1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/bitmap.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/idr.h> 8 #include <linux/io.h> 9 #include <linux/irqreturn.h> 10 #include <linux/log2.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/uacce.h> 15 #include <linux/uaccess.h> 16 #include <uapi/misc/uacce/hisi_qm.h> 17 #include <linux/hisi_acc_qm.h> 18 #include "qm_common.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 26 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 27 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_SHIFT 16 29 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 30 31 /* mailbox */ 32 #define QM_MB_PING_ALL_VFS 0xffff 33 #define QM_MB_CMD_DATA_SHIFT 32 34 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 35 #define QM_MB_STATUS_MASK GENMASK(12, 9) 36 37 /* sqc shift */ 38 #define QM_SQ_HOP_NUM_SHIFT 0 39 #define QM_SQ_PAGE_SIZE_SHIFT 4 40 #define QM_SQ_BUF_SIZE_SHIFT 8 41 #define QM_SQ_SQE_SIZE_SHIFT 12 42 #define QM_SQ_PRIORITY_SHIFT 0 43 #define QM_SQ_ORDERS_SHIFT 4 44 #define QM_SQ_TYPE_SHIFT 8 45 #define QM_QC_PASID_ENABLE 0x1 46 #define QM_QC_PASID_ENABLE_SHIFT 7 47 48 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 49 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) 50 51 /* cqc shift */ 52 #define QM_CQ_HOP_NUM_SHIFT 0 53 #define QM_CQ_PAGE_SIZE_SHIFT 4 54 #define QM_CQ_BUF_SIZE_SHIFT 8 55 #define QM_CQ_CQE_SIZE_SHIFT 12 56 #define QM_CQ_PHASE_SHIFT 0 57 #define QM_CQ_FLAG_SHIFT 1 58 59 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 60 #define QM_QC_CQE_SIZE 4 61 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) 62 63 /* eqc shift */ 64 #define QM_EQE_AEQE_SIZE (2UL << 12) 65 #define QM_EQC_PHASE_SHIFT 16 66 67 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 68 #define QM_EQE_CQN_MASK GENMASK(15, 0) 69 70 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 71 #define QM_AEQE_TYPE_SHIFT 17 72 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 73 #define QM_CQ_OVERFLOW 0 74 #define QM_EQ_OVERFLOW 1 75 #define QM_CQE_ERROR 2 76 77 #define QM_XQ_DEPTH_SHIFT 16 78 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 79 80 #define QM_DOORBELL_CMD_SQ 0 81 #define QM_DOORBELL_CMD_CQ 1 82 #define QM_DOORBELL_CMD_EQ 2 83 #define QM_DOORBELL_CMD_AEQ 3 84 85 #define QM_DOORBELL_BASE_V1 0x340 86 #define QM_DB_CMD_SHIFT_V1 16 87 #define QM_DB_INDEX_SHIFT_V1 32 88 #define QM_DB_PRIORITY_SHIFT_V1 48 89 #define QM_PAGE_SIZE 0x0034 90 #define QM_QP_DB_INTERVAL 0x10000 91 #define QM_DB_TIMEOUT_CFG 0x100074 92 #define QM_DB_TIMEOUT_SET 0x1fffff 93 94 #define QM_MEM_START_INIT 0x100040 95 #define QM_MEM_INIT_DONE 0x100044 96 #define QM_VFT_CFG_RDY 0x10006c 97 #define QM_VFT_CFG_OP_WR 0x100058 98 #define QM_VFT_CFG_TYPE 0x10005c 99 #define QM_VFT_CFG 0x100060 100 #define QM_VFT_CFG_OP_ENABLE 0x100054 101 #define QM_PM_CTRL 0x100148 102 #define QM_IDLE_DISABLE BIT(9) 103 104 #define QM_VFT_CFG_DATA_L 0x100064 105 #define QM_VFT_CFG_DATA_H 0x100068 106 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 107 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 108 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 109 #define QM_SQC_VFT_START_SQN_SHIFT 28 110 #define QM_SQC_VFT_VALID (1ULL << 44) 111 #define QM_SQC_VFT_SQN_SHIFT 45 112 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 113 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 114 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 115 #define QM_CQC_VFT_VALID (1ULL << 28) 116 117 #define QM_SQC_VFT_BASE_SHIFT_V2 28 118 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 119 #define QM_SQC_VFT_NUM_SHIFT_V2 45 120 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) 121 122 #define QM_ABNORMAL_INT_SOURCE 0x100000 123 #define QM_ABNORMAL_INT_MASK 0x100004 124 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 125 #define QM_ABNORMAL_INT_STATUS 0x100008 126 #define QM_ABNORMAL_INT_SET 0x10000c 127 #define QM_ABNORMAL_INF00 0x100010 128 #define QM_FIFO_OVERFLOW_TYPE 0xc0 129 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 130 #define QM_FIFO_OVERFLOW_VF 0x3f 131 #define QM_ABNORMAL_INF01 0x100014 132 #define QM_DB_TIMEOUT_TYPE 0xc0 133 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 134 #define QM_DB_TIMEOUT_VF 0x3f 135 #define QM_RAS_CE_ENABLE 0x1000ec 136 #define QM_RAS_FE_ENABLE 0x1000f0 137 #define QM_RAS_NFE_ENABLE 0x1000f4 138 #define QM_RAS_CE_THRESHOLD 0x1000f8 139 #define QM_RAS_CE_TIMES_PER_IRQ 1 140 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 141 #define QM_ECC_MBIT BIT(2) 142 #define QM_DB_TIMEOUT BIT(10) 143 #define QM_OF_FIFO_OF BIT(11) 144 145 #define QM_RESET_WAIT_TIMEOUT 400 146 #define QM_PEH_VENDOR_ID 0x1000d8 147 #define ACC_VENDOR_ID_VALUE 0x5a5a 148 #define QM_PEH_DFX_INFO0 0x1000fc 149 #define QM_PEH_DFX_INFO1 0x100100 150 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 151 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 152 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 153 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 154 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 155 #define ACC_MASTER_TRANS_RETURN_RW 3 156 #define ACC_MASTER_TRANS_RETURN 0x300150 157 #define ACC_MASTER_GLOBAL_CTRL 0x300000 158 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 159 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 160 #define ACC_AM_ROB_ECC_INT_STS 0x300104 161 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 162 #define QM_MSI_CAP_ENABLE BIT(16) 163 164 /* interfunction communication */ 165 #define QM_IFC_READY_STATUS 0x100128 166 #define QM_IFC_INT_SET_P 0x100130 167 #define QM_IFC_INT_CFG 0x100134 168 #define QM_IFC_INT_SOURCE_P 0x100138 169 #define QM_IFC_INT_SOURCE_V 0x0020 170 #define QM_IFC_INT_MASK 0x0024 171 #define QM_IFC_INT_STATUS 0x0028 172 #define QM_IFC_INT_SET_V 0x002C 173 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 174 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 175 #define QM_IFC_INT_SOURCE_MASK BIT(0) 176 #define QM_IFC_INT_DISABLE BIT(0) 177 #define QM_IFC_INT_STATUS_MASK BIT(0) 178 #define QM_IFC_INT_SET_MASK BIT(0) 179 #define QM_WAIT_DST_ACK 10 180 #define QM_MAX_PF_WAIT_COUNT 10 181 #define QM_MAX_VF_WAIT_COUNT 40 182 #define QM_VF_RESET_WAIT_US 20000 183 #define QM_VF_RESET_WAIT_CNT 3000 184 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 185 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 186 187 #define POLL_PERIOD 10 188 #define POLL_TIMEOUT 1000 189 #define WAIT_PERIOD_US_MAX 200 190 #define WAIT_PERIOD_US_MIN 100 191 #define MAX_WAIT_COUNTS 1000 192 #define QM_CACHE_WB_START 0x204 193 #define QM_CACHE_WB_DONE 0x208 194 #define QM_FUNC_CAPS_REG 0x3100 195 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 196 197 #define PCI_BAR_2 2 198 #define PCI_BAR_4 4 199 #define QMC_ALIGN(sz) ALIGN(sz, 32) 200 201 #define QM_DBG_READ_LEN 256 202 #define QM_PCI_COMMAND_INVALID ~0 203 #define QM_RESET_STOP_TX_OFFSET 1 204 #define QM_RESET_STOP_RX_OFFSET 2 205 206 #define WAIT_PERIOD 20 207 #define REMOVE_WAIT_DELAY 10 208 209 #define QM_QOS_PARAM_NUM 2 210 #define QM_QOS_MAX_VAL 1000 211 #define QM_QOS_RATE 100 212 #define QM_QOS_EXPAND_RATE 1000 213 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 214 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 215 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 216 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 217 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 218 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 219 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 220 #define QM_SHAPER_CBS_B 1 221 #define QM_SHAPER_VFT_OFFSET 6 222 #define QM_QOS_MIN_ERROR_RATE 5 223 #define QM_SHAPER_MIN_CBS_S 8 224 #define QM_QOS_TICK 0x300U 225 #define QM_QOS_DIVISOR_CLK 0x1f40U 226 #define QM_QOS_MAX_CIR_B 200 227 #define QM_QOS_MIN_CIR_B 100 228 #define QM_QOS_MAX_CIR_U 6 229 #define QM_AUTOSUSPEND_DELAY 3000 230 231 #define QM_DEV_ALG_MAX_LEN 256 232 233 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 234 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 235 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 236 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 237 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 238 239 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 240 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 241 242 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 243 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 244 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 245 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 246 247 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 248 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 249 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 250 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 251 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 252 253 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 254 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 255 256 #define INIT_QC_COMMON(qc, base, pasid) do { \ 257 (qc)->head = 0; \ 258 (qc)->tail = 0; \ 259 (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ 260 (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ 261 (qc)->dw3 = 0; \ 262 (qc)->w8 = 0; \ 263 (qc)->rsvd0 = 0; \ 264 (qc)->pasid = cpu_to_le16(pasid); \ 265 (qc)->w11 = 0; \ 266 (qc)->rsvd1 = 0; \ 267 } while (0) 268 269 enum vft_type { 270 SQC_VFT = 0, 271 CQC_VFT, 272 SHAPER_VFT, 273 }; 274 275 enum acc_err_result { 276 ACC_ERR_NONE, 277 ACC_ERR_NEED_RESET, 278 ACC_ERR_RECOVERED, 279 }; 280 281 enum qm_alg_type { 282 ALG_TYPE_0, 283 ALG_TYPE_1, 284 }; 285 286 enum qm_mb_cmd { 287 QM_PF_FLR_PREPARE = 0x01, 288 QM_PF_SRST_PREPARE, 289 QM_PF_RESET_DONE, 290 QM_VF_PREPARE_DONE, 291 QM_VF_PREPARE_FAIL, 292 QM_VF_START_DONE, 293 QM_VF_START_FAIL, 294 QM_PF_SET_QOS, 295 QM_VF_GET_QOS, 296 }; 297 298 enum qm_basic_type { 299 QM_TOTAL_QP_NUM_CAP = 0x0, 300 QM_FUNC_MAX_QP_CAP, 301 QM_XEQ_DEPTH_CAP, 302 QM_QP_DEPTH_CAP, 303 QM_EQ_IRQ_TYPE_CAP, 304 QM_AEQ_IRQ_TYPE_CAP, 305 QM_ABN_IRQ_TYPE_CAP, 306 QM_PF2VF_IRQ_TYPE_CAP, 307 QM_PF_IRQ_NUM_CAP, 308 QM_VF_IRQ_NUM_CAP, 309 }; 310 311 enum qm_pre_store_cap_idx { 312 QM_EQ_IRQ_TYPE_CAP_IDX = 0x0, 313 QM_AEQ_IRQ_TYPE_CAP_IDX, 314 QM_ABN_IRQ_TYPE_CAP_IDX, 315 QM_PF2VF_IRQ_TYPE_CAP_IDX, 316 }; 317 318 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 319 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 320 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 321 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 322 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 323 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 324 }; 325 326 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 327 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 328 }; 329 330 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 331 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 332 }; 333 334 static const struct hisi_qm_cap_info qm_basic_info[] = { 335 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 336 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 337 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, 338 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 339 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 340 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 341 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 342 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 343 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 344 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 345 }; 346 347 static const u32 qm_pre_store_caps[] = { 348 QM_EQ_IRQ_TYPE_CAP, 349 QM_AEQ_IRQ_TYPE_CAP, 350 QM_ABN_IRQ_TYPE_CAP, 351 QM_PF2VF_IRQ_TYPE_CAP, 352 }; 353 354 struct qm_mailbox { 355 __le16 w0; 356 __le16 queue_num; 357 __le32 base_l; 358 __le32 base_h; 359 __le32 rsvd; 360 }; 361 362 struct qm_doorbell { 363 __le16 queue_num; 364 __le16 cmd; 365 __le16 index; 366 __le16 priority; 367 }; 368 369 struct hisi_qm_resource { 370 struct hisi_qm *qm; 371 int distance; 372 struct list_head list; 373 }; 374 375 /** 376 * struct qm_hw_err - Structure describing the device errors 377 * @list: hardware error list 378 * @timestamp: timestamp when the error occurred 379 */ 380 struct qm_hw_err { 381 struct list_head list; 382 unsigned long long timestamp; 383 }; 384 385 struct hisi_qm_hw_ops { 386 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 387 void (*qm_db)(struct hisi_qm *qm, u16 qn, 388 u8 cmd, u16 index, u8 priority); 389 int (*debug_init)(struct hisi_qm *qm); 390 void (*hw_error_init)(struct hisi_qm *qm); 391 void (*hw_error_uninit)(struct hisi_qm *qm); 392 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 393 int (*set_msi)(struct hisi_qm *qm, bool set); 394 }; 395 396 struct hisi_qm_hw_error { 397 u32 int_msk; 398 const char *msg; 399 }; 400 401 static const struct hisi_qm_hw_error qm_hw_error[] = { 402 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 403 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 404 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 405 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 406 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 407 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 408 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 409 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 410 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 411 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 412 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 413 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 414 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 415 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 416 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 417 { /* sentinel */ } 418 }; 419 420 static const char * const qm_db_timeout[] = { 421 "sq", "cq", "eq", "aeq", 422 }; 423 424 static const char * const qm_fifo_overflow[] = { 425 "cq", "eq", "aeq", 426 }; 427 428 static const char * const qp_s[] = { 429 "none", "init", "start", "stop", "close", 430 }; 431 432 struct qm_typical_qos_table { 433 u32 start; 434 u32 end; 435 u32 val; 436 }; 437 438 /* the qos step is 100 */ 439 static struct qm_typical_qos_table shaper_cir_s[] = { 440 {100, 100, 4}, 441 {200, 200, 3}, 442 {300, 500, 2}, 443 {600, 1000, 1}, 444 {1100, 100000, 0}, 445 }; 446 447 static struct qm_typical_qos_table shaper_cbs_s[] = { 448 {100, 200, 9}, 449 {300, 500, 11}, 450 {600, 1000, 12}, 451 {1100, 10000, 16}, 452 {10100, 25000, 17}, 453 {25100, 50000, 18}, 454 {50100, 100000, 19} 455 }; 456 457 static void qm_irqs_unregister(struct hisi_qm *qm); 458 459 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 460 { 461 enum qm_state curr = atomic_read(&qm->status.flags); 462 bool avail = false; 463 464 switch (curr) { 465 case QM_INIT: 466 if (new == QM_START || new == QM_CLOSE) 467 avail = true; 468 break; 469 case QM_START: 470 if (new == QM_STOP) 471 avail = true; 472 break; 473 case QM_STOP: 474 if (new == QM_CLOSE || new == QM_START) 475 avail = true; 476 break; 477 default: 478 break; 479 } 480 481 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 482 qm_s[curr], qm_s[new]); 483 484 if (!avail) 485 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 486 qm_s[curr], qm_s[new]); 487 488 return avail; 489 } 490 491 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 492 enum qp_state new) 493 { 494 enum qm_state qm_curr = atomic_read(&qm->status.flags); 495 enum qp_state qp_curr = 0; 496 bool avail = false; 497 498 if (qp) 499 qp_curr = atomic_read(&qp->qp_status.flags); 500 501 switch (new) { 502 case QP_INIT: 503 if (qm_curr == QM_START || qm_curr == QM_INIT) 504 avail = true; 505 break; 506 case QP_START: 507 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 508 (qm_curr == QM_START && qp_curr == QP_STOP)) 509 avail = true; 510 break; 511 case QP_STOP: 512 if ((qm_curr == QM_START && qp_curr == QP_START) || 513 (qp_curr == QP_INIT)) 514 avail = true; 515 break; 516 case QP_CLOSE: 517 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 518 (qm_curr == QM_START && qp_curr == QP_STOP) || 519 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 520 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 521 avail = true; 522 break; 523 default: 524 break; 525 } 526 527 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 528 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 529 530 if (!avail) 531 dev_warn(&qm->pdev->dev, 532 "Can not change qp state from %s to %s in QM %s\n", 533 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 534 535 return avail; 536 } 537 538 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 539 { 540 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 541 } 542 543 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 544 { 545 return qm->err_ini->get_dev_hw_err_status(qm); 546 } 547 548 /* Check if the error causes the master ooo block */ 549 static bool qm_check_dev_error(struct hisi_qm *qm) 550 { 551 u32 val, dev_val; 552 553 if (qm->fun_type == QM_HW_VF) 554 return false; 555 556 val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask; 557 dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask; 558 559 return val || dev_val; 560 } 561 562 static int qm_wait_reset_finish(struct hisi_qm *qm) 563 { 564 int delay = 0; 565 566 /* All reset requests need to be queued for processing */ 567 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 568 msleep(++delay); 569 if (delay > QM_RESET_WAIT_TIMEOUT) 570 return -EBUSY; 571 } 572 573 return 0; 574 } 575 576 static int qm_reset_prepare_ready(struct hisi_qm *qm) 577 { 578 struct pci_dev *pdev = qm->pdev; 579 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 580 581 /* 582 * PF and VF on host doesnot support resetting at the 583 * same time on Kunpeng920. 584 */ 585 if (qm->ver < QM_HW_V3) 586 return qm_wait_reset_finish(pf_qm); 587 588 return qm_wait_reset_finish(qm); 589 } 590 591 static void qm_reset_bit_clear(struct hisi_qm *qm) 592 { 593 struct pci_dev *pdev = qm->pdev; 594 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 595 596 if (qm->ver < QM_HW_V3) 597 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 598 599 clear_bit(QM_RESETTING, &qm->misc_ctl); 600 } 601 602 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 603 u64 base, u16 queue, bool op) 604 { 605 mailbox->w0 = cpu_to_le16((cmd) | 606 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 607 (0x1 << QM_MB_BUSY_SHIFT)); 608 mailbox->queue_num = cpu_to_le16(queue); 609 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 610 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 611 mailbox->rsvd = 0; 612 } 613 614 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 615 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 616 { 617 u32 val; 618 619 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 620 val, !