1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/aer.h> 6 #include <linux/bitmap.h> 7 #include <linux/dma-mapping.h> 8 #include <linux/idr.h> 9 #include <linux/io.h> 10 #include <linux/irqreturn.h> 11 #include <linux/log2.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/seq_file.h> 14 #include <linux/slab.h> 15 #include <linux/uacce.h> 16 #include <linux/uaccess.h> 17 #include <uapi/misc/uacce/hisi_qm.h> 18 #include <linux/hisi_acc_qm.h> 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 #define QM_IRQ_NUM_V1 1 26 #define QM_IRQ_NUM_PF_V2 4 27 #define QM_IRQ_NUM_VF_V2 2 28 #define QM_IRQ_NUM_VF_V3 3 29 30 #define QM_EQ_EVENT_IRQ_VECTOR 0 31 #define QM_AEQ_EVENT_IRQ_VECTOR 1 32 #define QM_CMD_EVENT_IRQ_VECTOR 2 33 #define QM_ABNORMAL_EVENT_IRQ_VECTOR 3 34 35 /* mailbox */ 36 #define QM_MB_PING_ALL_VFS 0xffff 37 #define QM_MB_CMD_DATA_SHIFT 32 38 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 39 40 /* sqc shift */ 41 #define QM_SQ_HOP_NUM_SHIFT 0 42 #define QM_SQ_PAGE_SIZE_SHIFT 4 43 #define QM_SQ_BUF_SIZE_SHIFT 8 44 #define QM_SQ_SQE_SIZE_SHIFT 12 45 #define QM_SQ_PRIORITY_SHIFT 0 46 #define QM_SQ_ORDERS_SHIFT 4 47 #define QM_SQ_TYPE_SHIFT 8 48 #define QM_QC_PASID_ENABLE 0x1 49 #define QM_QC_PASID_ENABLE_SHIFT 7 50 51 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 52 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) 53 54 /* cqc shift */ 55 #define QM_CQ_HOP_NUM_SHIFT 0 56 #define QM_CQ_PAGE_SIZE_SHIFT 4 57 #define QM_CQ_BUF_SIZE_SHIFT 8 58 #define QM_CQ_CQE_SIZE_SHIFT 12 59 #define QM_CQ_PHASE_SHIFT 0 60 #define QM_CQ_FLAG_SHIFT 1 61 62 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 63 #define QM_QC_CQE_SIZE 4 64 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) 65 66 /* eqc shift */ 67 #define QM_EQE_AEQE_SIZE (2UL << 12) 68 #define QM_EQC_PHASE_SHIFT 16 69 70 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 71 #define QM_EQE_CQN_MASK GENMASK(15, 0) 72 73 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 74 #define QM_AEQE_TYPE_SHIFT 17 75 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 76 #define QM_CQ_OVERFLOW 0 77 #define QM_EQ_OVERFLOW 1 78 #define QM_CQE_ERROR 2 79 80 #define QM_DOORBELL_CMD_SQ 0 81 #define QM_DOORBELL_CMD_CQ 1 82 #define QM_DOORBELL_CMD_EQ 2 83 #define QM_DOORBELL_CMD_AEQ 3 84 85 #define QM_DOORBELL_BASE_V1 0x340 86 #define QM_DB_CMD_SHIFT_V1 16 87 #define QM_DB_INDEX_SHIFT_V1 32 88 #define QM_DB_PRIORITY_SHIFT_V1 48 89 #define QM_QUE_ISO_CFG_V 0x0030 90 #define QM_PAGE_SIZE 0x0034 91 #define QM_QUE_ISO_EN 0x100154 92 #define QM_CAPBILITY 0x100158 93 #define QM_QP_NUN_MASK GENMASK(10, 0) 94 #define QM_QP_DB_INTERVAL 0x10000 95 96 #define QM_MEM_START_INIT 0x100040 97 #define QM_MEM_INIT_DONE 0x100044 98 #define QM_VFT_CFG_RDY 0x10006c 99 #define QM_VFT_CFG_OP_WR 0x100058 100 #define QM_VFT_CFG_TYPE 0x10005c 101 #define QM_SQC_VFT 0x0 102 #define QM_CQC_VFT 0x1 103 #define QM_VFT_CFG 0x100060 104 #define QM_VFT_CFG_OP_ENABLE 0x100054 105 #define QM_PM_CTRL 0x100148 106 #define QM_IDLE_DISABLE BIT(9) 107 108 #define QM_VFT_CFG_DATA_L 0x100064 109 #define QM_VFT_CFG_DATA_H 0x100068 110 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 111 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 112 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 113 #define QM_SQC_VFT_START_SQN_SHIFT 28 114 #define QM_SQC_VFT_VALID (1ULL << 44) 115 #define QM_SQC_VFT_SQN_SHIFT 45 116 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 117 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 118 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 119 #define QM_CQC_VFT_VALID (1ULL << 28) 120 121 #define QM_SQC_VFT_BASE_SHIFT_V2 28 122 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 123 #define QM_SQC_VFT_NUM_SHIFT_V2 45 124 #define QM_SQC_VFT_NUM_MASK_v2 GENMASK(9, 0) 125 126 #define QM_DFX_CNT_CLR_CE 0x100118 127 128 #define QM_ABNORMAL_INT_SOURCE 0x100000 129 #define QM_ABNORMAL_INT_SOURCE_CLR GENMASK(14, 0) 130 #define QM_ABNORMAL_INT_MASK 0x100004 131 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 132 #define QM_ABNORMAL_INT_STATUS 0x100008 133 #define QM_ABNORMAL_INT_SET 0x10000c 134 #define QM_ABNORMAL_INF00 0x100010 135 #define QM_FIFO_OVERFLOW_TYPE 0xc0 136 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 137 #define QM_FIFO_OVERFLOW_VF 0x3f 138 #define QM_ABNORMAL_INF01 0x100014 139 #define QM_DB_TIMEOUT_TYPE 0xc0 140 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 141 #define QM_DB_TIMEOUT_VF 0x3f 142 #define QM_RAS_CE_ENABLE 0x1000ec 143 #define QM_RAS_FE_ENABLE 0x1000f0 144 #define QM_RAS_NFE_ENABLE 0x1000f4 145 #define QM_RAS_CE_THRESHOLD 0x1000f8 146 #define QM_RAS_CE_TIMES_PER_IRQ 1 147 #define QM_RAS_MSI_INT_SEL 0x1040f4 148 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 149 150 #define QM_RESET_WAIT_TIMEOUT 400 151 #define QM_PEH_VENDOR_ID 0x1000d8 152 #define ACC_VENDOR_ID_VALUE 0x5a5a 153 #define QM_PEH_DFX_INFO0 0x1000fc 154 #define QM_PEH_DFX_INFO1 0x100100 155 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 156 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 157 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 158 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 159 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 160 #define ACC_MASTER_TRANS_RETURN_RW 3 161 #define ACC_MASTER_TRANS_RETURN 0x300150 162 #define ACC_MASTER_GLOBAL_CTRL 0x300000 163 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 164 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 165 #define ACC_AM_ROB_ECC_INT_STS 0x300104 166 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 167 #define QM_MSI_CAP_ENABLE BIT(16) 168 169 /* interfunction communication */ 170 #define QM_IFC_READY_STATUS 0x100128 171 #define QM_IFC_C_STS_M 0x10012C 172 #define QM_IFC_INT_SET_P 0x100130 173 #define QM_IFC_INT_CFG 0x100134 174 #define QM_IFC_INT_SOURCE_P 0x100138 175 #define QM_IFC_INT_SOURCE_V 0x0020 176 #define QM_IFC_INT_MASK 0x0024 177 #define QM_IFC_INT_STATUS 0x0028 178 #define QM_IFC_INT_SET_V 0x002C 179 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 180 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 181 #define QM_IFC_INT_SOURCE_MASK BIT(0) 182 #define QM_IFC_INT_DISABLE BIT(0) 183 #define QM_IFC_INT_STATUS_MASK BIT(0) 184 #define QM_IFC_INT_SET_MASK BIT(0) 185 #define QM_WAIT_DST_ACK 10 186 #define QM_MAX_PF_WAIT_COUNT 10 187 #define QM_MAX_VF_WAIT_COUNT 40 188 #define QM_VF_RESET_WAIT_US 20000 189 #define QM_VF_RESET_WAIT_CNT 3000 190 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 191 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 192 193 #define QM_DFX_MB_CNT_VF 0x104010 194 #define QM_DFX_DB_CNT_VF 0x104020 195 #define QM_DFX_SQE_CNT_VF_SQN 0x104030 196 #define QM_DFX_CQE_CNT_VF_CQN 0x104040 197 #define QM_DFX_QN_SHIFT 16 198 #define CURRENT_FUN_MASK GENMASK(5, 0) 199 #define CURRENT_Q_MASK GENMASK(31, 16) 200 201 #define POLL_PERIOD 10 202 #define POLL_TIMEOUT 1000 203 #define WAIT_PERIOD_US_MAX 200 204 #define WAIT_PERIOD_US_MIN 100 205 #define MAX_WAIT_COUNTS 1000 206 #define QM_CACHE_WB_START 0x204 207 #define QM_CACHE_WB_DONE 0x208 208 209 #define PCI_BAR_2 2 210 #define PCI_BAR_4 4 211 #define QM_SQE_DATA_ALIGN_MASK GENMASK(6, 0) 212 #define QMC_ALIGN(sz) ALIGN(sz, 32) 213 214 #define QM_DBG_READ_LEN 256 215 #define QM_DBG_WRITE_LEN 1024 216 #define QM_DBG_TMP_BUF_LEN 22 217 #define QM_PCI_COMMAND_INVALID ~0 218 #define QM_RESET_STOP_TX_OFFSET 1 219 #define QM_RESET_STOP_RX_OFFSET 2 220 221 #define WAIT_PERIOD 20 222 #define REMOVE_WAIT_DELAY 10 223 #define QM_SQE_ADDR_MASK GENMASK(7, 0) 224 #define QM_EQ_DEPTH (1024 * 2) 225 226 #define QM_DRIVER_REMOVING 0 227 #define QM_RST_SCHED 1 228 #define QM_RESETTING 2 229 #define QM_QOS_PARAM_NUM 2 230 #define QM_QOS_VAL_NUM 1 231 #define QM_QOS_BDF_PARAM_NUM 4 232 #define QM_QOS_MAX_VAL 1000 233 #define QM_QOS_RATE 100 234 #define QM_QOS_EXPAND_RATE 1000 235 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 236 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 237 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 238 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 239 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 240 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 241 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 242 #define QM_SHAPER_CBS_B 1 243 #define QM_SHAPER_CBS_S 16 244 #define QM_SHAPER_VFT_OFFSET 6 245 #define WAIT_FOR_QOS_VF 100 246 #define QM_QOS_MIN_ERROR_RATE 5 247 #define QM_QOS_TYPICAL_NUM 8 248 #define QM_SHAPER_MIN_CBS_S 8 249 #define QM_QOS_TICK 0x300U 250 #define QM_QOS_DIVISOR_CLK 0x1f40U 251 #define QM_QOS_MAX_CIR_B 200 252 #define QM_QOS_MIN_CIR_B 100 253 #define QM_QOS_MAX_CIR_U 6 254 #define QM_QOS_MAX_CIR_S 11 255 #define QM_QOS_VAL_MAX_LEN 32 256 #define QM_DFX_BASE 0x0100000 257 #define QM_DFX_STATE1 0x0104000 258 #define QM_DFX_STATE2 0x01040C8 259 #define QM_DFX_COMMON 0x0000 260 #define QM_DFX_BASE_LEN 0x5A 261 #define QM_DFX_STATE1_LEN 0x2E 262 #define QM_DFX_STATE2_LEN 0x11 263 #define QM_DFX_COMMON_LEN 0xC3 264 #define QM_DFX_REGS_LEN 4UL 265 #define QM_AUTOSUSPEND_DELAY 3000 266 267 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 268 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 269 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 270 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 271 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 272 273 #define QM_MK_CQC_DW3_V2(cqe_sz) \ 274 ((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 275 276 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 277 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 278 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 279 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 280 281 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 282 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 283 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 284 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 285 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 286 287 #define QM_MK_SQC_DW3_V2(sqe_sz) \ 288 ((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 289 290 #define INIT_QC_COMMON(qc, base, pasid) do { \ 291 (qc)->head = 0; \ 292 (qc)->tail = 0; \ 293 (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ 294 (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ 295 (qc)->dw3 = 0; \ 296 (qc)->w8 = 0; \ 297 (qc)->rsvd0 = 0; \ 298 (qc)->pasid = cpu_to_le16(pasid); \ 299 (qc)->w11 = 0; \ 300 (qc)->rsvd1 = 0; \ 301 } while (0) 302 303 enum vft_type { 304 SQC_VFT = 0, 305 CQC_VFT, 306 SHAPER_VFT, 307 }; 308 309 enum acc_err_result { 310 ACC_ERR_NONE, 311 ACC_ERR_NEED_RESET, 312 ACC_ERR_RECOVERED, 313 }; 314 315 enum qm_alg_type { 316 ALG_TYPE_0, 317 ALG_TYPE_1, 318 }; 319 320 enum qm_mb_cmd { 321 QM_PF_FLR_PREPARE = 0x01, 322 QM_PF_SRST_PREPARE, 323 QM_PF_RESET_DONE, 324 QM_VF_PREPARE_DONE, 325 QM_VF_PREPARE_FAIL, 326 QM_VF_START_DONE, 327 QM_VF_START_FAIL, 328 QM_PF_SET_QOS, 329 QM_VF_GET_QOS, 330 }; 331 332 struct qm_cqe { 333 __le32 rsvd0; 334 __le16 cmd_id; 335 __le16 rsvd1; 336 __le16 sq_head; 337 __le16 sq_num; 338 __le16 rsvd2; 339 __le16 w7; 340 }; 341 342 struct qm_eqe { 343 __le32 dw0; 344 }; 345 346 struct qm_aeqe { 347 __le32 dw0; 348 }; 349 350 struct qm_sqc { 351 __le16 head; 352 __le16 tail; 353 __le32 base_l; 354 __le32 base_h; 355 __le32 dw3; 356 __le16 w8; 357 __le16 rsvd0; 358 __le16 pasid; 359 __le16 w11; 360 __le16 cq_num; 361 __le16 w13; 362 __le32 rsvd1; 363 }; 364 365 struct qm_cqc { 366 __le16 head; 367 __le16 tail; 368 __le32 base_l; 369 __le32 base_h; 370 __le32 dw3; 371 __le16 w8; 372 __le16 rsvd0; 373 __le16 pasid; 374 __le16 w11; 375 __le32 dw6; 376 __le32 rsvd1; 377 }; 378 379 struct qm_eqc { 380 __le16 head; 381 __le16 tail; 382 __le32 base_l; 383 __le32 base_h; 384 __le32 dw3; 385 __le32 rsvd[2]; 386 __le32 dw6; 387 }; 388 389 struct qm_aeqc { 390 __le16 head; 391 __le16 tail; 392 __le32 base_l; 393 __le32 base_h; 394 __le32 dw3; 395 __le32 rsvd[2]; 396 __le32 dw6; 397 }; 398 399 struct qm_mailbox { 400 __le16 w0; 401 __le16 queue_num; 402 __le32 base_l; 403 __le32 base_h; 404 __le32 rsvd; 405 }; 406 407 struct qm_doorbell { 408 __le16 queue_num; 409 __le16 cmd; 410 __le16 index; 411 __le16 priority; 412 }; 413 414 struct hisi_qm_resource { 415 struct hisi_qm *qm; 416 int distance; 417 struct list_head list; 418 }; 419 420 struct hisi_qm_hw_ops { 421 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 422 void (*qm_db)(struct hisi_qm *qm, u16 qn, 423 u8 cmd, u16 index, u8 priority); 424 u32 (*get_irq_num)(struct hisi_qm *qm); 425 int (*debug_init)(struct hisi_qm *qm); 426 void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe); 427 void (*hw_error_uninit)(struct hisi_qm *qm); 428 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 429 int (*stop_qp)(struct hisi_qp *qp); 430 int (*set_msi)(struct hisi_qm *qm, bool set); 431 int (*ping_all_vfs)(struct hisi_qm *qm, u64 cmd); 432 int (*ping_pf)(struct hisi_qm *qm, u64 cmd); 433 }; 434 435 struct qm_dfx_item { 436 const char *name; 437 u32 offset; 438 }; 439 440 static struct qm_dfx_item qm_dfx_files[] = { 441 {"err_irq", offsetof(struct qm_dfx, err_irq_cnt)}, 442 {"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)}, 443 {"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)}, 444 {"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)}, 445 {"mb_err", offsetof(struct qm_dfx, mb_err_cnt)}, 446 }; 447 448 static const char * const qm_debug_file_name[] = { 449 [CURRENT_QM] = "current_qm", 450 [CURRENT_Q] = "current_q", 451 [CLEAR_ENABLE] = "clear_enable", 452 }; 453 454 struct hisi_qm_hw_error { 455 u32 int_msk; 456 const char *msg; 457 }; 458 459 static const struct hisi_qm_hw_error qm_hw_error[] = { 460 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 461 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 462 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 463 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 464 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 465 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 466 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 467 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 468 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 469 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 470 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 471 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 472 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 473 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 474 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 475 { /* sentinel */ } 476 }; 477 478 /* define the QM's dfx regs region and region length */ 479 static struct dfx_diff_registers qm_diff_regs[] = { 480 { 481 .reg_offset = QM_DFX_BASE, 482 .reg_len = QM_DFX_BASE_LEN, 483 }, { 484 .reg_offset = QM_DFX_STATE1, 485 .reg_len = QM_DFX_STATE1_LEN, 486 }, { 487 .reg_offset = QM_DFX_STATE2, 488 .reg_len = QM_DFX_STATE2_LEN, 489 }, { 490 .reg_offset = QM_DFX_COMMON, 491 .reg_len = QM_DFX_COMMON_LEN, 492 }, 493 }; 494 495 static const char * const qm_db_timeout[] = { 496 "sq", "cq", "eq", "aeq", 497 }; 498 499 static const char * const qm_fifo_overflow[] = { 500 "cq", "eq", "aeq", 501 }; 502 503 static const char * const qm_s[] = { 504 "init", "start", "close", "stop", 505 }; 506 507 static const char * const qp_s[] = { 508 "none", "init", "start", "stop", "close", 509 }; 510 511 struct qm_typical_qos_table { 512 u32 start; 513 u32 end; 514 u32 val; 515 }; 516 517 /* the qos step is 100 */ 518 static struct qm_typical_qos_table shaper_cir_s[] = { 519 {100, 100, 4}, 520 {200, 200, 3}, 521 {300, 500, 2}, 522 {600, 1000, 1}, 523 {1100, 100000, 0}, 524 }; 525 526 static struct qm_typical_qos_table shaper_cbs_s[] = { 527 {100, 200, 9}, 528 {300, 500, 11}, 529 {600, 1000, 12}, 530 {1100, 10000, 16}, 531 {10100, 25000, 17}, 532 {25100, 50000, 18}, 533 {50100, 100000, 19} 534 }; 535 536 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 537 { 538 enum qm_state curr = atomic_read(&qm->status.flags); 539 bool avail = false; 540 541 switch (curr) { 542 case QM_INIT: 543 if (new == QM_START || new == QM_CLOSE) 544 avail = true; 545 break; 546 case QM_START: 547 if (new == QM_STOP) 548 avail = true; 549 break; 550 case QM_STOP: 551 if (new == QM_CLOSE || new == QM_START) 552 avail = true; 553 break; 554 default: 555 break; 556 } 557 558 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 559 qm_s[curr], qm_s[new]); 560 561 if (!avail) 562 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 563 qm_s[curr], qm_s[new]); 564 565 return avail; 566 } 567 568 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 569 enum qp_state new) 570 { 571 enum qm_state qm_curr = atomic_read(&qm->status.flags); 572 enum qp_state qp_curr = 0; 573 bool avail = false; 574 575 if (qp) 576 qp_curr = atomic_read(&qp->qp_status.flags); 577 578 switch (new) { 579 case QP_INIT: 580 if (qm_curr == QM_START || qm_curr == QM_INIT) 581 avail = true; 582 break; 583 case QP_START: 584 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 585 (qm_curr == QM_START && qp_curr == QP_STOP)) 586 avail = true; 587 break; 588 case QP_STOP: 589 if ((qm_curr == QM_START && qp_curr == QP_START) || 590 (qp_curr == QP_INIT)) 591 avail = true; 592 break; 593 case QP_CLOSE: 594 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 595 (qm_curr == QM_START && qp_curr == QP_STOP) || 596 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 597 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 598 avail = true; 599 break; 600 default: 601 break; 602 } 603 604 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 605 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 606 607 if (!avail) 608 dev_warn(&qm->pdev->dev, 609 "Can not change qp state from %s to %s in QM %s\n", 610 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 611 612 return avail; 613 } 614 615 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 616 { 617 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 618 } 619 620 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 621 { 622 return qm->err_ini->get_dev_hw_err_status(qm); 623 } 624 625 /* Check if the error causes the master ooo block */ 626 static int qm_check_dev_error(struct hisi_qm *qm) 627 { 628 u32 val, dev_val; 629 630 if (qm->fun_type == QM_HW_VF) 631 return 0; 632 633 val = qm_get_hw_error_status(qm); 634 dev_val = qm_get_dev_err_status(qm); 635 636 if (qm->ver < QM_HW_V3) 637 return (val & QM_ECC_MBIT) || 638 (dev_val & qm->err_info.ecc_2bits_mask); 639 640 return (val & readl(qm->io_base + QM_OOO_SHUTDOWN_SEL)) || 641 (dev_val & (~qm->err_info.dev_ce_mask)); 642 } 643 644 static int qm_wait_reset_finish(struct hisi_qm *qm) 645 { 646 int delay = 0; 647 648 /* All reset requests need to be queued for processing */ 649 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 650 msleep(++delay); 651 if (delay > QM_RESET_WAIT_TIMEOUT) 652 return -EBUSY; 653 } 654 655 return 0; 656 } 657 658 static int qm_reset_prepare_ready(struct hisi_qm *qm) 659 { 660 struct pci_dev *pdev = qm->pdev; 661 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 662 663 /* 664 * PF and VF on host doesnot support resetting at the 665 * same time on Kunpeng920. 666 */ 667 if (qm->ver < QM_HW_V3) 668 return qm_wait_reset_finish(pf_qm); 669 670 return qm_wait_reset_finish(qm); 671 } 672 673 static void qm_reset_bit_clear(struct hisi_qm *qm) 674 { 675 struct pci_dev *pdev = qm->pdev; 676 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 677 678 if (qm->ver < QM_HW_V3) 679 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 680 681 clear_bit(QM_RESETTING, &qm->misc_ctl); 682 } 683 684 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 685 u64 base, u16 queue, bool op) 686 { 687 mailbox->w0 = cpu_to_le16((cmd) | 688 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 689 (0x1 << QM_MB_BUSY_SHIFT)); 690 mailbox->queue_num = cpu_to_le16(queue); 691 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 692 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 693 mailbox->rsvd = 0; 694 } 695 696 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 697 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 698 { 699 u32 val; 700 701 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 702 val, !