xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision 724ba6751532055db75992fc6ae21c3e322e94a7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/bitmap.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/idr.h>
8 #include <linux/io.h>
9 #include <linux/irqreturn.h>
10 #include <linux/log2.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/uacce.h>
15 #include <linux/uaccess.h>
16 #include <uapi/misc/uacce/hisi_qm.h>
17 #include <linux/hisi_acc_qm.h>
18 #include "qm_common.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 
26 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
27 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_SHIFT		16
29 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
30 
31 /* mailbox */
32 #define QM_MB_PING_ALL_VFS		0xffff
33 #define QM_MB_CMD_DATA_SHIFT		32
34 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
35 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
36 
37 /* sqc shift */
38 #define QM_SQ_HOP_NUM_SHIFT		0
39 #define QM_SQ_PAGE_SIZE_SHIFT		4
40 #define QM_SQ_BUF_SIZE_SHIFT		8
41 #define QM_SQ_SQE_SIZE_SHIFT		12
42 #define QM_SQ_PRIORITY_SHIFT		0
43 #define QM_SQ_ORDERS_SHIFT		4
44 #define QM_SQ_TYPE_SHIFT		8
45 #define QM_QC_PASID_ENABLE		0x1
46 #define QM_QC_PASID_ENABLE_SHIFT	7
47 
48 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
49 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
50 
51 /* cqc shift */
52 #define QM_CQ_HOP_NUM_SHIFT		0
53 #define QM_CQ_PAGE_SIZE_SHIFT		4
54 #define QM_CQ_BUF_SIZE_SHIFT		8
55 #define QM_CQ_CQE_SIZE_SHIFT		12
56 #define QM_CQ_PHASE_SHIFT		0
57 #define QM_CQ_FLAG_SHIFT		1
58 
59 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
60 #define QM_QC_CQE_SIZE			4
61 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
62 
63 /* eqc shift */
64 #define QM_EQE_AEQE_SIZE		(2UL << 12)
65 #define QM_EQC_PHASE_SHIFT		16
66 
67 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
68 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
69 
70 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
71 #define QM_AEQE_TYPE_SHIFT		17
72 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
73 #define QM_CQ_OVERFLOW			0
74 #define QM_EQ_OVERFLOW			1
75 #define QM_CQE_ERROR			2
76 
77 #define QM_XQ_DEPTH_SHIFT		16
78 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
79 
80 #define QM_DOORBELL_CMD_SQ		0
81 #define QM_DOORBELL_CMD_CQ		1
82 #define QM_DOORBELL_CMD_EQ		2
83 #define QM_DOORBELL_CMD_AEQ		3
84 
85 #define QM_DOORBELL_BASE_V1		0x340
86 #define QM_DB_CMD_SHIFT_V1		16
87 #define QM_DB_INDEX_SHIFT_V1		32
88 #define QM_DB_PRIORITY_SHIFT_V1		48
89 #define QM_PAGE_SIZE			0x0034
90 #define QM_QP_DB_INTERVAL		0x10000
91 
92 #define QM_MEM_START_INIT		0x100040
93 #define QM_MEM_INIT_DONE		0x100044
94 #define QM_VFT_CFG_RDY			0x10006c
95 #define QM_VFT_CFG_OP_WR		0x100058
96 #define QM_VFT_CFG_TYPE			0x10005c
97 #define QM_VFT_CFG			0x100060
98 #define QM_VFT_CFG_OP_ENABLE		0x100054
99 #define QM_PM_CTRL			0x100148
100 #define QM_IDLE_DISABLE			BIT(9)
101 
102 #define QM_VFT_CFG_DATA_L		0x100064
103 #define QM_VFT_CFG_DATA_H		0x100068
104 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
105 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
106 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
107 #define QM_SQC_VFT_START_SQN_SHIFT	28
108 #define QM_SQC_VFT_VALID		(1ULL << 44)
109 #define QM_SQC_VFT_SQN_SHIFT		45
110 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
111 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
112 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
113 #define QM_CQC_VFT_VALID		(1ULL << 28)
114 
115 #define QM_SQC_VFT_BASE_SHIFT_V2	28
116 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
117 #define QM_SQC_VFT_NUM_SHIFT_V2		45
118 #define QM_SQC_VFT_NUM_MASK_V2		GENMASK(9, 0)
119 
120 #define QM_ABNORMAL_INT_SOURCE		0x100000
121 #define QM_ABNORMAL_INT_MASK		0x100004
122 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
123 #define QM_ABNORMAL_INT_STATUS		0x100008
124 #define QM_ABNORMAL_INT_SET		0x10000c
125 #define QM_ABNORMAL_INF00		0x100010
126 #define QM_FIFO_OVERFLOW_TYPE		0xc0
127 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
128 #define QM_FIFO_OVERFLOW_VF		0x3f
129 #define QM_ABNORMAL_INF01		0x100014
130 #define QM_DB_TIMEOUT_TYPE		0xc0
131 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
132 #define QM_DB_TIMEOUT_VF		0x3f
133 #define QM_RAS_CE_ENABLE		0x1000ec
134 #define QM_RAS_FE_ENABLE		0x1000f0
135 #define QM_RAS_NFE_ENABLE		0x1000f4
136 #define QM_RAS_CE_THRESHOLD		0x1000f8
137 #define QM_RAS_CE_TIMES_PER_IRQ		1
138 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
139 #define QM_ECC_MBIT			BIT(2)
140 #define QM_DB_TIMEOUT			BIT(10)
141 #define QM_OF_FIFO_OF			BIT(11)
142 
143 #define QM_RESET_WAIT_TIMEOUT		400
144 #define QM_PEH_VENDOR_ID		0x1000d8
145 #define ACC_VENDOR_ID_VALUE		0x5a5a
146 #define QM_PEH_DFX_INFO0		0x1000fc
147 #define QM_PEH_DFX_INFO1		0x100100
148 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
149 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
150 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
151 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
152 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
153 #define ACC_MASTER_TRANS_RETURN_RW	3
154 #define ACC_MASTER_TRANS_RETURN		0x300150
155 #define ACC_MASTER_GLOBAL_CTRL		0x300000
156 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
157 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
158 #define ACC_AM_ROB_ECC_INT_STS		0x300104
159 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
160 #define QM_MSI_CAP_ENABLE		BIT(16)
161 
162 /* interfunction communication */
163 #define QM_IFC_READY_STATUS		0x100128
164 #define QM_IFC_INT_SET_P		0x100130
165 #define QM_IFC_INT_CFG			0x100134
166 #define QM_IFC_INT_SOURCE_P		0x100138
167 #define QM_IFC_INT_SOURCE_V		0x0020
168 #define QM_IFC_INT_MASK			0x0024
169 #define QM_IFC_INT_STATUS		0x0028
170 #define QM_IFC_INT_SET_V		0x002C
171 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
172 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
173 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
174 #define QM_IFC_INT_DISABLE		BIT(0)
175 #define QM_IFC_INT_STATUS_MASK		BIT(0)
176 #define QM_IFC_INT_SET_MASK		BIT(0)
177 #define QM_WAIT_DST_ACK			10
178 #define QM_MAX_PF_WAIT_COUNT		10
179 #define QM_MAX_VF_WAIT_COUNT		40
180 #define QM_VF_RESET_WAIT_US            20000
181 #define QM_VF_RESET_WAIT_CNT           3000
182 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
183 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
184 
185 #define POLL_PERIOD			10
186 #define POLL_TIMEOUT			1000
187 #define WAIT_PERIOD_US_MAX		200
188 #define WAIT_PERIOD_US_MIN		100
189 #define MAX_WAIT_COUNTS			1000
190 #define QM_CACHE_WB_START		0x204
191 #define QM_CACHE_WB_DONE		0x208
192 #define QM_FUNC_CAPS_REG		0x3100
193 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
194 
195 #define PCI_BAR_2			2
196 #define PCI_BAR_4			4
197 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
198 
199 #define QM_DBG_READ_LEN		256
200 #define QM_PCI_COMMAND_INVALID		~0
201 #define QM_RESET_STOP_TX_OFFSET		1
202 #define QM_RESET_STOP_RX_OFFSET		2
203 
204 #define WAIT_PERIOD			20
205 #define REMOVE_WAIT_DELAY		10
206 
207 #define QM_DRIVER_REMOVING		0
208 #define QM_RST_SCHED			1
209 #define QM_QOS_PARAM_NUM		2
210 #define QM_QOS_MAX_VAL			1000
211 #define QM_QOS_RATE			100
212 #define QM_QOS_EXPAND_RATE		1000
213 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
214 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
215 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
216 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
217 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
218 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
219 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
220 #define QM_SHAPER_CBS_B			1
221 #define QM_SHAPER_VFT_OFFSET		6
222 #define QM_QOS_MIN_ERROR_RATE		5
223 #define QM_SHAPER_MIN_CBS_S		8
224 #define QM_QOS_TICK			0x300U
225 #define QM_QOS_DIVISOR_CLK		0x1f40U
226 #define QM_QOS_MAX_CIR_B		200
227 #define QM_QOS_MIN_CIR_B		100
228 #define QM_QOS_MAX_CIR_U		6
229 #define QM_AUTOSUSPEND_DELAY		3000
230 
231 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
232 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
233 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
234 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
235 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
236 
237 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
238 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
239 
240 #define QM_MK_SQC_W13(priority, orders, alg_type) \
241 	(((priority) << QM_SQ_PRIORITY_SHIFT) | \
242 	((orders) << QM_SQ_ORDERS_SHIFT) | \
243 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
244 
245 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
246 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
247 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
248 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
249 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
250 
251 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
252 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
253 
254 #define INIT_QC_COMMON(qc, base, pasid) do {			\
255 	(qc)->head = 0;						\
256 	(qc)->tail = 0;						\
257 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
258 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
259 	(qc)->dw3 = 0;						\
260 	(qc)->w8 = 0;						\
261 	(qc)->rsvd0 = 0;					\
262 	(qc)->pasid = cpu_to_le16(pasid);			\
263 	(qc)->w11 = 0;						\
264 	(qc)->rsvd1 = 0;					\
265 } while (0)
266 
267 enum vft_type {
268 	SQC_VFT = 0,
269 	CQC_VFT,
270 	SHAPER_VFT,
271 };
272 
273 enum acc_err_result {
274 	ACC_ERR_NONE,
275 	ACC_ERR_NEED_RESET,
276 	ACC_ERR_RECOVERED,
277 };
278 
279 enum qm_alg_type {
280 	ALG_TYPE_0,
281 	ALG_TYPE_1,
282 };
283 
284 enum qm_mb_cmd {
285 	QM_PF_FLR_PREPARE = 0x01,
286 	QM_PF_SRST_PREPARE,
287 	QM_PF_RESET_DONE,
288 	QM_VF_PREPARE_DONE,
289 	QM_VF_PREPARE_FAIL,
290 	QM_VF_START_DONE,
291 	QM_VF_START_FAIL,
292 	QM_PF_SET_QOS,
293 	QM_VF_GET_QOS,
294 };
295 
296 enum qm_basic_type {
297 	QM_TOTAL_QP_NUM_CAP = 0x0,
298 	QM_FUNC_MAX_QP_CAP,
299 	QM_XEQ_DEPTH_CAP,
300 	QM_QP_DEPTH_CAP,
301 	QM_EQ_IRQ_TYPE_CAP,
302 	QM_AEQ_IRQ_TYPE_CAP,
303 	QM_ABN_IRQ_TYPE_CAP,
304 	QM_PF2VF_IRQ_TYPE_CAP,
305 	QM_PF_IRQ_NUM_CAP,
306 	QM_VF_IRQ_NUM_CAP,
307 };
308 
309 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
310 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
311 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
312 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
313 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
314 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
315 };
316 
317 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
318 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
319 };
320 
321 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
322 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
323 };
324 
325 static const struct hisi_qm_cap_info qm_basic_info[] = {
326 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
327 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
328 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(31, 0), 0x800,     0x4000800, 0x4000800},
329 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
330 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
331 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
332 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
333 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
334 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
335 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
336 };
337 
338 struct qm_mailbox {
339 	__le16 w0;
340 	__le16 queue_num;
341 	__le32 base_l;
342 	__le32 base_h;
343 	__le32 rsvd;
344 };
345 
346 struct qm_doorbell {
347 	__le16 queue_num;
348 	__le16 cmd;
349 	__le16 index;
350 	__le16 priority;
351 };
352 
353 struct hisi_qm_resource {
354 	struct hisi_qm *qm;
355 	int distance;
356 	struct list_head list;
357 };
358 
359 /**
360  * struct qm_hw_err - Structure describing the device errors
361  * @list: hardware error list
362  * @timestamp: timestamp when the error occurred
363  */
364 struct qm_hw_err {
365 	struct list_head list;
366 	unsigned long long timestamp;
367 };
368 
369 struct hisi_qm_hw_ops {
370 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
371 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
372 		      u8 cmd, u16 index, u8 priority);
373 	int (*debug_init)(struct hisi_qm *qm);
374 	void (*hw_error_init)(struct hisi_qm *qm);
375 	void (*hw_error_uninit)(struct hisi_qm *qm);
376 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
377 	int (*set_msi)(struct hisi_qm *qm, bool set);
378 };
379 
380 struct hisi_qm_hw_error {
381 	u32 int_msk;
382 	const char *msg;
383 };
384 
385 static const struct hisi_qm_hw_error qm_hw_error[] = {
386 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
387 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
388 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
389 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
390 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
391 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
392 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
393 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
394 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
395 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
396 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
397 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
398 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
399 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
400 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
401 	{ /* sentinel */ }
402 };
403 
404 static const char * const qm_db_timeout[] = {
405 	"sq", "cq", "eq", "aeq",
406 };
407 
408 static const char * const qm_fifo_overflow[] = {
409 	"cq", "eq", "aeq",
410 };
411 
412 static const char * const qp_s[] = {
413 	"none", "init", "start", "stop", "close",
414 };
415 
416 struct qm_typical_qos_table {
417 	u32 start;
418 	u32 end;
419 	u32 val;
420 };
421 
422 /* the qos step is 100 */
423 static struct qm_typical_qos_table shaper_cir_s[] = {
424 	{100, 100, 4},
425 	{200, 200, 3},
426 	{300, 500, 2},
427 	{600, 1000, 1},
428 	{1100, 100000, 0},
429 };
430 
431 static struct qm_typical_qos_table shaper_cbs_s[] = {
432 	{100, 200, 9},
433 	{300, 500, 11},
434 	{600, 1000, 12},
435 	{1100, 10000, 16},
436 	{10100, 25000, 17},
437 	{25100, 50000, 18},
438 	{50100, 100000, 19}
439 };
440 
441 static void qm_irqs_unregister(struct hisi_qm *qm);
442 
443 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
444 {
445 	enum qm_state curr = atomic_read(&qm->status.flags);
446 	bool avail = false;
447 
448 	switch (curr) {
449 	case QM_INIT:
450 		if (new == QM_START || new == QM_CLOSE)
451 			avail = true;
452 		break;
453 	case QM_START:
454 		if (new == QM_STOP)
455 			avail = true;
456 		break;
457 	case QM_STOP:
458 		if (new == QM_CLOSE || new == QM_START)
459 			avail = true;
460 		break;
461 	default:
462 		break;
463 	}
464 
465 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
466 		qm_s[curr], qm_s[new]);
467 
468 	if (!avail)
469 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
470 			 qm_s[curr], qm_s[new]);
471 
472 	return avail;
473 }
474 
475 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
476 			      enum qp_state new)
477 {
478 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
479 	enum qp_state qp_curr = 0;
480 	bool avail = false;
481 
482 	if (qp)
483 		qp_curr = atomic_read(&qp->qp_status.flags);
484 
485 	switch (new) {
486 	case QP_INIT:
487 		if (qm_curr == QM_START || qm_curr == QM_INIT)
488 			avail = true;
489 		break;
490 	case QP_START:
491 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
492 		    (qm_curr == QM_START && qp_curr == QP_STOP))
493 			avail = true;
494 		break;
495 	case QP_STOP:
496 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
497 		    (qp_curr == QP_INIT))
498 			avail = true;
499 		break;
500 	case QP_CLOSE:
501 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
502 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
503 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
504 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
505 			avail = true;
506 		break;
507 	default:
508 		break;
509 	}
510 
511 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
512 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
513 
514 	if (!avail)
515 		dev_warn(&qm->pdev->dev,
516 			 "Can not change qp state from %s to %s in QM %s\n",
517 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
518 
519 	return avail;
520 }
521 
522 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
523 {
524 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
525 }
526 
527 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
528 {
529 	return qm->err_ini->get_dev_hw_err_status(qm);
530 }
531 
532 /* Check if the error causes the master ooo block */
533 static bool qm_check_dev_error(struct hisi_qm *qm)
534 {
535 	u32 val, dev_val;
536 
537 	if (qm->fun_type == QM_HW_VF)
538 		return false;
539 
540 	val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
541 	dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
542 
543 	return val || dev_val;
544 }
545 
546 static int qm_wait_reset_finish(struct hisi_qm *qm)
547 {
548 	int delay = 0;
549 
550 	/* All reset requests need to be queued for processing */
551 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
552 		msleep(++delay);
553 		if (delay > QM_RESET_WAIT_TIMEOUT)
554 			return -EBUSY;
555 	}
556 
557 	return 0;
558 }
559 
560 static int qm_reset_prepare_ready(struct hisi_qm *qm)
561 {
562 	struct pci_dev *pdev = qm->pdev;
563 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
564 
565 	/*
566 	 * PF and VF on host doesnot support resetting at the
567 	 * same time on Kunpeng920.
