1125 		if (ret)
1126 			return ret;
1127 	}
1128 	return ret;
1129 }
1130 
1131 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1132 {
1133 	u64 sqc_vft;
1134 	int ret;
1135 
1136 	ret = qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1137 	if (ret)
1138 		return ret;
1139 
1140 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1141 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1142 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1143 	*number = (QM_SQC_VFT_NUM_MASK_v2 &
1144 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1145 
1146 	return 0;
1147 }
1148 
1149 static int qm_get_vf_qp_num(struct hisi_qm *qm, u32 fun_num)
1150 {
1151 	u32 remain_q_num, vfq_num;
1152 	u32 num_vfs = qm->vfs_num;
1153 
1154 	vfq_num = (qm->ctrl_qp_num - qm->qp_num) / num_vfs;
1155 	if (vfq_num >= qm->max_qp_num)
1156 		return qm->max_qp_num;
1157 
1158 	remain_q_num = (qm->ctrl_qp_num - qm->qp_num) % num_vfs;
1159 	if (vfq_num + remain_q_num <= qm->max_qp_num)
1160 		return fun_num == num_vfs ? vfq_num + remain_q_num : vfq_num;
1161 
1162 	/*
1163 	 * if vfq_num + remain_q_num > max_qp_num, the last VFs,
1164 	 * each with one more queue.
1165 	 */
1166 	return fun_num + remain_q_num > num_vfs ? vfq_num + 1 : vfq_num;
1167 }
1168 
1169 static struct hisi_qm *file_to_qm(struct debugfs_file *file)
1170 {
1171 	struct qm_debug *debug = file->debug;
1172 
1173 	return container_of(debug, struct hisi_qm, debug);
1174 }
1175 
1176 static u32 current_q_read(struct debugfs_file *file)
1177 {
1178 	struct hisi_qm *qm = file_to_qm(file);
1179 
1180 	return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT;
1181 }
1182 
1183 static int current_q_write(struct debugfs_file *file, u32 val)
1184 {
1185 	struct hisi_qm *qm = file_to_qm(file);
1186 	u32 tmp;
1187 
1188 	if (val >= qm->debug.curr_qm_qp_num)
1189 		return -EINVAL;
1190 
1191 	tmp = val << QM_DFX_QN_SHIFT |
1192 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK);
1193 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
1194 
1195 	tmp = val << QM_DFX_QN_SHIFT |
1196 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK);
1197 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
1198 
1199 	return 0;
1200 }
1201 
1202 static u32 clear_enable_read(struct debugfs_file *file)
1203 {
1204 	struct hisi_qm *qm = file_to_qm(file);
1205 
1206 	return readl(qm->io_base + QM_DFX_CNT_CLR_CE);
1207 }
1208 
1209 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */
1210 static int clear_enable_write(struct debugfs_file *file, u32 rd_clr_ctrl)
1211 {
1212 	struct hisi_qm *qm = file_to_qm(file);
1213 
1214 	if (rd_clr_ctrl > 1)
1215 		return -EINVAL;
1216 
1217 	writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE);
1218 
1219 	return 0;
1220 }
1221 
1222 static u32 current_qm_read(struct debugfs_file *file)
1223 {
1224 	struct hisi_qm *qm = file_to_qm(file);
1225 
1226 	return readl(qm->io_base + QM_DFX_MB_CNT_VF);
1227 }
1228 
1229 static int current_qm_write(struct debugfs_file *file, u32 val)
1230 {
1231 	struct hisi_qm *qm = file_to_qm(file);
1232 	u32 tmp;
1233 
1234 	if (val > qm->vfs_num)
1235 		return -EINVAL;
1236 
1237 	/* According PF or VF Dev ID to calculation curr_qm_qp_num and store */
1238 	if (!val)
1239 		qm->debug.curr_qm_qp_num = qm->qp_num;
1240 	else
1241 		qm->debug.curr_qm_qp_num = qm_get_vf_qp_num(qm, val);
1242 
1243 	writel(val, qm->io_base + QM_DFX_MB_CNT_VF);
1244 	writel(val, qm->io_base + QM_DFX_DB_CNT_VF);
1245 
1246 	tmp = val |
1247 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_Q_MASK);
1248 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
1249 
1250 	tmp = val |
1251 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_Q_MASK);
1252 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
1253 
1254 	return 0;
1255 }
1256 
1257 static ssize_t qm_debug_read(struct file *filp, char __user *buf,
1258 			     size_t count, loff_t *pos)
1259 {
1260 	struct debugfs_file *file = filp->private_data;
1261 	enum qm_debug_file index = file->index;
1262 	char tbuf[QM_DBG_TMP_BUF_LEN];
1263 	u32 val;
1264 	int ret;
1265 
1266 	mutex_lock(&file->lock);
1267 	switch (index) {
1268 	case CURRENT_QM:
1269 		val = current_qm_read(file);
1270 		break;
1271 	case CURRENT_Q:
1272 		val = current_q_read(file);
1273 		break;
1274 	case CLEAR_ENABLE:
1275 		val = clear_enable_read(file);
1276 		break;
1277 	default:
1278 		mutex_unlock(&file->lock);
1279 		return -EINVAL;
1280 	}
1281 	mutex_unlock(&file->lock);
1282 
1283 	ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val);
1284 	return simple_read_from_buffer(buf, count, pos, tbuf, ret);
1285 }
1286 
1287 static ssize_t qm_debug_write(struct file *filp, const char __user *buf,
1288 			      size_t count, loff_t *pos)
1289 {
1290 	struct debugfs_file *file = filp->private_data;
1291 	enum qm_debug_file index = file->index;
1292 	unsigned long val;
1293 	char tbuf[QM_DBG_TMP_BUF_LEN];
1294 	int len, ret;
1295 
1296 	if (*pos != 0)
1297 		return 0;
1298 
1299 	if (count >= QM_DBG_TMP_BUF_LEN)
1300 		return -ENOSPC;
1301 
1302 	len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf,
1303 				     count);
1304 	if (len < 0)
1305 		return len;
1306 
1307 	tbuf[len] = '\0';
1308 	if (kstrtoul(tbuf, 0, &val))
1309 		return -EFAULT;
1310 
1311 	mutex_lock(&file->lock);
1312 	switch (index) {
1313 	case CURRENT_QM:
1314 		ret = current_qm_write(file, val);
1315 		break;
1316 	case CURRENT_Q:
1317 		ret = current_q_write(file, val);
1318 		break;
1319 	case CLEAR_ENABLE:
1320 		ret = clear_enable_write(file, val);
1321 		break;
1322 	default:
1323 		ret = -EINVAL;
1324 	}
1325 	mutex_unlock(&file->lock);
1326 
1327 	if (ret)
1328 		return ret;
1329 
1330 	return count;
1331 }
1332 
1333 static const struct file_operations qm_debug_fops = {
1334 	.owner = THIS_MODULE,
1335 	.open = simple_open,
1336 	.read = qm_debug_read,
1337 	.write = qm_debug_write,
1338 };
1339 
1340 struct qm_dfx_registers {
1341 	char  *reg_name;
1342 	u64   reg_offset;
1343 };
1344 
1345 #define CNT_CYC_REGS_NUM		10
1346 static struct qm_dfx_registers qm_dfx_regs[] = {
1347 	/* XXX_CNT are reading clear register */
1348 	{"QM_ECC_1BIT_CNT               ",  0x104000ull},
1349 	{"QM_ECC_MBIT_CNT               ",  0x104008ull},
1350 	{"QM_DFX_MB_CNT                 ",  0x104018ull},
1351 	{"QM_DFX_DB_CNT                 ",  0x104028ull},
1352 	{"QM_DFX_SQE_CNT                ",  0x104038ull},
1353 	{"QM_DFX_CQE_CNT                ",  0x104048ull},
1354 	{"QM_DFX_SEND_SQE_TO_ACC_CNT    ",  0x104050ull},
1355 	{"QM_DFX_WB_SQE_FROM_ACC_CNT    ",  0x104058ull},
1356 	{"QM_DFX_ACC_FINISH_CNT         ",  0x104060ull},
1357 	{"QM_DFX_CQE_ERR_CNT            ",  0x1040b4ull},
1358 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1359 	{"QM_ECC_1BIT_INF               ",  0x104004ull},
1360 	{"QM_ECC_MBIT_INF               ",  0x10400cull},
1361 	{"QM_DFX_ACC_RDY_VLD0           ",  0x1040a0ull},
1362 	{"QM_DFX_ACC_RDY_VLD1           ",  0x1040a4ull},
1363 	{"QM_DFX_AXI_RDY_VLD            ",  0x1040a8ull},
1364 	{"QM_DFX_FF_ST0                 ",  0x1040c8ull},
1365 	{"QM_DFX_FF_ST1                 ",  0x1040ccull},
1366 	{"QM_DFX_FF_ST2                 ",  0x1040d0ull},
1367 	{"QM_DFX_FF_ST3                 ",  0x1040d4ull},
1368 	{"QM_DFX_FF_ST4                 ",  0x1040d8ull},
1369 	{"QM_DFX_FF_ST5                 ",  0x1040dcull},
1370 	{"QM_DFX_FF_ST6                 ",  0x1040e0ull},
1371 	{"QM_IN_IDLE_ST                 ",  0x1040e4ull},
1372 	{ NULL, 0}
1373 };
1374 
1375 static struct qm_dfx_registers qm_vf_dfx_regs[] = {
1376 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1377 	{ NULL, 0}
1378 };
1379 
1380 static int qm_regs_show(struct seq_file *s, void *unused)
1381 {
1382 	struct hisi_qm *qm = s->private;
1383 	struct qm_dfx_registers *regs;
1384 	u32 val;
1385 
1386 	if (qm->fun_type == QM_HW_PF)
1387 		regs = qm_dfx_regs;
1388 	else
1389 		regs = qm_vf_dfx_regs;
1390 
1391 	while (regs->reg_name) {
1392 		val = readl(qm->io_base + regs->reg_offset);
1393 		seq_printf(s, "%s= 0x%08x\n", regs->reg_name, val);
1394 		regs++;
1395 	}
1396 
1397 	return 0;
1398 }
1399 
1400 DEFINE_SHOW_ATTRIBUTE(qm_regs);
1401 
1402 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer,
1403 			   size_t count, loff_t *pos)
1404 {
1405 	char buf[QM_DBG_READ_LEN];
1406 	int len;
1407 
1408 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n",
1409 			"Please echo help to cmd to get help information");
1410 
1411 	return simple_read_from_buffer(buffer, count, pos, buf, len);
1412 }
1413 
1414 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1415 			  dma_addr_t *dma_addr)
1416 {
1417 	struct device *dev = &qm->pdev->dev;
1418 	void *ctx_addr;
1419 
1420 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1421 	if (!ctx_addr)
1422 		return ERR_PTR(-ENOMEM);
1423 
1424 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1425 	if (dma_mapping_error(dev, *dma_addr)) {
1426 		dev_err(dev, "DMA mapping error!\n");
1427 		kfree(ctx_addr);
1428 		return ERR_PTR(-ENOMEM);
1429 	}
1430 
1431 	return ctx_addr;
1432 }
1433 
1434 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1435 			const void *ctx_addr, dma_addr_t *dma_addr)
1436 {
1437 	struct device *dev = &qm->pdev->dev;
1438 
1439 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1440 	kfree(ctx_addr);
1441 }
1442 
1443 static int dump_show(struct hisi_qm *qm, void *info,
1444 		     unsigned int info_size, char *info_name)
1445 {
1446 	struct device *dev = &qm->pdev->dev;
1447 	u8 *info_buf, *info_curr = info;
1448 	u32 i;
1449 #define BYTE_PER_DW	4
1450 
1451 	info_buf = kzalloc(info_size, GFP_KERNEL);
1452 	if (!info_buf)
1453 		return -ENOMEM;
1454 
1455 	for (i = 0; i < info_size; i++, info_curr++) {
1456 		if (i % BYTE_PER_DW == 0)
1457 			info_buf[i + 3UL] = *info_curr;
1458 		else if (i % BYTE_PER_DW == 1)
1459 			info_buf[i + 1UL] = *info_curr;
1460 		else if (i % BYTE_PER_DW == 2)
1461 			info_buf[i - 1] = *info_curr;
1462 		else if (i % BYTE_PER_DW == 3)
1463 			info_buf[i - 3] = *info_curr;
1464 	}
1465 
1466 	dev_info(dev, "%s DUMP\n", info_name);
1467 	for (i = 0; i < info_size; i += BYTE_PER_DW) {
1468 		pr_info("DW%u: %02X%02X %02X%02X\n", i / BYTE_PER_DW,
1469 			info_buf[i], info_buf[i + 1UL],
1470 			info_buf[i + 2UL], info_buf[i + 3UL]);
1471 	}
1472 
1473 	kfree(info_buf);
1474 
1475 	return 0;
1476 }
1477 
1478 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1479 {
1480 	return qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1481 }
1482 
1483 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1484 {
1485 	return qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1486 }
1487 
1488 static int qm_sqc_dump(struct hisi_qm *qm, const char *s)
1489 {
1490 	struct device *dev = &qm->pdev->dev;
1491 	struct qm_sqc *sqc, *sqc_curr;
1492 	dma_addr_t sqc_dma;
1493 	u32 qp_id;
1494 	int ret;
1495 
1496 	if (!s)
1497 		return -EINVAL;
1498 
1499 	ret = kstrtou32(s, 0, &qp_id);
1500 	if (ret || qp_id >= qm->qp_num) {
1501 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1502 		return -EINVAL;
1503 	}
1504 
1505 	sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma);
1506 	if (IS_ERR(sqc))
1507 		return PTR_ERR(sqc);
1508 
1509 	ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id);
1510 	if (ret) {
1511 		down_read(&qm->qps_lock);
1512 		if (qm->sqc) {
1513 			sqc_curr = qm->sqc + qp_id;
1514 
1515 			ret = dump_show(qm, sqc_curr, sizeof(*sqc),
1516 					"SOFT SQC");
1517 			if (ret)
1518 				dev_info(dev, "Show soft sqc failed!\n");
1519 		}
1520 		up_read(&qm->qps_lock);
1521 
1522 		goto err_free_ctx;
1523 	}
1524 
1525 	ret = dump_show(qm, sqc, sizeof(*sqc), "SQC");
1526 	if (ret)
1527 		dev_info(dev, "Show hw sqc failed!\n");
1528 
1529 err_free_ctx:
1530 	qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma);
1531 	return ret;
1532 }
1533 
1534 static int qm_cqc_dump(struct hisi_qm *qm, const char *s)
1535 {
1536 	struct device *dev = &qm->pdev->dev;
1537 	struct qm_cqc *cqc, *cqc_curr;
1538 	dma_addr_t cqc_dma;
1539 	u32 qp_id;
1540 	int ret;
1541 
1542 	if (!s)
1543 		return -EINVAL;
1544 
1545 	ret = kstrtou32(s, 0, &qp_id);
1546 	if (ret || qp_id >= qm->qp_num) {
1547 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1548 		return -EINVAL;
1549 	}
1550 
1551 	cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma);
1552 	if (IS_ERR(cqc))
1553 		return PTR_ERR(cqc);
1554 
1555 	ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id);
1556 	if (ret) {
1557 		down_read(&qm->qps_lock);
1558 		if (qm->cqc) {
1559 			cqc_curr = qm->cqc + qp_id;
1560 
1561 			ret = dump_show(qm, cqc_curr, sizeof(*cqc),
1562 					"SOFT CQC");
1563 			if (ret)
1564 				dev_info(dev, "Show soft cqc failed!\n");
1565 		}
1566 		up_read(&qm->qps_lock);
1567 
1568 		goto err_free_ctx;
1569 	}
1570 
1571 	ret = dump_show(qm, cqc, sizeof(*cqc), "CQC");
1572 	if (ret)
1573 		dev_info(dev, "Show hw cqc failed!\n");
1574 
1575 err_free_ctx:
1576 	qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma);
1577 	return ret;
1578 }
1579 
1580 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size,
1581 			    int cmd, char *name)
1582 {
1583 	struct device *dev = &qm->pdev->dev;
1584 	dma_addr_t xeqc_dma;
1585 	void *xeqc;
1586 	int ret;
1587 
1588 	if (strsep(&s, " ")) {
1589 		dev_err(dev, "Please do not input extra characters!\n");
1590 		return -EINVAL;
1591 	}
1592 
1593 	xeqc = qm_ctx_alloc(qm, size, &xeqc_dma);
1594 	if (IS_ERR(xeqc))
1595 		return PTR_ERR(xeqc);
1596 
1597 	ret = qm_mb(qm, cmd, xeqc_dma, 0, 1);
1598 	if (ret)
1599 		goto err_free_ctx;
1600 
1601 	ret = dump_show(qm, xeqc, size, name);
1602 	if (ret)
1603 		dev_info(dev, "Show hw %s failed!\n", name);
1604 
1605 err_free_ctx:
1606 	qm_ctx_free(qm, size, xeqc, &xeqc_dma);
1607 	return ret;
1608 }
1609 
1610 static int q_dump_param_parse(struct hisi_qm *qm, char *s,
1611 			      u32 *e_id, u32 *q_id)
1612 {
1613 	struct device *dev = &qm->pdev->dev;
1614 	unsigned int qp_num = qm->qp_num;
1615 	char *presult;
1616 	int ret;
1617 
1618 	presult = strsep(&s, " ");
1619 	if (!presult) {
1620 		dev_err(dev, "Please input qp number!\n");
1621 		return -EINVAL;
1622 	}
1623 
1624 	ret = kstrtou32(presult, 0, q_id);
1625 	if (ret || *q_id >= qp_num) {
1626 		dev_err(dev, "Please input qp num (0-%u)", qp_num - 1);
1627 		return -EINVAL;
1628 	}
1629 
1630 	presult = strsep(&s, " ");
1631 	if (!presult) {
1632 		dev_err(dev, "Please input sqe number!\n");
1633 		return -EINVAL;
1634 	}
1635 
1636 	ret = kstrtou32(presult, 0, e_id);
1637 	if (ret || *e_id >= QM_Q_DEPTH) {
1638 		dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1);
1639 		return -EINVAL;
1640 	}
1641 
1642 	if (strsep(&s, " ")) {
1643 		dev_err(dev, "Please do not input extra characters!\n");
1644 		return -EINVAL;
1645 	}
1646 
1647 	return 0;
1648 }
1649 
1650 static int qm_sq_dump(struct hisi_qm *qm, char *s)
1651 {
1652 	struct device *dev = &qm->pdev->dev;
1653 	void *sqe, *sqe_curr;
1654 	struct hisi_qp *qp;
1655 	u32 qp_id, sqe_id;
1656 	int ret;
1657 
1658 	ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id);
1659 	if (ret)
1660 		return ret;
1661 
1662 	sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL);
1663 	if (!sqe)
1664 		return -ENOMEM;
1665 
1666 	qp = &qm->qp_array[qp_id];
1667 	memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH);
1668 	sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size);
1669 	memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK,
1670 	       qm->debug.sqe_mask_len);
1671 
1672 	ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE");
1673 	if (ret)
1674 		dev_info(dev, "Show sqe failed!\n");