((val >> QM_MB_BUSY_SHIFT) & 703 0x1), POLL_PERIOD, POLL_TIMEOUT); 704 } 705 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 706 707 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 708 static void qm_mb_write(struct hisi_qm *qm, const void *src) 709 { 710 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 711 unsigned long tmp0 = 0, tmp1 = 0; 712 713 if (!IS_ENABLED(CONFIG_ARM64)) { 714 memcpy_toio(fun_base, src, 16); 715 dma_wmb(); 716 return; 717 } 718 719 asm volatile("ldp %0, %1, %3\n" 720 "stp %0, %1, %2\n" 721 "dmb oshst\n" 722 : "=&r" (tmp0), 723 "=&r" (tmp1), 724 "+Q" (*((char __iomem *)fun_base)) 725 : "Q" (*((char *)src)) 726 : "memory"); 727 } 728 729 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 730 { 731 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 732 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 733 goto mb_busy; 734 } 735 736 qm_mb_write(qm, mailbox); 737 738 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 739 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 740 goto mb_busy; 741 } 742 743 return 0; 744 745 mb_busy: 746 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 747 return -EBUSY; 748 } 749 750 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 751 bool op) 752 { 753 struct qm_mailbox mailbox; 754 int ret; 755 756 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 757 queue, cmd, (unsigned long long)dma_addr); 758 759 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 760 761 mutex_lock(&qm->mailbox_lock); 762 ret = qm_mb_nolock(qm, &mailbox); 763 mutex_unlock(&qm->mailbox_lock); 764 765 return ret; 766 } 767 EXPORT_SYMBOL_GPL(hisi_qm_mb); 768 769 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 770 { 771 u64 doorbell; 772 773 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 774 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 775 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 776 777 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 778 } 779 780 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 781 { 782 void __iomem *io_base = qm->io_base; 783 u16 randata = 0; 784 u64 doorbell; 785 786 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 787 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 788 QM_DOORBELL_SQ_CQ_BASE_V2; 789 else 790 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 791 792 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 793 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 794 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 795 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 796 797 writeq(doorbell, io_base); 798 } 799 800 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 801 { 802 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 803 qn, cmd, index); 804 805 qm->ops->qm_db(qm, qn, cmd, index, priority); 806 } 807 808 static void qm_disable_clock_gate(struct hisi_qm *qm) 809 { 810 u32 val; 811 812 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 813 if (qm->ver < QM_HW_V3) 814 return; 815 816 val = readl(qm->io_base + QM_PM_CTRL); 817 val |= QM_IDLE_DISABLE; 818 writel(val, qm->io_base + QM_PM_CTRL); 819 } 820 821 static int qm_dev_mem_reset(struct hisi_qm *qm) 822 { 823 u32 val; 824 825 writel(0x1, qm->io_base + QM_MEM_START_INIT); 826 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 827 val & BIT(0), POLL_PERIOD, 828 POLL_TIMEOUT); 829 } 830 831 static u32 qm_get_irq_num_v1(struct hisi_qm *qm) 832 { 833 return QM_IRQ_NUM_V1; 834 } 835 836 static u32 qm_get_irq_num_v2(struct hisi_qm *qm) 837 { 838 if (qm->fun_type == QM_HW_PF) 839 return QM_IRQ_NUM_PF_V2; 840 else 841 return QM_IRQ_NUM_VF_V2; 842 } 843 844 static u32 qm_get_irq_num_v3(struct hisi_qm *qm) 845 { 846 if (qm->fun_type == QM_HW_PF) 847 return QM_IRQ_NUM_PF_V2; 848 849 return QM_IRQ_NUM_VF_V3; 850 } 851 852 static int qm_pm_get_sync(struct hisi_qm *qm) 853 { 854 struct device *dev = &qm->pdev->dev; 855 int ret; 856 857 if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3) 858 return 0; 859 860 ret = pm_runtime_resume_and_get(dev); 861 if (ret < 0) { 862 dev_err(dev, "failed to get_sync(%d).\n", ret); 863 return ret; 864 } 865 866 return 0; 867 } 868 869 static void qm_pm_put_sync(struct hisi_qm *qm) 870 { 871 struct device *dev = &qm->pdev->dev; 872 873 if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3) 874 return; 875 876 pm_runtime_mark_last_busy(dev); 877 pm_runtime_put_autosuspend(dev); 878 } 879 880 static void qm_cq_head_update(struct hisi_qp *qp) 881 { 882 if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) { 883 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 884 qp->qp_status.cq_head = 0; 885 } else { 886 qp->qp_status.cq_head++; 887 } 888 } 889 890 static void qm_poll_req_cb(struct hisi_qp *qp) 891 { 892 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 893 struct hisi_qm *qm = qp->qm; 894 895 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 896 dma_rmb(); 897 qp->req_cb(qp, qp->sqe + qm->sqe_size * 898 le16_to_cpu(cqe->sq_head)); 899 qm_cq_head_update(qp); 900 cqe = qp->cqe + qp->qp_status.cq_head; 901 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 902 qp->qp_status.cq_head, 0); 903 atomic_dec(&qp->qp_status.used); 904 } 905 906 /* set c_flag */ 907 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 908 } 909 910 static int qm_get_complete_eqe_num(struct hisi_qm_poll_data *poll_data) 911 { 912 struct hisi_qm *qm = poll_data->qm; 913 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 914 int eqe_num = 0; 915 u16 cqn; 916 917 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 918 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 919 poll_data->qp_finish_id[eqe_num] = cqn; 920 eqe_num++; 921 922 if (qm->status.eq_head == QM_EQ_DEPTH - 1) { 923 qm->status.eqc_phase = !qm->status.eqc_phase; 924 eqe = qm->eqe; 925 qm->status.eq_head = 0; 926 } else { 927 eqe++; 928 qm->status.eq_head++; 929 } 930 931 if (eqe_num == (QM_EQ_DEPTH >> 1) - 1) 932 break; 933 } 934 935 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 936 937 return eqe_num; 938 } 939 940 static void qm_work_process(struct work_struct *work) 941 { 942 struct hisi_qm_poll_data *poll_data = 943 container_of(work, struct hisi_qm_poll_data, work); 944 struct hisi_qm *qm = poll_data->qm; 945 struct hisi_qp *qp; 946 int eqe_num, i; 947 948 /* Get qp id of completed tasks and re-enable the interrupt. */ 949 eqe_num = qm_get_complete_eqe_num(poll_data); 950 for (i = eqe_num - 1; i >= 0; i--) { 951 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 952 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 953 continue; 954 955 if (qp->event_cb) { 956 qp->event_cb(qp); 957 continue; 958 } 959 960 if (likely(qp->req_cb)) 961 qm_poll_req_cb(qp); 962 } 963 } 964 965 static bool do_qm_irq(struct hisi_qm *qm) 966 { 967 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 968 struct hisi_qm_poll_data *poll_data; 969 u16 cqn; 970 971 if (!readl(qm->io_base + QM_VF_EQ_INT_SOURCE)) 972 return false; 973 974 if (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 975 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 976 poll_data = &qm->poll_data[cqn]; 977 queue_work(qm->wq, &poll_data->work); 978 979 return true; 980 } 981 982 return false; 983 } 984 985 static irqreturn_t qm_irq(int irq, void *data) 986 { 987 struct hisi_qm *qm = data; 988 bool ret; 989 990 ret = do_qm_irq(qm); 991 if (ret) 992 return IRQ_HANDLED; 993 994 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 995 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 996 997 return IRQ_NONE; 998 } 999 1000 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 1001 { 1002 struct hisi_qm *qm = data; 1003 u32 val; 1004 1005 val = readl(qm->io_base + QM_IFC_INT_STATUS); 1006 val &= QM_IFC_INT_STATUS_MASK; 1007 if (!val) 1008 return IRQ_NONE; 1009 1010 schedule_work(&qm->cmd_process); 1011 1012 return IRQ_HANDLED; 1013 } 1014 1015 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 1016 { 1017 u32 *addr; 1018 1019 if (qp->is_in_kernel) 1020 return; 1021 1022 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 1023 *addr = 1; 1024 1025 /* make sure setup is completed */ 1026 smp_wmb(); 1027 } 1028 1029 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 1030 { 1031 struct hisi_qp *qp = &qm->qp_array[qp_id]; 1032 1033 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 1034 hisi_qm_stop_qp(qp); 1035 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 1036 } 1037 1038 static void qm_reset_function(struct hisi_qm *qm) 1039 { 1040 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 1041 struct device *dev = &qm->pdev->dev; 1042 int ret; 1043 1044 if (qm_check_dev_error(pf_qm)) 1045 return; 1046 1047 ret = qm_reset_prepare_ready(qm); 1048 if (ret) { 1049 dev_err(dev, "reset function not ready\n"); 1050 return; 1051 } 1052 1053 ret = hisi_qm_stop(qm, QM_FLR); 1054 if (ret) { 1055 dev_err(dev, "failed to stop qm when reset function\n"); 1056 goto clear_bit; 1057 } 1058 1059 ret = hisi_qm_start(qm); 1060 if (ret) 1061 dev_err(dev, "failed to start qm when reset function\n"); 1062 1063 clear_bit: 1064 qm_reset_bit_clear(qm); 1065 } 1066 1067 static irqreturn_t qm_aeq_thread(int irq, void *data) 1068 { 1069 struct hisi_qm *qm = data; 1070 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1071 u32 type, qp_id; 1072 1073 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1074 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; 1075 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1076 1077 switch (type) { 1078 case QM_EQ_OVERFLOW: 1079 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1080 qm_reset_function(qm); 1081 return IRQ_HANDLED; 1082 case QM_CQ_OVERFLOW: 1083 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1084 qp_id); 1085 fallthrough; 1086 case QM_CQE_ERROR: 1087 qm_disable_qp(qm, qp_id); 1088 break; 1089 default: 1090 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1091 type); 1092 break; 1093 } 1094 1095 if (qm->status.aeq_head == QM_Q_DEPTH - 1) { 1096 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1097 aeqe = qm->aeqe; 1098 qm->status.aeq_head = 0; 1099 } else { 1100 aeqe++; 1101 qm->status.aeq_head++; 1102 } 1103 } 1104 1105 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1106 1107 return IRQ_HANDLED; 1108 } 1109 1110 static irqreturn_t qm_aeq_irq(int irq, void *data) 1111 { 1112 struct hisi_qm *qm = data; 1113 1114 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1115 if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE)) 1116 return IRQ_NONE; 1117 1118 return IRQ_WAKE_THREAD; 1119 } 1120 1121 static void qm_irq_unregister(struct hisi_qm *qm) 1122 { 1123 struct pci_dev *pdev = qm->pdev; 1124 1125 free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm); 1126 1127 if (qm->ver > QM_HW_V1) { 1128 free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm); 1129 1130 if (qm->fun_type == QM_HW_PF) 1131 free_irq(pci_irq_vector(pdev, 1132 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm); 1133 } 1134 1135 if (qm->ver > QM_HW_V2) 1136 free_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR), qm); 1137 } 1138 1139 static void qm_init_qp_status(struct hisi_qp *qp) 1140 { 1141 struct hisi_qp_status *qp_status = &qp->qp_status; 1142 1143 qp_status->sq_tail = 0; 1144 qp_status->cq_head = 0; 1145 qp_status->cqc_phase = true; 1146 atomic_set(&qp_status->used, 0); 1147 } 1148 1149 static void qm_init_prefetch(struct hisi_qm *qm) 1150 { 1151 struct device *dev = &qm->pdev->dev; 1152 u32 page_type = 0x0; 1153 1154 if (qm->ver < QM_HW_V3) 1155 return; 1156 1157 switch (PAGE_SIZE) { 1158 case SZ_4K: 1159 page_type = 0x0; 1160 break; 1161 case SZ_16K: 1162 page_type = 0x1; 1163 break; 1164 case SZ_64K: 1165 page_type = 0x2; 1166 break; 1167 default: 1168 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1169 PAGE_SIZE); 1170 } 1171 1172 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1173 } 1174 1175 /* 1176 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1177 * is the expected qos calculated. 1178 * the formula: 1179 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1180 * 1181 * IR_b * (2 ^ IR_u) * 8000 1182 * IR(Mbps) = ------------------------- 1183 * Tick * (2 ^ IR_s) 1184 */ 1185 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1186 { 1187 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1188 (QM_QOS_TICK * (1 << cir_s)); 1189 } 1190 1191 static u32 acc_shaper_calc_cbs_s(u32 ir) 1192 { 1193 int table_size = ARRAY_SIZE(shaper_cbs_s); 1194 int i; 1195 1196 for (i = 0; i < table_size; i++) { 1197 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1198 return shaper_cbs_s[i].val; 1199 } 1200 1201 return QM_SHAPER_MIN_CBS_S; 1202 } 1203 1204 static u32 acc_shaper_calc_cir_s(u32 ir) 1205 { 1206 int table_size = ARRAY_SIZE(shaper_cir_s); 1207 int i; 1208 1209 for (i = 0; i < table_size; i++) { 1210 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1211 return shaper_cir_s[i].val; 1212 } 1213 1214 return 0; 1215 } 1216 1217 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1218 { 1219 u32 cir_b, cir_u, cir_s, ir_calc; 1220 u32 error_rate; 1221 1222 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1223 cir_s = acc_shaper_calc_cir_s(ir); 1224 1225 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1226 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1227 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1228 1229 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1230 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1231 factor->cir_b = cir_b; 1232 factor->cir_u = cir_u; 1233 factor->cir_s = cir_s; 1234 return 0; 1235 } 1236 } 1237 } 1238 1239 return -EINVAL; 1240 } 1241 1242 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1243 u32 number, struct qm_shaper_factor *factor) 1244 { 1245 u64 tmp = 0; 1246 1247 if (number > 0) { 1248 switch (type) { 1249 case SQC_VFT: 1250 if (qm->ver == QM_HW_V1) { 1251 tmp = QM_SQC_VFT_BUF_SIZE | 1252 QM_SQC_VFT_SQC_SIZE | 1253 QM_SQC_VFT_INDEX_NUMBER | 1254 QM_SQC_VFT_VALID | 1255 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1256 } else { 1257 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1258 QM_SQC_VFT_VALID | 1259 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1260 } 1261 break; 1262 case CQC_VFT: 1263 if (qm->ver == QM_HW_V1) { 1264 tmp = QM_CQC_VFT_BUF_SIZE | 1265 QM_CQC_VFT_SQC_SIZE | 1266 QM_CQC_VFT_INDEX_NUMBER | 1267 QM_CQC_VFT_VALID; 1268 } else { 1269 tmp = QM_CQC_VFT_VALID; 1270 } 1271 break; 1272 case SHAPER_VFT: 1273 if (qm->ver >= QM_HW_V3) { 1274 tmp = factor->cir_b | 1275 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1276 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1277 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1278 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1279 } 1280 break; 1281 } 1282 } 1283 1284 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1285 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1286 } 1287 1288 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1289 u32 fun_num, u32 base, u32 number) 1290 { 1291 struct qm_shaper_factor *factor = &qm->factor[fun_num]; 1292 unsigned int val; 1293 int ret; 1294 1295 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1296 val & BIT(0), POLL_PERIOD, 1297 POLL_TIMEOUT); 1298 if (ret) 1299 return ret; 1300 1301 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1302 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1303 if (type == SHAPER_VFT) 1304 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1305 1306 writel(fun_num, qm->io_base + QM_VFT_CFG); 1307 1308 qm_vft_data_cfg(qm, type, base, number, factor); 1309 1310 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1311 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1312 1313 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1314 val & BIT(0), POLL_PERIOD, 1315 POLL_TIMEOUT); 1316 } 1317 1318 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1319 { 1320 u32 qos = qm->factor[fun_num].func_qos; 1321 int ret, i; 1322 1323 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1324 if (ret) { 1325 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1326 return ret; 1327 } 1328 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1329 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1330 /* The base number of queue reuse for different alg type */ 1331 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1332 if (ret) 1333 return ret; 1334 } 1335 1336 return 0; 1337 } 1338 1339 /* The config should be conducted after qm_dev_mem_reset() */ 1340 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1341 u32 number) 1342 { 1343 int ret, i; 1344 1345 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1346 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1347 if (ret) 1348 return ret; 1349 } 1350 1351 /* init default shaper qos val */ 1352 if (qm->ver >= QM_HW_V3) { 1353 ret = qm_shaper_init_vft(qm, fun_num); 1354 if (ret) 1355 goto back_sqc_cqc; 1356 } 1357 1358 return 0; 1359 back_sqc_cqc: 1360 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1361 ret = qm_set_vft_common(qm, i, fun_num, 0, 0); 1362 if (ret) 1363 return ret; 1364 } 1365 return ret; 1366 } 1367 1368 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1369 { 1370 u64 sqc_vft; 1371 int ret; 1372 1373 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1374 if (ret) 1375 return ret; 1376 1377 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1378 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1379 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1380 *number = (QM_SQC_VFT_NUM_MASK_v2 & 1381 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1382 1383 return 0; 1384 } 1385 1386 static int qm_get_vf_qp_num(struct hisi_qm *qm, u32 fun_num) 1387 { 1388 u32 remain_q_num, vfq_num; 1389 u32 num_vfs = qm->vfs_num; 1390 1391 vfq_num = (qm->ctrl_qp_num - qm->qp_num) / num_vfs; 1392 if (vfq_num >= qm->max_qp_num) 1393 return qm->max_qp_num; 1394 1395 remain_q_num = (qm->ctrl_qp_num - qm->qp_num) % num_vfs; 1396 if (vfq_num + remain_q_num <= qm->max_qp_num) 1397 return fun_num == num_vfs ? vfq_num + remain_q_num : vfq_num; 1398 1399 /* 1400 * if vfq_num + remain_q_num > max_qp_num, the last VFs, 1401 * each with one more queue. 1402 */ 1403 return fun_num + remain_q_num > num_vfs ? vfq_num + 1 : vfq_num; 1404 } 1405 1406 static struct hisi_qm *file_to_qm(struct debugfs_file *file) 1407 { 1408 struct qm_debug *debug = file->debug; 1409 1410 return container_of(debug, struct hisi_qm, debug); 1411 } 1412 1413 static u32 current_q_read(struct hisi_qm *qm) 1414 { 1415 return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT; 1416 } 1417 1418 static int current_q_write(struct hisi_qm *qm, u32 val) 1419 { 1420 u32 tmp; 1421 1422 if (val >= qm->debug.curr_qm_qp_num) 1423 return -EINVAL; 1424 1425 tmp = val << QM_DFX_QN_SHIFT | 1426 (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK); 1427 writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 1428 1429 tmp = val << QM_DFX_QN_SHIFT | 1430 (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK); 1431 writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 1432 1433 return 0; 1434 } 1435 1436 static u32 clear_enable_read(struct hisi_qm *qm) 1437 { 1438 return readl(qm->io_base + QM_DFX_CNT_CLR_CE); 1439 } 1440 1441 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */ 1442 static int clear_enable_write(struct hisi_qm *qm, u32 rd_clr_ctrl) 1443 { 1444 if (rd_clr_ctrl > 1) 1445 return -EINVAL; 1446 1447 writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE); 1448 1449 return 0; 1450 } 1451 1452 static u32 current_qm_read(struct hisi_qm *qm) 1453 { 1454 return readl(qm->io_base + QM_DFX_MB_CNT_VF); 1455 } 1456 1457 static int current_qm_write(struct hisi_qm *qm, u32 val) 1458 { 1459 u32 tmp; 1460 1461 if (val > qm->vfs_num) 1462 return -EINVAL; 1463 1464 /* According PF or VF Dev ID to calculation curr_qm_qp_num and store */ 1465 if (!val) 1466 qm->debug.curr_qm_qp_num = qm->qp_num; 1467 else 1468 qm->debug.curr_qm_qp_num = qm_get_vf_qp_num(qm, val); 1469 1470 writel(val, qm->io_base + QM_DFX_MB_CNT_VF); 1471 writel(val, qm->io_base + QM_DFX_DB_CNT_VF); 1472 1473 tmp = val | 1474 (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_Q_MASK); 1475 writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 1476 1477 tmp = val | 1478 (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_Q_MASK); 1479 writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 1480 1481 return 0; 1482 } 1483 1484 static ssize_t qm_debug_read(struct file *filp, char __user *buf, 1485 size_t count, loff_t *pos) 1486 { 1487 struct debugfs_file *file = filp->private_data; 1488 enum qm_debug_file index = file->index; 1489 struct hisi_qm *qm = file_to_qm(file); 1490 char tbuf[QM_DBG_TMP_BUF_LEN]; 1491 u32 val; 1492 int ret; 1493 1494 ret = hisi_qm_get_dfx_access(qm); 1495 if (ret) 1496 return ret; 1497 1498 mutex_lock(&file->lock); 1499 switch (index) { 1500 case CURRENT_QM: 1501 val = current_qm_read(qm); 1502 break; 1503 case CURRENT_Q: 1504 val = current_q_read(qm); 1505 break; 1506 case CLEAR_ENABLE: 1507 val = clear_enable_read(qm); 1508 break; 1509 default: 1510 goto err_input; 1511 } 1512 mutex_unlock(&file->lock); 1513 1514 hisi_qm_put_dfx_access(qm); 1515 ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val); 1516 return simple_read_from_buffer(buf, count, pos, tbuf, ret); 1517 1518 err_input: 1519 mutex_unlock(&file->lock); 1520 hisi_qm_put_dfx_access(qm); 1521 return -EINVAL; 1522 } 1523 1524 static ssize_t qm_debug_write(struct file *filp, const char __user *buf, 1525 size_t count, loff_t *pos) 1526 { 1527 struct debugfs_file *file = filp->private_data; 1528 enum qm_debug_file index = file->index; 1529 struct hisi_qm *qm = file_to_qm(file); 1530 unsigned long val; 1531 char tbuf[QM_DBG_TMP_BUF_LEN]; 1532 int len, ret; 1533 1534 if (*pos != 0) 1535 return 0; 1536 1537 if (count >= QM_DBG_TMP_BUF_LEN) 1538 return -ENOSPC; 1539 1540 len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf, 1541 count); 1542 if (len < 0) 1543 return len; 1544 1545 tbuf[len] = '\0'; 1546 if (kstrtoul(tbuf, 0, &val)) 1547 return -EFAULT; 1548 1549 ret = hisi_qm_get_dfx_access(qm); 1550 if (ret) 1551 return ret; 1552 1553 mutex_lock(&file->lock); 1554 switch (index) { 1555 case CURRENT_QM: 1556 ret = current_qm_write(qm, val); 1557 break; 1558 case CURRENT_Q: 1559 ret = current_q_write(qm, val); 1560 break; 1561 case CLEAR_ENABLE: 1562 ret = clear_enable_write(qm, val); 1563 break; 1564 default: 1565 ret = -EINVAL; 1566 } 1567 mutex_unlock(&file->lock); 1568 1569 hisi_qm_put_dfx_access(qm); 1570 1571 if (ret) 1572 return ret; 1573 1574 return count; 1575 } 1576 1577 static const struct file_operations qm_debug_fops = { 1578 .owner = THIS_MODULE, 1579 .open = simple_open, 1580 .read = qm_debug_read, 1581 .write = qm_debug_write, 1582 }; 1583 1584 #define CNT_CYC_REGS_NUM 10 1585 static const struct debugfs_reg32 qm_dfx_regs[] = { 1586 /* XXX_CNT are reading clear register */ 1587 {"QM_ECC_1BIT_CNT ", 0x104000ull}, 1588 {"QM_ECC_MBIT_CNT ", 0x104008ull}, 1589 {"QM_DFX_MB_CNT ", 0x104018ull}, 1590 {"QM_DFX_DB_CNT ", 0x104028ull}, 1591 {"QM_DFX_SQE_CNT ", 0x104038ull}, 1592 {"QM_DFX_CQE_CNT ", 0x104048ull}, 1593 {"QM_DFX_SEND_SQE_TO_ACC_CNT ", 0x104050ull}, 1594 {"QM_DFX_WB_SQE_FROM_ACC_CNT ", 0x104058ull}, 1595 {"QM_DFX_ACC_FINISH_CNT ", 0x104060ull}, 1596 {"QM_DFX_CQE_ERR_CNT ", 0x1040b4ull}, 1597 {"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull}, 1598 {"QM_ECC_1BIT_INF ", 0x104004ull}, 1599 {"QM_ECC_MBIT_INF ", 0x10400cull}, 1600 {"QM_DFX_ACC_RDY_VLD0 ", 0x1040a0ull}, 1601 {"QM_DFX_ACC_RDY_VLD1 ", 0x1040a4ull}, 1602 {"QM_DFX_AXI_RDY_VLD ", 0x1040a8ull}, 1603 {"QM_DFX_FF_ST0 ", 0x1040c8ull}, 1604 {"QM_DFX_FF_ST1 ", 0x1040ccull}, 1605 {"QM_DFX_FF_ST2 ", 0x1040d0ull}, 1606 {"QM_DFX_FF_ST3 ", 0x1040d4ull}, 1607 {"QM_DFX_FF_ST4 ", 0x1040d8ull}, 1608 {"QM_DFX_FF_ST5 ", 0x1040dcull}, 1609 {"QM_DFX_FF_ST6 ", 0x1040e0ull}, 1610 {"QM_IN_IDLE_ST ", 0x1040e4ull}, 1611 }; 1612 1613 static const struct debugfs_reg32 qm_vf_dfx_regs[] = { 1614 {"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull}, 1615 }; 1616 1617 /** 1618 * hisi_qm_regs_dump() - Dump registers's value. 