568 	 */
569 	if (qm->ver < QM_HW_V3)
570 		return qm_wait_reset_finish(pf_qm);
571 
572 	return qm_wait_reset_finish(qm);
573 }
574 
575 static void qm_reset_bit_clear(struct hisi_qm *qm)
576 {
577 	struct pci_dev *pdev = qm->pdev;
578 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
579 
580 	if (qm->ver < QM_HW_V3)
581 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
582 
583 	clear_bit(QM_RESETTING, &qm->misc_ctl);
584 }
585 
586 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
587 			   u64 base, u16 queue, bool op)
588 {
589 	mailbox->w0 = cpu_to_le16((cmd) |
590 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
591 		(0x1 << QM_MB_BUSY_SHIFT));
592 	mailbox->queue_num = cpu_to_le16(queue);
593 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
594 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
595 	mailbox->rsvd = 0;
596 }
597 
598 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
599 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
600 {
601 	u32 val;
602 
603 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
604 					  val, !((val >> QM_MB_BUSY_SHIFT) &
605 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
606 }
607 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
608 
609 /* 128 bit should be written to hardware at one time to trigger a mailbox */
610 static void qm_mb_write(struct hisi_qm *qm, const void *src)
611 {
612 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
613 	unsigned long tmp0 = 0, tmp1 = 0;
614 
615 	if (!IS_ENABLED(CONFIG_ARM64)) {
616 		memcpy_toio(fun_base, src, 16);
617 		dma_wmb();
618 		return;
619 	}
620 
621 	asm volatile("ldp %0, %1, %3\n"
622 		     "stp %0, %1, %2\n"
623 		     "dmb oshst\n"
624 		     : "=&r" (tmp0),
625 		       "=&r" (tmp1),
626 		       "+Q" (*((char __iomem *)fun_base))
627 		     : "Q" (*((char *)src))
628 		     : "memory");
629 }
630 
631 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
632 {
633 	int ret;
634 	u32 val;
635 
636 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
637 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
638 		ret = -EBUSY;
639 		goto mb_busy;
640 	}
641 
642 	qm_mb_write(qm, mailbox);
643 
644 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
645 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
646 		ret = -ETIMEDOUT;
647 		goto mb_busy;
648 	}
649 
650 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
651 	if (val & QM_MB_STATUS_MASK) {
652 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
653 		ret = -EIO;
654 		goto mb_busy;
655 	}
656 
657 	return 0;
658 
659 mb_busy:
660 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
661 	return ret;
662 }
663 
664 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
665 	       bool op)
666 {
667 	struct qm_mailbox mailbox;
668 	int ret;
669 
670 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
671 		queue, cmd, (unsigned long long)dma_addr);
672 
673 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
674 
675 	mutex_lock(&qm->mailbox_lock);
676 	ret = qm_mb_nolock(qm, &mailbox);
677 	mutex_unlock(&qm->mailbox_lock);
678 
679 	return ret;
680 }
681 EXPORT_SYMBOL_GPL(hisi_qm_mb);
682 
683 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
684 {
685 	u64 doorbell;
686 
687 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
688 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
689 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
690 
691 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
692 }
693 
694 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
695 {
696 	void __iomem *io_base = qm->io_base;
697 	u16 randata = 0;
698 	u64 doorbell;
699 
700 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
701 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
702 			  QM_DOORBELL_SQ_CQ_BASE_V2;
703 	else
704 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
705 
706 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
707 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
708 		   ((u64)index << QM_DB_INDEX_SHIFT_V2) |
709 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
710 
711 	writeq(doorbell, io_base);
712 }
713 
714 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
715 {
716 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
717 		qn, cmd, index);
718 
719 	qm->ops->qm_db(qm, qn, cmd, index, priority);
720 }
721 
722 static void qm_disable_clock_gate(struct hisi_qm *qm)
723 {
724 	u32 val;
725 
726 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
727 	if (qm->ver < QM_HW_V3)
728 		return;
729 
730 	val = readl(qm->io_base + QM_PM_CTRL);
731 	val |= QM_IDLE_DISABLE;
732 	writel(val, qm->io_base +  QM_PM_CTRL);
733 }
734 
735 static int qm_dev_mem_reset(struct hisi_qm *qm)
736 {
737 	u32 val;
738 
739 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
740 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
741 					  val & BIT(0), POLL_PERIOD,
742 					  POLL_TIMEOUT);
743 }
744 
745 /**
746  * hisi_qm_get_hw_info() - Get device information.
747  * @qm: The qm which want to get information.
748  * @info_table: Array for storing device information.
749  * @index: Index in info_table.
750  * @is_read: Whether read from reg, 0: not support read from reg.
751  *
752  * This function returns device information the caller needs.
753  */
754 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
755 			const struct hisi_qm_cap_info *info_table,
756 			u32 index, bool is_read)
757 {
758 	u32 val;
759 
760 	switch (qm->ver) {
761 	case QM_HW_V1:
762 		return info_table[index].v1_val;
763 	case QM_HW_V2:
764 		return info_table[index].v2_val;
765 	default:
766 		if (!is_read)
767 			return info_table[index].v3_val;
768 
769 		val = readl(qm->io_base + info_table[index].offset);
770 		return (val >> info_table[index].shift) & info_table[index].mask;
771 	}
772 }
773 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
774 
775 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
776 			     u16 *high_bits, enum qm_basic_type type)
777 {
778 	u32 depth;
779 
780 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
781 	*low_bits = depth & QM_XQ_DEPTH_MASK;
782 	*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
783 }
784 
785 static u32 qm_get_irq_num(struct hisi_qm *qm)
786 {
787 	if (qm->fun_type == QM_HW_PF)
788 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
789 
790 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
791 }
792 
793 static int qm_pm_get_sync(struct hisi_qm *qm)
794 {
795 	struct device *dev = &qm->pdev->dev;
796 	int ret;
797 
798 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
799 		return 0;
800 
801 	ret = pm_runtime_resume_and_get(dev);
802 	if (ret < 0) {
803 		dev_err(dev, "failed to get_sync(%d).\n", ret);
804 		return ret;
805 	}
806 
807 	return 0;
808 }
809 
810 static void qm_pm_put_sync(struct hisi_qm *qm)
811 {
812 	struct device *dev = &qm->pdev->dev;
813 
814 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
815 		return;
816 
817 	pm_runtime_mark_last_busy(dev);
818 	pm_runtime_put_autosuspend(dev);
819 }
820 
821 static void qm_cq_head_update(struct hisi_qp *qp)
822 {
823 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
824 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
825 		qp->qp_status.cq_head = 0;
826 	} else {
827 		qp->qp_status.cq_head++;
828 	}
829 }
830 
831 static void qm_poll_req_cb(struct hisi_qp *qp)
832 {
833 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
834 	struct hisi_qm *qm = qp->qm;
835 
836 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
837 		dma_rmb();
838 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
839 			   le16_to_cpu(cqe->sq_head));
840 		qm_cq_head_update(qp);
841 		cqe = qp->cqe + qp->qp_status.cq_head;
842 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
843 		      qp->qp_status.cq_head, 0);
844 		atomic_dec(&qp->qp_status.used);
845 	}
846 
847 	/* set c_flag */
848 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
849 }
850 
851 static int qm_get_complete_eqe_num(struct hisi_qm_poll_data *poll_data)
852 {
853 	struct hisi_qm *qm = poll_data->qm;
854 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
855 	u16 eq_depth = qm->eq_depth;
856 	int eqe_num = 0;
857 	u16 cqn;
858 
859 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
860 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
861 		poll_data->qp_finish_id[eqe_num] = cqn;
862 		eqe_num++;
863 
864 		if (qm->status.eq_head == eq_depth - 1) {
865 			qm->status.eqc_phase = !qm->status.eqc_phase;
866 			eqe = qm->eqe;
867 			qm->status.eq_head = 0;
868 		} else {
869 			eqe++;
870 			qm->status.eq_head++;
871 		}
872 
873 		if (eqe_num == (eq_depth >> 1) - 1)
874 			break;
875 	}
876 
877 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
878 
879 	return eqe_num;
880 }
881 
882 static void qm_work_process(struct work_struct *work)
883 {
884 	struct hisi_qm_poll_data *poll_data =
885 		container_of(work, struct hisi_qm_poll_data, work);
886 	struct hisi_qm *qm = poll_data->qm;
887 	struct hisi_qp *qp;
888 	int eqe_num, i;
889 
890 	/* Get qp id of completed tasks and re-enable the interrupt. */
891 	eqe_num = qm_get_complete_eqe_num(poll_data);
892 	for (i = eqe_num - 1; i >= 0; i--) {
893 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
894 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
895 			continue;
896 
897 		if (qp->event_cb) {
898 			qp->event_cb(qp);
899 			continue;
900 		}
901 
902 		if (likely(qp->req_cb))
903 			qm_poll_req_cb(qp);
904 	}
905 }
906 
907 static bool do_qm_eq_irq(struct hisi_qm *qm)
908 {
909 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
910 	struct hisi_qm_poll_data *poll_data;
911 	u16 cqn;
912 
913 	if (!readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
914 		return false;
915 
916 	if (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
917 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
918 		poll_data = &qm->poll_data[cqn];
919 		queue_work(qm->wq, &poll_data->work);
920 
921 		return true;
922 	}
923 
924 	return false;
925 }
926 
927 static irqreturn_t qm_eq_irq(int irq, void *data)
928 {
929 	struct hisi_qm *qm = data;
930 	bool ret;
931 
932 	ret = do_qm_eq_irq(qm);
933 	if (ret)
934 		return IRQ_HANDLED;
935 
936 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
937 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
938 
939 	return IRQ_NONE;
940 }
941 
942 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
943 {
944 	struct hisi_qm *qm = data;
945 	u32 val;
946 
947 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
948 	val &= QM_IFC_INT_STATUS_MASK;
949 	if (!val)
950 		return IRQ_NONE;
951 
952 	schedule_work(&qm->cmd_process);
953 
954 	return IRQ_HANDLED;
955 }
956 
957 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
958 {
959 	u32 *addr;
960 
961 	if (qp->is_in_kernel)
962 		return;
963 
964 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
965 	*addr = 1;
966 
967 	/* make sure setup is completed */
968 	smp_wmb();
969 }
970 
971 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
972 {
973 	struct hisi_qp *qp = &qm->qp_array[qp_id];
974 
975 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
976 	hisi_qm_stop_qp(qp);
977 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
978 }
979 
980 static void qm_reset_function(struct hisi_qm *qm)
981 {
982 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
983 	struct device *dev = &qm->pdev->dev;
984 	int ret;
985 
986 	if (qm_check_dev_error(pf_qm))
987 		return;
988 
989 	ret = qm_reset_prepare_ready(qm);
990 	if (ret) {
991 		dev_err(dev, "reset function not ready\n");
992 		return;
993 	}
994 
995 	ret = hisi_qm_stop(qm, QM_FLR);
996 	if (ret) {
997 		dev_err(dev, "failed to stop qm when reset function\n");
998 		goto clear_bit;
999 	}
1000 
1001 	ret = hisi_qm_start(qm);
1002 	if (ret)
1003 		dev_err(dev, "failed to start qm when reset function\n");
1004 
1005 clear_bit:
1006 	qm_reset_bit_clear(qm);
1007 }
1008 
1009 static irqreturn_t qm_aeq_thread(int irq, void *data)
1010 {
1011 	struct hisi_qm *qm = data;
1012 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1013 	u16 aeq_depth = qm->aeq_depth;
1014 	u32 type, qp_id;
1015 
1016 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1017 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
1018 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1019 
1020 		switch (type) {
1021 		case QM_EQ_OVERFLOW:
1022 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1023 			qm_reset_function(qm);
1024 			return IRQ_HANDLED;
1025 		case QM_CQ_OVERFLOW:
1026 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1027 				qp_id);
1028 			fallthrough;
1029 		case QM_CQE_ERROR:
1030 			qm_disable_qp(qm, qp_id);
1031 			break;
1032 		default:
1033 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1034 				type);
1035 			break;
1036 		}
1037 
1038 		if (qm->status.aeq_head == aeq_depth - 1) {
1039 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1040 			aeqe = qm->aeqe;
1041 			qm->status.aeq_head = 0;
1042 		} else {
1043 			aeqe++;
1044 			qm->status.aeq_head++;
1045 		}
1046 	}
1047 
1048 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1049 
1050 	return IRQ_HANDLED;
1051 }
1052 
1053 static irqreturn_t qm_aeq_irq(int irq, void *data)
1054 {
1055 	struct hisi_qm *qm = data;
1056 
1057 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1058 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
1059 		return IRQ_NONE;
1060 
1061 	return IRQ_WAKE_THREAD;
1062 }
1063 
1064 static void qm_init_qp_status(struct hisi_qp *qp)
1065 {
1066 	struct hisi_qp_status *qp_status = &qp->qp_status;
1067 
1068 	qp_status->sq_tail = 0;
1069 	qp_status->cq_head = 0;
1070 	qp_status->cqc_phase = true;
1071 	atomic_set(&qp_status->used, 0);
1072 }
1073 
1074 static void qm_init_prefetch(struct hisi_qm *qm)
1075 {
1076 	struct device *dev = &qm->pdev->dev;
1077 	u32 page_type = 0x0;
1078 
1079 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1080 		return;
1081 
1082 	switch (PAGE_SIZE) {
1083 	case SZ_4K:
1084 		page_type = 0x0;
1085 		break;
1086 	case SZ_16K:
1087 		page_type = 0x1;
1088 		break;
1089 	case SZ_64K:
1090 		page_type = 0x2;
1091 		break;
1092 	default:
1093 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1094 			PAGE_SIZE);
1095 	}
1096 
1097 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1098 }
1099 
1100 /*
1101  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1102  * is the expected qos calculated.
