xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision 82df5b73)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/debugfs.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/idr.h>
10 #include <linux/io.h>
11 #include <linux/irqreturn.h>
12 #include <linux/log2.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include "qm.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 #define QM_IRQ_NUM_V1			1
26 #define QM_IRQ_NUM_PF_V2		4
27 #define QM_IRQ_NUM_VF_V2		2
28 
29 #define QM_EQ_EVENT_IRQ_VECTOR		0
30 #define QM_AEQ_EVENT_IRQ_VECTOR		1
31 #define QM_ABNORMAL_EVENT_IRQ_VECTOR	3
32 
33 /* mailbox */
34 #define QM_MB_CMD_SQC			0x0
35 #define QM_MB_CMD_CQC			0x1
36 #define QM_MB_CMD_EQC			0x2
37 #define QM_MB_CMD_AEQC			0x3
38 #define QM_MB_CMD_SQC_BT		0x4
39 #define QM_MB_CMD_CQC_BT		0x5
40 #define QM_MB_CMD_SQC_VFT_V2		0x6
41 
42 #define QM_MB_CMD_SEND_BASE		0x300
43 #define QM_MB_EVENT_SHIFT		8
44 #define QM_MB_BUSY_SHIFT		13
45 #define QM_MB_OP_SHIFT			14
46 #define QM_MB_CMD_DATA_ADDR_L		0x304
47 #define QM_MB_CMD_DATA_ADDR_H		0x308
48 
49 /* sqc shift */
50 #define QM_SQ_HOP_NUM_SHIFT		0
51 #define QM_SQ_PAGE_SIZE_SHIFT		4
52 #define QM_SQ_BUF_SIZE_SHIFT		8
53 #define QM_SQ_SQE_SIZE_SHIFT		12
54 #define QM_SQ_PRIORITY_SHIFT		0
55 #define QM_SQ_ORDERS_SHIFT		4
56 #define QM_SQ_TYPE_SHIFT		8
57 
58 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
59 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
60 
61 /* cqc shift */
62 #define QM_CQ_HOP_NUM_SHIFT		0
63 #define QM_CQ_PAGE_SIZE_SHIFT		4
64 #define QM_CQ_BUF_SIZE_SHIFT		8
65 #define QM_CQ_CQE_SIZE_SHIFT		12
66 #define QM_CQ_PHASE_SHIFT		0
67 #define QM_CQ_FLAG_SHIFT		1
68 
69 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
70 #define QM_QC_CQE_SIZE			4
71 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
72 
73 /* eqc shift */
74 #define QM_EQE_AEQE_SIZE		(2UL << 12)
75 #define QM_EQC_PHASE_SHIFT		16
76 
77 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
78 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
79 
80 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
81 #define QM_AEQE_TYPE_SHIFT		17
82 
83 #define QM_DOORBELL_CMD_SQ		0
84 #define QM_DOORBELL_CMD_CQ		1
85 #define QM_DOORBELL_CMD_EQ		2
86 #define QM_DOORBELL_CMD_AEQ		3
87 
88 #define QM_DOORBELL_BASE_V1		0x340
89 #define QM_DB_CMD_SHIFT_V1		16
90 #define QM_DB_INDEX_SHIFT_V1		32
91 #define QM_DB_PRIORITY_SHIFT_V1		48
92 #define QM_DOORBELL_SQ_CQ_BASE_V2	0x1000
93 #define QM_DOORBELL_EQ_AEQ_BASE_V2	0x2000
94 #define QM_DB_CMD_SHIFT_V2		12
95 #define QM_DB_RAND_SHIFT_V2		16
96 #define QM_DB_INDEX_SHIFT_V2		32
97 #define QM_DB_PRIORITY_SHIFT_V2		48
98 
99 #define QM_MEM_START_INIT		0x100040
100 #define QM_MEM_INIT_DONE		0x100044
101 #define QM_VFT_CFG_RDY			0x10006c
102 #define QM_VFT_CFG_OP_WR		0x100058
103 #define QM_VFT_CFG_TYPE			0x10005c
104 #define QM_SQC_VFT			0x0
105 #define QM_CQC_VFT			0x1
106 #define QM_VFT_CFG			0x100060
107 #define QM_VFT_CFG_OP_ENABLE		0x100054
108 
109 #define QM_VFT_CFG_DATA_L		0x100064
110 #define QM_VFT_CFG_DATA_H		0x100068
111 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
112 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
113 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
114 #define QM_SQC_VFT_START_SQN_SHIFT	28
115 #define QM_SQC_VFT_VALID		(1ULL << 44)
116 #define QM_SQC_VFT_SQN_SHIFT		45
117 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
118 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
119 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
120 #define QM_CQC_VFT_VALID		(1ULL << 28)
121 
122 #define QM_SQC_VFT_BASE_SHIFT_V2	28
123 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(5, 0)
124 #define QM_SQC_VFT_NUM_SHIFT_V2		45
125 #define QM_SQC_VFT_NUM_MASK_v2		GENMASK(9, 0)
126 
127 #define QM_DFX_CNT_CLR_CE		0x100118
128 
129 #define QM_ABNORMAL_INT_SOURCE		0x100000
130 #define QM_ABNORMAL_INT_SOURCE_CLR	GENMASK(12, 0)
131 #define QM_ABNORMAL_INT_MASK		0x100004
132 #define QM_ABNORMAL_INT_MASK_VALUE	0x1fff
133 #define QM_ABNORMAL_INT_STATUS		0x100008
134 #define QM_ABNORMAL_INT_SET		0x10000c
135 #define QM_ABNORMAL_INF00		0x100010
136 #define QM_FIFO_OVERFLOW_TYPE		0xc0
137 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
138 #define QM_FIFO_OVERFLOW_VF		0x3f
139 #define QM_ABNORMAL_INF01		0x100014
140 #define QM_DB_TIMEOUT_TYPE		0xc0
141 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
142 #define QM_DB_TIMEOUT_VF		0x3f
143 #define QM_RAS_CE_ENABLE		0x1000ec
144 #define QM_RAS_FE_ENABLE		0x1000f0
145 #define QM_RAS_NFE_ENABLE		0x1000f4
146 #define QM_RAS_CE_THRESHOLD		0x1000f8
147 #define QM_RAS_CE_TIMES_PER_IRQ		1
148 #define QM_RAS_MSI_INT_SEL		0x1040f4
149 
150 #define QM_DEV_RESET_FLAG		0
151 #define QM_RESET_WAIT_TIMEOUT		400
152 #define QM_PEH_VENDOR_ID		0x1000d8
153 #define ACC_VENDOR_ID_VALUE		0x5a5a
154 #define QM_PEH_DFX_INFO0		0x1000fc
155 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
156 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
157 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
158 #define ACC_MASTER_TRANS_RETURN_RW	3
159 #define ACC_MASTER_TRANS_RETURN		0x300150
160 #define ACC_MASTER_GLOBAL_CTRL		0x300000
161 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
162 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
163 #define ACC_AM_ROB_ECC_INT_STS		0x300104
164 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
165 
166 #define POLL_PERIOD			10
167 #define POLL_TIMEOUT			1000
168 #define WAIT_PERIOD_US_MAX		200
169 #define WAIT_PERIOD_US_MIN		100
170 #define MAX_WAIT_COUNTS			1000
171 #define QM_CACHE_WB_START		0x204
172 #define QM_CACHE_WB_DONE		0x208
173 
174 #define PCI_BAR_2			2
175 #define QM_SQE_DATA_ALIGN_MASK		GENMASK(6, 0)
176 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
177 
178 #define QM_DBG_READ_LEN		256
179 #define QM_DBG_WRITE_LEN		1024
180 #define QM_DBG_TMP_BUF_LEN		22
181 #define QM_PCI_COMMAND_INVALID		~0
182 
183 #define QM_SQE_ADDR_MASK		GENMASK(7, 0)
184 
185 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
186 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT)	| \
187 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT)	| \
188 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT)	| \
189 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
190 
191 #define QM_MK_CQC_DW3_V2(cqe_sz) \
192 	((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
193 
194 #define QM_MK_SQC_W13(priority, orders, alg_type) \
195 	(((priority) << QM_SQ_PRIORITY_SHIFT)	| \
196 	((orders) << QM_SQ_ORDERS_SHIFT)	| \
197 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
198 
199 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
200 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT)	| \
201 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT)	| \
202 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT)	| \
203 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
204 
205 #define QM_MK_SQC_DW3_V2(sqe_sz) \
206 	((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
207 
208 #define INIT_QC_COMMON(qc, base, pasid) do {			\
209 	(qc)->head = 0;						\
210 	(qc)->tail = 0;						\
211 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
212 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
213 	(qc)->dw3 = 0;						\
214 	(qc)->w8 = 0;						\
215 	(qc)->rsvd0 = 0;					\
216 	(qc)->pasid = cpu_to_le16(pasid);			\
217 	(qc)->w11 = 0;						\
218 	(qc)->rsvd1 = 0;					\
219 } while (0)
220 
221 enum vft_type {
222 	SQC_VFT = 0,
223 	CQC_VFT,
224 };
225 
226 enum acc_err_result {
227 	ACC_ERR_NONE,
228 	ACC_ERR_NEED_RESET,
229 	ACC_ERR_RECOVERED,
230 };
231 
232 struct qm_cqe {
233 	__le32 rsvd0;
234 	__le16 cmd_id;
235 	__le16 rsvd1;
236 	__le16 sq_head;
237 	__le16 sq_num;
238 	__le16 rsvd2;
239 	__le16 w7;
240 };
241 
242 struct qm_eqe {
243 	__le32 dw0;
244 };
245 
246 struct qm_aeqe {
247 	__le32 dw0;
248 };
249 
250 struct qm_sqc {
251 	__le16 head;
252 	__le16 tail;
253 	__le32 base_l;
254 	__le32 base_h;
255 	__le32 dw3;
256 	__le16 w8;
257 	__le16 rsvd0;
258 	__le16 pasid;
259 	__le16 w11;
260 	__le16 cq_num;
261 	__le16 w13;
262 	__le32 rsvd1;
263 };
264 
265 struct qm_cqc {
266 	__le16 head;
267 	__le16 tail;
268 	__le32 base_l;
269 	__le32 base_h;
270 	__le32 dw3;
271 	__le16 w8;
272 	__le16 rsvd0;
273 	__le16 pasid;
274 	__le16 w11;
275 	__le32 dw6;
276 	__le32 rsvd1;
277 };
278 
279 struct qm_eqc {
280 	__le16 head;
281 	__le16 tail;
282 	__le32 base_l;
283 	__le32 base_h;
284 	__le32 dw3;
285 	__le32 rsvd[2];
286 	__le32 dw6;
287 };
288 
289 struct qm_aeqc {
290 	__le16 head;
291 	__le16 tail;
292 	__le32 base_l;
293 	__le32 base_h;
294 	__le32 dw3;
295 	__le32 rsvd[2];
296 	__le32 dw6;
297 };
298 
299 struct qm_mailbox {
300 	__le16 w0;
301 	__le16 queue_num;
302 	__le32 base_l;
303 	__le32 base_h;
304 	__le32 rsvd;
305 };
306 
307 struct qm_doorbell {
308 	__le16 queue_num;
309 	__le16 cmd;
310 	__le16 index;
311 	__le16 priority;
312 };
313 
314 struct hisi_qm_resource {
315 	struct hisi_qm *qm;
316 	int distance;
317 	struct list_head list;
318 };
319 
320 struct hisi_qm_hw_ops {
321 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
322 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
323 		      u8 cmd, u16 index, u8 priority);
324 	u32 (*get_irq_num)(struct hisi_qm *qm);
325 	int (*debug_init)(struct hisi_qm *qm);
326 	void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe);
327 	void (*hw_error_uninit)(struct hisi_qm *qm);
328 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
329 };
330 
331 struct qm_dfx_item {
332 	const char *name;
333 	u32 offset;
334 };
335 
336 static struct qm_dfx_item qm_dfx_files[] = {
337 	{"err_irq", offsetof(struct qm_dfx, err_irq_cnt)},
338 	{"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)},
339 	{"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)},
340 	{"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)},
341 	{"mb_err", offsetof(struct qm_dfx, mb_err_cnt)},
342 };
343 
344 static const char * const qm_debug_file_name[] = {
345 	[CURRENT_Q]    = "current_q",
346 	[CLEAR_ENABLE] = "clear_enable",
347 };
348 
349 struct hisi_qm_hw_error {
350 	u32 int_msk;
351 	const char *msg;
352 };
353 
354 static const struct hisi_qm_hw_error qm_hw_error[] = {
355 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
356 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
357 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
358 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
359 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
360 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
361 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
362 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
363 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
364 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
365 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
366 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
367 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
368 	{ /* sentinel */ }
369 };
370 
371 static const char * const qm_db_timeout[] = {
372 	"sq", "cq", "eq", "aeq",
373 };
374 
375 static const char * const qm_fifo_overflow[] = {
376 	"cq", "eq", "aeq",
377 };
378 
379 static const char * const qm_s[] = {
380 	"init", "start", "close", "stop",
381 };
382 
383 static const char * const qp_s[] = {
384 	"none", "init", "start", "stop", "close",
385 };
386 
387 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
388 {
389 	enum qm_state curr = atomic_read(&qm->status.flags);
390 	bool avail = false;
391 
392 	switch (curr) {
393 	case QM_INIT:
394 		if (new == QM_START || new == QM_CLOSE)
395 			avail = true;
396 		break;
397 	case QM_START:
398 		if (new == QM_STOP)
399 			avail = true;
400 		break;
401 	case QM_STOP:
402 		if (new == QM_CLOSE || new == QM_START)
403 			avail = true;
404 		break;
405 	default:
406 		break;
407 	}
408 
409 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
410 		qm_s[curr], qm_s[new]);
411 
412 	if (!avail)
413 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
414 			 qm_s[curr], qm_s[new]);
415 
416 	return avail;
417 }
418 
419 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
420 			      enum qp_state new)
421 {
422 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
423 	enum qp_state qp_curr = 0;
424 	bool avail = false;
425 
426 	if (qp)
427 		qp_curr = atomic_read(&qp->qp_status.flags);
428 
429 	switch (new) {
430 	case QP_INIT:
431 		if (qm_curr == QM_START || qm_curr == QM_INIT)
432 			avail = true;
433 		break;
434 	case QP_START:
435 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
436 		    (qm_curr == QM_START && qp_curr == QP_STOP))
437 			avail = true;
438 		break;
439 	case QP_STOP:
440 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
441 		    (qp_curr == QP_INIT))
442 			avail = true;
443 		break;
444 	case QP_CLOSE:
445 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
446 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
447 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
448 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
449 			avail = true;
450 		break;
451 	default:
452 		break;
453 	}
454 
455 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
456 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
457 
458 	if (!avail)
459 		dev_warn(&qm->pdev->dev,
460 			 "Can not change qp state from %s to %s in QM %s\n",
461 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
462 
463 	return avail;
464 }
465 
466 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
467 static int qm_wait_mb_ready(struct hisi_qm *qm)
468 {
469 	u32 val;
470 
471 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
472 					  val, !((val >> QM_MB_BUSY_SHIFT) &
473 					  0x1), 10, 1000);
474 }
475 
476 /* 128 bit should be written to hardware at one time to trigger a mailbox */
477 static void qm_mb_write(struct hisi_qm *qm, const void *src)