1619 * @s: debugfs file handle. 1620 * @regset: accelerator registers information. 1621 * 1622 * Dump accelerator registers. 1623 */ 1624 void hisi_qm_regs_dump(struct seq_file *s, struct debugfs_regset32 *regset) 1625 { 1626 struct pci_dev *pdev = to_pci_dev(regset->dev); 1627 struct hisi_qm *qm = pci_get_drvdata(pdev); 1628 const struct debugfs_reg32 *regs = regset->regs; 1629 int regs_len = regset->nregs; 1630 int i, ret; 1631 u32 val; 1632 1633 ret = hisi_qm_get_dfx_access(qm); 1634 if (ret) 1635 return; 1636 1637 for (i = 0; i < regs_len; i++) { 1638 val = readl(regset->base + regs[i].offset); 1639 seq_printf(s, "%s= 0x%08x\n", regs[i].name, val); 1640 } 1641 1642 hisi_qm_put_dfx_access(qm); 1643 } 1644 EXPORT_SYMBOL_GPL(hisi_qm_regs_dump); 1645 1646 static int qm_regs_show(struct seq_file *s, void *unused) 1647 { 1648 struct hisi_qm *qm = s->private; 1649 struct debugfs_regset32 regset; 1650 1651 if (qm->fun_type == QM_HW_PF) { 1652 regset.regs = qm_dfx_regs; 1653 regset.nregs = ARRAY_SIZE(qm_dfx_regs); 1654 } else { 1655 regset.regs = qm_vf_dfx_regs; 1656 regset.nregs = ARRAY_SIZE(qm_vf_dfx_regs); 1657 } 1658 1659 regset.base = qm->io_base; 1660 regset.dev = &qm->pdev->dev; 1661 1662 hisi_qm_regs_dump(s, ®set); 1663 1664 return 0; 1665 } 1666 1667 DEFINE_SHOW_ATTRIBUTE(qm_regs); 1668 1669 static struct dfx_diff_registers *dfx_regs_init(struct hisi_qm *qm, 1670 const struct dfx_diff_registers *cregs, int reg_len) 1671 { 1672 struct dfx_diff_registers *diff_regs; 1673 u32 j, base_offset; 1674 int i; 1675 1676 diff_regs = kcalloc(reg_len, sizeof(*diff_regs), GFP_KERNEL); 1677 if (!diff_regs) 1678 return ERR_PTR(-ENOMEM); 1679 1680 for (i = 0; i < reg_len; i++) { 1681 if (!cregs[i].reg_len) 1682 continue; 1683 1684 diff_regs[i].reg_offset = cregs[i].reg_offset; 1685 diff_regs[i].reg_len = cregs[i].reg_len; 1686 diff_regs[i].regs = kcalloc(QM_DFX_REGS_LEN, cregs[i].reg_len, 1687 GFP_KERNEL); 1688 if (!diff_regs[i].regs) 1689 goto alloc_error; 1690 1691 for (j = 0; j < diff_regs[i].reg_len; j++) { 1692 base_offset = diff_regs[i].reg_offset + 1693 j * QM_DFX_REGS_LEN; 1694 diff_regs[i].regs[j] = readl(qm->io_base + base_offset); 1695 } 1696 } 1697 1698 return diff_regs; 1699 1700 alloc_error: 1701 while (i > 0) { 1702 i--; 1703 kfree(diff_regs[i].regs); 1704 } 1705 kfree(diff_regs); 1706 return ERR_PTR(-ENOMEM); 1707 } 1708 1709 static void dfx_regs_uninit(struct hisi_qm *qm, 1710 struct dfx_diff_registers *dregs, int reg_len) 1711 { 1712 int i; 1713 1714 /* Setting the pointer is NULL to prevent double free */ 1715 for (i = 0; i < reg_len; i++) { 1716 kfree(dregs[i].regs); 1717 dregs[i].regs = NULL; 1718 } 1719 kfree(dregs); 1720 dregs = NULL; 1721 } 1722 1723 /** 1724 * hisi_qm_diff_regs_init() - Allocate memory for registers. 1725 * @qm: device qm handle. 1726 * @dregs: diff registers handle. 1727 * @reg_len: diff registers region length. 1728 */ 1729 int hisi_qm_diff_regs_init(struct hisi_qm *qm, 1730 struct dfx_diff_registers *dregs, int reg_len) 1731 { 1732 if (!qm || !dregs || reg_len <= 0) 1733 return -EINVAL; 1734 1735 if (qm->fun_type != QM_HW_PF) 1736 return 0; 1737 1738 qm->debug.qm_diff_regs = dfx_regs_init(qm, qm_diff_regs, 1739 ARRAY_SIZE(qm_diff_regs)); 1740 if (IS_ERR(qm->debug.qm_diff_regs)) 1741 return PTR_ERR(qm->debug.qm_diff_regs); 1742 1743 qm->debug.acc_diff_regs = dfx_regs_init(qm, dregs, reg_len); 1744 if (IS_ERR(qm->debug.acc_diff_regs)) { 1745 dfx_regs_uninit(qm, qm->debug.qm_diff_regs, 1746 ARRAY_SIZE(qm_diff_regs)); 1747 return PTR_ERR(qm->debug.acc_diff_regs); 1748 } 1749 1750 return 0; 1751 } 1752 EXPORT_SYMBOL_GPL(hisi_qm_diff_regs_init); 1753 1754 /** 1755 * hisi_qm_diff_regs_uninit() - Free memory for registers. 1756 * @qm: device qm handle. 1757 * @reg_len: diff registers region length. 1758 */ 1759 void hisi_qm_diff_regs_uninit(struct hisi_qm *qm, int reg_len) 1760 { 1761 if (!qm || reg_len <= 0 || qm->fun_type != QM_HW_PF) 1762 return; 1763 1764 dfx_regs_uninit(qm, qm->debug.acc_diff_regs, reg_len); 1765 dfx_regs_uninit(qm, qm->debug.qm_diff_regs, ARRAY_SIZE(qm_diff_regs)); 1766 } 1767 EXPORT_SYMBOL_GPL(hisi_qm_diff_regs_uninit); 1768 1769 /** 1770 * hisi_qm_acc_diff_regs_dump() - Dump registers's value. 1771 * @qm: device qm handle. 1772 * @s: Debugfs file handle. 1773 * @dregs: diff registers handle. 1774 * @regs_len: diff registers region length. 1775 */ 1776 void hisi_qm_acc_diff_regs_dump(struct hisi_qm *qm, struct seq_file *s, 1777 struct dfx_diff_registers *dregs, int regs_len) 1778 { 1779 u32 j, val, base_offset; 1780 int i, ret; 1781 1782 if (!qm || !s || !dregs || regs_len <= 0) 1783 return; 1784 1785 ret = hisi_qm_get_dfx_access(qm); 1786 if (ret) 1787 return; 1788 1789 down_read(&qm->qps_lock); 1790 for (i = 0; i < regs_len; i++) { 1791 if (!dregs[i].reg_len) 1792 continue; 1793 1794 for (j = 0; j < dregs[i].reg_len; j++) { 1795 base_offset = dregs[i].reg_offset + j * QM_DFX_REGS_LEN; 1796 val = readl(qm->io_base + base_offset); 1797 if (val != dregs[i].regs[j]) 1798 seq_printf(s, "0x%08x = 0x%08x ---> 0x%08x\n", 1799 base_offset, dregs[i].regs[j], val); 1800 } 1801 } 1802 up_read(&qm->qps_lock); 1803 1804 hisi_qm_put_dfx_access(qm); 1805 } 1806 EXPORT_SYMBOL_GPL(hisi_qm_acc_diff_regs_dump); 1807 1808 static int qm_diff_regs_show(struct seq_file *s, void *unused) 1809 { 1810 struct hisi_qm *qm = s->private; 1811 1812 hisi_qm_acc_diff_regs_dump(qm, s, qm->debug.qm_diff_regs, 1813 ARRAY_SIZE(qm_diff_regs)); 1814 1815 return 0; 1816 } 1817 DEFINE_SHOW_ATTRIBUTE(qm_diff_regs); 1818 1819 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer, 1820 size_t count, loff_t *pos) 1821 { 1822 char buf[QM_DBG_READ_LEN]; 1823 int len; 1824 1825 len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", 1826 "Please echo help to cmd to get help information"); 1827 1828 return simple_read_from_buffer(buffer, count, pos, buf, len); 1829 } 1830 1831 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, 1832 dma_addr_t *dma_addr) 1833 { 1834 struct device *dev = &qm->pdev->dev; 1835 void *ctx_addr; 1836 1837 ctx_addr = kzalloc(ctx_size, GFP_KERNEL); 1838 if (!ctx_addr) 1839 return ERR_PTR(-ENOMEM); 1840 1841 *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); 1842 if (dma_mapping_error(dev, *dma_addr)) { 1843 dev_err(dev, "DMA mapping error!\n"); 1844 kfree(ctx_addr); 1845 return ERR_PTR(-ENOMEM); 1846 } 1847 1848 return ctx_addr; 1849 } 1850 1851 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, 1852 const void *ctx_addr, dma_addr_t *dma_addr) 1853 { 1854 struct device *dev = &qm->pdev->dev; 1855 1856 dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); 1857 kfree(ctx_addr); 1858 } 1859 1860 static int dump_show(struct hisi_qm *qm, void *info, 1861 unsigned int info_size, char *info_name) 1862 { 1863 struct device *dev = &qm->pdev->dev; 1864 u8 *info_buf, *info_curr = info; 1865 u32 i; 1866 #define BYTE_PER_DW 4 1867 1868 info_buf = kzalloc(info_size, GFP_KERNEL); 1869 if (!info_buf) 1870 return -ENOMEM; 1871 1872 for (i = 0; i < info_size; i++, info_curr++) { 1873 if (i % BYTE_PER_DW == 0) 1874 info_buf[i + 3UL] = *info_curr; 1875 else if (i % BYTE_PER_DW == 1) 1876 info_buf[i + 1UL] = *info_curr; 1877 else if (i % BYTE_PER_DW == 2) 1878 info_buf[i - 1] = *info_curr; 1879 else if (i % BYTE_PER_DW == 3) 1880 info_buf[i - 3] = *info_curr; 1881 } 1882 1883 dev_info(dev, "%s DUMP\n", info_name); 1884 for (i = 0; i < info_size; i += BYTE_PER_DW) { 1885 pr_info("DW%u: %02X%02X %02X%02X\n", i / BYTE_PER_DW, 1886 info_buf[i], info_buf[i + 1UL], 1887 info_buf[i + 2UL], info_buf[i + 3UL]); 1888 } 1889 1890 kfree(info_buf); 1891 1892 return 0; 1893 } 1894 1895 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1896 { 1897 return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); 1898 } 1899 1900 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1901 { 1902 return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); 1903 } 1904 1905 static int qm_sqc_dump(struct hisi_qm *qm, const char *s) 1906 { 1907 struct device *dev = &qm->pdev->dev; 1908 struct qm_sqc *sqc, *sqc_curr; 1909 dma_addr_t sqc_dma; 1910 u32 qp_id; 1911 int ret; 1912 1913 if (!s) 1914 return -EINVAL; 1915 1916 ret = kstrtou32(s, 0, &qp_id); 1917 if (ret || qp_id >= qm->qp_num) { 1918 dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1); 1919 return -EINVAL; 1920 } 1921 1922 sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma); 1923 if (IS_ERR(sqc)) 1924 return PTR_ERR(sqc); 1925 1926 ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id); 1927 if (ret) { 1928 down_read(&qm->qps_lock); 1929 if (qm->sqc) { 1930 sqc_curr = qm->sqc + qp_id; 1931 1932 ret = dump_show(qm, sqc_curr, sizeof(*sqc), 1933 "SOFT SQC"); 1934 if (ret) 1935 dev_info(dev, "Show soft sqc failed!\n"); 1936 } 1937 up_read(&qm->qps_lock); 1938 1939 goto err_free_ctx; 1940 } 1941 1942 ret = dump_show(qm, sqc, sizeof(*sqc), "SQC"); 1943 if (ret) 1944 dev_info(dev, "Show hw sqc failed!\n"); 1945 1946 err_free_ctx: 1947 qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma); 1948 return ret; 1949 } 1950 1951 static int qm_cqc_dump(struct hisi_qm *qm, const char *s) 1952 { 1953 struct device *dev = &qm->pdev->dev; 1954 struct qm_cqc *cqc, *cqc_curr; 1955 dma_addr_t cqc_dma; 1956 u32 qp_id; 1957 int ret; 1958 1959 if (!s) 1960 return -EINVAL; 1961 1962 ret = kstrtou32(s, 0, &qp_id); 1963 if (ret || qp_id >= qm->qp_num) { 1964 dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1); 1965 return -EINVAL; 1966 } 1967 1968 cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma); 1969 if (IS_ERR(cqc)) 1970 return PTR_ERR(cqc); 1971 1972 ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id); 1973 if (ret) { 1974 down_read(&qm->qps_lock); 1975 if (qm->cqc) { 1976 cqc_curr = qm->cqc + qp_id; 1977 1978 ret = dump_show(qm, cqc_curr, sizeof(*cqc), 1979 "SOFT CQC"); 1980 if (ret) 1981 dev_info(dev, "Show soft cqc failed!\n"); 1982 } 1983 up_read(&qm->qps_lock); 1984 1985 goto err_free_ctx; 1986 } 1987 1988 ret = dump_show(qm, cqc, sizeof(*cqc), "CQC"); 1989 if (ret) 1990 dev_info(dev, "Show hw cqc failed!\n"); 1991 1992 err_free_ctx: 1993 qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma); 1994 return ret; 1995 } 1996 1997 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size, 1998 int cmd, char *name) 1999 { 2000 struct device *dev = &qm->pdev->dev; 2001 dma_addr_t xeqc_dma; 2002 void *xeqc; 2003 int ret; 2004 2005 if (strsep(&s, " ")) { 2006 dev_err(dev, "Please do not input extra characters!\n"); 2007 return -EINVAL; 2008 } 2009 2010 xeqc = qm_ctx_alloc(qm, size, &xeqc_dma); 2011 if (IS_ERR(xeqc)) 2012 return PTR_ERR(xeqc); 2013 2014 ret = hisi_qm_mb(qm, cmd, xeqc_dma, 0, 1); 2015 if (ret) 2016 goto err_free_ctx; 2017 2018 ret = dump_show(qm, xeqc, size, name); 2019 if (ret) 2020 dev_info(dev, "Show hw %s failed!\n", name); 2021 2022 err_free_ctx: 2023 qm_ctx_free(qm, size, xeqc, &xeqc_dma); 2024 return ret; 2025 } 2026 2027 static int q_dump_param_parse(struct hisi_qm *qm, char *s, 2028 u32 *e_id, u32 *q_id) 2029 { 2030 struct device *dev = &qm->pdev->dev; 2031 unsigned int qp_num = qm->qp_num; 2032 char *presult; 2033 int ret; 2034 2035 presult = strsep(&s, " "); 2036 if (!presult) { 2037 dev_err(dev, "Please input qp number!\n"); 2038 return -EINVAL; 2039 } 2040 2041 ret = kstrtou32(presult, 0, q_id); 2042 if (ret || *q_id >= qp_num) { 2043 dev_err(dev, "Please input qp num (0-%u)", qp_num - 1); 2044 return -EINVAL; 2045 } 2046 2047 presult = strsep(&s, " "); 2048 if (!presult) { 2049 dev_err(dev, "Please input sqe number!\n"); 2050 return -EINVAL; 2051 } 2052 2053 ret = kstrtou32(presult, 0, e_id); 2054 if (ret || *e_id >= QM_Q_DEPTH) { 2055 dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1); 2056 return -EINVAL; 2057 } 2058 2059 if (strsep(&s, " ")) { 2060 dev_err(dev, "Please do not input extra characters!\n"); 2061 return -EINVAL; 2062 } 2063 2064 return 0; 2065 } 2066 2067 static int qm_sq_dump(struct hisi_qm *qm, char *s) 2068 { 2069 struct device *dev = &qm->pdev->dev; 2070 void *sqe, *sqe_curr; 2071 struct hisi_qp *qp; 2072 u32 qp_id, sqe_id; 2073 int ret; 2074 2075 ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id); 2076 if (ret) 2077 return ret; 2078 2079 sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL); 2080 if (!sqe) 2081 return -ENOMEM; 2082 2083 qp = &qm->qp_array[qp_id]; 2084 memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH); 2085 sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size); 2086 memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK, 2087 qm->debug.sqe_mask_len); 2088 2089 ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE"); 2090 if (ret) 2091 dev_info(dev, "Show sqe failed!\n"); 2092 2093 kfree(sqe); 2094 2095 return ret; 2096 } 2097 2098 static int qm_cq_dump(struct hisi_qm *qm, char *s) 2099 { 2100 struct device *dev = &qm->pdev->dev; 2101 struct qm_cqe *cqe_curr; 2102 struct hisi_qp *qp; 2103 u32 qp_id, cqe_id; 2104 int ret; 2105 2106 ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id); 2107 if (ret) 2108 return ret; 2109 2110 qp = &qm->qp_array[qp_id]; 2111 cqe_curr = qp->cqe + cqe_id; 2112 ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE"); 2113 if (ret) 2114 dev_info(dev, "Show cqe failed!\n"); 2115 2116 return ret; 2117 } 2118 2119 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s, 2120 size_t size, char *name) 2121 { 2122 struct device *dev = &qm->pdev->dev; 2123 void *xeqe; 2124 u32 xeqe_id; 2125 int ret; 2126 2127 if (!s) 2128 return -EINVAL; 2129 2130 ret = kstrtou32(s, 0, &xeqe_id); 2131 if (ret) 2132 return -EINVAL; 2133 2134 if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) { 2135 dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1); 2136 return -EINVAL; 2137 } else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) { 2138 dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1); 2139 return -EINVAL; 2140 } 2141 2142 down_read(&qm->qps_lock); 2143 2144 if (qm->eqe && !strcmp(name, "EQE")) { 2145 xeqe = qm->eqe + xeqe_id; 2146 } else if (qm->aeqe && !strcmp(name, "AEQE")) { 2147 xeqe = qm->aeqe + xeqe_id; 2148 } else { 2149 ret = -EINVAL; 2150 goto err_unlock; 2151 } 2152 2153 ret = dump_show(qm, xeqe, size, name); 2154 if (ret) 2155 dev_info(dev, "Show %s failed!\n", name); 2156 2157 err_unlock: 2158 up_read(&qm->qps_lock); 2159 return ret; 2160 } 2161 2162 static int qm_dbg_help(struct hisi_qm *qm, char *s) 2163 { 2164 struct device *dev = &qm->pdev->dev; 2165 2166 if (strsep(&s, " ")) { 2167 dev_err(dev, "Please do not input extra characters!\n"); 2168 return -EINVAL; 2169 } 2170 2171 dev_info(dev, "available commands:\n"); 2172 dev_info(dev, "sqc <num>\n"); 2173 dev_info(dev, "cqc <num>\n"); 2174 dev_info(dev, "eqc\n"); 2175 dev_info(dev, "aeqc\n"); 2176 dev_info(dev, "sq <num> <e>\n"); 2177 dev_info(dev, "cq <num> <e>\n"); 2178 dev_info(dev, "eq <e>\n"); 2179 dev_info(dev, "aeq <e>\n"); 2180 2181 return 0; 2182 } 2183 2184 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf) 2185 { 2186 struct device *dev = &qm->pdev->dev; 2187 char *presult, *s, *s_tmp; 2188 int ret; 2189 2190 s = kstrdup(cmd_buf, GFP_KERNEL); 2191 if (!s) 2192 return -ENOMEM; 2193 2194 s_tmp = s; 2195 presult = strsep(&s, " "); 2196 if (!presult) { 2197 ret = -EINVAL; 2198 goto err_buffer_free; 2199 } 2200 2201 if (!strcmp(presult, "sqc")) 2202 ret = qm_sqc_dump(qm, s); 2203 else if (!strcmp(presult, "cqc")) 2204 ret = qm_cqc_dump(qm, s); 2205 else if (!strcmp(presult, "eqc")) 2206 ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc), 2207 QM_MB_CMD_EQC, "EQC"); 2208 else if (!strcmp(presult, "aeqc")) 2209 ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc), 2210 QM_MB_CMD_AEQC, "AEQC"); 2211 else if (!strcmp(presult, "sq")) 2212 ret = qm_sq_dump(qm, s); 2213 else if (!strcmp(presult, "cq")) 2214 ret = qm_cq_dump(qm, s); 2215 else if (!strcmp(presult, "eq")) 2216 ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE"); 2217 else if (!strcmp(presult, "aeq")) 2218 ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE"); 2219 else if (!strcmp(presult, "help")) 2220 ret = qm_dbg_help(qm, s); 2221 else 2222 ret = -EINVAL; 2223 2224 if (ret) 2225 dev_info(dev, "Please echo help\n"); 2226 2227 err_buffer_free: 2228 kfree(s_tmp); 2229 2230 return ret; 2231 } 2232 2233 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer, 2234 size_t count, loff_t *pos) 2235 { 2236 struct hisi_qm *qm = filp->private_data; 2237 char *cmd_buf, *cmd_buf_tmp; 2238 int ret; 2239 2240 if (*pos) 2241 return 0; 2242 2243 ret = hisi_qm_get_dfx_access(qm); 2244 if (ret) 2245 return ret; 2246 2247 /* Judge if the instance is being reset. */ 2248 if (unlikely(atomic_read(&qm->status.flags) == QM_STOP)) 2249 return 0; 2250 2251 if (count > QM_DBG_WRITE_LEN) { 2252 ret = -ENOSPC; 2253 goto put_dfx_access; 2254 } 2255 2256 cmd_buf = memdup_user_nul(buffer, count); 2257 if (IS_ERR(cmd_buf)) { 2258 ret = PTR_ERR(cmd_buf); 2259 goto put_dfx_access; 2260 } 2261 2262 cmd_buf_tmp = strchr(cmd_buf, '\n'); 2263 if (cmd_buf_tmp) { 2264 *cmd_buf_tmp = '\0'; 2265 count = cmd_buf_tmp - cmd_buf + 1; 2266 } 2267 2268 ret = qm_cmd_write_dump(qm, cmd_buf); 2269 if (ret) { 2270 kfree(cmd_buf); 2271 goto put_dfx_access; 2272 } 2273 2274 kfree(cmd_buf); 2275 2276 ret = count; 2277 2278 put_dfx_access: 2279 hisi_qm_put_dfx_access(qm); 2280 return ret; 2281 } 2282 2283 static const struct file_operations qm_cmd_fops = { 2284 .owner = THIS_MODULE, 2285 .open = simple_open, 2286 .read = qm_cmd_read, 2287 .write = qm_cmd_write, 2288 }; 2289 2290 static void qm_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir, 2291 enum qm_debug_file index) 2292 { 2293 struct debugfs_file *file = qm->debug.files + index; 2294 2295 debugfs_create_file(qm_debug_file_name[index], 0600, dir, file, 2296 &qm_debug_fops); 2297 2298 file->index = index; 2299 mutex_init(&file->lock); 2300 file->debug = &qm->debug; 2301 } 2302 2303 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 2304 { 2305 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 2306 } 2307 2308 static void qm_hw_error_cfg(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 2309 { 2310 qm->error_mask = ce | nfe | fe; 2311 /* clear QM hw residual error source */ 2312 writel(QM_ABNORMAL_INT_SOURCE_CLR, 2313 qm->io_base + QM_ABNORMAL_INT_SOURCE); 2314 2315 /* configure error type */ 2316 writel(ce, qm->io_base + QM_RAS_CE_ENABLE); 2317 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 2318 writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE); 2319 writel(fe, qm->io_base + QM_RAS_FE_ENABLE); 2320 } 2321 2322 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 2323 { 2324 u32 irq_enable = ce | nfe | fe; 2325 u32 irq_unmask = ~irq_enable; 2326 2327 qm_hw_error_cfg(qm, ce, nfe, fe); 2328 2329 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 2330 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 2331 } 2332 2333 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 2334 { 2335 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 2336 } 2337 2338 static void qm_hw_error_init_v3(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 2339 { 2340 u32 irq_enable = ce | nfe | fe; 2341 u32 irq_unmask = ~irq_enable; 2342 2343 qm_hw_error_cfg(qm, ce, nfe, fe); 2344 2345 /* enable close master ooo when hardware error happened */ 2346 writel(nfe & (~QM_DB_RANDOM_INVALID), qm->io_base + QM_OOO_SHUTDOWN_SEL); 2347 2348 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 2349 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 2350 } 2351 2352 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 2353 { 2354 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 2355 2356 /* disable close master ooo when hardware error happened */ 2357 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 2358 } 2359 2360 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 2361 { 2362 const struct hisi_qm_hw_error *err; 2363 struct device *dev = &qm->pdev->dev; 2364 u32 reg_val, type, vf_num; 2365 int i; 2366 2367 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 2368 err = &qm_hw_error[i]; 2369 if (!