1103  * the formula:
1104  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1105  *
1106  *		IR_b * (2 ^ IR_u) * 8000
1107  * IR(Mbps) = -------------------------
1108  *		  Tick * (2 ^ IR_s)
1109  */
1110 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1111 {
1112 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1113 					(QM_QOS_TICK * (1 << cir_s));
1114 }
1115 
1116 static u32 acc_shaper_calc_cbs_s(u32 ir)
1117 {
1118 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1119 	int i;
1120 
1121 	for (i = 0; i < table_size; i++) {
1122 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1123 			return shaper_cbs_s[i].val;
1124 	}
1125 
1126 	return QM_SHAPER_MIN_CBS_S;
1127 }
1128 
1129 static u32 acc_shaper_calc_cir_s(u32 ir)
1130 {
1131 	int table_size = ARRAY_SIZE(shaper_cir_s);
1132 	int i;
1133 
1134 	for (i = 0; i < table_size; i++) {
1135 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1136 			return shaper_cir_s[i].val;
1137 	}
1138 
1139 	return 0;
1140 }
1141 
1142 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1143 {
1144 	u32 cir_b, cir_u, cir_s, ir_calc;
1145 	u32 error_rate;
1146 
1147 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1148 	cir_s = acc_shaper_calc_cir_s(ir);
1149 
1150 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1151 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1152 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1153 
1154 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1155 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1156 				factor->cir_b = cir_b;
1157 				factor->cir_u = cir_u;
1158 				factor->cir_s = cir_s;
1159 				return 0;
1160 			}
1161 		}
1162 	}
1163 
1164 	return -EINVAL;
1165 }
1166 
1167 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1168 			    u32 number, struct qm_shaper_factor *factor)
1169 {
1170 	u64 tmp = 0;
1171 
1172 	if (number > 0) {
1173 		switch (type) {
1174 		case SQC_VFT:
1175 			if (qm->ver == QM_HW_V1) {
1176 				tmp = QM_SQC_VFT_BUF_SIZE	|
1177 				      QM_SQC_VFT_SQC_SIZE	|
1178 				      QM_SQC_VFT_INDEX_NUMBER	|
1179 				      QM_SQC_VFT_VALID		|
1180 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1181 			} else {
1182 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1183 				      QM_SQC_VFT_VALID |
1184 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1185 			}
1186 			break;
1187 		case CQC_VFT:
1188 			if (qm->ver == QM_HW_V1) {
1189 				tmp = QM_CQC_VFT_BUF_SIZE	|
1190 				      QM_CQC_VFT_SQC_SIZE	|
1191 				      QM_CQC_VFT_INDEX_NUMBER	|
1192 				      QM_CQC_VFT_VALID;
1193 			} else {
1194 				tmp = QM_CQC_VFT_VALID;
1195 			}
1196 			break;
1197 		case SHAPER_VFT:
1198 			if (factor) {
1199 				tmp = factor->cir_b |
1200 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1201 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1202 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1203 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1204 			}
1205 			break;
1206 		}
1207 	}
1208 
1209 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1210 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1211 }
1212 
1213 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1214 			     u32 fun_num, u32 base, u32 number)
1215 {
1216 	struct qm_shaper_factor *factor = NULL;
1217 	unsigned int val;
1218 	int ret;
1219 
1220 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1221 		factor = &qm->factor[fun_num];
1222 
1223 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1224 					 val & BIT(0), POLL_PERIOD,
1225 					 POLL_TIMEOUT);
1226 	if (ret)
1227 		return ret;
1228 
1229 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1230 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1231 	if (type == SHAPER_VFT)
1232 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1233 
1234 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1235 
1236 	qm_vft_data_cfg(qm, type, base, number, factor);
1237 
1238 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1239 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1240 
1241 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1242 					  val & BIT(0), POLL_PERIOD,
1243 					  POLL_TIMEOUT);
1244 }
1245 
1246 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1247 {
1248 	u32 qos = qm->factor[fun_num].func_qos;
1249 	int ret, i;
1250 
1251 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1252 	if (ret) {
1253 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1254 		return ret;
1255 	}
1256 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1257 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1258 		/* The base number of queue reuse for different alg type */
1259 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1260 		if (ret)
1261 			return ret;
1262 	}
1263 
1264 	return 0;
1265 }
1266 
1267 /* The config should be conducted after qm_dev_mem_reset() */
1268 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1269 			      u32 number)
1270 {
1271 	int ret, i;
1272 
1273 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1274 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1275 		if (ret)
1276 			return ret;
1277 	}
1278 
1279 	/* init default shaper qos val */
1280 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1281 		ret = qm_shaper_init_vft(qm, fun_num);
1282 		if (ret)
1283 			goto back_sqc_cqc;
1284 	}
1285 
1286 	return 0;
1287 back_sqc_cqc:
1288 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1289 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1290 
1291 	return ret;
1292 }
1293 
1294 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1295 {
1296 	u64 sqc_vft;
1297 	int ret;
1298 
1299 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1300 	if (ret)
1301 		return ret;
1302 
1303 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1304 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1305 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1306 	*number = (QM_SQC_VFT_NUM_MASK_V2 &
1307 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1308 
1309 	return 0;
1310 }
1311 
1312 void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1313 			  dma_addr_t *dma_addr)
1314 {
1315 	struct device *dev = &qm->pdev->dev;
1316 	void *ctx_addr;
1317 
1318 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1319 	if (!ctx_addr)
1320 		return ERR_PTR(-ENOMEM);
1321 
1322 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1323 	if (dma_mapping_error(dev, *dma_addr)) {
1324 		dev_err(dev, "DMA mapping error!\n");
1325 		kfree(ctx_addr);
1326 		return ERR_PTR(-ENOMEM);
1327 	}
1328 
1329 	return ctx_addr;
1330 }
1331 
1332 void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1333 			const void *ctx_addr, dma_addr_t *dma_addr)
1334 {
1335 	struct device *dev = &qm->pdev->dev;
1336 
1337 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1338 	kfree(ctx_addr);
1339 }
1340 
1341 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1342 {
1343 	return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1344 }
1345 
1346 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1347 {
1348 	return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1349 }
1350 
1351 static void qm_hw_error_init_v1(struct hisi_qm *qm)
1352 {
1353 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1354 }
1355 
1356 static void qm_hw_error_cfg(struct hisi_qm *qm)
1357 {
1358 	struct hisi_qm_err_info *err_info = &qm->err_info;
1359 
1360 	qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
1361 	/* clear QM hw residual error source */
1362 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1363 
1364 	/* configure error type */
1365 	writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
1366 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1367 	writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1368 	writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
1369 }
1370 
1371 static void qm_hw_error_init_v2(struct hisi_qm *qm)
1372 {
1373 	u32 irq_unmask;
1374 
1375 	qm_hw_error_cfg(qm);
1376 
1377 	irq_unmask = ~qm->error_mask;
1378 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1379 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1380 }
1381 
1382 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1383 {
1384 	u32 irq_mask = qm->error_mask;
1385 
1386 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1387 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1388 }
1389 
1390 static void qm_hw_error_init_v3(struct hisi_qm *qm)
1391 {
1392 	u32 irq_unmask;
1393 
1394 	qm_hw_error_cfg(qm);
1395 
1396 	/* enable close master ooo when hardware error happened */
1397 	writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1398 
1399 	irq_unmask = ~qm->error_mask;
1400 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1401 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1402 }
1403 
1404 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1405 {
1406 	u32 irq_mask = qm->error_mask;
1407 
1408 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1409 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1410 
1411 	/* disable close master ooo when hardware error happened */
1412 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1413 }
1414 
1415 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1416 {
1417 	const struct hisi_qm_hw_error *err;
1418 	struct device *dev = &qm->pdev->dev;
1419 	u32 reg_val, type, vf_num;
1420 	int i;
1421 
1422 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1423 		err = &qm_hw_error[i];
1424 		if (!(err->int_msk & error_status))
1425 			continue;
1426 
1427 		dev_err(dev, "%s [error status=0x%x] found\n",
1428 			err->msg, err->int_msk);
1429 
1430 		if (err->int_msk & QM_DB_TIMEOUT) {
1431 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1432 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1433 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1434 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1435 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
1436 				qm_db_timeout[type], vf_num);
1437 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1438 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1439 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1440 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1441 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1442 
1443 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1444 				dev_err(dev, "qm %s fifo overflow in function %u\n",
1445 					qm_fifo_overflow[type], vf_num);
1446 			else
1447 				dev_err(dev, "unknown error type\n");
1448 		}
1449 	}
1450 }
1451 
1452 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1453 {
1454 	u32 error_status, tmp;
1455 
1456 	/* read err sts */
1457 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1458 	error_status = qm->error_mask & tmp;
1459 
1460 	if (error_status) {
1461 		if (error_status & QM_ECC_MBIT)
1462 			qm->err_status.is_qm_ecc_mbit = true;
1463 
1464 		qm_log_hw_error(qm, error_status);
1465 		if (error_status & qm->err_info.qm_reset_mask)
1466 			return ACC_ERR_NEED_RESET;
1467 
1468 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1469 		writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1470 	}
1471 
1472 	return ACC_ERR_RECOVERED;
1473 }
1474 
1475 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1476 {
1477 	struct qm_mailbox mailbox;
1478 	int ret;
1479 
1480 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1481 	mutex_lock(&qm->mailbox_lock);
1482 	ret = qm_mb_nolock(qm, &mailbox);
1483 	if (ret)
1484 		goto err_unlock;
1485 
1486 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1487 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1488 
1489 err_unlock:
1490 	mutex_unlock(&qm->mailbox_lock);
1491 	return ret;
1492 }
1493 
1494 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1495 {
1496 	u32 val;
1497 
1498 	if (qm->fun_type == QM_HW_PF)
1499 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1500 
1501 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1502 	val |= QM_IFC_INT_SOURCE_MASK;
1503 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1504 }
1505 
1506 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1507 {
1508 	struct device *dev = &qm->pdev->dev;
1509 	u32 cmd;
1510 	u64 msg;
1511 	int ret;
1512 
1513 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
1514 	if (ret) {
1515 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
1516 		return;
1517 	}
1518 
1519 	cmd = msg & QM_MB_CMD_DATA_MASK;
1520 	switch (cmd) {
1521 	case QM_VF_PREPARE_FAIL:
1522 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1523 		break;
1524 	case QM_VF_START_FAIL:
1525 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1526 		break;
1527 	case QM_VF_PREPARE_DONE:
1528 	case QM_VF_START_DONE:
1529 		break;
1530 	default:
1531 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
1532 		break;
1533 	}
1534 }
1535 
1536 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1537 {
1538 	struct device *dev = &qm->pdev->dev;
1539 	u32 vfs_num = qm->vfs_num;
1540 	int cnt = 0;
1541 	int ret = 0;
1542 	u64 val;
1543 	u32 i;
1544 
1545 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1546 		return 0;
1547 
1548 	while (true) {
1549 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1550 		/* All VFs send command to PF, break */
1551 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1552 			break;
1553 
1554 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1555 			ret = -EBUSY;
1556 			break;
1557 		}
1558 
1559 		msleep(QM_WAIT_DST_ACK);
1560 	}
1561 
1562 	/* PF check VFs msg */
1563 	for (i = 1; i <= vfs_num; i++) {
1564 		if (val & BIT(i))
1565 			qm_handle_vf_msg(qm, i);
1566 		else
1567 			dev_err(dev, "VF(%u) not ping PF!\n", i);
1568 	}
1569 
1570 	/* PF clear interrupt to ack VFs */
1571 	qm_clear_cmd_interrupt(qm, val);
1572 
1573 	return ret;
1574 }
1575 
1576 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1577 {
1578 	u32 val;
1579 
1580 	val = readl(qm->io_base + QM_IFC_INT_CFG);
1581 	val &= ~QM_IFC_SEND_ALL_VFS;
1582 	val |= fun_num;
1583 	writel(val, qm->io_base + QM_IFC_INT_CFG);
1584 
1585 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
1586 	val |= QM_IFC_INT_SET_MASK;
1587 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
1588 }
1589 
1590 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1591 {
1592 	u32 val;
1593 
1594 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
1595 	val |= QM_IFC_INT_SET_MASK;
1596 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
1597 }
1598 
1599 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
1600 {
1601 	struct device *dev = &qm->pdev->dev;
1602 	struct qm_mailbox mailbox;
1603 	int cnt = 0;
1604 	u64 val;
1605 	int ret;
1606 
1607 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
1608 	mutex_lock(&qm->mailbox_lock);
1609 	ret = qm_mb_nolock(qm, &mailbox);
1610 	if (ret) {
1611 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1612 		goto err_unlock;
1613 	}
1614 
1615 	qm_trigger_vf_interrupt(qm, fun_num);
1616 	while (true) {
1617 		msleep(QM_WAIT_DST_ACK);
1618 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1619 		/* if VF respond, PF notifies VF successfully. */
1620 		if (!(val & BIT(fun_num)))
1621 			goto err_unlock;
1622 
1623 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1624 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1625 			ret = -ETIMEDOUT;
1626 			break;
1627 		}
1628 	}
1629 
1630 err_unlock:
1631 	mutex_unlock(&qm->mailbox_lock);
1632 	return ret;
1633 }
1634 
1635 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
1636 {
1637 	struct device *dev = &qm->pdev->dev;
1638 	u32 vfs_num = qm->vfs_num;
1639 	struct qm_mailbox mailbox;
1640 	u64 val = 0;
1641 	int cnt = 0;
1642 	int ret;
1643 	u32 i;
1644 
1645 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
1646 	mutex_lock(&qm->mailbox_lock);
1647 	/* PF sends command to all VFs by mailbox */
1648 	ret = qm_mb_nolock(qm, &mailbox);
1649 	if (ret) {
1650 		dev_err(dev, "failed to send command to VFs!\n");
1651 		mutex_unlock(&qm->mailbox_lock);
1652 		return ret;
1653 	}
1654 
1655 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1656 	while (true) {
1657 		msleep(QM_WAIT_DST_ACK);
1658 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1659 		/* If all VFs acked, PF notifies VFs successfully. */
1660 		if (!(val & GENMASK(vfs_num, 1))) {
1661 			mutex_unlock(&qm->mailbox_lock);
1662 			return 0;
1663 		}
1664 
1665 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
1666 			break;
1667 	}
1668 
1669 	mutex_unlock(&qm->mailbox_lock);
1670 
1671 	/* Check which vf respond timeout. */
1672 	for (i = 1; i <= vfs_num; i++) {
1673 		if (val & BIT(i))
1674 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
1675 	}
1676 
1677 	return -ETIMEDOUT;
1678 }
1679 
1680 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
1681 {
1682 	struct qm_mailbox mailbox;
1683 	int cnt = 0;
1684 	u32 val;
1685 	int ret;
1686 
1687 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
1688 	mutex_lock(&qm->mailbox_lock);
1689 	ret = qm_mb_nolock(qm, &mailbox);
1690 	if (ret) {
1691 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
1692 		goto unlock;
1693 	}
1694 
1695 	qm_trigger_pf_interrupt(qm);
1696 	/* Waiting for PF response */
1697 	while (true) {
1698 		msleep(QM_WAIT_DST_ACK);
1699 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
1700 		if (!(val & QM_IFC_INT_STATUS_MASK))
1701 			break;
1702 
1703 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1704 			ret = -ETIMEDOUT;
1705 			break;
1706 		}
1707 	}
1708 
1709 unlock:
1710 	mutex_unlock(&qm->mailbox_lock);
1711 	return ret;
1712 }
1713 
1714 static int qm_stop_qp(struct hisi_qp *qp)
1715 {
1716 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1717 }
1718 
1719 static int qm_set_msi(struct hisi_qm *qm, bool set)
1720 {
1721 	struct pci_dev *pdev = qm->pdev;
1722 
1723 	if (set) {
1724 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1725 				       0);
1726 	} else {
1727 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1728 				       ACC_PEH_MSI_DISABLE);
1729 		if (qm->err_status.is_qm_ecc_mbit ||
1730 		    qm->err_status.is_dev_ecc_mbit)
1731 			return 0;
1732 
1733 		mdelay(1);
1734 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1735 			return -EFAULT;
1736 	}
1737 
1738 	return 0;
1739 }
1740 
1741 static void qm_wait_msi_finish(struct hisi_qm *qm)
1742 {
1743 	struct pci_dev *pdev = qm->pdev;
1744 	u32 cmd = ~0;
1745 	int cnt = 0;
1746 	u32 val;
1747 	int ret;
1748 
1749 	while (true) {
1750 		pci_read_config_dword(pdev, pdev->msi_cap +
1751 				      PCI_MSI_PENDING_64, &cmd);
1752 		if (!cmd)
1753 			break;
1754 
1755 		if (++cnt > MAX_WAIT_COUNTS) {
1756 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
1757 			break;
1758 		}
1759 
1760 		udelay(1);
1761 	}
1762 
1763 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1764 					 val, !(val & QM_PEH_DFX_MASK),
1765 					 POLL_PERIOD, POLL_TIMEOUT);
1766 	if (ret)
1767 		pci_warn(pdev, "failed to empty PEH MSI!\n");
1768 
1769 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1770 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
1771 					 POLL_PERIOD, POLL_TIMEOUT);
1772 	if (ret)
1773 		pci_warn(pdev, "failed to finish MSI operation!\n");
1774 }
1775 
1776 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1777 {
1778 	struct pci_dev *pdev = qm->pdev;
1779 	int ret = -ETIMEDOUT;
1780 	u32 cmd, i;
1781 
1782 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1783 	if (set)
1784 		cmd |= QM_MSI_CAP_ENABLE;
1785 	else
1786 		cmd &= ~QM_MSI_CAP_ENABLE;
1787 
1788 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1789 	if (set) {
1790 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1791 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1792 			if (cmd & QM_MSI_CAP_ENABLE)
1793 				return 0;
1794 
1795 			udelay(1);
1796 		}
1797 	} else {
1798 		udelay(WAIT_PERIOD_US_MIN);
1799 		qm_wait_msi_finish(qm);
1800 		ret = 0;
1801 	}
1802 
1803 	return ret;
1804 }
1805 
1806 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1807 	.qm_db = qm_db_v1,
1808 	.hw_error_init = qm_hw_error_init_v1,
1809 	.set_msi = qm_set_msi,
1810 };
1811 
1812 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1813 	.get_vft = qm_get_vft_v2,
1814 	.qm_db = qm_db_v2,
1815 	.hw_error_init = qm_hw_error_init_v2,
1816 	.hw_error_uninit = qm_hw_error_uninit_v2,
1817 	.hw_error_handle = qm_hw_error_handle_v2,
1818 	.set_msi = qm_set_msi,
1819 };
1820 
1821 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1822 	.get_vft = qm_get_vft_v2,
1823 	.qm_db = qm_db_v2,
1824 	.hw_error_init = qm_hw_error_init_v3,
1825 	.hw_error_uninit = qm_hw_error_uninit_v3,
1826 	.hw_error_handle = qm_hw_error_handle_v2,
1827 	.set_msi = qm_set_msi_v3,
1828 };
1829 
1830 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1831 {
1832 	struct hisi_qp_status *qp_status = &qp->qp_status;
1833 	u16 sq_tail = qp_status->sq_tail;
1834 
1835 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1836 		return NULL;
1837 
1838 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1839 }
1840 
1841 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1842 {
1843 	u64 *addr;
1844 
1845 	/* Use last 64 bits of DUS to reset status. */
1846 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
1847 	*addr = 0;
1848 }
1849 
1850 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1851 {
1852 	struct device *dev = &qm->pdev->dev;
1853 	struct hisi_qp *qp;
1854 	int qp_id;
1855 
1856 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
1857 		return ERR_PTR(-EPERM);
1858 
1859 	if (qm->qp_in_used == qm->qp_num) {
1860 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1861 				     qm->qp_num);
1862 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1863 		return ERR_PTR(-EBUSY);
1864 	}
1865 
1866 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1867 	if (qp_id < 0) {
1868 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1869 				    qm->qp_num);
1870 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1871 		return ERR_PTR(-EBUSY);
1872 	}
1873 
1874 	qp = &qm->qp_array[qp_id];
1875 	hisi_qm_unset_hw_reset(qp);
1876 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
1877 
1878 	qp->event_cb = NULL;
1879 	qp->req_cb = NULL;
1880 	qp->qp_id = qp_id;
1881 	qp->alg_type = alg_type;
1882 	qp->is_in_kernel = true;
1883 	qm->qp_in_used++;
1884 	atomic_set(&qp->qp_status.flags, QP_INIT);
1885 
1886 	return qp;
1887 }
1888 
1889 /**
1890  * hisi_qm_create_qp() - Create a queue pair from qm.
1891  * @qm: The qm we create a qp from.
1892  * @alg_type: Accelerator specific algorithm type in sqc.
1893  *
1894  * Return created qp, negative error code if failed.