((val >> QM_MB_BUSY_SHIFT) & 621 0x1), POLL_PERIOD, POLL_TIMEOUT); 622 } 623 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 624 625 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 626 static void qm_mb_write(struct hisi_qm *qm, const void *src) 627 { 628 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 629 630 #if IS_ENABLED(CONFIG_ARM64) 631 unsigned long tmp0 = 0, tmp1 = 0; 632 #endif 633 634 if (!IS_ENABLED(CONFIG_ARM64)) { 635 memcpy_toio(fun_base, src, 16); 636 dma_wmb(); 637 return; 638 } 639 640 #if IS_ENABLED(CONFIG_ARM64) 641 asm volatile("ldp %0, %1, %3\n" 642 "stp %0, %1, %2\n" 643 "dmb oshst\n" 644 : "=&r" (tmp0), 645 "=&r" (tmp1), 646 "+Q" (*((char __iomem *)fun_base)) 647 : "Q" (*((char *)src)) 648 : "memory"); 649 #endif 650 } 651 652 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 653 { 654 int ret; 655 u32 val; 656 657 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 658 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 659 ret = -EBUSY; 660 goto mb_busy; 661 } 662 663 qm_mb_write(qm, mailbox); 664 665 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 666 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 667 ret = -ETIMEDOUT; 668 goto mb_busy; 669 } 670 671 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 672 if (val & QM_MB_STATUS_MASK) { 673 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 674 ret = -EIO; 675 goto mb_busy; 676 } 677 678 return 0; 679 680 mb_busy: 681 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 682 return ret; 683 } 684 685 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 686 bool op) 687 { 688 struct qm_mailbox mailbox; 689 int ret; 690 691 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 692 queue, cmd, (unsigned long long)dma_addr); 693 694 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 695 696 mutex_lock(&qm->mailbox_lock); 697 ret = qm_mb_nolock(qm, &mailbox); 698 mutex_unlock(&qm->mailbox_lock); 699 700 return ret; 701 } 702 EXPORT_SYMBOL_GPL(hisi_qm_mb); 703 704 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 705 { 706 u64 doorbell; 707 708 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 709 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 710 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 711 712 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 713 } 714 715 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 716 { 717 void __iomem *io_base = qm->io_base; 718 u16 randata = 0; 719 u64 doorbell; 720 721 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 722 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 723 QM_DOORBELL_SQ_CQ_BASE_V2; 724 else 725 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 726 727 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 728 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 729 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 730 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 731 732 writeq(doorbell, io_base); 733 } 734 735 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 736 { 737 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 738 qn, cmd, index); 739 740 qm->ops->qm_db(qm, qn, cmd, index, priority); 741 } 742 743 static void qm_disable_clock_gate(struct hisi_qm *qm) 744 { 745 u32 val; 746 747 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 748 if (qm->ver < QM_HW_V3) 749 return; 750 751 val = readl(qm->io_base + QM_PM_CTRL); 752 val |= QM_IDLE_DISABLE; 753 writel(val, qm->io_base + QM_PM_CTRL); 754 } 755 756 static int qm_dev_mem_reset(struct hisi_qm *qm) 757 { 758 u32 val; 759 760 writel(0x1, qm->io_base + QM_MEM_START_INIT); 761 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 762 val & BIT(0), POLL_PERIOD, 763 POLL_TIMEOUT); 764 } 765 766 /** 767 * hisi_qm_get_hw_info() - Get device information. 768 * @qm: The qm which want to get information. 769 * @info_table: Array for storing device information. 770 * @index: Index in info_table. 771 * @is_read: Whether read from reg, 0: not support read from reg. 772 * 773 * This function returns device information the caller needs. 774 */ 775 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 776 const struct hisi_qm_cap_info *info_table, 777 u32 index, bool is_read) 778 { 779 u32 val; 780 781 switch (qm->ver) { 782 case QM_HW_V1: 783 return info_table[index].v1_val; 784 case QM_HW_V2: 785 return info_table[index].v2_val; 786 default: 787 if (!is_read) 788 return info_table[index].v3_val; 789 790 val = readl(qm->io_base + info_table[index].offset); 791 return (val >> info_table[index].shift) & info_table[index].mask; 792 } 793 } 794 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 795 796 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 797 u16 *high_bits, enum qm_basic_type type) 798 { 799 u32 depth; 800 801 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 802 *low_bits = depth & QM_XQ_DEPTH_MASK; 803 *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 804 } 805 806 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs, 807 u32 dev_algs_size) 808 { 809 struct device *dev = &qm->pdev->dev; 810 char *algs, *ptr; 811 int i; 812 813 if (!qm->uacce) 814 return 0; 815 816 if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) { 817 dev_err(dev, "algs size %u is equal or larger than %d.\n", 818 dev_algs_size, QM_DEV_ALG_MAX_LEN); 819 return -EINVAL; 820 } 821 822 algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN * sizeof(char), GFP_KERNEL); 823 if (!algs) 824 return -ENOMEM; 825 826 for (i = 0; i < dev_algs_size; i++) 827 if (alg_msk & dev_algs[i].alg_msk) 828 strcat(algs, dev_algs[i].alg); 829 830 ptr = strrchr(algs, '\n'); 831 if (ptr) { 832 *ptr = '\0'; 833 qm->uacce->algs = algs; 834 } 835 836 return 0; 837 } 838 EXPORT_SYMBOL_GPL(hisi_qm_set_algs); 839 840 static u32 qm_get_irq_num(struct hisi_qm *qm) 841 { 842 if (qm->fun_type == QM_HW_PF) 843 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 844 845 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 846 } 847 848 static int qm_pm_get_sync(struct hisi_qm *qm) 849 { 850 struct device *dev = &qm->pdev->dev; 851 int ret; 852 853 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 854 return 0; 855 856 ret = pm_runtime_resume_and_get(dev); 857 if (ret < 0) { 858 dev_err(dev, "failed to get_sync(%d).\n", ret); 859 return ret; 860 } 861 862 return 0; 863 } 864 865 static void qm_pm_put_sync(struct hisi_qm *qm) 866 { 867 struct device *dev = &qm->pdev->dev; 868 869 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 870 return; 871 872 pm_runtime_mark_last_busy(dev); 873 pm_runtime_put_autosuspend(dev); 874 } 875 876 static void qm_cq_head_update(struct hisi_qp *qp) 877 { 878 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 879 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 880 qp->qp_status.cq_head = 0; 881 } else { 882 qp->qp_status.cq_head++; 883 } 884 } 885 886 static void qm_poll_req_cb(struct hisi_qp *qp) 887 { 888 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 889 struct hisi_qm *qm = qp->qm; 890 891 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 892 dma_rmb(); 893 qp->req_cb(qp, qp->sqe + qm->sqe_size * 894 le16_to_cpu(cqe->sq_head)); 895 qm_cq_head_update(qp); 896 cqe = qp->cqe + qp->qp_status.cq_head; 897 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 898 qp->qp_status.cq_head, 0); 899 atomic_dec(&qp->qp_status.used); 900 901 cond_resched(); 902 } 903 904 /* set c_flag */ 905 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 906 } 907 908 static void qm_work_process(struct work_struct *work) 909 { 910 struct hisi_qm_poll_data *poll_data = 911 container_of(work, struct hisi_qm_poll_data, work); 912 struct hisi_qm *qm = poll_data->qm; 913 u16 eqe_num = poll_data->eqe_num; 914 struct hisi_qp *qp; 915 int i; 916 917 for (i = eqe_num - 1; i >= 0; i--) { 918 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 919 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 920 continue; 921 922 if (qp->event_cb) { 923 qp->event_cb(qp); 924 continue; 925 } 926 927 if (likely(qp->req_cb)) 928 qm_poll_req_cb(qp); 929 } 930 } 931 932 static void qm_get_complete_eqe_num(struct hisi_qm *qm) 933 { 934 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 935 struct hisi_qm_poll_data *poll_data = NULL; 936 u16 eq_depth = qm->eq_depth; 937 u16 cqn, eqe_num = 0; 938 939 if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) { 940 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 941 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 942 return; 943 } 944 945 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 946 if (unlikely(cqn >= qm->qp_num)) 947 return; 948 poll_data = &qm->poll_data[cqn]; 949 950 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 951 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 952 poll_data->qp_finish_id[eqe_num] = cqn; 953 eqe_num++; 954 955 if (qm->status.eq_head == eq_depth - 1) { 956 qm->status.eqc_phase = !qm->status.eqc_phase; 957 eqe = qm->eqe; 958 qm->status.eq_head = 0; 959 } else { 960 eqe++; 961 qm->status.eq_head++; 962 } 963 964 if (eqe_num == (eq_depth >> 1) - 1) 965 break; 966 } 967 968 poll_data->eqe_num = eqe_num; 969 queue_work(qm->wq, &poll_data->work); 970 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 971 } 972 973 static irqreturn_t qm_eq_irq(int irq, void *data) 974 { 975 struct hisi_qm *qm = data; 976 977 /* Get qp id of completed tasks and re-enable the interrupt */ 978 qm_get_complete_eqe_num(qm); 979 980 return IRQ_HANDLED; 981 } 982 983 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 984 { 985 struct hisi_qm *qm = data; 986 u32 val; 987 988 val = readl(qm->io_base + QM_IFC_INT_STATUS); 989 val &= QM_IFC_INT_STATUS_MASK; 990 if (!val) 991 return IRQ_NONE; 992 993 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) { 994 dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n"); 995 return IRQ_HANDLED; 996 } 997 998 schedule_work(&qm->cmd_process); 999 1000 return IRQ_HANDLED; 1001 } 1002 1003 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 1004 { 1005 u32 *addr; 1006 1007 if (qp->is_in_kernel) 1008 return; 1009 1010 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 1011 *addr = 1; 1012 1013 /* make sure setup is completed */ 1014 smp_wmb(); 1015 } 1016 1017 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 1018 { 1019 struct hisi_qp *qp = &qm->qp_array[qp_id]; 1020 1021 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 1022 hisi_qm_stop_qp(qp); 1023 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 1024 } 1025 1026 static void qm_reset_function(struct hisi_qm *qm) 1027 { 1028 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 1029 struct device *dev = &qm->pdev->dev; 1030 int ret; 1031 1032 if (qm_check_dev_error(pf_qm)) 1033 return; 1034 1035 ret = qm_reset_prepare_ready(qm); 1036 if (ret) { 1037 dev_err(dev, "reset function not ready\n"); 1038 return; 1039 } 1040 1041 ret = hisi_qm_stop(qm, QM_DOWN); 1042 if (ret) { 1043 dev_err(dev, "failed to stop qm when reset function\n"); 1044 goto clear_bit; 1045 } 1046 1047 ret = hisi_qm_start(qm); 1048 if (ret) 1049 dev_err(dev, "failed to start qm when reset function\n"); 1050 1051 clear_bit: 1052 qm_reset_bit_clear(qm); 1053 } 1054 1055 static irqreturn_t qm_aeq_thread(int irq, void *data) 1056 { 1057 struct hisi_qm *qm = data; 1058 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1059 u16 aeq_depth = qm->aeq_depth; 1060 u32 type, qp_id; 1061 1062 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1063 1064 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1065 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; 1066 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1067 1068 switch (type) { 1069 case QM_EQ_OVERFLOW: 1070 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1071 qm_reset_function(qm); 1072 return IRQ_HANDLED; 1073 case QM_CQ_OVERFLOW: 1074 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1075 qp_id); 1076 fallthrough; 1077 case QM_CQE_ERROR: 1078 qm_disable_qp(qm, qp_id); 1079 break; 1080 default: 1081 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1082 type); 1083 break; 1084 } 1085 1086 if (qm->status.aeq_head == aeq_depth - 1) { 1087 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1088 aeqe = qm->aeqe; 1089 qm->status.aeq_head = 0; 1090 } else { 1091 aeqe++; 1092 qm->status.aeq_head++; 1093 } 1094 } 1095 1096 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1097 1098 return IRQ_HANDLED; 1099 } 1100 1101 static void qm_init_qp_status(struct hisi_qp *qp) 1102 { 1103 struct hisi_qp_status *qp_status = &qp->qp_status; 1104 1105 qp_status->sq_tail = 0; 1106 qp_status->cq_head = 0; 1107 qp_status->cqc_phase = true; 1108 atomic_set(&qp_status->used, 0); 1109 } 1110 1111 static void qm_init_prefetch(struct hisi_qm *qm) 1112 { 1113 struct device *dev = &qm->pdev->dev; 1114 u32 page_type = 0x0; 1115 1116 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1117 return; 1118 1119 switch (PAGE_SIZE) { 1120 case SZ_4K: 1121 page_type = 0x0; 1122 break; 1123 case SZ_16K: 1124 page_type = 0x1; 1125 break; 1126 case SZ_64K: 1127 page_type = 0x2; 1128 break; 1129 default: 1130 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1131 PAGE_SIZE); 1132 } 1133 1134 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1135 } 1136 1137 /* 1138 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1139 * is the expected qos calculated. 1140 * the formula: 1141 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1142 * 1143 * IR_b * (2 ^ IR_u) * 8000 1144 * IR(Mbps) = ------------------------- 1145 * Tick * (2 ^ IR_s) 1146 */ 1147 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1148 { 1149 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1150 (QM_QOS_TICK * (1 << cir_s)); 1151 } 1152 1153 static u32 acc_shaper_calc_cbs_s(u32 ir) 1154 { 1155 int table_size = ARRAY_SIZE(shaper_cbs_s); 1156 int i; 1157 1158 for (i = 0; i < table_size; i++) { 1159 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1160 return shaper_cbs_s[i].val; 1161 } 1162 1163 return QM_SHAPER_MIN_CBS_S; 1164 } 1165 1166 static u32 acc_shaper_calc_cir_s(u32 ir) 1167 { 1168 int table_size = ARRAY_SIZE(shaper_cir_s); 1169 int i; 1170 1171 for (i = 0; i < table_size; i++) { 1172 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1173 return shaper_cir_s[i].val; 1174 } 1175 1176 return 0; 1177 } 1178 1179 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1180 { 1181 u32 cir_b, cir_u, cir_s, ir_calc; 1182 u32 error_rate; 1183 1184 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1185 cir_s = acc_shaper_calc_cir_s(ir); 1186 1187 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1188 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1189 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1190 1191 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1192 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1193 factor->cir_b = cir_b; 1194 factor->cir_u = cir_u; 1195 factor->cir_s = cir_s; 1196 return 0; 1197 } 1198 } 1199 } 1200 1201 return -EINVAL; 1202 } 1203 1204 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1205 u32 number, struct qm_shaper_factor *factor) 1206 { 1207 u64 tmp = 0; 1208 1209 if (number > 0) { 1210 switch (type) { 1211 case SQC_VFT: 1212 if (qm->ver == QM_HW_V1) { 1213 tmp = QM_SQC_VFT_BUF_SIZE | 1214 QM_SQC_VFT_SQC_SIZE | 1215 QM_SQC_VFT_INDEX_NUMBER | 1216 QM_SQC_VFT_VALID | 1217 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1218 } else { 1219 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1220 QM_SQC_VFT_VALID | 1221 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1222 } 1223 break; 1224 case CQC_VFT: 1225 if (qm->ver == QM_HW_V1) { 1226 tmp = QM_CQC_VFT_BUF_SIZE | 1227 QM_CQC_VFT_SQC_SIZE | 1228 QM_CQC_VFT_INDEX_NUMBER | 1229 QM_CQC_VFT_VALID; 1230 } else { 1231 tmp = QM_CQC_VFT_VALID; 1232 } 1233 break; 1234 case SHAPER_VFT: 1235 if (factor) { 1236 tmp = factor->cir_b | 1237 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1238 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1239 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1240 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1241 } 1242 break; 1243 } 1244 } 1245 1246 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1247 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1248 } 1249 1250 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1251 u32 fun_num, u32 base, u32 number) 1252 { 1253 struct qm_shaper_factor *factor = NULL; 1254 unsigned int val; 1255 int ret; 1256 1257 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1258 factor = &qm->factor[fun_num]; 1259 1260 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1261 val & BIT(0), POLL_PERIOD, 1262 POLL_TIMEOUT); 1263 if (ret) 1264 return ret; 1265 1266 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1267 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1268 if (type == SHAPER_VFT) 1269 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1270 1271 writel(fun_num, qm->io_base + QM_VFT_CFG); 1272 1273 qm_vft_data_cfg(qm, type, base, number, factor); 1274 1275 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1276 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1277 1278 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1279 val & BIT(0), POLL_PERIOD, 1280 POLL_TIMEOUT); 1281 } 1282 1283 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1284 { 1285 u32 qos = qm->factor[fun_num].func_qos; 1286 int ret, i; 1287 1288 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1289 if (ret) { 1290 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1291 return ret; 1292 } 1293 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1294 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1295 /* The base number of queue reuse for different alg type */ 1296 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1297 if (ret) 1298 return ret; 1299 } 1300 1301 return 0; 1302 } 1303 1304 /* The config should be conducted after qm_dev_mem_reset() */ 1305 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1306 u32 number) 1307 { 1308 int ret, i; 1309 1310 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1311 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1312 if (ret) 1313 return ret; 1314 } 1315 1316 /* init default shaper qos val */ 1317 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1318 ret = qm_shaper_init_vft(qm, fun_num); 1319 if (ret) 1320 goto back_sqc_cqc; 1321 } 1322 1323 return 0; 1324 back_sqc_cqc: 1325 for (i = SQC_VFT; i <= CQC_VFT; i++) 1326 qm_set_vft_common(qm, i, fun_num, 0, 0); 1327 1328 return ret; 1329 } 1330 1331 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1332 { 1333 u64 sqc_vft; 1334 int ret; 1335 1336 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1337 if (ret) 1338 return ret; 1339 1340 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1341 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1342 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1343 *number = (QM_SQC_VFT_NUM_MASK_V2 & 1344 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1345 1346 return 0; 1347 } 1348 1349 void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, 1350 dma_addr_t *dma_addr) 1351 { 1352 struct device *dev = &qm->pdev->dev; 1353 void *ctx_addr; 1354 1355 ctx_addr = kzalloc(ctx_size, GFP_KERNEL); 1356 if (!ctx_addr) 1357 return ERR_PTR(-ENOMEM); 1358 1359 *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); 1360 if (dma_mapping_error(dev, *dma_addr)) { 1361 dev_err(dev, "DMA mapping error!