1675 
1676 	kfree(sqe);
1677 
1678 	return ret;
1679 }
1680 
1681 static int qm_cq_dump(struct hisi_qm *qm, char *s)
1682 {
1683 	struct device *dev = &qm->pdev->dev;
1684 	struct qm_cqe *cqe_curr;
1685 	struct hisi_qp *qp;
1686 	u32 qp_id, cqe_id;
1687 	int ret;
1688 
1689 	ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id);
1690 	if (ret)
1691 		return ret;
1692 
1693 	qp = &qm->qp_array[qp_id];
1694 	cqe_curr = qp->cqe + cqe_id;
1695 	ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE");
1696 	if (ret)
1697 		dev_info(dev, "Show cqe failed!\n");
1698 
1699 	return ret;
1700 }
1701 
1702 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s,
1703 			  size_t size, char *name)
1704 {
1705 	struct device *dev = &qm->pdev->dev;
1706 	void *xeqe;
1707 	u32 xeqe_id;
1708 	int ret;
1709 
1710 	if (!s)
1711 		return -EINVAL;
1712 
1713 	ret = kstrtou32(s, 0, &xeqe_id);
1714 	if (ret)
1715 		return -EINVAL;
1716 
1717 	if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) {
1718 		dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1);
1719 		return -EINVAL;
1720 	} else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) {
1721 		dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1);
1722 		return -EINVAL;
1723 	}
1724 
1725 	down_read(&qm->qps_lock);
1726 
1727 	if (qm->eqe && !strcmp(name, "EQE")) {
1728 		xeqe = qm->eqe + xeqe_id;
1729 	} else if (qm->aeqe && !strcmp(name, "AEQE")) {
1730 		xeqe = qm->aeqe + xeqe_id;
1731 	} else {
1732 		ret = -EINVAL;
1733 		goto err_unlock;
1734 	}
1735 
1736 	ret = dump_show(qm, xeqe, size, name);
1737 	if (ret)
1738 		dev_info(dev, "Show %s failed!\n", name);
1739 
1740 err_unlock:
1741 	up_read(&qm->qps_lock);
1742 	return ret;
1743 }
1744 
1745 static int qm_dbg_help(struct hisi_qm *qm, char *s)
1746 {
1747 	struct device *dev = &qm->pdev->dev;
1748 
1749 	if (strsep(&s, " ")) {
1750 		dev_err(dev, "Please do not input extra characters!\n");
1751 		return -EINVAL;
1752 	}
1753 
1754 	dev_info(dev, "available commands:\n");
1755 	dev_info(dev, "sqc <num>\n");
1756 	dev_info(dev, "cqc <num>\n");
1757 	dev_info(dev, "eqc\n");
1758 	dev_info(dev, "aeqc\n");
1759 	dev_info(dev, "sq <num> <e>\n");
1760 	dev_info(dev, "cq <num> <e>\n");
1761 	dev_info(dev, "eq <e>\n");
1762 	dev_info(dev, "aeq <e>\n");
1763 
1764 	return 0;
1765 }
1766 
1767 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf)
1768 {
1769 	struct device *dev = &qm->pdev->dev;
1770 	char *presult, *s, *s_tmp;
1771 	int ret;
1772 
1773 	s = kstrdup(cmd_buf, GFP_KERNEL);
1774 	if (!s)
1775 		return -ENOMEM;
1776 
1777 	s_tmp = s;
1778 	presult = strsep(&s, " ");
1779 	if (!presult) {
1780 		ret = -EINVAL;
1781 		goto err_buffer_free;
1782 	}
1783 
1784 	if (!strcmp(presult, "sqc"))
1785 		ret = qm_sqc_dump(qm, s);
1786 	else if (!strcmp(presult, "cqc"))
1787 		ret = qm_cqc_dump(qm, s);
1788 	else if (!strcmp(presult, "eqc"))
1789 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc),
1790 				       QM_MB_CMD_EQC, "EQC");
1791 	else if (!strcmp(presult, "aeqc"))
1792 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc),
1793 				       QM_MB_CMD_AEQC, "AEQC");
1794 	else if (!strcmp(presult, "sq"))
1795 		ret = qm_sq_dump(qm, s);
1796 	else if (!strcmp(presult, "cq"))
1797 		ret = qm_cq_dump(qm, s);
1798 	else if (!strcmp(presult, "eq"))
1799 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE");
1800 	else if (!strcmp(presult, "aeq"))
1801 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE");
1802 	else if (!strcmp(presult, "help"))
1803 		ret = qm_dbg_help(qm, s);
1804 	else
1805 		ret = -EINVAL;
1806 
1807 	if (ret)
1808 		dev_info(dev, "Please echo help\n");
1809 
1810 err_buffer_free:
1811 	kfree(s_tmp);
1812 
1813 	return ret;
1814 }
1815 
1816 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer,
1817 			    size_t count, loff_t *pos)
1818 {
1819 	struct hisi_qm *qm = filp->private_data;
1820 	char *cmd_buf, *cmd_buf_tmp;
1821 	int ret;
1822 
1823 	if (*pos)
1824 		return 0;
1825 
1826 	/* Judge if the instance is being reset. */
1827 	if (unlikely(atomic_read(&qm->status.flags) == QM_STOP))
1828 		return 0;
1829 
1830 	if (count > QM_DBG_WRITE_LEN)
1831 		return -ENOSPC;
1832 
1833 	cmd_buf = memdup_user_nul(buffer, count);
1834 	if (IS_ERR(cmd_buf))
1835 		return PTR_ERR(cmd_buf);
1836 
1837 	cmd_buf_tmp = strchr(cmd_buf, '\n');
1838 	if (cmd_buf_tmp) {
1839 		*cmd_buf_tmp = '\0';
1840 		count = cmd_buf_tmp - cmd_buf + 1;
1841 	}
1842 
1843 	ret = qm_cmd_write_dump(qm, cmd_buf);
1844 	if (ret) {
1845 		kfree(cmd_buf);
1846 		return ret;
1847 	}
1848 
1849 	kfree(cmd_buf);
1850 
1851 	return count;
1852 }
1853 
1854 static const struct file_operations qm_cmd_fops = {
1855 	.owner = THIS_MODULE,
1856 	.open = simple_open,
1857 	.read = qm_cmd_read,
1858 	.write = qm_cmd_write,
1859 };
1860 
1861 static void qm_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir,
1862 				   enum qm_debug_file index)
1863 {
1864 	struct debugfs_file *file = qm->debug.files + index;
1865 
1866 	debugfs_create_file(qm_debug_file_name[index], 0600, dir, file,
1867 			    &qm_debug_fops);
1868 
1869 	file->index = index;
1870 	mutex_init(&file->lock);
1871 	file->debug = &qm->debug;
1872 }
1873 
1874 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1875 {
1876 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1877 }
1878 
1879 static void qm_hw_error_cfg(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1880 {
1881 	qm->error_mask = ce | nfe | fe;
1882 	/* clear QM hw residual error source */
1883 	writel(QM_ABNORMAL_INT_SOURCE_CLR,
1884 	       qm->io_base + QM_ABNORMAL_INT_SOURCE);
1885 
1886 	/* configure error type */
1887 	writel(ce, qm->io_base + QM_RAS_CE_ENABLE);
1888 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1889 	writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1890 	writel(fe, qm->io_base + QM_RAS_FE_ENABLE);
1891 }
1892 
1893 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1894 {
1895 	u32 irq_enable = ce | nfe | fe;
1896 	u32 irq_unmask = ~irq_enable;
1897 
1898 	qm_hw_error_cfg(qm, ce, nfe, fe);
1899 
1900 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1901 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1902 }
1903 
1904 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1905 {
1906 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1907 }
1908 
1909 static void qm_hw_error_init_v3(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1910 {
1911 	u32 irq_enable = ce | nfe | fe;
1912 	u32 irq_unmask = ~irq_enable;
1913 
1914 	qm_hw_error_cfg(qm, ce, nfe, fe);
1915 
1916 	/* enable close master ooo when hardware error happened */
1917 	writel(nfe & (~QM_DB_RANDOM_INVALID), qm->io_base + QM_OOO_SHUTDOWN_SEL);
1918 
1919 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1920 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1921 }
1922 
1923 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1924 {
1925 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1926 
1927 	/* disable close master ooo when hardware error happened */
1928 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1929 }
1930 
1931 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1932 {
1933 	const struct hisi_qm_hw_error *err;
1934 	struct device *dev = &qm->pdev->dev;
1935 	u32 reg_val, type, vf_num;
1936 	int i;
1937 
1938 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1939 		err = &qm_hw_error[i];
1940 		if (!(err->int_msk & error_status))
1941 			continue;
1942 
1943 		dev_err(dev, "%s [error status=0x%x] found\n",
1944 			err->msg, err->int_msk);
1945 
1946 		if (err->int_msk & QM_DB_TIMEOUT) {
1947 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1948 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1949 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1950 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1951 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
1952 				qm_db_timeout[type], vf_num);
1953 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1954 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1955 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1956 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1957 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1958 
1959 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1960 				dev_err(dev, "qm %s fifo overflow in function %u\n",
1961 					qm_fifo_overflow[type], vf_num);
1962 			else
1963 				dev_err(dev, "unknown error type\n");
1964 		}
1965 	}
1966 }
1967 
1968 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1969 {
1970 	u32 error_status, tmp, val;
1971 
1972 	/* read err sts */
1973 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1974 	error_status = qm->error_mask & tmp;
1975 
1976 	if (error_status) {
1977 		if (error_status & QM_ECC_MBIT)
1978 			qm->err_status.is_qm_ecc_mbit = true;
1979 
1980 		qm_log_hw_error(qm, error_status);
1981 		val = error_status | QM_DB_RANDOM_INVALID | QM_BASE_CE;
1982 		/* ce error does not need to be reset */
1983 		if (val == (QM_DB_RANDOM_INVALID | QM_BASE_CE)) {
1984 			writel(error_status, qm->io_base +
1985 			       QM_ABNORMAL_INT_SOURCE);
1986 			writel(qm->err_info.nfe,
1987 			       qm->io_base + QM_RAS_NFE_ENABLE);
1988 			return ACC_ERR_RECOVERED;
1989 		}
1990 
1991 		return ACC_ERR_NEED_RESET;
1992 	}
1993 
1994 	return ACC_ERR_RECOVERED;
1995 }
1996 
1997 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
1998 {
1999 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
2000 }
2001 
2002 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
2003 {
2004 	return qm->err_ini->get_dev_hw_err_status(qm);
2005 }
2006 
2007 /* Check if the error causes the master ooo block */
2008 static int qm_check_dev_error(struct hisi_qm *qm)
2009 {
2010 	u32 val, dev_val;
2011 
2012 	if (qm->fun_type == QM_HW_VF)
2013 		return 0;
2014 
2015 	val = qm_get_hw_error_status(qm);
2016 	dev_val = qm_get_dev_err_status(qm);
2017 
2018 	if (qm->ver < QM_HW_V3)
2019 		return (val & QM_ECC_MBIT) ||
2020 		       (dev_val & qm->err_info.ecc_2bits_mask);
2021 
2022 	return (val & readl(qm->io_base + QM_OOO_SHUTDOWN_SEL)) ||
2023 	       (dev_val & (~qm->err_info.dev_ce_mask));
2024 }
2025 
2026 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
2027 {
2028 	struct qm_mailbox mailbox;
2029 	int ret;
2030 
2031 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
2032 	mutex_lock(&qm->mailbox_lock);
2033 	ret = qm_mb_nolock(qm, &mailbox);
2034 	if (ret)
2035 		goto err_unlock;
2036 
2037 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
2038 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
2039 
2040 err_unlock:
2041 	mutex_unlock(&qm->mailbox_lock);
2042 	return ret;
2043 }
2044 
2045 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
2046 {
2047 	u32 val;
2048 
2049 	if (qm->fun_type == QM_HW_PF)
2050 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
2051 
2052 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
2053 	val |= QM_IFC_INT_SOURCE_MASK;
2054 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
2055 }
2056 
2057 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
2058 {
2059 	struct device *dev = &qm->pdev->dev;
2060 	u32 cmd;
2061 	u64 msg;
2062 	int ret;
2063 
2064 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
2065 	if (ret) {
2066 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
2067 		return;
2068 	}
2069 
2070 	cmd = msg & QM_MB_CMD_DATA_MASK;
2071 	switch (cmd) {
2072 	case QM_VF_PREPARE_FAIL:
2073 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
2074 		break;
2075 	case QM_VF_START_FAIL:
2076 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
2077 		break;
2078 	case QM_VF_PREPARE_DONE:
2079 	case QM_VF_START_DONE:
2080 		break;
2081 	default:
2082 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
2083 		break;
2084 	}
2085 }
2086 
2087 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
2088 {
2089 	struct device *dev = &qm->pdev->dev;
2090 	u32 vfs_num = qm->vfs_num;
2091 	int cnt = 0;
2092 	int ret = 0;
2093 	u64 val;
2094 	u32 i;
2095 
2096 	if (!qm->vfs_num || qm->ver < QM_HW_V3)
2097 		return 0;
2098 
2099 	while (true) {
2100 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
2101 		/* All VFs send command to PF, break */
2102 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
2103 			break;
2104 
2105 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
2106 			ret = -EBUSY;
2107 			break;
2108 		}
2109 
2110 		msleep(QM_WAIT_DST_ACK);
2111 	}
2112 
2113 	/* PF check VFs msg */
2114 	for (i = 1; i <= vfs_num; i++) {
2115 		if (val & BIT(i))
2116 			qm_handle_vf_msg(qm, i);
2117 		else
2118 			dev_err(dev, "VF(%u) not ping PF!\n", i);
2119 	}
2120 
2121 	/* PF clear interrupt to ack VFs */
2122 	qm_clear_cmd_interrupt(qm, val);
2123 
2124 	return ret;
2125 }
2126 
2127 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
2128 {
2129 	u32 val;
2130 
2131 	val = readl(qm->io_base + QM_IFC_INT_CFG);
2132 	val &= ~QM_IFC_SEND_ALL_VFS;
2133 	val |= fun_num;
2134 	writel(val, qm->io_base + QM_IFC_INT_CFG);
2135 
2136 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
2137 	val |= QM_IFC_INT_SET_MASK;
2138 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
2139 }
2140 
2141 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
2142 {
2143 	u32 val;
2144 
2145 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
2146 	val |= QM_IFC_INT_SET_MASK;
2147 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
2148 }
2149 
2150 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
2151 {
2152 	struct device *dev = &qm->pdev->dev;
2153 	struct qm_mailbox mailbox;
2154 	int cnt = 0;
2155 	u64 val;
2156 	int ret;
2157 
2158 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
2159 	mutex_lock(&qm->mailbox_lock);
2160 	ret = qm_mb_nolock(qm, &mailbox);
2161 	if (ret) {
2162 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
2163 		goto err_unlock;
2164 	}
2165 
2166 	qm_trigger_vf_interrupt(qm, fun_num);
2167 	while (true) {
2168 		msleep(QM_WAIT_DST_ACK);
2169 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
2170 		/* if VF respond, PF notifies VF successfully. */
2171 		if (!(val & BIT(fun_num)))
2172 			goto err_unlock;
2173 
2174 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
2175 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
2176 			ret = -ETIMEDOUT;
2177 			break;
2178 		}
2179 	}
2180 
2181 err_unlock:
2182 	mutex_unlock(&qm->mailbox_lock);
2183 	return ret;
2184 }
2185 
2186 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
2187 {
2188 	struct device *dev = &qm->pdev->dev;
2189 	u32 vfs_num = qm->vfs_num;
2190 	struct qm_mailbox mailbox;
2191 	u64 val = 0;
2192 	int cnt = 0;
2193 	int ret;
2194 	u32 i;
2195 
2196 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
2197 	mutex_lock(&qm->mailbox_lock);
2198 	/* PF sends command to all VFs by mailbox */
2199 	ret = qm_mb_nolock(qm, &mailbox);
2200 	if (ret) {
2201 		dev_err(dev, "failed to send command to VFs!\n");
2202 		mutex_unlock(&qm->mailbox_lock);
2203 		return ret;
2204 	}
2205 
2206 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
2207 	while (true) {
2208 		msleep(QM_WAIT_DST_ACK);
2209 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
2210 		/* If all VFs acked, PF notifies VFs successfully. */
2211 		if (!(val & GENMASK(vfs_num, 1))) {
2212 			mutex_unlock(&qm->mailbox_lock);
2213 			return 0;
2214 		}
2215 
2216 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
2217 			break;
2218 	}
2219 
2220 	mutex_unlock(&qm->mailbox_lock);
2221 
2222 	/* Check which vf respond timeout. */
2223 	for (i = 1; i <= vfs_num; i++) {
2224 		if (val & BIT(i))
2225 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