478 {
479 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
480 	unsigned long tmp0 = 0, tmp1 = 0;
481 
482 	if (!IS_ENABLED(CONFIG_ARM64)) {
483 		memcpy_toio(fun_base, src, 16);
484 		wmb();
485 		return;
486 	}
487 
488 	asm volatile("ldp %0, %1, %3\n"
489 		     "stp %0, %1, %2\n"
490 		     "dsb sy\n"
491 		     : "=&r" (tmp0),
492 		       "=&r" (tmp1),
493 		       "+Q" (*((char __iomem *)fun_base))
494 		     : "Q" (*((char *)src))
495 		     : "memory");
496 }
497 
498 static int qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
499 		 bool op)
500 {
501 	struct qm_mailbox mailbox;
502 	int ret = 0;
503 
504 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
505 		queue, cmd, (unsigned long long)dma_addr);
506 
507 	mailbox.w0 = cpu_to_le16(cmd |
508 		     (op ? 0x1 << QM_MB_OP_SHIFT : 0) |
509 		     (0x1 << QM_MB_BUSY_SHIFT));
510 	mailbox.queue_num = cpu_to_le16(queue);
511 	mailbox.base_l = cpu_to_le32(lower_32_bits(dma_addr));
512 	mailbox.base_h = cpu_to_le32(upper_32_bits(dma_addr));
513 	mailbox.rsvd = 0;
514 
515 	mutex_lock(&qm->mailbox_lock);
516 
517 	if (unlikely(qm_wait_mb_ready(qm))) {
518 		ret = -EBUSY;
519 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
520 		goto busy_unlock;
521 	}
522 
523 	qm_mb_write(qm, &mailbox);
524 
525 	if (unlikely(qm_wait_mb_ready(qm))) {
526 		ret = -EBUSY;
527 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
528 		goto busy_unlock;
529 	}
530 
531 busy_unlock:
532 	mutex_unlock(&qm->mailbox_lock);
533 
534 	if (ret)
535 		atomic64_inc(&qm->debug.dfx.mb_err_cnt);
536 	return ret;
537 }
538 
539 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
540 {
541 	u64 doorbell;
542 
543 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
544 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
545 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
546 
547 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
548 }
549 
550 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
551 {
552 	u64 doorbell;
553 	u64 dbase;
554 	u16 randata = 0;
555 
556 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
557 		dbase = QM_DOORBELL_SQ_CQ_BASE_V2;
558 	else
559 		dbase = QM_DOORBELL_EQ_AEQ_BASE_V2;
560 
561 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
562 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
563 		   ((u64)index << QM_DB_INDEX_SHIFT_V2)	 |
564 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
565 
566 	writeq(doorbell, qm->io_base + dbase);
567 }
568 
569 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
570 {
571 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
572 		qn, cmd, index);
573 
574 	qm->ops->qm_db(qm, qn, cmd, index, priority);
575 }
576 
577 static int qm_dev_mem_reset(struct hisi_qm *qm)
578 {
579 	u32 val;
580 
581 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
582 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
583 					  val & BIT(0), 10, 1000);
584 }
585 
586 static u32 qm_get_irq_num_v1(struct hisi_qm *qm)
587 {
588 	return QM_IRQ_NUM_V1;
589 }
590 
591 static u32 qm_get_irq_num_v2(struct hisi_qm *qm)
592 {
593 	if (qm->fun_type == QM_HW_PF)
594 		return QM_IRQ_NUM_PF_V2;
595 	else
596 		return QM_IRQ_NUM_VF_V2;
597 }
598 
599 static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe)
600 {
601 	u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
602 
603 	return &qm->qp_array[cqn];
604 }
605 
606 static void qm_cq_head_update(struct hisi_qp *qp)
607 {
608 	if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) {
609 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
610 		qp->qp_status.cq_head = 0;
611 	} else {
612 		qp->qp_status.cq_head++;
613 	}
614 }
615 
616 static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm)
617 {
618 	if (qp->event_cb) {
619 		qp->event_cb(qp);
620 		return;
621 	}
622 
623 	if (qp->req_cb) {
624 		struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
625 
626 		while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
627 			dma_rmb();
628 			qp->req_cb(qp, qp->sqe + qm->sqe_size *
629 				   le16_to_cpu(cqe->sq_head));
630 			qm_cq_head_update(qp);
631 			cqe = qp->cqe + qp->qp_status.cq_head;
632 			qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
633 			      qp->qp_status.cq_head, 0);
634 			atomic_dec(&qp->qp_status.used);
635 		}
636 
637 		/* set c_flag */
638 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
639 		      qp->qp_status.cq_head, 1);
640 	}
641 }
642 
643 static void qm_work_process(struct work_struct *work)
644 {
645 	struct hisi_qm *qm = container_of(work, struct hisi_qm, work);
646 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
647 	struct hisi_qp *qp;
648 	int eqe_num = 0;
649 
650 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
651 		eqe_num++;
652 		qp = qm_to_hisi_qp(qm, eqe);
653 		qm_poll_qp(qp, qm);
654 
655 		if (qm->status.eq_head == QM_Q_DEPTH - 1) {
656 			qm->status.eqc_phase = !qm->status.eqc_phase;
657 			eqe = qm->eqe;
658 			qm->status.eq_head = 0;
659 		} else {
660 			eqe++;
661 			qm->status.eq_head++;
662 		}
663 
664 		if (eqe_num == QM_Q_DEPTH / 2 - 1) {
665 			eqe_num = 0;
666 			qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
667 		}
668 	}
669 
670 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
671 }
672 
673 static irqreturn_t do_qm_irq(int irq, void *data)
674 {
675 	struct hisi_qm *qm = (struct hisi_qm *)data;
676 
677 	/* the workqueue created by device driver of QM */
678 	if (qm->wq)
679 		queue_work(qm->wq, &qm->work);
680 	else
681 		schedule_work(&qm->work);
682 
683 	return IRQ_HANDLED;
684 }
685 
686 static irqreturn_t qm_irq(int irq, void *data)
687 {
688 	struct hisi_qm *qm = data;
689 
690 	if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
691 		return do_qm_irq(irq, data);
692 
693 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
694 	dev_err(&qm->pdev->dev, "invalid int source\n");
695 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
696 
697 	return IRQ_NONE;
698 }
699 
700 static irqreturn_t qm_aeq_irq(int irq, void *data)
701 {
702 	struct hisi_qm *qm = data;
703 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
704 	u32 type;
705 
706 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
707 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
708 		return IRQ_NONE;
709 
710 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
711 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
712 		if (type < ARRAY_SIZE(qm_fifo_overflow))
713 			dev_err(&qm->pdev->dev, "%s overflow\n",
714 				qm_fifo_overflow[type]);
715 		else
716 			dev_err(&qm->pdev->dev, "unknown error type %d\n",
717 				type);
718 
719 		if (qm->status.aeq_head == QM_Q_DEPTH - 1) {
720 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
721 			aeqe = qm->aeqe;
722 			qm->status.aeq_head = 0;
723 		} else {
724 			aeqe++;
725 			qm->status.aeq_head++;
726 		}
727 
728 		qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
729 	}
730 
731 	return IRQ_HANDLED;
732 }
733 
734 static void qm_irq_unregister(struct hisi_qm *qm)
735 {
736 	struct pci_dev *pdev = qm->pdev;
737 
738 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
739 
740 	if (qm->ver == QM_HW_V1)
741 		return;
742 
743 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
744 
745 	if (qm->fun_type == QM_HW_PF)
746 		free_irq(pci_irq_vector(pdev,
747 			 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
748 }
749 
750 static void qm_init_qp_status(struct hisi_qp *qp)
751 {
752 	struct hisi_qp_status *qp_status = &qp->qp_status;
753 
754 	qp_status->sq_tail = 0;
755 	qp_status->cq_head = 0;
756 	qp_status->cqc_phase = true;
757 	atomic_set(&qp_status->flags, 0);
758 }
759 
760 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
761 			    u32 number)
762 {
763 	u64 tmp = 0;
764 
765 	if (number > 0) {
766 		switch (type) {
767 		case SQC_VFT:
768 			if (qm->ver == QM_HW_V1) {
769 				tmp = QM_SQC_VFT_BUF_SIZE	|
770 				      QM_SQC_VFT_SQC_SIZE	|
771 				      QM_SQC_VFT_INDEX_NUMBER	|
772 				      QM_SQC_VFT_VALID		|
773 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
774 			} else {
775 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
776 				      QM_SQC_VFT_VALID |
777 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
778 			}
779 			break;
780 		case CQC_VFT:
781 			if (qm->ver == QM_HW_V1) {
782 				tmp = QM_CQC_VFT_BUF_SIZE	|
783 				      QM_CQC_VFT_SQC_SIZE	|
784 				      QM_CQC_VFT_INDEX_NUMBER	|
785 				      QM_CQC_VFT_VALID;
786 			} else {
787 				tmp = QM_CQC_VFT_VALID;
788 			}
789 			break;
790 		}
791 	}
792 
793 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
794 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
795 }
796 
797 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
798 			     u32 fun_num, u32 base, u32 number)
799 {
800 	unsigned int val;
801 	int ret;
802 
803 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
804 					 val & BIT(0), 10, 1000);
805 	if (ret)
806 		return ret;
807 
808 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
809 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
810 	writel(fun_num, qm->io_base + QM_VFT_CFG);
811 
812 	qm_vft_data_cfg(qm, type, base, number);
813 
814 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
815 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
816 
817 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
818 					  val & BIT(0), 10, 1000);
819 }
820 
821 /* The config should be conducted after qm_dev_mem_reset() */
822 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
823 			      u32 number)
824 {
825 	int ret, i;
826 
827 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
828 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
829 		if (ret)
830 			return ret;
831 	}
832 
833 	return 0;
834 }
835 
836 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
837 {
838 	u64 sqc_vft;
839 	int ret;
840 
841 	ret = qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
842 	if (ret)
843 		return ret;
844 
845 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
846 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
847 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
848 	*number = (QM_SQC_VFT_NUM_MASK_v2 &
849 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
850 
851 	return 0;
852 }
853 
854 static struct hisi_qm *file_to_qm(struct debugfs_file *file)
855 {
856 	struct qm_debug *debug = file->debug;
857 
858 	return container_of(debug, struct hisi_qm, debug);
859 }
860 
861 static u32 current_q_read(struct debugfs_file *file)
862 {
863 	struct hisi_qm *qm = file_to_qm(file);
864 
865 	return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT;
866 }
867 
868 static int current_q_write(struct debugfs_file *file, u32 val)
869 {
870 	struct hisi_qm *qm = file_to_qm(file);
871 	u32 tmp;
872 
873 	if (val >= qm->debug.curr_qm_qp_num)
874 		return -EINVAL;
875 
876 	tmp = val << QM_DFX_QN_SHIFT |
877 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK);
878 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
879 
880 	tmp = val << QM_DFX_QN_SHIFT |
881 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK);
882 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
883 
884 	return 0;
885 }
886 
887 static u32 clear_enable_read(struct debugfs_file *file)
888 {
889 	struct hisi_qm *qm = file_to_qm(file);
890 
891 	return readl(qm->io_base + QM_DFX_CNT_CLR_CE);
892 }
893 
894 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */
895 static int clear_enable_write(struct debugfs_file *file, u32 rd_clr_ctrl)
896 {
897 	struct hisi_qm *qm = file_to_qm(file);
898 
899 	if (rd_clr_ctrl > 1)
900 		return -EINVAL;
901 
902 	writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE);
903 
904 	return 0;
905 }
906 
907 static ssize_t qm_debug_read(struct file *filp, char __user *buf,
908 			     size_t count, loff_t *pos)
909 {
910 	struct debugfs_file *file = filp->private_data;
911 	enum qm_debug_file index = file->index;
912 	char tbuf[QM_DBG_TMP_BUF_LEN];
913 	u32 val;
914 	int ret;
915 
916 	mutex_lock(&file->lock);
917 	switch (index) {
918 	case CURRENT_Q:
919 		val = current_q_read(file);
920 		break;
921 	case CLEAR_ENABLE:
922 		val = clear_enable_read(file);
923 		break;
924 	default:
925 		mutex_unlock(&file->lock);
926 		return -EINVAL;
927 	}
928 	mutex_unlock(&file->lock);
929 	ret = sprintf(tbuf, "%u\n", val);
930 	return simple_read_from_buffer(buf, count, pos, tbuf, ret);
931 }
932 
933 static ssize_t qm_debug_write(struct file *filp, const char __user *buf,
934 			      size_t count, loff_t *pos)
935 {
936 	struct debugfs_file *file = filp->private_data;
937 	enum qm_debug_file index = file->index;
938 	unsigned long val;
939 	char tbuf[QM_DBG_TMP_BUF_LEN];
940 	int len, ret;
941 
942 	if (*pos != 0)
943 		return 0;
944 
945 	if (count >= QM_DBG_TMP_BUF_LEN)
946 		return -ENOSPC;
947 
948 	len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf,
949 				     count);
950 	if (len < 0)
951 		return len;
952 
953 	tbuf[len] = '\0';
954 	if (kstrtoul(tbuf, 0, &val))
955 		return -EFAULT;
956 
957 	mutex_lock(&file->lock);
958 	switch (index) {
959 	case CURRENT_Q:
960 		ret = current_q_write(file, val);
961 		if (ret)
962 			goto err_input;
963 		break;
964 	case CLEAR_ENABLE:
965 		ret = clear_enable_write(file, val);
966 		if (ret)
967 			goto err_input;
968 		break;
969 	default:
970 		ret = -EINVAL;
971 		goto err_input;
972 	}
973 	mutex_unlock(&file->lock);
974 
975 	return count;
976 
977 err_input:
978 	mutex_unlock(&file->lock);
979 	return ret;
980 }
981 
982 static const struct file_operations qm_debug_fops = {
983 	.owner = THIS_MODULE,
984 	.open = simple_open,
985 	.read = qm_debug_read,
986 	.write = qm_debug_write,
987 };
988 
989 struct qm_dfx_registers {
990 	char  *reg_name;
991 	u64   reg_offset;
992 };
993 
994 #define CNT_CYC_REGS_NUM		10
995 static struct qm_dfx_registers qm_dfx_regs[] = {
996 	/* XXX_CNT are reading clear register */