1895  */
1896 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1897 {
1898 	struct hisi_qp *qp;
1899 	int ret;
1900 
1901 	ret = qm_pm_get_sync(qm);
1902 	if (ret)
1903 		return ERR_PTR(ret);
1904 
1905 	down_write(&qm->qps_lock);
1906 	qp = qm_create_qp_nolock(qm, alg_type);
1907 	up_write(&qm->qps_lock);
1908 
1909 	if (IS_ERR(qp))
1910 		qm_pm_put_sync(qm);
1911 
1912 	return qp;
1913 }
1914 
1915 /**
1916  * hisi_qm_release_qp() - Release a qp back to its qm.
1917  * @qp: The qp we want to release.
1918  *
1919  * This function releases the resource of a qp.
1920  */
1921 static void hisi_qm_release_qp(struct hisi_qp *qp)
1922 {
1923 	struct hisi_qm *qm = qp->qm;
1924 
1925 	down_write(&qm->qps_lock);
1926 
1927 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
1928 		up_write(&qm->qps_lock);
1929 		return;
1930 	}
1931 
1932 	qm->qp_in_used--;
1933 	idr_remove(&qm->qp_idr, qp->qp_id);
1934 
1935 	up_write(&qm->qps_lock);
1936 
1937 	qm_pm_put_sync(qm);
1938 }
1939 
1940 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1941 {
1942 	struct hisi_qm *qm = qp->qm;
1943 	struct device *dev = &qm->pdev->dev;
1944 	enum qm_hw_ver ver = qm->ver;
1945 	struct qm_sqc *sqc;
1946 	dma_addr_t sqc_dma;
1947 	int ret;
1948 
1949 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
1950 	if (!sqc)
1951 		return -ENOMEM;
1952 
1953 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
1954 	if (ver == QM_HW_V1) {
1955 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1956 		sqc->w8 = cpu_to_le16(qp->sq_depth - 1);
1957 	} else {
1958 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
1959 		sqc->w8 = 0; /* rand_qc */
1960 	}
1961 	sqc->cq_num = cpu_to_le16(qp_id);
1962 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1963 
1964 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1965 		sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
1966 				       QM_QC_PASID_ENABLE_SHIFT);
1967 
1968 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
1969 				 DMA_TO_DEVICE);
1970 	if (dma_mapping_error(dev, sqc_dma)) {
1971 		kfree(sqc);
1972 		return -ENOMEM;
1973 	}
1974 
1975 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
1976 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
1977 	kfree(sqc);
1978 
1979 	return ret;
1980 }
1981 
1982 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1983 {
1984 	struct hisi_qm *qm = qp->qm;
1985 	struct device *dev = &qm->pdev->dev;
1986 	enum qm_hw_ver ver = qm->ver;
1987 	struct qm_cqc *cqc;
1988 	dma_addr_t cqc_dma;
1989 	int ret;
1990 
1991 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
1992 	if (!cqc)
1993 		return -ENOMEM;
1994 
1995 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
1996 	if (ver == QM_HW_V1) {
1997 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
1998 							QM_QC_CQE_SIZE));
1999 		cqc->w8 = cpu_to_le16(qp->cq_depth - 1);
2000 	} else {
2001 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
2002 		cqc->w8 = 0; /* rand_qc */
2003 	}
2004 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2005 
2006 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2007 		cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2008 
2009 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
2010 				 DMA_TO_DEVICE);
2011 	if (dma_mapping_error(dev, cqc_dma)) {
2012 		kfree(cqc);
2013 		return -ENOMEM;
2014 	}
2015 
2016 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
2017 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
2018 	kfree(cqc);
2019 
2020 	return ret;
2021 }
2022 
2023 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2024 {
2025 	int ret;
2026 
2027 	qm_init_qp_status(qp);
2028 
2029 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2030 	if (ret)
2031 		return ret;
2032 
2033 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
2034 }
2035 
2036 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2037 {
2038 	struct hisi_qm *qm = qp->qm;
2039 	struct device *dev = &qm->pdev->dev;
2040 	int qp_id = qp->qp_id;
2041 	u32 pasid = arg;
2042 	int ret;
2043 
2044 	if (!qm_qp_avail_state(qm, qp, QP_START))
2045 		return -EPERM;
2046 
2047 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2048 	if (ret)
2049 		return ret;
2050 
2051 	atomic_set(&qp->qp_status.flags, QP_START);
2052 	dev_dbg(dev, "queue %d started\n", qp_id);
2053 
2054 	return 0;
2055 }
2056 
2057 /**
2058  * hisi_qm_start_qp() - Start a qp into running.
2059  * @qp: The qp we want to start to run.
2060  * @arg: Accelerator specific argument.
2061  *
2062  * After this function, qp can receive request from user. Return 0 if
2063  * successful, negative error code if failed.
2064  */
2065 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2066 {
2067 	struct hisi_qm *qm = qp->qm;
2068 	int ret;
2069 
2070 	down_write(&qm->qps_lock);
2071 	ret = qm_start_qp_nolock(qp, arg);
2072 	up_write(&qm->qps_lock);
2073 
2074 	return ret;
2075 }
2076 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2077 
2078 /**
2079  * qp_stop_fail_cb() - call request cb.
2080  * @qp: stopped failed qp.
2081  *
2082  * Callback function should be called whether task completed or not.
2083  */
2084 static void qp_stop_fail_cb(struct hisi_qp *qp)
2085 {
2086 	int qp_used = atomic_read(&qp->qp_status.used);
2087 	u16 cur_tail = qp->qp_status.sq_tail;
2088 	u16 sq_depth = qp->sq_depth;
2089 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2090 	struct hisi_qm *qm = qp->qm;
2091 	u16 pos;
2092 	int i;
2093 
2094 	for (i = 0; i < qp_used; i++) {
2095 		pos = (i + cur_head) % sq_depth;
2096 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2097 		atomic_dec(&qp->qp_status.used);
2098 	}
2099 }
2100 
2101 /**
2102  * qm_drain_qp() - Drain a qp.
2103  * @qp: The qp we want to drain.
2104  *
2105  * Determine whether the queue is cleared by judging the tail pointers of
2106  * sq and cq.
2107  */
2108 static int qm_drain_qp(struct hisi_qp *qp)
2109 {
2110 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
2111 	struct hisi_qm *qm = qp->qm;
2112 	struct device *dev = &qm->pdev->dev;
2113 	struct qm_sqc *sqc;
2114 	struct qm_cqc *cqc;
2115 	dma_addr_t dma_addr;
2116 	int ret = 0, i = 0;
2117 	void *addr;
2118 
2119 	/* No need to judge if master OOO is blocked. */
2120 	if (qm_check_dev_error(qm))
2121 		return 0;
2122 
2123 	/* Kunpeng930 supports drain qp by device */
2124 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2125 		ret = qm_stop_qp(qp);
2126 		if (ret)
2127 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
2128 		return ret;
2129 	}
2130 
2131 	addr = hisi_qm_ctx_alloc(qm, size, &dma_addr);
2132 	if (IS_ERR(addr)) {
2133 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
2134 		return -ENOMEM;
2135 	}
2136 
2137 	while (++i) {
2138 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
2139 		if (ret) {
2140 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2141 			break;
2142 		}
2143 		sqc = addr;
2144 
2145 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
2146 				      qp->qp_id);
2147 		if (ret) {
2148 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2149 			break;
2150 		}
2151 		cqc = addr + sizeof(struct qm_sqc);
2152 
2153 		if ((sqc->tail == cqc->tail) &&
2154 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2155 			break;
2156 
2157 		if (i == MAX_WAIT_COUNTS) {
2158 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
2159 			ret = -EBUSY;
2160 			break;
2161 		}
2162 
2163 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2164 	}
2165 
2166 	hisi_qm_ctx_free(qm, size, addr, &dma_addr);
2167 
2168 	return ret;
2169 }
2170 
2171 static int qm_stop_qp_nolock(struct hisi_qp *qp)
2172 {
2173 	struct device *dev = &qp->qm->pdev->dev;
2174 	int ret;
2175 
2176 	/*
2177 	 * It is allowed to stop and release qp when reset, If the qp is
2178 	 * stopped when reset but still want to be released then, the
2179 	 * is_resetting flag should be set negative so that this qp will not
2180 	 * be restarted after reset.
2181 	 */
2182 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
2183 		qp->is_resetting = false;
2184 		return 0;
2185 	}
2186 
2187 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
2188 		return -EPERM;
2189 
2190 	atomic_set(&qp->qp_status.flags, QP_STOP);
2191 
2192 	ret = qm_drain_qp(qp);
2193 	if (ret)
2194 		dev_err(dev, "Failed to drain out data for stopping!\n");
2195 
2196 
2197 	flush_workqueue(qp->qm->wq);
2198 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2199 		qp_stop_fail_cb(qp);
2200 
2201 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2202 
2203 	return 0;
2204 }
2205 
2206 /**
2207  * hisi_qm_stop_qp() - Stop a qp in qm.
2208  * @qp: The qp we want to stop.
2209  *
2210  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
2211  */
2212 int hisi_qm_stop_qp(struct hisi_qp *qp)
2213 {
2214 	int ret;
2215 
2216 	down_write(&qp->qm->qps_lock);
2217 	ret = qm_stop_qp_nolock(qp);
2218 	up_write(&qp->qm->qps_lock);
2219 
2220 	return ret;
2221 }
2222 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2223 
2224 /**
2225  * hisi_qp_send() - Queue up a task in the hardware queue.
2226  * @qp: The qp in which to put the message.
2227  * @msg: The message.
2228  *
2229  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2230  * if qp related qm is resetting.
2231  *
2232  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2233  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2234  *       reset may happen, we have no lock here considering performance. This
2235  *       causes current qm_db sending fail or can not receive sended sqe. QM
2236  *       sync/async receive function should handle the error sqe. ACC reset
2237  *       done function should clear used sqe to 0.
2238  */
2239 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2240 {
2241 	struct hisi_qp_status *qp_status = &qp->qp_status;
2242 	u16 sq_tail = qp_status->sq_tail;
2243 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2244 	void *sqe = qm_get_avail_sqe(qp);
2245 
2246 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2247 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2248 		     qp->is_resetting)) {
2249 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2250 		return -EAGAIN;
2251 	}
2252 
2253 	if (!sqe)
2254 		return -EBUSY;
2255 
2256 	memcpy(sqe, msg, qp->qm->sqe_size);
2257 
2258 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2259 	atomic_inc(&qp->qp_status.used);
2260 	qp_status->sq_tail = sq_tail_next;
2261 
2262 	return 0;
2263 }
2264 EXPORT_SYMBOL_GPL(hisi_qp_send);
2265 
2266 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2267 {
2268 	unsigned int val;
2269 
2270 	if (qm->ver == QM_HW_V1)
2271 		return;
2272 
2273 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2274 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2275 				       val, val & BIT(0), POLL_PERIOD,
2276 				       POLL_TIMEOUT))
2277 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2278 }
2279 
2280 static void qm_qp_event_notifier(struct hisi_qp *qp)
2281 {
2282 	wake_up_interruptible(&qp->uacce_q->wait);
2283 }
2284 
2285  /* This function returns free number of qp in qm. */
2286 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2287 {
2288 	struct hisi_qm *qm = uacce->priv;
2289 	int ret;
2290 
2291 	down_read(&qm->qps_lock);
2292 	ret = qm->qp_num - qm->qp_in_used;
2293 	up_read(&qm->qps_lock);
2294 
2295 	return ret;
2296 }
2297 
2298 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2299 {
2300 	int i;
2301 
2302 	for (i = 0; i < qm->qp_num; i++)
2303 		qm_set_qp_disable(&qm->qp_array[i], offset);
2304 }
2305 
2306 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2307 				   unsigned long arg,
2308 				   struct uacce_queue *q)
2309 {
2310 	struct hisi_qm *qm = uacce->priv;
2311 	struct hisi_qp *qp;
2312 	u8 alg_type = 0;
2313 
2314 	qp = hisi_qm_create_qp(qm, alg_type);
2315 	if (IS_ERR(qp))
2316 		return PTR_ERR(qp);
2317 
2318 	q->priv = qp;
2319 	q->uacce = uacce;
2320 	qp->uacce_q = q;
2321 	qp->event_cb = qm_qp_event_notifier;
2322 	qp->pasid = arg;
2323 	qp->is_in_kernel = false;
2324 
2325 	return 0;
2326 }
2327 
2328 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2329 {
2330 	struct hisi_qp *qp = q->priv;
2331 
2332 	hisi_qm_release_qp(qp);
2333 }
2334 
2335 /* map sq/cq/doorbell to user space */
2336 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2337 			      struct vm_area_struct *vma,
2338 			      struct uacce_qfile_region *qfr)
2339 {
2340 	struct hisi_qp *qp = q->priv;
2341 	struct hisi_qm *qm = qp->qm;
2342 	resource_size_t phys_base = qm->db_phys_base +
2343 				    qp->qp_id * qm->db_interval;
2344 	size_t sz = vma->vm_end - vma->vm_start;
2345 	struct pci_dev *pdev = qm->pdev;
2346 	struct device *dev = &pdev->dev;
2347 	unsigned long vm_pgoff;
2348 	int ret;
2349 
2350 	switch (qfr->type) {
2351 	case UACCE_QFRT_MMIO:
2352 		if (qm->ver == QM_HW_V1) {
2353 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2354 				return -EINVAL;
2355 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2356 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2357 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2358 				return -EINVAL;
2359 		} else {
2360 			if (sz > qm->db_interval)
2361 				return -EINVAL;
2362 		}
2363 
2364 		vm_flags_set(vma, VM_IO);
2365 
2366 		return remap_pfn_range(vma, vma->vm_start,
2367 				       phys_base >> PAGE_SHIFT,
2368 				       sz, pgprot_noncached(vma->vm_page_prot));
2369 	case UACCE_QFRT_DUS:
2370 		if (sz != qp->qdma.size)
2371 			return -EINVAL;
2372 
2373 		/*
2374 		 * dma_mmap_coherent() requires vm_pgoff as 0
2375 		 * restore vm_pfoff to initial value for mmap()
2376 		 */
2377 		vm_pgoff = vma->vm_pgoff;
2378 		vma->vm_pgoff = 0;
2379 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2380 					qp->qdma.dma, sz);
2381 		vma->vm_pgoff = vm_pgoff;
2382 		return ret;
2383 
2384 	default:
2385 		return -EINVAL;
2386 	}
2387 }
2388 
2389 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2390 {
2391 	struct hisi_qp *qp = q->priv;
2392 
2393 	return hisi_qm_start_qp(qp, qp->pasid);
2394 }
2395 
2396 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2397 {
2398 	hisi_qm_stop_qp(q->priv);
2399 }
2400 
2401 static int hisi_qm_is_q_updated(struct uacce_queue *q)
2402 {
2403 	struct hisi_qp *qp = q->priv;
2404 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2405 	int updated = 0;
2406 
2407 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2408 		/* make sure to read data from memory */
2409 		dma_rmb();
2410 		qm_cq_head_update(qp);
2411 		cqe = qp->cqe + qp->qp_status.cq_head;
2412 		updated = 1;
2413 	}
2414 
2415 	return updated;
2416 }
2417 
2418 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2419 {
2420 	struct hisi_qm *qm = q->uacce->priv;
2421 	struct hisi_qp *qp = q->priv;
2422 
2423 	down_write(&qm->qps_lock);
2424 	qp->alg_type = type;
2425 	up_write(&qm->qps_lock);
2426 }
2427 
2428 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2429 				unsigned long arg)
2430 {
2431 	struct hisi_qp *qp = q->priv;
2432 	struct hisi_qp_info qp_info;
2433 	struct hisi_qp_ctx qp_ctx;
2434 
2435 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2436 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2437 				   sizeof(struct hisi_qp_ctx)))
2438 			return -EFAULT;
2439 
2440 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2441 			return -EINVAL;
2442 
2443 		qm_set_sqctype(q, qp_ctx.qc_type);
2444 		qp_ctx.id = qp->qp_id;
2445 
2446 		if (copy_to_user((void __user *)arg, &qp_ctx,
2447 				 sizeof(struct hisi_qp_ctx)))
2448 			return -EFAULT;
2449 
2450 		return 0;
2451 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2452 		if (copy_from_user(&qp_info, (void __user *)arg,
2453 				   sizeof(struct hisi_qp_info)))
2454 			return -EFAULT;
2455 
2456 		qp_info.sqe_size = qp->qm->sqe_size;
2457 		qp_info.sq_depth = qp->sq_depth;
2458 		qp_info.cq_depth = qp->cq_depth;
2459 
2460 		if (copy_to_user((void __user *)arg, &qp_info,
2461 				  sizeof(struct hisi_qp_info)))
2462 			return -EFAULT;
2463 
2464 		return 0;
2465 	}
2466 
2467 	return -EINVAL;
2468 }
2469 
2470 /**
2471  * qm_hw_err_isolate() - Try to set the isolation status of the uacce device
2472  * according to user's configuration of error threshold.