(err->int_msk & error_status)) 2370 continue; 2371 2372 dev_err(dev, "%s [error status=0x%x] found\n", 2373 err->msg, err->int_msk); 2374 2375 if (err->int_msk & QM_DB_TIMEOUT) { 2376 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 2377 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 2378 QM_DB_TIMEOUT_TYPE_SHIFT; 2379 vf_num = reg_val & QM_DB_TIMEOUT_VF; 2380 dev_err(dev, "qm %s doorbell timeout in function %u\n", 2381 qm_db_timeout[type], vf_num); 2382 } else if (err->int_msk & QM_OF_FIFO_OF) { 2383 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 2384 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 2385 QM_FIFO_OVERFLOW_TYPE_SHIFT; 2386 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 2387 2388 if (type < ARRAY_SIZE(qm_fifo_overflow)) 2389 dev_err(dev, "qm %s fifo overflow in function %u\n", 2390 qm_fifo_overflow[type], vf_num); 2391 else 2392 dev_err(dev, "unknown error type\n"); 2393 } 2394 } 2395 } 2396 2397 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 2398 { 2399 u32 error_status, tmp, val; 2400 2401 /* read err sts */ 2402 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 2403 error_status = qm->error_mask & tmp; 2404 2405 if (error_status) { 2406 if (error_status & QM_ECC_MBIT) 2407 qm->err_status.is_qm_ecc_mbit = true; 2408 2409 qm_log_hw_error(qm, error_status); 2410 val = error_status | QM_DB_RANDOM_INVALID | QM_BASE_CE; 2411 /* ce error does not need to be reset */ 2412 if (val == (QM_DB_RANDOM_INVALID | QM_BASE_CE)) { 2413 writel(error_status, qm->io_base + 2414 QM_ABNORMAL_INT_SOURCE); 2415 writel(qm->err_info.nfe, 2416 qm->io_base + QM_RAS_NFE_ENABLE); 2417 return ACC_ERR_RECOVERED; 2418 } 2419 2420 return ACC_ERR_NEED_RESET; 2421 } 2422 2423 return ACC_ERR_RECOVERED; 2424 } 2425 2426 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 2427 { 2428 struct qm_mailbox mailbox; 2429 int ret; 2430 2431 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 2432 mutex_lock(&qm->mailbox_lock); 2433 ret = qm_mb_nolock(qm, &mailbox); 2434 if (ret) 2435 goto err_unlock; 2436 2437 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 2438 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 2439 2440 err_unlock: 2441 mutex_unlock(&qm->mailbox_lock); 2442 return ret; 2443 } 2444 2445 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 2446 { 2447 u32 val; 2448 2449 if (qm->fun_type == QM_HW_PF) 2450 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 2451 2452 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 2453 val |= QM_IFC_INT_SOURCE_MASK; 2454 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 2455 } 2456 2457 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 2458 { 2459 struct device *dev = &qm->pdev->dev; 2460 u32 cmd; 2461 u64 msg; 2462 int ret; 2463 2464 ret = qm_get_mb_cmd(qm, &msg, vf_id); 2465 if (ret) { 2466 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 2467 return; 2468 } 2469 2470 cmd = msg & QM_MB_CMD_DATA_MASK; 2471 switch (cmd) { 2472 case QM_VF_PREPARE_FAIL: 2473 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 2474 break; 2475 case QM_VF_START_FAIL: 2476 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 2477 break; 2478 case QM_VF_PREPARE_DONE: 2479 case QM_VF_START_DONE: 2480 break; 2481 default: 2482 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 2483 break; 2484 } 2485 } 2486 2487 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 2488 { 2489 struct device *dev = &qm->pdev->dev; 2490 u32 vfs_num = qm->vfs_num; 2491 int cnt = 0; 2492 int ret = 0; 2493 u64 val; 2494 u32 i; 2495 2496 if (!qm->vfs_num || qm->ver < QM_HW_V3) 2497 return 0; 2498 2499 while (true) { 2500 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 2501 /* All VFs send command to PF, break */ 2502 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 2503 break; 2504 2505 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 2506 ret = -EBUSY; 2507 break; 2508 } 2509 2510 msleep(QM_WAIT_DST_ACK); 2511 } 2512 2513 /* PF check VFs msg */ 2514 for (i = 1; i <= vfs_num; i++) { 2515 if (val & BIT(i)) 2516 qm_handle_vf_msg(qm, i); 2517 else 2518 dev_err(dev, "VF(%u) not ping PF!\n", i); 2519 } 2520 2521 /* PF clear interrupt to ack VFs */ 2522 qm_clear_cmd_interrupt(qm, val); 2523 2524 return ret; 2525 } 2526 2527 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 2528 { 2529 u32 val; 2530 2531 val = readl(qm->io_base + QM_IFC_INT_CFG); 2532 val &= ~QM_IFC_SEND_ALL_VFS; 2533 val |= fun_num; 2534 writel(val, qm->io_base + QM_IFC_INT_CFG); 2535 2536 val = readl(qm->io_base + QM_IFC_INT_SET_P); 2537 val |= QM_IFC_INT_SET_MASK; 2538 writel(val, qm->io_base + QM_IFC_INT_SET_P); 2539 } 2540 2541 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 2542 { 2543 u32 val; 2544 2545 val = readl(qm->io_base + QM_IFC_INT_SET_V); 2546 val |= QM_IFC_INT_SET_MASK; 2547 writel(val, qm->io_base + QM_IFC_INT_SET_V); 2548 } 2549 2550 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 2551 { 2552 struct device *dev = &qm->pdev->dev; 2553 struct qm_mailbox mailbox; 2554 int cnt = 0; 2555 u64 val; 2556 int ret; 2557 2558 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 2559 mutex_lock(&qm->mailbox_lock); 2560 ret = qm_mb_nolock(qm, &mailbox); 2561 if (ret) { 2562 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 2563 goto err_unlock; 2564 } 2565 2566 qm_trigger_vf_interrupt(qm, fun_num); 2567 while (true) { 2568 msleep(QM_WAIT_DST_ACK); 2569 val = readq(qm->io_base + QM_IFC_READY_STATUS); 2570 /* if VF respond, PF notifies VF successfully. */ 2571 if (!(val & BIT(fun_num))) 2572 goto err_unlock; 2573 2574 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 2575 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 2576 ret = -ETIMEDOUT; 2577 break; 2578 } 2579 } 2580 2581 err_unlock: 2582 mutex_unlock(&qm->mailbox_lock); 2583 return ret; 2584 } 2585 2586 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 2587 { 2588 struct device *dev = &qm->pdev->dev; 2589 u32 vfs_num = qm->vfs_num; 2590 struct qm_mailbox mailbox; 2591 u64 val = 0; 2592 int cnt = 0; 2593 int ret; 2594 u32 i; 2595 2596 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 2597 mutex_lock(&qm->mailbox_lock); 2598 /* PF sends command to all VFs by mailbox */ 2599 ret = qm_mb_nolock(qm, &mailbox); 2600 if (ret) { 2601 dev_err(dev, "failed to send command to VFs!\n"); 2602 mutex_unlock(&qm->mailbox_lock); 2603 return ret; 2604 } 2605 2606 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 2607 while (true) { 2608 msleep(QM_WAIT_DST_ACK); 2609 val = readq(qm->io_base + QM_IFC_READY_STATUS); 2610 /* If all VFs acked, PF notifies VFs successfully. */ 2611 if (!(val & GENMASK(vfs_num, 1))) { 2612 mutex_unlock(&qm->mailbox_lock); 2613 return 0; 2614 } 2615 2616 if (++cnt > QM_MAX_PF_WAIT_COUNT) 2617 break; 2618 } 2619 2620 mutex_unlock(&qm->mailbox_lock); 2621 2622 /* Check which vf respond timeout. */ 2623 for (i = 1; i <= vfs_num; i++) { 2624 if (val & BIT(i)) 2625 dev_err(dev, "failed to get response from VF(%u)!\n", i); 2626 } 2627 2628 return -ETIMEDOUT; 2629 } 2630 2631 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 2632 { 2633 struct qm_mailbox mailbox; 2634 int cnt = 0; 2635 u32 val; 2636 int ret; 2637 2638 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 2639 mutex_lock(&qm->mailbox_lock); 2640 ret = qm_mb_nolock(qm, &mailbox); 2641 if (ret) { 2642 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 2643 goto unlock; 2644 } 2645 2646 qm_trigger_pf_interrupt(qm); 2647 /* Waiting for PF response */ 2648 while (true) { 2649 msleep(QM_WAIT_DST_ACK); 2650 val = readl(qm->io_base + QM_IFC_INT_SET_V); 2651 if (!(val & QM_IFC_INT_STATUS_MASK)) 2652 break; 2653 2654 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 2655 ret = -ETIMEDOUT; 2656 break; 2657 } 2658 } 2659 2660 unlock: 2661 mutex_unlock(&qm->mailbox_lock); 2662 return ret; 2663 } 2664 2665 static int qm_stop_qp(struct hisi_qp *qp) 2666 { 2667 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 2668 } 2669 2670 static int qm_set_msi(struct hisi_qm *qm, bool set) 2671 { 2672 struct pci_dev *pdev = qm->pdev; 2673 2674 if (set) { 2675 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 2676 0); 2677 } else { 2678 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 2679 ACC_PEH_MSI_DISABLE); 2680 if (qm->err_status.is_qm_ecc_mbit || 2681 qm->err_status.is_dev_ecc_mbit) 2682 return 0; 2683 2684 mdelay(1); 2685 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 2686 return -EFAULT; 2687 } 2688 2689 return 0; 2690 } 2691 2692 static void qm_wait_msi_finish(struct hisi_qm *qm) 2693 { 2694 struct pci_dev *pdev = qm->pdev; 2695 u32 cmd = ~0; 2696 int cnt = 0; 2697 u32 val; 2698 int ret; 2699 2700 while (true) { 2701 pci_read_config_dword(pdev, pdev->msi_cap + 2702 PCI_MSI_PENDING_64, &cmd); 2703 if (!cmd) 2704 break; 2705 2706 if (++cnt > MAX_WAIT_COUNTS) { 2707 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 2708 break; 2709 } 2710 2711 udelay(1); 2712 } 2713 2714 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 2715 val, !(val & QM_PEH_DFX_MASK), 2716 POLL_PERIOD, POLL_TIMEOUT); 2717 if (ret) 2718 pci_warn(pdev, "failed to empty PEH MSI!\n"); 2719 2720 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 2721 val, !(val & QM_PEH_MSI_FINISH_MASK), 2722 POLL_PERIOD, POLL_TIMEOUT); 2723 if (ret) 2724 pci_warn(pdev, "failed to finish MSI operation!\n"); 2725 } 2726 2727 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 2728 { 2729 struct pci_dev *pdev = qm->pdev; 2730 int ret = -ETIMEDOUT; 2731 u32 cmd, i; 2732 2733 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 2734 if (set) 2735 cmd |= QM_MSI_CAP_ENABLE; 2736 else 2737 cmd &= ~QM_MSI_CAP_ENABLE; 2738 2739 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 2740 if (set) { 2741 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 2742 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 2743 if (cmd & QM_MSI_CAP_ENABLE) 2744 return 0; 2745 2746 udelay(1); 2747 } 2748 } else { 2749 udelay(WAIT_PERIOD_US_MIN); 2750 qm_wait_msi_finish(qm); 2751 ret = 0; 2752 } 2753 2754 return ret; 2755 } 2756 2757 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 2758 .qm_db = qm_db_v1, 2759 .get_irq_num = qm_get_irq_num_v1, 2760 .hw_error_init = qm_hw_error_init_v1, 2761 .set_msi = qm_set_msi, 2762 }; 2763 2764 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 2765 .get_vft = qm_get_vft_v2, 2766 .qm_db = qm_db_v2, 2767 .get_irq_num = qm_get_irq_num_v2, 2768 .hw_error_init = qm_hw_error_init_v2, 2769 .hw_error_uninit = qm_hw_error_uninit_v2, 2770 .hw_error_handle = qm_hw_error_handle_v2, 2771 .set_msi = qm_set_msi, 2772 }; 2773 2774 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 2775 .get_vft = qm_get_vft_v2, 2776 .qm_db = qm_db_v2, 2777 .get_irq_num = qm_get_irq_num_v3, 2778 .hw_error_init = qm_hw_error_init_v3, 2779 .hw_error_uninit = qm_hw_error_uninit_v3, 2780 .hw_error_handle = qm_hw_error_handle_v2, 2781 .stop_qp = qm_stop_qp, 2782 .set_msi = qm_set_msi_v3, 2783 .ping_all_vfs = qm_ping_all_vfs, 2784 .ping_pf = qm_ping_pf, 2785 }; 2786 2787 static void *qm_get_avail_sqe(struct hisi_qp *qp) 2788 { 2789 struct hisi_qp_status *qp_status = &qp->qp_status; 2790 u16 sq_tail = qp_status->sq_tail; 2791 2792 if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1)) 2793 return NULL; 2794 2795 return qp->sqe + sq_tail * qp->qm->sqe_size; 2796 } 2797 2798 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 2799 { 2800 u64 *addr; 2801 2802 /* Use last 64 bits of DUS to reset status. */ 2803 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 2804 *addr = 0; 2805 } 2806 2807 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 2808 { 2809 struct device *dev = &qm->pdev->dev; 2810 struct hisi_qp *qp; 2811 int qp_id; 2812 2813 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 2814 return ERR_PTR(-EPERM); 2815 2816 if (qm->qp_in_used == qm->qp_num) { 2817 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 2818 qm->qp_num); 2819 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 2820 return ERR_PTR(-EBUSY); 2821 } 2822 2823 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 2824 if (qp_id < 0) { 2825 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 2826 qm->qp_num); 2827 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 2828 return ERR_PTR(-EBUSY); 2829 } 2830 2831 qp = &qm->qp_array[qp_id]; 2832 hisi_qm_unset_hw_reset(qp); 2833 memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH); 2834 2835 qp->event_cb = NULL; 2836 qp->req_cb = NULL; 2837 qp->qp_id = qp_id; 2838 qp->alg_type = alg_type; 2839 qp->is_in_kernel = true; 2840 qm->qp_in_used++; 2841 atomic_set(&qp->qp_status.flags, QP_INIT); 2842 2843 return qp; 2844 } 2845 2846 /** 2847 * hisi_qm_create_qp() - Create a queue pair from qm. 2848 * @qm: The qm we create a qp from. 2849 * @alg_type: Accelerator specific algorithm type in sqc. 2850 * 2851 * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating 2852 * qp memory fails. 2853 */ 2854 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 2855 { 2856 struct hisi_qp *qp; 2857 int ret; 2858 2859 ret = qm_pm_get_sync(qm); 2860 if (ret) 2861 return ERR_PTR(ret); 2862 2863 down_write(&qm->qps_lock); 2864 qp = qm_create_qp_nolock(qm, alg_type); 2865 up_write(&qm->qps_lock); 2866 2867 if (IS_ERR(qp)) 2868 qm_pm_put_sync(qm); 2869 2870 return qp; 2871 } 2872 2873 /** 2874 * hisi_qm_release_qp() - Release a qp back to its qm. 2875 * @qp: The qp we want to release. 2876 * 2877 * This function releases the resource of a qp. 2878 */ 2879 static void hisi_qm_release_qp(struct hisi_qp *qp) 2880 { 2881 struct hisi_qm *qm = qp->qm; 2882 2883 down_write(&qm->qps_lock); 2884 2885 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 2886 up_write(&qm->qps_lock); 2887 return; 2888 } 2889 2890 qm->qp_in_used--; 2891 idr_remove(&qm->qp_idr, qp->qp_id); 2892 2893 up_write(&qm->qps_lock); 2894 2895 qm_pm_put_sync(qm); 2896 } 2897 2898 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2899 { 2900 struct hisi_qm *qm = qp->qm; 2901 struct device *dev = &qm->pdev->dev; 2902 enum qm_hw_ver ver = qm->ver; 2903 struct qm_sqc *sqc; 2904 dma_addr_t sqc_dma; 2905 int ret; 2906 2907 sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); 2908 if (!sqc) 2909 return -ENOMEM; 2910 2911 INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); 2912 if (ver == QM_HW_V1) { 2913 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 2914 sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1); 2915 } else { 2916 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size)); 2917 sqc->w8 = 0; /* rand_qc */ 2918 } 2919 sqc->cq_num = cpu_to_le16(qp_id); 2920 sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 2921 2922 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2923 sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 2924 QM_QC_PASID_ENABLE_SHIFT); 2925 2926 sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), 2927 DMA_TO_DEVICE); 2928 if (dma_mapping_error(dev, sqc_dma)) { 2929 kfree(sqc); 2930 return -ENOMEM; 2931 } 2932 2933 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); 2934 dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); 2935 kfree(sqc); 2936 2937 return ret; 2938 } 2939 2940 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2941 { 2942 struct hisi_qm *qm = qp->qm; 2943 struct device *dev = &qm->pdev->dev; 2944 enum qm_hw_ver ver = qm->ver; 2945 struct qm_cqc *cqc; 2946 dma_addr_t cqc_dma; 2947 int ret; 2948 2949 cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); 2950 if (!cqc) 2951 return -ENOMEM; 2952 2953 INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); 2954 if (ver == QM_HW_V1) { 2955 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 2956 QM_QC_CQE_SIZE)); 2957 cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1); 2958 } else { 2959 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE)); 2960 cqc->w8 = 0; /* rand_qc */ 2961 } 2962 cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 2963 2964 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2965 cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 2966 2967 cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), 2968 DMA_TO_DEVICE); 2969 if (dma_mapping_error(dev, cqc_dma)) { 2970 kfree(cqc); 2971 return -ENOMEM; 2972 } 2973 2974 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); 2975 dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); 2976 kfree(cqc); 2977 2978 return ret; 2979 } 2980 2981 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2982 { 2983 int ret; 2984 2985 qm_init_qp_status(qp); 2986 2987 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2988 if (ret) 2989 return ret; 2990 2991 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2992 } 2993 2994 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2995 { 2996 struct hisi_qm *qm = qp->qm; 2997 struct device *dev = &qm->pdev->dev; 2998 int qp_id = qp->qp_id; 2999 u32 pasid = arg; 3000 int ret; 3001 3002 if (!qm_qp_avail_state(qm, qp, QP_START)) 3003 return -EPERM; 3004 3005 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 3006 if (ret) 3007 return ret; 3008 3009 atomic_set(&qp->qp_status.flags, QP_START); 3010 dev_dbg(dev, "queue %d started\n", qp_id); 3011 3012 return 0; 3013 } 3014 3015 /** 3016 * hisi_qm_start_qp() - Start a qp into running. 3017 * @qp: The qp we want to start to run. 3018 * @arg: Accelerator specific argument. 3019 * 3020 * After this function, qp can receive request from user. Return 0 if 3021 * successful, Return -EBUSY if failed. 3022 */ 3023 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 3024 { 3025 struct hisi_qm *qm = qp->qm; 3026 int ret; 3027 3028 down_write(&qm->qps_lock); 3029 ret = qm_start_qp_nolock(qp, arg); 3030 up_write(&qm->qps_lock); 3031 3032 return ret; 3033 } 3034 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 3035 3036 /** 3037 * qp_stop_fail_cb() - call request cb. 3038 * @qp: stopped failed qp. 3039 * 3040 * Callback function should be called whether task completed or not. 3041 */ 3042 static void qp_stop_fail_cb(struct hisi_qp *qp) 3043 { 3044 int qp_used = atomic_read(&qp->qp_status.used); 3045 u16 cur_tail = qp->qp_status.sq_tail; 3046 u16 cur_head = (cur_tail + QM_Q_DEPTH - qp_used) % QM_Q_DEPTH; 3047 struct hisi_qm *qm = qp->qm; 3048 u16 pos; 3049 int i; 3050 3051 for (i = 0; i < qp_used; i++) { 3052 pos = (i + cur_head) % QM_Q_DEPTH; 3053 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 3054 atomic_dec(&qp->qp_status.used); 3055 } 3056 } 3057 3058 /** 3059 * qm_drain_qp() - Drain a qp. 3060 * @qp: The qp we want to drain. 3061 * 3062 * Determine whether the queue is cleared by judging the tail pointers of 3063 * sq and cq. 3064 */ 3065 static int qm_drain_qp(struct hisi_qp *qp) 3066 { 3067 size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); 3068 struct hisi_qm *qm = qp->qm; 3069 struct device *dev = &qm->pdev->dev; 3070 struct qm_sqc *sqc; 3071 struct qm_cqc *cqc; 3072 dma_addr_t dma_addr; 3073 int ret = 0, i = 0; 3074 void *addr; 3075 3076 /* No need to judge if master OOO is blocked. */ 3077 if (qm_check_dev_error(qm)) 3078 return 0; 3079 3080 /* Kunpeng930 supports drain qp by device */ 3081 if (qm->ops->stop_qp) { 3082 ret = qm->ops->stop_qp(qp); 3083 if (ret) 3084 dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); 3085 return ret; 3086 } 3087 3088 addr = qm_ctx_alloc(qm, size, &dma_addr); 3089 if (IS_ERR(addr)) { 3090 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); 3091 return -ENOMEM; 3092 } 3093 3094 while (++i) { 3095 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); 3096 if (ret) { 3097 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 3098 break; 3099 } 3100 sqc = addr; 3101 3102 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), 3103 qp->qp_id); 3104 if (ret) { 3105 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 3106 break; 3107 } 3108 cqc = addr + sizeof(struct qm_sqc); 3109 3110 if ((sqc->tail == cqc->tail) && 3111 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 3112 break; 3113 3114 if (i == MAX_WAIT_COUNTS) { 3115 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 3116 ret = -EBUSY; 3117 break; 3118 } 3119 3120 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 3121 } 3122 3123 qm_ctx_free(qm, size, addr, &dma_addr); 3124 3125 return ret; 3126 } 3127 3128 static int qm_stop_qp_nolock(struct hisi_qp *qp) 3129 { 3130 struct device *dev = &qp->qm->pdev->dev; 3131 int ret; 3132 3133 /* 3134 * It is allowed to stop and release qp when reset, If the qp is 3135 * stopped when reset but still want to be released then, the 3136 * is_resetting flag should be set negative so that this qp will not 3137 * be restarted after reset. 3138 */ 3139 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 3140 qp->is_resetting = false; 3141 return 0; 3142 } 3143 3144 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 3145 return -EPERM; 3146 3147 atomic_set(&qp->qp_status.flags, QP_STOP); 3148 3149 ret = qm_drain_qp(qp); 3150 if (ret) 3151 dev_err(dev, "Failed to drain out data for stopping!\n"); 3152 3153 3154 flush_workqueue(qp->qm->wq); 3155 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 3156 qp_stop_fail_cb(qp); 3157 3158 dev_dbg(dev, "stop queue %u!", qp->qp_id); 3159 3160 return 0; 3161 } 3162 3163 /** 3164 * hisi_qm_stop_qp() - Stop a qp in qm. 3165 * @qp: The qp we want to stop. 3166 * 3167 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 3168 */ 3169 int hisi_qm_stop_qp(struct hisi_qp *qp) 3170 { 3171 int ret; 3172 3173 down_write(&qp->qm->qps_lock); 3174 ret = qm_stop_qp_nolock(qp); 3175 up_write(&qp->qm->qps_lock); 3176 3177 return ret; 3178 } 3179 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 3180 3181 /** 3182 * hisi_qp_send() - Queue up a task in the hardware queue. 3183 * @qp: The qp in which to put the message. 3184 * @msg: The message. 3185 * 3186 * This function will return -EBUSY if qp is currently full, and -EAGAIN 3187 * if qp related qm is resetting. 3188 * 3189 * Note: This function may run with qm_irq_thread and ACC reset at same time. 3190 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 3191 * reset may happen, we have no lock here considering performance. This 3192 * causes current qm_db sending fail or can not receive sended sqe. QM 3193 * sync/async receive function should handle the error sqe. ACC reset 3194 * done function should clear used sqe to 0. 