997 	{"QM_ECC_1BIT_CNT               ",  0x104000ull},
998 	{"QM_ECC_MBIT_CNT               ",  0x104008ull},
999 	{"QM_DFX_MB_CNT                 ",  0x104018ull},
1000 	{"QM_DFX_DB_CNT                 ",  0x104028ull},
1001 	{"QM_DFX_SQE_CNT                ",  0x104038ull},
1002 	{"QM_DFX_CQE_CNT                ",  0x104048ull},
1003 	{"QM_DFX_SEND_SQE_TO_ACC_CNT    ",  0x104050ull},
1004 	{"QM_DFX_WB_SQE_FROM_ACC_CNT    ",  0x104058ull},
1005 	{"QM_DFX_ACC_FINISH_CNT         ",  0x104060ull},
1006 	{"QM_DFX_CQE_ERR_CNT            ",  0x1040b4ull},
1007 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1008 	{"QM_ECC_1BIT_INF               ",  0x104004ull},
1009 	{"QM_ECC_MBIT_INF               ",  0x10400cull},
1010 	{"QM_DFX_ACC_RDY_VLD0           ",  0x1040a0ull},
1011 	{"QM_DFX_ACC_RDY_VLD1           ",  0x1040a4ull},
1012 	{"QM_DFX_AXI_RDY_VLD            ",  0x1040a8ull},
1013 	{"QM_DFX_FF_ST0                 ",  0x1040c8ull},
1014 	{"QM_DFX_FF_ST1                 ",  0x1040ccull},
1015 	{"QM_DFX_FF_ST2                 ",  0x1040d0ull},
1016 	{"QM_DFX_FF_ST3                 ",  0x1040d4ull},
1017 	{"QM_DFX_FF_ST4                 ",  0x1040d8ull},
1018 	{"QM_DFX_FF_ST5                 ",  0x1040dcull},
1019 	{"QM_DFX_FF_ST6                 ",  0x1040e0ull},
1020 	{"QM_IN_IDLE_ST                 ",  0x1040e4ull},
1021 	{ NULL, 0}
1022 };
1023 
1024 static struct qm_dfx_registers qm_vf_dfx_regs[] = {
1025 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1026 	{ NULL, 0}
1027 };
1028 
1029 static int qm_regs_show(struct seq_file *s, void *unused)
1030 {
1031 	struct hisi_qm *qm = s->private;
1032 	struct qm_dfx_registers *regs;
1033 	u32 val;
1034 
1035 	if (qm->fun_type == QM_HW_PF)
1036 		regs = qm_dfx_regs;
1037 	else
1038 		regs = qm_vf_dfx_regs;
1039 
1040 	while (regs->reg_name) {
1041 		val = readl(qm->io_base + regs->reg_offset);
1042 		seq_printf(s, "%s= 0x%08x\n", regs->reg_name, val);
1043 		regs++;
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 static int qm_regs_open(struct inode *inode, struct file *file)
1050 {
1051 	return single_open(file, qm_regs_show, inode->i_private);
1052 }
1053 
1054 static const struct file_operations qm_regs_fops = {
1055 	.owner = THIS_MODULE,
1056 	.open = qm_regs_open,
1057 	.read = seq_read,
1058 	.release = single_release,
1059 };
1060 
1061 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer,
1062 			   size_t count, loff_t *pos)
1063 {
1064 	char buf[QM_DBG_READ_LEN];
1065 	int len;
1066 
1067 	if (*pos)
1068 		return 0;
1069 
1070 	if (count < QM_DBG_READ_LEN)
1071 		return -ENOSPC;
1072 
1073 	len = snprintf(buf, QM_DBG_READ_LEN, "%s\n",
1074 		       "Please echo help to cmd to get help information");
1075 
1076 	if (copy_to_user(buffer, buf, len))
1077 		return -EFAULT;
1078 
1079 	return (*pos = len);
1080 }
1081 
1082 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1083 			  dma_addr_t *dma_addr)
1084 {
1085 	struct device *dev = &qm->pdev->dev;
1086 	void *ctx_addr;
1087 
1088 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1089 	if (!ctx_addr)
1090 		return ERR_PTR(-ENOMEM);
1091 
1092 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1093 	if (dma_mapping_error(dev, *dma_addr)) {
1094 		dev_err(dev, "DMA mapping error!\n");
1095 		kfree(ctx_addr);
1096 		return ERR_PTR(-ENOMEM);
1097 	}
1098 
1099 	return ctx_addr;
1100 }
1101 
1102 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1103 			const void *ctx_addr, dma_addr_t *dma_addr)
1104 {
1105 	struct device *dev = &qm->pdev->dev;
1106 
1107 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1108 	kfree(ctx_addr);
1109 }
1110 
1111 static int dump_show(struct hisi_qm *qm, void *info,
1112 		     unsigned int info_size, char *info_name)
1113 {
1114 	struct device *dev = &qm->pdev->dev;
1115 	u8 *info_buf, *info_curr = info;
1116 	u32 i;
1117 #define BYTE_PER_DW	4
1118 
1119 	info_buf = kzalloc(info_size, GFP_KERNEL);
1120 	if (!info_buf)
1121 		return -ENOMEM;
1122 
1123 	for (i = 0; i < info_size; i++, info_curr++) {
1124 		if (i % BYTE_PER_DW == 0)
1125 			info_buf[i + 3UL] = *info_curr;
1126 		else if (i % BYTE_PER_DW == 1)
1127 			info_buf[i + 1UL] = *info_curr;
1128 		else if (i % BYTE_PER_DW == 2)
1129 			info_buf[i - 1] = *info_curr;
1130 		else if (i % BYTE_PER_DW == 3)
1131 			info_buf[i - 3] = *info_curr;
1132 	}
1133 
1134 	dev_info(dev, "%s DUMP\n", info_name);
1135 	for (i = 0; i < info_size; i += BYTE_PER_DW) {
1136 		pr_info("DW%d: %02X%02X %02X%02X\n", i / BYTE_PER_DW,
1137 			info_buf[i], info_buf[i + 1UL],
1138 			info_buf[i + 2UL], info_buf[i + 3UL]);
1139 	}
1140 
1141 	kfree(info_buf);
1142 
1143 	return 0;
1144 }
1145 
1146 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1147 {
1148 	return qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1149 }
1150 
1151 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1152 {
1153 	return qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1154 }
1155 
1156 static int qm_sqc_dump(struct hisi_qm *qm, const char *s)
1157 {
1158 	struct device *dev = &qm->pdev->dev;
1159 	struct qm_sqc *sqc, *sqc_curr;
1160 	dma_addr_t sqc_dma;
1161 	u32 qp_id;
1162 	int ret;
1163 
1164 	if (!s)
1165 		return -EINVAL;
1166 
1167 	ret = kstrtou32(s, 0, &qp_id);
1168 	if (ret || qp_id >= qm->qp_num) {
1169 		dev_err(dev, "Please input qp num (0-%d)", qm->qp_num - 1);
1170 		return -EINVAL;
1171 	}
1172 
1173 	sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma);
1174 	if (IS_ERR(sqc))
1175 		return PTR_ERR(sqc);
1176 
1177 	ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id);
1178 	if (ret) {
1179 		down_read(&qm->qps_lock);
1180 		if (qm->sqc) {
1181 			sqc_curr = qm->sqc + qp_id;
1182 
1183 			ret = dump_show(qm, sqc_curr, sizeof(*sqc),
1184 					"SOFT SQC");
1185 			if (ret)
1186 				dev_info(dev, "Show soft sqc failed!\n");
1187 		}
1188 		up_read(&qm->qps_lock);
1189 
1190 		goto err_free_ctx;
1191 	}
1192 
1193 	ret = dump_show(qm, sqc, sizeof(*sqc), "SQC");
1194 	if (ret)
1195 		dev_info(dev, "Show hw sqc failed!\n");
1196 
1197 err_free_ctx:
1198 	qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma);
1199 	return ret;
1200 }
1201 
1202 static int qm_cqc_dump(struct hisi_qm *qm, const char *s)
1203 {
1204 	struct device *dev = &qm->pdev->dev;
1205 	struct qm_cqc *cqc, *cqc_curr;
1206 	dma_addr_t cqc_dma;
1207 	u32 qp_id;
1208 	int ret;
1209 
1210 	if (!s)
1211 		return -EINVAL;
1212 
1213 	ret = kstrtou32(s, 0, &qp_id);
1214 	if (ret || qp_id >= qm->qp_num) {
1215 		dev_err(dev, "Please input qp num (0-%d)", qm->qp_num - 1);
1216 		return -EINVAL;
1217 	}
1218 
1219 	cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma);
1220 	if (IS_ERR(cqc))
1221 		return PTR_ERR(cqc);
1222 
1223 	ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id);
1224 	if (ret) {
1225 		down_read(&qm->qps_lock);
1226 		if (qm->cqc) {
1227 			cqc_curr = qm->cqc + qp_id;
1228 
1229 			ret = dump_show(qm, cqc_curr, sizeof(*cqc),
1230 					"SOFT CQC");
1231 			if (ret)
1232 				dev_info(dev, "Show soft cqc failed!\n");
1233 		}
1234 		up_read(&qm->qps_lock);
1235 
1236 		goto err_free_ctx;
1237 	}
1238 
1239 	ret = dump_show(qm, cqc, sizeof(*cqc), "CQC");
1240 	if (ret)
1241 		dev_info(dev, "Show hw cqc failed!\n");
1242 
1243 err_free_ctx:
1244 	qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma);
1245 	return ret;
1246 }
1247 
1248 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size,
1249 			    int cmd, char *name)
1250 {
1251 	struct device *dev = &qm->pdev->dev;
1252 	dma_addr_t xeqc_dma;
1253 	void *xeqc;
1254 	int ret;
1255 
1256 	if (strsep(&s, " ")) {
1257 		dev_err(dev, "Please do not input extra characters!\n");
1258 		return -EINVAL;
1259 	}
1260 
1261 	xeqc = qm_ctx_alloc(qm, size, &xeqc_dma);
1262 	if (IS_ERR(xeqc))
1263 		return PTR_ERR(xeqc);
1264 
1265 	ret = qm_mb(qm, cmd, xeqc_dma, 0, 1);
1266 	if (ret)
1267 		goto err_free_ctx;
1268 
1269 	ret = dump_show(qm, xeqc, size, name);
1270 	if (ret)
1271 		dev_info(dev, "Show hw %s failed!\n", name);
1272 
1273 err_free_ctx:
1274 	qm_ctx_free(qm, size, xeqc, &xeqc_dma);
1275 	return ret;
1276 }
1277 
1278 static int q_dump_param_parse(struct hisi_qm *qm, char *s,
1279 			      u32 *e_id, u32 *q_id)
1280 {
1281 	struct device *dev = &qm->pdev->dev;
1282 	unsigned int qp_num = qm->qp_num;
1283 	char *presult;
1284 	int ret;
1285 
1286 	presult = strsep(&s, " ");
1287 	if (!presult) {
1288 		dev_err(dev, "Please input qp number!\n");
1289 		return -EINVAL;
1290 	}
1291 
1292 	ret = kstrtou32(presult, 0, q_id);
1293 	if (ret || *q_id >= qp_num) {
1294 		dev_err(dev, "Please input qp num (0-%d)", qp_num - 1);
1295 		return -EINVAL;
1296 	}
1297 
1298 	presult = strsep(&s, " ");
1299 	if (!presult) {
1300 		dev_err(dev, "Please input sqe number!\n");
1301 		return -EINVAL;
1302 	}
1303 
1304 	ret = kstrtou32(presult, 0, e_id);
1305 	if (ret || *e_id >= QM_Q_DEPTH) {
1306 		dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1);
1307 		return -EINVAL;
1308 	}
1309 
1310 	if (strsep(&s, " ")) {
1311 		dev_err(dev, "Please do not input extra characters!\n");
1312 		return -EINVAL;
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 static int qm_sq_dump(struct hisi_qm *qm, char *s)
1319 {
1320 	struct device *dev = &qm->pdev->dev;
1321 	void *sqe, *sqe_curr;
1322 	struct hisi_qp *qp;
1323 	u32 qp_id, sqe_id;
1324 	int ret;
1325 
1326 	ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id);
1327 	if (ret)
1328 		return ret;
1329 
1330 	sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL);
1331 	if (!sqe)
1332 		return -ENOMEM;
1333 
1334 	qp = &qm->qp_array[qp_id];
1335 	memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH);
1336 	sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size);
1337 	memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK,
1338 	       qm->debug.sqe_mask_len);
1339 
1340 	ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE");
1341 	if (ret)
1342 		dev_info(dev, "Show sqe failed!\n");
1343 
1344 	kfree(sqe);
1345 
1346 	return ret;
1347 }
1348 
1349 static int qm_cq_dump(struct hisi_qm *qm, char *s)
1350 {
1351 	struct device *dev = &qm->pdev->dev;
1352 	struct qm_cqe *cqe_curr;
1353 	struct hisi_qp *qp;
1354 	u32 qp_id, cqe_id;
1355 	int ret;
1356 
1357 	ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id);
1358 	if (ret)
1359 		return ret;
1360 
1361 	qp = &qm->qp_array[qp_id];
1362 	cqe_curr = qp->cqe + cqe_id;
1363 	ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE");
1364 	if (ret)
1365 		dev_info(dev, "Show cqe failed!\n");
1366 
1367 	return ret;
1368 }
1369 
1370 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s,
1371 			  size_t size, char *name)
1372 {
1373 	struct device *dev = &qm->pdev->dev;
1374 	void *xeqe;
1375 	u32 xeqe_id;
1376 	int ret;
1377 
1378 	if (!s)
1379 		return -EINVAL;
1380 
1381 	ret = kstrtou32(s, 0, &xeqe_id);
1382 	if (ret || xeqe_id >= QM_Q_DEPTH) {
1383 		dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1);
1384 		return -EINVAL;
1385 	}
1386 
1387 	down_read(&qm->qps_lock);
1388 
1389 	if (qm->eqe && !strcmp(name, "EQE")) {
1390 		xeqe = qm->eqe + xeqe_id;
1391 	} else if (qm->aeqe && !strcmp(name, "AEQE")) {
1392 		xeqe = qm->aeqe + xeqe_id;
1393 	} else {
1394 		ret = -EINVAL;
1395 		goto err_unlock;
1396 	}
1397 
1398 	ret = dump_show(qm, xeqe, size, name);
1399 	if (ret)
1400 		dev_info(dev, "Show %s failed!\n", name);
1401 
1402 err_unlock:
1403 	up_read(&qm->qps_lock);
1404 	return ret;
1405 }
1406 
1407 static int qm_dbg_help(struct hisi_qm *qm, char *s)
1408 {
1409 	struct device *dev = &qm->pdev->dev;
1410 
1411 	if (strsep(&s, " ")) {
1412 		dev_err(dev, "Please do not input extra characters!\n");
1413 		return -EINVAL;
1414 	}
1415 
1416 	dev_info(dev, "available commands:\n");
1417 	dev_info(dev, "sqc <num>\n");
1418 	dev_info(dev, "cqc <num>\n");
1419 	dev_info(dev, "eqc\n");
1420 	dev_info(dev, "aeqc\n");
1421 	dev_info(dev, "sq <num> <e>\n");
1422 	dev_info(dev, "cq <num> <e>\n");
1423 	dev_info(dev, "eq <e>\n");
1424 	dev_info(dev, "aeq <e>\n");
1425 
1426 	return 0;
1427 }
1428 
1429 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf)
1430 {
1431 	struct device *dev = &qm->pdev->dev;
1432 	char *presult, *s;
1433 	int ret;
1434 
1435 	s = kstrdup(cmd_buf, GFP_KERNEL);
1436 	if (!s)
1437 		return -ENOMEM;
1438 
1439 	presult = strsep(&s, " ");
1440 	if (!presult) {
1441 		kfree(s);
1442 		return -EINVAL;
1443 	}
1444 
1445 	if (!strcmp(presult, "sqc"))
1446 		ret = qm_sqc_dump(qm, s);
1447 	else if (!strcmp(presult, "cqc"))
1448 		ret = qm_cqc_dump(qm, s);
1449 	else if (!strcmp(presult, "eqc"))
1450 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc),
1451 				       QM_MB_CMD_EQC, "EQC");
1452 	else if (!strcmp(presult, "aeqc"))
1453 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc),
1454 				       QM_MB_CMD_AEQC, "AEQC");
1455 	else if (!strcmp(presult, "sq"))
1456 		ret = qm_sq_dump(qm, s);
1457 	else if (!strcmp(presult, "cq"))
1458 		ret = qm_cq_dump(qm, s);
1459 	else if (!strcmp(presult, "eq"))
1460 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE");
1461 	else if (!strcmp(presult, "aeq"))
1462 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE");
1463 	else if (!strcmp(presult, "help"))
1464 		ret = qm_dbg_help(qm, s);
1465 	else
1466 		ret = -EINVAL;
1467 
1468 	if (ret)
1469 		dev_info(dev, "Please echo help\n");
1470 
1471 	kfree(s);
1472 
1473 	return ret;
1474 }
1475 
1476 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer,
1477 			    size_t count, loff_t *pos)
1478 {
1479 	struct hisi_qm *qm = filp->private_data;
1480 	char *cmd_buf, *cmd_buf_tmp;
1481 	int ret;
1482 
1483 	if (*pos)
1484 		return 0;
1485 
1486 	/* Judge if the instance is being reset. */
1487 	if (unlikely(atomic_read(&qm->status.flags) == QM_STOP))
1488 		return 0;
1489 
1490 	if (count > QM_DBG_WRITE_LEN)
1491 		return -ENOSPC;
1492 
1493 	cmd_buf = kzalloc(count + 1, GFP_KERNEL);
1494 	if (!cmd_buf)