2226 	}
2227 
2228 	return -ETIMEDOUT;
2229 }
2230 
2231 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
2232 {
2233 	struct qm_mailbox mailbox;
2234 	int cnt = 0;
2235 	u32 val;
2236 	int ret;
2237 
2238 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
2239 	mutex_lock(&qm->mailbox_lock);
2240 	ret = qm_mb_nolock(qm, &mailbox);
2241 	if (ret) {
2242 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
2243 		goto unlock;
2244 	}
2245 
2246 	qm_trigger_pf_interrupt(qm);
2247 	/* Waiting for PF response */
2248 	while (true) {
2249 		msleep(QM_WAIT_DST_ACK);
2250 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
2251 		if (!(val & QM_IFC_INT_STATUS_MASK))
2252 			break;
2253 
2254 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
2255 			ret = -ETIMEDOUT;
2256 			break;
2257 		}
2258 	}
2259 
2260 unlock:
2261 	mutex_unlock(&qm->mailbox_lock);
2262 	return ret;
2263 }
2264 
2265 static int qm_stop_qp(struct hisi_qp *qp)
2266 {
2267 	return qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
2268 }
2269 
2270 static int qm_set_msi(struct hisi_qm *qm, bool set)
2271 {
2272 	struct pci_dev *pdev = qm->pdev;
2273 
2274 	if (set) {
2275 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
2276 				       0);
2277 	} else {
2278 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
2279 				       ACC_PEH_MSI_DISABLE);
2280 		if (qm->err_status.is_qm_ecc_mbit ||
2281 		    qm->err_status.is_dev_ecc_mbit)
2282 			return 0;
2283 
2284 		mdelay(1);
2285 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
2286 			return -EFAULT;
2287 	}
2288 
2289 	return 0;
2290 }
2291 
2292 static void qm_wait_msi_finish(struct hisi_qm *qm)
2293 {
2294 	struct pci_dev *pdev = qm->pdev;
2295 	u32 cmd = ~0;
2296 	int cnt = 0;
2297 	u32 val;
2298 	int ret;
2299 
2300 	while (true) {
2301 		pci_read_config_dword(pdev, pdev->msi_cap +
2302 				      PCI_MSI_PENDING_64, &cmd);
2303 		if (!cmd)
2304 			break;
2305 
2306 		if (++cnt > MAX_WAIT_COUNTS) {
2307 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
2308 			break;
2309 		}
2310 
2311 		udelay(1);
2312 	}
2313 
2314 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
2315 					 val, !(val & QM_PEH_DFX_MASK),
2316 					 POLL_PERIOD, POLL_TIMEOUT);
2317 	if (ret)
2318 		pci_warn(pdev, "failed to empty PEH MSI!\n");
2319 
2320 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
2321 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
2322 					 POLL_PERIOD, POLL_TIMEOUT);
2323 	if (ret)
2324 		pci_warn(pdev, "failed to finish MSI operation!\n");
2325 }
2326 
2327 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
2328 {
2329 	struct pci_dev *pdev = qm->pdev;
2330 	int ret = -ETIMEDOUT;
2331 	u32 cmd, i;
2332 
2333 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
2334 	if (set)
2335 		cmd |= QM_MSI_CAP_ENABLE;
2336 	else
2337 		cmd &= ~QM_MSI_CAP_ENABLE;
2338 
2339 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
2340 	if (set) {
2341 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
2342 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
2343 			if (cmd & QM_MSI_CAP_ENABLE)
2344 				return 0;
2345 
2346 			udelay(1);
2347 		}
2348 	} else {
2349 		udelay(WAIT_PERIOD_US_MIN);
2350 		qm_wait_msi_finish(qm);
2351 		ret = 0;
2352 	}
2353 
2354 	return ret;
2355 }
2356 
2357 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
2358 	.qm_db = qm_db_v1,
2359 	.get_irq_num = qm_get_irq_num_v1,
2360 	.hw_error_init = qm_hw_error_init_v1,
2361 	.set_msi = qm_set_msi,
2362 };
2363 
2364 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
2365 	.get_vft = qm_get_vft_v2,
2366 	.qm_db = qm_db_v2,
2367 	.get_irq_num = qm_get_irq_num_v2,
2368 	.hw_error_init = qm_hw_error_init_v2,
2369 	.hw_error_uninit = qm_hw_error_uninit_v2,
2370 	.hw_error_handle = qm_hw_error_handle_v2,
2371 	.set_msi = qm_set_msi,
2372 };
2373 
2374 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
2375 	.get_vft = qm_get_vft_v2,
2376 	.qm_db = qm_db_v2,
2377 	.get_irq_num = qm_get_irq_num_v3,
2378 	.hw_error_init = qm_hw_error_init_v3,
2379 	.hw_error_uninit = qm_hw_error_uninit_v3,
2380 	.hw_error_handle = qm_hw_error_handle_v2,
2381 	.stop_qp = qm_stop_qp,
2382 	.set_msi = qm_set_msi_v3,
2383 	.ping_all_vfs = qm_ping_all_vfs,
2384 	.ping_pf = qm_ping_pf,
2385 };
2386 
2387 static void *qm_get_avail_sqe(struct hisi_qp *qp)
2388 {
2389 	struct hisi_qp_status *qp_status = &qp->qp_status;
2390 	u16 sq_tail = qp_status->sq_tail;
2391 
2392 	if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1))
2393 		return NULL;
2394 
2395 	return qp->sqe + sq_tail * qp->qm->sqe_size;
2396 }
2397 
2398 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
2399 {
2400 	struct device *dev = &qm->pdev->dev;
2401 	struct hisi_qp *qp;
2402 	int qp_id;
2403 
2404 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
2405 		return ERR_PTR(-EPERM);
2406 
2407 	if (qm->qp_in_used == qm->qp_num) {
2408 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2409 				     qm->qp_num);
2410 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2411 		return ERR_PTR(-EBUSY);
2412 	}
2413 
2414 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
2415 	if (qp_id < 0) {
2416 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2417 				    qm->qp_num);
2418 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2419 		return ERR_PTR(-EBUSY);
2420 	}
2421 
2422 	qp = &qm->qp_array[qp_id];
2423 
2424 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH);
2425 
2426 	qp->event_cb = NULL;
2427 	qp->req_cb = NULL;
2428 	qp->qp_id = qp_id;
2429 	qp->alg_type = alg_type;
2430 	qp->is_in_kernel = true;
2431 	qm->qp_in_used++;
2432 	atomic_set(&qp->qp_status.flags, QP_INIT);
2433 
2434 	return qp;
2435 }
2436 
2437 /**
2438  * hisi_qm_create_qp() - Create a queue pair from qm.
2439  * @qm: The qm we create a qp from.
2440  * @alg_type: Accelerator specific algorithm type in sqc.
2441  *
2442  * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating
2443  * qp memory fails.
2444  */
2445 struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
2446 {
2447 	struct hisi_qp *qp;
2448 
2449 	down_write(&qm->qps_lock);
2450 	qp = qm_create_qp_nolock(qm, alg_type);
2451 	up_write(&qm->qps_lock);
2452 
2453 	return qp;
2454 }
2455 EXPORT_SYMBOL_GPL(hisi_qm_create_qp);
2456 
2457 /**
2458  * hisi_qm_release_qp() - Release a qp back to its qm.
2459  * @qp: The qp we want to release.
2460  *
2461  * This function releases the resource of a qp.
2462  */
2463 void hisi_qm_release_qp(struct hisi_qp *qp)
2464 {
2465 	struct hisi_qm *qm = qp->qm;
2466 
2467 	down_write(&qm->qps_lock);
2468 
2469 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
2470 		up_write(&qm->qps_lock);
2471 		return;
2472 	}
2473 
2474 	qm->qp_in_used--;
2475 	idr_remove(&qm->qp_idr, qp->qp_id);
2476 
2477 	up_write(&qm->qps_lock);
2478 }
2479 EXPORT_SYMBOL_GPL(hisi_qm_release_qp);
2480 
2481 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2482 {
2483 	struct hisi_qm *qm = qp->qm;
2484 	struct device *dev = &qm->pdev->dev;
2485 	enum qm_hw_ver ver = qm->ver;
2486 	struct qm_sqc *sqc;
2487 	dma_addr_t sqc_dma;
2488 	int ret;
2489 
2490 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
2491 	if (!sqc)
2492 		return -ENOMEM;
2493 
2494 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
2495 	if (ver == QM_HW_V1) {
2496 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
2497 		sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
2498 	} else {
2499 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size));
2500 		sqc->w8 = 0; /* rand_qc */
2501 	}
2502 	sqc->cq_num = cpu_to_le16(qp_id);
2503 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
2504 
2505 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2506 		sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
2507 				       QM_QC_PASID_ENABLE_SHIFT);
2508 
2509 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
2510 				 DMA_TO_DEVICE);
2511 	if (dma_mapping_error(dev, sqc_dma)) {
2512 		kfree(sqc);
2513 		return -ENOMEM;
2514 	}
2515 
2516 	ret = qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
2517 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
2518 	kfree(sqc);
2519 
2520 	return ret;
2521 }
2522 
2523 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2524 {
2525 	struct hisi_qm *qm = qp->qm;
2526 	struct device *dev = &qm->pdev->dev;
2527 	enum qm_hw_ver ver = qm->ver;
2528 	struct qm_cqc *cqc;
2529 	dma_addr_t cqc_dma;
2530 	int ret;
2531 
2532 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
2533 	if (!cqc)
2534 		return -ENOMEM;
2535 
2536 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
2537 	if (ver == QM_HW_V1) {
2538 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
2539 							QM_QC_CQE_SIZE));
2540 		cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
2541 	} else {
2542 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE));
2543 		cqc->w8 = 0; /* rand_qc */
2544 	}
2545 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2546 
2547 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2548 		cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2549 
2550 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
2551 				 DMA_TO_DEVICE);
2552 	if (dma_mapping_error(dev, cqc_dma)) {
2553 		kfree(cqc);
2554 		return -ENOMEM;
2555 	}
2556 
2557 	ret = qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
2558 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
2559 	kfree(cqc);
2560 
2561 	return ret;
2562 }
2563 
2564 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2565 {
2566 	int ret;
2567 
2568 	qm_init_qp_status(qp);
2569 
2570 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2571 	if (ret)
2572 		return ret;
2573 
2574 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
2575 }
2576 
2577 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2578 {
2579 	struct hisi_qm *qm = qp->qm;
2580 	struct device *dev = &qm->pdev->dev;
2581 	int qp_id = qp->qp_id;
2582 	u32 pasid = arg;
2583 	int ret;
2584 
2585 	if (!qm_qp_avail_state(qm, qp, QP_START))
2586 		return -EPERM;
2587 
2588 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2589 	if (ret)
2590 		return ret;
2591 
2592 	atomic_set(&qp->qp_status.flags, QP_START);
2593 	dev_dbg(dev, "queue %d started\n", qp_id);
2594 
2595 	return 0;
2596 }
2597 
2598 /**
2599  * hisi_qm_start_qp() - Start a qp into running.
2600  * @qp: The qp we want to start to run.
2601  * @arg: Accelerator specific argument.
2602  *
2603  * After this function, qp can receive request from user. Return 0 if
2604  * successful, Return -EBUSY if failed.
2605  */
2606 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2607 {
2608 	struct hisi_qm *qm = qp->qm;
2609 	int ret;
2610 
2611 	down_write(&qm->qps_lock);
2612 	ret = qm_start_qp_nolock(qp, arg);
2613 	up_write(&qm->qps_lock);
2614 
2615 	return ret;
2616 }
2617 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2618 
2619 /**
2620  * qp_stop_fail_cb() - call request cb.
2621  * @qp: stopped failed qp.
2622  *
2623  * Callback function should be called whether task completed or not.
2624  */
2625 static void qp_stop_fail_cb(struct hisi_qp *qp)
2626 {
2627 	int qp_used = atomic_read(&qp->qp_status.used);
2628 	u16 cur_tail = qp->qp_status.sq_tail;
2629 	u16 cur_head = (cur_tail + QM_Q_DEPTH - qp_used) % QM_Q_DEPTH;
2630 	struct hisi_qm *qm = qp->qm;
2631 	u16 pos;
2632 	int i;
2633 
2634 	for (i = 0; i < qp_used; i++) {
2635 		pos = (i + cur_head) % QM_Q_DEPTH;
2636 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2637 		atomic_dec(&qp->qp_status.used);
2638 	}
2639 }
2640 
2641 /**
2642  * qm_drain_qp() - Drain a qp.
2643  * @qp: The qp we want to drain.
2644  *
2645  * Determine whether the queue is cleared by judging the tail pointers of
2646  * sq and cq.
2647  */
2648 static int qm_drain_qp(struct hisi_qp *qp)
2649 {
2650 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
2651 	struct hisi_qm *qm = qp->qm;
2652 	struct device *dev = &qm->pdev->dev;
2653 	struct qm_sqc *sqc;
2654 	struct qm_cqc *cqc;
2655 	dma_addr_t dma_addr;
2656 	int ret = 0, i = 0;
2657 	void *addr;
2658 
2659 	/* No need to judge if master OOO is blocked. */
2660 	if (qm_check_dev_error(qm))
2661 		return 0;
2662 
2663 	/* Kunpeng930 supports drain qp by device */
2664 	if (qm->ops->stop_qp) {
2665 		ret = qm->ops->stop_qp(qp);
2666 		if (ret)
2667 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
2668 		return ret;
2669 	}
2670 
2671 	addr = qm_ctx_alloc(qm, size, &dma_addr);
2672 	if (IS_ERR(addr)) {
2673 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
2674 		return -ENOMEM;
2675 	}
2676 
2677 	while (++i) {
2678 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
2679 		if (ret) {
2680 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2681 			break;
2682 		}
2683 		sqc = addr;
2684 
2685 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
2686 				      qp->qp_id);
2687 		if (ret) {
2688 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2689 			break;
2690 		}
2691 		cqc = addr + sizeof(struct qm_sqc);
2692 
2693 		if ((sqc->tail == cqc->tail) &&
2694 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2695 			break;
2696 
2697 		if (i == MAX_WAIT_COUNTS) {
2698 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
2699 			ret = -EBUSY;
2700 			break;
2701 		}
2702 
2703 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2704 	}
2705 
2706 	qm_ctx_free(qm, size, addr, &dma_addr);
2707 
2708 	return ret;
2709 }
2710 
2711 static int qm_stop_qp_nolock(struct hisi_qp *qp)
2712 {
2713 	struct device *dev = &qp->qm->pdev->dev;
2714 	int ret;
2715 
2716 	/*
2717 	 * It is allowed to stop and release qp when reset, If the qp is
2718 	 * stopped when reset but still want to be released then, the
2719 	 * is_resetting flag should be set negative so that this qp will not
2720 	 * be restarted after reset.
2721 	 */
2722 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
2723 		qp->is_resetting = false;
2724 		return 0;
2725 	}
2726 
2727 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
2728 		return -EPERM;
2729 
2730 	atomic_set(&qp->qp_status.flags, QP_STOP);
2731 
2732 	ret = qm_drain_qp(qp);
2733 	if (ret)
2734 		dev_err(dev, "Failed to drain out data for stopping!\n");
2735 
2736 	if (qp->qm->wq)
2737 		flush_workqueue(qp->qm->wq);
2738 	else
2739 		flush_work(&qp->qm->work);
2740 
2741 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2742 		qp_stop_fail_cb(qp);
2743 
2744 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2745 
2746 	return 0;
2747 }
2748 
2749 /**
2750  * hisi_qm_stop_qp() - Stop a qp in qm.
2751  * @qp: The qp we want to stop.
2752  *
2753  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
2754  */
2755 int hisi_qm_stop_qp(struct hisi_qp *qp)
2756 {
2757 	int ret;
2758 
2759 	down_write(&qp->qm->qps_lock);
2760 	ret = qm_stop_qp_nolock(qp);
2761 	up_write(&qp->qm->qps_lock);
2762 
2763 	return ret;
2764 }
2765 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2766 
2767 /**
2768  * hisi_qp_send() - Queue up a task in the hardware queue.
2769  * @qp: The qp in which to put the message.
2770  * @msg: The message.
2771  *
2772  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2773  * if qp related qm is resetting.
2774  *
2775  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2776  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2777  *       reset may happen, we have no lock here considering performance. This
2778  *       causes current qm_db sending fail or can not receive sended sqe. QM
2779  *       sync/async receive function should handle the error sqe. ACC reset
2780  *       done function should clear used sqe to 0.