\n"); 1362 kfree(ctx_addr); 1363 return ERR_PTR(-ENOMEM); 1364 } 1365 1366 return ctx_addr; 1367 } 1368 1369 void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, 1370 const void *ctx_addr, dma_addr_t *dma_addr) 1371 { 1372 struct device *dev = &qm->pdev->dev; 1373 1374 dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); 1375 kfree(ctx_addr); 1376 } 1377 1378 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1379 { 1380 return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); 1381 } 1382 1383 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1384 { 1385 return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); 1386 } 1387 1388 static void qm_hw_error_init_v1(struct hisi_qm *qm) 1389 { 1390 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1391 } 1392 1393 static void qm_hw_error_cfg(struct hisi_qm *qm) 1394 { 1395 struct hisi_qm_err_info *err_info = &qm->err_info; 1396 1397 qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; 1398 /* clear QM hw residual error source */ 1399 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1400 1401 /* configure error type */ 1402 writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); 1403 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1404 writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1405 writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); 1406 } 1407 1408 static void qm_hw_error_init_v2(struct hisi_qm *qm) 1409 { 1410 u32 irq_unmask; 1411 1412 qm_hw_error_cfg(qm); 1413 1414 irq_unmask = ~qm->error_mask; 1415 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1416 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1417 } 1418 1419 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1420 { 1421 u32 irq_mask = qm->error_mask; 1422 1423 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1424 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1425 } 1426 1427 static void qm_hw_error_init_v3(struct hisi_qm *qm) 1428 { 1429 u32 irq_unmask; 1430 1431 qm_hw_error_cfg(qm); 1432 1433 /* enable close master ooo when hardware error happened */ 1434 writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1435 1436 irq_unmask = ~qm->error_mask; 1437 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1438 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1439 } 1440 1441 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1442 { 1443 u32 irq_mask = qm->error_mask; 1444 1445 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1446 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1447 1448 /* disable close master ooo when hardware error happened */ 1449 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1450 } 1451 1452 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1453 { 1454 const struct hisi_qm_hw_error *err; 1455 struct device *dev = &qm->pdev->dev; 1456 u32 reg_val, type, vf_num; 1457 int i; 1458 1459 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1460 err = &qm_hw_error[i]; 1461 if (!(err->int_msk & error_status)) 1462 continue; 1463 1464 dev_err(dev, "%s [error status=0x%x] found\n", 1465 err->msg, err->int_msk); 1466 1467 if (err->int_msk & QM_DB_TIMEOUT) { 1468 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1469 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1470 QM_DB_TIMEOUT_TYPE_SHIFT; 1471 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1472 dev_err(dev, "qm %s doorbell timeout in function %u\n", 1473 qm_db_timeout[type], vf_num); 1474 } else if (err->int_msk & QM_OF_FIFO_OF) { 1475 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1476 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1477 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1478 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1479 1480 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1481 dev_err(dev, "qm %s fifo overflow in function %u\n", 1482 qm_fifo_overflow[type], vf_num); 1483 else 1484 dev_err(dev, "unknown error type\n"); 1485 } 1486 } 1487 } 1488 1489 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1490 { 1491 u32 error_status, tmp; 1492 1493 /* read err sts */ 1494 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 1495 error_status = qm->error_mask & tmp; 1496 1497 if (error_status) { 1498 if (error_status & QM_ECC_MBIT) 1499 qm->err_status.is_qm_ecc_mbit = true; 1500 1501 qm_log_hw_error(qm, error_status); 1502 if (error_status & qm->err_info.qm_reset_mask) 1503 return ACC_ERR_NEED_RESET; 1504 1505 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1506 writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1507 } 1508 1509 return ACC_ERR_RECOVERED; 1510 } 1511 1512 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 1513 { 1514 struct qm_mailbox mailbox; 1515 int ret; 1516 1517 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 1518 mutex_lock(&qm->mailbox_lock); 1519 ret = qm_mb_nolock(qm, &mailbox); 1520 if (ret) 1521 goto err_unlock; 1522 1523 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1524 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1525 1526 err_unlock: 1527 mutex_unlock(&qm->mailbox_lock); 1528 return ret; 1529 } 1530 1531 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 1532 { 1533 u32 val; 1534 1535 if (qm->fun_type == QM_HW_PF) 1536 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 1537 1538 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 1539 val |= QM_IFC_INT_SOURCE_MASK; 1540 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 1541 } 1542 1543 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 1544 { 1545 struct device *dev = &qm->pdev->dev; 1546 u32 cmd; 1547 u64 msg; 1548 int ret; 1549 1550 ret = qm_get_mb_cmd(qm, &msg, vf_id); 1551 if (ret) { 1552 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 1553 return; 1554 } 1555 1556 cmd = msg & QM_MB_CMD_DATA_MASK; 1557 switch (cmd) { 1558 case QM_VF_PREPARE_FAIL: 1559 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 1560 break; 1561 case QM_VF_START_FAIL: 1562 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 1563 break; 1564 case QM_VF_PREPARE_DONE: 1565 case QM_VF_START_DONE: 1566 break; 1567 default: 1568 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 1569 break; 1570 } 1571 } 1572 1573 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 1574 { 1575 struct device *dev = &qm->pdev->dev; 1576 u32 vfs_num = qm->vfs_num; 1577 int cnt = 0; 1578 int ret = 0; 1579 u64 val; 1580 u32 i; 1581 1582 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 1583 return 0; 1584 1585 while (true) { 1586 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 1587 /* All VFs send command to PF, break */ 1588 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 1589 break; 1590 1591 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1592 ret = -EBUSY; 1593 break; 1594 } 1595 1596 msleep(QM_WAIT_DST_ACK); 1597 } 1598 1599 /* PF check VFs msg */ 1600 for (i = 1; i <= vfs_num; i++) { 1601 if (val & BIT(i)) 1602 qm_handle_vf_msg(qm, i); 1603 else 1604 dev_err(dev, "VF(%u) not ping PF!\n", i); 1605 } 1606 1607 /* PF clear interrupt to ack VFs */ 1608 qm_clear_cmd_interrupt(qm, val); 1609 1610 return ret; 1611 } 1612 1613 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 1614 { 1615 u32 val; 1616 1617 val = readl(qm->io_base + QM_IFC_INT_CFG); 1618 val &= ~QM_IFC_SEND_ALL_VFS; 1619 val |= fun_num; 1620 writel(val, qm->io_base + QM_IFC_INT_CFG); 1621 1622 val = readl(qm->io_base + QM_IFC_INT_SET_P); 1623 val |= QM_IFC_INT_SET_MASK; 1624 writel(val, qm->io_base + QM_IFC_INT_SET_P); 1625 } 1626 1627 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 1628 { 1629 u32 val; 1630 1631 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1632 val |= QM_IFC_INT_SET_MASK; 1633 writel(val, qm->io_base + QM_IFC_INT_SET_V); 1634 } 1635 1636 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 1637 { 1638 struct device *dev = &qm->pdev->dev; 1639 struct qm_mailbox mailbox; 1640 int cnt = 0; 1641 u64 val; 1642 int ret; 1643 1644 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 1645 mutex_lock(&qm->mailbox_lock); 1646 ret = qm_mb_nolock(qm, &mailbox); 1647 if (ret) { 1648 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 1649 goto err_unlock; 1650 } 1651 1652 qm_trigger_vf_interrupt(qm, fun_num); 1653 while (true) { 1654 msleep(QM_WAIT_DST_ACK); 1655 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1656 /* if VF respond, PF notifies VF successfully. */ 1657 if (!(val & BIT(fun_num))) 1658 goto err_unlock; 1659 1660 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1661 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 1662 ret = -ETIMEDOUT; 1663 break; 1664 } 1665 } 1666 1667 err_unlock: 1668 mutex_unlock(&qm->mailbox_lock); 1669 return ret; 1670 } 1671 1672 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 1673 { 1674 struct device *dev = &qm->pdev->dev; 1675 u32 vfs_num = qm->vfs_num; 1676 struct qm_mailbox mailbox; 1677 u64 val = 0; 1678 int cnt = 0; 1679 int ret; 1680 u32 i; 1681 1682 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 1683 mutex_lock(&qm->mailbox_lock); 1684 /* PF sends command to all VFs by mailbox */ 1685 ret = qm_mb_nolock(qm, &mailbox); 1686 if (ret) { 1687 dev_err(dev, "failed to send command to VFs!\n"); 1688 mutex_unlock(&qm->mailbox_lock); 1689 return ret; 1690 } 1691 1692 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 1693 while (true) { 1694 msleep(QM_WAIT_DST_ACK); 1695 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1696 /* If all VFs acked, PF notifies VFs successfully. */ 1697 if (!(val & GENMASK(vfs_num, 1))) { 1698 mutex_unlock(&qm->mailbox_lock); 1699 return 0; 1700 } 1701 1702 if (++cnt > QM_MAX_PF_WAIT_COUNT) 1703 break; 1704 } 1705 1706 mutex_unlock(&qm->mailbox_lock); 1707 1708 /* Check which vf respond timeout. */ 1709 for (i = 1; i <= vfs_num; i++) { 1710 if (val & BIT(i)) 1711 dev_err(dev, "failed to get response from VF(%u)!\n", i); 1712 } 1713 1714 return -ETIMEDOUT; 1715 } 1716 1717 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 1718 { 1719 struct qm_mailbox mailbox; 1720 int cnt = 0; 1721 u32 val; 1722 int ret; 1723 1724 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 1725 mutex_lock(&qm->mailbox_lock); 1726 ret = qm_mb_nolock(qm, &mailbox); 1727 if (ret) { 1728 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 1729 goto unlock; 1730 } 1731 1732 qm_trigger_pf_interrupt(qm); 1733 /* Waiting for PF response */ 1734 while (true) { 1735 msleep(QM_WAIT_DST_ACK); 1736 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1737 if (!(val & QM_IFC_INT_STATUS_MASK)) 1738 break; 1739 1740 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 1741 ret = -ETIMEDOUT; 1742 break; 1743 } 1744 } 1745 1746 unlock: 1747 mutex_unlock(&qm->mailbox_lock); 1748 return ret; 1749 } 1750 1751 static int qm_stop_qp(struct hisi_qp *qp) 1752 { 1753 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1754 } 1755 1756 static int qm_set_msi(struct hisi_qm *qm, bool set) 1757 { 1758 struct pci_dev *pdev = qm->pdev; 1759 1760 if (set) { 1761 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1762 0); 1763 } else { 1764 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1765 ACC_PEH_MSI_DISABLE); 1766 if (qm->err_status.is_qm_ecc_mbit || 1767 qm->err_status.is_dev_ecc_mbit) 1768 return 0; 1769 1770 mdelay(1); 1771 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 1772 return -EFAULT; 1773 } 1774 1775 return 0; 1776 } 1777 1778 static void qm_wait_msi_finish(struct hisi_qm *qm) 1779 { 1780 struct pci_dev *pdev = qm->pdev; 1781 u32 cmd = ~0; 1782 int cnt = 0; 1783 u32 val; 1784 int ret; 1785 1786 while (true) { 1787 pci_read_config_dword(pdev, pdev->msi_cap + 1788 PCI_MSI_PENDING_64, &cmd); 1789 if (!cmd) 1790 break; 1791 1792 if (++cnt > MAX_WAIT_COUNTS) { 1793 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 1794 break; 1795 } 1796 1797 udelay(1); 1798 } 1799 1800 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 1801 val, !(val & QM_PEH_DFX_MASK), 1802 POLL_PERIOD, POLL_TIMEOUT); 1803 if (ret) 1804 pci_warn(pdev, "failed to empty PEH MSI!\n"); 1805 1806 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 1807 val, !(val & QM_PEH_MSI_FINISH_MASK), 1808 POLL_PERIOD, POLL_TIMEOUT); 1809 if (ret) 1810 pci_warn(pdev, "failed to finish MSI operation!\n"); 1811 } 1812 1813 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 1814 { 1815 struct pci_dev *pdev = qm->pdev; 1816 int ret = -ETIMEDOUT; 1817 u32 cmd, i; 1818 1819 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1820 if (set) 1821 cmd |= QM_MSI_CAP_ENABLE; 1822 else 1823 cmd &= ~QM_MSI_CAP_ENABLE; 1824 1825 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 1826 if (set) { 1827 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 1828 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1829 if (cmd & QM_MSI_CAP_ENABLE) 1830 return 0; 1831 1832 udelay(1); 1833 } 1834 } else { 1835 udelay(WAIT_PERIOD_US_MIN); 1836 qm_wait_msi_finish(qm); 1837 ret = 0; 1838 } 1839 1840 return ret; 1841 } 1842 1843 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1844 .qm_db = qm_db_v1, 1845 .hw_error_init = qm_hw_error_init_v1, 1846 .set_msi = qm_set_msi, 1847 }; 1848 1849 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1850 .get_vft = qm_get_vft_v2, 1851 .qm_db = qm_db_v2, 1852 .hw_error_init = qm_hw_error_init_v2, 1853 .hw_error_uninit = qm_hw_error_uninit_v2, 1854 .hw_error_handle = qm_hw_error_handle_v2, 1855 .set_msi = qm_set_msi, 1856 }; 1857 1858 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1859 .get_vft = qm_get_vft_v2, 1860 .qm_db = qm_db_v2, 1861 .hw_error_init = qm_hw_error_init_v3, 1862 .hw_error_uninit = qm_hw_error_uninit_v3, 1863 .hw_error_handle = qm_hw_error_handle_v2, 1864 .set_msi = qm_set_msi_v3, 1865 }; 1866 1867 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1868 { 1869 struct hisi_qp_status *qp_status = &qp->qp_status; 1870 u16 sq_tail = qp_status->sq_tail; 1871 1872 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 1873 return NULL; 1874 1875 return qp->sqe + sq_tail * qp->qm->sqe_size; 1876 } 1877 1878 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 1879 { 1880 u64 *addr; 1881 1882 /* Use last 64 bits of DUS to reset status. */ 1883 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 1884 *addr = 0; 1885 } 1886 1887 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1888 { 1889 struct device *dev = &qm->pdev->dev; 1890 struct hisi_qp *qp; 1891 int qp_id; 1892 1893 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 1894 return ERR_PTR(-EPERM); 1895 1896 if (qm->qp_in_used == qm->qp_num) { 1897 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1898 qm->qp_num); 1899 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1900 return ERR_PTR(-EBUSY); 1901 } 1902 1903 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 1904 if (qp_id < 0) { 1905 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1906 qm->qp_num); 1907 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1908 return ERR_PTR(-EBUSY); 1909 } 1910 1911 qp = &qm->qp_array[qp_id]; 1912 hisi_qm_unset_hw_reset(qp); 1913 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 1914 1915 qp->event_cb = NULL; 1916 qp->req_cb = NULL; 1917 qp->qp_id = qp_id; 1918 qp->alg_type = alg_type; 1919 qp->is_in_kernel = true; 1920 qm->qp_in_used++; 1921 atomic_set(&qp->qp_status.flags, QP_INIT); 1922 1923 return qp; 1924 } 1925 1926 /** 1927 * hisi_qm_create_qp() - Create a queue pair from qm. 1928 * @qm: The qm we create a qp from. 1929 * @alg_type: Accelerator specific algorithm type in sqc. 1930 * 1931 * Return created qp, negative error code if failed. 1932 */ 1933 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 1934 { 1935 struct hisi_qp *qp; 1936 int ret; 1937 1938 ret = qm_pm_get_sync(qm); 1939 if (ret) 1940 return ERR_PTR(ret); 1941 1942 down_write(&qm->qps_lock); 1943 qp = qm_create_qp_nolock(qm, alg_type); 1944 up_write(&qm->qps_lock); 1945 1946 if (IS_ERR(qp)) 1947 qm_pm_put_sync(qm); 1948 1949 return qp; 1950 } 1951 1952 /** 1953 * hisi_qm_release_qp() - Release a qp back to its qm. 1954 * @qp: The qp we want to release. 1955 * 1956 * This function releases the resource of a qp. 1957 */ 1958 static void hisi_qm_release_qp(struct hisi_qp *qp) 1959 { 1960 struct hisi_qm *qm = qp->qm; 1961 1962 down_write(&qm->qps_lock); 1963 1964 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 1965 up_write(&qm->qps_lock); 1966 return; 1967 } 1968 1969 qm->qp_in_used--; 1970 idr_remove(&qm->qp_idr, qp->qp_id); 1971 1972 up_write(&qm->qps_lock); 1973 1974 qm_pm_put_sync(qm); 1975 } 1976 1977 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1978 { 1979 struct hisi_qm *qm = qp->qm; 1980 struct device *dev = &qm->pdev->dev; 1981 enum qm_hw_ver ver = qm->ver; 1982 struct qm_sqc *sqc; 1983 dma_addr_t sqc_dma; 1984 int ret; 1985 1986 sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); 1987 if (!sqc) 1988 return -ENOMEM; 1989 1990 INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); 1991 if (ver == QM_HW_V1) { 1992 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 1993 sqc->w8 = cpu_to_le16(qp->sq_depth - 1); 1994 } else { 1995 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 1996 sqc->w8 = 0; /* rand_qc */ 1997 } 1998 sqc->cq_num = cpu_to_le16(qp_id); 1999 sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 2000 2001 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2002 sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 2003 QM_QC_PASID_ENABLE_SHIFT); 2004 2005 sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), 2006 DMA_TO_DEVICE); 2007 if (dma_mapping_error(dev, sqc_dma)) { 2008 kfree(sqc); 2009 return -ENOMEM; 2010 } 2011 2012 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); 2013 dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); 2014 kfree(sqc); 2015 2016 return ret; 2017 } 2018 2019 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2020 { 2021 struct hisi_qm *qm = qp->qm; 2022 struct device *dev = &qm->pdev->dev; 2023 enum qm_hw_ver ver = qm->ver; 2024 struct qm_cqc *cqc; 2025 dma_addr_t cqc_dma; 2026 int ret; 2027 2028 cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); 2029 if (!cqc) 2030 return -ENOMEM; 2031 2032 INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); 2033 if (ver == QM_HW_V1) { 2034 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 2035 QM_QC_CQE_SIZE)); 2036 cqc->w8 = cpu_to_le16(qp->cq_depth - 1); 2037 } else { 2038 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 2039 cqc->w8 = 0; /* rand_qc */ 2040 } 2041 cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 2042 2043 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2044 cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 2045 2046 cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), 2047 DMA_TO_DEVICE); 2048 if (dma_mapping_error(dev, cqc_dma)) { 2049 kfree(cqc); 2050 return -ENOMEM; 2051 } 2052 2053 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); 2054 dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); 2055 kfree(cqc); 2056 2057 return ret; 2058 } 2059 2060 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2061 { 2062 int ret; 2063 2064 qm_init_qp_status(qp); 2065 2066 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2067 if (ret) 2068 return ret; 2069 2070 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2071 } 2072 2073 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2074 { 2075 struct hisi_qm *qm = qp->qm; 2076 struct device *dev = &qm->pdev->dev; 2077 int qp_id = qp->qp_id; 2078 u32 pasid = arg; 2079 int ret; 2080 2081 if (!qm_qp_avail_state(qm, qp, QP_START)) 2082 return -EPERM; 2083 2084 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2085 if (ret) 2086 return ret; 2087 2088 atomic_set(&qp->qp_status.flags, QP_START); 2089 dev_dbg(dev, "queue %d started\n", qp_id); 2090 2091 return 0; 2092 } 2093 2094 /** 2095 * hisi_qm_start_qp() - Start a qp into running. 