1495 		return -ENOMEM;
1496 
1497 	if (copy_from_user(cmd_buf, buffer, count)) {
1498 		kfree(cmd_buf);
1499 		return -EFAULT;
1500 	}
1501 
1502 	cmd_buf[count] = '\0';
1503 
1504 	cmd_buf_tmp = strchr(cmd_buf, '\n');
1505 	if (cmd_buf_tmp) {
1506 		*cmd_buf_tmp = '\0';
1507 		count = cmd_buf_tmp - cmd_buf + 1;
1508 	}
1509 
1510 	ret = qm_cmd_write_dump(qm, cmd_buf);
1511 	if (ret) {
1512 		kfree(cmd_buf);
1513 		return ret;
1514 	}
1515 
1516 	kfree(cmd_buf);
1517 
1518 	return count;
1519 }
1520 
1521 static const struct file_operations qm_cmd_fops = {
1522 	.owner = THIS_MODULE,
1523 	.open = simple_open,
1524 	.read = qm_cmd_read,
1525 	.write = qm_cmd_write,
1526 };
1527 
1528 static int qm_create_debugfs_file(struct hisi_qm *qm, enum qm_debug_file index)
1529 {
1530 	struct dentry *qm_d = qm->debug.qm_d;
1531 	struct debugfs_file *file = qm->debug.files + index;
1532 
1533 	debugfs_create_file(qm_debug_file_name[index], 0600, qm_d, file,
1534 			    &qm_debug_fops);
1535 
1536 	file->index = index;
1537 	mutex_init(&file->lock);
1538 	file->debug = &qm->debug;
1539 
1540 	return 0;
1541 }
1542 
1543 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1544 {
1545 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1546 }
1547 
1548 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1549 {
1550 	u32 irq_enable = ce | nfe | fe;
1551 	u32 irq_unmask = ~irq_enable;
1552 
1553 	qm->error_mask = ce | nfe | fe;
1554 
1555 	/* clear QM hw residual error source */
1556 	writel(QM_ABNORMAL_INT_SOURCE_CLR,
1557 	       qm->io_base + QM_ABNORMAL_INT_SOURCE);
1558 
1559 	/* configure error type */
1560 	writel(ce, qm->io_base + QM_RAS_CE_ENABLE);
1561 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1562 	writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1563 	writel(fe, qm->io_base + QM_RAS_FE_ENABLE);
1564 
1565 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1566 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1567 }
1568 
1569 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1570 {
1571 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1572 }
1573 
1574 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1575 {
1576 	const struct hisi_qm_hw_error *err;
1577 	struct device *dev = &qm->pdev->dev;
1578 	u32 reg_val, type, vf_num;
1579 	int i;
1580 
1581 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1582 		err = &qm_hw_error[i];
1583 		if (!(err->int_msk & error_status))
1584 			continue;
1585 
1586 		dev_err(dev, "%s [error status=0x%x] found\n",
1587 			err->msg, err->int_msk);
1588 
1589 		if (err->int_msk & QM_DB_TIMEOUT) {
1590 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1591 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1592 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1593 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1594 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
1595 				qm_db_timeout[type], vf_num);
1596 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1597 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1598 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1599 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1600 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1601 
1602 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1603 				dev_err(dev, "qm %s fifo overflow in function %u\n",
1604 					qm_fifo_overflow[type], vf_num);
1605 			else
1606 				dev_err(dev, "unknown error type\n");
1607 		}
1608 	}
1609 }
1610 
1611 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1612 {
1613 	u32 error_status, tmp;
1614 
1615 	/* read err sts */
1616 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1617 	error_status = qm->error_mask & tmp;
1618 
1619 	if (error_status) {
1620 		if (error_status & QM_ECC_MBIT)
1621 			qm->err_status.is_qm_ecc_mbit = true;
1622 
1623 		qm_log_hw_error(qm, error_status);
1624 		if (error_status == QM_DB_RANDOM_INVALID) {
1625 			writel(error_status, qm->io_base +
1626 			       QM_ABNORMAL_INT_SOURCE);
1627 			return ACC_ERR_RECOVERED;
1628 		}
1629 
1630 		return ACC_ERR_NEED_RESET;
1631 	}
1632 
1633 	return ACC_ERR_RECOVERED;
1634 }
1635 
1636 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1637 	.qm_db = qm_db_v1,
1638 	.get_irq_num = qm_get_irq_num_v1,
1639 	.hw_error_init = qm_hw_error_init_v1,
1640 };
1641 
1642 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1643 	.get_vft = qm_get_vft_v2,
1644 	.qm_db = qm_db_v2,
1645 	.get_irq_num = qm_get_irq_num_v2,
1646 	.hw_error_init = qm_hw_error_init_v2,
1647 	.hw_error_uninit = qm_hw_error_uninit_v2,
1648 	.hw_error_handle = qm_hw_error_handle_v2,
1649 };
1650 
1651 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1652 {
1653 	struct hisi_qp_status *qp_status = &qp->qp_status;
1654 	u16 sq_tail = qp_status->sq_tail;
1655 
1656 	if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH))
1657 		return NULL;
1658 
1659 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1660 }
1661 
1662 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1663 {
1664 	struct device *dev = &qm->pdev->dev;
1665 	struct hisi_qp *qp;
1666 	int qp_id;
1667 
1668 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
1669 		return ERR_PTR(-EPERM);
1670 
1671 	if (qm->qp_in_used == qm->qp_num) {
1672 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1673 				     qm->qp_num);
1674 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1675 		return ERR_PTR(-EBUSY);
1676 	}
1677 
1678 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1679 	if (qp_id < 0) {
1680 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1681 				    qm->qp_num);
1682 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1683 		return ERR_PTR(-EBUSY);
1684 	}
1685 
1686 	qp = &qm->qp_array[qp_id];
1687 
1688 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH);
1689 
1690 	qp->event_cb = NULL;
1691 	qp->req_cb = NULL;
1692 	qp->qp_id = qp_id;
1693 	qp->alg_type = alg_type;
1694 	qm->qp_in_used++;
1695 	atomic_set(&qp->qp_status.flags, QP_INIT);
1696 
1697 	return qp;
1698 }
1699 
1700 /**
1701  * hisi_qm_create_qp() - Create a queue pair from qm.
1702  * @qm: The qm we create a qp from.
1703  * @alg_type: Accelerator specific algorithm type in sqc.
1704  *
1705  * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating
1706  * qp memory fails.
1707  */
1708 struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1709 {
1710 	struct hisi_qp *qp;
1711 
1712 	down_write(&qm->qps_lock);
1713 	qp = qm_create_qp_nolock(qm, alg_type);
1714 	up_write(&qm->qps_lock);
1715 
1716 	return qp;
1717 }
1718 EXPORT_SYMBOL_GPL(hisi_qm_create_qp);
1719 
1720 /**
1721  * hisi_qm_release_qp() - Release a qp back to its qm.
1722  * @qp: The qp we want to release.
1723  *
1724  * This function releases the resource of a qp.
1725  */
1726 void hisi_qm_release_qp(struct hisi_qp *qp)
1727 {
1728 	struct hisi_qm *qm = qp->qm;
1729 
1730 	down_write(&qm->qps_lock);
1731 
1732 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
1733 		up_write(&qm->qps_lock);
1734 		return;
1735 	}
1736 
1737 	qm->qp_in_used--;
1738 	idr_remove(&qm->qp_idr, qp->qp_id);
1739 
1740 	up_write(&qm->qps_lock);
1741 }
1742 EXPORT_SYMBOL_GPL(hisi_qm_release_qp);
1743 
1744 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, int pasid)
1745 {
1746 	struct hisi_qm *qm = qp->qm;
1747 	struct device *dev = &qm->pdev->dev;
1748 	enum qm_hw_ver ver = qm->ver;
1749 	struct qm_sqc *sqc;
1750 	struct qm_cqc *cqc;
1751 	dma_addr_t sqc_dma;
1752 	dma_addr_t cqc_dma;
1753 	int ret;
1754 
1755 	qm_init_qp_status(qp);
1756 
1757 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
1758 	if (!sqc)
1759 		return -ENOMEM;
1760 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
1761 				 DMA_TO_DEVICE);
1762 	if (dma_mapping_error(dev, sqc_dma)) {
1763 		kfree(sqc);
1764 		return -ENOMEM;
1765 	}
1766 
1767 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
1768 	if (ver == QM_HW_V1) {
1769 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1770 		sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
1771 	} else {
1772 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size));
1773 		sqc->w8 = 0; /* rand_qc */
1774 	}
1775 	sqc->cq_num = cpu_to_le16(qp_id);
1776 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1777 
1778 	ret = qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
1779 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
1780 	kfree(sqc);
1781 	if (ret)
1782 		return ret;
1783 
1784 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
1785 	if (!cqc)
1786 		return -ENOMEM;
1787 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
1788 				 DMA_TO_DEVICE);
1789 	if (dma_mapping_error(dev, cqc_dma)) {
1790 		kfree(cqc);
1791 		return -ENOMEM;
1792 	}
1793 
1794 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
1795 	if (ver == QM_HW_V1) {
1796 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 4));
1797 		cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
1798 	} else {
1799 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(4));
1800 		cqc->w8 = 0;
1801 	}
1802 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
1803 
1804 	ret = qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
1805 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
1806 	kfree(cqc);
1807 
1808 	return ret;
1809 }
1810 
1811 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
1812 {
1813 	struct hisi_qm *qm = qp->qm;
1814 	struct device *dev = &qm->pdev->dev;
1815 	int qp_id = qp->qp_id;
1816 	int pasid = arg;
1817 	int ret;
1818 
1819 	if (!qm_qp_avail_state(qm, qp, QP_START))
1820 		return -EPERM;
1821 
1822 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
1823 	if (ret)
1824 		return ret;
1825 
1826 	atomic_set(&qp->qp_status.flags, QP_START);
1827 	dev_dbg(dev, "queue %d started\n", qp_id);
1828 
1829 	return 0;
1830 }
1831 
1832 /**
1833  * hisi_qm_start_qp() - Start a qp into running.
1834  * @qp: The qp we want to start to run.
1835  * @arg: Accelerator specific argument.
1836  *
1837  * After this function, qp can receive request from user. Return 0 if
1838  * successful, Return -EBUSY if failed.
1839  */
1840 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
1841 {
1842 	struct hisi_qm *qm = qp->qm;
1843 	int ret;
1844 
1845 	down_write(&qm->qps_lock);
1846 	ret = qm_start_qp_nolock(qp, arg);
1847 	up_write(&qm->qps_lock);
1848 
1849 	return ret;
1850 }
1851 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
1852 
1853 /**
1854  * Determine whether the queue is cleared by judging the tail pointers of
1855  * sq and cq.
1856  */
1857 static int qm_drain_qp(struct hisi_qp *qp)
1858 {
1859 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
1860 	struct hisi_qm *qm = qp->qm;
1861 	struct device *dev = &qm->pdev->dev;
1862 	struct qm_sqc *sqc;
1863 	struct qm_cqc *cqc;
1864 	dma_addr_t dma_addr;
1865 	int ret = 0, i = 0;
1866 	void *addr;
1867 
1868 	/*
1869 	 * No need to judge if ECC multi-bit error occurs because the
1870 	 * master OOO will be blocked.
1871 	 */
1872 	if (qm->err_status.is_qm_ecc_mbit || qm->err_status.is_dev_ecc_mbit)
1873 		return 0;
1874 
1875 	addr = qm_ctx_alloc(qm, size, &dma_addr);
1876 	if (IS_ERR(addr)) {
1877 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
1878 		return -ENOMEM;
1879 	}
1880 
1881 	while (++i) {
1882 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
1883 		if (ret) {
1884 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
1885 			break;
1886 		}
1887 		sqc = addr;
1888 
1889 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
1890 				      qp->qp_id);
1891 		if (ret) {
1892 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
1893 			break;
1894 		}
1895 		cqc = addr + sizeof(struct qm_sqc);
1896 
1897 		if ((sqc->tail == cqc->tail) &&
1898 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
1899 			break;
1900 
1901 		if (i == MAX_WAIT_COUNTS) {
1902 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
1903 			ret = -EBUSY;
1904 			break;
1905 		}
1906 
1907 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
1908 	}
1909 
1910 	qm_ctx_free(qm, size, addr, &dma_addr);
1911 
1912 	return ret;
1913 }
1914 
1915 static int qm_stop_qp_nolock(struct hisi_qp *qp)
1916 {
1917 	struct device *dev = &qp->qm->pdev->dev;
1918 	int ret;
1919 
1920 	/*
1921 	 * It is allowed to stop and release qp when reset, If the qp is
1922 	 * stopped when reset but still want to be released then, the
1923 	 * is_resetting flag should be set negative so that this qp will not
1924 	 * be restarted after reset.
1925 	 */
1926 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
1927 		qp->is_resetting = false;
1928 		return 0;
1929 	}
1930 
1931 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
1932 		return -EPERM;
1933 
1934 	atomic_set(&qp->qp_status.flags, QP_STOP);
1935 
1936 	ret = qm_drain_qp(qp);
1937 	if (ret)
1938 		dev_err(dev, "Failed to drain out data for stopping!\n");
1939 
1940 	if (qp->qm->wq)
1941 		flush_workqueue(qp->qm->wq);
1942 	else
1943 		flush_work(&qp->qm->work);
1944 
1945 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
1946 
1947 	return 0;
1948 }
1949 
1950 /**
1951  * hisi_qm_stop_qp() - Stop a qp in qm.
1952  * @qp: The qp we want to stop.
1953  *
1954  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
1955  */
1956 int hisi_qm_stop_qp(struct hisi_qp *qp)
1957 {
1958 	int ret;
1959 
1960 	down_write(&qp->qm->qps_lock);
1961 	ret = qm_stop_qp_nolock(qp);
1962 	up_write(&qp->qm->qps_lock);
1963 
1964 	return ret;
1965 }
1966 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
1967 
1968 /**
1969  * hisi_qp_send() - Queue up a task in the hardware queue.
1970  * @qp: The qp in which to put the message.
1971  * @msg: The message.
1972  *
1973  * This function will return -EBUSY if qp is currently full, and -EAGAIN
1974  * if qp related qm is resetting.
1975  *
1976  * Note: This function may run with qm_irq_thread and ACC reset at same time.