3195 */ 3196 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 3197 { 3198 struct hisi_qp_status *qp_status = &qp->qp_status; 3199 u16 sq_tail = qp_status->sq_tail; 3200 u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH; 3201 void *sqe = qm_get_avail_sqe(qp); 3202 3203 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 3204 atomic_read(&qp->qm->status.flags) == QM_STOP || 3205 qp->is_resetting)) { 3206 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 3207 return -EAGAIN; 3208 } 3209 3210 if (!sqe) 3211 return -EBUSY; 3212 3213 memcpy(sqe, msg, qp->qm->sqe_size); 3214 3215 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 3216 atomic_inc(&qp->qp_status.used); 3217 qp_status->sq_tail = sq_tail_next; 3218 3219 return 0; 3220 } 3221 EXPORT_SYMBOL_GPL(hisi_qp_send); 3222 3223 static void hisi_qm_cache_wb(struct hisi_qm *qm) 3224 { 3225 unsigned int val; 3226 3227 if (qm->ver == QM_HW_V1) 3228 return; 3229 3230 writel(0x1, qm->io_base + QM_CACHE_WB_START); 3231 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 3232 val, val & BIT(0), POLL_PERIOD, 3233 POLL_TIMEOUT)) 3234 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 3235 } 3236 3237 static void qm_qp_event_notifier(struct hisi_qp *qp) 3238 { 3239 wake_up_interruptible(&qp->uacce_q->wait); 3240 } 3241 3242 /* This function returns free number of qp in qm. */ 3243 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 3244 { 3245 struct hisi_qm *qm = uacce->priv; 3246 int ret; 3247 3248 down_read(&qm->qps_lock); 3249 ret = qm->qp_num - qm->qp_in_used; 3250 up_read(&qm->qps_lock); 3251 3252 return ret; 3253 } 3254 3255 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 3256 { 3257 int i; 3258 3259 for (i = 0; i < qm->qp_num; i++) 3260 qm_set_qp_disable(&qm->qp_array[i], offset); 3261 } 3262 3263 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 3264 unsigned long arg, 3265 struct uacce_queue *q) 3266 { 3267 struct hisi_qm *qm = uacce->priv; 3268 struct hisi_qp *qp; 3269 u8 alg_type = 0; 3270 3271 qp = hisi_qm_create_qp(qm, alg_type); 3272 if (IS_ERR(qp)) 3273 return PTR_ERR(qp); 3274 3275 q->priv = qp; 3276 q->uacce = uacce; 3277 qp->uacce_q = q; 3278 qp->event_cb = qm_qp_event_notifier; 3279 qp->pasid = arg; 3280 qp->is_in_kernel = false; 3281 3282 return 0; 3283 } 3284 3285 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 3286 { 3287 struct hisi_qp *qp = q->priv; 3288 3289 hisi_qm_cache_wb(qp->qm); 3290 hisi_qm_release_qp(qp); 3291 } 3292 3293 /* map sq/cq/doorbell to user space */ 3294 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 3295 struct vm_area_struct *vma, 3296 struct uacce_qfile_region *qfr) 3297 { 3298 struct hisi_qp *qp = q->priv; 3299 struct hisi_qm *qm = qp->qm; 3300 resource_size_t phys_base = qm->db_phys_base + 3301 qp->qp_id * qm->db_interval; 3302 size_t sz = vma->vm_end - vma->vm_start; 3303 struct pci_dev *pdev = qm->pdev; 3304 struct device *dev = &pdev->dev; 3305 unsigned long vm_pgoff; 3306 int ret; 3307 3308 switch (qfr->type) { 3309 case UACCE_QFRT_MMIO: 3310 if (qm->ver == QM_HW_V1) { 3311 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 3312 return -EINVAL; 3313 } else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) { 3314 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 3315 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 3316 return -EINVAL; 3317 } else { 3318 if (sz > qm->db_interval) 3319 return -EINVAL; 3320 } 3321 3322 vma->vm_flags |= VM_IO; 3323 3324 return remap_pfn_range(vma, vma->vm_start, 3325 phys_base >> PAGE_SHIFT, 3326 sz, pgprot_noncached(vma->vm_page_prot)); 3327 case UACCE_QFRT_DUS: 3328 if (sz != qp->qdma.size) 3329 return -EINVAL; 3330 3331 /* 3332 * dma_mmap_coherent() requires vm_pgoff as 0 3333 * restore vm_pfoff to initial value for mmap() 3334 */ 3335 vm_pgoff = vma->vm_pgoff; 3336 vma->vm_pgoff = 0; 3337 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 3338 qp->qdma.dma, sz); 3339 vma->vm_pgoff = vm_pgoff; 3340 return ret; 3341 3342 default: 3343 return -EINVAL; 3344 } 3345 } 3346 3347 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 3348 { 3349 struct hisi_qp *qp = q->priv; 3350 3351 return hisi_qm_start_qp(qp, qp->pasid); 3352 } 3353 3354 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 3355 { 3356 hisi_qm_stop_qp(q->priv); 3357 } 3358 3359 static int hisi_qm_is_q_updated(struct uacce_queue *q) 3360 { 3361 struct hisi_qp *qp = q->priv; 3362 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 3363 int updated = 0; 3364 3365 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 3366 /* make sure to read data from memory */ 3367 dma_rmb(); 3368 qm_cq_head_update(qp); 3369 cqe = qp->cqe + qp->qp_status.cq_head; 3370 updated = 1; 3371 } 3372 3373 return updated; 3374 } 3375 3376 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 3377 { 3378 struct hisi_qm *qm = q->uacce->priv; 3379 struct hisi_qp *qp = q->priv; 3380 3381 down_write(&qm->qps_lock); 3382 qp->alg_type = type; 3383 up_write(&qm->qps_lock); 3384 } 3385 3386 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 3387 unsigned long arg) 3388 { 3389 struct hisi_qp *qp = q->priv; 3390 struct hisi_qp_ctx qp_ctx; 3391 3392 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 3393 if (copy_from_user(&qp_ctx, (void __user *)arg, 3394 sizeof(struct hisi_qp_ctx))) 3395 return -EFAULT; 3396 3397 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 3398 return -EINVAL; 3399 3400 qm_set_sqctype(q, qp_ctx.qc_type); 3401 qp_ctx.id = qp->qp_id; 3402 3403 if (copy_to_user((void __user *)arg, &qp_ctx, 3404 sizeof(struct hisi_qp_ctx))) 3405 return -EFAULT; 3406 } else { 3407 return -EINVAL; 3408 } 3409 3410 return 0; 3411 } 3412 3413 static const struct uacce_ops uacce_qm_ops = { 3414 .get_available_instances = hisi_qm_get_available_instances, 3415 .get_queue = hisi_qm_uacce_get_queue, 3416 .put_queue = hisi_qm_uacce_put_queue, 3417 .start_queue = hisi_qm_uacce_start_queue, 3418 .stop_queue = hisi_qm_uacce_stop_queue, 3419 .mmap = hisi_qm_uacce_mmap, 3420 .ioctl = hisi_qm_uacce_ioctl, 3421 .is_q_updated = hisi_qm_is_q_updated, 3422 }; 3423 3424 static int qm_alloc_uacce(struct hisi_qm *qm) 3425 { 3426 struct pci_dev *pdev = qm->pdev; 3427 struct uacce_device *uacce; 3428 unsigned long mmio_page_nr; 3429 unsigned long dus_page_nr; 3430 struct uacce_interface interface = { 3431 .flags = UACCE_DEV_SVA, 3432 .ops = &uacce_qm_ops, 3433 }; 3434 int ret; 3435 3436 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 3437 sizeof(interface.name)); 3438 if (ret < 0) 3439 return -ENAMETOOLONG; 3440 3441 uacce = uacce_alloc(&pdev->dev, &interface); 3442 if (IS_ERR(uacce)) 3443 return PTR_ERR(uacce); 3444 3445 if (uacce->flags & UACCE_DEV_SVA) { 3446 qm->use_sva = true; 3447 } else { 3448 /* only consider sva case */ 3449 uacce_remove(uacce); 3450 qm->uacce = NULL; 3451 return -EINVAL; 3452 } 3453 3454 uacce->is_vf = pdev->is_virtfn; 3455 uacce->priv = qm; 3456 uacce->algs = qm->algs; 3457 3458 if (qm->ver == QM_HW_V1) 3459 uacce->api_ver = HISI_QM_API_VER_BASE; 3460 else if (qm->ver == QM_HW_V2) 3461 uacce->api_ver = HISI_QM_API_VER2_BASE; 3462 else 3463 uacce->api_ver = HISI_QM_API_VER3_BASE; 3464 3465 if (qm->ver == QM_HW_V1) 3466 mmio_page_nr = QM_DOORBELL_PAGE_NR; 3467 else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) 3468 mmio_page_nr = QM_DOORBELL_PAGE_NR + 3469 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 3470 else 3471 mmio_page_nr = qm->db_interval / PAGE_SIZE; 3472 3473 /* Add one more page for device or qp status */ 3474 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH + 3475 sizeof(struct qm_cqe) * QM_Q_DEPTH + PAGE_SIZE) >> 3476 PAGE_SHIFT; 3477 3478 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 3479 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 3480 3481 qm->uacce = uacce; 3482 3483 return 0; 3484 } 3485 3486 /** 3487 * qm_frozen() - Try to froze QM to cut continuous queue request. If 3488 * there is user on the QM, return failure without doing anything. 3489 * @qm: The qm needed to be fronzen. 3490 * 3491 * This function frozes QM, then we can do SRIOV disabling. 3492 */ 3493 static int qm_frozen(struct hisi_qm *qm) 3494 { 3495 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 3496 return 0; 3497 3498 down_write(&qm->qps_lock); 3499 3500 if (!qm->qp_in_used) { 3501 qm->qp_in_used = qm->qp_num; 3502 up_write(&qm->qps_lock); 3503 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 3504 return 0; 3505 } 3506 3507 up_write(&qm->qps_lock); 3508 3509 return -EBUSY; 3510 } 3511 3512 static int qm_try_frozen_vfs(struct pci_dev *pdev, 3513 struct hisi_qm_list *qm_list) 3514 { 3515 struct hisi_qm *qm, *vf_qm; 3516 struct pci_dev *dev; 3517 int ret = 0; 3518 3519 if (!qm_list || !pdev) 3520 return -EINVAL; 3521 3522 /* Try to frozen all the VFs as disable SRIOV */ 3523 mutex_lock(&qm_list->lock); 3524 list_for_each_entry(qm, &qm_list->list, list) { 3525 dev = qm->pdev; 3526 if (dev == pdev) 3527 continue; 3528 if (pci_physfn(dev) == pdev) { 3529 vf_qm = pci_get_drvdata(dev); 3530 ret = qm_frozen(vf_qm); 3531 if (ret) 3532 goto frozen_fail; 3533 } 3534 } 3535 3536 frozen_fail: 3537 mutex_unlock(&qm_list->lock); 3538 3539 return ret; 3540 } 3541 3542 /** 3543 * hisi_qm_wait_task_finish() - Wait until the task is finished 3544 * when removing the driver. 3545 * @qm: The qm needed to wait for the task to finish. 3546 * @qm_list: The list of all available devices. 3547 */ 3548 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 3549 { 3550 while (qm_frozen(qm) || 3551 ((qm->fun_type == QM_HW_PF) && 3552 qm_try_frozen_vfs(qm->pdev, qm_list))) { 3553 msleep(WAIT_PERIOD); 3554 } 3555 3556 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 3557 test_bit(QM_RESETTING, &qm->misc_ctl)) 3558 msleep(WAIT_PERIOD); 3559 3560 udelay(REMOVE_WAIT_DELAY); 3561 } 3562 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 3563 3564 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 3565 { 3566 struct device *dev = &qm->pdev->dev; 3567 struct qm_dma *qdma; 3568 int i; 3569 3570 for (i = num - 1; i >= 0; i--) { 3571 qdma = &qm->qp_array[i].qdma; 3572 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 3573 kfree(qm->poll_data[i].qp_finish_id); 3574 } 3575 3576 kfree(qm->poll_data); 3577 kfree(qm->qp_array); 3578 } 3579 3580 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id) 3581 { 3582 struct device *dev = &qm->pdev->dev; 3583 size_t off = qm->sqe_size * QM_Q_DEPTH; 3584 struct hisi_qp *qp; 3585 int ret = -ENOMEM; 3586 3587 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 3588 GFP_KERNEL); 3589 if (!qm->poll_data[id].qp_finish_id) 3590 return -ENOMEM; 3591 3592 qp = &qm->qp_array[id]; 3593 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 3594 GFP_KERNEL); 3595 if (!qp->qdma.va) 3596 goto err_free_qp_finish_id; 3597 3598 qp->sqe = qp->qdma.va; 3599 qp->sqe_dma = qp->qdma.dma; 3600 qp->cqe = qp->qdma.va + off; 3601 qp->cqe_dma = qp->qdma.dma + off; 3602 qp->qdma.size = dma_size; 3603 qp->qm = qm; 3604 qp->qp_id = id; 3605 3606 return 0; 3607 3608 err_free_qp_finish_id: 3609 kfree(qm->poll_data[id].qp_finish_id); 3610 return ret; 3611 } 3612 3613 static void hisi_qm_pre_init(struct hisi_qm *qm) 3614 { 3615 struct pci_dev *pdev = qm->pdev; 3616 3617 if (qm->ver == QM_HW_V1) 3618 qm->ops = &qm_hw_ops_v1; 3619 else if (qm->ver == QM_HW_V2) 3620 qm->ops = &qm_hw_ops_v2; 3621 else 3622 qm->ops = &qm_hw_ops_v3; 3623 3624 pci_set_drvdata(pdev, qm); 3625 mutex_init(&qm->mailbox_lock); 3626 init_rwsem(&qm->qps_lock); 3627 qm->qp_in_used = 0; 3628 qm->misc_ctl = false; 3629 if (qm->fun_type == QM_HW_PF && qm->ver > QM_HW_V2) { 3630 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 3631 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 3632 } 3633 } 3634 3635 static void qm_cmd_uninit(struct hisi_qm *qm) 3636 { 3637 u32 val; 3638 3639 if (qm->ver < QM_HW_V3) 3640 return; 3641 3642 val = readl(qm->io_base + QM_IFC_INT_MASK); 3643 val |= QM_IFC_INT_DISABLE; 3644 writel(val, qm->io_base + QM_IFC_INT_MASK); 3645 } 3646 3647 static void qm_cmd_init(struct hisi_qm *qm) 3648 { 3649 u32 val; 3650 3651 if (qm->ver < QM_HW_V3) 3652 return; 3653 3654 /* Clear communication interrupt source */ 3655 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 3656 3657 /* Enable pf to vf communication reg. */ 3658 val = readl(qm->io_base + QM_IFC_INT_MASK); 3659 val &= ~QM_IFC_INT_DISABLE; 3660 writel(val, qm->io_base + QM_IFC_INT_MASK); 3661 } 3662 3663 static void qm_put_pci_res(struct hisi_qm *qm) 3664 { 3665 struct pci_dev *pdev = qm->pdev; 3666 3667 if (qm->use_db_isolation) 3668 iounmap(qm->db_io_base); 3669 3670 iounmap(qm->io_base); 3671 pci_release_mem_regions(pdev); 3672 } 3673 3674 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 3675 { 3676 struct pci_dev *pdev = qm->pdev; 3677 3678 pci_free_irq_vectors(pdev); 3679 qm_put_pci_res(qm); 3680 pci_disable_device(pdev); 3681 } 3682 3683 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 3684 { 3685 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 3686 writel(state, qm->io_base + QM_VF_STATE); 3687 } 3688 3689 static void qm_last_regs_uninit(struct hisi_qm *qm) 3690 { 3691 struct qm_debug *debug = &qm->debug; 3692 3693 if (qm->fun_type == QM_HW_VF || !debug->qm_last_words) 3694 return; 3695 3696 kfree(debug->qm_last_words); 3697 debug->qm_last_words = NULL; 3698 } 3699 3700 static void hisi_qm_unint_work(struct hisi_qm *qm) 3701 { 3702 destroy_workqueue(qm->wq); 3703 } 3704 3705 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 3706 { 3707 struct device *dev = &qm->pdev->dev; 3708 3709 hisi_qp_memory_uninit(qm, qm->qp_num); 3710 if (qm->qdma.va) { 3711 hisi_qm_cache_wb(qm); 3712 dma_free_coherent(dev, qm->qdma.size, 3713 qm->qdma.va, qm->qdma.dma); 3714 } 3715 3716 idr_destroy(&qm->qp_idr); 3717 kfree(qm->factor); 3718 } 3719 3720 /** 3721 * hisi_qm_uninit() - Uninitialize qm. 3722 * @qm: The qm needed uninit. 3723 * 3724 * This function uninits qm related device resources. 3725 */ 3726 void hisi_qm_uninit(struct hisi_qm *qm) 3727 { 3728 qm_last_regs_uninit(qm); 3729 3730 qm_cmd_uninit(qm); 3731 hisi_qm_unint_work(qm); 3732 down_write(&qm->qps_lock); 3733 3734 if (!qm_avail_state(qm, QM_CLOSE)) { 3735 up_write(&qm->qps_lock); 3736 return; 3737 } 3738 3739 hisi_qm_memory_uninit(qm); 3740 hisi_qm_set_state(qm, QM_NOT_READY); 3741 up_write(&qm->qps_lock); 3742 3743 qm_irq_unregister(qm); 3744 hisi_qm_pci_uninit(qm); 3745 if (qm->use_sva) { 3746 uacce_remove(qm->uacce); 3747 qm->uacce = NULL; 3748 } 3749 } 3750 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 3751 3752 /** 3753 * hisi_qm_get_vft() - Get vft from a qm. 3754 * @qm: The qm we want to get its vft. 3755 * @base: The base number of queue in vft. 3756 * @number: The number of queues in vft. 3757 * 3758 * We can allocate multiple queues to a qm by configuring virtual function 3759 * table. We get related configures by this function. Normally, we call this 3760 * function in VF driver to get the queue information. 3761 * 3762 * qm hw v1 does not support this interface. 3763 */ 3764 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 3765 { 3766 if (!base || !number) 3767 return -EINVAL; 3768 3769 if (!qm->ops->get_vft) { 3770 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 3771 return -EINVAL; 3772 } 3773 3774 return qm->ops->get_vft(qm, base, number); 3775 } 3776 3777 /** 3778 * hisi_qm_set_vft() - Set vft to a qm. 3779 * @qm: The qm we want to set its vft. 3780 * @fun_num: The function number. 3781 * @base: The base number of queue in vft. 3782 * @number: The number of queues in vft. 3783 * 3784 * This function is alway called in PF driver, it is used to assign queues 3785 * among PF and VFs. 3786 * 3787 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 3788 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 3789 * (VF function number 0x2) 3790 */ 3791 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 3792 u32 number) 3793 { 3794 u32 max_q_num = qm->ctrl_qp_num; 3795 3796 if (base >= max_q_num || number > max_q_num || 3797 (base + number) > max_q_num) 3798 return -EINVAL; 3799 3800 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 3801 } 3802 3803 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 3804 { 3805 struct hisi_qm_status *status = &qm->status; 3806 3807 status->eq_head = 0; 3808 status->aeq_head = 0; 3809 status->eqc_phase = true; 3810 status->aeqc_phase = true; 3811 } 3812 3813 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 3814 { 3815 /* Clear eq/aeq interrupt source */ 3816 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 3817 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 3818 3819 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 3820 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 3821 } 3822 3823 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 3824 { 3825 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 3826 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 3827 } 3828 3829 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 3830 { 3831 struct device *dev = &qm->pdev->dev; 3832 struct qm_eqc *eqc; 3833 dma_addr_t eqc_dma; 3834 int ret; 3835 3836 eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); 3837 if (!eqc) 3838 return -ENOMEM; 3839 3840 eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3841 eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3842 if (qm->ver == QM_HW_V1) 3843 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3844 eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3845 3846 eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), 3847 DMA_TO_DEVICE); 3848 if (dma_mapping_error(dev, eqc_dma)) { 3849 kfree(eqc); 3850 return -ENOMEM; 3851 } 3852 3853 ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); 3854 dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); 3855 kfree(eqc); 3856 3857 return ret; 3858 } 3859 3860 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3861 { 3862 struct device *dev = &qm->pdev->dev; 3863 struct qm_aeqc *aeqc; 3864 dma_addr_t aeqc_dma; 3865 int ret; 3866 3867 aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); 3868 if (!aeqc) 3869 return -ENOMEM; 3870 3871 aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3872 aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3873 aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3874 3875 aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), 3876 DMA_TO_DEVICE); 3877 if (dma_mapping_error(dev, aeqc_dma)) { 3878 kfree(aeqc); 3879 return -ENOMEM; 3880 } 3881 3882 ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); 3883 dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); 3884 kfree(aeqc); 3885 3886 return ret; 3887 } 3888 3889 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3890 { 3891 struct device *dev = &qm->pdev->dev; 3892 int ret; 3893 3894 qm_init_eq_aeq_status(qm); 3895 3896 ret = qm_eq_ctx_cfg(qm); 3897 if (ret) { 3898 dev_err(dev, "Set eqc failed!\n"); 3899 return ret; 3900 } 3901 3902 return qm_aeq_ctx_cfg(qm); 3903 } 3904 3905 static int __hisi_qm_start(struct hisi_qm *qm) 3906 { 3907 int ret; 3908 3909 WARN_ON(!qm->qdma.va); 3910 3911 if (qm->fun_type == QM_HW_PF) { 3912 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3913 if (ret) 3914 return ret; 3915 } 3916 3917 ret = qm_eq_aeq_ctx_cfg(qm); 3918 if (ret) 3919 return ret; 3920 3921 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3922 if (ret) 3923 return ret; 3924 3925 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3926 if (ret) 3927 return ret; 3928 3929 qm_init_prefetch(qm); 3930 qm_enable_eq_aeq_interrupts(qm); 3931 3932 return 0; 3933 } 3934 3935 /** 3936 * hisi_qm_start() - start qm 3937 * @qm: The qm to be started. 3938 * 3939 * This function starts a qm, then we can allocate qp from this qm. 3940 */ 3941 int hisi_qm_start(struct hisi_qm *qm) 3942 { 3943 struct device *dev = &qm->pdev->dev; 3944 int ret = 0; 3945 3946 down_write(&qm->qps_lock); 3947 3948 if (!qm_avail_state(qm, QM_START)) { 3949 up_write(&qm->qps_lock); 3950 return -EPERM; 3951 } 3952 3953 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3954 3955 if (!qm->qp_num) { 3956 dev_err(dev, "qp_num should not be 0\n"); 3957 ret = -EINVAL; 3958 goto err_unlock; 3959 } 3960 3961 ret = __hisi_qm_start(qm); 3962 if (!ret) 3963 atomic_set(&qm->status.flags, QM_START); 3964 3965 hisi_qm_set_state(qm, QM_READY); 3966 err_unlock: 3967 up_write(&qm->qps_lock); 3968 return ret; 3969 } 3970 EXPORT_SYMBOL_GPL(hisi_qm_start); 3971 3972 static int qm_restart(struct hisi_qm *qm) 3973 { 3974 struct device *dev = &qm->pdev->dev; 3975 struct hisi_qp *qp; 3976 int ret, i; 3977 3978 ret = hisi_qm_start(qm); 3979 if (ret < 0) 3980 return ret; 3981 3982 down_write(&qm->qps_lock); 3983 for (i = 0; i < qm->qp_num; i++) { 3984 qp = &qm->qp_array[i]; 3985 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3986 qp->is_resetting == true) { 3987 ret = qm_start_qp_nolock(qp, 0); 3988 if (ret < 0) { 3989 dev_err(dev, "Failed to start qp%d!\n", i); 3990 3991 up_write(&qm->qps_lock); 3992 return ret; 3993 } 3994 qp->is_resetting = false; 3995 } 3996 } 3997 up_write(&qm->qps_lock); 3998 3999 return 0; 4000 } 4001 4002 /* Stop started qps in reset flow */ 4003 static int qm_stop_started_qp(struct hisi_qm *qm) 4004 { 4005 struct device *dev = &qm->pdev->dev; 4006 struct hisi_qp *qp; 4007 int i, ret; 4008 4009 for (i = 0; i < qm->qp_num; i++) { 4010 qp = &qm->qp_array[i]; 4011 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 4012 qp->is_resetting = true; 4013 ret = qm_stop_qp_nolock(qp); 4014 if (ret < 0) { 4015 dev_err(dev, "Failed to stop qp%d!