2096 * @qp: The qp we want to start to run. 2097 * @arg: Accelerator specific argument. 2098 * 2099 * After this function, qp can receive request from user. Return 0 if 2100 * successful, negative error code if failed. 2101 */ 2102 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2103 { 2104 struct hisi_qm *qm = qp->qm; 2105 int ret; 2106 2107 down_write(&qm->qps_lock); 2108 ret = qm_start_qp_nolock(qp, arg); 2109 up_write(&qm->qps_lock); 2110 2111 return ret; 2112 } 2113 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2114 2115 /** 2116 * qp_stop_fail_cb() - call request cb. 2117 * @qp: stopped failed qp. 2118 * 2119 * Callback function should be called whether task completed or not. 2120 */ 2121 static void qp_stop_fail_cb(struct hisi_qp *qp) 2122 { 2123 int qp_used = atomic_read(&qp->qp_status.used); 2124 u16 cur_tail = qp->qp_status.sq_tail; 2125 u16 sq_depth = qp->sq_depth; 2126 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 2127 struct hisi_qm *qm = qp->qm; 2128 u16 pos; 2129 int i; 2130 2131 for (i = 0; i < qp_used; i++) { 2132 pos = (i + cur_head) % sq_depth; 2133 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2134 atomic_dec(&qp->qp_status.used); 2135 } 2136 } 2137 2138 /** 2139 * qm_drain_qp() - Drain a qp. 2140 * @qp: The qp we want to drain. 2141 * 2142 * Determine whether the queue is cleared by judging the tail pointers of 2143 * sq and cq. 2144 */ 2145 static int qm_drain_qp(struct hisi_qp *qp) 2146 { 2147 size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); 2148 struct hisi_qm *qm = qp->qm; 2149 struct device *dev = &qm->pdev->dev; 2150 struct qm_sqc *sqc; 2151 struct qm_cqc *cqc; 2152 dma_addr_t dma_addr; 2153 int ret = 0, i = 0; 2154 void *addr; 2155 2156 /* No need to judge if master OOO is blocked. */ 2157 if (qm_check_dev_error(qm)) 2158 return 0; 2159 2160 /* Kunpeng930 supports drain qp by device */ 2161 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 2162 ret = qm_stop_qp(qp); 2163 if (ret) 2164 dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); 2165 return ret; 2166 } 2167 2168 addr = hisi_qm_ctx_alloc(qm, size, &dma_addr); 2169 if (IS_ERR(addr)) { 2170 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); 2171 return -ENOMEM; 2172 } 2173 2174 while (++i) { 2175 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); 2176 if (ret) { 2177 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2178 break; 2179 } 2180 sqc = addr; 2181 2182 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), 2183 qp->qp_id); 2184 if (ret) { 2185 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2186 break; 2187 } 2188 cqc = addr + sizeof(struct qm_sqc); 2189 2190 if ((sqc->tail == cqc->tail) && 2191 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2192 break; 2193 2194 if (i == MAX_WAIT_COUNTS) { 2195 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 2196 ret = -EBUSY; 2197 break; 2198 } 2199 2200 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2201 } 2202 2203 hisi_qm_ctx_free(qm, size, addr, &dma_addr); 2204 2205 return ret; 2206 } 2207 2208 static int qm_stop_qp_nolock(struct hisi_qp *qp) 2209 { 2210 struct device *dev = &qp->qm->pdev->dev; 2211 int ret; 2212 2213 /* 2214 * It is allowed to stop and release qp when reset, If the qp is 2215 * stopped when reset but still want to be released then, the 2216 * is_resetting flag should be set negative so that this qp will not 2217 * be restarted after reset. 2218 */ 2219 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 2220 qp->is_resetting = false; 2221 return 0; 2222 } 2223 2224 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 2225 return -EPERM; 2226 2227 atomic_set(&qp->qp_status.flags, QP_STOP); 2228 2229 ret = qm_drain_qp(qp); 2230 if (ret) 2231 dev_err(dev, "Failed to drain out data for stopping!\n"); 2232 2233 2234 flush_workqueue(qp->qm->wq); 2235 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2236 qp_stop_fail_cb(qp); 2237 2238 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2239 2240 return 0; 2241 } 2242 2243 /** 2244 * hisi_qm_stop_qp() - Stop a qp in qm. 2245 * @qp: The qp we want to stop. 2246 * 2247 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 2248 */ 2249 int hisi_qm_stop_qp(struct hisi_qp *qp) 2250 { 2251 int ret; 2252 2253 down_write(&qp->qm->qps_lock); 2254 ret = qm_stop_qp_nolock(qp); 2255 up_write(&qp->qm->qps_lock); 2256 2257 return ret; 2258 } 2259 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2260 2261 /** 2262 * hisi_qp_send() - Queue up a task in the hardware queue. 2263 * @qp: The qp in which to put the message. 2264 * @msg: The message. 2265 * 2266 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2267 * if qp related qm is resetting. 2268 * 2269 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2270 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2271 * reset may happen, we have no lock here considering performance. This 2272 * causes current qm_db sending fail or can not receive sended sqe. QM 2273 * sync/async receive function should handle the error sqe. ACC reset 2274 * done function should clear used sqe to 0. 2275 */ 2276 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2277 { 2278 struct hisi_qp_status *qp_status = &qp->qp_status; 2279 u16 sq_tail = qp_status->sq_tail; 2280 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 2281 void *sqe = qm_get_avail_sqe(qp); 2282 2283 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2284 atomic_read(&qp->qm->status.flags) == QM_STOP || 2285 qp->is_resetting)) { 2286 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2287 return -EAGAIN; 2288 } 2289 2290 if (!sqe) 2291 return -EBUSY; 2292 2293 memcpy(sqe, msg, qp->qm->sqe_size); 2294 2295 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2296 atomic_inc(&qp->qp_status.used); 2297 qp_status->sq_tail = sq_tail_next; 2298 2299 return 0; 2300 } 2301 EXPORT_SYMBOL_GPL(hisi_qp_send); 2302 2303 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2304 { 2305 unsigned int val; 2306 2307 if (qm->ver == QM_HW_V1) 2308 return; 2309 2310 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2311 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2312 val, val & BIT(0), POLL_PERIOD, 2313 POLL_TIMEOUT)) 2314 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2315 } 2316 2317 static void qm_qp_event_notifier(struct hisi_qp *qp) 2318 { 2319 wake_up_interruptible(&qp->uacce_q->wait); 2320 } 2321 2322 /* This function returns free number of qp in qm. */ 2323 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2324 { 2325 struct hisi_qm *qm = uacce->priv; 2326 int ret; 2327 2328 down_read(&qm->qps_lock); 2329 ret = qm->qp_num - qm->qp_in_used; 2330 up_read(&qm->qps_lock); 2331 2332 return ret; 2333 } 2334 2335 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 2336 { 2337 int i; 2338 2339 for (i = 0; i < qm->qp_num; i++) 2340 qm_set_qp_disable(&qm->qp_array[i], offset); 2341 } 2342 2343 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2344 unsigned long arg, 2345 struct uacce_queue *q) 2346 { 2347 struct hisi_qm *qm = uacce->priv; 2348 struct hisi_qp *qp; 2349 u8 alg_type = 0; 2350 2351 qp = hisi_qm_create_qp(qm, alg_type); 2352 if (IS_ERR(qp)) 2353 return PTR_ERR(qp); 2354 2355 q->priv = qp; 2356 q->uacce = uacce; 2357 qp->uacce_q = q; 2358 qp->event_cb = qm_qp_event_notifier; 2359 qp->pasid = arg; 2360 qp->is_in_kernel = false; 2361 2362 return 0; 2363 } 2364 2365 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2366 { 2367 struct hisi_qp *qp = q->priv; 2368 2369 hisi_qm_release_qp(qp); 2370 } 2371 2372 /* map sq/cq/doorbell to user space */ 2373 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2374 struct vm_area_struct *vma, 2375 struct uacce_qfile_region *qfr) 2376 { 2377 struct hisi_qp *qp = q->priv; 2378 struct hisi_qm *qm = qp->qm; 2379 resource_size_t phys_base = qm->db_phys_base + 2380 qp->qp_id * qm->db_interval; 2381 size_t sz = vma->vm_end - vma->vm_start; 2382 struct pci_dev *pdev = qm->pdev; 2383 struct device *dev = &pdev->dev; 2384 unsigned long vm_pgoff; 2385 int ret; 2386 2387 switch (qfr->type) { 2388 case UACCE_QFRT_MMIO: 2389 if (qm->ver == QM_HW_V1) { 2390 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2391 return -EINVAL; 2392 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 2393 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2394 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2395 return -EINVAL; 2396 } else { 2397 if (sz > qm->db_interval) 2398 return -EINVAL; 2399 } 2400 2401 vm_flags_set(vma, VM_IO); 2402 2403 return remap_pfn_range(vma, vma->vm_start, 2404 phys_base >> PAGE_SHIFT, 2405 sz, pgprot_noncached(vma->vm_page_prot)); 2406 case UACCE_QFRT_DUS: 2407 if (sz != qp->qdma.size) 2408 return -EINVAL; 2409 2410 /* 2411 * dma_mmap_coherent() requires vm_pgoff as 0 2412 * restore vm_pfoff to initial value for mmap() 2413 */ 2414 vm_pgoff = vma->vm_pgoff; 2415 vma->vm_pgoff = 0; 2416 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2417 qp->qdma.dma, sz); 2418 vma->vm_pgoff = vm_pgoff; 2419 return ret; 2420 2421 default: 2422 return -EINVAL; 2423 } 2424 } 2425 2426 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2427 { 2428 struct hisi_qp *qp = q->priv; 2429 2430 return hisi_qm_start_qp(qp, qp->pasid); 2431 } 2432 2433 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2434 { 2435 hisi_qm_stop_qp(q->priv); 2436 } 2437 2438 static int hisi_qm_is_q_updated(struct uacce_queue *q) 2439 { 2440 struct hisi_qp *qp = q->priv; 2441 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 2442 int updated = 0; 2443 2444 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 2445 /* make sure to read data from memory */ 2446 dma_rmb(); 2447 qm_cq_head_update(qp); 2448 cqe = qp->cqe + qp->qp_status.cq_head; 2449 updated = 1; 2450 } 2451 2452 return updated; 2453 } 2454 2455 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2456 { 2457 struct hisi_qm *qm = q->uacce->priv; 2458 struct hisi_qp *qp = q->priv; 2459 2460 down_write(&qm->qps_lock); 2461 qp->alg_type = type; 2462 up_write(&qm->qps_lock); 2463 } 2464 2465 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2466 unsigned long arg) 2467 { 2468 struct hisi_qp *qp = q->priv; 2469 struct hisi_qp_info qp_info; 2470 struct hisi_qp_ctx qp_ctx; 2471 2472 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2473 if (copy_from_user(&qp_ctx, (void __user *)arg, 2474 sizeof(struct hisi_qp_ctx))) 2475 return -EFAULT; 2476 2477 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 2478 return -EINVAL; 2479 2480 qm_set_sqctype(q, qp_ctx.qc_type); 2481 qp_ctx.id = qp->qp_id; 2482 2483 if (copy_to_user((void __user *)arg, &qp_ctx, 2484 sizeof(struct hisi_qp_ctx))) 2485 return -EFAULT; 2486 2487 return 0; 2488 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 2489 if (copy_from_user(&qp_info, (void __user *)arg, 2490 sizeof(struct hisi_qp_info))) 2491 return -EFAULT; 2492 2493 qp_info.sqe_size = qp->qm->sqe_size; 2494 qp_info.sq_depth = qp->sq_depth; 2495 qp_info.cq_depth = qp->cq_depth; 2496 2497 if (copy_to_user((void __user *)arg, &qp_info, 2498 sizeof(struct hisi_qp_info))) 2499 return -EFAULT; 2500 2501 return 0; 2502 } 2503 2504 return -EINVAL; 2505 } 2506 2507 /** 2508 * qm_hw_err_isolate() - Try to set the isolation status of the uacce device 2509 * according to user's configuration of error threshold. 2510 * @qm: the uacce device 2511 */ 2512 static int qm_hw_err_isolate(struct hisi_qm *qm) 2513 { 2514 struct qm_hw_err *err, *tmp, *hw_err; 2515 struct qm_err_isolate *isolate; 2516 u32 count = 0; 2517 2518 isolate = &qm->isolate_data; 2519 2520 #define SECONDS_PER_HOUR 3600 2521 2522 /* All the hw errs are processed by PF driver */ 2523 if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold) 2524 return 0; 2525 2526 hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL); 2527 if (!hw_err) 2528 return -ENOMEM; 2529 2530 /* 2531 * Time-stamp every slot AER error. Then check the AER error log when the 2532 * next device AER error occurred. if the device slot AER error count exceeds 2533 * the setting error threshold in one hour, the isolated state will be set 2534 * to true. And the AER error logs that exceed one hour will be cleared. 2535 */ 2536 mutex_lock(&isolate->isolate_lock); 2537 hw_err->timestamp = jiffies; 2538 list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) { 2539 if ((hw_err->timestamp - err->timestamp) / HZ > 2540 SECONDS_PER_HOUR) { 2541 list_del(&err->list); 2542 kfree(err); 2543 } else { 2544 count++; 2545 } 2546 } 2547 list_add(&hw_err->list, &isolate->qm_hw_errs); 2548 mutex_unlock(&isolate->isolate_lock); 2549 2550 if (count >= isolate->err_threshold) 2551 isolate->is_isolate = true; 2552 2553 return 0; 2554 } 2555 2556 static void qm_hw_err_destroy(struct hisi_qm *qm) 2557 { 2558 struct qm_hw_err *err, *tmp; 2559 2560 mutex_lock(&qm->isolate_data.isolate_lock); 2561 list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) { 2562 list_del(&err->list); 2563 kfree(err); 2564 } 2565 mutex_unlock(&qm->isolate_data.isolate_lock); 2566 } 2567 2568 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce) 2569 { 2570 struct hisi_qm *qm = uacce->priv; 2571 struct hisi_qm *pf_qm; 2572 2573 if (uacce->is_vf) 2574 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2575 else 2576 pf_qm = qm; 2577 2578 return pf_qm->isolate_data.is_isolate ? 2579 UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL; 2580 } 2581 2582 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num) 2583 { 2584 struct hisi_qm *qm = uacce->priv; 2585 2586 /* Must be set by PF */ 2587 if (uacce->is_vf) 2588 return -EPERM; 2589 2590 if (qm->isolate_data.is_isolate) 2591 return -EPERM; 2592 2593 qm->isolate_data.err_threshold = num; 2594 2595 /* After the policy is updated, need to reset the hardware err list */ 2596 qm_hw_err_destroy(qm); 2597 2598 return 0; 2599 } 2600 2601 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce) 2602 { 2603 struct hisi_qm *qm = uacce->priv; 2604 struct hisi_qm *pf_qm; 2605 2606 if (uacce->is_vf) { 2607 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2608 return pf_qm->isolate_data.err_threshold; 2609 } 2610 2611 return qm->isolate_data.err_threshold; 2612 } 2613 2614 static const struct uacce_ops uacce_qm_ops = { 2615 .get_available_instances = hisi_qm_get_available_instances, 2616 .get_queue = hisi_qm_uacce_get_queue, 2617 .put_queue = hisi_qm_uacce_put_queue, 2618 .start_queue = hisi_qm_uacce_start_queue, 2619 .stop_queue = hisi_qm_uacce_stop_queue, 2620 .mmap = hisi_qm_uacce_mmap, 2621 .ioctl = hisi_qm_uacce_ioctl, 2622 .is_q_updated = hisi_qm_is_q_updated, 2623 .get_isolate_state = hisi_qm_get_isolate_state, 2624 .isolate_err_threshold_write = hisi_qm_isolate_threshold_write, 2625 .isolate_err_threshold_read = hisi_qm_isolate_threshold_read, 2626 }; 2627 2628 static void qm_remove_uacce(struct hisi_qm *qm) 2629 { 2630 struct uacce_device *uacce = qm->uacce; 2631 2632 if (qm->use_sva) { 2633 qm_hw_err_destroy(qm); 2634 uacce_remove(uacce); 2635 qm->uacce = NULL; 2636 } 2637 } 2638 2639 static int qm_alloc_uacce(struct hisi_qm *qm) 2640 { 2641 struct pci_dev *pdev = qm->pdev; 2642 struct uacce_device *uacce; 2643 unsigned long mmio_page_nr; 2644 unsigned long dus_page_nr; 2645 u16 sq_depth, cq_depth; 2646 struct uacce_interface interface = { 2647 .flags = UACCE_DEV_SVA, 2648 .ops = &uacce_qm_ops, 2649 }; 2650 int ret; 2651 2652 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 2653 sizeof(interface.name)); 2654 if (ret < 0) 2655 return -ENAMETOOLONG; 2656 2657 uacce = uacce_alloc(&pdev->dev, &interface); 2658 if (IS_ERR(uacce)) 2659 return PTR_ERR(uacce); 2660 2661 if (uacce->flags & UACCE_DEV_SVA) { 2662 qm->use_sva = true; 2663 } else { 2664 /* only consider sva case */ 2665 qm_remove_uacce(qm); 2666 return -EINVAL; 2667 } 2668 2669 uacce->is_vf = pdev->is_virtfn; 2670 uacce->priv = qm; 2671 2672 if (qm->ver == QM_HW_V1) 2673 uacce->api_ver = HISI_QM_API_VER_BASE; 2674 else if (qm->ver == QM_HW_V2) 2675 uacce->api_ver = HISI_QM_API_VER2_BASE; 2676 else 2677 uacce->api_ver = HISI_QM_API_VER3_BASE; 2678 2679 if (qm->ver == QM_HW_V1) 2680 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2681 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2682 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2683 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2684 else 2685 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2686 2687 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 2688 2689 /* Add one more page for device or qp status */ 2690 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 2691 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 2692 PAGE_SHIFT; 2693 2694 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2695 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2696 2697 qm->uacce = uacce; 2698 INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs); 2699 mutex_init(&qm->isolate_data.isolate_lock); 2700 2701 return 0; 2702 } 2703 2704 /** 2705 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2706 * there is user on the QM, return failure without doing anything. 2707 * @qm: The qm needed to be fronzen. 2708 * 2709 * This function frozes QM, then we can do SRIOV disabling. 2710 */ 2711 static int qm_frozen(struct hisi_qm *qm) 2712 { 2713 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2714 return 0; 2715 2716 down_write(&qm->qps_lock); 2717 2718 if (!qm->qp_in_used) { 2719 qm->qp_in_used = qm->qp_num; 2720 up_write(&qm->qps_lock); 2721 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2722 return 0; 2723 } 2724 2725 up_write(&qm->qps_lock); 2726 2727 return -EBUSY; 2728 } 2729 2730 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2731 struct hisi_qm_list *qm_list) 2732 { 2733 struct hisi_qm *qm, *vf_qm; 2734 struct pci_dev *dev; 2735 int ret = 0; 2736 2737 if (!qm_list || !pdev) 2738 return -EINVAL; 2739 2740 /* Try to frozen all the VFs as disable SRIOV */ 2741 mutex_lock(&qm_list->lock); 2742 list_for_each_entry(qm, &qm_list->list, list) { 2743 dev = qm->pdev; 2744 if (dev == pdev) 2745 continue; 2746 if (pci_physfn(dev) == pdev) { 2747 vf_qm = pci_get_drvdata(dev); 2748 ret = qm_frozen(vf_qm); 2749 if (ret) 2750 goto frozen_fail; 2751 } 2752 } 2753 2754 frozen_fail: 2755 mutex_unlock(&qm_list->lock); 2756 2757 return ret; 2758 } 2759 2760 /** 2761 * hisi_qm_wait_task_finish() - Wait until the task is finished 2762 * when removing the driver. 2763 * @qm: The qm needed to wait for the task to finish. 2764 * @qm_list: The list of all available devices. 