1977  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
1978  *       reset may happen, we have no lock here considering performance. This
1979  *       causes current qm_db sending fail or can not receive sended sqe. QM
1980  *       sync/async receive function should handle the error sqe. ACC reset
1981  *       done function should clear used sqe to 0.
1982  */
1983 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
1984 {
1985 	struct hisi_qp_status *qp_status = &qp->qp_status;
1986 	u16 sq_tail = qp_status->sq_tail;
1987 	u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH;
1988 	void *sqe = qm_get_avail_sqe(qp);
1989 
1990 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
1991 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
1992 		     qp->is_resetting)) {
1993 		dev_info(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
1994 		return -EAGAIN;
1995 	}
1996 
1997 	if (!sqe)
1998 		return -EBUSY;
1999 
2000 	memcpy(sqe, msg, qp->qm->sqe_size);
2001 
2002 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2003 	atomic_inc(&qp->qp_status.used);
2004 	qp_status->sq_tail = sq_tail_next;
2005 
2006 	return 0;
2007 }
2008 EXPORT_SYMBOL_GPL(hisi_qp_send);
2009 
2010 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2011 {
2012 	unsigned int val;
2013 
2014 	if (qm->ver == QM_HW_V1)
2015 		return;
2016 
2017 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2018 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2019 					    val, val & BIT(0), 10, 1000))
2020 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2021 }
2022 
2023 static void qm_qp_event_notifier(struct hisi_qp *qp)
2024 {
2025 	wake_up_interruptible(&qp->uacce_q->wait);
2026 }
2027 
2028 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2029 {
2030 	return hisi_qm_get_free_qp_num(uacce->priv);
2031 }
2032 
2033 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2034 				   unsigned long arg,
2035 				   struct uacce_queue *q)
2036 {
2037 	struct hisi_qm *qm = uacce->priv;
2038 	struct hisi_qp *qp;
2039 	u8 alg_type = 0;
2040 
2041 	qp = hisi_qm_create_qp(qm, alg_type);
2042 	if (IS_ERR(qp))
2043 		return PTR_ERR(qp);
2044 
2045 	q->priv = qp;
2046 	q->uacce = uacce;
2047 	qp->uacce_q = q;
2048 	qp->event_cb = qm_qp_event_notifier;
2049 	qp->pasid = arg;
2050 
2051 	return 0;
2052 }
2053 
2054 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2055 {
2056 	struct hisi_qp *qp = q->priv;
2057 
2058 	hisi_qm_cache_wb(qp->qm);
2059 	hisi_qm_release_qp(qp);
2060 }
2061 
2062 /* map sq/cq/doorbell to user space */
2063 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2064 			      struct vm_area_struct *vma,
2065 			      struct uacce_qfile_region *qfr)
2066 {
2067 	struct hisi_qp *qp = q->priv;
2068 	struct hisi_qm *qm = qp->qm;
2069 	size_t sz = vma->vm_end - vma->vm_start;
2070 	struct pci_dev *pdev = qm->pdev;
2071 	struct device *dev = &pdev->dev;
2072 	unsigned long vm_pgoff;
2073 	int ret;
2074 
2075 	switch (qfr->type) {
2076 	case UACCE_QFRT_MMIO:
2077 		if (qm->ver == QM_HW_V1) {
2078 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2079 				return -EINVAL;
2080 		} else {
2081 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2082 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2083 				return -EINVAL;
2084 		}
2085 
2086 		vma->vm_flags |= VM_IO;
2087 
2088 		return remap_pfn_range(vma, vma->vm_start,
2089 				       qm->phys_base >> PAGE_SHIFT,
2090 				       sz, pgprot_noncached(vma->vm_page_prot));
2091 	case UACCE_QFRT_DUS:
2092 		if (sz != qp->qdma.size)
2093 			return -EINVAL;
2094 
2095 		/*
2096 		 * dma_mmap_coherent() requires vm_pgoff as 0
2097 		 * restore vm_pfoff to initial value for mmap()
2098 		 */
2099 		vm_pgoff = vma->vm_pgoff;
2100 		vma->vm_pgoff = 0;
2101 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2102 					qp->qdma.dma, sz);
2103 		vma->vm_pgoff = vm_pgoff;
2104 		return ret;
2105 
2106 	default:
2107 		return -EINVAL;
2108 	}
2109 }
2110 
2111 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2112 {
2113 	struct hisi_qp *qp = q->priv;
2114 
2115 	return hisi_qm_start_qp(qp, qp->pasid);
2116 }
2117 
2118 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2119 {
2120 	hisi_qm_stop_qp(q->priv);
2121 }
2122 
2123 static int qm_set_sqctype(struct uacce_queue *q, u16 type)
2124 {
2125 	struct hisi_qm *qm = q->uacce->priv;
2126 	struct hisi_qp *qp = q->priv;
2127 
2128 	down_write(&qm->qps_lock);
2129 	qp->alg_type = type;
2130 	up_write(&qm->qps_lock);
2131 
2132 	return 0;
2133 }
2134 
2135 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2136 				unsigned long arg)
2137 {
2138 	struct hisi_qp *qp = q->priv;
2139 	struct hisi_qp_ctx qp_ctx;
2140 
2141 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2142 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2143 				   sizeof(struct hisi_qp_ctx)))
2144 			return -EFAULT;
2145 
2146 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2147 			return -EINVAL;
2148 
2149 		qm_set_sqctype(q, qp_ctx.qc_type);
2150 		qp_ctx.id = qp->qp_id;
2151 
2152 		if (copy_to_user((void __user *)arg, &qp_ctx,
2153 				 sizeof(struct hisi_qp_ctx)))
2154 			return -EFAULT;
2155 	} else {
2156 		return -EINVAL;
2157 	}
2158 
2159 	return 0;
2160 }
2161 
2162 static const struct uacce_ops uacce_qm_ops = {
2163 	.get_available_instances = hisi_qm_get_available_instances,
2164 	.get_queue = hisi_qm_uacce_get_queue,
2165 	.put_queue = hisi_qm_uacce_put_queue,
2166 	.start_queue = hisi_qm_uacce_start_queue,
2167 	.stop_queue = hisi_qm_uacce_stop_queue,
2168 	.mmap = hisi_qm_uacce_mmap,
2169 	.ioctl = hisi_qm_uacce_ioctl,
2170 };
2171 
2172 static int qm_alloc_uacce(struct hisi_qm *qm)
2173 {
2174 	struct pci_dev *pdev = qm->pdev;
2175 	struct uacce_device *uacce;
2176 	unsigned long mmio_page_nr;
2177 	unsigned long dus_page_nr;
2178 	struct uacce_interface interface = {
2179 		.flags = UACCE_DEV_SVA,
2180 		.ops = &uacce_qm_ops,
2181 	};
2182 
2183 	strncpy(interface.name, pdev->driver->name, sizeof(interface.name));
2184 
2185 	uacce = uacce_alloc(&pdev->dev, &interface);
2186 	if (IS_ERR(uacce))
2187 		return PTR_ERR(uacce);
2188 
2189 	if (uacce->flags & UACCE_DEV_SVA) {
2190 		qm->use_sva = true;
2191 	} else {
2192 		/* only consider sva case */
2193 		uacce_remove(uacce);
2194 		qm->uacce = NULL;
2195 		return -EINVAL;
2196 	}
2197 
2198 	uacce->is_vf = pdev->is_virtfn;
2199 	uacce->priv = qm;
2200 	uacce->algs = qm->algs;
2201 
2202 	if (qm->ver == QM_HW_V1) {
2203 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2204 		uacce->api_ver = HISI_QM_API_VER_BASE;
2205 	} else {
2206 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2207 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2208 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2209 	}
2210 
2211 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH +
2212 		       sizeof(struct qm_cqe) * QM_Q_DEPTH) >> PAGE_SHIFT;
2213 
2214 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2215 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2216 
2217 	qm->uacce = uacce;
2218 
2219 	return 0;
2220 }
2221 
2222 /**
2223  * hisi_qm_get_free_qp_num() - Get free number of qp in qm.
2224  * @qm: The qm which want to get free qp.
2225  *
2226  * This function return free number of qp in qm.
2227  */
2228 int hisi_qm_get_free_qp_num(struct hisi_qm *qm)
2229 {
2230 	int ret;
2231 
2232 	down_read(&qm->qps_lock);
2233 	ret = qm->qp_num - qm->qp_in_used;
2234 	up_read(&qm->qps_lock);
2235 
2236 	return ret;
2237 }
2238 EXPORT_SYMBOL_GPL(hisi_qm_get_free_qp_num);
2239 
2240 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2241 {
2242 	struct device *dev = &qm->pdev->dev;
2243 	struct qm_dma *qdma;
2244 	int i;
2245 
2246 	for (i = num - 1; i >= 0; i--) {
2247 		qdma = &qm->qp_array[i].qdma;
2248 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2249 	}
2250 
2251 	kfree(qm->qp_array);
2252 }
2253 
2254 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id)
2255 {
2256 	struct device *dev = &qm->pdev->dev;
2257 	size_t off = qm->sqe_size * QM_Q_DEPTH;
2258 	struct hisi_qp *qp;
2259 
2260 	qp = &qm->qp_array[id];
2261 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2262 					 GFP_KERNEL);
2263 	if (!qp->qdma.va)
2264 		return -ENOMEM;
2265 
2266 	qp->sqe = qp->qdma.va;
2267 	qp->sqe_dma = qp->qdma.dma;
2268 	qp->cqe = qp->qdma.va + off;
2269 	qp->cqe_dma = qp->qdma.dma + off;
2270 	qp->qdma.size = dma_size;
2271 	qp->qm = qm;
2272 	qp->qp_id = id;
2273 
2274 	return 0;
2275 }
2276 
2277 static int hisi_qm_memory_init(struct hisi_qm *qm)
2278 {
2279 	struct device *dev = &qm->pdev->dev;
2280 	size_t qp_dma_size, off = 0;
2281 	int i, ret = 0;
2282 
2283 #define QM_INIT_BUF(qm, type, num) do { \
2284 	(qm)->type = ((qm)->qdma.va + (off)); \
2285 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
2286 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
2287 } while (0)
2288 
2289 	idr_init(&qm->qp_idr);
2290 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_Q_DEPTH) +
2291 			QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) +
2292 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
2293 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
2294 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
2295 					 GFP_ATOMIC);
2296 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
2297 	if (!qm->qdma.va)
2298 		return -ENOMEM;
2299 
2300 	QM_INIT_BUF(qm, eqe, QM_Q_DEPTH);
2301 	QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH);
2302 	QM_INIT_BUF(qm, sqc, qm->qp_num);
2303 	QM_INIT_BUF(qm, cqc, qm->qp_num);
2304 
2305 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
2306 	if (!qm->qp_array) {
2307 		ret = -ENOMEM;
2308 		goto err_alloc_qp_array;
2309 	}
2310 
2311 	/* one more page for device or qp statuses */
2312 	qp_dma_size = qm->sqe_size * QM_Q_DEPTH +
2313 		      sizeof(struct qm_cqe) * QM_Q_DEPTH;
2314 	qp_dma_size = PAGE_ALIGN(qp_dma_size);
2315 	for (i = 0; i < qm->qp_num; i++) {
2316 		ret = hisi_qp_memory_init(qm, qp_dma_size, i);
2317 		if (ret)
2318 			goto err_init_qp_mem;
2319 
2320 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
2321 	}
2322 
2323 	return ret;
2324 
2325 err_init_qp_mem:
2326 	hisi_qp_memory_uninit(qm, i);
2327 err_alloc_qp_array:
2328 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
2329 
2330 	return ret;
2331 }
2332 
2333 static void hisi_qm_pre_init(struct hisi_qm *qm)
2334 {
2335 	struct pci_dev *pdev = qm->pdev;
2336 
2337 	if (qm->ver == QM_HW_V1)
2338 		qm->ops = &qm_hw_ops_v1;
2339 	else
2340 		qm->ops = &qm_hw_ops_v2;
2341 
2342 	pci_set_drvdata(pdev, qm);
2343 	mutex_init(&qm->mailbox_lock);
2344 	init_rwsem(&qm->qps_lock);
2345 	qm->qp_in_used = 0;
2346 }
2347 
2348 /**
2349  * hisi_qm_uninit() - Uninitialize qm.
2350  * @qm: The qm needed uninit.
2351  *
2352  * This function uninits qm related device resources.
2353  */
2354 void hisi_qm_uninit(struct hisi_qm *qm)
2355 {
2356 	struct pci_dev *pdev = qm->pdev;
2357 	struct device *dev = &pdev->dev;
2358 
2359 	down_write(&qm->qps_lock);
2360 
2361 	if (!qm_avail_state(qm, QM_CLOSE)) {
2362 		up_write(&qm->qps_lock);
2363 		return;
2364 	}
2365 
2366 	uacce_remove(qm->uacce);
2367 	qm->uacce = NULL;
2368 
2369 	hisi_qp_memory_uninit(qm, qm->qp_num);
2370 	idr_destroy(&qm->qp_idr);
2371 
2372 	if (qm->qdma.va) {
2373 		hisi_qm_cache_wb(qm);
2374 		dma_free_coherent(dev, qm->qdma.size,
2375 				  qm->qdma.va, qm->qdma.dma);
2376 		memset(&qm->qdma, 0, sizeof(qm->qdma));
2377 	}
2378 
2379 	qm_irq_unregister(qm);
2380 	pci_free_irq_vectors(pdev);
2381 	iounmap(qm->io_base);
2382 	pci_release_mem_regions(pdev);
2383 	pci_disable_device(pdev);
2384 
2385 	up_write(&qm->qps_lock);
2386 }
2387 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2388 
2389 /**
2390  * hisi_qm_get_vft() - Get vft from a qm.
2391  * @qm: The qm we want to get its vft.
2392  * @base: The base number of queue in vft.
2393  * @number: The number of queues in vft.
2394  *
2395  * We can allocate multiple queues to a qm by configuring virtual function
2396  * table. We get related configures by this function. Normally, we call this
2397  * function in VF driver to get the queue information.
2398  *
2399  * qm hw v1 does not support this interface.
2400  */
2401 int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2402 {
2403 	if (!base || !number)
2404 		return -EINVAL;
2405 
2406 	if (!qm->ops->get_vft) {
2407 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2408 		return -EINVAL;
2409 	}
2410 
2411 	return qm->ops->get_vft(qm, base, number);
2412 }
2413 EXPORT_SYMBOL_GPL(hisi_qm_get_vft);
2414 
2415 /**
2416  * This function is alway called in PF driver, it is used to assign queues
2417  * among PF and VFs.