2473  * @qm: the uacce device
2474  */
2475 static int qm_hw_err_isolate(struct hisi_qm *qm)
2476 {
2477 	struct qm_hw_err *err, *tmp, *hw_err;
2478 	struct qm_err_isolate *isolate;
2479 	u32 count = 0;
2480 
2481 	isolate = &qm->isolate_data;
2482 
2483 #define SECONDS_PER_HOUR	3600
2484 
2485 	/* All the hw errs are processed by PF driver */
2486 	if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
2487 		return 0;
2488 
2489 	hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
2490 	if (!hw_err)
2491 		return -ENOMEM;
2492 
2493 	/*
2494 	 * Time-stamp every slot AER error. Then check the AER error log when the
2495 	 * next device AER error occurred. if the device slot AER error count exceeds
2496 	 * the setting error threshold in one hour, the isolated state will be set
2497 	 * to true. And the AER error logs that exceed one hour will be cleared.
2498 	 */
2499 	mutex_lock(&isolate->isolate_lock);
2500 	hw_err->timestamp = jiffies;
2501 	list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
2502 		if ((hw_err->timestamp - err->timestamp) / HZ >
2503 		    SECONDS_PER_HOUR) {
2504 			list_del(&err->list);
2505 			kfree(err);
2506 		} else {
2507 			count++;
2508 		}
2509 	}
2510 	list_add(&hw_err->list, &isolate->qm_hw_errs);
2511 	mutex_unlock(&isolate->isolate_lock);
2512 
2513 	if (count >= isolate->err_threshold)
2514 		isolate->is_isolate = true;
2515 
2516 	return 0;
2517 }
2518 
2519 static void qm_hw_err_destroy(struct hisi_qm *qm)
2520 {
2521 	struct qm_hw_err *err, *tmp;
2522 
2523 	mutex_lock(&qm->isolate_data.isolate_lock);
2524 	list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
2525 		list_del(&err->list);
2526 		kfree(err);
2527 	}
2528 	mutex_unlock(&qm->isolate_data.isolate_lock);
2529 }
2530 
2531 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
2532 {
2533 	struct hisi_qm *qm = uacce->priv;
2534 	struct hisi_qm *pf_qm;
2535 
2536 	if (uacce->is_vf)
2537 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2538 	else
2539 		pf_qm = qm;
2540 
2541 	return pf_qm->isolate_data.is_isolate ?
2542 			UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
2543 }
2544 
2545 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
2546 {
2547 	struct hisi_qm *qm = uacce->priv;
2548 
2549 	/* Must be set by PF */
2550 	if (uacce->is_vf)
2551 		return -EPERM;
2552 
2553 	if (qm->isolate_data.is_isolate)
2554 		return -EPERM;
2555 
2556 	qm->isolate_data.err_threshold = num;
2557 
2558 	/* After the policy is updated, need to reset the hardware err list */
2559 	qm_hw_err_destroy(qm);
2560 
2561 	return 0;
2562 }
2563 
2564 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
2565 {
2566 	struct hisi_qm *qm = uacce->priv;
2567 	struct hisi_qm *pf_qm;
2568 
2569 	if (uacce->is_vf) {
2570 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2571 		return pf_qm->isolate_data.err_threshold;
2572 	}
2573 
2574 	return qm->isolate_data.err_threshold;
2575 }
2576 
2577 static const struct uacce_ops uacce_qm_ops = {
2578 	.get_available_instances = hisi_qm_get_available_instances,
2579 	.get_queue = hisi_qm_uacce_get_queue,
2580 	.put_queue = hisi_qm_uacce_put_queue,
2581 	.start_queue = hisi_qm_uacce_start_queue,
2582 	.stop_queue = hisi_qm_uacce_stop_queue,
2583 	.mmap = hisi_qm_uacce_mmap,
2584 	.ioctl = hisi_qm_uacce_ioctl,
2585 	.is_q_updated = hisi_qm_is_q_updated,
2586 	.get_isolate_state = hisi_qm_get_isolate_state,
2587 	.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
2588 	.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
2589 };
2590 
2591 static void qm_remove_uacce(struct hisi_qm *qm)
2592 {
2593 	struct uacce_device *uacce = qm->uacce;
2594 
2595 	if (qm->use_sva) {
2596 		qm_hw_err_destroy(qm);
2597 		uacce_remove(uacce);
2598 		qm->uacce = NULL;
2599 	}
2600 }
2601 
2602 static int qm_alloc_uacce(struct hisi_qm *qm)
2603 {
2604 	struct pci_dev *pdev = qm->pdev;
2605 	struct uacce_device *uacce;
2606 	unsigned long mmio_page_nr;
2607 	unsigned long dus_page_nr;
2608 	u16 sq_depth, cq_depth;
2609 	struct uacce_interface interface = {
2610 		.flags = UACCE_DEV_SVA,
2611 		.ops = &uacce_qm_ops,
2612 	};
2613 	int ret;
2614 
2615 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2616 		      sizeof(interface.name));
2617 	if (ret < 0)
2618 		return -ENAMETOOLONG;
2619 
2620 	uacce = uacce_alloc(&pdev->dev, &interface);
2621 	if (IS_ERR(uacce))
2622 		return PTR_ERR(uacce);
2623 
2624 	if (uacce->flags & UACCE_DEV_SVA) {
2625 		qm->use_sva = true;
2626 	} else {
2627 		/* only consider sva case */
2628 		qm_remove_uacce(qm);
2629 		return -EINVAL;
2630 	}
2631 
2632 	uacce->is_vf = pdev->is_virtfn;
2633 	uacce->priv = qm;
2634 
2635 	if (qm->ver == QM_HW_V1)
2636 		uacce->api_ver = HISI_QM_API_VER_BASE;
2637 	else if (qm->ver == QM_HW_V2)
2638 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2639 	else
2640 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2641 
2642 	if (qm->ver == QM_HW_V1)
2643 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2644 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2645 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2646 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2647 	else
2648 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2649 
2650 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2651 
2652 	/* Add one more page for device or qp status */
2653 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2654 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
2655 					 PAGE_SHIFT;
2656 
2657 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2658 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2659 
2660 	qm->uacce = uacce;
2661 	INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
2662 	mutex_init(&qm->isolate_data.isolate_lock);
2663 
2664 	return 0;
2665 }
2666 
2667 /**
2668  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2669  * there is user on the QM, return failure without doing anything.
2670  * @qm: The qm needed to be fronzen.
2671  *
2672  * This function frozes QM, then we can do SRIOV disabling.
2673  */
2674 static int qm_frozen(struct hisi_qm *qm)
2675 {
2676 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2677 		return 0;
2678 
2679 	down_write(&qm->qps_lock);
2680 
2681 	if (!qm->qp_in_used) {
2682 		qm->qp_in_used = qm->qp_num;
2683 		up_write(&qm->qps_lock);
2684 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2685 		return 0;
2686 	}
2687 
2688 	up_write(&qm->qps_lock);
2689 
2690 	return -EBUSY;
2691 }
2692 
2693 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2694 			     struct hisi_qm_list *qm_list)
2695 {
2696 	struct hisi_qm *qm, *vf_qm;
2697 	struct pci_dev *dev;
2698 	int ret = 0;
2699 
2700 	if (!qm_list || !pdev)
2701 		return -EINVAL;
2702 
2703 	/* Try to frozen all the VFs as disable SRIOV */
2704 	mutex_lock(&qm_list->lock);
2705 	list_for_each_entry(qm, &qm_list->list, list) {
2706 		dev = qm->pdev;
2707 		if (dev == pdev)
2708 			continue;
2709 		if (pci_physfn(dev) == pdev) {
2710 			vf_qm = pci_get_drvdata(dev);
2711 			ret = qm_frozen(vf_qm);
2712 			if (ret)
2713 				goto frozen_fail;
2714 		}
2715 	}
2716 
2717 frozen_fail:
2718 	mutex_unlock(&qm_list->lock);
2719 
2720 	return ret;
2721 }
2722 
2723 /**
2724  * hisi_qm_wait_task_finish() - Wait until the task is finished
2725  * when removing the driver.
2726  * @qm: The qm needed to wait for the task to finish.
2727  * @qm_list: The list of all available devices.
2728  */
2729 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2730 {
2731 	while (qm_frozen(qm) ||
2732 	       ((qm->fun_type == QM_HW_PF) &&
2733 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2734 		msleep(WAIT_PERIOD);
2735 	}
2736 
2737 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2738 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2739 		msleep(WAIT_PERIOD);
2740 
2741 	udelay(REMOVE_WAIT_DELAY);
2742 }
2743 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2744 
2745 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2746 {
2747 	struct device *dev = &qm->pdev->dev;
2748 	struct qm_dma *qdma;
2749 	int i;
2750 
2751 	for (i = num - 1; i >= 0; i--) {
2752 		qdma = &qm->qp_array[i].qdma;
2753 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2754 		kfree(qm->poll_data[i].qp_finish_id);
2755 	}
2756 
2757 	kfree(qm->poll_data);
2758 	kfree(qm->qp_array);
2759 }
2760 
2761 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2762 			       u16 sq_depth, u16 cq_depth)
2763 {
2764 	struct device *dev = &qm->pdev->dev;
2765 	size_t off = qm->sqe_size * sq_depth;
2766 	struct hisi_qp *qp;
2767 	int ret = -ENOMEM;
2768 
2769 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2770 						 GFP_KERNEL);
2771 	if (!qm->poll_data[id].qp_finish_id)
2772 		return -ENOMEM;
2773 
2774 	qp = &qm->qp_array[id];
2775 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2776 					 GFP_KERNEL);
2777 	if (!qp->qdma.va)
2778 		goto err_free_qp_finish_id;
2779 
2780 	qp->sqe = qp->qdma.va;
2781 	qp->sqe_dma = qp->qdma.dma;
2782 	qp->cqe = qp->qdma.va + off;
2783 	qp->cqe_dma = qp->qdma.dma + off;
2784 	qp->qdma.size = dma_size;
2785 	qp->sq_depth = sq_depth;
2786 	qp->cq_depth = cq_depth;
2787 	qp->qm = qm;
2788 	qp->qp_id = id;
2789 
2790 	return 0;
2791 
2792 err_free_qp_finish_id:
2793 	kfree(qm->poll_data[id].qp_finish_id);
2794 	return ret;
2795 }
2796 
2797 static void hisi_qm_pre_init(struct hisi_qm *qm)
2798 {
2799 	struct pci_dev *pdev = qm->pdev;
2800 
2801 	if (qm->ver == QM_HW_V1)
2802 		qm->ops = &qm_hw_ops_v1;
2803 	else if (qm->ver == QM_HW_V2)
2804 		qm->ops = &qm_hw_ops_v2;
2805 	else
2806 		qm->ops = &qm_hw_ops_v3;
2807 
2808 	pci_set_drvdata(pdev, qm);
2809 	mutex_init(&qm->mailbox_lock);
2810 	init_rwsem(&qm->qps_lock);
2811 	qm->qp_in_used = 0;
2812 	qm->misc_ctl = false;
2813 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2814 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2815 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2816 	}
2817 }
2818 
2819 static void qm_cmd_uninit(struct hisi_qm *qm)
2820 {
2821 	u32 val;
2822 
2823 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2824 		return;
2825 
2826 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2827 	val |= QM_IFC_INT_DISABLE;
2828 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2829 }
2830 
2831 static void qm_cmd_init(struct hisi_qm *qm)
2832 {
2833 	u32 val;
2834 
2835 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2836 		return;
2837 
2838 	/* Clear communication interrupt source */
2839 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
2840 
2841 	/* Enable pf to vf communication reg. */
2842 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2843 	val &= ~QM_IFC_INT_DISABLE;
2844 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2845 }
2846 
2847 static void qm_put_pci_res(struct hisi_qm *qm)
2848 {
2849 	struct pci_dev *pdev = qm->pdev;
2850 
2851 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2852 		iounmap(qm->db_io_base);
2853 
2854 	iounmap(qm->io_base);
2855 	pci_release_mem_regions(pdev);
2856 }
2857 
2858 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
2859 {
2860 	struct pci_dev *pdev = qm->pdev;
2861 
2862 	pci_free_irq_vectors(pdev);
2863 	qm_put_pci_res(qm);
2864 	pci_disable_device(pdev);
2865 }
2866 
2867 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
2868 {
2869 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
2870 		writel(state, qm->io_base + QM_VF_STATE);
2871 }
2872 
2873 static void hisi_qm_unint_work(struct hisi_qm *qm)
2874 {
2875 	destroy_workqueue(qm->wq);
2876 }
2877 
2878 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
2879 {
2880 	struct device *dev = &qm->pdev->dev;
2881 
2882 	hisi_qp_memory_uninit(qm, qm->qp_num);
2883 	if (qm->qdma.va) {
2884 		hisi_qm_cache_wb(qm);
2885 		dma_free_coherent(dev, qm->qdma.size,
2886 				  qm->qdma.va, qm->qdma.dma);
2887 	}
2888 
2889 	idr_destroy(&qm->qp_idr);
2890 
2891 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
2892 		kfree(qm->factor);
2893 }
2894 
2895 /**
2896  * hisi_qm_uninit() - Uninitialize qm.
2897  * @qm: The qm needed uninit.
2898  *
2899  * This function uninits qm related device resources.
2900  */
2901 void hisi_qm_uninit(struct hisi_qm *qm)
2902 {
2903 	qm_cmd_uninit(qm);
2904 	hisi_qm_unint_work(qm);
2905 	down_write(&qm->qps_lock);
2906 
2907 	if (!qm_avail_state(qm, QM_CLOSE)) {
2908 		up_write(&qm->qps_lock);
2909 		return;
2910 	}
2911 
2912 	hisi_qm_memory_uninit(qm);
2913 	hisi_qm_set_state(qm, QM_NOT_READY);
2914 	up_write(&qm->qps_lock);
2915 
2916 	qm_irqs_unregister(qm);
2917 	hisi_qm_pci_uninit(qm);
2918 	if (qm->use_sva) {
2919 		uacce_remove(qm->uacce);
2920 		qm->uacce = NULL;
2921 	}
2922 }
2923 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2924 
2925 /**
2926  * hisi_qm_get_vft() - Get vft from a qm.
2927  * @qm: The qm we want to get its vft.
2928  * @base: The base number of queue in vft.
2929  * @number: The number of queues in vft.
2930  *
2931  * We can allocate multiple queues to a qm by configuring virtual function
2932  * table. We get related configures by this function. Normally, we call this
2933  * function in VF driver to get the queue information.
2934  *
2935  * qm hw v1 does not support this interface.
2936  */
2937 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2938 {
2939 	if (!base || !number)
2940 		return -EINVAL;
2941 
2942 	if (!qm->ops->get_vft) {
2943 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2944 		return -EINVAL;
2945 	}
2946 
2947 	return qm->ops->get_vft(qm, base, number);
2948 }
2949 
2950 /**
2951  * hisi_qm_set_vft() - Set vft to a qm.
2952  * @qm: The qm we want to set its vft.
2953  * @fun_num: The function number.
2954  * @base: The base number of queue in vft.
2955  * @number: The number of queues in vft.
2956  *
2957  * This function is alway called in PF driver, it is used to assign queues
2958  * among PF and VFs.
2959  *
2960  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2961  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2962  * (VF function number 0x2)
2963  */
2964 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2965 		    u32 number)
2966 {
2967 	u32 max_q_num = qm->ctrl_qp_num;
2968 
2969 	if (base >= max_q_num || number > max_q_num ||
2970 	    (base + number) > max_q_num)
2971 		return -EINVAL;
2972 
2973 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2974 }
2975 
2976 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2977 {
2978 	struct hisi_qm_status *status = &qm->status;
2979 
2980 	status->eq_head = 0;
2981 	status->aeq_head = 0;
2982 	status->eqc_phase = true;
2983 	status->aeqc_phase = true;
2984 }
2985 
2986 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
2987 {
2988 	/* Clear eq/aeq interrupt source */
2989 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
2990 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
2991 
2992 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
2993 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
2994 }
2995 
2996 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
2997 {
2998 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
2999 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3000 }
3001 
3002 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3003 {
3004 	struct device *dev = &qm->pdev->dev;
3005 	struct qm_eqc *eqc;
3006 	dma_addr_t eqc_dma;
3007 	int ret;
3008 
3009 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
3010 	if (!eqc)
3011 		return -ENOMEM;
3012 
3013 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3014 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3015 	if (qm->ver == QM_HW_V1)
3016 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3017 	eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3018 
3019 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
3020 				 DMA_TO_DEVICE);
3021 	if (dma_mapping_error(dev, eqc_dma)) {
3022 		kfree(eqc);
3023 		return -ENOMEM;
3024 	}
3025 
3026 	ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
3027 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
3028 	kfree(eqc);
3029 
3030 	return ret;
3031 }
3032 
3033 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3034 {
3035 	struct device *dev = &qm->pdev->dev;
3036 	struct qm_aeqc *aeqc;
3037 	dma_addr_t aeqc_dma;
3038 	int ret;
3039 
3040 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
3041 	if (!aeqc)
3042 		return -ENOMEM;
3043 
3044 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3045 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3046 	aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3047 
3048 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
3049 				  DMA_TO_DEVICE);
3050 	if (dma_mapping_error(dev, aeqc_dma)) {
3051 		kfree(aeqc);
3052 		return -ENOMEM;
3053 	}
3054 
3055 	ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
3056 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
3057 	kfree(aeqc);
3058 
3059 	return ret;
3060 }
3061 
3062 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3063 {
3064 	struct device *dev = &qm->pdev->dev;
3065 	int ret;
3066 
3067 	qm_init_eq_aeq_status(qm);
3068 
3069 	ret = qm_eq_ctx_cfg(qm);
3070 	if (ret) {
3071 		dev_err(dev, "Set eqc failed!\n");
3072 		return ret;
3073 	}
3074 
3075 	return qm_aeq_ctx_cfg(qm);
3076 }
3077 
3078 static int __hisi_qm_start(struct hisi_qm *qm)
3079 {
3080 	int ret;
3081 
3082 	WARN_ON(!qm->qdma.va);
3083 
3084 	if (qm->fun_type == QM_HW_PF) {
3085 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3086 		if (ret)
3087 			return ret;
3088 	}
3089 
3090 	ret = qm_eq_aeq_ctx_cfg(qm);
3091 	if (ret)
3092 		return ret;
3093 
3094 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3095 	if (ret)
3096 		return ret;
3097 
3098 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3099 	if (ret)
3100 		return ret;
3101 
3102 	qm_init_prefetch(qm);
3103 	qm_enable_eq_aeq_interrupts(qm);
3104 
3105 	return 0;
3106 }
3107 
3108 /**
3109  * hisi_qm_start() - start qm
3110  * @qm: The qm to be started.