2765 */ 2766 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2767 { 2768 while (qm_frozen(qm) || 2769 ((qm->fun_type == QM_HW_PF) && 2770 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2771 msleep(WAIT_PERIOD); 2772 } 2773 2774 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2775 test_bit(QM_RESETTING, &qm->misc_ctl)) 2776 msleep(WAIT_PERIOD); 2777 2778 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2779 flush_work(&qm->cmd_process); 2780 2781 udelay(REMOVE_WAIT_DELAY); 2782 } 2783 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2784 2785 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2786 { 2787 struct device *dev = &qm->pdev->dev; 2788 struct qm_dma *qdma; 2789 int i; 2790 2791 for (i = num - 1; i >= 0; i--) { 2792 qdma = &qm->qp_array[i].qdma; 2793 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2794 kfree(qm->poll_data[i].qp_finish_id); 2795 } 2796 2797 kfree(qm->poll_data); 2798 kfree(qm->qp_array); 2799 } 2800 2801 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 2802 u16 sq_depth, u16 cq_depth) 2803 { 2804 struct device *dev = &qm->pdev->dev; 2805 size_t off = qm->sqe_size * sq_depth; 2806 struct hisi_qp *qp; 2807 int ret = -ENOMEM; 2808 2809 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 2810 GFP_KERNEL); 2811 if (!qm->poll_data[id].qp_finish_id) 2812 return -ENOMEM; 2813 2814 qp = &qm->qp_array[id]; 2815 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2816 GFP_KERNEL); 2817 if (!qp->qdma.va) 2818 goto err_free_qp_finish_id; 2819 2820 qp->sqe = qp->qdma.va; 2821 qp->sqe_dma = qp->qdma.dma; 2822 qp->cqe = qp->qdma.va + off; 2823 qp->cqe_dma = qp->qdma.dma + off; 2824 qp->qdma.size = dma_size; 2825 qp->sq_depth = sq_depth; 2826 qp->cq_depth = cq_depth; 2827 qp->qm = qm; 2828 qp->qp_id = id; 2829 2830 return 0; 2831 2832 err_free_qp_finish_id: 2833 kfree(qm->poll_data[id].qp_finish_id); 2834 return ret; 2835 } 2836 2837 static void hisi_qm_pre_init(struct hisi_qm *qm) 2838 { 2839 struct pci_dev *pdev = qm->pdev; 2840 2841 if (qm->ver == QM_HW_V1) 2842 qm->ops = &qm_hw_ops_v1; 2843 else if (qm->ver == QM_HW_V2) 2844 qm->ops = &qm_hw_ops_v2; 2845 else 2846 qm->ops = &qm_hw_ops_v3; 2847 2848 pci_set_drvdata(pdev, qm); 2849 mutex_init(&qm->mailbox_lock); 2850 init_rwsem(&qm->qps_lock); 2851 qm->qp_in_used = 0; 2852 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 2853 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 2854 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 2855 } 2856 } 2857 2858 static void qm_cmd_uninit(struct hisi_qm *qm) 2859 { 2860 u32 val; 2861 2862 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2863 return; 2864 2865 val = readl(qm->io_base + QM_IFC_INT_MASK); 2866 val |= QM_IFC_INT_DISABLE; 2867 writel(val, qm->io_base + QM_IFC_INT_MASK); 2868 } 2869 2870 static void qm_cmd_init(struct hisi_qm *qm) 2871 { 2872 u32 val; 2873 2874 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2875 return; 2876 2877 /* Clear communication interrupt source */ 2878 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 2879 2880 /* Enable pf to vf communication reg. */ 2881 val = readl(qm->io_base + QM_IFC_INT_MASK); 2882 val &= ~QM_IFC_INT_DISABLE; 2883 writel(val, qm->io_base + QM_IFC_INT_MASK); 2884 } 2885 2886 static void qm_put_pci_res(struct hisi_qm *qm) 2887 { 2888 struct pci_dev *pdev = qm->pdev; 2889 2890 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2891 iounmap(qm->db_io_base); 2892 2893 iounmap(qm->io_base); 2894 pci_release_mem_regions(pdev); 2895 } 2896 2897 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 2898 { 2899 struct pci_dev *pdev = qm->pdev; 2900 2901 pci_free_irq_vectors(pdev); 2902 qm_put_pci_res(qm); 2903 pci_disable_device(pdev); 2904 } 2905 2906 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 2907 { 2908 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 2909 writel(state, qm->io_base + QM_VF_STATE); 2910 } 2911 2912 static void hisi_qm_unint_work(struct hisi_qm *qm) 2913 { 2914 destroy_workqueue(qm->wq); 2915 } 2916 2917 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 2918 { 2919 struct device *dev = &qm->pdev->dev; 2920 2921 hisi_qp_memory_uninit(qm, qm->qp_num); 2922 if (qm->qdma.va) { 2923 hisi_qm_cache_wb(qm); 2924 dma_free_coherent(dev, qm->qdma.size, 2925 qm->qdma.va, qm->qdma.dma); 2926 } 2927 2928 idr_destroy(&qm->qp_idr); 2929 2930 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 2931 kfree(qm->factor); 2932 } 2933 2934 /** 2935 * hisi_qm_uninit() - Uninitialize qm. 2936 * @qm: The qm needed uninit. 2937 * 2938 * This function uninits qm related device resources. 2939 */ 2940 void hisi_qm_uninit(struct hisi_qm *qm) 2941 { 2942 qm_cmd_uninit(qm); 2943 hisi_qm_unint_work(qm); 2944 down_write(&qm->qps_lock); 2945 2946 if (!qm_avail_state(qm, QM_CLOSE)) { 2947 up_write(&qm->qps_lock); 2948 return; 2949 } 2950 2951 hisi_qm_memory_uninit(qm); 2952 hisi_qm_set_state(qm, QM_NOT_READY); 2953 up_write(&qm->qps_lock); 2954 2955 qm_irqs_unregister(qm); 2956 hisi_qm_pci_uninit(qm); 2957 if (qm->use_sva) { 2958 uacce_remove(qm->uacce); 2959 qm->uacce = NULL; 2960 } 2961 } 2962 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 2963 2964 /** 2965 * hisi_qm_get_vft() - Get vft from a qm. 2966 * @qm: The qm we want to get its vft. 2967 * @base: The base number of queue in vft. 2968 * @number: The number of queues in vft. 2969 * 2970 * We can allocate multiple queues to a qm by configuring virtual function 2971 * table. We get related configures by this function. Normally, we call this 2972 * function in VF driver to get the queue information. 2973 * 2974 * qm hw v1 does not support this interface. 2975 */ 2976 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 2977 { 2978 if (!base || !number) 2979 return -EINVAL; 2980 2981 if (!qm->ops->get_vft) { 2982 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 2983 return -EINVAL; 2984 } 2985 2986 return qm->ops->get_vft(qm, base, number); 2987 } 2988 2989 /** 2990 * hisi_qm_set_vft() - Set vft to a qm. 2991 * @qm: The qm we want to set its vft. 2992 * @fun_num: The function number. 2993 * @base: The base number of queue in vft. 2994 * @number: The number of queues in vft. 2995 * 2996 * This function is alway called in PF driver, it is used to assign queues 2997 * among PF and VFs. 2998 * 2999 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 3000 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 3001 * (VF function number 0x2) 3002 */ 3003 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 3004 u32 number) 3005 { 3006 u32 max_q_num = qm->ctrl_qp_num; 3007 3008 if (base >= max_q_num || number > max_q_num || 3009 (base + number) > max_q_num) 3010 return -EINVAL; 3011 3012 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 3013 } 3014 3015 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 3016 { 3017 struct hisi_qm_status *status = &qm->status; 3018 3019 status->eq_head = 0; 3020 status->aeq_head = 0; 3021 status->eqc_phase = true; 3022 status->aeqc_phase = true; 3023 } 3024 3025 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 3026 { 3027 /* Clear eq/aeq interrupt source */ 3028 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 3029 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 3030 3031 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 3032 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 3033 } 3034 3035 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 3036 { 3037 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 3038 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 3039 } 3040 3041 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 3042 { 3043 struct device *dev = &qm->pdev->dev; 3044 struct qm_eqc *eqc; 3045 dma_addr_t eqc_dma; 3046 int ret; 3047 3048 eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); 3049 if (!eqc) 3050 return -ENOMEM; 3051 3052 eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3053 eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3054 if (qm->ver == QM_HW_V1) 3055 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3056 eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3057 3058 eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), 3059 DMA_TO_DEVICE); 3060 if (dma_mapping_error(dev, eqc_dma)) { 3061 kfree(eqc); 3062 return -ENOMEM; 3063 } 3064 3065 ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); 3066 dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); 3067 kfree(eqc); 3068 3069 return ret; 3070 } 3071 3072 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3073 { 3074 struct device *dev = &qm->pdev->dev; 3075 struct qm_aeqc *aeqc; 3076 dma_addr_t aeqc_dma; 3077 int ret; 3078 3079 aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); 3080 if (!aeqc) 3081 return -ENOMEM; 3082 3083 aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3084 aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3085 aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3086 3087 aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), 3088 DMA_TO_DEVICE); 3089 if (dma_mapping_error(dev, aeqc_dma)) { 3090 kfree(aeqc); 3091 return -ENOMEM; 3092 } 3093 3094 ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); 3095 dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); 3096 kfree(aeqc); 3097 3098 return ret; 3099 } 3100 3101 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3102 { 3103 struct device *dev = &qm->pdev->dev; 3104 int ret; 3105 3106 qm_init_eq_aeq_status(qm); 3107 3108 ret = qm_eq_ctx_cfg(qm); 3109 if (ret) { 3110 dev_err(dev, "Set eqc failed!\n"); 3111 return ret; 3112 } 3113 3114 return qm_aeq_ctx_cfg(qm); 3115 } 3116 3117 static int __hisi_qm_start(struct hisi_qm *qm) 3118 { 3119 int ret; 3120 3121 WARN_ON(!qm->qdma.va); 3122 3123 if (qm->fun_type == QM_HW_PF) { 3124 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3125 if (ret) 3126 return ret; 3127 } 3128 3129 ret = qm_eq_aeq_ctx_cfg(qm); 3130 if (ret) 3131 return ret; 3132 3133 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3134 if (ret) 3135 return ret; 3136 3137 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3138 if (ret) 3139 return ret; 3140 3141 qm_init_prefetch(qm); 3142 qm_enable_eq_aeq_interrupts(qm); 3143 3144 return 0; 3145 } 3146 3147 /** 3148 * hisi_qm_start() - start qm 3149 * @qm: The qm to be started. 3150 * 3151 * This function starts a qm, then we can allocate qp from this qm. 3152 */ 3153 int hisi_qm_start(struct hisi_qm *qm) 3154 { 3155 struct device *dev = &qm->pdev->dev; 3156 int ret = 0; 3157 3158 down_write(&qm->qps_lock); 3159 3160 if (!qm_avail_state(qm, QM_START)) { 3161 up_write(&qm->qps_lock); 3162 return -EPERM; 3163 } 3164 3165 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3166 3167 if (!qm->qp_num) { 3168 dev_err(dev, "qp_num should not be 0\n"); 3169 ret = -EINVAL; 3170 goto err_unlock; 3171 } 3172 3173 ret = __hisi_qm_start(qm); 3174 if (!ret) 3175 atomic_set(&qm->status.flags, QM_START); 3176 3177 hisi_qm_set_state(qm, QM_READY); 3178 err_unlock: 3179 up_write(&qm->qps_lock); 3180 return ret; 3181 } 3182 EXPORT_SYMBOL_GPL(hisi_qm_start); 3183 3184 static int qm_restart(struct hisi_qm *qm) 3185 { 3186 struct device *dev = &qm->pdev->dev; 3187 struct hisi_qp *qp; 3188 int ret, i; 3189 3190 ret = hisi_qm_start(qm); 3191 if (ret < 0) 3192 return ret; 3193 3194 down_write(&qm->qps_lock); 3195 for (i = 0; i < qm->qp_num; i++) { 3196 qp = &qm->qp_array[i]; 3197 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3198 qp->is_resetting == true) { 3199 ret = qm_start_qp_nolock(qp, 0); 3200 if (ret < 0) { 3201 dev_err(dev, "Failed to start qp%d!\n", i); 3202 3203 up_write(&qm->qps_lock); 3204 return ret; 3205 } 3206 qp->is_resetting = false; 3207 } 3208 } 3209 up_write(&qm->qps_lock); 3210 3211 return 0; 3212 } 3213 3214 /* Stop started qps in reset flow */ 3215 static int qm_stop_started_qp(struct hisi_qm *qm) 3216 { 3217 struct device *dev = &qm->pdev->dev; 3218 struct hisi_qp *qp; 3219 int i, ret; 3220 3221 for (i = 0; i < qm->qp_num; i++) { 3222 qp = &qm->qp_array[i]; 3223 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 3224 qp->is_resetting = true; 3225 ret = qm_stop_qp_nolock(qp); 3226 if (ret < 0) { 3227 dev_err(dev, "Failed to stop qp%d!\n", i); 3228 return ret; 3229 } 3230 } 3231 } 3232 3233 return 0; 3234 } 3235 3236 /** 3237 * qm_clear_queues() - Clear all queues memory in a qm. 3238 * @qm: The qm in which the queues will be cleared. 3239 * 3240 * This function clears all queues memory in a qm. Reset of accelerator can 3241 * use this to clear queues. 3242 */ 3243 static void qm_clear_queues(struct hisi_qm *qm) 3244 { 3245 struct hisi_qp *qp; 3246 int i; 3247 3248 for (i = 0; i < qm->qp_num; i++) { 3249 qp = &qm->qp_array[i]; 3250 if (qp->is_in_kernel && qp->is_resetting) 3251 memset(qp->qdma.va, 0, qp->qdma.size); 3252 } 3253 3254 memset(qm->qdma.va, 0, qm->qdma.size); 3255 } 3256 3257 /** 3258 * hisi_qm_stop() - Stop a qm. 3259 * @qm: The qm which will be stopped. 3260 * @r: The reason to stop qm. 3261 * 3262 * This function stops qm and its qps, then qm can not accept request. 3263 * Related resources are not released at this state, we can use hisi_qm_start 3264 * to let qm start again. 3265 */ 3266 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3267 { 3268 struct device *dev = &qm->pdev->dev; 3269 int ret = 0; 3270 3271 down_write(&qm->qps_lock); 3272 3273 qm->status.stop_reason = r; 3274 if (!qm_avail_state(qm, QM_STOP)) { 3275 ret = -EPERM; 3276 goto err_unlock; 3277 } 3278 3279 if (qm->status.stop_reason == QM_SOFT_RESET || 3280 qm->status.stop_reason == QM_DOWN) { 3281 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3282 ret = qm_stop_started_qp(qm); 3283 if (ret < 0) { 3284 dev_err(dev, "Failed to stop started qp!\n"); 3285 goto err_unlock; 3286 } 3287 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3288 } 3289 3290 qm_disable_eq_aeq_interrupts(qm); 3291 if (qm->fun_type == QM_HW_PF) { 3292 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3293 if (ret < 0) { 3294 dev_err(dev, "Failed to set vft!\n"); 3295 ret = -EBUSY; 3296 goto err_unlock; 3297 } 3298 } 3299 3300 qm_clear_queues(qm); 3301 atomic_set(&qm->status.flags, QM_STOP); 3302 3303 err_unlock: 3304 up_write(&qm->qps_lock); 3305 return ret; 3306 } 3307 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3308 3309 static void qm_hw_error_init(struct hisi_qm *qm) 3310 { 3311 if (!qm->ops->hw_error_init) { 3312 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3313 return; 3314 } 3315 3316 qm->ops->hw_error_init(qm); 3317 } 3318 3319 static void qm_hw_error_uninit(struct hisi_qm *qm) 3320 { 3321 if (!qm->ops->hw_error_uninit) { 3322 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3323 return; 3324 } 3325 3326 qm->ops->hw_error_uninit(qm); 3327 } 3328 3329 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3330 { 3331 if (!qm->ops->hw_error_handle) { 3332 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3333 return ACC_ERR_NONE; 3334 } 3335 3336 return qm->ops->hw_error_handle(qm); 3337 } 3338 3339 /** 3340 * hisi_qm_dev_err_init() - Initialize device error configuration. 3341 * @qm: The qm for which we want to do error initialization. 3342 * 3343 * Initialize QM and device error related configuration. 3344 */ 3345 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3346 { 3347 if (qm->fun_type == QM_HW_VF) 3348 return; 3349 3350 qm_hw_error_init(qm); 3351 3352 if (!qm->err_ini->hw_err_enable) { 3353 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3354 return; 3355 } 3356 qm->err_ini->hw_err_enable(qm); 3357 } 3358 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3359 3360 /** 3361 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3362 * @qm: The qm for which we want to do error uninitialization. 3363 * 3364 * Uninitialize QM and device error related configuration. 3365 */ 3366 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3367 { 3368 if (qm->fun_type == QM_HW_VF) 3369 return; 3370 3371 qm_hw_error_uninit(qm); 3372 3373 if (!qm->err_ini->hw_err_disable) { 3374 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3375 return; 3376 } 3377 qm->err_ini->hw_err_disable(qm); 3378 } 3379 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3380 3381 /** 3382 * hisi_qm_free_qps() - free multiple queue pairs. 3383 * @qps: The queue pairs need to be freed. 3384 * @qp_num: The num of queue pairs. 3385 */ 3386 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3387 { 3388 int i; 3389 3390 if (!qps || qp_num <= 0) 3391 return; 3392 3393 for (i = qp_num - 1; i >= 0; i--) 3394 hisi_qm_release_qp(qps[i]); 3395 } 3396 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3397 3398 static void free_list(struct list_head *head) 3399 { 3400 struct hisi_qm_resource *res, *tmp; 3401 3402 list_for_each_entry_safe(res, tmp, head, list) { 3403 list_del(&res->list); 3404 kfree(res); 3405 } 3406 } 3407 3408 static int hisi_qm_sort_devices(int node, struct list_head *head, 3409 struct hisi_qm_list *qm_list) 3410 { 3411 struct hisi_qm_resource *res, *tmp; 3412 struct hisi_qm *qm; 3413 struct list_head *n; 3414 struct device *dev; 3415 int dev_node; 3416 3417 list_for_each_entry(qm, &qm_list->list, list) { 3418 dev = &qm->pdev->dev; 3419 3420 dev_node = dev_to_node(dev); 3421 if (dev_node < 0) 3422 dev_node = 0; 3423 3424 res = kzalloc(sizeof(*res), GFP_KERNEL); 3425 if (!res) 3426 return -ENOMEM; 3427 3428 res->qm = qm; 3429 res->distance = node_distance(dev_node, node); 3430 n = head; 3431 list_for_each_entry(tmp, head, list) { 3432 if (res->distance < tmp->distance) { 3433 n = &tmp->list; 3434 break; 3435 } 3436 } 3437 list_add_tail(&res->list, n); 3438 } 3439 3440 return 0; 3441 } 3442 3443 /** 3444 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3445 * @qm_list: The list of all available devices. 3446 * @qp_num: The number of queue pairs need created. 3447 * @alg_type: The algorithm type. 3448 * @node: The numa node. 3449 * @qps: The queue pairs need created. 3450 * 3451 * This function will sort all available device according to numa distance. 3452 * Then try to create all queue pairs from one device, if all devices do 3453 * not meet the requirements will return error. 3454 */ 3455 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3456 u8 alg_type, int node, struct hisi_qp **qps) 3457 { 3458 struct hisi_qm_resource *tmp; 3459 int ret = -ENODEV; 3460 LIST_HEAD(head); 3461 int i; 3462 3463 if (!qps || !qm_list || qp_num <= 0) 3464 return -EINVAL; 3465 3466 mutex_lock(&qm_list->lock); 3467 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3468 mutex_unlock(&qm_list->lock); 3469 goto err; 3470 } 3471 3472 list_for_each_entry(tmp, &head, list) { 3473 for (i = 0; i < qp_num; i++) { 3474 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3475 if (IS_ERR(qps[i])) { 3476 hisi_qm_free_qps(qps, i); 3477 break; 3478 } 3479 } 3480 3481 if (i == qp_num) { 3482 ret = 0; 3483 break; 3484 } 3485 } 3486 3487 mutex_unlock(&qm_list->lock); 3488 if (ret) 3489 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3490 node, alg_type, qp_num); 3491 3492 err: 3493 free_list(&head); 3494 return ret; 3495 } 3496 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3497 3498 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3499 { 3500 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3501 u32 max_qp_num = qm->max_qp_num; 3502 u32 q_base = qm->qp_num; 3503 int ret; 3504 3505 if (!num_vfs) 3506 return -EINVAL; 3507 3508 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3509 3510 /* If vfs_q_num is less than num_vfs, return error. */ 3511 if (vfs_q_num < num_vfs) 3512 return -EINVAL; 3513 3514 q_num = vfs_q_num / num_vfs; 3515 remain_q_num = vfs_q_num % num_vfs; 3516 3517 for (i = num_vfs; i > 0; i--) { 3518 /* 3519 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3520 * remaining queues equally. 