2418  *
2419  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2420  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2421  * (VF function number 0x2)
2422  */
2423 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2424 		    u32 number)
2425 {
2426 	u32 max_q_num = qm->ctrl_qp_num;
2427 
2428 	if (base >= max_q_num || number > max_q_num ||
2429 	    (base + number) > max_q_num)
2430 		return -EINVAL;
2431 
2432 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2433 }
2434 
2435 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2436 {
2437 	struct hisi_qm_status *status = &qm->status;
2438 
2439 	status->eq_head = 0;
2440 	status->aeq_head = 0;
2441 	status->eqc_phase = true;
2442 	status->aeqc_phase = true;
2443 }
2444 
2445 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
2446 {
2447 	struct device *dev = &qm->pdev->dev;
2448 	struct qm_eqc *eqc;
2449 	struct qm_aeqc *aeqc;
2450 	dma_addr_t eqc_dma;
2451 	dma_addr_t aeqc_dma;
2452 	int ret;
2453 
2454 	qm_init_eq_aeq_status(qm);
2455 
2456 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
2457 	if (!eqc)
2458 		return -ENOMEM;
2459 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
2460 				 DMA_TO_DEVICE);
2461 	if (dma_mapping_error(dev, eqc_dma)) {
2462 		kfree(eqc);
2463 		return -ENOMEM;
2464 	}
2465 
2466 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
2467 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
2468 	if (qm->ver == QM_HW_V1)
2469 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
2470 	eqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
2471 	ret = qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
2472 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
2473 	kfree(eqc);
2474 	if (ret)
2475 		return ret;
2476 
2477 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
2478 	if (!aeqc)
2479 		return -ENOMEM;
2480 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
2481 				  DMA_TO_DEVICE);
2482 	if (dma_mapping_error(dev, aeqc_dma)) {
2483 		kfree(aeqc);
2484 		return -ENOMEM;
2485 	}
2486 
2487 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
2488 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
2489 	aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
2490 
2491 	ret = qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
2492 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
2493 	kfree(aeqc);
2494 
2495 	return ret;
2496 }
2497 
2498 static int __hisi_qm_start(struct hisi_qm *qm)
2499 {
2500 	int ret;
2501 
2502 	WARN_ON(!qm->qdma.dma);
2503 
2504 	if (qm->fun_type == QM_HW_PF) {
2505 		ret = qm_dev_mem_reset(qm);
2506 		if (ret)
2507 			return ret;
2508 
2509 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
2510 		if (ret)
2511 			return ret;
2512 	}
2513 
2514 	ret = qm_eq_ctx_cfg(qm);
2515 	if (ret)
2516 		return ret;
2517 
2518 	ret = qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
2519 	if (ret)
2520 		return ret;
2521 
2522 	ret = qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
2523 	if (ret)
2524 		return ret;
2525 
2526 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
2527 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
2528 
2529 	return 0;
2530 }
2531 
2532 /**
2533  * hisi_qm_start() - start qm
2534  * @qm: The qm to be started.
2535  *
2536  * This function starts a qm, then we can allocate qp from this qm.
2537  */
2538 int hisi_qm_start(struct hisi_qm *qm)
2539 {
2540 	struct device *dev = &qm->pdev->dev;
2541 	int ret = 0;
2542 
2543 	down_write(&qm->qps_lock);
2544 
2545 	if (!qm_avail_state(qm, QM_START)) {
2546 		up_write(&qm->qps_lock);
2547 		return -EPERM;
2548 	}
2549 
2550 	dev_dbg(dev, "qm start with %d queue pairs\n", qm->qp_num);
2551 
2552 	if (!qm->qp_num) {
2553 		dev_err(dev, "qp_num should not be 0\n");
2554 		ret = -EINVAL;
2555 		goto err_unlock;
2556 	}
2557 
2558 	ret = __hisi_qm_start(qm);
2559 	if (!ret)
2560 		atomic_set(&qm->status.flags, QM_START);
2561 
2562 err_unlock:
2563 	up_write(&qm->qps_lock);
2564 	return ret;
2565 }
2566 EXPORT_SYMBOL_GPL(hisi_qm_start);
2567 
2568 static int qm_restart(struct hisi_qm *qm)
2569 {
2570 	struct device *dev = &qm->pdev->dev;
2571 	struct hisi_qp *qp;
2572 	int ret, i;
2573 
2574 	ret = hisi_qm_start(qm);
2575 	if (ret < 0)
2576 		return ret;
2577 
2578 	down_write(&qm->qps_lock);
2579 	for (i = 0; i < qm->qp_num; i++) {
2580 		qp = &qm->qp_array[i];
2581 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
2582 		    qp->is_resetting == true) {
2583 			ret = qm_start_qp_nolock(qp, 0);
2584 			if (ret < 0) {
2585 				dev_err(dev, "Failed to start qp%d!\n", i);
2586 
2587 				up_write(&qm->qps_lock);
2588 				return ret;
2589 			}
2590 			qp->is_resetting = false;
2591 		}
2592 	}
2593 	up_write(&qm->qps_lock);
2594 
2595 	return 0;
2596 }
2597 
2598 /* Stop started qps in reset flow */
2599 static int qm_stop_started_qp(struct hisi_qm *qm)
2600 {
2601 	struct device *dev = &qm->pdev->dev;
2602 	struct hisi_qp *qp;
2603 	int i, ret;
2604 
2605 	for (i = 0; i < qm->qp_num; i++) {
2606 		qp = &qm->qp_array[i];
2607 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
2608 			qp->is_resetting = true;
2609 			ret = qm_stop_qp_nolock(qp);
2610 			if (ret < 0) {
2611 				dev_err(dev, "Failed to stop qp%d!\n", i);
2612 				return ret;
2613 			}
2614 		}
2615 	}
2616 
2617 	return 0;
2618 }
2619 
2620 /**
2621  * This function clears all queues memory in a qm. Reset of accelerator can
2622  * use this to clear queues.
2623  */
2624 static void qm_clear_queues(struct hisi_qm *qm)
2625 {
2626 	struct hisi_qp *qp;
2627 	int i;
2628 
2629 	for (i = 0; i < qm->qp_num; i++) {
2630 		qp = &qm->qp_array[i];
2631 		if (qp->is_resetting)
2632 			memset(qp->qdma.va, 0, qp->qdma.size);
2633 	}
2634 
2635 	memset(qm->qdma.va, 0, qm->qdma.size);
2636 }
2637 
2638 /**
2639  * hisi_qm_stop() - Stop a qm.
2640  * @qm: The qm which will be stopped.
2641  *
2642  * This function stops qm and its qps, then qm can not accept request.
2643  * Related resources are not released at this state, we can use hisi_qm_start
2644  * to let qm start again.
2645  */
2646 int hisi_qm_stop(struct hisi_qm *qm)
2647 {
2648 	struct device *dev = &qm->pdev->dev;
2649 	int ret = 0;
2650 
2651 	down_write(&qm->qps_lock);
2652 
2653 	if (!qm_avail_state(qm, QM_STOP)) {
2654 		ret = -EPERM;
2655 		goto err_unlock;
2656 	}
2657 
2658 	if (qm->status.stop_reason == QM_SOFT_RESET ||
2659 	    qm->status.stop_reason == QM_FLR) {
2660 		ret = qm_stop_started_qp(qm);
2661 		if (ret < 0) {
2662 			dev_err(dev, "Failed to stop started qp!\n");
2663 			goto err_unlock;
2664 		}
2665 	}
2666 
2667 	/* Mask eq and aeq irq */
2668 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
2669 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
2670 
2671 	if (qm->fun_type == QM_HW_PF) {
2672 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
2673 		if (ret < 0) {
2674 			dev_err(dev, "Failed to set vft!\n");
2675 			ret = -EBUSY;
2676 			goto err_unlock;
2677 		}
2678 	}
2679 
2680 	qm_clear_queues(qm);
2681 	atomic_set(&qm->status.flags, QM_STOP);
2682 
2683 err_unlock:
2684 	up_write(&qm->qps_lock);
2685 	return ret;
2686 }
2687 EXPORT_SYMBOL_GPL(hisi_qm_stop);
2688 
2689 static ssize_t qm_status_read(struct file *filp, char __user *buffer,
2690 			      size_t count, loff_t *pos)
2691 {
2692 	struct hisi_qm *qm = filp->private_data;
2693 	char buf[QM_DBG_READ_LEN];
2694 	int val, cp_len, len;
2695 
2696 	if (*pos)
2697 		return 0;
2698 
2699 	if (count < QM_DBG_READ_LEN)
2700 		return -ENOSPC;
2701 
2702 	val = atomic_read(&qm->status.flags);
2703 	len = snprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]);
2704 	if (!len)
2705 		return -EFAULT;
2706 
2707 	cp_len = copy_to_user(buffer, buf, len);
2708 	if (cp_len)
2709 		return -EFAULT;
2710 
2711 	return (*pos = len);
2712 }
2713 
2714 static const struct file_operations qm_status_fops = {
2715 	.owner = THIS_MODULE,
2716 	.open = simple_open,
2717 	.read = qm_status_read,
2718 };
2719 
2720 static int qm_debugfs_atomic64_set(void *data, u64 val)
2721 {
2722 	if (val)
2723 		return -EINVAL;
2724 
2725 	atomic64_set((atomic64_t *)data, 0);
2726 
2727 	return 0;
2728 }
2729 
2730 static int qm_debugfs_atomic64_get(void *data, u64 *val)
2731 {
2732 	*val = atomic64_read((atomic64_t *)data);
2733 
2734 	return 0;
2735 }
2736 
2737 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get,
2738 			 qm_debugfs_atomic64_set, "%llu\n");
2739 
2740 /**
2741  * hisi_qm_debug_init() - Initialize qm related debugfs files.
2742  * @qm: The qm for which we want to add debugfs files.
2743  *
2744  * Create qm related debugfs files.
2745  */
2746 int hisi_qm_debug_init(struct hisi_qm *qm)
2747 {
2748 	struct qm_dfx *dfx = &qm->debug.dfx;
2749 	struct dentry *qm_d;
2750 	void *data;
2751 	int i, ret;
2752 
2753 	qm_d = debugfs_create_dir("qm", qm->debug.debug_root);
2754 	qm->debug.qm_d = qm_d;
2755 
2756 	/* only show this in PF */
2757 	if (qm->fun_type == QM_HW_PF)
2758 		for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++)
2759 			if (qm_create_debugfs_file(qm, i)) {
2760 				ret = -ENOENT;
2761 				goto failed_to_create;
2762 			}
2763 
2764 	debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops);
2765 
2766 	debugfs_create_file("cmd", 0444, qm->debug.qm_d, qm, &qm_cmd_fops);
2767 
2768 	debugfs_create_file("status", 0444, qm->debug.qm_d, qm,
2769 			&qm_status_fops);
2770 	for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) {
2771 		data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset);
2772 		debugfs_create_file(qm_dfx_files[i].name,
2773 			0644,
2774 			qm_d,
2775 			data,
2776 			&qm_atomic64_ops);
2777 	}
2778 
2779 	return 0;
2780 
2781 failed_to_create:
2782 	debugfs_remove_recursive(qm_d);
2783 	return ret;
2784 }
2785 EXPORT_SYMBOL_GPL(hisi_qm_debug_init);
2786 
2787 /**
2788  * hisi_qm_debug_regs_clear() - clear qm debug related registers.
2789  * @qm: The qm for which we want to clear its debug registers.
2790  */
2791 void hisi_qm_debug_regs_clear(struct hisi_qm *qm)
2792 {
2793 	struct qm_dfx_registers *regs;
2794 	int i;
2795 
2796 	/* clear current_q */
2797 	writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
2798 	writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
2799 
2800 	/*
2801 	 * these registers are reading and clearing, so clear them after
2802 	 * reading them.
2803 	 */
2804 	writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE);
2805 
2806 	regs = qm_dfx_regs;
2807 	for (i = 0; i < CNT_CYC_REGS_NUM; i++) {
2808 		readl(qm->io_base + regs->reg_offset);
2809 		regs++;
2810 	}
2811 
2812 	writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE);
2813 }
2814 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear);
2815 
2816 static void qm_hw_error_init(struct hisi_qm *qm)
2817 {
2818 	const struct hisi_qm_err_info *err_info = &qm->err_ini->err_info;
2819 
2820 	if (!qm->ops->hw_error_init) {
2821 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
2822 		return;
2823 	}
2824 
2825 	qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe);
2826 }
2827 
2828 static void qm_hw_error_uninit(struct hisi_qm *qm)
2829 {
2830 	if (!qm->ops->hw_error_uninit) {
2831 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
2832 		return;
2833 	}
2834 
2835 	qm->ops->hw_error_uninit(qm);
2836 }
2837 
2838 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
2839 {
2840 	if (!qm->ops->hw_error_handle) {
2841 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
2842 		return ACC_ERR_NONE;
2843 	}
2844 
2845 	return qm->ops->hw_error_handle(qm);
2846 }
2847 
2848 /**
2849  * hisi_qm_dev_err_init() - Initialize device error configuration.
2850  * @qm: The qm for which we want to do error initialization.
2851  *
2852  * Initialize QM and device error related configuration.
2853  */
2854 void hisi_qm_dev_err_init(struct hisi_qm *qm)
2855 {
2856 	if (qm->fun_type == QM_HW_VF)
2857 		return;
2858 
2859 	qm_hw_error_init(qm);
2860 
2861 	if (!qm->err_ini->hw_err_enable) {
2862 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
2863 		return;
2864 	}
2865 	qm->err_ini->hw_err_enable(qm);
2866 }
2867 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
2868 
2869 /**
2870  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
2871  * @qm: The qm for which we want to do error uninitialization.
2872  *
2873  * Uninitialize QM and device error related configuration.
2874  */
2875 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
2876 {
2877 	if (qm->fun_type == QM_HW_VF)
2878 		return;
2879 
2880 	qm_hw_error_uninit(qm);
2881 
2882 	if (!qm->err_ini->hw_err_disable) {
2883 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
2884 		return;
2885 	}
2886 	qm->err_ini->hw_err_disable(qm);
2887 }
2888 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
2889 
2890 /**
2891  * hisi_qm_free_qps() - free multiple queue pairs.
2892  * @qps: The queue pairs need to be freed.
2893  * @qp_num: The num of queue pairs.
2894  */
2895 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
2896 {
2897 	int i;
2898 
2899 	if (!qps || qp_num <= 0)
2900 		return;
2901 
2902 	for (i = qp_num - 1; i >= 0; i--)
2903 		hisi_qm_release_qp(qps[i]);
2904 }
2905 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
2906 
2907 static void free_list(struct list_head *head)
2908 {
2909 	struct hisi_qm_resource *res, *tmp;
2910 
2911 	list_for_each_entry_safe(res, tmp, head, list) {
2912 		list_del(&res->list);
2913 		kfree(res);
2914 	}
2915 }
2916 
2917 static int hisi_qm_sort_devices(int node, struct list_head *head,
2918 				struct hisi_qm_list *qm_list)
2919 {
2920 	struct hisi_qm_resource *res, *tmp;
2921 	struct hisi_qm *qm;
2922 	struct list_head *n;
2923 	struct device *dev;
2924 	int dev_node = 0;
2925 
2926 	list_for_each_entry(qm, &qm_list->list, list) {
2927 		dev = &qm->pdev->dev;
2928 
2929 		if (IS_ENABLED(CONFIG_NUMA)) {
2930 			dev_node = dev_to_node(dev);
2931 			if (dev_node < 0)
2932 				dev_node = 0;
2933 		}
2934 
2935 		res = kzalloc(sizeof(*res), GFP_KERNEL);
2936 		if (!res)
2937 			return -ENOMEM;
2938 
2939 		res->qm = qm;
2940 		res->distance = node_distance(dev_node, node);
2941 		n = head;
2942 		list_for_each_entry(tmp, head, list) {
2943 			if (res->distance < tmp->distance) {
2944 				n = &tmp->list;
2945 				break;
2946 			}
2947 		}
2948 		list_add_tail(&res->list, n);
2949 	}
2950 
2951 	return 0;
2952 }
2953 
2954 /**
2955  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
2956  * @qm_list: The list of all available devices.
2957  * @qp_num: The number of queue pairs need created.
2958  * @alg_type: The algorithm type.
2959  * @node: The numa node.
2960  * @qps: The queue pairs need created.