2781  */
2782 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2783 {
2784 	struct hisi_qp_status *qp_status = &qp->qp_status;
2785 	u16 sq_tail = qp_status->sq_tail;
2786 	u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH;
2787 	void *sqe = qm_get_avail_sqe(qp);
2788 
2789 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2790 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2791 		     qp->is_resetting)) {
2792 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2793 		return -EAGAIN;
2794 	}
2795 
2796 	if (!sqe)
2797 		return -EBUSY;
2798 
2799 	memcpy(sqe, msg, qp->qm->sqe_size);
2800 
2801 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2802 	atomic_inc(&qp->qp_status.used);
2803 	qp_status->sq_tail = sq_tail_next;
2804 
2805 	return 0;
2806 }
2807 EXPORT_SYMBOL_GPL(hisi_qp_send);
2808 
2809 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2810 {
2811 	unsigned int val;
2812 
2813 	if (qm->ver == QM_HW_V1)
2814 		return;
2815 
2816 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2817 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2818 				       val, val & BIT(0), POLL_PERIOD,
2819 				       POLL_TIMEOUT))
2820 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2821 }
2822 
2823 static void qm_qp_event_notifier(struct hisi_qp *qp)
2824 {
2825 	wake_up_interruptible(&qp->uacce_q->wait);
2826 }
2827 
2828 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2829 {
2830 	return hisi_qm_get_free_qp_num(uacce->priv);
2831 }
2832 
2833 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2834 				   unsigned long arg,
2835 				   struct uacce_queue *q)
2836 {
2837 	struct hisi_qm *qm = uacce->priv;
2838 	struct hisi_qp *qp;
2839 	u8 alg_type = 0;
2840 
2841 	qp = hisi_qm_create_qp(qm, alg_type);
2842 	if (IS_ERR(qp))
2843 		return PTR_ERR(qp);
2844 
2845 	q->priv = qp;
2846 	q->uacce = uacce;
2847 	qp->uacce_q = q;
2848 	qp->event_cb = qm_qp_event_notifier;
2849 	qp->pasid = arg;
2850 	qp->is_in_kernel = false;
2851 
2852 	return 0;
2853 }
2854 
2855 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2856 {
2857 	struct hisi_qp *qp = q->priv;
2858 
2859 	hisi_qm_cache_wb(qp->qm);
2860 	hisi_qm_release_qp(qp);
2861 }
2862 
2863 /* map sq/cq/doorbell to user space */
2864 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2865 			      struct vm_area_struct *vma,
2866 			      struct uacce_qfile_region *qfr)
2867 {
2868 	struct hisi_qp *qp = q->priv;
2869 	struct hisi_qm *qm = qp->qm;
2870 	resource_size_t phys_base = qm->db_phys_base +
2871 				    qp->qp_id * qm->db_interval;
2872 	size_t sz = vma->vm_end - vma->vm_start;
2873 	struct pci_dev *pdev = qm->pdev;
2874 	struct device *dev = &pdev->dev;
2875 	unsigned long vm_pgoff;
2876 	int ret;
2877 
2878 	switch (qfr->type) {
2879 	case UACCE_QFRT_MMIO:
2880 		if (qm->ver == QM_HW_V1) {
2881 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2882 				return -EINVAL;
2883 		} else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) {
2884 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2885 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2886 				return -EINVAL;
2887 		} else {
2888 			if (sz > qm->db_interval)
2889 				return -EINVAL;
2890 		}
2891 
2892 		vma->vm_flags |= VM_IO;
2893 
2894 		return remap_pfn_range(vma, vma->vm_start,
2895 				       phys_base >> PAGE_SHIFT,
2896 				       sz, pgprot_noncached(vma->vm_page_prot));
2897 	case UACCE_QFRT_DUS:
2898 		if (sz != qp->qdma.size)
2899 			return -EINVAL;
2900 
2901 		/*
2902 		 * dma_mmap_coherent() requires vm_pgoff as 0
2903 		 * restore vm_pfoff to initial value for mmap()
2904 		 */
2905 		vm_pgoff = vma->vm_pgoff;
2906 		vma->vm_pgoff = 0;
2907 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2908 					qp->qdma.dma, sz);
2909 		vma->vm_pgoff = vm_pgoff;
2910 		return ret;
2911 
2912 	default:
2913 		return -EINVAL;
2914 	}
2915 }
2916 
2917 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2918 {
2919 	struct hisi_qp *qp = q->priv;
2920 
2921 	return hisi_qm_start_qp(qp, qp->pasid);
2922 }
2923 
2924 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2925 {
2926 	hisi_qm_stop_qp(q->priv);
2927 }
2928 
2929 static int hisi_qm_is_q_updated(struct uacce_queue *q)
2930 {
2931 	struct hisi_qp *qp = q->priv;
2932 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2933 	int updated = 0;
2934 
2935 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2936 		/* make sure to read data from memory */
2937 		dma_rmb();
2938 		qm_cq_head_update(qp);
2939 		cqe = qp->cqe + qp->qp_status.cq_head;
2940 		updated = 1;
2941 	}
2942 
2943 	return updated;
2944 }
2945 
2946 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2947 {
2948 	struct hisi_qm *qm = q->uacce->priv;
2949 	struct hisi_qp *qp = q->priv;
2950 
2951 	down_write(&qm->qps_lock);
2952 	qp->alg_type = type;
2953 	up_write(&qm->qps_lock);
2954 }
2955 
2956 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2957 				unsigned long arg)
2958 {
2959 	struct hisi_qp *qp = q->priv;
2960 	struct hisi_qp_ctx qp_ctx;
2961 
2962 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2963 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2964 				   sizeof(struct hisi_qp_ctx)))
2965 			return -EFAULT;
2966 
2967 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2968 			return -EINVAL;
2969 
2970 		qm_set_sqctype(q, qp_ctx.qc_type);
2971 		qp_ctx.id = qp->qp_id;
2972 
2973 		if (copy_to_user((void __user *)arg, &qp_ctx,
2974 				 sizeof(struct hisi_qp_ctx)))
2975 			return -EFAULT;
2976 	} else {
2977 		return -EINVAL;
2978 	}
2979 
2980 	return 0;
2981 }
2982 
2983 static const struct uacce_ops uacce_qm_ops = {
2984 	.get_available_instances = hisi_qm_get_available_instances,
2985 	.get_queue = hisi_qm_uacce_get_queue,
2986 	.put_queue = hisi_qm_uacce_put_queue,
2987 	.start_queue = hisi_qm_uacce_start_queue,
2988 	.stop_queue = hisi_qm_uacce_stop_queue,
2989 	.mmap = hisi_qm_uacce_mmap,
2990 	.ioctl = hisi_qm_uacce_ioctl,
2991 	.is_q_updated = hisi_qm_is_q_updated,
2992 };
2993 
2994 static int qm_alloc_uacce(struct hisi_qm *qm)
2995 {
2996 	struct pci_dev *pdev = qm->pdev;
2997 	struct uacce_device *uacce;
2998 	unsigned long mmio_page_nr;
2999 	unsigned long dus_page_nr;
3000 	struct uacce_interface interface = {
3001 		.flags = UACCE_DEV_SVA,
3002 		.ops = &uacce_qm_ops,
3003 	};
3004 	int ret;
3005 
3006 	ret = strscpy(interface.name, pdev->driver->name,
3007 		      sizeof(interface.name));
3008 	if (ret < 0)
3009 		return -ENAMETOOLONG;
3010 
3011 	uacce = uacce_alloc(&pdev->dev, &interface);
3012 	if (IS_ERR(uacce))
3013 		return PTR_ERR(uacce);
3014 
3015 	if (uacce->flags & UACCE_DEV_SVA && qm->mode == UACCE_MODE_SVA) {
3016 		qm->use_sva = true;
3017 	} else {
3018 		/* only consider sva case */
3019 		uacce_remove(uacce);
3020 		qm->uacce = NULL;
3021 		return -EINVAL;
3022 	}
3023 
3024 	uacce->is_vf = pdev->is_virtfn;
3025 	uacce->priv = qm;
3026 	uacce->algs = qm->algs;
3027 
3028 	if (qm->ver == QM_HW_V1)
3029 		uacce->api_ver = HISI_QM_API_VER_BASE;
3030 	else if (qm->ver == QM_HW_V2)
3031 		uacce->api_ver = HISI_QM_API_VER2_BASE;
3032 	else
3033 		uacce->api_ver = HISI_QM_API_VER3_BASE;
3034 
3035 	if (qm->ver == QM_HW_V1)
3036 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
3037 	else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation)
3038 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
3039 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
3040 	else
3041 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
3042 
3043 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH +
3044 		       sizeof(struct qm_cqe) * QM_Q_DEPTH) >> PAGE_SHIFT;
3045 
3046 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
3047 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
3048 
3049 	qm->uacce = uacce;
3050 
3051 	return 0;
3052 }
3053 
3054 /**
3055  * qm_frozen() - Try to froze QM to cut continuous queue request. If
3056  * there is user on the QM, return failure without doing anything.
3057  * @qm: The qm needed to be fronzen.
3058  *
3059  * This function frozes QM, then we can do SRIOV disabling.
3060  */
3061 static int qm_frozen(struct hisi_qm *qm)
3062 {
3063 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
3064 		return 0;
3065 
3066 	down_write(&qm->qps_lock);
3067 
3068 	if (!qm->qp_in_used) {
3069 		qm->qp_in_used = qm->qp_num;
3070 		up_write(&qm->qps_lock);
3071 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
3072 		return 0;
3073 	}
3074 
3075 	up_write(&qm->qps_lock);
3076 
3077 	return -EBUSY;
3078 }
3079 
3080 static int qm_try_frozen_vfs(struct pci_dev *pdev,
3081 			     struct hisi_qm_list *qm_list)
3082 {
3083 	struct hisi_qm *qm, *vf_qm;
3084 	struct pci_dev *dev;
3085 	int ret = 0;
3086 
3087 	if (!qm_list || !pdev)
3088 		return -EINVAL;
3089 
3090 	/* Try to frozen all the VFs as disable SRIOV */
3091 	mutex_lock(&qm_list->lock);
3092 	list_for_each_entry(qm, &qm_list->list, list) {
3093 		dev = qm->pdev;
3094 		if (dev == pdev)
3095 			continue;
3096 		if (pci_physfn(dev) == pdev) {
3097 			vf_qm = pci_get_drvdata(dev);
3098 			ret = qm_frozen(vf_qm);
3099 			if (ret)
3100 				goto frozen_fail;
3101 		}
3102 	}
3103 
3104 frozen_fail:
3105 	mutex_unlock(&qm_list->lock);
3106 
3107 	return ret;
3108 }
3109 
3110 /**
3111  * hisi_qm_wait_task_finish() - Wait until the task is finished
3112  * when removing the driver.
3113  * @qm: The qm needed to wait for the task to finish.
3114  * @qm_list: The list of all available devices.
3115  */
3116 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
3117 {
3118 	while (qm_frozen(qm) ||
3119 	       ((qm->fun_type == QM_HW_PF) &&
3120 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
3121 		msleep(WAIT_PERIOD);
3122 	}
3123 
3124 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
3125 	       test_bit(QM_RESETTING, &qm->misc_ctl))
3126 		msleep(WAIT_PERIOD);
3127 
3128 	udelay(REMOVE_WAIT_DELAY);
3129 }
3130 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
3131 
3132 /**
3133  * hisi_qm_get_free_qp_num() - Get free number of qp in qm.
3134  * @qm: The qm which want to get free qp.
3135  *
3136  * This function return free number of qp in qm.
3137  */
3138 int hisi_qm_get_free_qp_num(struct hisi_qm *qm)
3139 {
3140 	int ret;
3141 
3142 	down_read(&qm->qps_lock);
3143 	ret = qm->qp_num - qm->qp_in_used;
3144 	up_read(&qm->qps_lock);
3145 
3146 	return ret;
3147 }
3148 EXPORT_SYMBOL_GPL(hisi_qm_get_free_qp_num);
3149 
3150 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
3151 {
3152 	struct device *dev = &qm->pdev->dev;
3153 	struct qm_dma *qdma;
3154 	int i;
3155 
3156 	for (i = num - 1; i >= 0; i--) {
3157 		qdma = &qm->qp_array[i].qdma;
3158 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
3159 	}
3160 
3161 	kfree(qm->qp_array);
3162 }
3163 
3164 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id)
3165 {
3166 	struct device *dev = &qm->pdev->dev;
3167 	size_t off = qm->sqe_size * QM_Q_DEPTH;
3168 	struct hisi_qp *qp;
3169 
3170 	qp = &qm->qp_array[id];
3171 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
3172 					 GFP_KERNEL);
3173 	if (!qp->qdma.va)
3174 		return -ENOMEM;
3175 
3176 	qp->sqe = qp->qdma.va;
3177 	qp->sqe_dma = qp->qdma.dma;
3178 	qp->cqe = qp->qdma.va + off;
3179 	qp->cqe_dma = qp->qdma.dma + off;
3180 	qp->qdma.size = dma_size;
3181 	qp->qm = qm;
3182 	qp->qp_id = id;
3183 
3184 	return 0;
3185 }
3186 
3187 static void hisi_qm_pre_init(struct hisi_qm *qm)
3188 {
3189 	struct pci_dev *pdev = qm->pdev;
3190 
3191 	if (qm->ver == QM_HW_V1)
3192 		qm->ops = &qm_hw_ops_v1;
3193 	else if (qm->ver == QM_HW_V2)
3194 		qm->ops = &qm_hw_ops_v2;
3195 	else
3196 		qm->ops = &qm_hw_ops_v3;
3197 
3198 	pci_set_drvdata(pdev, qm);
3199 	mutex_init(&qm->mailbox_lock);
3200 	init_rwsem(&qm->qps_lock);
3201 	qm->qp_in_used = 0;
3202 	qm->misc_ctl = false;
3203 }
3204 
3205 static void qm_cmd_uninit(struct hisi_qm *qm)
3206 {
3207 	u32 val;
3208 
3209 	if (qm->ver < QM_HW_V3)
3210 		return;
3211 
3212 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3213 	val |= QM_IFC_INT_DISABLE;
3214 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3215 }
3216 
3217 static void qm_cmd_init(struct hisi_qm *qm)
3218 {
3219 	u32 val;
3220 
3221 	if (qm->ver < QM_HW_V3)
3222 		return;
3223 
3224 	/* Clear communication interrupt source */
3225 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
3226 
3227 	/* Enable pf to vf communication reg. */
3228 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3229 	val &= ~QM_IFC_INT_DISABLE;
3230 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3231 }
3232 
3233 static void qm_put_pci_res(struct hisi_qm *qm)
3234 {
3235 	struct pci_dev *pdev = qm->pdev;
3236 
3237 	if (qm->use_db_isolation)
3238 		iounmap(qm->db_io_base);
3239 
3240 	iounmap(qm->io_base);
3241 	pci_release_mem_regions(pdev);
3242 }
3243 
3244 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
3245 {
3246 	struct pci_dev *pdev = qm->pdev;
3247 
3248 	pci_free_irq_vectors(pdev);
3249 	qm_put_pci_res(qm);
3250 	pci_disable_device(pdev);
3251 }
3252 
3253 /**
3254  * hisi_qm_uninit() - Uninitialize qm.
3255  * @qm: The qm needed uninit.
3256  *
3257  * This function uninits qm related device resources.
3258  */
3259 void hisi_qm_uninit(struct hisi_qm *qm)
3260 {
3261 	struct pci_dev *pdev = qm->pdev;
3262 	struct device *dev = &pdev->dev;
3263 
3264 	qm_cmd_uninit(qm);
3265 	kfree(qm->factor);
3266 	down_write(&qm->qps_lock);
3267 
3268 	if (!qm_avail_state(qm, QM_CLOSE)) {
3269 		up_write(&qm->qps_lock);
3270 		return;
3271 	}
3272 
3273 	hisi_qp_memory_uninit(qm, qm->qp_num);
3274 	idr_destroy(&qm->qp_idr);
3275 
3276 	if (qm->qdma.va) {
3277 		hisi_qm_cache_wb(qm);
3278 		dma_free_coherent(dev, qm->qdma.size,
3279 				  qm->qdma.va, qm->qdma.dma);
3280 	}
3281 
3282 	qm_irq_unregister(qm);
3283 	hisi_qm_pci_uninit(qm);
3284 	uacce_remove(qm->uacce);
3285 	qm->uacce = NULL;
3286 
3287 	up_write(&qm->qps_lock);
3288 }
3289 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
3290 
3291 /**
3292  * hisi_qm_get_vft() - Get vft from a qm.
3293  * @qm: The qm we want to get its vft.
3294  * @base: The base number of queue in vft.
3295  * @number: The number of queues in vft.
3296  *
3297  * We can allocate multiple queues to a qm by configuring virtual function
3298  * table. We get related configures by this function. Normally, we call this
3299  * function in VF driver to get the queue information.
3300  *
3301  * qm hw v1 does not support this interface.
3302  */
3303 int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
3304 {
3305 	if (!base || !number)
3306 		return -EINVAL;
3307 
3308 	if (!qm->ops->get_vft) {
3309 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
3310 		return -EINVAL;
3311 	}
3312 
3313 	return qm->ops->get_vft(qm, base, number);
3314 }
3315 EXPORT_SYMBOL_GPL(hisi_qm_get_vft);
3316 
3317 /**
3318  * hisi_qm_set_vft() - Set vft to a qm.
3319  * @qm: The qm we want to set its vft.
3320  * @fun_num: The function number.
3321  * @base: The base number of queue in vft.