3521 */ 3522 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3523 act_q_num = q_num + remain_q_num; 3524 remain_q_num = 0; 3525 } else if (remain_q_num > 0) { 3526 act_q_num = q_num + 1; 3527 remain_q_num--; 3528 } else { 3529 act_q_num = q_num; 3530 } 3531 3532 act_q_num = min(act_q_num, max_qp_num); 3533 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3534 if (ret) { 3535 for (j = num_vfs; j > i; j--) 3536 hisi_qm_set_vft(qm, j, 0, 0); 3537 return ret; 3538 } 3539 q_base += act_q_num; 3540 } 3541 3542 return 0; 3543 } 3544 3545 static int qm_clear_vft_config(struct hisi_qm *qm) 3546 { 3547 int ret; 3548 u32 i; 3549 3550 for (i = 1; i <= qm->vfs_num; i++) { 3551 ret = hisi_qm_set_vft(qm, i, 0, 0); 3552 if (ret) 3553 return ret; 3554 } 3555 qm->vfs_num = 0; 3556 3557 return 0; 3558 } 3559 3560 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 3561 { 3562 struct device *dev = &qm->pdev->dev; 3563 u32 ir = qos * QM_QOS_RATE; 3564 int ret, total_vfs, i; 3565 3566 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 3567 if (fun_index > total_vfs) 3568 return -EINVAL; 3569 3570 qm->factor[fun_index].func_qos = qos; 3571 3572 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 3573 if (ret) { 3574 dev_err(dev, "failed to calculate shaper parameter!\n"); 3575 return -EINVAL; 3576 } 3577 3578 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 3579 /* The base number of queue reuse for different alg type */ 3580 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 3581 if (ret) { 3582 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 3583 return -EINVAL; 3584 } 3585 } 3586 3587 return 0; 3588 } 3589 3590 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 3591 { 3592 u64 cir_u = 0, cir_b = 0, cir_s = 0; 3593 u64 shaper_vft, ir_calc, ir; 3594 unsigned int val; 3595 u32 error_rate; 3596 int ret; 3597 3598 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3599 val & BIT(0), POLL_PERIOD, 3600 POLL_TIMEOUT); 3601 if (ret) 3602 return 0; 3603 3604 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 3605 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 3606 writel(fun_index, qm->io_base + QM_VFT_CFG); 3607 3608 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 3609 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 3610 3611 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3612 val & BIT(0), POLL_PERIOD, 3613 POLL_TIMEOUT); 3614 if (ret) 3615 return 0; 3616 3617 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 3618 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 3619 3620 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 3621 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 3622 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 3623 3624 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 3625 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 3626 3627 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 3628 3629 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 3630 3631 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 3632 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 3633 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 3634 return 0; 3635 } 3636 3637 return ir; 3638 } 3639 3640 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 3641 { 3642 struct device *dev = &qm->pdev->dev; 3643 u64 mb_cmd; 3644 u32 qos; 3645 int ret; 3646 3647 qos = qm_get_shaper_vft_qos(qm, fun_num); 3648 if (!qos) { 3649 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 3650 return; 3651 } 3652 3653 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 3654 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 3655 if (ret) 3656 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 3657 } 3658 3659 static int qm_vf_read_qos(struct hisi_qm *qm) 3660 { 3661 int cnt = 0; 3662 int ret = -EINVAL; 3663 3664 /* reset mailbox qos val */ 3665 qm->mb_qos = 0; 3666 3667 /* vf ping pf to get function qos */ 3668 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 3669 if (ret) { 3670 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 3671 return ret; 3672 } 3673 3674 while (true) { 3675 msleep(QM_WAIT_DST_ACK); 3676 if (qm->mb_qos) 3677 break; 3678 3679 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 3680 pci_err(qm->pdev, "PF ping VF timeout!\n"); 3681 return -ETIMEDOUT; 3682 } 3683 } 3684 3685 return ret; 3686 } 3687 3688 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 3689 size_t count, loff_t *pos) 3690 { 3691 struct hisi_qm *qm = filp->private_data; 3692 char tbuf[QM_DBG_READ_LEN]; 3693 u32 qos_val, ir; 3694 int ret; 3695 3696 ret = hisi_qm_get_dfx_access(qm); 3697 if (ret) 3698 return ret; 3699 3700 /* Mailbox and reset cannot be operated at the same time */ 3701 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3702 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 3703 ret = -EAGAIN; 3704 goto err_put_dfx_access; 3705 } 3706 3707 if (qm->fun_type == QM_HW_PF) { 3708 ir = qm_get_shaper_vft_qos(qm, 0); 3709 } else { 3710 ret = qm_vf_read_qos(qm); 3711 if (ret) 3712 goto err_get_status; 3713 ir = qm->mb_qos; 3714 } 3715 3716 qos_val = ir / QM_QOS_RATE; 3717 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 3718 3719 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 3720 3721 err_get_status: 3722 clear_bit(QM_RESETTING, &qm->misc_ctl); 3723 err_put_dfx_access: 3724 hisi_qm_put_dfx_access(qm); 3725 return ret; 3726 } 3727 3728 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 3729 unsigned long *val, 3730 unsigned int *fun_index) 3731 { 3732 const struct bus_type *bus_type = qm->pdev->dev.bus; 3733 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 3734 char val_buf[QM_DBG_READ_LEN] = {0}; 3735 struct pci_dev *pdev; 3736 struct device *dev; 3737 int ret; 3738 3739 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 3740 if (ret != QM_QOS_PARAM_NUM) 3741 return -EINVAL; 3742 3743 ret = kstrtoul(val_buf, 10, val); 3744 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 3745 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 3746 return -EINVAL; 3747 } 3748 3749 dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); 3750 if (!dev) { 3751 pci_err(qm->pdev, "input pci bdf number is error!\n"); 3752 return -ENODEV; 3753 } 3754 3755 pdev = container_of(dev, struct pci_dev, dev); 3756 3757 *fun_index = pdev->devfn; 3758 3759 return 0; 3760 } 3761 3762 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 3763 size_t count, loff_t *pos) 3764 { 3765 struct hisi_qm *qm = filp->private_data; 3766 char tbuf[QM_DBG_READ_LEN]; 3767 unsigned int fun_index; 3768 unsigned long val; 3769 int len, ret; 3770 3771 if (*pos != 0) 3772 return 0; 3773 3774 if (count >= QM_DBG_READ_LEN) 3775 return -ENOSPC; 3776 3777 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 3778 if (len < 0) 3779 return len; 3780 3781 tbuf[len] = '\0'; 3782 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 3783 if (ret) 3784 return ret; 3785 3786 /* Mailbox and reset cannot be operated at the same time */ 3787 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3788 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 3789 return -EAGAIN; 3790 } 3791 3792 ret = qm_pm_get_sync(qm); 3793 if (ret) { 3794 ret = -EINVAL; 3795 goto err_get_status; 3796 } 3797 3798 ret = qm_func_shaper_enable(qm, fun_index, val); 3799 if (ret) { 3800 pci_err(qm->pdev, "failed to enable function shaper!\n"); 3801 ret = -EINVAL; 3802 goto err_put_sync; 3803 } 3804 3805 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 3806 fun_index, val); 3807 ret = count; 3808 3809 err_put_sync: 3810 qm_pm_put_sync(qm); 3811 err_get_status: 3812 clear_bit(QM_RESETTING, &qm->misc_ctl); 3813 return ret; 3814 } 3815 3816 static const struct file_operations qm_algqos_fops = { 3817 .owner = THIS_MODULE, 3818 .open = simple_open, 3819 .read = qm_algqos_read, 3820 .write = qm_algqos_write, 3821 }; 3822 3823 /** 3824 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 3825 * @qm: The qm for which we want to add debugfs files. 3826 * 3827 * Create function qos debugfs files, VF ping PF to get function qos. 3828 */ 3829 void hisi_qm_set_algqos_init(struct hisi_qm *qm) 3830 { 3831 if (qm->fun_type == QM_HW_PF) 3832 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 3833 qm, &qm_algqos_fops); 3834 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3835 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 3836 qm, &qm_algqos_fops); 3837 } 3838 3839 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 3840 { 3841 int i; 3842 3843 for (i = 1; i <= total_func; i++) 3844 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 3845 } 3846 3847 /** 3848 * hisi_qm_sriov_enable() - enable virtual functions 3849 * @pdev: the PCIe device 3850 * @max_vfs: the number of virtual functions to enable 3851 * 3852 * Returns the number of enabled VFs. If there are VFs enabled already or 3853 * max_vfs is more than the total number of device can be enabled, returns 3854 * failure. 3855 */ 3856 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3857 { 3858 struct hisi_qm *qm = pci_get_drvdata(pdev); 3859 int pre_existing_vfs, num_vfs, total_vfs, ret; 3860 3861 ret = qm_pm_get_sync(qm); 3862 if (ret) 3863 return ret; 3864 3865 total_vfs = pci_sriov_get_totalvfs(pdev); 3866 pre_existing_vfs = pci_num_vf(pdev); 3867 if (pre_existing_vfs) { 3868 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3869 pre_existing_vfs); 3870 goto err_put_sync; 3871 } 3872 3873 if (max_vfs > total_vfs) { 3874 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 3875 ret = -ERANGE; 3876 goto err_put_sync; 3877 } 3878 3879 num_vfs = max_vfs; 3880 3881 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3882 hisi_qm_init_vf_qos(qm, num_vfs); 3883 3884 ret = qm_vf_q_assign(qm, num_vfs); 3885 if (ret) { 3886 pci_err(pdev, "Can't assign queues for VF!\n"); 3887 goto err_put_sync; 3888 } 3889 3890 qm->vfs_num = num_vfs; 3891 3892 ret = pci_enable_sriov(pdev, num_vfs); 3893 if (ret) { 3894 pci_err(pdev, "Can't enable VF!\n"); 3895 qm_clear_vft_config(qm); 3896 goto err_put_sync; 3897 } 3898 3899 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3900 3901 return num_vfs; 3902 3903 err_put_sync: 3904 qm_pm_put_sync(qm); 3905 return ret; 3906 } 3907 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3908 3909 /** 3910 * hisi_qm_sriov_disable - disable virtual functions 3911 * @pdev: the PCI device. 3912 * @is_frozen: true when all the VFs are frozen. 3913 * 3914 * Return failure if there are VFs assigned already or VF is in used. 3915 */ 3916 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3917 { 3918 struct hisi_qm *qm = pci_get_drvdata(pdev); 3919 int ret; 3920 3921 if (pci_vfs_assigned(pdev)) { 3922 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3923 return -EPERM; 3924 } 3925 3926 /* While VF is in used, SRIOV cannot be disabled. */ 3927 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 3928 pci_err(pdev, "Task is using its VF!\n"); 3929 return -EBUSY; 3930 } 3931 3932 pci_disable_sriov(pdev); 3933 3934 ret = qm_clear_vft_config(qm); 3935 if (ret) 3936 return ret; 3937 3938 qm_pm_put_sync(qm); 3939 3940 return 0; 3941 } 3942 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 3943 3944 /** 3945 * hisi_qm_sriov_configure - configure the number of VFs 3946 * @pdev: The PCI device 3947 * @num_vfs: The number of VFs need enabled 3948 * 3949 * Enable SR-IOV according to num_vfs, 0 means disable. 3950 */ 3951 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 3952 { 3953 if (num_vfs == 0) 3954 return hisi_qm_sriov_disable(pdev, false); 3955 else 3956 return hisi_qm_sriov_enable(pdev, num_vfs); 3957 } 3958 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 3959 3960 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 3961 { 3962 u32 err_sts; 3963 3964 if (!qm->err_ini->get_dev_hw_err_status) { 3965 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 3966 return ACC_ERR_NONE; 3967 } 3968 3969 /* get device hardware error status */ 3970 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 3971 if (err_sts) { 3972 if (err_sts & qm->err_info.ecc_2bits_mask) 3973 qm->err_status.is_dev_ecc_mbit = true; 3974 3975 if (qm->err_ini->log_dev_hw_err) 3976 qm->err_ini->log_dev_hw_err(qm, err_sts); 3977 3978 if (err_sts & qm->err_info.dev_reset_mask) 3979 return ACC_ERR_NEED_RESET; 3980 3981 if (qm->err_ini->clear_dev_hw_err_status) 3982 qm->err_ini->clear_dev_hw_err_status(qm, err_sts); 3983 } 3984 3985 return ACC_ERR_RECOVERED; 3986 } 3987 3988 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 3989 { 3990 enum acc_err_result qm_ret, dev_ret; 3991 3992 /* log qm error */ 3993 qm_ret = qm_hw_error_handle(qm); 3994 3995 /* log device error */ 3996 dev_ret = qm_dev_err_handle(qm); 3997 3998 return (qm_ret == ACC_ERR_NEED_RESET || 3999 dev_ret == ACC_ERR_NEED_RESET) ? 4000 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 4001 } 4002 4003 /** 4004 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 4005 * @pdev: The PCI device which need report error. 4006 * @state: The connectivity between CPU and device. 4007 * 4008 * We register this function into PCIe AER handlers, It will report device or 4009 * qm hardware error status when error occur. 4010 */ 4011 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 4012 pci_channel_state_t state) 4013 { 4014 struct hisi_qm *qm = pci_get_drvdata(pdev); 4015 enum acc_err_result ret; 4016 4017 if (pdev->is_virtfn) 4018 return PCI_ERS_RESULT_NONE; 4019 4020 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 4021 if (state == pci_channel_io_perm_failure) 4022 return PCI_ERS_RESULT_DISCONNECT; 4023 4024 ret = qm_process_dev_error(qm); 4025 if (ret == ACC_ERR_NEED_RESET) 4026 return PCI_ERS_RESULT_NEED_RESET; 4027 4028 return PCI_ERS_RESULT_RECOVERED; 4029 } 4030 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 4031 4032 static int qm_check_req_recv(struct hisi_qm *qm) 4033 { 4034 struct pci_dev *pdev = qm->pdev; 4035 int ret; 4036 u32 val; 4037 4038 if (qm->ver >= QM_HW_V3) 4039 return 0; 4040 4041 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 4042 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4043 (val == ACC_VENDOR_ID_VALUE), 4044 POLL_PERIOD, POLL_TIMEOUT); 4045 if (ret) { 4046 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 4047 return ret; 4048 } 4049 4050 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 4051 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4052 (val == PCI_VENDOR_ID_HUAWEI), 4053 POLL_PERIOD, POLL_TIMEOUT); 4054 if (ret) 4055 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 4056 4057 return ret; 4058 } 4059 4060 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 4061 { 4062 struct pci_dev *pdev = qm->pdev; 4063 u16 cmd; 4064 int i; 4065 4066 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4067 if (set) 4068 cmd |= PCI_COMMAND_MEMORY; 4069 else 4070 cmd &= ~PCI_COMMAND_MEMORY; 4071 4072 pci_write_config_word(pdev, PCI_COMMAND, cmd); 4073 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4074 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4075 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 4076 return 0; 4077 4078 udelay(1); 4079 } 4080 4081 return -ETIMEDOUT; 4082 } 4083 4084 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 4085 { 4086 struct pci_dev *pdev = qm->pdev; 4087 u16 sriov_ctrl; 4088 int pos; 4089 int i; 4090 4091 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 4092 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4093 if (set) 4094 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4095 else 4096 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4097 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4098 4099 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4100 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4101 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4102 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4103 return 0; 4104 4105 udelay(1); 4106 } 4107 4108 return -ETIMEDOUT; 4109 } 4110 4111 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4112 enum qm_stop_reason stop_reason) 4113 { 4114 struct hisi_qm_list *qm_list = qm->qm_list; 4115 struct pci_dev *pdev = qm->pdev; 4116 struct pci_dev *virtfn; 4117 struct hisi_qm *vf_qm; 4118 int ret = 0; 4119 4120 mutex_lock(&qm_list->lock); 4121 list_for_each_entry(vf_qm, &qm_list->list, list) { 4122 virtfn = vf_qm->pdev; 4123 if (virtfn == pdev) 4124 continue; 4125 4126 if (pci_physfn(virtfn) == pdev) { 4127 /* save VFs PCIE BAR configuration */ 4128 pci_save_state(virtfn); 4129 4130 ret = hisi_qm_stop(vf_qm, stop_reason); 4131 if (ret) 4132 goto stop_fail; 4133 } 4134 } 4135 4136 stop_fail: 4137 mutex_unlock(&qm_list->lock); 4138 return ret; 4139 } 4140 4141 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 4142 enum qm_stop_reason stop_reason) 4143 { 4144 struct pci_dev *pdev = qm->pdev; 4145 int ret; 4146 4147 if (!qm->vfs_num) 4148 return 0; 4149 4150 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4151 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4152 ret = qm_ping_all_vfs(qm, cmd); 4153 if (ret) 4154 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 4155 } else { 4156 ret = qm_vf_reset_prepare(qm, stop_reason); 4157 if (ret) 4158 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4159 } 4160 4161 return ret; 4162 } 4163 4164 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4165 { 4166 struct pci_dev *pdev = qm->pdev; 4167 int ret; 4168 4169 ret = qm_reset_prepare_ready(qm); 4170 if (ret) { 4171 pci_err(pdev, "Controller reset not ready!\n"); 4172 return ret; 4173 } 4174 4175 /* PF obtains the information of VF by querying the register. */ 4176 qm_cmd_uninit(qm); 4177 4178 /* Whether VFs stop successfully, soft reset will continue. */ 4179 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4180 if (ret) 4181 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4182 4183 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4184 if (ret) { 4185 pci_err(pdev, "Fails to stop QM!\n"); 4186 qm_reset_bit_clear(qm); 4187 return ret; 4188 } 4189 4190 if (qm->use_sva) { 4191 ret = qm_hw_err_isolate(qm); 4192 if (ret) 4193 pci_err(pdev, "failed to isolate hw err!\n"); 4194 } 4195 4196 ret = qm_wait_vf_prepare_finish(qm); 4197 if (ret) 4198 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4199 4200 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4201 4202 return 0; 4203 } 4204 4205 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4206 { 4207 u32 nfe_enb = 0; 4208 4209 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4210 if (qm->ver >= QM_HW_V3) 4211 return; 4212 4213 if (!qm->err_status.is_dev_ecc_mbit && 4214 qm->err_status.is_qm_ecc_mbit && 4215 qm->err_ini->close_axi_master_ooo) { 4216 qm->err_ini->close_axi_master_ooo(qm); 4217 } else if (qm->err_status.is_dev_ecc_mbit && 4218 !qm->err_status.is_qm_ecc_mbit && 4219 !qm->err_ini->close_axi_master_ooo) { 4220 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4221 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4222 qm->io_base + QM_RAS_NFE_ENABLE); 4223 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4224 } 4225 } 4226 4227 static int qm_soft_reset(struct hisi_qm *qm) 4228 { 4229 struct pci_dev *pdev = qm->pdev; 4230 int ret; 4231 u32 val; 4232 4233 /* Ensure all doorbells and mailboxes received by QM */ 4234 ret = qm_check_req_recv(qm); 4235 if (ret) 4236 return ret; 4237 4238 if (qm->vfs_num) { 4239 ret = qm_set_vf_mse(qm, false); 4240 if (ret) { 4241 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4242 return ret; 4243 } 4244 } 4245 4246 ret = qm->ops->set_msi(qm, false); 4247 if (ret) { 4248 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4249 return ret; 4250 } 4251 4252 qm_dev_ecc_mbit_handle(qm); 4253 4254 /* OOO register set and check */ 4255 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 4256 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4257 4258 /* If bus lock, reset chip */ 4259 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4260 val, 4261 (val == ACC_MASTER_TRANS_RETURN_RW), 4262 POLL_PERIOD, POLL_TIMEOUT); 4263 if (ret) { 4264 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 4265 return ret; 4266 } 4267 4268 if (qm->err_ini->close_sva_prefetch) 4269 qm->err_ini->close_sva_prefetch(qm); 4270 4271 ret = qm_set_pf_mse(qm, false); 4272 if (ret) { 4273 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4274 return ret; 4275 } 4276 4277 /* The reset related sub-control registers are not in PCI BAR */ 4278 if (ACPI_HANDLE(&pdev->dev)) { 4279 unsigned long long value = 0; 4280 acpi_status s; 4281 4282 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4283 qm->err_info.acpi_rst, 4284 NULL, &value); 4285 if (ACPI_FAILURE(s)) { 4286 pci_err(pdev, "NO controller reset method!