2961  *
2962  * This function will sort all available device according to numa distance.
2963  * Then try to create all queue pairs from one device, if all devices do
2964  * not meet the requirements will return error.
2965  */
2966 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
2967 			   u8 alg_type, int node, struct hisi_qp **qps)
2968 {
2969 	struct hisi_qm_resource *tmp;
2970 	int ret = -ENODEV;
2971 	LIST_HEAD(head);
2972 	int i;
2973 
2974 	if (!qps || !qm_list || qp_num <= 0)
2975 		return -EINVAL;
2976 
2977 	mutex_lock(&qm_list->lock);
2978 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
2979 		mutex_unlock(&qm_list->lock);
2980 		goto err;
2981 	}
2982 
2983 	list_for_each_entry(tmp, &head, list) {
2984 		for (i = 0; i < qp_num; i++) {
2985 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
2986 			if (IS_ERR(qps[i])) {
2987 				hisi_qm_free_qps(qps, i);
2988 				break;
2989 			}
2990 		}
2991 
2992 		if (i == qp_num) {
2993 			ret = 0;
2994 			break;
2995 		}
2996 	}
2997 
2998 	mutex_unlock(&qm_list->lock);
2999 	if (ret)
3000 		pr_info("Failed to create qps, node[%d], alg[%d], qp[%d]!\n",
3001 			node, alg_type, qp_num);
3002 
3003 err:
3004 	free_list(&head);
3005 	return ret;
3006 }
3007 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3008 
3009 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3010 {
3011 	u32 remain_q_num, q_num, i, j;
3012 	u32 q_base = qm->qp_num;
3013 	int ret;
3014 
3015 	if (!num_vfs)
3016 		return -EINVAL;
3017 
3018 	remain_q_num = qm->ctrl_qp_num - qm->qp_num;
3019 
3020 	/* If remain queues not enough, return error. */
3021 	if (qm->ctrl_qp_num < qm->qp_num || remain_q_num < num_vfs)
3022 		return -EINVAL;
3023 
3024 	q_num = remain_q_num / num_vfs;
3025 	for (i = 1; i <= num_vfs; i++) {
3026 		if (i == num_vfs)
3027 			q_num += remain_q_num % num_vfs;
3028 		ret = hisi_qm_set_vft(qm, i, q_base, q_num);
3029 		if (ret) {
3030 			for (j = i; j > 0; j--)
3031 				hisi_qm_set_vft(qm, j, 0, 0);
3032 			return ret;
3033 		}
3034 		q_base += q_num;
3035 	}
3036 
3037 	return 0;
3038 }
3039 
3040 static int qm_clear_vft_config(struct hisi_qm *qm)
3041 {
3042 	int ret;
3043 	u32 i;
3044 
3045 	for (i = 1; i <= qm->vfs_num; i++) {
3046 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3047 		if (ret)
3048 			return ret;
3049 	}
3050 	qm->vfs_num = 0;
3051 
3052 	return 0;
3053 }
3054 
3055 /**
3056  * hisi_qm_sriov_enable() - enable virtual functions
3057  * @pdev: the PCIe device
3058  * @max_vfs: the number of virtual functions to enable
3059  *
3060  * Returns the number of enabled VFs. If there are VFs enabled already or
3061  * max_vfs is more than the total number of device can be enabled, returns
3062  * failure.
3063  */
3064 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3065 {
3066 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3067 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3068 
3069 	total_vfs = pci_sriov_get_totalvfs(pdev);
3070 	pre_existing_vfs = pci_num_vf(pdev);
3071 	if (pre_existing_vfs) {
3072 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3073 			pre_existing_vfs);
3074 		return 0;
3075 	}
3076 
3077 	num_vfs = min_t(int, max_vfs, total_vfs);
3078 	ret = qm_vf_q_assign(qm, num_vfs);
3079 	if (ret) {
3080 		pci_err(pdev, "Can't assign queues for VF!\n");
3081 		return ret;
3082 	}
3083 
3084 	qm->vfs_num = num_vfs;
3085 
3086 	ret = pci_enable_sriov(pdev, num_vfs);
3087 	if (ret) {
3088 		pci_err(pdev, "Can't enable VF!\n");
3089 		qm_clear_vft_config(qm);
3090 		return ret;
3091 	}
3092 
3093 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3094 
3095 	return num_vfs;
3096 }
3097 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3098 
3099 /**
3100  * hisi_qm_sriov_disable - disable virtual functions
3101  * @pdev: the PCI device
3102  *
3103  * Return failure if there are VFs assigned already.
3104  */
3105 int hisi_qm_sriov_disable(struct pci_dev *pdev)
3106 {
3107 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3108 
3109 	if (pci_vfs_assigned(pdev)) {
3110 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3111 		return -EPERM;
3112 	}
3113 
3114 	/* remove in hpre_pci_driver will be called to free VF resources */
3115 	pci_disable_sriov(pdev);
3116 	return qm_clear_vft_config(qm);
3117 }
3118 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3119 
3120 /**
3121  * hisi_qm_sriov_configure - configure the number of VFs
3122  * @pdev: The PCI device
3123  * @num_vfs: The number of VFs need enabled
3124  *
3125  * Enable SR-IOV according to num_vfs, 0 means disable.
3126  */
3127 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3128 {
3129 	if (num_vfs == 0)
3130 		return hisi_qm_sriov_disable(pdev);
3131 	else
3132 		return hisi_qm_sriov_enable(pdev, num_vfs);
3133 }
3134 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3135 
3136 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3137 {
3138 	u32 err_sts;
3139 
3140 	if (!qm->err_ini->get_dev_hw_err_status) {
3141 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3142 		return ACC_ERR_NONE;
3143 	}
3144 
3145 	/* get device hardware error status */
3146 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3147 	if (err_sts) {
3148 		if (err_sts & qm->err_ini->err_info.ecc_2bits_mask)
3149 			qm->err_status.is_dev_ecc_mbit = true;
3150 
3151 		if (!qm->err_ini->log_dev_hw_err) {
3152 			dev_err(&qm->pdev->dev, "Device doesn't support log hw error!\n");
3153 			return ACC_ERR_NEED_RESET;
3154 		}
3155 
3156 		qm->err_ini->log_dev_hw_err(qm, err_sts);
3157 		return ACC_ERR_NEED_RESET;
3158 	}
3159 
3160 	return ACC_ERR_RECOVERED;
3161 }
3162 
3163 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3164 {
3165 	enum acc_err_result qm_ret, dev_ret;
3166 
3167 	/* log qm error */
3168 	qm_ret = qm_hw_error_handle(qm);
3169 
3170 	/* log device error */
3171 	dev_ret = qm_dev_err_handle(qm);
3172 
3173 	return (qm_ret == ACC_ERR_NEED_RESET ||
3174 		dev_ret == ACC_ERR_NEED_RESET) ?
3175 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3176 }
3177 
3178 /**
3179  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3180  * @pdev: The PCI device which need report error.
3181  * @state: The connectivity between CPU and device.
3182  *
3183  * We register this function into PCIe AER handlers, It will report device or
3184  * qm hardware error status when error occur.
3185  */
3186 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3187 					  pci_channel_state_t state)
3188 {
3189 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3190 	enum acc_err_result ret;
3191 
3192 	if (pdev->is_virtfn)
3193 		return PCI_ERS_RESULT_NONE;
3194 
3195 	pci_info(pdev, "PCI error detected, state(=%d)!!\n", state);
3196 	if (state == pci_channel_io_perm_failure)
3197 		return PCI_ERS_RESULT_DISCONNECT;
3198 
3199 	ret = qm_process_dev_error(qm);
3200 	if (ret == ACC_ERR_NEED_RESET)
3201 		return PCI_ERS_RESULT_NEED_RESET;
3202 
3203 	return PCI_ERS_RESULT_RECOVERED;
3204 }
3205 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3206 
3207 static int qm_get_hw_error_status(struct hisi_qm *qm)
3208 {
3209 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
3210 }
3211 
3212 static int qm_check_req_recv(struct hisi_qm *qm)
3213 {
3214 	struct pci_dev *pdev = qm->pdev;
3215 	int ret;
3216 	u32 val;
3217 
3218 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
3219 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3220 					 (val == ACC_VENDOR_ID_VALUE),
3221 					 POLL_PERIOD, POLL_TIMEOUT);
3222 	if (ret) {
3223 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
3224 		return ret;
3225 	}
3226 
3227 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
3228 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3229 					 (val == PCI_VENDOR_ID_HUAWEI),
3230 					 POLL_PERIOD, POLL_TIMEOUT);
3231 	if (ret)
3232 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
3233 
3234 	return ret;
3235 }
3236 
3237 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
3238 {
3239 	struct pci_dev *pdev = qm->pdev;
3240 	u16 cmd;
3241 	int i;
3242 
3243 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3244 	if (set)
3245 		cmd |= PCI_COMMAND_MEMORY;
3246 	else
3247 		cmd &= ~PCI_COMMAND_MEMORY;
3248 
3249 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
3250 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3251 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3252 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
3253 			return 0;
3254 
3255 		udelay(1);
3256 	}
3257 
3258 	return -ETIMEDOUT;
3259 }
3260 
3261 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
3262 {
3263 	struct pci_dev *pdev = qm->pdev;
3264 	u16 sriov_ctrl;
3265 	int pos;
3266 	int i;
3267 
3268 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3269 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3270 	if (set)
3271 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
3272 	else
3273 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
3274 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
3275 
3276 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3277 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3278 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
3279 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
3280 			return 0;
3281 
3282 		udelay(1);
3283 	}
3284 
3285 	return -ETIMEDOUT;
3286 }
3287 
3288 static int qm_set_msi(struct hisi_qm *qm, bool set)
3289 {
3290 	struct pci_dev *pdev = qm->pdev;
3291 
3292 	if (set) {
3293 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
3294 				       0);
3295 	} else {
3296 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
3297 				       ACC_PEH_MSI_DISABLE);
3298 		if (qm->err_status.is_qm_ecc_mbit ||
3299 		    qm->err_status.is_dev_ecc_mbit)
3300 			return 0;
3301 
3302 		mdelay(1);
3303 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
3304 			return -EFAULT;
3305 	}
3306 
3307 	return 0;
3308 }
3309 
3310 static int qm_vf_reset_prepare(struct hisi_qm *qm)
3311 {
3312 	struct hisi_qm_list *qm_list = qm->qm_list;
3313 	int stop_reason = qm->status.stop_reason;
3314 	struct pci_dev *pdev = qm->pdev;
3315 	struct pci_dev *virtfn;
3316 	struct hisi_qm *vf_qm;
3317 	int ret = 0;
3318 
3319 	mutex_lock(&qm_list->lock);
3320 	list_for_each_entry(vf_qm, &qm_list->list, list) {
3321 		virtfn = vf_qm->pdev;
3322 		if (virtfn == pdev)
3323 			continue;
3324 
3325 		if (pci_physfn(virtfn) == pdev) {
3326 			vf_qm->status.stop_reason = stop_reason;
3327 			ret = hisi_qm_stop(vf_qm);
3328 			if (ret)
3329 				goto stop_fail;
3330 		}
3331 	}
3332 
3333 stop_fail:
3334 	mutex_unlock(&qm_list->lock);
3335 	return ret;
3336 }
3337 
3338 static int qm_reset_prepare_ready(struct hisi_qm *qm)
3339 {
3340 	struct pci_dev *pdev = qm->pdev;
3341 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3342 	int delay = 0;
3343 
3344 	/* All reset requests need to be queued for processing */
3345 	while (test_and_set_bit(QM_DEV_RESET_FLAG, &pf_qm->reset_flag)) {
3346 		msleep(++delay);
3347 		if (delay > QM_RESET_WAIT_TIMEOUT)
3348 			return -EBUSY;
3349 	}
3350 
3351 	return 0;
3352 }
3353 
3354 static int qm_controller_reset_prepare(struct hisi_qm *qm)
3355 {
3356 	struct pci_dev *pdev = qm->pdev;
3357 	int ret;
3358 
3359 	ret = qm_reset_prepare_ready(qm);
3360 	if (ret) {
3361 		pci_err(pdev, "Controller reset not ready!\n");
3362 		return ret;
3363 	}
3364 
3365 	if (qm->vfs_num) {
3366 		ret = qm_vf_reset_prepare(qm);
3367 		if (ret) {
3368 			pci_err(pdev, "Fails to stop VFs!\n");
3369 			return ret;
3370 		}
3371 	}
3372 
3373 	qm->status.stop_reason = QM_SOFT_RESET;
3374 	ret = hisi_qm_stop(qm);
3375 	if (ret) {
3376 		pci_err(pdev, "Fails to stop QM!\n");
3377 		return ret;
3378 	}
3379 
3380 	return 0;
3381 }
3382 
3383 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
3384 {
3385 	u32 nfe_enb = 0;
3386 
3387 	if (!qm->err_status.is_dev_ecc_mbit &&
3388 	    qm->err_status.is_qm_ecc_mbit &&
3389 	    qm->err_ini->close_axi_master_ooo) {
3390 
3391 		qm->err_ini->close_axi_master_ooo(qm);
3392 
3393 	} else if (qm->err_status.is_dev_ecc_mbit &&
3394 		   !qm->err_status.is_qm_ecc_mbit &&
3395 		   !qm->err_ini->close_axi_master_ooo) {
3396 
3397 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
3398 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
3399 		       qm->io_base + QM_RAS_NFE_ENABLE);
3400 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
3401 	}
3402 }
3403 
3404 static int qm_soft_reset(struct hisi_qm *qm)
3405 {
3406 	struct pci_dev *pdev = qm->pdev;
3407 	int ret;
3408 	u32 val;
3409 
3410 	/* Ensure all doorbells and mailboxes received by QM */
3411 	ret = qm_check_req_recv(qm);
3412 	if (ret)
3413 		return ret;
3414 
3415 	if (qm->vfs_num) {
3416 		ret = qm_set_vf_mse(qm, false);
3417 		if (ret) {
3418 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
3419 			return ret;
3420 		}
3421 	}
3422 
3423 	ret = qm_set_msi(qm, false);
3424 	if (ret) {
3425 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
3426 		return ret;
3427 	}
3428 
3429 	qm_dev_ecc_mbit_handle(qm);
3430 
3431 	/* OOO register set and check */
3432 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
3433 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
3434 
3435 	/* If bus lock, reset chip */
3436 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
3437 					 val,
3438 					 (val == ACC_MASTER_TRANS_RETURN_RW),
3439 					 POLL_PERIOD, POLL_TIMEOUT);
3440 	if (ret) {
3441 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
3442 		return ret;
3443 	}
3444 
3445 	ret = qm_set_pf_mse(qm, false);