3322  * @number: The number of queues in vft.
3323  *
3324  * This function is alway called in PF driver, it is used to assign queues
3325  * among PF and VFs.
3326  *
3327  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
3328  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
3329  * (VF function number 0x2)
3330  */
3331 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
3332 		    u32 number)
3333 {
3334 	u32 max_q_num = qm->ctrl_qp_num;
3335 
3336 	if (base >= max_q_num || number > max_q_num ||
3337 	    (base + number) > max_q_num)
3338 		return -EINVAL;
3339 
3340 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
3341 }
3342 
3343 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
3344 {
3345 	struct hisi_qm_status *status = &qm->status;
3346 
3347 	status->eq_head = 0;
3348 	status->aeq_head = 0;
3349 	status->eqc_phase = true;
3350 	status->aeqc_phase = true;
3351 }
3352 
3353 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3354 {
3355 	struct device *dev = &qm->pdev->dev;
3356 	struct qm_eqc *eqc;
3357 	dma_addr_t eqc_dma;
3358 	int ret;
3359 
3360 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
3361 	if (!eqc)
3362 		return -ENOMEM;
3363 
3364 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3365 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3366 	if (qm->ver == QM_HW_V1)
3367 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3368 	eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
3369 
3370 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
3371 				 DMA_TO_DEVICE);
3372 	if (dma_mapping_error(dev, eqc_dma)) {
3373 		kfree(eqc);
3374 		return -ENOMEM;
3375 	}
3376 
3377 	ret = qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
3378 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
3379 	kfree(eqc);
3380 
3381 	return ret;
3382 }
3383 
3384 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3385 {
3386 	struct device *dev = &qm->pdev->dev;
3387 	struct qm_aeqc *aeqc;
3388 	dma_addr_t aeqc_dma;
3389 	int ret;
3390 
3391 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
3392 	if (!aeqc)
3393 		return -ENOMEM;
3394 
3395 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3396 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3397 	aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
3398 
3399 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
3400 				  DMA_TO_DEVICE);
3401 	if (dma_mapping_error(dev, aeqc_dma)) {
3402 		kfree(aeqc);
3403 		return -ENOMEM;
3404 	}
3405 
3406 	ret = qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
3407 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
3408 	kfree(aeqc);
3409 
3410 	return ret;
3411 }
3412 
3413 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3414 {
3415 	struct device *dev = &qm->pdev->dev;
3416 	int ret;
3417 
3418 	qm_init_eq_aeq_status(qm);
3419 
3420 	ret = qm_eq_ctx_cfg(qm);
3421 	if (ret) {
3422 		dev_err(dev, "Set eqc failed!\n");
3423 		return ret;
3424 	}
3425 
3426 	return qm_aeq_ctx_cfg(qm);
3427 }
3428 
3429 static int __hisi_qm_start(struct hisi_qm *qm)
3430 {
3431 	int ret;
3432 
3433 	WARN_ON(!qm->qdma.va);
3434 
3435 	if (qm->fun_type == QM_HW_PF) {
3436 		ret = qm_dev_mem_reset(qm);
3437 		if (ret)
3438 			return ret;
3439 
3440 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3441 		if (ret)
3442 			return ret;
3443 	}
3444 
3445 	ret = qm_eq_aeq_ctx_cfg(qm);
3446 	if (ret)
3447 		return ret;
3448 
3449 	ret = qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3450 	if (ret)
3451 		return ret;
3452 
3453 	ret = qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3454 	if (ret)
3455 		return ret;
3456 
3457 	qm_init_prefetch(qm);
3458 
3459 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
3460 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
3461 
3462 	return 0;
3463 }
3464 
3465 /**
3466  * hisi_qm_start() - start qm
3467  * @qm: The qm to be started.
3468  *
3469  * This function starts a qm, then we can allocate qp from this qm.
3470  */
3471 int hisi_qm_start(struct hisi_qm *qm)
3472 {
3473 	struct device *dev = &qm->pdev->dev;
3474 	int ret = 0;
3475 
3476 	down_write(&qm->qps_lock);
3477 
3478 	if (!qm_avail_state(qm, QM_START)) {
3479 		up_write(&qm->qps_lock);
3480 		return -EPERM;
3481 	}
3482 
3483 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3484 
3485 	if (!qm->qp_num) {
3486 		dev_err(dev, "qp_num should not be 0\n");
3487 		ret = -EINVAL;
3488 		goto err_unlock;
3489 	}
3490 
3491 	ret = __hisi_qm_start(qm);
3492 	if (!ret)
3493 		atomic_set(&qm->status.flags, QM_START);
3494 
3495 err_unlock:
3496 	up_write(&qm->qps_lock);
3497 	return ret;
3498 }
3499 EXPORT_SYMBOL_GPL(hisi_qm_start);
3500 
3501 static int qm_restart(struct hisi_qm *qm)
3502 {
3503 	struct device *dev = &qm->pdev->dev;
3504 	struct hisi_qp *qp;
3505 	int ret, i;
3506 
3507 	ret = hisi_qm_start(qm);
3508 	if (ret < 0)
3509 		return ret;
3510 
3511 	down_write(&qm->qps_lock);
3512 	for (i = 0; i < qm->qp_num; i++) {
3513 		qp = &qm->qp_array[i];
3514 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3515 		    qp->is_resetting == true) {
3516 			ret = qm_start_qp_nolock(qp, 0);
3517 			if (ret < 0) {
3518 				dev_err(dev, "Failed to start qp%d!\n", i);
3519 
3520 				up_write(&qm->qps_lock);
3521 				return ret;
3522 			}
3523 			qp->is_resetting = false;
3524 		}
3525 	}
3526 	up_write(&qm->qps_lock);
3527 
3528 	return 0;
3529 }
3530 
3531 /* Stop started qps in reset flow */
3532 static int qm_stop_started_qp(struct hisi_qm *qm)
3533 {
3534 	struct device *dev = &qm->pdev->dev;
3535 	struct hisi_qp *qp;
3536 	int i, ret;
3537 
3538 	for (i = 0; i < qm->qp_num; i++) {
3539 		qp = &qm->qp_array[i];
3540 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
3541 			qp->is_resetting = true;
3542 			ret = qm_stop_qp_nolock(qp);
3543 			if (ret < 0) {
3544 				dev_err(dev, "Failed to stop qp%d!\n", i);
3545 				return ret;
3546 			}
3547 		}
3548 	}
3549 
3550 	return 0;
3551 }
3552 
3553 
3554 /**
3555  * qm_clear_queues() - Clear all queues memory in a qm.
3556  * @qm: The qm in which the queues will be cleared.
3557  *
3558  * This function clears all queues memory in a qm. Reset of accelerator can
3559  * use this to clear queues.
3560  */
3561 static void qm_clear_queues(struct hisi_qm *qm)
3562 {
3563 	struct hisi_qp *qp;
3564 	int i;
3565 
3566 	for (i = 0; i < qm->qp_num; i++) {
3567 		qp = &qm->qp_array[i];
3568 		if (qp->is_resetting)
3569 			memset(qp->qdma.va, 0, qp->qdma.size);
3570 	}
3571 
3572 	memset(qm->qdma.va, 0, qm->qdma.size);
3573 }
3574 
3575 /**
3576  * hisi_qm_stop() - Stop a qm.
3577  * @qm: The qm which will be stopped.
3578  * @r: The reason to stop qm.
3579  *
3580  * This function stops qm and its qps, then qm can not accept request.
3581  * Related resources are not released at this state, we can use hisi_qm_start
3582  * to let qm start again.
3583  */
3584 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3585 {
3586 	struct device *dev = &qm->pdev->dev;
3587 	int ret = 0;
3588 
3589 	down_write(&qm->qps_lock);
3590 
3591 	qm->status.stop_reason = r;
3592 	if (!qm_avail_state(qm, QM_STOP)) {
3593 		ret = -EPERM;
3594 		goto err_unlock;
3595 	}
3596 
3597 	if (qm->status.stop_reason == QM_SOFT_RESET ||
3598 	    qm->status.stop_reason == QM_FLR) {
3599 		ret = qm_stop_started_qp(qm);
3600 		if (ret < 0) {
3601 			dev_err(dev, "Failed to stop started qp!\n");
3602 			goto err_unlock;
3603 		}
3604 	}
3605 
3606 	/* Mask eq and aeq irq */
3607 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
3608 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3609 
3610 	if (qm->fun_type == QM_HW_PF) {
3611 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3612 		if (ret < 0) {
3613 			dev_err(dev, "Failed to set vft!\n");
3614 			ret = -EBUSY;
3615 			goto err_unlock;
3616 		}
3617 	}
3618 
3619 	qm_clear_queues(qm);
3620 	atomic_set(&qm->status.flags, QM_STOP);
3621 
3622 err_unlock:
3623 	up_write(&qm->qps_lock);
3624 	return ret;
3625 }
3626 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3627 
3628 static ssize_t qm_status_read(struct file *filp, char __user *buffer,
3629 			      size_t count, loff_t *pos)
3630 {
3631 	struct hisi_qm *qm = filp->private_data;
3632 	char buf[QM_DBG_READ_LEN];
3633 	int val, len;
3634 
3635 	val = atomic_read(&qm->status.flags);
3636 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]);
3637 
3638 	return simple_read_from_buffer(buffer, count, pos, buf, len);
3639 }
3640 
3641 static const struct file_operations qm_status_fops = {
3642 	.owner = THIS_MODULE,
3643 	.open = simple_open,
3644 	.read = qm_status_read,
3645 };
3646 
3647 static int qm_debugfs_atomic64_set(void *data, u64 val)
3648 {
3649 	if (val)
3650 		return -EINVAL;
3651 
3652 	atomic64_set((atomic64_t *)data, 0);
3653 
3654 	return 0;
3655 }
3656 
3657 static int qm_debugfs_atomic64_get(void *data, u64 *val)
3658 {
3659 	*val = atomic64_read((atomic64_t *)data);
3660 
3661 	return 0;
3662 }
3663 
3664 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get,
3665 			 qm_debugfs_atomic64_set, "%llu\n");
3666 
3667 static void qm_hw_error_init(struct hisi_qm *qm)
3668 {
3669 	struct hisi_qm_err_info *err_info = &qm->err_info;
3670 
3671 	if (!qm->ops->hw_error_init) {
3672 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3673 		return;
3674 	}
3675 
3676 	qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe);
3677 }
3678 
3679 static void qm_hw_error_uninit(struct hisi_qm *qm)
3680 {
3681 	if (!qm->ops->hw_error_uninit) {
3682 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3683 		return;
3684 	}
3685 
3686 	qm->ops->hw_error_uninit(qm);
3687 }
3688 
3689 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3690 {
3691 	if (!qm->ops->hw_error_handle) {
3692 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3693 		return ACC_ERR_NONE;
3694 	}
3695 
3696 	return qm->ops->hw_error_handle(qm);
3697 }
3698 
3699 /**
3700  * hisi_qm_dev_err_init() - Initialize device error configuration.
3701  * @qm: The qm for which we want to do error initialization.
3702  *
3703  * Initialize QM and device error related configuration.
3704  */
3705 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3706 {
3707 	if (qm->fun_type == QM_HW_VF)
3708 		return;
3709 
3710 	qm_hw_error_init(qm);
3711 
3712 	if (!qm->err_ini->hw_err_enable) {
3713 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3714 		return;
3715 	}
3716 	qm->err_ini->hw_err_enable(qm);
3717 }
3718 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3719 
3720 /**
3721  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3722  * @qm: The qm for which we want to do error uninitialization.
3723  *
3724  * Uninitialize QM and device error related configuration.
3725  */
3726 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3727 {
3728 	if (qm->fun_type == QM_HW_VF)
3729 		return;
3730 
3731 	qm_hw_error_uninit(qm);
3732 
3733 	if (!qm->err_ini->hw_err_disable) {
3734 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3735 		return;
3736 	}
3737 	qm->err_ini->hw_err_disable(qm);
3738 }
3739 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3740 
3741 /**
3742  * hisi_qm_free_qps() - free multiple queue pairs.
3743  * @qps: The queue pairs need to be freed.
3744  * @qp_num: The num of queue pairs.
3745  */
3746 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3747 {
3748 	int i;
3749 
3750 	if (!qps || qp_num <= 0)
3751 		return;
3752 
3753 	for (i = qp_num - 1; i >= 0; i--)
3754 		hisi_qm_release_qp(qps[i]);
3755 }
3756 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3757 
3758 static void free_list(struct list_head *head)
3759 {
3760 	struct hisi_qm_resource *res, *tmp;
3761 
3762 	list_for_each_entry_safe(res, tmp, head, list) {
3763 		list_del(&res->list);
3764 		kfree(res);
3765 	}
3766 }
3767 
3768 static int hisi_qm_sort_devices(int node, struct list_head *head,
3769 				struct hisi_qm_list *qm_list)
3770 {
3771 	struct hisi_qm_resource *res, *tmp;
3772 	struct hisi_qm *qm;
3773 	struct list_head *n;
3774 	struct device *dev;
3775 	int dev_node = 0;
3776 
3777 	list_for_each_entry(qm, &qm_list->list, list) {
3778 		dev = &qm->pdev->dev;
3779 
3780 		if (IS_ENABLED(CONFIG_NUMA)) {
3781 			dev_node = dev_to_node(dev);
3782 			if (dev_node < 0)
3783 				dev_node = 0;
3784 		}
3785 
3786 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3787 		if (!res)
3788 			return -ENOMEM;
3789 
3790 		res->qm = qm;
3791 		res->distance = node_distance(dev_node, node);
3792 		n = head;
3793 		list_for_each_entry(tmp, head, list) {
3794 			if (res->distance < tmp->distance) {
3795 				n = &tmp->list;
3796 				break;
3797 			}
3798 		}
3799 		list_add_tail(&res->list, n);
3800 	}
3801 
3802 	return 0;
3803 }
3804 
3805 /**
3806  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3807  * @qm_list: The list of all available devices.
3808  * @qp_num: The number of queue pairs need created.
3809  * @alg_type: The algorithm type.
3810  * @node: The numa node.
3811  * @qps: The queue pairs need created.
3812  *
3813  * This function will sort all available device according to numa distance.
3814  * Then try to create all queue pairs from one device, if all devices do
3815  * not meet the requirements will return error.
3816  */
3817 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3818 			   u8 alg_type, int node, struct hisi_qp **qps)
3819 {
3820 	struct hisi_qm_resource *tmp;
3821 	int ret = -ENODEV;
3822 	LIST_HEAD(head);
3823 	int i;
3824 
3825 	if (!qps || !qm_list || qp_num <= 0)
3826 		return -EINVAL;
3827 
3828 	mutex_lock(&qm_list->lock);
3829 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3830 		mutex_unlock(&qm_list->lock);
3831 		goto err;
3832 	}
3833 
3834 	list_for_each_entry(tmp, &head, list) {
3835 		for (i = 0; i < qp_num; i++) {
3836 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3837 			if (IS_ERR(qps[i])) {
3838 				hisi_qm_free_qps(qps, i);
3839 				break;
3840 			}
3841 		}
3842 
3843 		if (i == qp_num) {
3844 			ret = 0;
3845 			break;
3846 		}
3847 	}
3848 
3849 	mutex_unlock(&qm_list->lock);
3850 	if (ret)
3851 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3852 			node, alg_type, qp_num);
3853 
3854 err:
3855 	free_list(&head);
3856 	return ret;
3857 }
3858 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3859 
3860 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3861 {
3862 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3863 	u32 max_qp_num = qm->max_qp_num;
3864 	u32 q_base = qm->qp_num;
3865 	int ret;
3866 
3867 	if (!num_vfs)
3868 		return -EINVAL;
3869 
3870 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3871 
3872 	/* If vfs_q_num is less than num_vfs, return error. */
3873 	if (vfs_q_num < num_vfs)
3874 		return -EINVAL;
3875 
3876 	q_num = vfs_q_num / num_vfs;
3877 	remain_q_num = vfs_q_num % num_vfs;
3878 
3879 	for (i = num_vfs; i > 0; i--) {
3880 		/*
3881 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3882 		 * remaining queues equally.