\n"); 4287 return -EIO; 4288 } 4289 4290 if (value) { 4291 pci_err(pdev, "Reset step %llu failed!\n", value); 4292 return -EIO; 4293 } 4294 } else { 4295 pci_err(pdev, "No reset method!\n"); 4296 return -EINVAL; 4297 } 4298 4299 return 0; 4300 } 4301 4302 static int qm_vf_reset_done(struct hisi_qm *qm) 4303 { 4304 struct hisi_qm_list *qm_list = qm->qm_list; 4305 struct pci_dev *pdev = qm->pdev; 4306 struct pci_dev *virtfn; 4307 struct hisi_qm *vf_qm; 4308 int ret = 0; 4309 4310 mutex_lock(&qm_list->lock); 4311 list_for_each_entry(vf_qm, &qm_list->list, list) { 4312 virtfn = vf_qm->pdev; 4313 if (virtfn == pdev) 4314 continue; 4315 4316 if (pci_physfn(virtfn) == pdev) { 4317 /* enable VFs PCIE BAR configuration */ 4318 pci_restore_state(virtfn); 4319 4320 ret = qm_restart(vf_qm); 4321 if (ret) 4322 goto restart_fail; 4323 } 4324 } 4325 4326 restart_fail: 4327 mutex_unlock(&qm_list->lock); 4328 return ret; 4329 } 4330 4331 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 4332 { 4333 struct pci_dev *pdev = qm->pdev; 4334 int ret; 4335 4336 if (!qm->vfs_num) 4337 return 0; 4338 4339 ret = qm_vf_q_assign(qm, qm->vfs_num); 4340 if (ret) { 4341 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4342 return ret; 4343 } 4344 4345 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4346 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4347 ret = qm_ping_all_vfs(qm, cmd); 4348 if (ret) 4349 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4350 } else { 4351 ret = qm_vf_reset_done(qm); 4352 if (ret) 4353 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4354 } 4355 4356 return ret; 4357 } 4358 4359 static int qm_dev_hw_init(struct hisi_qm *qm) 4360 { 4361 return qm->err_ini->hw_init(qm); 4362 } 4363 4364 static void qm_restart_prepare(struct hisi_qm *qm) 4365 { 4366 u32 value; 4367 4368 if (qm->err_ini->open_sva_prefetch) 4369 qm->err_ini->open_sva_prefetch(qm); 4370 4371 if (qm->ver >= QM_HW_V3) 4372 return; 4373 4374 if (!qm->err_status.is_qm_ecc_mbit && 4375 !qm->err_status.is_dev_ecc_mbit) 4376 return; 4377 4378 /* temporarily close the OOO port used for PEH to write out MSI */ 4379 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4380 writel(value & ~qm->err_info.msi_wr_port, 4381 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4382 4383 /* clear dev ecc 2bit error source if having */ 4384 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 4385 if (value && qm->err_ini->clear_dev_hw_err_status) 4386 qm->err_ini->clear_dev_hw_err_status(qm, value); 4387 4388 /* clear QM ecc mbit error source */ 4389 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4390 4391 /* clear AM Reorder Buffer ecc mbit source */ 4392 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4393 } 4394 4395 static void qm_restart_done(struct hisi_qm *qm) 4396 { 4397 u32 value; 4398 4399 if (qm->ver >= QM_HW_V3) 4400 goto clear_flags; 4401 4402 if (!qm->err_status.is_qm_ecc_mbit && 4403 !qm->err_status.is_dev_ecc_mbit) 4404 return; 4405 4406 /* open the OOO port for PEH to write out MSI */ 4407 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4408 value |= qm->err_info.msi_wr_port; 4409 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4410 4411 clear_flags: 4412 qm->err_status.is_qm_ecc_mbit = false; 4413 qm->err_status.is_dev_ecc_mbit = false; 4414 } 4415 4416 static int qm_controller_reset_done(struct hisi_qm *qm) 4417 { 4418 struct pci_dev *pdev = qm->pdev; 4419 int ret; 4420 4421 ret = qm->ops->set_msi(qm, true); 4422 if (ret) { 4423 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4424 return ret; 4425 } 4426 4427 ret = qm_set_pf_mse(qm, true); 4428 if (ret) { 4429 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4430 return ret; 4431 } 4432 4433 if (qm->vfs_num) { 4434 ret = qm_set_vf_mse(qm, true); 4435 if (ret) { 4436 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 4437 return ret; 4438 } 4439 } 4440 4441 ret = qm_dev_hw_init(qm); 4442 if (ret) { 4443 pci_err(pdev, "Failed to init device\n"); 4444 return ret; 4445 } 4446 4447 qm_restart_prepare(qm); 4448 hisi_qm_dev_err_init(qm); 4449 if (qm->err_ini->open_axi_master_ooo) 4450 qm->err_ini->open_axi_master_ooo(qm); 4451 4452 ret = qm_dev_mem_reset(qm); 4453 if (ret) { 4454 pci_err(pdev, "failed to reset device memory\n"); 4455 return ret; 4456 } 4457 4458 ret = qm_restart(qm); 4459 if (ret) { 4460 pci_err(pdev, "Failed to start QM!\n"); 4461 return ret; 4462 } 4463 4464 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4465 if (ret) 4466 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 4467 4468 ret = qm_wait_vf_prepare_finish(qm); 4469 if (ret) 4470 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 4471 4472 qm_cmd_init(qm); 4473 qm_restart_done(qm); 4474 4475 qm_reset_bit_clear(qm); 4476 4477 return 0; 4478 } 4479 4480 static int qm_controller_reset(struct hisi_qm *qm) 4481 { 4482 struct pci_dev *pdev = qm->pdev; 4483 int ret; 4484 4485 pci_info(pdev, "Controller resetting...\n"); 4486 4487 ret = qm_controller_reset_prepare(qm); 4488 if (ret) { 4489 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4490 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4491 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4492 return ret; 4493 } 4494 4495 hisi_qm_show_last_dfx_regs(qm); 4496 if (qm->err_ini->show_last_dfx_regs) 4497 qm->err_ini->show_last_dfx_regs(qm); 4498 4499 ret = qm_soft_reset(qm); 4500 if (ret) 4501 goto err_reset; 4502 4503 ret = qm_controller_reset_done(qm); 4504 if (ret) 4505 goto err_reset; 4506 4507 pci_info(pdev, "Controller reset complete\n"); 4508 4509 return 0; 4510 4511 err_reset: 4512 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4513 qm_reset_bit_clear(qm); 4514 4515 /* if resetting fails, isolate the device */ 4516 if (qm->use_sva) 4517 qm->isolate_data.is_isolate = true; 4518 return ret; 4519 } 4520 4521 /** 4522 * hisi_qm_dev_slot_reset() - slot reset 4523 * @pdev: the PCIe device 4524 * 4525 * This function offers QM relate PCIe device reset interface. Drivers which 4526 * use QM can use this function as slot_reset in its struct pci_error_handlers. 4527 */ 4528 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 4529 { 4530 struct hisi_qm *qm = pci_get_drvdata(pdev); 4531 int ret; 4532 4533 if (pdev->is_virtfn) 4534 return PCI_ERS_RESULT_RECOVERED; 4535 4536 /* reset pcie device controller */ 4537 ret = qm_controller_reset(qm); 4538 if (ret) { 4539 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4540 return PCI_ERS_RESULT_DISCONNECT; 4541 } 4542 4543 return PCI_ERS_RESULT_RECOVERED; 4544 } 4545 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4546 4547 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4548 { 4549 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4550 struct hisi_qm *qm = pci_get_drvdata(pdev); 4551 u32 delay = 0; 4552 int ret; 4553 4554 hisi_qm_dev_err_uninit(pf_qm); 4555 4556 /* 4557 * Check whether there is an ECC mbit error, If it occurs, need to 4558 * wait for soft reset to fix it. 4559 */ 4560 while (qm_check_dev_error(pf_qm)) { 4561 msleep(++delay); 4562 if (delay > QM_RESET_WAIT_TIMEOUT) 4563 return; 4564 } 4565 4566 ret = qm_reset_prepare_ready(qm); 4567 if (ret) { 4568 pci_err(pdev, "FLR not ready!\n"); 4569 return; 4570 } 4571 4572 /* PF obtains the information of VF by querying the register. */ 4573 if (qm->fun_type == QM_HW_PF) 4574 qm_cmd_uninit(qm); 4575 4576 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN); 4577 if (ret) 4578 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 4579 4580 ret = hisi_qm_stop(qm, QM_DOWN); 4581 if (ret) { 4582 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4583 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4584 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4585 return; 4586 } 4587 4588 ret = qm_wait_vf_prepare_finish(qm); 4589 if (ret) 4590 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 4591 4592 pci_info(pdev, "FLR resetting...\n"); 4593 } 4594 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4595 4596 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4597 { 4598 struct pci_dev *pf_pdev = pci_physfn(pdev); 4599 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4600 u32 id; 4601 4602 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4603 if (id == QM_PCI_COMMAND_INVALID) { 4604 pci_err(pdev, "Device can not be used!\n"); 4605 return false; 4606 } 4607 4608 return true; 4609 } 4610 4611 void hisi_qm_reset_done(struct pci_dev *pdev) 4612 { 4613 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4614 struct hisi_qm *qm = pci_get_drvdata(pdev); 4615 int ret; 4616 4617 if (qm->fun_type == QM_HW_PF) { 4618 ret = qm_dev_hw_init(qm); 4619 if (ret) { 4620 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4621 goto flr_done; 4622 } 4623 } 4624 4625 hisi_qm_dev_err_init(pf_qm); 4626 4627 ret = qm_restart(qm); 4628 if (ret) { 4629 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4630 goto flr_done; 4631 } 4632 4633 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4634 if (ret) 4635 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 4636 4637 ret = qm_wait_vf_prepare_finish(qm); 4638 if (ret) 4639 pci_err(pdev, "failed to start by vfs in FLR!\n"); 4640 4641 flr_done: 4642 if (qm->fun_type == QM_HW_PF) 4643 qm_cmd_init(qm); 4644 4645 if (qm_flr_reset_complete(pdev)) 4646 pci_info(pdev, "FLR reset complete\n"); 4647 4648 qm_reset_bit_clear(qm); 4649 } 4650 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4651 4652 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4653 { 4654 struct hisi_qm *qm = data; 4655 enum acc_err_result ret; 4656 4657 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4658 ret = qm_process_dev_error(qm); 4659 if (ret == ACC_ERR_NEED_RESET && 4660 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4661 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4662 schedule_work(&qm->rst_work); 4663 4664 return IRQ_HANDLED; 4665 } 4666 4667 /** 4668 * hisi_qm_dev_shutdown() - Shutdown device. 4669 * @pdev: The device will be shutdown. 4670 * 4671 * This function will stop qm when OS shutdown or rebooting. 4672 */ 4673 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4674 { 4675 struct hisi_qm *qm = pci_get_drvdata(pdev); 4676 int ret; 4677 4678 ret = hisi_qm_stop(qm, QM_DOWN); 4679 if (ret) 4680 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4681 4682 hisi_qm_cache_wb(qm); 4683 } 4684 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4685 4686 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4687 { 4688 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4689 int ret; 4690 4691 ret = qm_pm_get_sync(qm); 4692 if (ret) { 4693 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4694 return; 4695 } 4696 4697 /* reset pcie device controller */ 4698 ret = qm_controller_reset(qm); 4699 if (ret) 4700 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4701 4702 qm_pm_put_sync(qm); 4703 } 4704 4705 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 4706 enum qm_stop_reason stop_reason) 4707 { 4708 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 4709 struct pci_dev *pdev = qm->pdev; 4710 int ret; 4711 4712 ret = qm_reset_prepare_ready(qm); 4713 if (ret) { 4714 dev_err(&pdev->dev, "reset prepare not ready!\n"); 4715 atomic_set(&qm->status.flags, QM_STOP); 4716 cmd = QM_VF_PREPARE_FAIL; 4717 goto err_prepare; 4718 } 4719 4720 ret = hisi_qm_stop(qm, stop_reason); 4721 if (ret) { 4722 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 4723 atomic_set(&qm->status.flags, QM_STOP); 4724 cmd = QM_VF_PREPARE_FAIL; 4725 goto err_prepare; 4726 } else { 4727 goto out; 4728 } 4729 4730 err_prepare: 4731 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4732 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4733 out: 4734 pci_save_state(pdev); 4735 ret = qm_ping_pf(qm, cmd); 4736 if (ret) 4737 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 4738 } 4739 4740 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 4741 { 4742 enum qm_mb_cmd cmd = QM_VF_START_DONE; 4743 struct pci_dev *pdev = qm->pdev; 4744 int ret; 4745 4746 pci_restore_state(pdev); 4747 ret = hisi_qm_start(qm); 4748 if (ret) { 4749 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 4750 cmd = QM_VF_START_FAIL; 4751 } 4752 4753 qm_cmd_init(qm); 4754 ret = qm_ping_pf(qm, cmd); 4755 if (ret) 4756 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 4757 4758 qm_reset_bit_clear(qm); 4759 } 4760 4761 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 4762 { 4763 struct device *dev = &qm->pdev->dev; 4764 u32 val, cmd; 4765 u64 msg; 4766 int ret; 4767 4768 /* Wait for reset to finish */ 4769 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 4770 val == BIT(0), QM_VF_RESET_WAIT_US, 4771 QM_VF_RESET_WAIT_TIMEOUT_US); 4772 /* hardware completion status should be available by this time */ 4773 if (ret) { 4774 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 4775 return -ETIMEDOUT; 4776 } 4777 4778 /* 4779 * Whether message is got successfully, 4780 * VF needs to ack PF by clearing the interrupt. 4781 */ 4782 ret = qm_get_mb_cmd(qm, &msg, 0); 4783 qm_clear_cmd_interrupt(qm, 0); 4784 if (ret) { 4785 dev_err(dev, "failed to get msg from PF in reset done!\n"); 4786 return ret; 4787 } 4788 4789 cmd = msg & QM_MB_CMD_DATA_MASK; 4790 if (cmd != QM_PF_RESET_DONE) { 4791 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 4792 ret = -EINVAL; 4793 } 4794 4795 return ret; 4796 } 4797 4798 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 4799 enum qm_stop_reason stop_reason) 4800 { 4801 struct device *dev = &qm->pdev->dev; 4802 int ret; 4803 4804 dev_info(dev, "device reset start...\n"); 4805 4806 /* The message is obtained by querying the register during resetting */ 4807 qm_cmd_uninit(qm); 4808 qm_pf_reset_vf_prepare(qm, stop_reason); 4809 4810 ret = qm_wait_pf_reset_finish(qm); 4811 if (ret) 4812 goto err_get_status; 4813 4814 qm_pf_reset_vf_done(qm); 4815 4816 dev_info(dev, "device reset done.\n"); 4817 4818 return; 4819 4820 err_get_status: 4821 qm_cmd_init(qm); 4822 qm_reset_bit_clear(qm); 4823 } 4824 4825 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 4826 { 4827 struct device *dev = &qm->pdev->dev; 4828 u64 msg; 4829 u32 cmd; 4830 int ret; 4831 4832 /* 4833 * Get the msg from source by sending mailbox. Whether message is got 4834 * successfully, destination needs to ack source by clearing the interrupt. 4835 */ 4836 ret = qm_get_mb_cmd(qm, &msg, fun_num); 4837 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 4838 if (ret) { 4839 dev_err(dev, "failed to get msg from source!\n"); 4840 return; 4841 } 4842 4843 cmd = msg & QM_MB_CMD_DATA_MASK; 4844 switch (cmd) { 4845 case QM_PF_FLR_PREPARE: 4846 qm_pf_reset_vf_process(qm, QM_DOWN); 4847 break; 4848 case QM_PF_SRST_PREPARE: 4849 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 4850 break; 4851 case QM_VF_GET_QOS: 4852 qm_vf_get_qos(qm, fun_num); 4853 break; 4854 case QM_PF_SET_QOS: 4855 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 4856 break; 4857 default: 4858 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 4859 break; 4860 } 4861 } 4862 4863 static void qm_cmd_process(struct work_struct *cmd_process) 4864 { 4865 struct hisi_qm *qm = container_of(cmd_process, 4866 struct hisi_qm, cmd_process); 4867 u32 vfs_num = qm->vfs_num; 4868 u64 val; 4869 u32 i; 4870 4871 if (qm->fun_type == QM_HW_PF) { 4872 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 4873 if (!val) 4874 return; 4875 4876 for (i = 1; i <= vfs_num; i++) { 4877 if (val & BIT(i)) 4878 qm_handle_cmd_msg(qm, i); 4879 } 4880 4881 return; 4882 } 4883 4884 qm_handle_cmd_msg(qm, 0); 4885 } 4886 4887 /** 4888 * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. 4889 * @qm: The qm needs add. 4890 * @qm_list: The qm list. 4891 * 4892 * This function adds qm to qm list, and will register algorithm to 4893 * crypto when the qm list is empty. 4894 */ 4895 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4896 { 4897 struct device *dev = &qm->pdev->dev; 4898 int flag = 0; 4899 int ret = 0; 4900 4901 mutex_lock(&qm_list->lock); 4902 if (list_empty(&qm_list->list)) 4903 flag = 1; 4904 list_add_tail(&qm->list, &qm_list->list); 4905 mutex_unlock(&qm_list->lock); 4906 4907 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 4908 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 4909 return 0; 4910 } 4911 4912 if (flag) { 4913 ret = qm_list->register_to_crypto(qm); 4914 if (ret) { 4915 mutex_lock(&qm_list->lock); 4916 list_del(&qm->list); 4917 mutex_unlock(&qm_list->lock); 4918 } 4919 } 4920 4921 return ret; 4922 } 4923 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4924 4925 /** 4926 * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from 4927 * qm list. 4928 * @qm: The qm needs delete. 4929 * @qm_list: The qm list. 4930 * 4931 * This function deletes qm from qm list, and will unregister algorithm 4932 * from crypto when the qm list is empty. 