3111  *
3112  * This function starts a qm, then we can allocate qp from this qm.
3113  */
3114 int hisi_qm_start(struct hisi_qm *qm)
3115 {
3116 	struct device *dev = &qm->pdev->dev;
3117 	int ret = 0;
3118 
3119 	down_write(&qm->qps_lock);
3120 
3121 	if (!qm_avail_state(qm, QM_START)) {
3122 		up_write(&qm->qps_lock);
3123 		return -EPERM;
3124 	}
3125 
3126 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3127 
3128 	if (!qm->qp_num) {
3129 		dev_err(dev, "qp_num should not be 0\n");
3130 		ret = -EINVAL;
3131 		goto err_unlock;
3132 	}
3133 
3134 	ret = __hisi_qm_start(qm);
3135 	if (!ret)
3136 		atomic_set(&qm->status.flags, QM_START);
3137 
3138 	hisi_qm_set_state(qm, QM_READY);
3139 err_unlock:
3140 	up_write(&qm->qps_lock);
3141 	return ret;
3142 }
3143 EXPORT_SYMBOL_GPL(hisi_qm_start);
3144 
3145 static int qm_restart(struct hisi_qm *qm)
3146 {
3147 	struct device *dev = &qm->pdev->dev;
3148 	struct hisi_qp *qp;
3149 	int ret, i;
3150 
3151 	ret = hisi_qm_start(qm);
3152 	if (ret < 0)
3153 		return ret;
3154 
3155 	down_write(&qm->qps_lock);
3156 	for (i = 0; i < qm->qp_num; i++) {
3157 		qp = &qm->qp_array[i];
3158 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3159 		    qp->is_resetting == true) {
3160 			ret = qm_start_qp_nolock(qp, 0);
3161 			if (ret < 0) {
3162 				dev_err(dev, "Failed to start qp%d!\n", i);
3163 
3164 				up_write(&qm->qps_lock);
3165 				return ret;
3166 			}
3167 			qp->is_resetting = false;
3168 		}
3169 	}
3170 	up_write(&qm->qps_lock);
3171 
3172 	return 0;
3173 }
3174 
3175 /* Stop started qps in reset flow */
3176 static int qm_stop_started_qp(struct hisi_qm *qm)
3177 {
3178 	struct device *dev = &qm->pdev->dev;
3179 	struct hisi_qp *qp;
3180 	int i, ret;
3181 
3182 	for (i = 0; i < qm->qp_num; i++) {
3183 		qp = &qm->qp_array[i];
3184 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
3185 			qp->is_resetting = true;
3186 			ret = qm_stop_qp_nolock(qp);
3187 			if (ret < 0) {
3188 				dev_err(dev, "Failed to stop qp%d!\n", i);
3189 				return ret;
3190 			}
3191 		}
3192 	}
3193 
3194 	return 0;
3195 }
3196 
3197 /**
3198  * qm_clear_queues() - Clear all queues memory in a qm.
3199  * @qm: The qm in which the queues will be cleared.
3200  *
3201  * This function clears all queues memory in a qm. Reset of accelerator can
3202  * use this to clear queues.
3203  */
3204 static void qm_clear_queues(struct hisi_qm *qm)
3205 {
3206 	struct hisi_qp *qp;
3207 	int i;
3208 
3209 	for (i = 0; i < qm->qp_num; i++) {
3210 		qp = &qm->qp_array[i];
3211 		if (qp->is_in_kernel && qp->is_resetting)
3212 			memset(qp->qdma.va, 0, qp->qdma.size);
3213 	}
3214 
3215 	memset(qm->qdma.va, 0, qm->qdma.size);
3216 }
3217 
3218 /**
3219  * hisi_qm_stop() - Stop a qm.
3220  * @qm: The qm which will be stopped.
3221  * @r: The reason to stop qm.
3222  *
3223  * This function stops qm and its qps, then qm can not accept request.
3224  * Related resources are not released at this state, we can use hisi_qm_start
3225  * to let qm start again.
3226  */
3227 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3228 {
3229 	struct device *dev = &qm->pdev->dev;
3230 	int ret = 0;
3231 
3232 	down_write(&qm->qps_lock);
3233 
3234 	qm->status.stop_reason = r;
3235 	if (!qm_avail_state(qm, QM_STOP)) {
3236 		ret = -EPERM;
3237 		goto err_unlock;
3238 	}
3239 
3240 	if (qm->status.stop_reason == QM_SOFT_RESET ||
3241 	    qm->status.stop_reason == QM_FLR) {
3242 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3243 		ret = qm_stop_started_qp(qm);
3244 		if (ret < 0) {
3245 			dev_err(dev, "Failed to stop started qp!\n");
3246 			goto err_unlock;
3247 		}
3248 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3249 	}
3250 
3251 	qm_disable_eq_aeq_interrupts(qm);
3252 	if (qm->fun_type == QM_HW_PF) {
3253 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3254 		if (ret < 0) {
3255 			dev_err(dev, "Failed to set vft!\n");
3256 			ret = -EBUSY;
3257 			goto err_unlock;
3258 		}
3259 	}
3260 
3261 	qm_clear_queues(qm);
3262 	atomic_set(&qm->status.flags, QM_STOP);
3263 
3264 err_unlock:
3265 	up_write(&qm->qps_lock);
3266 	return ret;
3267 }
3268 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3269 
3270 static void qm_hw_error_init(struct hisi_qm *qm)
3271 {
3272 	if (!qm->ops->hw_error_init) {
3273 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3274 		return;
3275 	}
3276 
3277 	qm->ops->hw_error_init(qm);
3278 }
3279 
3280 static void qm_hw_error_uninit(struct hisi_qm *qm)
3281 {
3282 	if (!qm->ops->hw_error_uninit) {
3283 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3284 		return;
3285 	}
3286 
3287 	qm->ops->hw_error_uninit(qm);
3288 }
3289 
3290 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3291 {
3292 	if (!qm->ops->hw_error_handle) {
3293 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3294 		return ACC_ERR_NONE;
3295 	}
3296 
3297 	return qm->ops->hw_error_handle(qm);
3298 }
3299 
3300 /**
3301  * hisi_qm_dev_err_init() - Initialize device error configuration.
3302  * @qm: The qm for which we want to do error initialization.
3303  *
3304  * Initialize QM and device error related configuration.
3305  */
3306 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3307 {
3308 	if (qm->fun_type == QM_HW_VF)
3309 		return;
3310 
3311 	qm_hw_error_init(qm);
3312 
3313 	if (!qm->err_ini->hw_err_enable) {
3314 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3315 		return;
3316 	}
3317 	qm->err_ini->hw_err_enable(qm);
3318 }
3319 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3320 
3321 /**
3322  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3323  * @qm: The qm for which we want to do error uninitialization.
3324  *
3325  * Uninitialize QM and device error related configuration.
3326  */
3327 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3328 {
3329 	if (qm->fun_type == QM_HW_VF)
3330 		return;
3331 
3332 	qm_hw_error_uninit(qm);
3333 
3334 	if (!qm->err_ini->hw_err_disable) {
3335 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3336 		return;
3337 	}
3338 	qm->err_ini->hw_err_disable(qm);
3339 }
3340 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3341 
3342 /**
3343  * hisi_qm_free_qps() - free multiple queue pairs.
3344  * @qps: The queue pairs need to be freed.
3345  * @qp_num: The num of queue pairs.
3346  */
3347 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3348 {
3349 	int i;
3350 
3351 	if (!qps || qp_num <= 0)
3352 		return;
3353 
3354 	for (i = qp_num - 1; i >= 0; i--)
3355 		hisi_qm_release_qp(qps[i]);
3356 }
3357 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3358 
3359 static void free_list(struct list_head *head)
3360 {
3361 	struct hisi_qm_resource *res, *tmp;
3362 
3363 	list_for_each_entry_safe(res, tmp, head, list) {
3364 		list_del(&res->list);
3365 		kfree(res);
3366 	}
3367 }
3368 
3369 static int hisi_qm_sort_devices(int node, struct list_head *head,
3370 				struct hisi_qm_list *qm_list)
3371 {
3372 	struct hisi_qm_resource *res, *tmp;
3373 	struct hisi_qm *qm;
3374 	struct list_head *n;
3375 	struct device *dev;
3376 	int dev_node;
3377 
3378 	list_for_each_entry(qm, &qm_list->list, list) {
3379 		dev = &qm->pdev->dev;
3380 
3381 		dev_node = dev_to_node(dev);
3382 		if (dev_node < 0)
3383 			dev_node = 0;
3384 
3385 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3386 		if (!res)
3387 			return -ENOMEM;
3388 
3389 		res->qm = qm;
3390 		res->distance = node_distance(dev_node, node);
3391 		n = head;
3392 		list_for_each_entry(tmp, head, list) {
3393 			if (res->distance < tmp->distance) {
3394 				n = &tmp->list;
3395 				break;
3396 			}
3397 		}
3398 		list_add_tail(&res->list, n);
3399 	}
3400 
3401 	return 0;
3402 }
3403 
3404 /**
3405  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3406  * @qm_list: The list of all available devices.
3407  * @qp_num: The number of queue pairs need created.
3408  * @alg_type: The algorithm type.
3409  * @node: The numa node.
3410  * @qps: The queue pairs need created.
3411  *
3412  * This function will sort all available device according to numa distance.
3413  * Then try to create all queue pairs from one device, if all devices do
3414  * not meet the requirements will return error.
3415  */
3416 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3417 			   u8 alg_type, int node, struct hisi_qp **qps)
3418 {
3419 	struct hisi_qm_resource *tmp;
3420 	int ret = -ENODEV;
3421 	LIST_HEAD(head);
3422 	int i;
3423 
3424 	if (!qps || !qm_list || qp_num <= 0)
3425 		return -EINVAL;
3426 
3427 	mutex_lock(&qm_list->lock);
3428 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3429 		mutex_unlock(&qm_list->lock);
3430 		goto err;
3431 	}
3432 
3433 	list_for_each_entry(tmp, &head, list) {
3434 		for (i = 0; i < qp_num; i++) {
3435 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3436 			if (IS_ERR(qps[i])) {
3437 				hisi_qm_free_qps(qps, i);
3438 				break;
3439 			}
3440 		}
3441 
3442 		if (i == qp_num) {
3443 			ret = 0;
3444 			break;
3445 		}
3446 	}
3447 
3448 	mutex_unlock(&qm_list->lock);
3449 	if (ret)
3450 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3451 			node, alg_type, qp_num);
3452 
3453 err:
3454 	free_list(&head);
3455 	return ret;
3456 }
3457 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3458 
3459 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3460 {
3461 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3462 	u32 max_qp_num = qm->max_qp_num;
3463 	u32 q_base = qm->qp_num;
3464 	int ret;
3465 
3466 	if (!num_vfs)
3467 		return -EINVAL;
3468 
3469 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3470 
3471 	/* If vfs_q_num is less than num_vfs, return error. */
3472 	if (vfs_q_num < num_vfs)
3473 		return -EINVAL;
3474 
3475 	q_num = vfs_q_num / num_vfs;
3476 	remain_q_num = vfs_q_num % num_vfs;
3477 
3478 	for (i = num_vfs; i > 0; i--) {
3479 		/*
3480 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3481 		 * remaining queues equally.
3482 		 */
3483 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3484 			act_q_num = q_num + remain_q_num;
3485 			remain_q_num = 0;
3486 		} else if (remain_q_num > 0) {
3487 			act_q_num = q_num + 1;
3488 			remain_q_num--;
3489 		} else {
3490 			act_q_num = q_num;
3491 		}
3492 
3493 		act_q_num = min(act_q_num, max_qp_num);
3494 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3495 		if (ret) {
3496 			for (j = num_vfs; j > i; j--)
3497 				hisi_qm_set_vft(qm, j, 0, 0);
3498 			return ret;
3499 		}
3500 		q_base += act_q_num;
3501 	}
3502 
3503 	return 0;
3504 }
3505 
3506 static int qm_clear_vft_config(struct hisi_qm *qm)
3507 {
3508 	int ret;
3509 	u32 i;
3510 
3511 	for (i = 1; i <= qm->vfs_num; i++) {
3512 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3513 		if (ret)
3514 			return ret;
3515 	}
3516 	qm->vfs_num = 0;
3517 
3518 	return 0;
3519 }
3520 
3521 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3522 {
3523 	struct device *dev = &qm->pdev->dev;
3524 	u32 ir = qos * QM_QOS_RATE;
3525 	int ret, total_vfs, i;
3526 
3527 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3528 	if (fun_index > total_vfs)
3529 		return -EINVAL;
3530 
3531 	qm->factor[fun_index].func_qos = qos;
3532 
3533 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3534 	if (ret) {
3535 		dev_err(dev, "failed to calculate shaper parameter!\n");
3536 		return -EINVAL;
3537 	}
3538 
3539 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3540 		/* The base number of queue reuse for different alg type */
3541 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3542 		if (ret) {
3543 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3544 			return -EINVAL;
3545 		}
3546 	}
3547 
3548 	return 0;
3549 }
3550 
3551 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3552 {
3553 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
3554 	u64 shaper_vft, ir_calc, ir;
3555 	unsigned int val;
3556 	u32 error_rate;
3557 	int ret;
3558 
3559 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3560 					 val & BIT(0), POLL_PERIOD,
3561 					 POLL_TIMEOUT);
3562 	if (ret)
3563 		return 0;
3564 
3565 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3566 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3567 	writel(fun_index, qm->io_base + QM_VFT_CFG);
3568 
3569 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3570 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3571 
3572 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3573 					 val & BIT(0), POLL_PERIOD,
3574 					 POLL_TIMEOUT);
3575 	if (ret)
3576 		return 0;
3577 
3578 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3579 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3580 
3581 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3582 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3583 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3584 
3585 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3586 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3587 
3588 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3589 
3590 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3591 
3592 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3593 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3594 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3595 		return 0;
3596 	}
3597 
3598 	return ir;
3599 }
3600 
3601 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3602 {
3603 	struct device *dev = &qm->pdev->dev;
3604 	u64 mb_cmd;
3605 	u32 qos;
3606 	int ret;
3607 
3608 	qos = qm_get_shaper_vft_qos(qm, fun_num);
3609 	if (!qos) {
3610 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3611 		return;
3612 	}
3613 
3614 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
3615 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
3616 	if (ret)
3617 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
3618 }
3619 
3620 static int qm_vf_read_qos(struct hisi_qm *qm)
3621 {
3622 	int cnt = 0;
3623 	int ret = -EINVAL;
3624 
3625 	/* reset mailbox qos val */
3626 	qm->mb_qos = 0;
3627 
3628 	/* vf ping pf to get function qos */
3629 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3630 	if (ret) {
3631 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3632 		return ret;
3633 	}
3634 
3635 	while (true) {
3636 		msleep(QM_WAIT_DST_ACK);
3637 		if (qm->mb_qos)
3638 			break;
3639 
3640 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3641 			pci_err(qm->pdev, "PF ping VF timeout!\n");
3642 			return  -ETIMEDOUT;
3643 		}
3644 	}
3645 
3646 	return ret;
3647 }
3648 
3649 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3650 			       size_t count, loff_t *pos)
3651 {
3652 	struct hisi_qm *qm = filp->private_data;
3653 	char tbuf[QM_DBG_READ_LEN];
3654 	u32 qos_val, ir;
3655 	int ret;
3656 
3657 	ret = hisi_qm_get_dfx_access(qm);
3658 	if (ret)
3659 		return ret;
3660 
3661 	/* Mailbox and reset cannot be operated at the same time */
3662 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3663 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3664 		ret = -EAGAIN;
3665 		goto err_put_dfx_access;
3666 	}
3667 
3668 	if (qm->fun_type == QM_HW_PF) {
3669 		ir = qm_get_shaper_vft_qos(qm, 0);
3670 	} else {
3671 		ret = qm_vf_read_qos(qm);
3672 		if (ret)
3673 			goto err_get_status;
3674 		ir = qm->mb_qos;
3675 	}
3676 
3677 	qos_val = ir / QM_QOS_RATE;
3678 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3679 
3680 	ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
3681 
3682 err_get_status:
3683 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3684 err_put_dfx_access:
3685 	hisi_qm_put_dfx_access(qm);
3686 	return ret;
3687 }
3688 
3689 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3690 			       unsigned long *val,
3691 			       unsigned int *fun_index)
3692 {
3693 	const struct bus_type *bus_type = qm->pdev->dev.bus;
3694 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3695 	char val_buf[QM_DBG_READ_LEN] = {0};
3696 	struct pci_dev *pdev;
3697 	struct device *dev;
3698 	int ret;
3699 
3700 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3701 	if (ret != QM_QOS_PARAM_NUM)
3702 		return -EINVAL;
3703 
3704 	ret = kstrtoul(val_buf, 10, val);
3705 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3706 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3707 		return -EINVAL;
3708 	}
3709 
3710 	dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3711 	if (!dev) {
3712 		pci_err(qm->pdev, "input pci bdf number is error!\n");
3713 		return -ENODEV;
3714 	}
3715 
3716 	pdev = container_of(dev, struct pci_dev, dev);
3717 
3718 	*fun_index = pdev->devfn;
3719 
3720 	return 0;
3721 }
3722 
3723 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3724 			       size_t count, loff_t *pos)
3725 {
3726 	struct hisi_qm *qm = filp->private_data;
3727 	char tbuf[QM_DBG_READ_LEN];
3728 	unsigned int fun_index;
3729 	unsigned long val;
3730 	int len, ret;
3731 
3732 	if (*pos != 0)
3733 		return 0;
3734 
3735 	if (count >= QM_DBG_READ_LEN)
3736 		return -ENOSPC;
3737 
3738 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3739 	if (len < 0)
3740 		return len;
3741 
3742 	tbuf[len] = '\0';
3743 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3744 	if (ret)
3745 		return ret;
3746 
3747 	/* Mailbox and reset cannot be operated at the same time */
3748 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3749 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3750 		return -EAGAIN;
3751 	}
3752 
3753 	ret = qm_pm_get_sync(qm);
3754 	if (ret) {
3755 		ret = -EINVAL;
3756 		goto err_get_status;
3757 	}
3758 
3759 	ret = qm_func_shaper_enable(qm, fun_index, val);
3760 	if (ret) {
3761 		pci_err(qm->pdev, "failed to enable function shaper!\n");
3762 		ret = -EINVAL;
3763 		goto err_put_sync;
3764 	}
3765 
3766 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3767 		 fun_index, val);
3768 	ret = count;
3769 
3770 err_put_sync:
3771 	qm_pm_put_sync(qm);
3772 err_get_status:
3773 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3774 	return ret;
3775 }
3776 
3777 static const struct file_operations qm_algqos_fops = {
3778 	.owner = THIS_MODULE,
3779 	.open = simple_open,
3780 	.read = qm_algqos_read,
3781 	.write = qm_algqos_write,
3782 };
3783 
3784 /**
3785  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3786  * @qm: The qm for which we want to add debugfs files.