3883 		 */
3884 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3885 			act_q_num = q_num + remain_q_num;
3886 			remain_q_num = 0;
3887 		} else if (remain_q_num > 0) {
3888 			act_q_num = q_num + 1;
3889 			remain_q_num--;
3890 		} else {
3891 			act_q_num = q_num;
3892 		}
3893 
3894 		act_q_num = min_t(int, act_q_num, max_qp_num);
3895 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3896 		if (ret) {
3897 			for (j = num_vfs; j > i; j--)
3898 				hisi_qm_set_vft(qm, j, 0, 0);
3899 			return ret;
3900 		}
3901 		q_base += act_q_num;
3902 	}
3903 
3904 	return 0;
3905 }
3906 
3907 static int qm_clear_vft_config(struct hisi_qm *qm)
3908 {
3909 	int ret;
3910 	u32 i;
3911 
3912 	for (i = 1; i <= qm->vfs_num; i++) {
3913 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3914 		if (ret)
3915 			return ret;
3916 	}
3917 	qm->vfs_num = 0;
3918 
3919 	return 0;
3920 }
3921 
3922 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3923 {
3924 	struct device *dev = &qm->pdev->dev;
3925 	u32 ir = qos * QM_QOS_RATE;
3926 	int ret, total_vfs, i;
3927 
3928 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3929 	if (fun_index > total_vfs)
3930 		return -EINVAL;
3931 
3932 	qm->factor[fun_index].func_qos = qos;
3933 
3934 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3935 	if (ret) {
3936 		dev_err(dev, "failed to calculate shaper parameter!\n");
3937 		return -EINVAL;
3938 	}
3939 
3940 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3941 		/* The base number of queue reuse for different alg type */
3942 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3943 		if (ret) {
3944 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3945 			return -EINVAL;
3946 		}
3947 	}
3948 
3949 	return 0;
3950 }
3951 
3952 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3953 {
3954 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
3955 	u64 shaper_vft, ir_calc, ir;
3956 	unsigned int val;
3957 	u32 error_rate;
3958 	int ret;
3959 
3960 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3961 					 val & BIT(0), POLL_PERIOD,
3962 					 POLL_TIMEOUT);
3963 	if (ret)
3964 		return 0;
3965 
3966 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3967 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3968 	writel(fun_index, qm->io_base + QM_VFT_CFG);
3969 
3970 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3971 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3972 
3973 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3974 					 val & BIT(0), POLL_PERIOD,
3975 					 POLL_TIMEOUT);
3976 	if (ret)
3977 		return 0;
3978 
3979 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3980 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3981 
3982 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3983 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3984 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3985 
3986 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3987 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3988 
3989 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3990 
3991 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3992 
3993 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3994 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3995 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3996 		return 0;
3997 	}
3998 
3999 	return ir;
4000 }
4001 
4002 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
4003 {
4004 	struct device *dev = &qm->pdev->dev;
4005 	u64 mb_cmd;
4006 	u32 qos;
4007 	int ret;
4008 
4009 	qos = qm_get_shaper_vft_qos(qm, fun_num);
4010 	if (!qos) {
4011 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
4012 		return;
4013 	}
4014 
4015 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
4016 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
4017 	if (ret)
4018 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
4019 }
4020 
4021 static int qm_vf_read_qos(struct hisi_qm *qm)
4022 {
4023 	int cnt = 0;
4024 	int ret;
4025 
4026 	/* reset mailbox qos val */
4027 	qm->mb_qos = 0;
4028 
4029 	/* vf ping pf to get function qos */
4030 	if (qm->ops->ping_pf) {
4031 		ret = qm->ops->ping_pf(qm, QM_VF_GET_QOS);
4032 		if (ret) {
4033 			pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
4034 			return ret;
4035 		}
4036 	}
4037 
4038 	while (true) {
4039 		msleep(QM_WAIT_DST_ACK);
4040 		if (qm->mb_qos)
4041 			break;
4042 
4043 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
4044 			pci_err(qm->pdev, "PF ping VF timeout!\n");
4045 			return  -ETIMEDOUT;
4046 		}
4047 	}
4048 
4049 	return ret;
4050 }
4051 
4052 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
4053 			       size_t count, loff_t *pos)
4054 {
4055 	struct hisi_qm *qm = filp->private_data;
4056 	char tbuf[QM_DBG_READ_LEN];
4057 	u32 qos_val, ir;
4058 	int ret;
4059 
4060 	/* Mailbox and reset cannot be operated at the same time */
4061 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4062 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
4063 		return  -EAGAIN;
4064 	}
4065 
4066 	if (qm->fun_type == QM_HW_PF) {
4067 		ir = qm_get_shaper_vft_qos(qm, 0);
4068 	} else {
4069 		ret = qm_vf_read_qos(qm);
4070 		if (ret)
4071 			goto err_get_status;
4072 		ir = qm->mb_qos;
4073 	}
4074 
4075 	qos_val = ir / QM_QOS_RATE;
4076 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
4077 
4078 	ret =  simple_read_from_buffer(buf, count, pos, tbuf, ret);
4079 
4080 err_get_status:
4081 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4082 	return ret;
4083 }
4084 
4085 static ssize_t qm_qos_value_init(const char *buf, unsigned long *val)
4086 {
4087 	int buflen = strlen(buf);
4088 	int ret, i;
4089 
4090 	for (i = 0; i < buflen; i++) {
4091 		if (!isdigit(buf[i]))
4092 			return -EINVAL;
4093 	}
4094 
4095 	ret = sscanf(buf, "%ld", val);
4096 	if (ret != QM_QOS_VAL_NUM)
4097 		return -EINVAL;
4098 
4099 	return 0;
4100 }
4101 
4102 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
4103 			       size_t count, loff_t *pos)
4104 {
4105 	struct hisi_qm *qm = filp->private_data;
4106 	char tbuf[QM_DBG_READ_LEN];
4107 	int tmp1, bus, device, function;
4108 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
4109 	char val_buf[QM_QOS_VAL_MAX_LEN] = {0};
4110 	unsigned int fun_index;
4111 	unsigned long val = 0;
4112 	int len, ret;
4113 
4114 	if (qm->fun_type == QM_HW_VF)
4115 		return -EINVAL;
4116 
4117 	/* Mailbox and reset cannot be operated at the same time */
4118 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4119 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
4120 		return -EAGAIN;
4121 	}
4122 
4123 	if (*pos != 0) {
4124 		ret = 0;
4125 		goto err_get_status;
4126 	}
4127 
4128 	if (count >= QM_DBG_READ_LEN) {
4129 		ret = -ENOSPC;
4130 		goto err_get_status;
4131 	}
4132 
4133 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
4134 	if (len < 0) {
4135 		ret = len;
4136 		goto err_get_status;
4137 	}
4138 
4139 	tbuf[len] = '\0';
4140 	ret = sscanf(tbuf, "%s %s", tbuf_bdf, val_buf);
4141 	if (ret != QM_QOS_PARAM_NUM) {
4142 		ret = -EINVAL;
4143 		goto err_get_status;
4144 	}
4145 
4146 	ret = qm_qos_value_init(val_buf, &val);
4147 	if (val == 0 || val > QM_QOS_MAX_VAL || ret) {
4148 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
4149 		ret = -EINVAL;
4150 		goto err_get_status;
4151 	}
4152 
4153 	ret = sscanf(tbuf_bdf, "%d:%x:%d.%d", &tmp1, &bus, &device, &function);
4154 	if (ret != QM_QOS_BDF_PARAM_NUM) {
4155 		pci_err(qm->pdev, "input pci bdf value is error!\n");
4156 		ret = -EINVAL;
4157 		goto err_get_status;
4158 	}
4159 
4160 	fun_index = device * 8 + function;
4161 
4162 	ret = qm_func_shaper_enable(qm, fun_index, val);
4163 	if (ret) {
4164 		pci_err(qm->pdev, "failed to enable function shaper!\n");
4165 		ret = -EINVAL;
4166 		goto err_get_status;
4167 	}
4168 
4169 	ret =  count;
4170 
4171 err_get_status:
4172 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4173 	return ret;
4174 }
4175 
4176 static const struct file_operations qm_algqos_fops = {
4177 	.owner = THIS_MODULE,
4178 	.open = simple_open,
4179 	.read = qm_algqos_read,
4180 	.write = qm_algqos_write,
4181 };
4182 
4183 /**
4184  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
4185  * @qm: The qm for which we want to add debugfs files.
4186  *
4187  * Create function qos debugfs files.
4188  */
4189 static void hisi_qm_set_algqos_init(struct hisi_qm *qm)
4190 {
4191 	if (qm->fun_type == QM_HW_PF)
4192 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
4193 				    qm, &qm_algqos_fops);
4194 	else
4195 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
4196 				    qm, &qm_algqos_fops);
4197 }
4198 
4199 /**
4200  * hisi_qm_debug_init() - Initialize qm related debugfs files.
4201  * @qm: The qm for which we want to add debugfs files.
4202  *
4203  * Create qm related debugfs files.
4204  */
4205 void hisi_qm_debug_init(struct hisi_qm *qm)
4206 {
4207 	struct qm_dfx *dfx = &qm->debug.dfx;
4208 	struct dentry *qm_d;
4209 	void *data;
4210 	int i;
4211 
4212 	qm_d = debugfs_create_dir("qm", qm->debug.debug_root);
4213 	qm->debug.qm_d = qm_d;
4214 
4215 	/* only show this in PF */
4216 	if (qm->fun_type == QM_HW_PF) {
4217 		qm_create_debugfs_file(qm, qm->debug.debug_root, CURRENT_QM);
4218 		for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++)
4219 			qm_create_debugfs_file(qm, qm->debug.qm_d, i);
4220 	}
4221 
4222 	debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops);
4223 
4224 	debugfs_create_file("cmd", 0600, qm->debug.qm_d, qm, &qm_cmd_fops);
4225 
4226 	debugfs_create_file("status", 0444, qm->debug.qm_d, qm,
4227 			&qm_status_fops);
4228 	for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) {
4229 		data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset);
4230 		debugfs_create_file(qm_dfx_files[i].name,
4231 			0644,
4232 			qm_d,
4233 			data,
4234 			&qm_atomic64_ops);
4235 	}
4236 
4237 	if (qm->ver >= QM_HW_V3)
4238 		hisi_qm_set_algqos_init(qm);
4239 }
4240 EXPORT_SYMBOL_GPL(hisi_qm_debug_init);
4241 
4242 /**
4243  * hisi_qm_debug_regs_clear() - clear qm debug related registers.
4244  * @qm: The qm for which we want to clear its debug registers.
4245  */
4246 void hisi_qm_debug_regs_clear(struct hisi_qm *qm)
4247 {
4248 	struct qm_dfx_registers *regs;
4249 	int i;
4250 
4251 	/* clear current_qm */
4252 	writel(0x0, qm->io_base + QM_DFX_MB_CNT_VF);
4253 	writel(0x0, qm->io_base + QM_DFX_DB_CNT_VF);
4254 
4255 	/* clear current_q */
4256 	writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
4257 	writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
4258 
4259 	/*
4260 	 * these registers are reading and clearing, so clear them after
4261 	 * reading them.
4262 	 */
4263 	writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE);
4264 
4265 	regs = qm_dfx_regs;
4266 	for (i = 0; i < CNT_CYC_REGS_NUM; i++) {
4267 		readl(qm->io_base + regs->reg_offset);
4268 		regs++;
4269 	}
4270 
4271 	/* clear clear_enable */
4272 	writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE);
4273 }
4274 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear);
4275 
4276 /**
4277  * hisi_qm_sriov_enable() - enable virtual functions
4278  * @pdev: the PCIe device
4279  * @max_vfs: the number of virtual functions to enable
4280  *
4281  * Returns the number of enabled VFs. If there are VFs enabled already or
4282  * max_vfs is more than the total number of device can be enabled, returns
4283  * failure.
4284  */
4285 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
4286 {
4287 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4288 	int pre_existing_vfs, num_vfs, total_vfs, ret;
4289 
4290 	total_vfs = pci_sriov_get_totalvfs(pdev);
4291 	pre_existing_vfs = pci_num_vf(pdev);
4292 	if (pre_existing_vfs) {
4293 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
4294 			pre_existing_vfs);
4295 		return 0;
4296 	}
4297 
4298 	num_vfs = min_t(int, max_vfs, total_vfs);
4299 	ret = qm_vf_q_assign(qm, num_vfs);
4300 	if (ret) {
4301 		pci_err(pdev, "Can't assign queues for VF!\n");
4302 		return ret;
4303 	}
4304 
4305 	qm->vfs_num = num_vfs;
4306 
4307 	ret = pci_enable_sriov(pdev, num_vfs);
4308 	if (ret) {
4309 		pci_err(pdev, "Can't enable VF!\n");
4310 		qm_clear_vft_config(qm);
4311 		return ret;
4312 	}
4313 
4314 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
4315 
4316 	return num_vfs;
4317 }
4318 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
4319 
4320 /**
4321  * hisi_qm_sriov_disable - disable virtual functions
4322  * @pdev: the PCI device.
4323  * @is_frozen: true when all the VFs are frozen.
4324  *
4325  * Return failure if there are VFs assigned already or VF is in used.
4326  */
4327 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
4328 {
4329 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4330 	int total_vfs = pci_sriov_get_totalvfs(qm->pdev);
4331 
4332 	if (pci_vfs_assigned(pdev)) {
4333 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
4334 		return -EPERM;
4335 	}
4336 
4337 	/* While VF is in used, SRIOV cannot be disabled. */
4338 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
4339 		pci_err(pdev, "Task is using its VF!\n");
4340 		return -EBUSY;
4341 	}
4342 
4343 	pci_disable_sriov(pdev);
4344 	/* clear vf function shaper configure array */
4345 	memset(qm->factor + 1, 0, sizeof(struct qm_shaper_factor) * total_vfs);
4346 
4347 	return qm_clear_vft_config(qm);
4348 }
4349 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
4350 
4351 /**
4352  * hisi_qm_sriov_configure - configure the number of VFs
4353  * @pdev: The PCI device
4354  * @num_vfs: The number of VFs need enabled
4355  *
4356  * Enable SR-IOV according to num_vfs, 0 means disable.
4357  */
4358 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
4359 {
4360 	if (num_vfs == 0)
4361 		return hisi_qm_sriov_disable(pdev, false);
4362 	else
4363 		return hisi_qm_sriov_enable(pdev, num_vfs);
4364 }
4365 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
4366 
4367 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
4368 {
4369 	u32 err_sts;
4370 
4371 	if (!qm->err_ini->get_dev_hw_err_status) {
4372 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
4373 		return ACC_ERR_NONE;
4374 	}
4375 
4376 	/* get device hardware error status */
4377 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
4378 	if (err_sts) {
4379 		if (err_sts & qm->err_info.ecc_2bits_mask)
4380 			qm->err_status.is_dev_ecc_mbit = true;
4381 
4382 		if (qm->err_ini->log_dev_hw_err)
4383 			qm->err_ini->log_dev_hw_err(qm, err_sts);
4384 
4385 		/* ce error does not need to be reset */
4386 		if ((err_sts | qm->err_info.dev_ce_mask) ==
4387 		     qm->err_info.dev_ce_mask) {
4388 			if (qm->err_ini->clear_dev_hw_err_status)
4389 				qm->err_ini->clear_dev_hw_err_status(qm,
4390 								err_sts);
4391 
4392 			return ACC_ERR_RECOVERED;
4393 		}
4394 
4395 		return ACC_ERR_NEED_RESET;
4396 	}
4397 
4398 	return ACC_ERR_RECOVERED;
4399 }
4400 
4401 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
4402 {
4403 	enum acc_err_result qm_ret, dev_ret;
4404 
4405 	/* log qm error */
4406 	qm_ret = qm_hw_error_handle(qm);
4407 
4408 	/* log device error */
4409 	dev_ret = qm_dev_err_handle(qm);
4410 
4411 	return (qm_ret == ACC_ERR_NEED_RESET ||
4412 		dev_ret == ACC_ERR_NEED_RESET) ?
4413 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
4414 }
4415 
4416 /**
4417  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
4418  * @pdev: The PCI device which need report error.
4419  * @state: The connectivity between CPU and device.
4420  *
4421  * We register this function into PCIe AER handlers, It will report device or
4422  * qm hardware error status when error occur.
4423  */
4424 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
4425 					  pci_channel_state_t state)
4426 {
4427 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4428 	enum acc_err_result ret;
4429 
4430 	if (pdev->is_virtfn)
4431 		return PCI_ERS_RESULT_NONE;
4432 
4433 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
4434 	if (state == pci_channel_io_perm_failure)
4435 		return PCI_ERS_RESULT_DISCONNECT;
4436 
4437 	ret = qm_process_dev_error(qm);
4438 	if (ret == ACC_ERR_NEED_RESET)
4439 		return PCI_ERS_RESULT_NEED_RESET;
4440 
4441 	return PCI_ERS_RESULT_RECOVERED;
4442 }
4443 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
4444 
4445 static int qm_check_req_recv(struct hisi_qm *qm)
4446 {
4447 	struct pci_dev *pdev = qm->pdev;
4448 	int ret;
4449 	u32 val;
4450 
4451 	if (qm->ver >= QM_HW_V3)
4452 		return 0;
4453 
4454 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
4455 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4456 					 (val == ACC_VENDOR_ID_VALUE),
4457 					 POLL_PERIOD, POLL_TIMEOUT);
4458 	if (ret) {
4459 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
4460 		return ret;
4461 	}
4462 
4463 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
4464 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4465 					 (val == PCI_VENDOR_ID_HUAWEI),
4466 					 POLL_PERIOD, POLL_TIMEOUT);
4467 	if (ret)
4468 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
4469 
4470 	return ret;
4471 }
4472 
4473 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
4474 {
4475 	struct pci_dev *pdev = qm->pdev;
4476 	u16 cmd;
4477 	int i;
4478 
4479 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4480 	if (set)
4481 		cmd |= PCI_COMMAND_MEMORY;
4482 	else
4483 		cmd &= ~PCI_COMMAND_MEMORY;
4484 
4485 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
4486 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4487 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4488 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
4489 			return 0;
4490 
4491 		udelay(1);
4492 	}
4493 
4494 	return -ETIMEDOUT;
4495 }
4496 
4497 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
4498 {
4499 	struct pci_dev *pdev = qm->pdev;
4500 	u16 sriov_ctrl;
4501 	int pos;
4502 	int i;
4503 
4504 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4505 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4506 	if (set)
4507 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
4508 	else
4509 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
4510 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
4511 
4512 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4513 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4514 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
4515 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
4516 			return 0;
4517 
4518 		udelay(1);
4519 	}
4520 
4521 	return -ETIMEDOUT;
4522 }
4523 
4524 static int qm_vf_reset_prepare(struct hisi_qm *qm,
4525 			       enum qm_stop_reason stop_reason)
4526 {
4527 	struct hisi_qm_list *qm_list = qm->qm_list;
4528 	struct pci_dev *pdev = qm->pdev;
4529 	struct pci_dev *virtfn;
4530 	struct hisi_qm *vf_qm;
4531 	int ret = 0;
4532 
4533 	mutex_lock(&qm_list->lock);
4534 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4535 		virtfn = vf_qm->pdev;
4536 		if (virtfn == pdev)
4537 			continue;
4538 
4539 		if (pci_physfn(virtfn) == pdev) {
4540 			/* save VFs PCIE BAR configuration */
4541 			pci_save_state(virtfn);
4542 
4543 			ret = hisi_qm_stop(vf_qm, stop_reason);
4544 			if (ret)
4545 				goto stop_fail;
4546 		}
4547 	}
4548 
4549 stop_fail:
4550 	mutex_unlock(&qm_list->lock);
4551 	return ret;
4552 }
4553 
4554 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
4555 			   enum qm_stop_reason stop_reason)
4556 {
4557 	struct pci_dev *pdev = qm->pdev;
4558 	int ret;
4559 
4560 	if (!qm->vfs_num)
4561 		return 0;
4562 
4563 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
4564 	if (qm->ops->ping_all_vfs) {
4565 		ret = qm->ops->ping_all_vfs(qm, cmd);
4566 		if (ret)
4567 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
4568 	} else {
4569 		ret = qm_vf_reset_prepare(qm, stop_reason);
4570 		if (ret)
4571 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4572 	}
4573 
4574 	return ret;
4575 }
4576 
4577 static int qm_wait_reset_finish(struct hisi_qm *qm)
4578 {
4579 	int delay = 0;
4580 
4581 	/* All reset requests need to be queued for processing */
4582 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4583 		msleep(++delay);
4584 		if (delay > QM_RESET_WAIT_TIMEOUT)
4585 			return -EBUSY;
4586 	}
4587 
4588 	return 0;
4589 }
4590 
4591 static int qm_reset_prepare_ready(struct hisi_qm *qm)
4592 {
4593 	struct pci_dev *pdev = qm->pdev;
4594 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4595 
4596 	/*
4597 	 * PF and VF on host doesnot support resetting at the
4598 	 * same time on Kunpeng920.