4933 */ 4934 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4935 { 4936 mutex_lock(&qm_list->lock); 4937 list_del(&qm->list); 4938 mutex_unlock(&qm_list->lock); 4939 4940 if (qm->ver <= QM_HW_V2 && qm->use_sva) 4941 return; 4942 4943 if (list_empty(&qm_list->list)) 4944 qm_list->unregister_from_crypto(qm); 4945 } 4946 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 4947 4948 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 4949 { 4950 struct pci_dev *pdev = qm->pdev; 4951 u32 irq_vector, val; 4952 4953 if (qm->fun_type == QM_HW_VF) 4954 return; 4955 4956 val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val; 4957 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4958 return; 4959 4960 irq_vector = val & QM_IRQ_VECTOR_MASK; 4961 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4962 } 4963 4964 static int qm_register_abnormal_irq(struct hisi_qm *qm) 4965 { 4966 struct pci_dev *pdev = qm->pdev; 4967 u32 irq_vector, val; 4968 int ret; 4969 4970 if (qm->fun_type == QM_HW_VF) 4971 return 0; 4972 4973 val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val; 4974 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4975 return 0; 4976 4977 irq_vector = val & QM_IRQ_VECTOR_MASK; 4978 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 4979 if (ret) 4980 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); 4981 4982 return ret; 4983 } 4984 4985 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 4986 { 4987 struct pci_dev *pdev = qm->pdev; 4988 u32 irq_vector, val; 4989 4990 val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val; 4991 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4992 return; 4993 4994 irq_vector = val & QM_IRQ_VECTOR_MASK; 4995 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4996 } 4997 4998 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 4999 { 5000 struct pci_dev *pdev = qm->pdev; 5001 u32 irq_vector, val; 5002 int ret; 5003 5004 val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val; 5005 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5006 return 0; 5007 5008 irq_vector = val & QM_IRQ_VECTOR_MASK; 5009 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 5010 if (ret) 5011 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 5012 5013 return ret; 5014 } 5015 5016 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 5017 { 5018 struct pci_dev *pdev = qm->pdev; 5019 u32 irq_vector, val; 5020 5021 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val; 5022 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5023 return; 5024 5025 irq_vector = val & QM_IRQ_VECTOR_MASK; 5026 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5027 } 5028 5029 static int qm_register_aeq_irq(struct hisi_qm *qm) 5030 { 5031 struct pci_dev *pdev = qm->pdev; 5032 u32 irq_vector, val; 5033 int ret; 5034 5035 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val; 5036 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5037 return 0; 5038 5039 irq_vector = val & QM_IRQ_VECTOR_MASK; 5040 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL, 5041 qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm); 5042 if (ret) 5043 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5044 5045 return ret; 5046 } 5047 5048 static void qm_unregister_eq_irq(struct hisi_qm *qm) 5049 { 5050 struct pci_dev *pdev = qm->pdev; 5051 u32 irq_vector, val; 5052 5053 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val; 5054 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5055 return; 5056 5057 irq_vector = val & QM_IRQ_VECTOR_MASK; 5058 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5059 } 5060 5061 static int qm_register_eq_irq(struct hisi_qm *qm) 5062 { 5063 struct pci_dev *pdev = qm->pdev; 5064 u32 irq_vector, val; 5065 int ret; 5066 5067 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val; 5068 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5069 return 0; 5070 5071 irq_vector = val & QM_IRQ_VECTOR_MASK; 5072 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); 5073 if (ret) 5074 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5075 5076 return ret; 5077 } 5078 5079 static void qm_irqs_unregister(struct hisi_qm *qm) 5080 { 5081 qm_unregister_mb_cmd_irq(qm); 5082 qm_unregister_abnormal_irq(qm); 5083 qm_unregister_aeq_irq(qm); 5084 qm_unregister_eq_irq(qm); 5085 } 5086 5087 static int qm_irqs_register(struct hisi_qm *qm) 5088 { 5089 int ret; 5090 5091 ret = qm_register_eq_irq(qm); 5092 if (ret) 5093 return ret; 5094 5095 ret = qm_register_aeq_irq(qm); 5096 if (ret) 5097 goto free_eq_irq; 5098 5099 ret = qm_register_abnormal_irq(qm); 5100 if (ret) 5101 goto free_aeq_irq; 5102 5103 ret = qm_register_mb_cmd_irq(qm); 5104 if (ret) 5105 goto free_abnormal_irq; 5106 5107 return 0; 5108 5109 free_abnormal_irq: 5110 qm_unregister_abnormal_irq(qm); 5111 free_aeq_irq: 5112 qm_unregister_aeq_irq(qm); 5113 free_eq_irq: 5114 qm_unregister_eq_irq(qm); 5115 return ret; 5116 } 5117 5118 static int qm_get_qp_num(struct hisi_qm *qm) 5119 { 5120 struct device *dev = &qm->pdev->dev; 5121 bool is_db_isolation; 5122 5123 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 5124 if (qm->fun_type == QM_HW_VF) { 5125 if (qm->ver != QM_HW_V1) 5126 /* v2 starts to support get vft by mailbox */ 5127 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 5128 5129 return 0; 5130 } 5131 5132 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5133 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 5134 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 5135 QM_FUNC_MAX_QP_CAP, is_db_isolation); 5136 5137 if (qm->qp_num <= qm->max_qp_num) 5138 return 0; 5139 5140 if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) { 5141 /* Check whether the set qp number is valid */ 5142 dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n", 5143 qm->qp_num, qm->max_qp_num); 5144 return -EINVAL; 5145 } 5146 5147 dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n", 5148 qm->qp_num, qm->max_qp_num); 5149 qm->qp_num = qm->max_qp_num; 5150 qm->debug.curr_qm_qp_num = qm->qp_num; 5151 5152 return 0; 5153 } 5154 5155 static int qm_pre_store_irq_type_caps(struct hisi_qm *qm) 5156 { 5157 struct hisi_qm_cap_record *qm_cap; 5158 struct pci_dev *pdev = qm->pdev; 5159 size_t i, size; 5160 5161 size = ARRAY_SIZE(qm_pre_store_caps); 5162 qm_cap = devm_kzalloc(&pdev->dev, sizeof(*qm_cap) * size, GFP_KERNEL); 5163 if (!qm_cap) 5164 return -ENOMEM; 5165 5166 for (i = 0; i < size; i++) { 5167 qm_cap[i].type = qm_pre_store_caps[i]; 5168 qm_cap[i].cap_val = hisi_qm_get_hw_info(qm, qm_basic_info, 5169 qm_pre_store_caps[i], qm->cap_ver); 5170 } 5171 5172 qm->cap_tables.qm_cap_table = qm_cap; 5173 5174 return 0; 5175 } 5176 5177 static int qm_get_hw_caps(struct hisi_qm *qm) 5178 { 5179 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 5180 qm_cap_info_pf : qm_cap_info_vf; 5181 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 5182 ARRAY_SIZE(qm_cap_info_vf); 5183 u32 val, i; 5184 5185 /* Doorbell isolate register is a independent register. */ 5186 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 5187 if (val) 5188 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5189 5190 if (qm->ver >= QM_HW_V3) { 5191 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 5192 qm->cap_ver = val & QM_CAPBILITY_VERSION; 5193 } 5194 5195 /* Get PF/VF common capbility */ 5196 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 5197 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 5198 if (val) 5199 set_bit(qm_cap_info_comm[i].type, &qm->caps); 5200 } 5201 5202 /* Get PF/VF different capbility */ 5203 for (i = 0; i < size; i++) { 5204 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 5205 if (val) 5206 set_bit(cap_info[i].type, &qm->caps); 5207 } 5208 5209 /* Fetch and save the value of irq type related capability registers */ 5210 return qm_pre_store_irq_type_caps(qm); 5211 } 5212 5213 static int qm_get_pci_res(struct hisi_qm *qm) 5214 { 5215 struct pci_dev *pdev = qm->pdev; 5216 struct device *dev = &pdev->dev; 5217 int ret; 5218 5219 ret = pci_request_mem_regions(pdev, qm->dev_name); 5220 if (ret < 0) { 5221 dev_err(dev, "Failed to request mem regions!\n"); 5222 return ret; 5223 } 5224 5225 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5226 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5227 if (!qm->io_base) { 5228 ret = -EIO; 5229 goto err_request_mem_regions; 5230 } 5231 5232 ret = qm_get_hw_caps(qm); 5233 if (ret) 5234 goto err_ioremap; 5235 5236 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 5237 qm->db_interval = QM_QP_DB_INTERVAL; 5238 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5239 qm->db_io_base = ioremap(qm->db_phys_base, 5240 pci_resource_len(pdev, PCI_BAR_4)); 5241 if (!qm->db_io_base) { 5242 ret = -EIO; 5243 goto err_ioremap; 5244 } 5245 } else { 5246 qm->db_phys_base = qm->phys_base; 5247 qm->db_io_base = qm->io_base; 5248 qm->db_interval = 0; 5249 } 5250 5251 ret = qm_get_qp_num(qm); 5252 if (ret) 5253 goto err_db_ioremap; 5254 5255 return 0; 5256 5257 err_db_ioremap: 5258 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 5259 iounmap(qm->db_io_base); 5260 err_ioremap: 5261 iounmap(qm->io_base); 5262 err_request_mem_regions: 5263 pci_release_mem_regions(pdev); 5264 return ret; 5265 } 5266 5267 static int hisi_qm_pci_init(struct hisi_qm *qm) 5268 { 5269 struct pci_dev *pdev = qm->pdev; 5270 struct device *dev = &pdev->dev; 5271 unsigned int num_vec; 5272 int ret; 5273 5274 ret = pci_enable_device_mem(pdev); 5275 if (ret < 0) { 5276 dev_err(dev, "Failed to enable device mem!\n"); 5277 return ret; 5278 } 5279 5280 ret = qm_get_pci_res(qm); 5281 if (ret) 5282 goto err_disable_pcidev; 5283 5284 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5285 if (ret < 0) 5286 goto err_get_pci_res; 5287 pci_set_master(pdev); 5288 5289 num_vec = qm_get_irq_num(qm); 5290 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5291 if (ret < 0) { 5292 dev_err(dev, "Failed to enable MSI vectors!\n"); 5293 goto err_get_pci_res; 5294 } 5295 5296 return 0; 5297 5298 err_get_pci_res: 5299 qm_put_pci_res(qm); 5300 err_disable_pcidev: 5301 pci_disable_device(pdev); 5302 return ret; 5303 } 5304 5305 static int hisi_qm_init_work(struct hisi_qm *qm) 5306 { 5307 int i; 5308 5309 for (i = 0; i < qm->qp_num; i++) 5310 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 5311 5312 if (qm->fun_type == QM_HW_PF) 5313 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5314 5315 if (qm->ver > QM_HW_V2) 5316 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5317 5318 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 5319 WQ_UNBOUND, num_online_cpus(), 5320 pci_name(qm->pdev)); 5321 if (!qm->wq) { 5322 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 5323 return -ENOMEM; 5324 } 5325 5326 return 0; 5327 } 5328 5329 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5330 { 5331 struct device *dev = &qm->pdev->dev; 5332 u16 sq_depth, cq_depth; 5333 size_t qp_dma_size; 5334 int i, ret; 5335 5336 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5337 if (!qm->qp_array) 5338 return -ENOMEM; 5339 5340 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 5341 if (!qm->poll_data) { 5342 kfree(qm->qp_array); 5343 return -ENOMEM; 5344 } 5345 5346 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 5347 5348 /* one more page for device or qp statuses */ 5349 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 5350 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5351 for (i = 0; i < qm->qp_num; i++) { 5352 qm->poll_data[i].qm = qm; 5353 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 5354 if (ret) 5355 goto err_init_qp_mem; 5356 5357 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5358 } 5359 5360 return 0; 5361 err_init_qp_mem: 5362 hisi_qp_memory_uninit(qm, i); 5363 5364 return ret; 5365 } 5366 5367 static int hisi_qm_memory_init(struct hisi_qm *qm) 5368 { 5369 struct device *dev = &qm->pdev->dev; 5370 int ret, total_func; 5371 size_t off = 0; 5372 5373 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 5374 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5375 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5376 if (!qm->factor) 5377 return -ENOMEM; 5378 5379 /* Only the PF value needs to be initialized */ 5380 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 5381 } 5382 5383 #define QM_INIT_BUF(qm, type, num) do { \ 5384 (qm)->type = ((qm)->qdma.va + (off)); \ 5385 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5386 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5387 } while (0) 5388 5389 idr_init(&qm->qp_idr); 5390 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 5391 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 5392 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 5393 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5394 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5395 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5396 GFP_ATOMIC); 5397 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5398 if (!qm->qdma.va) { 5399 ret = -ENOMEM; 5400 goto err_destroy_idr; 5401 } 5402 5403 QM_INIT_BUF(qm, eqe, qm->eq_depth); 5404 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 5405 QM_INIT_BUF(qm, sqc, qm->qp_num); 5406 QM_INIT_BUF(qm, cqc, qm->qp_num); 5407 5408 ret = hisi_qp_alloc_memory(qm); 5409 if (ret) 5410 goto err_alloc_qp_array; 5411 5412 return 0; 5413 5414 err_alloc_qp_array: 5415 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5416 err_destroy_idr: 5417 idr_destroy(&qm->qp_idr); 5418 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 5419 kfree(qm->factor); 5420 5421 return ret; 5422 } 5423 5424 /** 5425 * hisi_qm_init() - Initialize configures about qm. 5426 * @qm: The qm needing init. 5427 * 5428 * This function init qm, then we can call hisi_qm_start to put qm into work. 5429 */ 5430 int hisi_qm_init(struct hisi_qm *qm) 5431 { 5432 struct pci_dev *pdev = qm->pdev; 5433 struct device *dev = &pdev->dev; 5434 int ret; 5435 5436 hisi_qm_pre_init(qm); 5437 5438 ret = hisi_qm_pci_init(qm); 5439 if (ret) 5440 return ret; 5441 5442 ret = qm_irqs_register(qm); 5443 if (ret) 5444 goto err_pci_init; 5445 5446 if (qm->fun_type == QM_HW_PF) { 5447 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5448 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5449 qm_disable_clock_gate(qm); 5450 ret = qm_dev_mem_reset(qm); 5451 if (ret) { 5452 dev_err(dev, "failed to reset device memory\n"); 5453 goto err_irq_register; 5454 } 5455 } 5456 5457 if (qm->mode == UACCE_MODE_SVA) { 5458 ret = qm_alloc_uacce(qm); 5459 if (ret < 0) 5460 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5461 } 5462 5463 ret = hisi_qm_memory_init(qm); 5464 if (ret) 5465 goto err_alloc_uacce; 5466 5467 ret = hisi_qm_init_work(qm); 5468 if (ret) 5469 goto err_free_qm_memory; 5470 5471 qm_cmd_init(qm); 5472 atomic_set(&qm->status.flags, QM_INIT); 5473 5474 return 0; 5475 5476 err_free_qm_memory: 5477 hisi_qm_memory_uninit(qm); 5478 err_alloc_uacce: 5479 qm_remove_uacce(qm); 5480 err_irq_register: 5481 qm_irqs_unregister(qm); 5482 err_pci_init: 5483 hisi_qm_pci_uninit(qm); 5484 return ret; 5485 } 5486 EXPORT_SYMBOL_GPL(hisi_qm_init); 5487 5488 /** 5489 * hisi_qm_get_dfx_access() - Try to get dfx access. 5490 * @qm: pointer to accelerator device. 5491 * 5492 * Try to get dfx access, then user can get message. 5493 * 5494 * If device is in suspended, return failure, otherwise 5495 * bump up the runtime PM usage counter. 5496 */ 5497 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5498 { 5499 struct device *dev = &qm->pdev->dev; 5500 5501 if (pm_runtime_suspended(dev)) { 5502 dev_info(dev, "can not read/write - device in suspended.\n"); 5503 return -EAGAIN; 5504 } 5505 5506 return qm_pm_get_sync(qm); 5507 } 5508 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5509 5510 /** 5511 * hisi_qm_put_dfx_access() - Put dfx access. 5512 * @qm: pointer to accelerator device. 5513 * 5514 * Put dfx access, drop runtime PM usage counter. 5515 */ 5516 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5517 { 5518 qm_pm_put_sync(qm); 5519 } 5520 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5521 5522 /** 5523 * hisi_qm_pm_init() - Initialize qm runtime PM. 5524 * @qm: pointer to accelerator device. 5525 * 5526 * Function that initialize qm runtime PM. 5527 */ 5528 void hisi_qm_pm_init(struct hisi_qm *qm) 5529 { 5530 struct device *dev = &qm->pdev->dev; 5531 5532 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5533 return; 5534 5535 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5536 pm_runtime_use_autosuspend(dev); 5537 pm_runtime_put_noidle(dev); 5538 } 5539 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5540 5541 /** 5542 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5543 * @qm: pointer to accelerator device. 5544 * 5545 * Function that uninitialize qm runtime PM. 5546 */ 5547 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5548 { 5549 struct device *dev = &qm->pdev->dev; 5550 5551 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5552 return; 5553 5554 pm_runtime_get_noresume(dev); 5555 pm_runtime_dont_use_autosuspend(dev); 5556 } 5557 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5558 5559 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5560 { 5561 struct pci_dev *pdev = qm->pdev; 5562 int ret; 5563 u32 val; 5564 5565 ret = qm->ops->set_msi(qm, false); 5566 if (ret) { 5567 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5568 return ret; 5569 } 5570 5571 /* shutdown OOO register */ 5572 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 5573 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5574 5575 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 5576 val, 5577 (val == ACC_MASTER_TRANS_RETURN_RW), 5578 POLL_PERIOD, POLL_TIMEOUT); 5579 if (ret) { 5580 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 5581 return ret; 5582 } 5583 5584 ret = qm_set_pf_mse(qm, false); 5585 if (ret) 5586 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5587 5588 return ret; 5589 } 5590 5591 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5592 { 5593 struct pci_dev *pdev = qm->pdev; 5594 int ret; 5595 5596 ret = qm_set_pf_mse(qm, true); 5597 if (ret) { 5598 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5599 return ret; 5600 } 5601 5602 ret = qm->ops->set_msi(qm, true); 5603 if (ret) { 5604 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5605 return ret; 5606 } 5607 5608 ret = qm_dev_hw_init(qm); 5609 if (ret) { 5610 pci_err(pdev, "failed to init device after resuming\n"); 5611 return ret; 5612 } 5613 5614 qm_cmd_init(qm); 5615 hisi_qm_dev_err_init(qm); 5616 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5617 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5618 qm_disable_clock_gate(qm); 5619 ret = qm_dev_mem_reset(qm); 5620 if (ret) 5621 pci_err(pdev, "failed to reset device memory\n"); 5622 5623 return ret; 5624 } 5625 5626 /** 5627 * hisi_qm_suspend() - Runtime suspend of given device. 5628 * @dev: device to suspend. 5629 * 5630 * Function that suspend the device. 5631 */ 5632 int hisi_qm_suspend(struct device *dev) 5633 { 5634 struct pci_dev *pdev = to_pci_dev(dev); 5635 struct hisi_qm *qm = pci_get_drvdata(pdev); 5636 int ret; 5637 5638 pci_info(pdev, "entering suspended state\n"); 5639 5640 ret = hisi_qm_stop(qm, QM_NORMAL); 5641 if (ret) { 5642 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5643 return ret; 5644 } 5645 5646 ret = qm_prepare_for_suspend(qm); 5647 if (ret) 5648 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5649 5650 return ret; 5651 } 5652 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5653 5654 /** 5655 * hisi_qm_resume() - Runtime resume of given device. 5656 * @dev: device to resume. 5657 * 5658 * Function that resume the device. 5659 */ 5660 int hisi_qm_resume(struct device *dev) 5661 { 5662 struct pci_dev *pdev = to_pci_dev(dev); 5663 struct hisi_qm *qm = pci_get_drvdata(pdev); 5664 int ret; 5665 5666 pci_info(pdev, "resuming from suspend state\n"); 5667 5668 ret = qm_rebuild_for_resume(qm); 5669 if (ret) { 5670 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5671 return ret; 5672 } 5673 5674 ret = hisi_qm_start(qm); 5675 if (ret) { 5676 if (qm_check_dev_error(qm)) { 5677 pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); 5678 return 0; 5679 } 5680 5681 pci_err(pdev, "failed to start qm(%d)!\n", ret); 5682 } 5683 5684 return ret; 5685 } 5686 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5687 5688 MODULE_LICENSE("GPL v2"); 5689 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5690 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5691