3787  *
3788  * Create function qos debugfs files, VF ping PF to get function qos.
3789  */
3790 void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3791 {
3792 	if (qm->fun_type == QM_HW_PF)
3793 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3794 				    qm, &qm_algqos_fops);
3795 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3796 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3797 				    qm, &qm_algqos_fops);
3798 }
3799 
3800 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3801 {
3802 	int i;
3803 
3804 	for (i = 1; i <= total_func; i++)
3805 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3806 }
3807 
3808 /**
3809  * hisi_qm_sriov_enable() - enable virtual functions
3810  * @pdev: the PCIe device
3811  * @max_vfs: the number of virtual functions to enable
3812  *
3813  * Returns the number of enabled VFs. If there are VFs enabled already or
3814  * max_vfs is more than the total number of device can be enabled, returns
3815  * failure.
3816  */
3817 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3818 {
3819 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3820 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3821 
3822 	ret = qm_pm_get_sync(qm);
3823 	if (ret)
3824 		return ret;
3825 
3826 	total_vfs = pci_sriov_get_totalvfs(pdev);
3827 	pre_existing_vfs = pci_num_vf(pdev);
3828 	if (pre_existing_vfs) {
3829 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3830 			pre_existing_vfs);
3831 		goto err_put_sync;
3832 	}
3833 
3834 	if (max_vfs > total_vfs) {
3835 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
3836 		ret = -ERANGE;
3837 		goto err_put_sync;
3838 	}
3839 
3840 	num_vfs = max_vfs;
3841 
3842 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3843 		hisi_qm_init_vf_qos(qm, num_vfs);
3844 
3845 	ret = qm_vf_q_assign(qm, num_vfs);
3846 	if (ret) {
3847 		pci_err(pdev, "Can't assign queues for VF!\n");
3848 		goto err_put_sync;
3849 	}
3850 
3851 	qm->vfs_num = num_vfs;
3852 
3853 	ret = pci_enable_sriov(pdev, num_vfs);
3854 	if (ret) {
3855 		pci_err(pdev, "Can't enable VF!\n");
3856 		qm_clear_vft_config(qm);
3857 		goto err_put_sync;
3858 	}
3859 
3860 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3861 
3862 	return num_vfs;
3863 
3864 err_put_sync:
3865 	qm_pm_put_sync(qm);
3866 	return ret;
3867 }
3868 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3869 
3870 /**
3871  * hisi_qm_sriov_disable - disable virtual functions
3872  * @pdev: the PCI device.
3873  * @is_frozen: true when all the VFs are frozen.
3874  *
3875  * Return failure if there are VFs assigned already or VF is in used.
3876  */
3877 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3878 {
3879 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3880 	int ret;
3881 
3882 	if (pci_vfs_assigned(pdev)) {
3883 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3884 		return -EPERM;
3885 	}
3886 
3887 	/* While VF is in used, SRIOV cannot be disabled. */
3888 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3889 		pci_err(pdev, "Task is using its VF!\n");
3890 		return -EBUSY;
3891 	}
3892 
3893 	pci_disable_sriov(pdev);
3894 
3895 	ret = qm_clear_vft_config(qm);
3896 	if (ret)
3897 		return ret;
3898 
3899 	qm_pm_put_sync(qm);
3900 
3901 	return 0;
3902 }
3903 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3904 
3905 /**
3906  * hisi_qm_sriov_configure - configure the number of VFs
3907  * @pdev: The PCI device
3908  * @num_vfs: The number of VFs need enabled
3909  *
3910  * Enable SR-IOV according to num_vfs, 0 means disable.
3911  */
3912 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3913 {
3914 	if (num_vfs == 0)
3915 		return hisi_qm_sriov_disable(pdev, false);
3916 	else
3917 		return hisi_qm_sriov_enable(pdev, num_vfs);
3918 }
3919 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3920 
3921 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3922 {
3923 	u32 err_sts;
3924 
3925 	if (!qm->err_ini->get_dev_hw_err_status) {
3926 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3927 		return ACC_ERR_NONE;
3928 	}
3929 
3930 	/* get device hardware error status */
3931 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3932 	if (err_sts) {
3933 		if (err_sts & qm->err_info.ecc_2bits_mask)
3934 			qm->err_status.is_dev_ecc_mbit = true;
3935 
3936 		if (qm->err_ini->log_dev_hw_err)
3937 			qm->err_ini->log_dev_hw_err(qm, err_sts);
3938 
3939 		if (err_sts & qm->err_info.dev_reset_mask)
3940 			return ACC_ERR_NEED_RESET;
3941 
3942 		if (qm->err_ini->clear_dev_hw_err_status)
3943 			qm->err_ini->clear_dev_hw_err_status(qm, err_sts);
3944 	}
3945 
3946 	return ACC_ERR_RECOVERED;
3947 }
3948 
3949 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3950 {
3951 	enum acc_err_result qm_ret, dev_ret;
3952 
3953 	/* log qm error */
3954 	qm_ret = qm_hw_error_handle(qm);
3955 
3956 	/* log device error */
3957 	dev_ret = qm_dev_err_handle(qm);
3958 
3959 	return (qm_ret == ACC_ERR_NEED_RESET ||
3960 		dev_ret == ACC_ERR_NEED_RESET) ?
3961 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3962 }
3963 
3964 /**
3965  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3966  * @pdev: The PCI device which need report error.
3967  * @state: The connectivity between CPU and device.
3968  *
3969  * We register this function into PCIe AER handlers, It will report device or
3970  * qm hardware error status when error occur.
3971  */
3972 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3973 					  pci_channel_state_t state)
3974 {
3975 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3976 	enum acc_err_result ret;
3977 
3978 	if (pdev->is_virtfn)
3979 		return PCI_ERS_RESULT_NONE;
3980 
3981 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
3982 	if (state == pci_channel_io_perm_failure)
3983 		return PCI_ERS_RESULT_DISCONNECT;
3984 
3985 	ret = qm_process_dev_error(qm);
3986 	if (ret == ACC_ERR_NEED_RESET)
3987 		return PCI_ERS_RESULT_NEED_RESET;
3988 
3989 	return PCI_ERS_RESULT_RECOVERED;
3990 }
3991 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3992 
3993 static int qm_check_req_recv(struct hisi_qm *qm)
3994 {
3995 	struct pci_dev *pdev = qm->pdev;
3996 	int ret;
3997 	u32 val;
3998 
3999 	if (qm->ver >= QM_HW_V3)
4000 		return 0;
4001 
4002 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
4003 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4004 					 (val == ACC_VENDOR_ID_VALUE),
4005 					 POLL_PERIOD, POLL_TIMEOUT);
4006 	if (ret) {
4007 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
4008 		return ret;
4009 	}
4010 
4011 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
4012 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4013 					 (val == PCI_VENDOR_ID_HUAWEI),
4014 					 POLL_PERIOD, POLL_TIMEOUT);
4015 	if (ret)
4016 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
4017 
4018 	return ret;
4019 }
4020 
4021 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
4022 {
4023 	struct pci_dev *pdev = qm->pdev;
4024 	u16 cmd;
4025 	int i;
4026 
4027 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4028 	if (set)
4029 		cmd |= PCI_COMMAND_MEMORY;
4030 	else
4031 		cmd &= ~PCI_COMMAND_MEMORY;
4032 
4033 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
4034 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4035 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4036 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
4037 			return 0;
4038 
4039 		udelay(1);
4040 	}
4041 
4042 	return -ETIMEDOUT;
4043 }
4044 
4045 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
4046 {
4047 	struct pci_dev *pdev = qm->pdev;
4048 	u16 sriov_ctrl;
4049 	int pos;
4050 	int i;
4051 
4052 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4053 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4054 	if (set)
4055 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
4056 	else
4057 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
4058 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
4059 
4060 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4061 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4062 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
4063 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
4064 			return 0;
4065 
4066 		udelay(1);
4067 	}
4068 
4069 	return -ETIMEDOUT;
4070 }
4071 
4072 static int qm_vf_reset_prepare(struct hisi_qm *qm,
4073 			       enum qm_stop_reason stop_reason)
4074 {
4075 	struct hisi_qm_list *qm_list = qm->qm_list;
4076 	struct pci_dev *pdev = qm->pdev;
4077 	struct pci_dev *virtfn;
4078 	struct hisi_qm *vf_qm;
4079 	int ret = 0;
4080 
4081 	mutex_lock(&qm_list->lock);
4082 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4083 		virtfn = vf_qm->pdev;
4084 		if (virtfn == pdev)
4085 			continue;
4086 
4087 		if (pci_physfn(virtfn) == pdev) {
4088 			/* save VFs PCIE BAR configuration */
4089 			pci_save_state(virtfn);
4090 
4091 			ret = hisi_qm_stop(vf_qm, stop_reason);
4092 			if (ret)
4093 				goto stop_fail;
4094 		}
4095 	}
4096 
4097 stop_fail:
4098 	mutex_unlock(&qm_list->lock);
4099 	return ret;
4100 }
4101 
4102 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
4103 			   enum qm_stop_reason stop_reason)
4104 {
4105 	struct pci_dev *pdev = qm->pdev;
4106 	int ret;
4107 
4108 	if (!qm->vfs_num)
4109 		return 0;
4110 
4111 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
4112 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4113 		ret = qm_ping_all_vfs(qm, cmd);
4114 		if (ret)
4115 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
4116 	} else {
4117 		ret = qm_vf_reset_prepare(qm, stop_reason);
4118 		if (ret)
4119 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4120 	}
4121 
4122 	return ret;
4123 }
4124 
4125 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4126 {
4127 	struct pci_dev *pdev = qm->pdev;
4128 	int ret;
4129 
4130 	ret = qm_reset_prepare_ready(qm);
4131 	if (ret) {
4132 		pci_err(pdev, "Controller reset not ready!\n");
4133 		return ret;
4134 	}
4135 
4136 	/* PF obtains the information of VF by querying the register. */
4137 	qm_cmd_uninit(qm);
4138 
4139 	/* Whether VFs stop successfully, soft reset will continue. */
4140 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4141 	if (ret)
4142 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4143 
4144 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4145 	if (ret) {
4146 		pci_err(pdev, "Fails to stop QM!\n");
4147 		qm_reset_bit_clear(qm);
4148 		return ret;
4149 	}
4150 
4151 	if (qm->use_sva) {
4152 		ret = qm_hw_err_isolate(qm);
4153 		if (ret)
4154 			pci_err(pdev, "failed to isolate hw err!\n");
4155 	}
4156 
4157 	ret = qm_wait_vf_prepare_finish(qm);
4158 	if (ret)
4159 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4160 
4161 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4162 
4163 	return 0;
4164 }
4165 
4166 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4167 {
4168 	u32 nfe_enb = 0;
4169 
4170 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4171 	if (qm->ver >= QM_HW_V3)
4172 		return;
4173 
4174 	if (!qm->err_status.is_dev_ecc_mbit &&
4175 	    qm->err_status.is_qm_ecc_mbit &&
4176 	    qm->err_ini->close_axi_master_ooo) {
4177 		qm->err_ini->close_axi_master_ooo(qm);
4178 	} else if (qm->err_status.is_dev_ecc_mbit &&
4179 		   !qm->err_status.is_qm_ecc_mbit &&
4180 		   !qm->err_ini->close_axi_master_ooo) {
4181 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4182 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4183 		       qm->io_base + QM_RAS_NFE_ENABLE);
4184 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4185 	}
4186 }
4187 
4188 static int qm_soft_reset(struct hisi_qm *qm)
4189 {
4190 	struct pci_dev *pdev = qm->pdev;
4191 	int ret;
4192 	u32 val;
4193 
4194 	/* Ensure all doorbells and mailboxes received by QM */
4195 	ret = qm_check_req_recv(qm);
4196 	if (ret)
4197 		return ret;
4198 
4199 	if (qm->vfs_num) {
4200 		ret = qm_set_vf_mse(qm, false);
4201 		if (ret) {
4202 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4203 			return ret;
4204 		}
4205 	}
4206 
4207 	ret = qm->ops->set_msi(qm, false);
4208 	if (ret) {
4209 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4210 		return ret;
4211 	}
4212 
4213 	qm_dev_ecc_mbit_handle(qm);
4214 
4215 	/* OOO register set and check */
4216 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
4217 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4218 
4219 	/* If bus lock, reset chip */
4220 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4221 					 val,
4222 					 (val == ACC_MASTER_TRANS_RETURN_RW),
4223 					 POLL_PERIOD, POLL_TIMEOUT);
4224 	if (ret) {
4225 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
4226 		return ret;
4227 	}
4228 
4229 	if (qm->err_ini->close_sva_prefetch)
4230 		qm->err_ini->close_sva_prefetch(qm);
4231 
4232 	ret = qm_set_pf_mse(qm, false);
4233 	if (ret) {
4234 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4235 		return ret;
4236 	}
4237 
4238 	/* The reset related sub-control registers are not in PCI BAR */
4239 	if (ACPI_HANDLE(&pdev->dev)) {
4240 		unsigned long long value = 0;
4241 		acpi_status s;
4242 
4243 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4244 					  qm->err_info.acpi_rst,
4245 					  NULL, &value);
4246 		if (ACPI_FAILURE(s)) {
4247 			pci_err(pdev, "NO controller reset method!\n");
4248 			return -EIO;
4249 		}
4250 
4251 		if (value) {
4252 			pci_err(pdev, "Reset step %llu failed!\n", value);
4253 			return -EIO;
4254 		}
4255 	} else {
4256 		pci_err(pdev, "No reset method!\n");
4257 		return -EINVAL;
4258 	}
4259 
4260 	return 0;
4261 }
4262 
4263 static int qm_vf_reset_done(struct hisi_qm *qm)
4264 {
4265 	struct hisi_qm_list *qm_list = qm->qm_list;
4266 	struct pci_dev *pdev = qm->pdev;
4267 	struct pci_dev *virtfn;
4268 	struct hisi_qm *vf_qm;
4269 	int ret = 0;
4270 
4271 	mutex_lock(&qm_list->lock);
4272 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4273 		virtfn = vf_qm->pdev;
4274 		if (virtfn == pdev)
4275 			continue;
4276 
4277 		if (pci_physfn(virtfn) == pdev) {
4278 			/* enable VFs PCIE BAR configuration */
4279 			pci_restore_state(virtfn);
4280 
4281 			ret = qm_restart(vf_qm);
4282 			if (ret)
4283 				goto restart_fail;
4284 		}
4285 	}
4286 
4287 restart_fail:
4288 	mutex_unlock(&qm_list->lock);
4289 	return ret;
4290 }
4291 
4292 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
4293 {
4294 	struct pci_dev *pdev = qm->pdev;
4295 	int ret;
4296 
4297 	if (!qm->vfs_num)
4298 		return 0;
4299 
4300 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4301 	if (ret) {
4302 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4303 		return ret;
4304 	}
4305 
4306 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4307 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4308 		ret = qm_ping_all_vfs(qm, cmd);
4309 		if (ret)
4310 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4311 	} else {
4312 		ret = qm_vf_reset_done(qm);
4313 		if (ret)
4314 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4315 	}
4316 
4317 	return ret;
4318 }
4319 
4320 static int qm_dev_hw_init(struct hisi_qm *qm)
4321 {
4322 	return qm->err_ini->hw_init(qm);
4323 }
4324 
4325 static void qm_restart_prepare(struct hisi_qm *qm)
4326 {
4327 	u32 value;
4328 
4329 	if (qm->err_ini->open_sva_prefetch)
4330 		qm->err_ini->open_sva_prefetch(qm);
4331 
4332 	if (qm->ver >= QM_HW_V3)
4333 		return;
4334 
4335 	if (!qm->err_status.is_qm_ecc_mbit &&
4336 	    !qm->err_status.is_dev_ecc_mbit)
4337 		return;
4338 
4339 	/* temporarily close the OOO port used for PEH to write out MSI */
4340 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4341 	writel(value & ~qm->err_info.msi_wr_port,
4342 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4343 
4344 	/* clear dev ecc 2bit error source if having */
4345 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4346 	if (value && qm->err_ini->clear_dev_hw_err_status)