\n", i); 4016 return ret; 4017 } 4018 } 4019 } 4020 4021 return 0; 4022 } 4023 4024 4025 /** 4026 * qm_clear_queues() - Clear all queues memory in a qm. 4027 * @qm: The qm in which the queues will be cleared. 4028 * 4029 * This function clears all queues memory in a qm. Reset of accelerator can 4030 * use this to clear queues. 4031 */ 4032 static void qm_clear_queues(struct hisi_qm *qm) 4033 { 4034 struct hisi_qp *qp; 4035 int i; 4036 4037 for (i = 0; i < qm->qp_num; i++) { 4038 qp = &qm->qp_array[i]; 4039 if (qp->is_in_kernel && qp->is_resetting) 4040 memset(qp->qdma.va, 0, qp->qdma.size); 4041 } 4042 4043 memset(qm->qdma.va, 0, qm->qdma.size); 4044 } 4045 4046 /** 4047 * hisi_qm_stop() - Stop a qm. 4048 * @qm: The qm which will be stopped. 4049 * @r: The reason to stop qm. 4050 * 4051 * This function stops qm and its qps, then qm can not accept request. 4052 * Related resources are not released at this state, we can use hisi_qm_start 4053 * to let qm start again. 4054 */ 4055 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 4056 { 4057 struct device *dev = &qm->pdev->dev; 4058 int ret = 0; 4059 4060 down_write(&qm->qps_lock); 4061 4062 qm->status.stop_reason = r; 4063 if (!qm_avail_state(qm, QM_STOP)) { 4064 ret = -EPERM; 4065 goto err_unlock; 4066 } 4067 4068 if (qm->status.stop_reason == QM_SOFT_RESET || 4069 qm->status.stop_reason == QM_FLR) { 4070 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4071 ret = qm_stop_started_qp(qm); 4072 if (ret < 0) { 4073 dev_err(dev, "Failed to stop started qp!\n"); 4074 goto err_unlock; 4075 } 4076 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4077 } 4078 4079 qm_disable_eq_aeq_interrupts(qm); 4080 if (qm->fun_type == QM_HW_PF) { 4081 ret = hisi_qm_set_vft(qm, 0, 0, 0); 4082 if (ret < 0) { 4083 dev_err(dev, "Failed to set vft!\n"); 4084 ret = -EBUSY; 4085 goto err_unlock; 4086 } 4087 } 4088 4089 qm_clear_queues(qm); 4090 atomic_set(&qm->status.flags, QM_STOP); 4091 4092 err_unlock: 4093 up_write(&qm->qps_lock); 4094 return ret; 4095 } 4096 EXPORT_SYMBOL_GPL(hisi_qm_stop); 4097 4098 static ssize_t qm_status_read(struct file *filp, char __user *buffer, 4099 size_t count, loff_t *pos) 4100 { 4101 struct hisi_qm *qm = filp->private_data; 4102 char buf[QM_DBG_READ_LEN]; 4103 int val, len; 4104 4105 val = atomic_read(&qm->status.flags); 4106 len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]); 4107 4108 return simple_read_from_buffer(buffer, count, pos, buf, len); 4109 } 4110 4111 static const struct file_operations qm_status_fops = { 4112 .owner = THIS_MODULE, 4113 .open = simple_open, 4114 .read = qm_status_read, 4115 }; 4116 4117 static int qm_debugfs_atomic64_set(void *data, u64 val) 4118 { 4119 if (val) 4120 return -EINVAL; 4121 4122 atomic64_set((atomic64_t *)data, 0); 4123 4124 return 0; 4125 } 4126 4127 static int qm_debugfs_atomic64_get(void *data, u64 *val) 4128 { 4129 *val = atomic64_read((atomic64_t *)data); 4130 4131 return 0; 4132 } 4133 4134 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get, 4135 qm_debugfs_atomic64_set, "%llu\n"); 4136 4137 static void qm_hw_error_init(struct hisi_qm *qm) 4138 { 4139 struct hisi_qm_err_info *err_info = &qm->err_info; 4140 4141 if (!qm->ops->hw_error_init) { 4142 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 4143 return; 4144 } 4145 4146 qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe); 4147 } 4148 4149 static void qm_hw_error_uninit(struct hisi_qm *qm) 4150 { 4151 if (!qm->ops->hw_error_uninit) { 4152 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 4153 return; 4154 } 4155 4156 qm->ops->hw_error_uninit(qm); 4157 } 4158 4159 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 4160 { 4161 if (!qm->ops->hw_error_handle) { 4162 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 4163 return ACC_ERR_NONE; 4164 } 4165 4166 return qm->ops->hw_error_handle(qm); 4167 } 4168 4169 /** 4170 * hisi_qm_dev_err_init() - Initialize device error configuration. 4171 * @qm: The qm for which we want to do error initialization. 4172 * 4173 * Initialize QM and device error related configuration. 4174 */ 4175 void hisi_qm_dev_err_init(struct hisi_qm *qm) 4176 { 4177 if (qm->fun_type == QM_HW_VF) 4178 return; 4179 4180 qm_hw_error_init(qm); 4181 4182 if (!qm->err_ini->hw_err_enable) { 4183 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 4184 return; 4185 } 4186 qm->err_ini->hw_err_enable(qm); 4187 } 4188 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 4189 4190 /** 4191 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 4192 * @qm: The qm for which we want to do error uninitialization. 4193 * 4194 * Uninitialize QM and device error related configuration. 4195 */ 4196 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 4197 { 4198 if (qm->fun_type == QM_HW_VF) 4199 return; 4200 4201 qm_hw_error_uninit(qm); 4202 4203 if (!qm->err_ini->hw_err_disable) { 4204 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 4205 return; 4206 } 4207 qm->err_ini->hw_err_disable(qm); 4208 } 4209 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 4210 4211 /** 4212 * hisi_qm_free_qps() - free multiple queue pairs. 4213 * @qps: The queue pairs need to be freed. 4214 * @qp_num: The num of queue pairs. 4215 */ 4216 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 4217 { 4218 int i; 4219 4220 if (!qps || qp_num <= 0) 4221 return; 4222 4223 for (i = qp_num - 1; i >= 0; i--) 4224 hisi_qm_release_qp(qps[i]); 4225 } 4226 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 4227 4228 static void free_list(struct list_head *head) 4229 { 4230 struct hisi_qm_resource *res, *tmp; 4231 4232 list_for_each_entry_safe(res, tmp, head, list) { 4233 list_del(&res->list); 4234 kfree(res); 4235 } 4236 } 4237 4238 static int hisi_qm_sort_devices(int node, struct list_head *head, 4239 struct hisi_qm_list *qm_list) 4240 { 4241 struct hisi_qm_resource *res, *tmp; 4242 struct hisi_qm *qm; 4243 struct list_head *n; 4244 struct device *dev; 4245 int dev_node = 0; 4246 4247 list_for_each_entry(qm, &qm_list->list, list) { 4248 dev = &qm->pdev->dev; 4249 4250 if (IS_ENABLED(CONFIG_NUMA)) { 4251 dev_node = dev_to_node(dev); 4252 if (dev_node < 0) 4253 dev_node = 0; 4254 } 4255 4256 res = kzalloc(sizeof(*res), GFP_KERNEL); 4257 if (!res) 4258 return -ENOMEM; 4259 4260 res->qm = qm; 4261 res->distance = node_distance(dev_node, node); 4262 n = head; 4263 list_for_each_entry(tmp, head, list) { 4264 if (res->distance < tmp->distance) { 4265 n = &tmp->list; 4266 break; 4267 } 4268 } 4269 list_add_tail(&res->list, n); 4270 } 4271 4272 return 0; 4273 } 4274 4275 /** 4276 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 4277 * @qm_list: The list of all available devices. 4278 * @qp_num: The number of queue pairs need created. 4279 * @alg_type: The algorithm type. 4280 * @node: The numa node. 4281 * @qps: The queue pairs need created. 4282 * 4283 * This function will sort all available device according to numa distance. 4284 * Then try to create all queue pairs from one device, if all devices do 4285 * not meet the requirements will return error. 4286 */ 4287 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 4288 u8 alg_type, int node, struct hisi_qp **qps) 4289 { 4290 struct hisi_qm_resource *tmp; 4291 int ret = -ENODEV; 4292 LIST_HEAD(head); 4293 int i; 4294 4295 if (!qps || !qm_list || qp_num <= 0) 4296 return -EINVAL; 4297 4298 mutex_lock(&qm_list->lock); 4299 if (hisi_qm_sort_devices(node, &head, qm_list)) { 4300 mutex_unlock(&qm_list->lock); 4301 goto err; 4302 } 4303 4304 list_for_each_entry(tmp, &head, list) { 4305 for (i = 0; i < qp_num; i++) { 4306 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 4307 if (IS_ERR(qps[i])) { 4308 hisi_qm_free_qps(qps, i); 4309 break; 4310 } 4311 } 4312 4313 if (i == qp_num) { 4314 ret = 0; 4315 break; 4316 } 4317 } 4318 4319 mutex_unlock(&qm_list->lock); 4320 if (ret) 4321 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 4322 node, alg_type, qp_num); 4323 4324 err: 4325 free_list(&head); 4326 return ret; 4327 } 4328 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 4329 4330 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 4331 { 4332 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 4333 u32 max_qp_num = qm->max_qp_num; 4334 u32 q_base = qm->qp_num; 4335 int ret; 4336 4337 if (!num_vfs) 4338 return -EINVAL; 4339 4340 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 4341 4342 /* If vfs_q_num is less than num_vfs, return error. */ 4343 if (vfs_q_num < num_vfs) 4344 return -EINVAL; 4345 4346 q_num = vfs_q_num / num_vfs; 4347 remain_q_num = vfs_q_num % num_vfs; 4348 4349 for (i = num_vfs; i > 0; i--) { 4350 /* 4351 * if q_num + remain_q_num > max_qp_num in last vf, divide the 4352 * remaining queues equally. 4353 */ 4354 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 4355 act_q_num = q_num + remain_q_num; 4356 remain_q_num = 0; 4357 } else if (remain_q_num > 0) { 4358 act_q_num = q_num + 1; 4359 remain_q_num--; 4360 } else { 4361 act_q_num = q_num; 4362 } 4363 4364 act_q_num = min_t(int, act_q_num, max_qp_num); 4365 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 4366 if (ret) { 4367 for (j = num_vfs; j > i; j--) 4368 hisi_qm_set_vft(qm, j, 0, 0); 4369 return ret; 4370 } 4371 q_base += act_q_num; 4372 } 4373 4374 return 0; 4375 } 4376 4377 static int qm_clear_vft_config(struct hisi_qm *qm) 4378 { 4379 int ret; 4380 u32 i; 4381 4382 for (i = 1; i <= qm->vfs_num; i++) { 4383 ret = hisi_qm_set_vft(qm, i, 0, 0); 4384 if (ret) 4385 return ret; 4386 } 4387 qm->vfs_num = 0; 4388 4389 return 0; 4390 } 4391 4392 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 4393 { 4394 struct device *dev = &qm->pdev->dev; 4395 u32 ir = qos * QM_QOS_RATE; 4396 int ret, total_vfs, i; 4397 4398 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 4399 if (fun_index > total_vfs) 4400 return -EINVAL; 4401 4402 qm->factor[fun_index].func_qos = qos; 4403 4404 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 4405 if (ret) { 4406 dev_err(dev, "failed to calculate shaper parameter!\n"); 4407 return -EINVAL; 4408 } 4409 4410 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 4411 /* The base number of queue reuse for different alg type */ 4412 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 4413 if (ret) { 4414 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 4415 return -EINVAL; 4416 } 4417 } 4418 4419 return 0; 4420 } 4421 4422 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 4423 { 4424 u64 cir_u = 0, cir_b = 0, cir_s = 0; 4425 u64 shaper_vft, ir_calc, ir; 4426 unsigned int val; 4427 u32 error_rate; 4428 int ret; 4429 4430 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 4431 val & BIT(0), POLL_PERIOD, 4432 POLL_TIMEOUT); 4433 if (ret) 4434 return 0; 4435 4436 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 4437 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 4438 writel(fun_index, qm->io_base + QM_VFT_CFG); 4439 4440 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 4441 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 4442 4443 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 4444 val & BIT(0), POLL_PERIOD, 4445 POLL_TIMEOUT); 4446 if (ret) 4447 return 0; 4448 4449 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 4450 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 4451 4452 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 4453 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 4454 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 4455 4456 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 4457 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 4458 4459 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 4460 4461 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 4462 4463 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 4464 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 4465 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 4466 return 0; 4467 } 4468 4469 return ir; 4470 } 4471 4472 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 4473 { 4474 struct device *dev = &qm->pdev->dev; 4475 u64 mb_cmd; 4476 u32 qos; 4477 int ret; 4478 4479 qos = qm_get_shaper_vft_qos(qm, fun_num); 4480 if (!qos) { 4481 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 4482 return; 4483 } 4484 4485 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 4486 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 4487 if (ret) 4488 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 4489 } 4490 4491 static int qm_vf_read_qos(struct hisi_qm *qm) 4492 { 4493 int cnt = 0; 4494 int ret = -EINVAL; 4495 4496 /* reset mailbox qos val */ 4497 qm->mb_qos = 0; 4498 4499 /* vf ping pf to get function qos */ 4500 if (qm->ops->ping_pf) { 4501 ret = qm->ops->ping_pf(qm, QM_VF_GET_QOS); 4502 if (ret) { 4503 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 4504 return ret; 4505 } 4506 } 4507 4508 while (true) { 4509 msleep(QM_WAIT_DST_ACK); 4510 if (qm->mb_qos) 4511 break; 4512 4513 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 4514 pci_err(qm->pdev, "PF ping VF timeout!\n"); 4515 return -ETIMEDOUT; 4516 } 4517 } 4518 4519 return ret; 4520 } 4521 4522 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 4523 size_t count, loff_t *pos) 4524 { 4525 struct hisi_qm *qm = filp->private_data; 4526 char tbuf[QM_DBG_READ_LEN]; 4527 u32 qos_val, ir; 4528 int ret; 4529 4530 ret = hisi_qm_get_dfx_access(qm); 4531 if (ret) 4532 return ret; 4533 4534 /* Mailbox and reset cannot be operated at the same time */ 4535 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 4536 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 4537 ret = -EAGAIN; 4538 goto err_put_dfx_access; 4539 } 4540 4541 if (qm->fun_type == QM_HW_PF) { 4542 ir = qm_get_shaper_vft_qos(qm, 0); 4543 } else { 4544 ret = qm_vf_read_qos(qm); 4545 if (ret) 4546 goto err_get_status; 4547 ir = qm->mb_qos; 4548 } 4549 4550 qos_val = ir / QM_QOS_RATE; 4551 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 4552 4553 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 4554 4555 err_get_status: 4556 clear_bit(QM_RESETTING, &qm->misc_ctl); 4557 err_put_dfx_access: 4558 hisi_qm_put_dfx_access(qm); 4559 return ret; 4560 } 4561 4562 static ssize_t qm_qos_value_init(const char *buf, unsigned long *val) 4563 { 4564 int buflen = strlen(buf); 4565 int ret, i; 4566 4567 for (i = 0; i < buflen; i++) { 4568 if (!isdigit(buf[i])) 4569 return -EINVAL; 4570 } 4571 4572 ret = sscanf(buf, "%lu", val); 4573 if (ret != QM_QOS_VAL_NUM) 4574 return -EINVAL; 4575 4576 return 0; 4577 } 4578 4579 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 4580 unsigned long *val, 4581 unsigned int *fun_index) 4582 { 4583 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 4584 char val_buf[QM_QOS_VAL_MAX_LEN] = {0}; 4585 u32 tmp1, device, function; 4586 int ret, bus; 4587 4588 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 4589 if (ret != QM_QOS_PARAM_NUM) 4590 return -EINVAL; 4591 4592 ret = qm_qos_value_init(val_buf, val); 4593 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 4594 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 4595 return -EINVAL; 4596 } 4597 4598 ret = sscanf(tbuf_bdf, "%u:%x:%u.%u", &tmp1, &bus, &device, &function); 4599 if (ret != QM_QOS_BDF_PARAM_NUM) { 4600 pci_err(qm->pdev, "input pci bdf value is error!\n"); 4601 return -EINVAL; 4602 } 4603 4604 *fun_index = PCI_DEVFN(device, function); 4605 4606 return 0; 4607 } 4608 4609 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 4610 size_t count, loff_t *pos) 4611 { 4612 struct hisi_qm *qm = filp->private_data; 4613 char tbuf[QM_DBG_READ_LEN]; 4614 unsigned int fun_index; 4615 unsigned long val; 4616 int len, ret; 4617 4618 if (qm->fun_type == QM_HW_VF) 4619 return -EINVAL; 4620 4621 if (*pos != 0) 4622 return 0; 4623 4624 if (count >= QM_DBG_READ_LEN) 4625 return -ENOSPC; 4626 4627 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 4628 if (len < 0) 4629 return len; 4630 4631 tbuf[len] = '\0'; 4632 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 4633 if (ret) 4634 return ret; 4635 4636 /* Mailbox and reset cannot be operated at the same time */ 4637 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 4638 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 4639 return -EAGAIN; 4640 } 4641 4642 ret = qm_pm_get_sync(qm); 4643 if (ret) { 4644 ret = -EINVAL; 4645 goto err_get_status; 4646 } 4647 4648 ret = qm_func_shaper_enable(qm, fun_index, val); 4649 if (ret) { 4650 pci_err(qm->pdev, "failed to enable function shaper!\n"); 4651 ret = -EINVAL; 4652 goto err_put_sync; 4653 } 4654 4655 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 4656 fun_index, val); 4657 ret = count; 4658 4659 err_put_sync: 4660 qm_pm_put_sync(qm); 4661 err_get_status: 4662 clear_bit(QM_RESETTING, &qm->misc_ctl); 4663 return ret; 4664 } 4665 4666 static const struct file_operations qm_algqos_fops = { 4667 .owner = THIS_MODULE, 4668 .open = simple_open, 4669 .read = qm_algqos_read, 4670 .write = qm_algqos_write, 4671 }; 4672 4673 /** 4674 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 4675 * @qm: The qm for which we want to add debugfs files. 4676 * 4677 * Create function qos debugfs files. 4678 */ 4679 static void hisi_qm_set_algqos_init(struct hisi_qm *qm) 4680 { 4681 if (qm->fun_type == QM_HW_PF) 4682 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 4683 qm, &qm_algqos_fops); 4684 else 4685 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 4686 qm, &qm_algqos_fops); 4687 } 4688 4689 /** 4690 * hisi_qm_debug_init() - Initialize qm related debugfs files. 4691 * @qm: The qm for which we want to add debugfs files. 4692 * 4693 * Create qm related debugfs files. 4694 */ 4695 void hisi_qm_debug_init(struct hisi_qm *qm) 4696 { 4697 struct dfx_diff_registers *qm_regs = qm->debug.qm_diff_regs; 4698 struct qm_dfx *dfx = &qm->debug.dfx; 4699 struct dentry *qm_d; 4700 void *data; 4701 int i; 4702 4703 qm_d = debugfs_create_dir("qm", qm->debug.debug_root); 4704 qm->debug.qm_d = qm_d; 4705 4706 /* only show this in PF */ 4707 if (qm->fun_type == QM_HW_PF) { 4708 qm_create_debugfs_file(qm, qm->debug.debug_root, CURRENT_QM); 4709 for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++) 4710 qm_create_debugfs_file(qm, qm->debug.qm_d, i); 4711 } 4712 4713 if (qm_regs) 4714 debugfs_create_file("diff_regs", 0444, qm->debug.qm_d, 4715 qm, &qm_diff_regs_fops); 4716 4717 debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops); 4718 4719 debugfs_create_file("cmd", 0600, qm->debug.qm_d, qm, &qm_cmd_fops); 4720 4721 debugfs_create_file("status", 0444, qm->debug.qm_d, qm, 4722 &qm_status_fops); 4723 for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) { 4724 data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset); 4725 debugfs_create_file(qm_dfx_files[i].name, 4726 0644, 4727 qm_d, 4728 data, 4729 &qm_atomic64_ops); 4730 } 4731 4732 if (qm->ver >= QM_HW_V3) 4733 hisi_qm_set_algqos_init(qm); 4734 } 4735 EXPORT_SYMBOL_GPL(hisi_qm_debug_init); 4736 4737 /** 4738 * hisi_qm_debug_regs_clear() - clear qm debug related registers. 4739 * @qm: The qm for which we want to clear its debug registers. 4740 */ 4741 void hisi_qm_debug_regs_clear(struct hisi_qm *qm) 4742 { 4743 const struct debugfs_reg32 *regs; 4744 int i; 4745 4746 /* clear current_qm */ 4747 writel(0x0, qm->io_base + QM_DFX_MB_CNT_VF); 4748 writel(0x0, qm->io_base + QM_DFX_DB_CNT_VF); 4749 4750 /* clear current_q */ 4751 writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 4752 writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 4753 4754 /* 4755 * these registers are reading and clearing, so clear them after 4756 * reading them. 4757 */ 4758 writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE); 4759 4760 regs = qm_dfx_regs; 4761 for (i = 0; i < CNT_CYC_REGS_NUM; i++) { 4762 readl(qm->io_base + regs->offset); 4763 regs++; 4764 } 4765 4766 /* clear clear_enable */ 4767 writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE); 4768 } 4769 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear); 4770 4771 /** 4772 * hisi_qm_sriov_enable() - enable virtual functions 4773 * @pdev: the PCIe device 4774 * @max_vfs: the number of virtual functions to enable 4775 * 4776 * Returns the number of enabled VFs. If there are VFs enabled already or 4777 * max_vfs is more than the total number of device can be enabled, returns 4778 * failure. 4779 */ 4780 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 4781 { 4782 struct hisi_qm *qm = pci_get_drvdata(pdev); 4783 int pre_existing_vfs, num_vfs, total_vfs, ret; 4784 4785 ret = qm_pm_get_sync(qm); 4786 if (ret) 4787 return ret; 4788 4789 total_vfs = pci_sriov_get_totalvfs(pdev); 4790 pre_existing_vfs = pci_num_vf(pdev); 4791 if (pre_existing_vfs) { 4792 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 4793 pre_existing_vfs); 4794 goto err_put_sync; 4795 } 4796 4797 num_vfs = min_t(int, max_vfs, total_vfs); 4798 ret = qm_vf_q_assign(qm, num_vfs); 4799 if (ret) { 4800 pci_err(pdev, "Can't assign queues for VF!\n"); 4801 goto err_put_sync; 4802 } 4803 4804 qm->vfs_num = num_vfs; 4805 4806 ret = pci_enable_sriov(pdev, num_vfs); 4807 if (ret) { 4808 pci_err(pdev, "Can't enable VF!\n"); 4809 qm_clear_vft_config(qm); 4810 goto err_put_sync; 4811 } 4812 4813 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 4814 4815 return num_vfs; 4816 4817 err_put_sync: 4818 qm_pm_put_sync(qm); 4819 return ret; 4820 } 4821 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 4822 4823 /** 4824 * hisi_qm_sriov_disable - disable virtual functions 4825 * @pdev: the PCI device. 4826 * @is_frozen: true when all the VFs are frozen. 