4599 	 */
4600 	if (qm->ver < QM_HW_V3)
4601 		return qm_wait_reset_finish(pf_qm);
4602 
4603 	return qm_wait_reset_finish(qm);
4604 }
4605 
4606 static void qm_reset_bit_clear(struct hisi_qm *qm)
4607 {
4608 	struct pci_dev *pdev = qm->pdev;
4609 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4610 
4611 	if (qm->ver < QM_HW_V3)
4612 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
4613 
4614 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4615 }
4616 
4617 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4618 {
4619 	struct pci_dev *pdev = qm->pdev;
4620 	int ret;
4621 
4622 	ret = qm_reset_prepare_ready(qm);
4623 	if (ret) {
4624 		pci_err(pdev, "Controller reset not ready!\n");
4625 		return ret;
4626 	}
4627 
4628 	/* PF obtains the information of VF by querying the register. */
4629 	qm_cmd_uninit(qm);
4630 
4631 	/* Whether VFs stop successfully, soft reset will continue. */
4632 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4633 	if (ret)
4634 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4635 
4636 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4637 	if (ret) {
4638 		pci_err(pdev, "Fails to stop QM!\n");
4639 		qm_reset_bit_clear(qm);
4640 		return ret;
4641 	}
4642 
4643 	ret = qm_wait_vf_prepare_finish(qm);
4644 	if (ret)
4645 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4646 
4647 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4648 
4649 	return 0;
4650 }
4651 
4652 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4653 {
4654 	u32 nfe_enb = 0;
4655 
4656 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4657 	if (qm->ver >= QM_HW_V3)
4658 		return;
4659 
4660 	if (!qm->err_status.is_dev_ecc_mbit &&
4661 	    qm->err_status.is_qm_ecc_mbit &&
4662 	    qm->err_ini->close_axi_master_ooo) {
4663 
4664 		qm->err_ini->close_axi_master_ooo(qm);
4665 
4666 	} else if (qm->err_status.is_dev_ecc_mbit &&
4667 		   !qm->err_status.is_qm_ecc_mbit &&
4668 		   !qm->err_ini->close_axi_master_ooo) {
4669 
4670 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4671 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4672 		       qm->io_base + QM_RAS_NFE_ENABLE);
4673 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4674 	}
4675 }
4676 
4677 static int qm_soft_reset(struct hisi_qm *qm)
4678 {
4679 	struct pci_dev *pdev = qm->pdev;
4680 	int ret;
4681 	u32 val;
4682 
4683 	/* Ensure all doorbells and mailboxes received by QM */
4684 	ret = qm_check_req_recv(qm);
4685 	if (ret)
4686 		return ret;
4687 
4688 	if (qm->vfs_num) {
4689 		ret = qm_set_vf_mse(qm, false);
4690 		if (ret) {
4691 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4692 			return ret;
4693 		}
4694 	}
4695 
4696 	ret = qm->ops->set_msi(qm, false);
4697 	if (ret) {
4698 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4699 		return ret;
4700 	}
4701 
4702 	qm_dev_ecc_mbit_handle(qm);
4703 
4704 	/* OOO register set and check */
4705 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
4706 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4707 
4708 	/* If bus lock, reset chip */
4709 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4710 					 val,
4711 					 (val == ACC_MASTER_TRANS_RETURN_RW),
4712 					 POLL_PERIOD, POLL_TIMEOUT);
4713 	if (ret) {
4714 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
4715 		return ret;
4716 	}
4717 
4718 	if (qm->err_ini->close_sva_prefetch)
4719 		qm->err_ini->close_sva_prefetch(qm);
4720 
4721 	ret = qm_set_pf_mse(qm, false);
4722 	if (ret) {
4723 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4724 		return ret;
4725 	}
4726 
4727 	/* The reset related sub-control registers are not in PCI BAR */
4728 	if (ACPI_HANDLE(&pdev->dev)) {
4729 		unsigned long long value = 0;
4730 		acpi_status s;
4731 
4732 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4733 					  qm->err_info.acpi_rst,
4734 					  NULL, &value);
4735 		if (ACPI_FAILURE(s)) {
4736 			pci_err(pdev, "NO controller reset method!\n");
4737 			return -EIO;
4738 		}
4739 
4740 		if (value) {
4741 			pci_err(pdev, "Reset step %llu failed!\n", value);
4742 			return -EIO;
4743 		}
4744 	} else {
4745 		pci_err(pdev, "No reset method!\n");
4746 		return -EINVAL;
4747 	}
4748 
4749 	return 0;
4750 }
4751 
4752 static int qm_vf_reset_done(struct hisi_qm *qm)
4753 {
4754 	struct hisi_qm_list *qm_list = qm->qm_list;
4755 	struct pci_dev *pdev = qm->pdev;
4756 	struct pci_dev *virtfn;
4757 	struct hisi_qm *vf_qm;
4758 	int ret = 0;
4759 
4760 	mutex_lock(&qm_list->lock);
4761 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4762 		virtfn = vf_qm->pdev;
4763 		if (virtfn == pdev)
4764 			continue;
4765 
4766 		if (pci_physfn(virtfn) == pdev) {
4767 			/* enable VFs PCIE BAR configuration */
4768 			pci_restore_state(virtfn);
4769 
4770 			ret = qm_restart(vf_qm);
4771 			if (ret)
4772 				goto restart_fail;
4773 		}
4774 	}
4775 
4776 restart_fail:
4777 	mutex_unlock(&qm_list->lock);
4778 	return ret;
4779 }
4780 
4781 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
4782 {
4783 	struct pci_dev *pdev = qm->pdev;
4784 	int ret;
4785 
4786 	if (!qm->vfs_num)
4787 		return 0;
4788 
4789 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4790 	if (ret) {
4791 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4792 		return ret;
4793 	}
4794 
4795 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4796 	if (qm->ops->ping_all_vfs) {
4797 		ret = qm->ops->ping_all_vfs(qm, cmd);
4798 		if (ret)
4799 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4800 	} else {
4801 		ret = qm_vf_reset_done(qm);
4802 		if (ret)
4803 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4804 	}
4805 
4806 	return ret;
4807 }
4808 
4809 static int qm_dev_hw_init(struct hisi_qm *qm)
4810 {
4811 	return qm->err_ini->hw_init(qm);
4812 }
4813 
4814 static void qm_restart_prepare(struct hisi_qm *qm)
4815 {
4816 	u32 value;
4817 
4818 	if (qm->err_ini->open_sva_prefetch)
4819 		qm->err_ini->open_sva_prefetch(qm);
4820 
4821 	if (qm->ver >= QM_HW_V3)
4822 		return;
4823 
4824 	if (!qm->err_status.is_qm_ecc_mbit &&
4825 	    !qm->err_status.is_dev_ecc_mbit)
4826 		return;
4827 
4828 	/* temporarily close the OOO port used for PEH to write out MSI */
4829 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4830 	writel(value & ~qm->err_info.msi_wr_port,
4831 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4832 
4833 	/* clear dev ecc 2bit error source if having */
4834 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4835 	if (value && qm->err_ini->clear_dev_hw_err_status)
4836 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4837 
4838 	/* clear QM ecc mbit error source */
4839 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4840 
4841 	/* clear AM Reorder Buffer ecc mbit source */
4842 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4843 }
4844 
4845 static void qm_restart_done(struct hisi_qm *qm)
4846 {
4847 	u32 value;
4848 
4849 	if (qm->ver >= QM_HW_V3)
4850 		goto clear_flags;
4851 
4852 	if (!qm->err_status.is_qm_ecc_mbit &&
4853 	    !qm->err_status.is_dev_ecc_mbit)
4854 		return;
4855 
4856 	/* open the OOO port for PEH to write out MSI */
4857 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4858 	value |= qm->err_info.msi_wr_port;
4859 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4860 
4861 clear_flags:
4862 	qm->err_status.is_qm_ecc_mbit = false;
4863 	qm->err_status.is_dev_ecc_mbit = false;
4864 }
4865 
4866 static int qm_controller_reset_done(struct hisi_qm *qm)
4867 {
4868 	struct pci_dev *pdev = qm->pdev;
4869 	int ret;
4870 
4871 	ret = qm->ops->set_msi(qm, true);
4872 	if (ret) {
4873 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4874 		return ret;
4875 	}
4876 
4877 	ret = qm_set_pf_mse(qm, true);
4878 	if (ret) {
4879 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4880 		return ret;
4881 	}
4882 
4883 	if (qm->vfs_num) {
4884 		ret = qm_set_vf_mse(qm, true);
4885 		if (ret) {
4886 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
4887 			return ret;
4888 		}
4889 	}
4890 
4891 	ret = qm_dev_hw_init(qm);
4892 	if (ret) {
4893 		pci_err(pdev, "Failed to init device\n");
4894 		return ret;
4895 	}
4896 
4897 	qm_restart_prepare(qm);
4898 	hisi_qm_dev_err_init(qm);
4899 	if (qm->err_ini->open_axi_master_ooo)
4900 		qm->err_ini->open_axi_master_ooo(qm);
4901 
4902 	ret = qm_restart(qm);
4903 	if (ret) {
4904 		pci_err(pdev, "Failed to start QM!\n");
4905 		return ret;
4906 	}
4907 
4908 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4909 	if (ret)
4910 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4911 
4912 	ret = qm_wait_vf_prepare_finish(qm);
4913 	if (ret)
4914 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
4915 
4916 	qm_cmd_init(qm);
4917 	qm_restart_done(qm);
4918 
4919 	qm_reset_bit_clear(qm);
4920 
4921 	return 0;
4922 }
4923 
4924 static int qm_controller_reset(struct hisi_qm *qm)
4925 {
4926 	struct pci_dev *pdev = qm->pdev;
4927 	int ret;
4928 
4929 	pci_info(pdev, "Controller resetting...\n");
4930 
4931 	ret = qm_controller_reset_prepare(qm);
4932 	if (ret) {
4933 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4934 		return ret;
4935 	}
4936 
4937 	ret = qm_soft_reset(qm);
4938 	if (ret) {
4939 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4940 		qm_reset_bit_clear(qm);
4941 		return ret;
4942 	}
4943 
4944 	ret = qm_controller_reset_done(qm);
4945 	if (ret) {
4946 		qm_reset_bit_clear(qm);
4947 		return ret;
4948 	}
4949 
4950 	pci_info(pdev, "Controller reset complete\n");
4951 
4952 	return 0;
4953 }
4954 
4955 /**
4956  * hisi_qm_dev_slot_reset() - slot reset
4957  * @pdev: the PCIe device
4958  *
4959  * This function offers QM relate PCIe device reset interface. Drivers which
4960  * use QM can use this function as slot_reset in its struct pci_error_handlers.
4961  */
4962 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4963 {
4964 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4965 	int ret;
4966 
4967 	if (pdev->is_virtfn)
4968 		return PCI_ERS_RESULT_RECOVERED;
4969 
4970 	pci_aer_clear_nonfatal_status(pdev);
4971 
4972 	/* reset pcie device controller */
4973 	ret = qm_controller_reset(qm);
4974 	if (ret) {
4975 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4976 		return PCI_ERS_RESULT_DISCONNECT;
4977 	}
4978 
4979 	return PCI_ERS_RESULT_RECOVERED;
4980 }
4981 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4982 
4983 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4984 {
4985 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4986 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4987 	u32 delay = 0;
4988 	int ret;
4989 
4990 	hisi_qm_dev_err_uninit(pf_qm);
4991 
4992 	/*
4993 	 * Check whether there is an ECC mbit error, If it occurs, need to
4994 	 * wait for soft reset to fix it.
4995 	 */
4996 	while (qm_check_dev_error(pf_qm)) {
4997 		msleep(++delay);
4998 		if (delay > QM_RESET_WAIT_TIMEOUT)
4999 			return;
5000 	}
5001 
5002 	ret = qm_reset_prepare_ready(qm);
5003 	if (ret) {
5004 		pci_err(pdev, "FLR not ready!\n");
5005 		return;
5006 	}
5007 
5008 	/* PF obtains the information of VF by querying the register. */
5009 	if (qm->fun_type == QM_HW_PF)
5010 		qm_cmd_uninit(qm);
5011 
5012 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR);
5013 	if (ret)
5014 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
5015 
5016 	ret = hisi_qm_stop(qm, QM_FLR);
5017 	if (ret) {
5018 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
5019 		return;
5020 	}
5021 
5022 	ret = qm_wait_vf_prepare_finish(qm);
5023 	if (ret)
5024 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
5025 
5026 	pci_info(pdev, "FLR resetting...\n");
5027 }
5028 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
5029 
5030 static bool qm_flr_reset_complete(struct pci_dev *pdev)
5031 {
5032 	struct pci_dev *pf_pdev = pci_physfn(pdev);
5033 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
5034 	u32 id;
5035 
5036 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
5037 	if (id == QM_PCI_COMMAND_INVALID) {
5038 		pci_err(pdev, "Device can not be used!\n");
5039 		return false;
5040 	}
5041 
5042 	return true;
5043 }
5044 
5045 void hisi_qm_reset_done(struct pci_dev *pdev)
5046 {
5047 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
5048 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5049 	int ret;
5050 
5051 	if (qm->fun_type == QM_HW_PF) {
5052 		ret = qm_dev_hw_init(qm);
5053 		if (ret) {
5054 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
5055 			goto flr_done;
5056 		}
5057 	}
5058 
5059 	hisi_qm_dev_err_init(pf_qm);
5060 
5061 	ret = qm_restart(qm);
5062 	if (ret) {
5063 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
5064 		goto flr_done;
5065 	}
5066 
5067 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
5068 	if (ret)
5069 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
5070 
5071 	ret = qm_wait_vf_prepare_finish(qm);
5072 	if (ret)
5073 		pci_err(pdev, "failed to start by vfs in FLR!\n");
5074 
5075 flr_done:
5076 	if (qm->fun_type == QM_HW_PF)
5077 		qm_cmd_init(qm);
5078 
5079 	if (qm_flr_reset_complete(pdev))
5080 		pci_info(pdev, "FLR reset complete\n");
5081 
5082 	qm_reset_bit_clear(qm);
5083 }
5084 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
5085 
5086 static irqreturn_t qm_abnormal_irq(int irq, void *data)
5087 {
5088 	struct hisi_qm *qm = data;
5089 	enum acc_err_result ret;
5090 
5091 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
5092 	ret = qm_process_dev_error(qm);
5093 	if (ret == ACC_ERR_NEED_RESET &&
5094 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
5095 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
5096 		schedule_work(&qm->rst_work);
5097 
5098 	return IRQ_HANDLED;
5099 }
5100 
5101 static int qm_irq_register(struct hisi_qm *qm)
5102 {
5103 	struct pci_dev *pdev = qm->pdev;
5104 	int ret;
5105 
5106 	ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR),
5107 			  qm_irq, 0, qm->dev_name, qm);
5108 	if (ret)
5109 		return ret;
5110 
5111 	if (qm->ver > QM_HW_V1) {
5112 		ret = request_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR),
5113 				  qm_aeq_irq, 0, qm->dev_name, qm);
5114 		if (ret)
5115 			goto err_aeq_irq;
5116 
5117 		if (qm->fun_type == QM_HW_PF) {
5118 			ret = request_irq(pci_irq_vector(pdev,
5119 					  QM_ABNORMAL_EVENT_IRQ_VECTOR),
5120 					  qm_abnormal_irq, 0, qm->dev_name, qm);
5121 			if (ret)
5122 				goto err_abonormal_irq;
5123 		}
5124 	}
5125 
5126 	if (qm->ver > QM_HW_V2) {
5127 		ret = request_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR),
5128 				qm_mb_cmd_irq, 0, qm->dev_name, qm);
5129 		if (ret)
5130 			goto err_mb_cmd_irq;
5131 	}
5132 
5133 	return 0;
5134 
5135 err_mb_cmd_irq:
5136 	if (qm->fun_type == QM_HW_PF)
5137 		free_irq(pci_irq_vector(pdev, QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
5138 err_abonormal_irq:
5139 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
5140 err_aeq_irq:
5141 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
5142 	return ret;
5143 }
5144 
5145 /**
5146  * hisi_qm_dev_shutdown() - Shutdown device.