3446 	if (ret) {
3447 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
3448 		return ret;
3449 	}
3450 
3451 	/* The reset related sub-control registers are not in PCI BAR */
3452 	if (ACPI_HANDLE(&pdev->dev)) {
3453 		unsigned long long value = 0;
3454 		acpi_status s;
3455 
3456 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
3457 					  qm->err_ini->err_info.acpi_rst,
3458 					  NULL, &value);
3459 		if (ACPI_FAILURE(s)) {
3460 			pci_err(pdev, "NO controller reset method!\n");
3461 			return -EIO;
3462 		}
3463 
3464 		if (value) {
3465 			pci_err(pdev, "Reset step %llu failed!\n", value);
3466 			return -EIO;
3467 		}
3468 	} else {
3469 		pci_err(pdev, "No reset method!\n");
3470 		return -EINVAL;
3471 	}
3472 
3473 	return 0;
3474 }
3475 
3476 static int qm_vf_reset_done(struct hisi_qm *qm)
3477 {
3478 	struct hisi_qm_list *qm_list = qm->qm_list;
3479 	struct pci_dev *pdev = qm->pdev;
3480 	struct pci_dev *virtfn;
3481 	struct hisi_qm *vf_qm;
3482 	int ret = 0;
3483 
3484 	mutex_lock(&qm_list->lock);
3485 	list_for_each_entry(vf_qm, &qm_list->list, list) {
3486 		virtfn = vf_qm->pdev;
3487 		if (virtfn == pdev)
3488 			continue;
3489 
3490 		if (pci_physfn(virtfn) == pdev) {
3491 			ret = qm_restart(vf_qm);
3492 			if (ret)
3493 				goto restart_fail;
3494 		}
3495 	}
3496 
3497 restart_fail:
3498 	mutex_unlock(&qm_list->lock);
3499 	return ret;
3500 }
3501 
3502 static int qm_get_dev_err_status(struct hisi_qm *qm)
3503 {
3504 	return qm->err_ini->get_dev_hw_err_status(qm);
3505 }
3506 
3507 static int qm_dev_hw_init(struct hisi_qm *qm)
3508 {
3509 	return qm->err_ini->hw_init(qm);
3510 }
3511 
3512 static void qm_restart_prepare(struct hisi_qm *qm)
3513 {
3514 	u32 value;
3515 
3516 	if (!qm->err_status.is_qm_ecc_mbit &&
3517 	    !qm->err_status.is_dev_ecc_mbit)
3518 		return;
3519 
3520 	/* temporarily close the OOO port used for PEH to write out MSI */
3521 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3522 	writel(value & ~qm->err_ini->err_info.msi_wr_port,
3523 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3524 
3525 	/* clear dev ecc 2bit error source if having */
3526 	value = qm_get_dev_err_status(qm) &
3527 		qm->err_ini->err_info.ecc_2bits_mask;
3528 	if (value && qm->err_ini->clear_dev_hw_err_status)
3529 		qm->err_ini->clear_dev_hw_err_status(qm, value);
3530 
3531 	/* clear QM ecc mbit error source */
3532 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
3533 
3534 	/* clear AM Reorder Buffer ecc mbit source */
3535 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
3536 
3537 	if (qm->err_ini->open_axi_master_ooo)
3538 		qm->err_ini->open_axi_master_ooo(qm);
3539 }
3540 
3541 static void qm_restart_done(struct hisi_qm *qm)
3542 {
3543 	u32 value;
3544 
3545 	if (!qm->err_status.is_qm_ecc_mbit &&
3546 	    !qm->err_status.is_dev_ecc_mbit)
3547 		return;
3548 
3549 	/* open the OOO port for PEH to write out MSI */
3550 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3551 	value |= qm->err_ini->err_info.msi_wr_port;
3552 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3553 
3554 	qm->err_status.is_qm_ecc_mbit = false;
3555 	qm->err_status.is_dev_ecc_mbit = false;
3556 }
3557 
3558 static int qm_controller_reset_done(struct hisi_qm *qm)
3559 {
3560 	struct pci_dev *pdev = qm->pdev;
3561 	int ret;
3562 
3563 	ret = qm_set_msi(qm, true);
3564 	if (ret) {
3565 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
3566 		return ret;
3567 	}
3568 
3569 	ret = qm_set_pf_mse(qm, true);
3570 	if (ret) {
3571 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
3572 		return ret;
3573 	}
3574 
3575 	if (qm->vfs_num) {
3576 		ret = qm_set_vf_mse(qm, true);
3577 		if (ret) {
3578 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
3579 			return ret;
3580 		}
3581 	}
3582 
3583 	ret = qm_dev_hw_init(qm);
3584 	if (ret) {
3585 		pci_err(pdev, "Failed to init device\n");
3586 		return ret;
3587 	}
3588 
3589 	qm_restart_prepare(qm);
3590 
3591 	ret = qm_restart(qm);
3592 	if (ret) {
3593 		pci_err(pdev, "Failed to start QM!\n");
3594 		return ret;
3595 	}
3596 
3597 	if (qm->vfs_num) {
3598 		ret = qm_vf_q_assign(qm, qm->vfs_num);
3599 		if (ret) {
3600 			pci_err(pdev, "Failed to assign queue!\n");
3601 			return ret;
3602 		}
3603 	}
3604 
3605 	ret = qm_vf_reset_done(qm);
3606 	if (ret) {
3607 		pci_err(pdev, "Failed to start VFs!\n");
3608 		return -EPERM;
3609 	}
3610 
3611 	hisi_qm_dev_err_init(qm);
3612 	qm_restart_done(qm);
3613 
3614 	clear_bit(QM_DEV_RESET_FLAG, &qm->reset_flag);
3615 
3616 	return 0;
3617 }
3618 
3619 static int qm_controller_reset(struct hisi_qm *qm)
3620 {
3621 	struct pci_dev *pdev = qm->pdev;
3622 	int ret;
3623 
3624 	pci_info(pdev, "Controller resetting...\n");
3625 
3626 	ret = qm_controller_reset_prepare(qm);
3627 	if (ret)
3628 		return ret;
3629 
3630 	ret = qm_soft_reset(qm);
3631 	if (ret) {
3632 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
3633 		return ret;
3634 	}
3635 
3636 	ret = qm_controller_reset_done(qm);
3637 	if (ret)
3638 		return ret;
3639 
3640 	pci_info(pdev, "Controller reset complete\n");
3641 
3642 	return 0;
3643 }
3644 
3645 /**
3646  * hisi_qm_dev_slot_reset() - slot reset
3647  * @pdev: the PCIe device
3648  *
3649  * This function offers QM relate PCIe device reset interface. Drivers which
3650  * use QM can use this function as slot_reset in its struct pci_error_handlers.
3651  */
3652 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
3653 {
3654 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3655 	int ret;
3656 
3657 	if (pdev->is_virtfn)
3658 		return PCI_ERS_RESULT_RECOVERED;
3659 
3660 	pci_aer_clear_nonfatal_status(pdev);
3661 
3662 	/* reset pcie device controller */
3663 	ret = qm_controller_reset(qm);
3664 	if (ret) {
3665 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
3666 		return PCI_ERS_RESULT_DISCONNECT;
3667 	}
3668 
3669 	return PCI_ERS_RESULT_RECOVERED;
3670 }
3671 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
3672 
3673 /* check the interrupt is ecc-mbit error or not */
3674 static int qm_check_dev_error(struct hisi_qm *qm)
3675 {
3676 	int ret;
3677 
3678 	if (qm->fun_type == QM_HW_VF)
3679 		return 0;
3680 
3681 	ret = qm_get_hw_error_status(qm) & QM_ECC_MBIT;
3682 	if (ret)
3683 		return ret;
3684 
3685 	return (qm_get_dev_err_status(qm) &
3686 		qm->err_ini->err_info.ecc_2bits_mask);
3687 }
3688 
3689 void hisi_qm_reset_prepare(struct pci_dev *pdev)
3690 {
3691 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3692 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3693 	u32 delay = 0;
3694 	int ret;
3695 
3696 	hisi_qm_dev_err_uninit(pf_qm);
3697 
3698 	/*
3699 	 * Check whether there is an ECC mbit error, If it occurs, need to
3700 	 * wait for soft reset to fix it.
3701 	 */
3702 	while (qm_check_dev_error(pf_qm)) {
3703 		msleep(++delay);
3704 		if (delay > QM_RESET_WAIT_TIMEOUT)
3705 			return;
3706 	}
3707 
3708 	ret = qm_reset_prepare_ready(qm);
3709 	if (ret) {
3710 		pci_err(pdev, "FLR not ready!\n");
3711 		return;
3712 	}
3713 
3714 	if (qm->vfs_num) {
3715 		ret = qm_vf_reset_prepare(qm);
3716 		if (ret) {
3717 			pci_err(pdev, "Failed to prepare reset, ret = %d.\n",
3718 				ret);
3719 			return;
3720 		}
3721 	}
3722 
3723 	ret = hisi_qm_stop(qm);
3724 	if (ret) {
3725 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
3726 		return;
3727 	}
3728 
3729 	pci_info(pdev, "FLR resetting...\n");
3730 }
3731 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
3732 
3733 static bool qm_flr_reset_complete(struct pci_dev *pdev)
3734 {
3735 	struct pci_dev *pf_pdev = pci_physfn(pdev);
3736 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
3737 	u32 id;
3738 
3739 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
3740 	if (id == QM_PCI_COMMAND_INVALID) {
3741 		pci_err(pdev, "Device can not be used!\n");
3742 		return false;
3743 	}
3744 
3745 	clear_bit(QM_DEV_RESET_FLAG, &qm->reset_flag);
3746 
3747 	return true;
3748 }
3749 
3750 void hisi_qm_reset_done(struct pci_dev *pdev)
3751 {
3752 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3753 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3754 	int ret;
3755 
3756 	hisi_qm_dev_err_init(pf_qm);
3757 
3758 	ret = qm_restart(qm);
3759 	if (ret) {
3760 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
3761 		goto flr_done;
3762 	}
3763 
3764 	if (qm->fun_type == QM_HW_PF) {
3765 		ret = qm_dev_hw_init(qm);
3766 		if (ret) {
3767 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
3768 			goto flr_done;
3769 		}
3770 
3771 		if (!qm->vfs_num)
3772 			goto flr_done;
3773 
3774 		ret = qm_vf_q_assign(qm, qm->vfs_num);
3775 		if (ret) {
3776 			pci_err(pdev, "Failed to assign VFs, ret = %d.\n", ret);
3777 			goto flr_done;
3778 		}
3779 
3780 		ret = qm_vf_reset_done(qm);
3781 		if (ret) {
3782 			pci_err(pdev, "Failed to start VFs, ret = %d.\n", ret);
3783 			goto flr_done;
3784 		}
3785 	}
3786 
3787 flr_done:
3788 	if (qm_flr_reset_complete(pdev))
3789 		pci_info(pdev, "FLR reset complete\n");
3790 }
3791 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
3792 
3793 static irqreturn_t qm_abnormal_irq(int irq, void *data)
3794 {
3795 	struct hisi_qm *qm = data;
3796 	enum acc_err_result ret;
3797 
3798 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
3799 	ret = qm_process_dev_error(qm);
3800 	if (ret == ACC_ERR_NEED_RESET)
3801 		schedule_work(&qm->rst_work);
3802 
3803 	return IRQ_HANDLED;
3804 }
3805 
3806 static int qm_irq_register(struct hisi_qm *qm)
3807 {
3808 	struct pci_dev *pdev = qm->pdev;
3809 	int ret;
3810 
3811 	ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR),
3812 			  qm_irq, IRQF_SHARED, qm->dev_name, qm);
3813 	if (ret)
3814 		return ret;
3815 
3816 	if (qm->ver != QM_HW_V1) {
3817 		ret = request_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR),
3818 				  qm_aeq_irq, IRQF_SHARED, qm->dev_name, qm);
3819 		if (ret)
3820 			goto err_aeq_irq;
3821 
3822 		if (qm->fun_type == QM_HW_PF) {
3823 			ret = request_irq(pci_irq_vector(pdev,
3824 					  QM_ABNORMAL_EVENT_IRQ_VECTOR),
3825 					  qm_abnormal_irq, IRQF_SHARED,
3826 					  qm->dev_name, qm);
3827 			if (ret)
3828 				goto err_abonormal_irq;
3829 		}
3830 	}
3831 
3832 	return 0;
3833 
3834 err_abonormal_irq:
3835 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
3836 err_aeq_irq:
3837 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
3838 	return ret;
3839 }
3840 
3841 static void hisi_qm_controller_reset(struct work_struct *rst_work)
3842 {
3843 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
3844 	int ret;
3845 
3846 	/* reset pcie device controller */
3847 	ret = qm_controller_reset(qm);
3848 	if (ret)
3849 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
3850 
3851 }
3852 
3853 /**
3854  * hisi_qm_init() - Initialize configures about qm.
3855  * @qm: The qm needing init.
3856  *
3857  * This function init qm, then we can call hisi_qm_start to put qm into work.
3858  */
3859 int hisi_qm_init(struct hisi_qm *qm)
3860 {
3861 	struct pci_dev *pdev = qm->pdev;
3862 	struct device *dev = &pdev->dev;
3863 	unsigned int num_vec;
3864 	int ret;
3865 
3866 	hisi_qm_pre_init(qm);
3867 
3868 	ret = qm_alloc_uacce(qm);
3869 	if (ret < 0)
3870 		dev_warn(&pdev->dev, "fail to alloc uacce (%d)\n", ret);
3871 
3872 	ret = pci_enable_device_mem(pdev);
3873 	if (ret < 0) {
3874 		dev_err(&pdev->dev, "Failed to enable device mem!\n");
3875 		goto err_remove_uacce;
3876 	}
3877 
3878 	ret = pci_request_mem_regions(pdev, qm->dev_name);
3879 	if (ret < 0) {
3880 		dev_err(&pdev->dev, "Failed to request mem regions!\n");
3881 		goto err_disable_pcidev;
3882 	}
3883 
3884 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
3885 	qm->phys_size = pci_resource_len(qm->pdev, PCI_BAR_2);
3886 	qm->io_base = ioremap(qm->phys_base, qm->phys_size);
3887 	if (!qm->io_base) {
3888 		ret = -EIO;
3889 		goto err_release_mem_regions;
3890 	}
3891 
3892 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
3893 	if (ret < 0)
3894 		goto err_iounmap;
3895 	pci_set_master(pdev);
3896 
3897 	if (!qm->ops->get_irq_num) {
3898 		ret = -EOPNOTSUPP;
3899 		goto err_iounmap;
3900 	}
3901 	num_vec = qm->ops->get_irq_num(qm);
3902 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
3903 	if (ret < 0) {
3904 		dev_err(dev, "Failed to enable MSI vectors!\n");
3905 		goto err_iounmap;
3906 	}
3907 
3908 	ret = qm_irq_register(qm);
3909 	if (ret)
3910 		goto err_free_irq_vectors;
3911 
3912 	if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) {
3913 		/* v2 starts to support get vft by mailbox */
3914 		ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
3915 		if (ret)
3916 			goto err_irq_unregister;
3917 	}
3918 
3919 	ret = hisi_qm_memory_init(qm);
3920 	if (ret)
3921 		goto err_irq_unregister;
3922 
3923 	INIT_WORK(&qm->work, qm_work_process);
3924 	if (qm->fun_type == QM_HW_PF)
3925 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
3926 
3927 	atomic_set(&qm->status.flags, QM_INIT);
3928 
3929 	return 0;
3930 
3931 err_irq_unregister:
3932 	qm_irq_unregister(qm);
3933 err_free_irq_vectors:
3934 	pci_free_irq_vectors(pdev);
3935 err_iounmap:
3936 	iounmap(qm->io_base);
3937 err_release_mem_regions:
3938 	pci_release_mem_regions(pdev);
3939 err_disable_pcidev:
3940 	pci_disable_device(pdev);
3941 err_remove_uacce:
3942 	uacce_remove(qm->uacce);
3943 	qm->uacce = NULL;
3944 	return ret;
3945 }
3946 EXPORT_SYMBOL_GPL(hisi_qm_init);
3947 
3948 
3949 MODULE_LICENSE("GPL v2");
3950 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
3951 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
3952