4827 * 4828 * Return failure if there are VFs assigned already or VF is in used. 4829 */ 4830 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 4831 { 4832 struct hisi_qm *qm = pci_get_drvdata(pdev); 4833 int total_vfs = pci_sriov_get_totalvfs(qm->pdev); 4834 int ret; 4835 4836 if (pci_vfs_assigned(pdev)) { 4837 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 4838 return -EPERM; 4839 } 4840 4841 /* While VF is in used, SRIOV cannot be disabled. */ 4842 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 4843 pci_err(pdev, "Task is using its VF!\n"); 4844 return -EBUSY; 4845 } 4846 4847 pci_disable_sriov(pdev); 4848 /* clear vf function shaper configure array */ 4849 memset(qm->factor + 1, 0, sizeof(struct qm_shaper_factor) * total_vfs); 4850 ret = qm_clear_vft_config(qm); 4851 if (ret) 4852 return ret; 4853 4854 qm_pm_put_sync(qm); 4855 4856 return 0; 4857 } 4858 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 4859 4860 /** 4861 * hisi_qm_sriov_configure - configure the number of VFs 4862 * @pdev: The PCI device 4863 * @num_vfs: The number of VFs need enabled 4864 * 4865 * Enable SR-IOV according to num_vfs, 0 means disable. 4866 */ 4867 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 4868 { 4869 if (num_vfs == 0) 4870 return hisi_qm_sriov_disable(pdev, false); 4871 else 4872 return hisi_qm_sriov_enable(pdev, num_vfs); 4873 } 4874 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 4875 4876 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 4877 { 4878 u32 err_sts; 4879 4880 if (!qm->err_ini->get_dev_hw_err_status) { 4881 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 4882 return ACC_ERR_NONE; 4883 } 4884 4885 /* get device hardware error status */ 4886 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 4887 if (err_sts) { 4888 if (err_sts & qm->err_info.ecc_2bits_mask) 4889 qm->err_status.is_dev_ecc_mbit = true; 4890 4891 if (qm->err_ini->log_dev_hw_err) 4892 qm->err_ini->log_dev_hw_err(qm, err_sts); 4893 4894 /* ce error does not need to be reset */ 4895 if ((err_sts | qm->err_info.dev_ce_mask) == 4896 qm->err_info.dev_ce_mask) { 4897 if (qm->err_ini->clear_dev_hw_err_status) 4898 qm->err_ini->clear_dev_hw_err_status(qm, 4899 err_sts); 4900 4901 return ACC_ERR_RECOVERED; 4902 } 4903 4904 return ACC_ERR_NEED_RESET; 4905 } 4906 4907 return ACC_ERR_RECOVERED; 4908 } 4909 4910 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 4911 { 4912 enum acc_err_result qm_ret, dev_ret; 4913 4914 /* log qm error */ 4915 qm_ret = qm_hw_error_handle(qm); 4916 4917 /* log device error */ 4918 dev_ret = qm_dev_err_handle(qm); 4919 4920 return (qm_ret == ACC_ERR_NEED_RESET || 4921 dev_ret == ACC_ERR_NEED_RESET) ? 4922 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 4923 } 4924 4925 /** 4926 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 4927 * @pdev: The PCI device which need report error. 4928 * @state: The connectivity between CPU and device. 4929 * 4930 * We register this function into PCIe AER handlers, It will report device or 4931 * qm hardware error status when error occur. 4932 */ 4933 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 4934 pci_channel_state_t state) 4935 { 4936 struct hisi_qm *qm = pci_get_drvdata(pdev); 4937 enum acc_err_result ret; 4938 4939 if (pdev->is_virtfn) 4940 return PCI_ERS_RESULT_NONE; 4941 4942 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 4943 if (state == pci_channel_io_perm_failure) 4944 return PCI_ERS_RESULT_DISCONNECT; 4945 4946 ret = qm_process_dev_error(qm); 4947 if (ret == ACC_ERR_NEED_RESET) 4948 return PCI_ERS_RESULT_NEED_RESET; 4949 4950 return PCI_ERS_RESULT_RECOVERED; 4951 } 4952 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 4953 4954 static int qm_check_req_recv(struct hisi_qm *qm) 4955 { 4956 struct pci_dev *pdev = qm->pdev; 4957 int ret; 4958 u32 val; 4959 4960 if (qm->ver >= QM_HW_V3) 4961 return 0; 4962 4963 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 4964 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4965 (val == ACC_VENDOR_ID_VALUE), 4966 POLL_PERIOD, POLL_TIMEOUT); 4967 if (ret) { 4968 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 4969 return ret; 4970 } 4971 4972 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 4973 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4974 (val == PCI_VENDOR_ID_HUAWEI), 4975 POLL_PERIOD, POLL_TIMEOUT); 4976 if (ret) 4977 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 4978 4979 return ret; 4980 } 4981 4982 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 4983 { 4984 struct pci_dev *pdev = qm->pdev; 4985 u16 cmd; 4986 int i; 4987 4988 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4989 if (set) 4990 cmd |= PCI_COMMAND_MEMORY; 4991 else 4992 cmd &= ~PCI_COMMAND_MEMORY; 4993 4994 pci_write_config_word(pdev, PCI_COMMAND, cmd); 4995 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4996 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4997 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 4998 return 0; 4999 5000 udelay(1); 5001 } 5002 5003 return -ETIMEDOUT; 5004 } 5005 5006 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 5007 { 5008 struct pci_dev *pdev = qm->pdev; 5009 u16 sriov_ctrl; 5010 int pos; 5011 int i; 5012 5013 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 5014 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 5015 if (set) 5016 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 5017 else 5018 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 5019 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 5020 5021 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 5022 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 5023 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 5024 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 5025 return 0; 5026 5027 udelay(1); 5028 } 5029 5030 return -ETIMEDOUT; 5031 } 5032 5033 static int qm_vf_reset_prepare(struct hisi_qm *qm, 5034 enum qm_stop_reason stop_reason) 5035 { 5036 struct hisi_qm_list *qm_list = qm->qm_list; 5037 struct pci_dev *pdev = qm->pdev; 5038 struct pci_dev *virtfn; 5039 struct hisi_qm *vf_qm; 5040 int ret = 0; 5041 5042 mutex_lock(&qm_list->lock); 5043 list_for_each_entry(vf_qm, &qm_list->list, list) { 5044 virtfn = vf_qm->pdev; 5045 if (virtfn == pdev) 5046 continue; 5047 5048 if (pci_physfn(virtfn) == pdev) { 5049 /* save VFs PCIE BAR configuration */ 5050 pci_save_state(virtfn); 5051 5052 ret = hisi_qm_stop(vf_qm, stop_reason); 5053 if (ret) 5054 goto stop_fail; 5055 } 5056 } 5057 5058 stop_fail: 5059 mutex_unlock(&qm_list->lock); 5060 return ret; 5061 } 5062 5063 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 5064 enum qm_stop_reason stop_reason) 5065 { 5066 struct pci_dev *pdev = qm->pdev; 5067 int ret; 5068 5069 if (!qm->vfs_num) 5070 return 0; 5071 5072 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 5073 if (qm->ops->ping_all_vfs) { 5074 ret = qm->ops->ping_all_vfs(qm, cmd); 5075 if (ret) 5076 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 5077 } else { 5078 ret = qm_vf_reset_prepare(qm, stop_reason); 5079 if (ret) 5080 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 5081 } 5082 5083 return ret; 5084 } 5085 5086 static int qm_controller_reset_prepare(struct hisi_qm *qm) 5087 { 5088 struct pci_dev *pdev = qm->pdev; 5089 int ret; 5090 5091 ret = qm_reset_prepare_ready(qm); 5092 if (ret) { 5093 pci_err(pdev, "Controller reset not ready!\n"); 5094 return ret; 5095 } 5096 5097 /* PF obtains the information of VF by querying the register. */ 5098 qm_cmd_uninit(qm); 5099 5100 /* Whether VFs stop successfully, soft reset will continue. */ 5101 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 5102 if (ret) 5103 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 5104 5105 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 5106 if (ret) { 5107 pci_err(pdev, "Fails to stop QM!\n"); 5108 qm_reset_bit_clear(qm); 5109 return ret; 5110 } 5111 5112 ret = qm_wait_vf_prepare_finish(qm); 5113 if (ret) 5114 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 5115 5116 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 5117 5118 return 0; 5119 } 5120 5121 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 5122 { 5123 u32 nfe_enb = 0; 5124 5125 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 5126 if (qm->ver >= QM_HW_V3) 5127 return; 5128 5129 if (!qm->err_status.is_dev_ecc_mbit && 5130 qm->err_status.is_qm_ecc_mbit && 5131 qm->err_ini->close_axi_master_ooo) { 5132 5133 qm->err_ini->close_axi_master_ooo(qm); 5134 5135 } else if (qm->err_status.is_dev_ecc_mbit && 5136 !qm->err_status.is_qm_ecc_mbit && 5137 !qm->err_ini->close_axi_master_ooo) { 5138 5139 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 5140 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 5141 qm->io_base + QM_RAS_NFE_ENABLE); 5142 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 5143 } 5144 } 5145 5146 static int qm_soft_reset(struct hisi_qm *qm) 5147 { 5148 struct pci_dev *pdev = qm->pdev; 5149 int ret; 5150 u32 val; 5151 5152 /* Ensure all doorbells and mailboxes received by QM */ 5153 ret = qm_check_req_recv(qm); 5154 if (ret) 5155 return ret; 5156 5157 if (qm->vfs_num) { 5158 ret = qm_set_vf_mse(qm, false); 5159 if (ret) { 5160 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 5161 return ret; 5162 } 5163 } 5164 5165 ret = qm->ops->set_msi(qm, false); 5166 if (ret) { 5167 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 5168 return ret; 5169 } 5170 5171 qm_dev_ecc_mbit_handle(qm); 5172 5173 /* OOO register set and check */ 5174 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 5175 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5176 5177 /* If bus lock, reset chip */ 5178 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 5179 val, 5180 (val == ACC_MASTER_TRANS_RETURN_RW), 5181 POLL_PERIOD, POLL_TIMEOUT); 5182 if (ret) { 5183 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 5184 return ret; 5185 } 5186 5187 if (qm->err_ini->close_sva_prefetch) 5188 qm->err_ini->close_sva_prefetch(qm); 5189 5190 ret = qm_set_pf_mse(qm, false); 5191 if (ret) { 5192 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 5193 return ret; 5194 } 5195 5196 /* The reset related sub-control registers are not in PCI BAR */ 5197 if (ACPI_HANDLE(&pdev->dev)) { 5198 unsigned long long value = 0; 5199 acpi_status s; 5200 5201 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 5202 qm->err_info.acpi_rst, 5203 NULL, &value); 5204 if (ACPI_FAILURE(s)) { 5205 pci_err(pdev, "NO controller reset method!\n"); 5206 return -EIO; 5207 } 5208 5209 if (value) { 5210 pci_err(pdev, "Reset step %llu failed!\n", value); 5211 return -EIO; 5212 } 5213 } else { 5214 pci_err(pdev, "No reset method!\n"); 5215 return -EINVAL; 5216 } 5217 5218 return 0; 5219 } 5220 5221 static int qm_vf_reset_done(struct hisi_qm *qm) 5222 { 5223 struct hisi_qm_list *qm_list = qm->qm_list; 5224 struct pci_dev *pdev = qm->pdev; 5225 struct pci_dev *virtfn; 5226 struct hisi_qm *vf_qm; 5227 int ret = 0; 5228 5229 mutex_lock(&qm_list->lock); 5230 list_for_each_entry(vf_qm, &qm_list->list, list) { 5231 virtfn = vf_qm->pdev; 5232 if (virtfn == pdev) 5233 continue; 5234 5235 if (pci_physfn(virtfn) == pdev) { 5236 /* enable VFs PCIE BAR configuration */ 5237 pci_restore_state(virtfn); 5238 5239 ret = qm_restart(vf_qm); 5240 if (ret) 5241 goto restart_fail; 5242 } 5243 } 5244 5245 restart_fail: 5246 mutex_unlock(&qm_list->lock); 5247 return ret; 5248 } 5249 5250 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 5251 { 5252 struct pci_dev *pdev = qm->pdev; 5253 int ret; 5254 5255 if (!qm->vfs_num) 5256 return 0; 5257 5258 ret = qm_vf_q_assign(qm, qm->vfs_num); 5259 if (ret) { 5260 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 5261 return ret; 5262 } 5263 5264 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 5265 if (qm->ops->ping_all_vfs) { 5266 ret = qm->ops->ping_all_vfs(qm, cmd); 5267 if (ret) 5268 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 5269 } else { 5270 ret = qm_vf_reset_done(qm); 5271 if (ret) 5272 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 5273 } 5274 5275 return ret; 5276 } 5277 5278 static int qm_dev_hw_init(struct hisi_qm *qm) 5279 { 5280 return qm->err_ini->hw_init(qm); 5281 } 5282 5283 static void qm_restart_prepare(struct hisi_qm *qm) 5284 { 5285 u32 value; 5286 5287 if (qm->err_ini->open_sva_prefetch) 5288 qm->err_ini->open_sva_prefetch(qm); 5289 5290 if (qm->ver >= QM_HW_V3) 5291 return; 5292 5293 if (!qm->err_status.is_qm_ecc_mbit && 5294 !qm->err_status.is_dev_ecc_mbit) 5295 return; 5296 5297 /* temporarily close the OOO port used for PEH to write out MSI */ 5298 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 5299 writel(value & ~qm->err_info.msi_wr_port, 5300 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 5301 5302 /* clear dev ecc 2bit error source if having */ 5303 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 5304 if (value && qm->err_ini->clear_dev_hw_err_status) 5305 qm->err_ini->clear_dev_hw_err_status(qm, value); 5306 5307 /* clear QM ecc mbit error source */ 5308 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 5309 5310 /* clear AM Reorder Buffer ecc mbit source */ 5311 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 5312 } 5313 5314 static void qm_restart_done(struct hisi_qm *qm) 5315 { 5316 u32 value; 5317 5318 if (qm->ver >= QM_HW_V3) 5319 goto clear_flags; 5320 5321 if (!qm->err_status.is_qm_ecc_mbit && 5322 !qm->err_status.is_dev_ecc_mbit) 5323 return; 5324 5325 /* open the OOO port for PEH to write out MSI */ 5326 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 5327 value |= qm->err_info.msi_wr_port; 5328 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 5329 5330 clear_flags: 5331 qm->err_status.is_qm_ecc_mbit = false; 5332 qm->err_status.is_dev_ecc_mbit = false; 5333 } 5334 5335 static int qm_controller_reset_done(struct hisi_qm *qm) 5336 { 5337 struct pci_dev *pdev = qm->pdev; 5338 int ret; 5339 5340 ret = qm->ops->set_msi(qm, true); 5341 if (ret) { 5342 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 5343 return ret; 5344 } 5345 5346 ret = qm_set_pf_mse(qm, true); 5347 if (ret) { 5348 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 5349 return ret; 5350 } 5351 5352 if (qm->vfs_num) { 5353 ret = qm_set_vf_mse(qm, true); 5354 if (ret) { 5355 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 5356 return ret; 5357 } 5358 } 5359 5360 ret = qm_dev_hw_init(qm); 5361 if (ret) { 5362 pci_err(pdev, "Failed to init device\n"); 5363 return ret; 5364 } 5365 5366 qm_restart_prepare(qm); 5367 hisi_qm_dev_err_init(qm); 5368 if (qm->err_ini->open_axi_master_ooo) 5369 qm->err_ini->open_axi_master_ooo(qm); 5370 5371 ret = qm_dev_mem_reset(qm); 5372 if (ret) { 5373 pci_err(pdev, "failed to reset device memory\n"); 5374 return ret; 5375 } 5376 5377 ret = qm_restart(qm); 5378 if (ret) { 5379 pci_err(pdev, "Failed to start QM!\n"); 5380 return ret; 5381 } 5382 5383 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 5384 if (ret) 5385 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 5386 5387 ret = qm_wait_vf_prepare_finish(qm); 5388 if (ret) 5389 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 5390 5391 qm_cmd_init(qm); 5392 qm_restart_done(qm); 5393 5394 qm_reset_bit_clear(qm); 5395 5396 return 0; 5397 } 5398 5399 static void qm_show_last_dfx_regs(struct hisi_qm *qm) 5400 { 5401 struct qm_debug *debug = &qm->debug; 5402 struct pci_dev *pdev = qm->pdev; 5403 u32 val; 5404 int i; 5405 5406 if (qm->fun_type == QM_HW_VF || !debug->qm_last_words) 5407 return; 5408 5409 for (i = 0; i < ARRAY_SIZE(qm_dfx_regs); i++) { 5410 val = readl_relaxed(qm->io_base + qm_dfx_regs[i].offset); 5411 if (debug->qm_last_words[i] != val) 5412 pci_info(pdev, "%s \t= 0x%08x => 0x%08x\n", 5413 qm_dfx_regs[i].name, debug->qm_last_words[i], val); 5414 } 5415 } 5416 5417 static int qm_controller_reset(struct hisi_qm *qm) 5418 { 5419 struct pci_dev *pdev = qm->pdev; 5420 int ret; 5421 5422 pci_info(pdev, "Controller resetting...\n"); 5423 5424 ret = qm_controller_reset_prepare(qm); 5425 if (ret) { 5426 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 5427 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 5428 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 5429 return ret; 5430 } 5431 5432 qm_show_last_dfx_regs(qm); 5433 if (qm->err_ini->show_last_dfx_regs) 5434 qm->err_ini->show_last_dfx_regs(qm); 5435 5436 ret = qm_soft_reset(qm); 5437 if (ret) { 5438 pci_err(pdev, "Controller reset failed (%d)\n", ret); 5439 qm_reset_bit_clear(qm); 5440 return ret; 5441 } 5442 5443 ret = qm_controller_reset_done(qm); 5444 if (ret) { 5445 qm_reset_bit_clear(qm); 5446 return ret; 5447 } 5448 5449 pci_info(pdev, "Controller reset complete\n"); 5450 5451 return 0; 5452 } 5453 5454 /** 5455 * hisi_qm_dev_slot_reset() - slot reset 5456 * @pdev: the PCIe device 5457 * 5458 * This function offers QM relate PCIe device reset interface. Drivers which 5459 * use QM can use this function as slot_reset in its struct pci_error_handlers. 5460 */ 5461 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 5462 { 5463 struct hisi_qm *qm = pci_get_drvdata(pdev); 5464 int ret; 5465 5466 if (pdev->is_virtfn) 5467 return PCI_ERS_RESULT_RECOVERED; 5468 5469 pci_aer_clear_nonfatal_status(pdev); 5470 5471 /* reset pcie device controller */ 5472 ret = qm_controller_reset(qm); 5473 if (ret) { 5474 pci_err(pdev, "Controller reset failed (%d)\n", ret); 5475 return PCI_ERS_RESULT_DISCONNECT; 5476 } 5477 5478 return PCI_ERS_RESULT_RECOVERED; 5479 } 5480 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 5481 5482 void hisi_qm_reset_prepare(struct pci_dev *pdev) 5483 { 5484 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 5485 struct hisi_qm *qm = pci_get_drvdata(pdev); 5486 u32 delay = 0; 5487 int ret; 5488 5489 hisi_qm_dev_err_uninit(pf_qm); 5490 5491 /* 5492 * Check whether there is an ECC mbit error, If it occurs, need to 5493 * wait for soft reset to fix it. 5494 */ 5495 while (qm_check_dev_error(pf_qm)) { 5496 msleep(++delay); 5497 if (delay > QM_RESET_WAIT_TIMEOUT) 5498 return; 5499 } 5500 5501 ret = qm_reset_prepare_ready(qm); 5502 if (ret) { 5503 pci_err(pdev, "FLR not ready!\n"); 5504 return; 5505 } 5506 5507 /* PF obtains the information of VF by querying the register. */ 5508 if (qm->fun_type == QM_HW_PF) 5509 qm_cmd_uninit(qm); 5510 5511 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR); 5512 if (ret) 5513 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 5514 5515 ret = hisi_qm_stop(qm, QM_FLR); 5516 if (ret) { 5517 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 5518 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 5519 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 5520 return; 5521 } 5522 5523 ret = qm_wait_vf_prepare_finish(qm); 5524 if (ret) 5525 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 5526 5527 pci_info(pdev, "FLR resetting...\n"); 5528 } 5529 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 5530 5531 static bool qm_flr_reset_complete(struct pci_dev *pdev) 5532 { 5533 struct pci_dev *pf_pdev = pci_physfn(pdev); 5534 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 5535 u32 id; 5536 5537 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 5538 if (id == QM_PCI_COMMAND_INVALID) { 5539 pci_err(pdev, "Device can not be used!\n"); 5540 return false; 5541 } 5542 5543 return true; 5544 } 5545 5546 void hisi_qm_reset_done(struct pci_dev *pdev) 5547 { 5548 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 5549 struct hisi_qm *qm = pci_get_drvdata(pdev); 5550 int ret; 5551 5552 if (qm->fun_type == QM_HW_PF) { 5553 ret = qm_dev_hw_init(qm); 5554 if (ret) { 5555 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 5556 goto flr_done; 5557 } 5558 } 5559 5560 hisi_qm_dev_err_init(pf_qm); 5561 5562 ret = qm_restart(qm); 5563 if (ret) { 5564 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 5565 goto flr_done; 5566 } 5567 5568 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 5569 if (ret) 5570 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 5571 5572 ret = qm_wait_vf_prepare_finish(qm); 5573 if (ret) 5574 pci_err(pdev, "failed to start by vfs in FLR!\n"); 5575 5576 flr_done: 5577 if (qm->fun_type == QM_HW_PF) 5578 qm_cmd_init(qm); 5579 5580 if (qm_flr_reset_complete(pdev)) 5581 pci_info(pdev, "FLR reset complete\n"); 5582 5583 qm_reset_bit_clear(qm); 5584 } 5585 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 5586 5587 static irqreturn_t qm_abnormal_irq(int irq, void *data) 5588 { 5589 struct hisi_qm *qm = data; 5590 enum acc_err_result ret; 5591 5592 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 5593 ret = qm_process_dev_error(qm); 5594 if (ret == ACC_ERR_NEED_RESET && 5595 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 5596 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 5597 schedule_work(&qm->rst_work); 5598 5599 return IRQ_HANDLED; 5600 } 5601 5602 static int qm_irq_register(struct hisi_qm *qm) 5603 { 5604 struct pci_dev *pdev = qm->pdev; 5605 int ret; 5606 5607 ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), 5608 qm_irq, 0, qm->dev_name, qm); 5609 if (ret) 5610 return ret; 5611 5612 if (qm->ver > QM_HW_V1) { 5613 ret = request_threaded_irq(pci_irq_vector(pdev, 5614 QM_AEQ_EVENT_IRQ_VECTOR), 5615 qm_aeq_irq, qm_aeq_thread, 5616 0, qm->dev_name, qm); 5617 if (ret) 5618 goto err_aeq_irq; 5619 5620 if (qm->fun_type == QM_HW_PF) { 5621 ret = request_irq(pci_irq_vector(pdev, 5622 QM_ABNORMAL_EVENT_IRQ_VECTOR), 5623 qm_abnormal_irq, 0, qm->dev_name, qm); 5624 if (ret) 5625 goto err_abonormal_irq; 5626 } 5627 } 5628 5629 if (qm->ver > QM_HW_V2) { 5630 ret = request_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR), 5631 qm_mb_cmd_irq, 0, qm->dev_name, qm); 5632 if (ret) 5633 goto err_mb_cmd_irq; 5634 } 5635 5636 return 0; 5637 5638 err_mb_cmd_irq: 5639 if (qm->fun_type == QM_HW_PF) 5640 free_irq(pci_irq_vector(pdev, QM_ABNORMAL_EVENT_IRQ_VECTOR), qm); 5641 err_abonormal_irq: 5642 free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm); 5643 err_aeq_irq: 5644 free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm); 5645 return ret; 5646 } 5647 5648 /** 5649 * hisi_qm_dev_shutdown() - Shutdown device. 