5147  * @pdev: The device will be shutdown.
5148  *
5149  * This function will stop qm when OS shutdown or rebooting.
5150  */
5151 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
5152 {
5153 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5154 	int ret;
5155 
5156 	ret = hisi_qm_stop(qm, QM_NORMAL);
5157 	if (ret)
5158 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
5159 }
5160 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
5161 
5162 static void hisi_qm_controller_reset(struct work_struct *rst_work)
5163 {
5164 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
5165 	int ret;
5166 
5167 	/* reset pcie device controller */
5168 	ret = qm_controller_reset(qm);
5169 	if (ret)
5170 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
5171 
5172 }
5173 
5174 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
5175 				   enum qm_stop_reason stop_reason)
5176 {
5177 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
5178 	struct pci_dev *pdev = qm->pdev;
5179 	int ret;
5180 
5181 	ret = qm_reset_prepare_ready(qm);
5182 	if (ret) {
5183 		dev_err(&pdev->dev, "reset prepare not ready!\n");
5184 		atomic_set(&qm->status.flags, QM_STOP);
5185 		cmd = QM_VF_PREPARE_FAIL;
5186 		goto err_prepare;
5187 	}
5188 
5189 	ret = hisi_qm_stop(qm, stop_reason);
5190 	if (ret) {
5191 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
5192 		atomic_set(&qm->status.flags, QM_STOP);
5193 		cmd = QM_VF_PREPARE_FAIL;
5194 		goto err_prepare;
5195 	}
5196 
5197 err_prepare:
5198 	pci_save_state(pdev);
5199 	ret = qm->ops->ping_pf(qm, cmd);
5200 	if (ret)
5201 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
5202 }
5203 
5204 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
5205 {
5206 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
5207 	struct pci_dev *pdev = qm->pdev;
5208 	int ret;
5209 
5210 	pci_restore_state(pdev);
5211 	ret = hisi_qm_start(qm);
5212 	if (ret) {
5213 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
5214 		cmd = QM_VF_START_FAIL;
5215 	}
5216 
5217 	ret = qm->ops->ping_pf(qm, cmd);
5218 	if (ret)
5219 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
5220 
5221 	qm_reset_bit_clear(qm);
5222 }
5223 
5224 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
5225 {
5226 	struct device *dev = &qm->pdev->dev;
5227 	u32 val, cmd;
5228 	u64 msg;
5229 	int ret;
5230 
5231 	/* Wait for reset to finish */
5232 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
5233 					 val == BIT(0), QM_VF_RESET_WAIT_US,
5234 					 QM_VF_RESET_WAIT_TIMEOUT_US);
5235 	/* hardware completion status should be available by this time */
5236 	if (ret) {
5237 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
5238 		return -ETIMEDOUT;
5239 	}
5240 
5241 	/*
5242 	 * Whether message is got successfully,
5243 	 * VF needs to ack PF by clearing the interrupt.
5244 	 */
5245 	ret = qm_get_mb_cmd(qm, &msg, 0);
5246 	qm_clear_cmd_interrupt(qm, 0);
5247 	if (ret) {
5248 		dev_err(dev, "failed to get msg from PF in reset done!\n");
5249 		return ret;
5250 	}
5251 
5252 	cmd = msg & QM_MB_CMD_DATA_MASK;
5253 	if (cmd != QM_PF_RESET_DONE) {
5254 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
5255 		ret = -EINVAL;
5256 	}
5257 
5258 	return ret;
5259 }
5260 
5261 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
5262 				   enum qm_stop_reason stop_reason)
5263 {
5264 	struct device *dev = &qm->pdev->dev;
5265 	int ret;
5266 
5267 	dev_info(dev, "device reset start...\n");
5268 
5269 	/* The message is obtained by querying the register during resetting */
5270 	qm_cmd_uninit(qm);
5271 	qm_pf_reset_vf_prepare(qm, stop_reason);
5272 
5273 	ret = qm_wait_pf_reset_finish(qm);
5274 	if (ret)
5275 		goto err_get_status;
5276 
5277 	qm_pf_reset_vf_done(qm);
5278 	qm_cmd_init(qm);
5279 
5280 	dev_info(dev, "device reset done.\n");
5281 
5282 	return;
5283 
5284 err_get_status:
5285 	qm_cmd_init(qm);
5286 	qm_reset_bit_clear(qm);
5287 }
5288 
5289 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
5290 {
5291 	struct device *dev = &qm->pdev->dev;
5292 	u64 msg;
5293 	u32 cmd;
5294 	int ret;
5295 
5296 	/*
5297 	 * Get the msg from source by sending mailbox. Whether message is got
5298 	 * successfully, destination needs to ack source by clearing the interrupt.
5299 	 */
5300 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
5301 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
5302 	if (ret) {
5303 		dev_err(dev, "failed to get msg from source!\n");
5304 		return;
5305 	}
5306 
5307 	cmd = msg & QM_MB_CMD_DATA_MASK;
5308 	switch (cmd) {
5309 	case QM_PF_FLR_PREPARE:
5310 		qm_pf_reset_vf_process(qm, QM_FLR);
5311 		break;
5312 	case QM_PF_SRST_PREPARE:
5313 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
5314 		break;
5315 	case QM_VF_GET_QOS:
5316 		qm_vf_get_qos(qm, fun_num);
5317 		break;
5318 	case QM_PF_SET_QOS:
5319 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
5320 		break;
5321 	default:
5322 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
5323 		break;
5324 	}
5325 }
5326 
5327 static void qm_cmd_process(struct work_struct *cmd_process)
5328 {
5329 	struct hisi_qm *qm = container_of(cmd_process,
5330 					struct hisi_qm, cmd_process);
5331 	u32 vfs_num = qm->vfs_num;
5332 	u64 val;
5333 	u32 i;
5334 
5335 	if (qm->fun_type == QM_HW_PF) {
5336 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
5337 		if (!val)
5338 			return;
5339 
5340 		for (i = 1; i <= vfs_num; i++) {
5341 			if (val & BIT(i))
5342 				qm_handle_cmd_msg(qm, i);
5343 		}
5344 
5345 		return;
5346 	}
5347 
5348 	qm_handle_cmd_msg(qm, 0);
5349 }
5350 
5351 /**
5352  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
5353  * @qm: The qm needs add.
5354  * @qm_list: The qm list.
5355  *
5356  * This function adds qm to qm list, and will register algorithm to
5357  * crypto when the qm list is empty.
5358  */
5359 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
5360 {
5361 	struct device *dev = &qm->pdev->dev;
5362 	int flag = 0;
5363 	int ret = 0;
5364 
5365 	mutex_lock(&qm_list->lock);
5366 	if (list_empty(&qm_list->list))
5367 		flag = 1;
5368 	list_add_tail(&qm->list, &qm_list->list);
5369 	mutex_unlock(&qm_list->lock);
5370 
5371 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
5372 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
5373 		return 0;
5374 	}
5375 
5376 	if (flag) {
5377 		ret = qm_list->register_to_crypto(qm);
5378 		if (ret) {
5379 			mutex_lock(&qm_list->lock);
5380 			list_del(&qm->list);
5381 			mutex_unlock(&qm_list->lock);
5382 		}
5383 	}
5384 
5385 	return ret;
5386 }
5387 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
5388 
5389 /**
5390  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
5391  * qm list.
5392  * @qm: The qm needs delete.
5393  * @qm_list: The qm list.
5394  *
5395  * This function deletes qm from qm list, and will unregister algorithm
5396  * from crypto when the qm list is empty.
5397  */
5398 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
5399 {
5400 	mutex_lock(&qm_list->lock);
5401 	list_del(&qm->list);
5402 	mutex_unlock(&qm_list->lock);
5403 
5404 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
5405 		return;
5406 
5407 	if (list_empty(&qm_list->list))
5408 		qm_list->unregister_from_crypto(qm);
5409 }
5410 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
5411 
5412 static int qm_get_qp_num(struct hisi_qm *qm)
5413 {
5414 	if (qm->ver == QM_HW_V1)
5415 		qm->ctrl_qp_num = QM_QNUM_V1;
5416 	else if (qm->ver == QM_HW_V2)
5417 		qm->ctrl_qp_num = QM_QNUM_V2;
5418 	else
5419 		qm->ctrl_qp_num = readl(qm->io_base + QM_CAPBILITY) &
5420 					QM_QP_NUN_MASK;
5421 
5422 	if (qm->use_db_isolation)
5423 		qm->max_qp_num = (readl(qm->io_base + QM_CAPBILITY) >>
5424 				  QM_QP_MAX_NUM_SHIFT) & QM_QP_NUN_MASK;
5425 	else
5426 		qm->max_qp_num = qm->ctrl_qp_num;
5427 
5428 	/* check if qp number is valid */
5429 	if (qm->qp_num > qm->max_qp_num) {
5430 		dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n",
5431 			qm->qp_num, qm->max_qp_num);
5432 		return -EINVAL;
5433 	}
5434 
5435 	return 0;
5436 }
5437 
5438 static int qm_get_pci_res(struct hisi_qm *qm)
5439 {
5440 	struct pci_dev *pdev = qm->pdev;
5441 	struct device *dev = &pdev->dev;
5442 	int ret;
5443 
5444 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5445 	if (ret < 0) {
5446 		dev_err(dev, "Failed to request mem regions!\n");
5447 		return ret;
5448 	}
5449 
5450 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5451 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5452 	if (!qm->io_base) {
5453 		ret = -EIO;
5454 		goto err_request_mem_regions;
5455 	}
5456 
5457 	if (qm->ver > QM_HW_V2) {
5458 		if (qm->fun_type == QM_HW_PF)
5459 			qm->use_db_isolation = readl(qm->io_base +
5460 						     QM_QUE_ISO_EN) & BIT(0);
5461 		else
5462 			qm->use_db_isolation = readl(qm->io_base +
5463 						     QM_QUE_ISO_CFG_V) & BIT(0);
5464 	}
5465 
5466 	if (qm->use_db_isolation) {
5467 		qm->db_interval = QM_QP_DB_INTERVAL;
5468 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5469 		qm->db_io_base = ioremap(qm->db_phys_base,
5470 					 pci_resource_len(pdev, PCI_BAR_4));
5471 		if (!qm->db_io_base) {
5472 			ret = -EIO;
5473 			goto err_ioremap;
5474 		}
5475 	} else {
5476 		qm->db_phys_base = qm->phys_base;
5477 		qm->db_io_base = qm->io_base;
5478 		qm->db_interval = 0;
5479 	}
5480 
5481 	if (qm->fun_type == QM_HW_PF) {
5482 		ret = qm_get_qp_num(qm);
5483 		if (ret)
5484 			goto err_db_ioremap;
5485 	}
5486 
5487 	return 0;
5488 
5489 err_db_ioremap:
5490 	if (qm->use_db_isolation)
5491 		iounmap(qm->db_io_base);
5492 err_ioremap:
5493 	iounmap(qm->io_base);
5494 err_request_mem_regions:
5495 	pci_release_mem_regions(pdev);
5496 	return ret;
5497 }
5498 
5499 static int hisi_qm_pci_init(struct hisi_qm *qm)
5500 {
5501 	struct pci_dev *pdev = qm->pdev;
5502 	struct device *dev = &pdev->dev;
5503 	unsigned int num_vec;
5504 	int ret;
5505 
5506 	ret = pci_enable_device_mem(pdev);
5507 	if (ret < 0) {
5508 		dev_err(dev, "Failed to enable device mem!\n");
5509 		return ret;
5510 	}
5511 
5512 	ret = qm_get_pci_res(qm);
5513 	if (ret)
5514 		goto err_disable_pcidev;
5515 
5516 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5517 	if (ret < 0)
5518 		goto err_get_pci_res;
5519 	pci_set_master(pdev);
5520 
5521 	if (!qm->ops->get_irq_num) {
5522 		ret = -EOPNOTSUPP;
5523 		goto err_get_pci_res;
5524 	}
5525 	num_vec = qm->ops->get_irq_num(qm);
5526 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5527 	if (ret < 0) {
5528 		dev_err(dev, "Failed to enable MSI vectors!\n");
5529 		goto err_get_pci_res;
5530 	}
5531 
5532 	return 0;
5533 
5534 err_get_pci_res:
5535 	qm_put_pci_res(qm);
5536 err_disable_pcidev:
5537 	pci_disable_device(pdev);
5538 	return ret;
5539 }
5540 
5541 static void hisi_qm_init_work(struct hisi_qm *qm)
5542 {
5543 	INIT_WORK(&qm->work, qm_work_process);
5544 	if (qm->fun_type == QM_HW_PF)
5545 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5546 
5547 	if (qm->ver > QM_HW_V2)
5548 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5549 }
5550 
5551 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5552 {
5553 	struct device *dev = &qm->pdev->dev;
5554 	size_t qp_dma_size;
5555 	int i, ret;
5556 
5557 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5558 	if (!qm->qp_array)
5559 		return -ENOMEM;
5560 
5561 	/* one more page for device or qp statuses */
5562 	qp_dma_size = qm->sqe_size * QM_Q_DEPTH +
5563 		      sizeof(struct qm_cqe) * QM_Q_DEPTH;
5564 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5565 	for (i = 0; i < qm->qp_num; i++) {
5566 		ret = hisi_qp_memory_init(qm, qp_dma_size, i);
5567 		if (ret)
5568 			goto err_init_qp_mem;
5569 
5570 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5571 	}
5572 
5573 	return 0;
5574 err_init_qp_mem:
5575 	hisi_qp_memory_uninit(qm, i);
5576 
5577 	return ret;
5578 }
5579 
5580 static int hisi_qm_memory_init(struct hisi_qm *qm)
5581 {
5582 	struct device *dev = &qm->pdev->dev;
5583 	int ret, total_vfs;
5584 	size_t off = 0;
5585 
5586 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
5587 	qm->factor = kcalloc(total_vfs + 1, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5588 	if (!qm->factor)
5589 		return -ENOMEM;
5590 
5591 #define QM_INIT_BUF(qm, type, num) do { \
5592 	(qm)->type = ((qm)->qdma.va + (off)); \
5593 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5594 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5595 } while (0)
5596 
5597 	idr_init(&qm->qp_idr);
5598 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) +
5599 			QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) +
5600 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5601 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5602 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5603 					 GFP_ATOMIC);
5604 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5605 	if (!qm->qdma.va) {
5606 		ret =  -ENOMEM;
5607 		goto err_alloc_qdma;
5608 	}
5609 
5610 	QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH);
5611 	QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH);
5612 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5613 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5614 
5615 	ret = hisi_qp_alloc_memory(qm);
5616 	if (ret)
5617 		goto err_alloc_qp_array;
5618 
5619 	return 0;
5620 
5621 err_alloc_qp_array:
5622 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5623 err_alloc_qdma:
5624 	kfree(qm->factor);
5625 
5626 	return ret;
5627 }
5628 
5629 /**
5630  * hisi_qm_init() - Initialize configures about qm.
5631  * @qm: The qm needing init.
5632  *
5633  * This function init qm, then we can call hisi_qm_start to put qm into work.
5634  */
5635 int hisi_qm_init(struct hisi_qm *qm)
5636 {
5637 	struct pci_dev *pdev = qm->pdev;
5638 	struct device *dev = &pdev->dev;
5639 	int ret;
5640 
5641 	hisi_qm_pre_init(qm);
5642 
5643 	ret = hisi_qm_pci_init(qm);
5644 	if (ret)
5645 		return ret;
5646 
5647 	ret = qm_irq_register(qm);
5648 	if (ret)
5649 		goto err_pci_init;
5650 
5651 	if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) {
5652 		/* v2 starts to support get vft by mailbox */
5653 		ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
5654 		if (ret)
5655 			goto err_irq_register;
5656 	}
5657 
5658 	ret = qm_alloc_uacce(qm);
5659 	if (ret < 0)
5660 		dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5661 
5662 	ret = hisi_qm_memory_init(qm);
5663 	if (ret)
5664 		goto err_alloc_uacce;
5665 
5666 	hisi_qm_init_work(qm);
5667 	qm_cmd_init(qm);
5668 	atomic_set(&qm->status.flags, QM_INIT);
5669 
5670 	return 0;
5671 
5672 err_alloc_uacce:
5673 	uacce_remove(qm->uacce);
5674 	qm->uacce = NULL;
5675 err_irq_register:
5676 	qm_irq_unregister(qm);
5677 err_pci_init:
5678 	hisi_qm_pci_uninit(qm);
5679 	return ret;
5680 }
5681 EXPORT_SYMBOL_GPL(hisi_qm_init);
5682 
5683 MODULE_LICENSE("GPL v2");
5684 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5685 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5686