5650 * @pdev: The device will be shutdown. 5651 * 5652 * This function will stop qm when OS shutdown or rebooting. 5653 */ 5654 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 5655 { 5656 struct hisi_qm *qm = pci_get_drvdata(pdev); 5657 int ret; 5658 5659 ret = hisi_qm_stop(qm, QM_NORMAL); 5660 if (ret) 5661 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 5662 } 5663 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 5664 5665 static void hisi_qm_controller_reset(struct work_struct *rst_work) 5666 { 5667 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 5668 int ret; 5669 5670 ret = qm_pm_get_sync(qm); 5671 if (ret) { 5672 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 5673 return; 5674 } 5675 5676 /* reset pcie device controller */ 5677 ret = qm_controller_reset(qm); 5678 if (ret) 5679 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 5680 5681 qm_pm_put_sync(qm); 5682 } 5683 5684 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 5685 enum qm_stop_reason stop_reason) 5686 { 5687 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 5688 struct pci_dev *pdev = qm->pdev; 5689 int ret; 5690 5691 ret = qm_reset_prepare_ready(qm); 5692 if (ret) { 5693 dev_err(&pdev->dev, "reset prepare not ready!\n"); 5694 atomic_set(&qm->status.flags, QM_STOP); 5695 cmd = QM_VF_PREPARE_FAIL; 5696 goto err_prepare; 5697 } 5698 5699 ret = hisi_qm_stop(qm, stop_reason); 5700 if (ret) { 5701 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 5702 atomic_set(&qm->status.flags, QM_STOP); 5703 cmd = QM_VF_PREPARE_FAIL; 5704 goto err_prepare; 5705 } else { 5706 goto out; 5707 } 5708 5709 err_prepare: 5710 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 5711 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 5712 out: 5713 pci_save_state(pdev); 5714 ret = qm->ops->ping_pf(qm, cmd); 5715 if (ret) 5716 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 5717 } 5718 5719 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 5720 { 5721 enum qm_mb_cmd cmd = QM_VF_START_DONE; 5722 struct pci_dev *pdev = qm->pdev; 5723 int ret; 5724 5725 pci_restore_state(pdev); 5726 ret = hisi_qm_start(qm); 5727 if (ret) { 5728 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 5729 cmd = QM_VF_START_FAIL; 5730 } 5731 5732 ret = qm->ops->ping_pf(qm, cmd); 5733 if (ret) 5734 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 5735 5736 qm_reset_bit_clear(qm); 5737 } 5738 5739 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 5740 { 5741 struct device *dev = &qm->pdev->dev; 5742 u32 val, cmd; 5743 u64 msg; 5744 int ret; 5745 5746 /* Wait for reset to finish */ 5747 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 5748 val == BIT(0), QM_VF_RESET_WAIT_US, 5749 QM_VF_RESET_WAIT_TIMEOUT_US); 5750 /* hardware completion status should be available by this time */ 5751 if (ret) { 5752 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 5753 return -ETIMEDOUT; 5754 } 5755 5756 /* 5757 * Whether message is got successfully, 5758 * VF needs to ack PF by clearing the interrupt. 5759 */ 5760 ret = qm_get_mb_cmd(qm, &msg, 0); 5761 qm_clear_cmd_interrupt(qm, 0); 5762 if (ret) { 5763 dev_err(dev, "failed to get msg from PF in reset done!\n"); 5764 return ret; 5765 } 5766 5767 cmd = msg & QM_MB_CMD_DATA_MASK; 5768 if (cmd != QM_PF_RESET_DONE) { 5769 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 5770 ret = -EINVAL; 5771 } 5772 5773 return ret; 5774 } 5775 5776 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 5777 enum qm_stop_reason stop_reason) 5778 { 5779 struct device *dev = &qm->pdev->dev; 5780 int ret; 5781 5782 dev_info(dev, "device reset start...\n"); 5783 5784 /* The message is obtained by querying the register during resetting */ 5785 qm_cmd_uninit(qm); 5786 qm_pf_reset_vf_prepare(qm, stop_reason); 5787 5788 ret = qm_wait_pf_reset_finish(qm); 5789 if (ret) 5790 goto err_get_status; 5791 5792 qm_pf_reset_vf_done(qm); 5793 qm_cmd_init(qm); 5794 5795 dev_info(dev, "device reset done.\n"); 5796 5797 return; 5798 5799 err_get_status: 5800 qm_cmd_init(qm); 5801 qm_reset_bit_clear(qm); 5802 } 5803 5804 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 5805 { 5806 struct device *dev = &qm->pdev->dev; 5807 u64 msg; 5808 u32 cmd; 5809 int ret; 5810 5811 /* 5812 * Get the msg from source by sending mailbox. Whether message is got 5813 * successfully, destination needs to ack source by clearing the interrupt. 5814 */ 5815 ret = qm_get_mb_cmd(qm, &msg, fun_num); 5816 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 5817 if (ret) { 5818 dev_err(dev, "failed to get msg from source!\n"); 5819 return; 5820 } 5821 5822 cmd = msg & QM_MB_CMD_DATA_MASK; 5823 switch (cmd) { 5824 case QM_PF_FLR_PREPARE: 5825 qm_pf_reset_vf_process(qm, QM_FLR); 5826 break; 5827 case QM_PF_SRST_PREPARE: 5828 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 5829 break; 5830 case QM_VF_GET_QOS: 5831 qm_vf_get_qos(qm, fun_num); 5832 break; 5833 case QM_PF_SET_QOS: 5834 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 5835 break; 5836 default: 5837 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 5838 break; 5839 } 5840 } 5841 5842 static void qm_cmd_process(struct work_struct *cmd_process) 5843 { 5844 struct hisi_qm *qm = container_of(cmd_process, 5845 struct hisi_qm, cmd_process); 5846 u32 vfs_num = qm->vfs_num; 5847 u64 val; 5848 u32 i; 5849 5850 if (qm->fun_type == QM_HW_PF) { 5851 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 5852 if (!val) 5853 return; 5854 5855 for (i = 1; i <= vfs_num; i++) { 5856 if (val & BIT(i)) 5857 qm_handle_cmd_msg(qm, i); 5858 } 5859 5860 return; 5861 } 5862 5863 qm_handle_cmd_msg(qm, 0); 5864 } 5865 5866 /** 5867 * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. 5868 * @qm: The qm needs add. 5869 * @qm_list: The qm list. 5870 * 5871 * This function adds qm to qm list, and will register algorithm to 5872 * crypto when the qm list is empty. 5873 */ 5874 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 5875 { 5876 struct device *dev = &qm->pdev->dev; 5877 int flag = 0; 5878 int ret = 0; 5879 5880 mutex_lock(&qm_list->lock); 5881 if (list_empty(&qm_list->list)) 5882 flag = 1; 5883 list_add_tail(&qm->list, &qm_list->list); 5884 mutex_unlock(&qm_list->lock); 5885 5886 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 5887 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 5888 return 0; 5889 } 5890 5891 if (flag) { 5892 ret = qm_list->register_to_crypto(qm); 5893 if (ret) { 5894 mutex_lock(&qm_list->lock); 5895 list_del(&qm->list); 5896 mutex_unlock(&qm_list->lock); 5897 } 5898 } 5899 5900 return ret; 5901 } 5902 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 5903 5904 /** 5905 * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from 5906 * qm list. 5907 * @qm: The qm needs delete. 5908 * @qm_list: The qm list. 5909 * 5910 * This function deletes qm from qm list, and will unregister algorithm 5911 * from crypto when the qm list is empty. 5912 */ 5913 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 5914 { 5915 mutex_lock(&qm_list->lock); 5916 list_del(&qm->list); 5917 mutex_unlock(&qm_list->lock); 5918 5919 if (qm->ver <= QM_HW_V2 && qm->use_sva) 5920 return; 5921 5922 if (list_empty(&qm_list->list)) 5923 qm_list->unregister_from_crypto(qm); 5924 } 5925 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 5926 5927 static int qm_get_qp_num(struct hisi_qm *qm) 5928 { 5929 if (qm->ver == QM_HW_V1) 5930 qm->ctrl_qp_num = QM_QNUM_V1; 5931 else if (qm->ver == QM_HW_V2) 5932 qm->ctrl_qp_num = QM_QNUM_V2; 5933 else 5934 qm->ctrl_qp_num = readl(qm->io_base + QM_CAPBILITY) & 5935 QM_QP_NUN_MASK; 5936 5937 if (qm->use_db_isolation) 5938 qm->max_qp_num = (readl(qm->io_base + QM_CAPBILITY) >> 5939 QM_QP_MAX_NUM_SHIFT) & QM_QP_NUN_MASK; 5940 else 5941 qm->max_qp_num = qm->ctrl_qp_num; 5942 5943 /* check if qp number is valid */ 5944 if (qm->qp_num > qm->max_qp_num) { 5945 dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n", 5946 qm->qp_num, qm->max_qp_num); 5947 return -EINVAL; 5948 } 5949 5950 return 0; 5951 } 5952 5953 static int qm_get_pci_res(struct hisi_qm *qm) 5954 { 5955 struct pci_dev *pdev = qm->pdev; 5956 struct device *dev = &pdev->dev; 5957 int ret; 5958 5959 ret = pci_request_mem_regions(pdev, qm->dev_name); 5960 if (ret < 0) { 5961 dev_err(dev, "Failed to request mem regions!\n"); 5962 return ret; 5963 } 5964 5965 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5966 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5967 if (!qm->io_base) { 5968 ret = -EIO; 5969 goto err_request_mem_regions; 5970 } 5971 5972 if (qm->ver > QM_HW_V2) { 5973 if (qm->fun_type == QM_HW_PF) 5974 qm->use_db_isolation = readl(qm->io_base + 5975 QM_QUE_ISO_EN) & BIT(0); 5976 else 5977 qm->use_db_isolation = readl(qm->io_base + 5978 QM_QUE_ISO_CFG_V) & BIT(0); 5979 } 5980 5981 if (qm->use_db_isolation) { 5982 qm->db_interval = QM_QP_DB_INTERVAL; 5983 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5984 qm->db_io_base = ioremap(qm->db_phys_base, 5985 pci_resource_len(pdev, PCI_BAR_4)); 5986 if (!qm->db_io_base) { 5987 ret = -EIO; 5988 goto err_ioremap; 5989 } 5990 } else { 5991 qm->db_phys_base = qm->phys_base; 5992 qm->db_io_base = qm->io_base; 5993 qm->db_interval = 0; 5994 } 5995 5996 if (qm->fun_type == QM_HW_PF) { 5997 ret = qm_get_qp_num(qm); 5998 if (ret) 5999 goto err_db_ioremap; 6000 } 6001 6002 return 0; 6003 6004 err_db_ioremap: 6005 if (qm->use_db_isolation) 6006 iounmap(qm->db_io_base); 6007 err_ioremap: 6008 iounmap(qm->io_base); 6009 err_request_mem_regions: 6010 pci_release_mem_regions(pdev); 6011 return ret; 6012 } 6013 6014 static int hisi_qm_pci_init(struct hisi_qm *qm) 6015 { 6016 struct pci_dev *pdev = qm->pdev; 6017 struct device *dev = &pdev->dev; 6018 unsigned int num_vec; 6019 int ret; 6020 6021 ret = pci_enable_device_mem(pdev); 6022 if (ret < 0) { 6023 dev_err(dev, "Failed to enable device mem!\n"); 6024 return ret; 6025 } 6026 6027 ret = qm_get_pci_res(qm); 6028 if (ret) 6029 goto err_disable_pcidev; 6030 6031 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 6032 if (ret < 0) 6033 goto err_get_pci_res; 6034 pci_set_master(pdev); 6035 6036 if (!qm->ops->get_irq_num) { 6037 ret = -EOPNOTSUPP; 6038 goto err_get_pci_res; 6039 } 6040 num_vec = qm->ops->get_irq_num(qm); 6041 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 6042 if (ret < 0) { 6043 dev_err(dev, "Failed to enable MSI vectors!\n"); 6044 goto err_get_pci_res; 6045 } 6046 6047 return 0; 6048 6049 err_get_pci_res: 6050 qm_put_pci_res(qm); 6051 err_disable_pcidev: 6052 pci_disable_device(pdev); 6053 return ret; 6054 } 6055 6056 static int hisi_qm_init_work(struct hisi_qm *qm) 6057 { 6058 int i; 6059 6060 for (i = 0; i < qm->qp_num; i++) 6061 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 6062 6063 if (qm->fun_type == QM_HW_PF) 6064 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 6065 6066 if (qm->ver > QM_HW_V2) 6067 INIT_WORK(&qm->cmd_process, qm_cmd_process); 6068 6069 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 6070 WQ_UNBOUND, num_online_cpus(), 6071 pci_name(qm->pdev)); 6072 if (!qm->wq) { 6073 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 6074 return -ENOMEM; 6075 } 6076 6077 return 0; 6078 } 6079 6080 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 6081 { 6082 struct device *dev = &qm->pdev->dev; 6083 size_t qp_dma_size; 6084 int i, ret; 6085 6086 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 6087 if (!qm->qp_array) 6088 return -ENOMEM; 6089 6090 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 6091 if (!qm->poll_data) { 6092 kfree(qm->qp_array); 6093 return -ENOMEM; 6094 } 6095 6096 /* one more page for device or qp statuses */ 6097 qp_dma_size = qm->sqe_size * QM_Q_DEPTH + 6098 sizeof(struct qm_cqe) * QM_Q_DEPTH; 6099 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 6100 for (i = 0; i < qm->qp_num; i++) { 6101 qm->poll_data[i].qm = qm; 6102 ret = hisi_qp_memory_init(qm, qp_dma_size, i); 6103 if (ret) 6104 goto err_init_qp_mem; 6105 6106 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 6107 } 6108 6109 return 0; 6110 err_init_qp_mem: 6111 hisi_qp_memory_uninit(qm, i); 6112 6113 return ret; 6114 } 6115 6116 static int hisi_qm_memory_init(struct hisi_qm *qm) 6117 { 6118 struct device *dev = &qm->pdev->dev; 6119 int ret, total_func, i; 6120 size_t off = 0; 6121 6122 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 6123 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 6124 if (!qm->factor) 6125 return -ENOMEM; 6126 for (i = 0; i < total_func; i++) 6127 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 6128 6129 #define QM_INIT_BUF(qm, type, num) do { \ 6130 (qm)->type = ((qm)->qdma.va + (off)); \ 6131 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 6132 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 6133 } while (0) 6134 6135 idr_init(&qm->qp_idr); 6136 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) + 6137 QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) + 6138 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 6139 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 6140 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 6141 GFP_ATOMIC); 6142 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 6143 if (!qm->qdma.va) { 6144 ret = -ENOMEM; 6145 goto err_alloc_qdma; 6146 } 6147 6148 QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH); 6149 QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH); 6150 QM_INIT_BUF(qm, sqc, qm->qp_num); 6151 QM_INIT_BUF(qm, cqc, qm->qp_num); 6152 6153 ret = hisi_qp_alloc_memory(qm); 6154 if (ret) 6155 goto err_alloc_qp_array; 6156 6157 return 0; 6158 6159 err_alloc_qp_array: 6160 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 6161 err_alloc_qdma: 6162 kfree(qm->factor); 6163 6164 return ret; 6165 } 6166 6167 static void qm_last_regs_init(struct hisi_qm *qm) 6168 { 6169 int dfx_regs_num = ARRAY_SIZE(qm_dfx_regs); 6170 struct qm_debug *debug = &qm->debug; 6171 int i; 6172 6173 if (qm->fun_type == QM_HW_VF) 6174 return; 6175 6176 debug->qm_last_words = kcalloc(dfx_regs_num, sizeof(unsigned int), 6177 GFP_KERNEL); 6178 if (!debug->qm_last_words) 6179 return; 6180 6181 for (i = 0; i < dfx_regs_num; i++) { 6182 debug->qm_last_words[i] = readl_relaxed(qm->io_base + 6183 qm_dfx_regs[i].offset); 6184 } 6185 } 6186 6187 /** 6188 * hisi_qm_init() - Initialize configures about qm. 6189 * @qm: The qm needing init. 6190 * 6191 * This function init qm, then we can call hisi_qm_start to put qm into work. 6192 */ 6193 int hisi_qm_init(struct hisi_qm *qm) 6194 { 6195 struct pci_dev *pdev = qm->pdev; 6196 struct device *dev = &pdev->dev; 6197 int ret; 6198 6199 hisi_qm_pre_init(qm); 6200 6201 ret = hisi_qm_pci_init(qm); 6202 if (ret) 6203 return ret; 6204 6205 ret = qm_irq_register(qm); 6206 if (ret) 6207 goto err_pci_init; 6208 6209 if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) { 6210 /* v2 starts to support get vft by mailbox */ 6211 ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 6212 if (ret) 6213 goto err_irq_register; 6214 } 6215 6216 if (qm->fun_type == QM_HW_PF) { 6217 qm_disable_clock_gate(qm); 6218 ret = qm_dev_mem_reset(qm); 6219 if (ret) { 6220 dev_err(dev, "failed to reset device memory\n"); 6221 goto err_irq_register; 6222 } 6223 } 6224 6225 if (qm->mode == UACCE_MODE_SVA) { 6226 ret = qm_alloc_uacce(qm); 6227 if (ret < 0) 6228 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 6229 } 6230 6231 ret = hisi_qm_memory_init(qm); 6232 if (ret) 6233 goto err_alloc_uacce; 6234 6235 ret = hisi_qm_init_work(qm); 6236 if (ret) 6237 goto err_free_qm_memory; 6238 6239 qm_cmd_init(qm); 6240 atomic_set(&qm->status.flags, QM_INIT); 6241 6242 qm_last_regs_init(qm); 6243 6244 return 0; 6245 6246 err_free_qm_memory: 6247 hisi_qm_memory_uninit(qm); 6248 err_alloc_uacce: 6249 if (qm->use_sva) { 6250 uacce_remove(qm->uacce); 6251 qm->uacce = NULL; 6252 } 6253 err_irq_register: 6254 qm_irq_unregister(qm); 6255 err_pci_init: 6256 hisi_qm_pci_uninit(qm); 6257 return ret; 6258 } 6259 EXPORT_SYMBOL_GPL(hisi_qm_init); 6260 6261 /** 6262 * hisi_qm_get_dfx_access() - Try to get dfx access. 6263 * @qm: pointer to accelerator device. 6264 * 6265 * Try to get dfx access, then user can get message. 6266 * 6267 * If device is in suspended, return failure, otherwise 6268 * bump up the runtime PM usage counter. 6269 */ 6270 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 6271 { 6272 struct device *dev = &qm->pdev->dev; 6273 6274 if (pm_runtime_suspended(dev)) { 6275 dev_info(dev, "can not read/write - device in suspended.\n"); 6276 return -EAGAIN; 6277 } 6278 6279 return qm_pm_get_sync(qm); 6280 } 6281 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 6282 6283 /** 6284 * hisi_qm_put_dfx_access() - Put dfx access. 6285 * @qm: pointer to accelerator device. 6286 * 6287 * Put dfx access, drop runtime PM usage counter. 6288 */ 6289 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 6290 { 6291 qm_pm_put_sync(qm); 6292 } 6293 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 6294 6295 /** 6296 * hisi_qm_pm_init() - Initialize qm runtime PM. 6297 * @qm: pointer to accelerator device. 6298 * 6299 * Function that initialize qm runtime PM. 6300 */ 6301 void hisi_qm_pm_init(struct hisi_qm *qm) 6302 { 6303 struct device *dev = &qm->pdev->dev; 6304 6305 if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3) 6306 return; 6307 6308 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 6309 pm_runtime_use_autosuspend(dev); 6310 pm_runtime_put_noidle(dev); 6311 } 6312 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 6313 6314 /** 6315 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 6316 * @qm: pointer to accelerator device. 6317 * 6318 * Function that uninitialize qm runtime PM. 6319 */ 6320 void hisi_qm_pm_uninit(struct hisi_qm *qm) 6321 { 6322 struct device *dev = &qm->pdev->dev; 6323 6324 if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3) 6325 return; 6326 6327 pm_runtime_get_noresume(dev); 6328 pm_runtime_dont_use_autosuspend(dev); 6329 } 6330 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 6331 6332 static int qm_prepare_for_suspend(struct hisi_qm *qm) 6333 { 6334 struct pci_dev *pdev = qm->pdev; 6335 int ret; 6336 u32 val; 6337 6338 ret = qm->ops->set_msi(qm, false); 6339 if (ret) { 6340 pci_err(pdev, "failed to disable MSI before suspending!\n"); 6341 return ret; 6342 } 6343 6344 /* shutdown OOO register */ 6345 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 6346 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 6347 6348 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 6349 val, 6350 (val == ACC_MASTER_TRANS_RETURN_RW), 6351 POLL_PERIOD, POLL_TIMEOUT); 6352 if (ret) { 6353 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 6354 return ret; 6355 } 6356 6357 ret = qm_set_pf_mse(qm, false); 6358 if (ret) 6359 pci_err(pdev, "failed to disable MSE before suspending!\n"); 6360 6361 return ret; 6362 } 6363 6364 static int qm_rebuild_for_resume(struct hisi_qm *qm) 6365 { 6366 struct pci_dev *pdev = qm->pdev; 6367 int ret; 6368 6369 ret = qm_set_pf_mse(qm, true); 6370 if (ret) { 6371 pci_err(pdev, "failed to enable MSE after resuming!\n"); 6372 return ret; 6373 } 6374 6375 ret = qm->ops->set_msi(qm, true); 6376 if (ret) { 6377 pci_err(pdev, "failed to enable MSI after resuming!\n"); 6378 return ret; 6379 } 6380 6381 ret = qm_dev_hw_init(qm); 6382 if (ret) { 6383 pci_err(pdev, "failed to init device after resuming\n"); 6384 return ret; 6385 } 6386 6387 qm_cmd_init(qm); 6388 hisi_qm_dev_err_init(qm); 6389 qm_disable_clock_gate(qm); 6390 ret = qm_dev_mem_reset(qm); 6391 if (ret) 6392 pci_err(pdev, "failed to reset device memory\n"); 6393 6394 return ret; 6395 } 6396 6397 /** 6398 * hisi_qm_suspend() - Runtime suspend of given device. 6399 * @dev: device to suspend. 6400 * 6401 * Function that suspend the device. 6402 */ 6403 int hisi_qm_suspend(struct device *dev) 6404 { 6405 struct pci_dev *pdev = to_pci_dev(dev); 6406 struct hisi_qm *qm = pci_get_drvdata(pdev); 6407 int ret; 6408 6409 pci_info(pdev, "entering suspended state\n"); 6410 6411 ret = hisi_qm_stop(qm, QM_NORMAL); 6412 if (ret) { 6413 pci_err(pdev, "failed to stop qm(%d)\n", ret); 6414 return ret; 6415 } 6416 6417 ret = qm_prepare_for_suspend(qm); 6418 if (ret) 6419 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 6420 6421 return ret; 6422 } 6423 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 6424 6425 /** 6426 * hisi_qm_resume() - Runtime resume of given device. 6427 * @dev: device to resume. 6428 * 6429 * Function that resume the device. 6430 */ 6431 int hisi_qm_resume(struct device *dev) 6432 { 6433 struct pci_dev *pdev = to_pci_dev(dev); 6434 struct hisi_qm *qm = pci_get_drvdata(pdev); 6435 int ret; 6436 6437 pci_info(pdev, "resuming from suspend state\n"); 6438 6439 ret = qm_rebuild_for_resume(qm); 6440 if (ret) { 6441 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 6442 return ret; 6443 } 6444 6445 ret = hisi_qm_start(qm); 6446 if (ret) 6447 pci_err(pdev, "failed to start qm(%d)\n", ret); 6448 6449 return ret; 6450 } 6451 EXPORT_SYMBOL_GPL(hisi_qm_resume); 6452 6453 MODULE_LICENSE("GPL v2"); 6454 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 6455 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 6456