4347 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4348 
4349 	/* clear QM ecc mbit error source */
4350 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4351 
4352 	/* clear AM Reorder Buffer ecc mbit source */
4353 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4354 }
4355 
4356 static void qm_restart_done(struct hisi_qm *qm)
4357 {
4358 	u32 value;
4359 
4360 	if (qm->ver >= QM_HW_V3)
4361 		goto clear_flags;
4362 
4363 	if (!qm->err_status.is_qm_ecc_mbit &&
4364 	    !qm->err_status.is_dev_ecc_mbit)
4365 		return;
4366 
4367 	/* open the OOO port for PEH to write out MSI */
4368 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4369 	value |= qm->err_info.msi_wr_port;
4370 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4371 
4372 clear_flags:
4373 	qm->err_status.is_qm_ecc_mbit = false;
4374 	qm->err_status.is_dev_ecc_mbit = false;
4375 }
4376 
4377 static int qm_controller_reset_done(struct hisi_qm *qm)
4378 {
4379 	struct pci_dev *pdev = qm->pdev;
4380 	int ret;
4381 
4382 	ret = qm->ops->set_msi(qm, true);
4383 	if (ret) {
4384 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4385 		return ret;
4386 	}
4387 
4388 	ret = qm_set_pf_mse(qm, true);
4389 	if (ret) {
4390 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4391 		return ret;
4392 	}
4393 
4394 	if (qm->vfs_num) {
4395 		ret = qm_set_vf_mse(qm, true);
4396 		if (ret) {
4397 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
4398 			return ret;
4399 		}
4400 	}
4401 
4402 	ret = qm_dev_hw_init(qm);
4403 	if (ret) {
4404 		pci_err(pdev, "Failed to init device\n");
4405 		return ret;
4406 	}
4407 
4408 	qm_restart_prepare(qm);
4409 	hisi_qm_dev_err_init(qm);
4410 	if (qm->err_ini->open_axi_master_ooo)
4411 		qm->err_ini->open_axi_master_ooo(qm);
4412 
4413 	ret = qm_dev_mem_reset(qm);
4414 	if (ret) {
4415 		pci_err(pdev, "failed to reset device memory\n");
4416 		return ret;
4417 	}
4418 
4419 	ret = qm_restart(qm);
4420 	if (ret) {
4421 		pci_err(pdev, "Failed to start QM!\n");
4422 		return ret;
4423 	}
4424 
4425 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4426 	if (ret)
4427 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4428 
4429 	ret = qm_wait_vf_prepare_finish(qm);
4430 	if (ret)
4431 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
4432 
4433 	qm_cmd_init(qm);
4434 	qm_restart_done(qm);
4435 
4436 	qm_reset_bit_clear(qm);
4437 
4438 	return 0;
4439 }
4440 
4441 static int qm_controller_reset(struct hisi_qm *qm)
4442 {
4443 	struct pci_dev *pdev = qm->pdev;
4444 	int ret;
4445 
4446 	pci_info(pdev, "Controller resetting...\n");
4447 
4448 	ret = qm_controller_reset_prepare(qm);
4449 	if (ret) {
4450 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4451 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4452 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4453 		return ret;
4454 	}
4455 
4456 	hisi_qm_show_last_dfx_regs(qm);
4457 	if (qm->err_ini->show_last_dfx_regs)
4458 		qm->err_ini->show_last_dfx_regs(qm);
4459 
4460 	ret = qm_soft_reset(qm);
4461 	if (ret)
4462 		goto err_reset;
4463 
4464 	ret = qm_controller_reset_done(qm);
4465 	if (ret)
4466 		goto err_reset;
4467 
4468 	pci_info(pdev, "Controller reset complete\n");
4469 
4470 	return 0;
4471 
4472 err_reset:
4473 	pci_err(pdev, "Controller reset failed (%d)\n", ret);
4474 	qm_reset_bit_clear(qm);
4475 
4476 	/* if resetting fails, isolate the device */
4477 	if (qm->use_sva)
4478 		qm->isolate_data.is_isolate = true;
4479 	return ret;
4480 }
4481 
4482 /**
4483  * hisi_qm_dev_slot_reset() - slot reset
4484  * @pdev: the PCIe device
4485  *
4486  * This function offers QM relate PCIe device reset interface. Drivers which
4487  * use QM can use this function as slot_reset in its struct pci_error_handlers.
4488  */
4489 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4490 {
4491 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4492 	int ret;
4493 
4494 	if (pdev->is_virtfn)
4495 		return PCI_ERS_RESULT_RECOVERED;
4496 
4497 	/* reset pcie device controller */
4498 	ret = qm_controller_reset(qm);
4499 	if (ret) {
4500 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4501 		return PCI_ERS_RESULT_DISCONNECT;
4502 	}
4503 
4504 	return PCI_ERS_RESULT_RECOVERED;
4505 }
4506 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4507 
4508 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4509 {
4510 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4511 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4512 	u32 delay = 0;
4513 	int ret;
4514 
4515 	hisi_qm_dev_err_uninit(pf_qm);
4516 
4517 	/*
4518 	 * Check whether there is an ECC mbit error, If it occurs, need to
4519 	 * wait for soft reset to fix it.
4520 	 */
4521 	while (qm_check_dev_error(pf_qm)) {
4522 		msleep(++delay);
4523 		if (delay > QM_RESET_WAIT_TIMEOUT)
4524 			return;
4525 	}
4526 
4527 	ret = qm_reset_prepare_ready(qm);
4528 	if (ret) {
4529 		pci_err(pdev, "FLR not ready!\n");
4530 		return;
4531 	}
4532 
4533 	/* PF obtains the information of VF by querying the register. */
4534 	if (qm->fun_type == QM_HW_PF)
4535 		qm_cmd_uninit(qm);
4536 
4537 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR);
4538 	if (ret)
4539 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4540 
4541 	ret = hisi_qm_stop(qm, QM_FLR);
4542 	if (ret) {
4543 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4544 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4545 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4546 		return;
4547 	}
4548 
4549 	ret = qm_wait_vf_prepare_finish(qm);
4550 	if (ret)
4551 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
4552 
4553 	pci_info(pdev, "FLR resetting...\n");
4554 }
4555 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4556 
4557 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4558 {
4559 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4560 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4561 	u32 id;
4562 
4563 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4564 	if (id == QM_PCI_COMMAND_INVALID) {
4565 		pci_err(pdev, "Device can not be used!\n");
4566 		return false;
4567 	}
4568 
4569 	return true;
4570 }
4571 
4572 void hisi_qm_reset_done(struct pci_dev *pdev)
4573 {
4574 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4575 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4576 	int ret;
4577 
4578 	if (qm->fun_type == QM_HW_PF) {
4579 		ret = qm_dev_hw_init(qm);
4580 		if (ret) {
4581 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4582 			goto flr_done;
4583 		}
4584 	}
4585 
4586 	hisi_qm_dev_err_init(pf_qm);
4587 
4588 	ret = qm_restart(qm);
4589 	if (ret) {
4590 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4591 		goto flr_done;
4592 	}
4593 
4594 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4595 	if (ret)
4596 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4597 
4598 	ret = qm_wait_vf_prepare_finish(qm);
4599 	if (ret)
4600 		pci_err(pdev, "failed to start by vfs in FLR!\n");
4601 
4602 flr_done:
4603 	if (qm->fun_type == QM_HW_PF)
4604 		qm_cmd_init(qm);
4605 
4606 	if (qm_flr_reset_complete(pdev))
4607 		pci_info(pdev, "FLR reset complete\n");
4608 
4609 	qm_reset_bit_clear(qm);
4610 }
4611 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4612 
4613 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4614 {
4615 	struct hisi_qm *qm = data;
4616 	enum acc_err_result ret;
4617 
4618 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4619 	ret = qm_process_dev_error(qm);
4620 	if (ret == ACC_ERR_NEED_RESET &&
4621 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4622 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4623 		schedule_work(&qm->rst_work);
4624 
4625 	return IRQ_HANDLED;
4626 }
4627 
4628 /**
4629  * hisi_qm_dev_shutdown() - Shutdown device.
4630  * @pdev: The device will be shutdown.
4631  *
4632  * This function will stop qm when OS shutdown or rebooting.
4633  */
4634 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4635 {
4636 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4637 	int ret;
4638 
4639 	ret = hisi_qm_stop(qm, QM_NORMAL);
4640 	if (ret)
4641 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4642 }
4643 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4644 
4645 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4646 {
4647 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4648 	int ret;
4649 
4650 	ret = qm_pm_get_sync(qm);
4651 	if (ret) {
4652 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4653 		return;
4654 	}
4655 
4656 	/* reset pcie device controller */
4657 	ret = qm_controller_reset(qm);
4658 	if (ret)
4659 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4660 
4661 	qm_pm_put_sync(qm);
4662 }
4663 
4664 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4665 				   enum qm_stop_reason stop_reason)
4666 {
4667 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
4668 	struct pci_dev *pdev = qm->pdev;
4669 	int ret;
4670 
4671 	ret = qm_reset_prepare_ready(qm);
4672 	if (ret) {
4673 		dev_err(&pdev->dev, "reset prepare not ready!\n");
4674 		atomic_set(&qm->status.flags, QM_STOP);
4675 		cmd = QM_VF_PREPARE_FAIL;
4676 		goto err_prepare;
4677 	}
4678 
4679 	ret = hisi_qm_stop(qm, stop_reason);
4680 	if (ret) {
4681 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4682 		atomic_set(&qm->status.flags, QM_STOP);
4683 		cmd = QM_VF_PREPARE_FAIL;
4684 		goto err_prepare;
4685 	} else {
4686 		goto out;
4687 	}
4688 
4689 err_prepare:
4690 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4691 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4692 out:
4693 	pci_save_state(pdev);
4694 	ret = qm_ping_pf(qm, cmd);
4695 	if (ret)
4696 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4697 }
4698 
4699 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4700 {
4701 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
4702 	struct pci_dev *pdev = qm->pdev;
4703 	int ret;
4704 
4705 	pci_restore_state(pdev);
4706 	ret = hisi_qm_start(qm);
4707 	if (ret) {
4708 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4709 		cmd = QM_VF_START_FAIL;
4710 	}
4711 
4712 	qm_cmd_init(qm);
4713 	ret = qm_ping_pf(qm, cmd);
4714 	if (ret)
4715 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4716 
4717 	qm_reset_bit_clear(qm);
4718 }
4719 
4720 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4721 {
4722 	struct device *dev = &qm->pdev->dev;
4723 	u32 val, cmd;
4724 	u64 msg;
4725 	int ret;
4726 
4727 	/* Wait for reset to finish */
4728 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4729 					 val == BIT(0), QM_VF_RESET_WAIT_US,
4730 					 QM_VF_RESET_WAIT_TIMEOUT_US);
4731 	/* hardware completion status should be available by this time */
4732 	if (ret) {
4733 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4734 		return -ETIMEDOUT;
4735 	}
4736 
4737 	/*
4738 	 * Whether message is got successfully,
4739 	 * VF needs to ack PF by clearing the interrupt.
4740 	 */
4741 	ret = qm_get_mb_cmd(qm, &msg, 0);
4742 	qm_clear_cmd_interrupt(qm, 0);
4743 	if (ret) {
4744 		dev_err(dev, "failed to get msg from PF in reset done!\n");
4745 		return ret;
4746 	}
4747 
4748 	cmd = msg & QM_MB_CMD_DATA_MASK;
4749 	if (cmd != QM_PF_RESET_DONE) {
4750 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
4751 		ret = -EINVAL;
4752 	}
4753 
4754 	return ret;
4755 }
4756 
4757 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4758 				   enum qm_stop_reason stop_reason)
4759 {
4760 	struct device *dev = &qm->pdev->dev;
4761 	int ret;
4762 
4763 	dev_info(dev, "device reset start...\n");
4764 
4765 	/* The message is obtained by querying the register during resetting */
4766 	qm_cmd_uninit(qm);
4767 	qm_pf_reset_vf_prepare(qm, stop_reason);
4768 
4769 	ret = qm_wait_pf_reset_finish(qm);
4770 	if (ret)
4771 		goto err_get_status;
4772 
4773 	qm_pf_reset_vf_done(qm);
4774 
4775 	dev_info(dev, "device reset done.\n");
4776 
4777 	return;
4778 
4779 err_get_status:
4780 	qm_cmd_init(qm);
4781 	qm_reset_bit_clear(qm);
4782 }
4783 
4784 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
4785 {
4786 	struct device *dev = &qm->pdev->dev;
4787 	u64 msg;
4788 	u32 cmd;
4789 	int ret;
4790 
4791 	/*
4792 	 * Get the msg from source by sending mailbox. Whether message is got
4793 	 * successfully, destination needs to ack source by clearing the interrupt.
4794 	 */
4795 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
4796 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
4797 	if (ret) {
4798 		dev_err(dev, "failed to get msg from source!\n");
4799 		return;
4800 	}
4801 
4802 	cmd = msg & QM_MB_CMD_DATA_MASK;
4803 	switch (cmd) {
4804 	case QM_PF_FLR_PREPARE:
4805 		qm_pf_reset_vf_process(qm, QM_FLR);
4806 		break;
4807 	case QM_PF_SRST_PREPARE:
4808 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
4809 		break;
4810 	case QM_VF_GET_QOS:
4811 		qm_vf_get_qos(qm, fun_num);
4812 		break;
4813 	case QM_PF_SET_QOS:
4814 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
4815 		break;
4816 	default:
4817 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
4818 		break;
4819 	}
4820 }
4821 
4822 static void qm_cmd_process(struct work_struct *cmd_process)
4823 {
4824 	struct hisi_qm *qm = container_of(cmd_process,
4825 					struct hisi_qm, cmd_process);
4826 	u32 vfs_num = qm->vfs_num;
4827 	u64 val;
4828 	u32 i;
4829 
4830 	if (qm->fun_type == QM_HW_PF) {
4831 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
4832 		if (!val)
4833 			return;
4834 
4835 		for (i = 1; i <= vfs_num; i++) {
4836 			if (val & BIT(i))
4837 				qm_handle_cmd_msg(qm, i);
4838 		}
4839 
4840 		return;
4841 	}
4842 
4843 	qm_handle_cmd_msg(qm, 0);
4844 }
4845 
4846 /**
4847  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
4848  * @qm: The qm needs add.
4849  * @qm_list: The qm list.
4850  *
4851  * This function adds qm to qm list, and will register algorithm to
4852  * crypto when the qm list is empty.
4853  */
4854 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4855 {
4856 	struct device *dev = &qm->pdev->dev;
4857 	int flag = 0;
4858 	int ret = 0;
4859 
4860 	mutex_lock(&qm_list->lock);
4861 	if (list_empty(&qm_list->list))
4862 		flag = 1;
4863 	list_add_tail(&qm->list, &qm_list->list);
4864 	mutex_unlock(&qm_list->lock);
4865 
4866 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
4867 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
4868 		return 0;
4869 	}
4870 
4871 	if (flag) {
4872 		ret = qm_list->register_to_crypto(qm);
4873 		if (ret) {
4874 			mutex_lock(&qm_list->lock);
4875 			list_del(&qm->list);
4876 			mutex_unlock(&qm_list->lock);
4877 		}
4878 	}
4879 
4880 	return ret;
4881 }
4882 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4883 
4884 /**
4885  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
4886  * qm list.
4887  * @qm: The qm needs delete.
4888  * @qm_list: The qm list.
4889  *
4890  * This function deletes qm from qm list, and will unregister algorithm
4891  * from crypto when the qm list is empty.
4892  */
4893 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4894 {
4895 	mutex_lock(&qm_list->lock);
4896 	list_del(&qm->list);
4897 	mutex_unlock(&qm_list->lock);
4898 
4899 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4900 		return;
4901 
4902 	if (list_empty(&qm_list->list))
4903 		qm_list->unregister_from_crypto(qm);
4904 }
4905 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
4906 
4907 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
4908 {
4909 	struct pci_dev *pdev = qm->pdev;
4910 	u32 irq_vector, val;
4911 
4912 	if (qm->fun_type == QM_HW_VF)
4913 		return;
4914 
4915 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
4916 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4917 		return;
4918 
4919 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4920 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4921 }
4922 
4923 static int qm_register_abnormal_irq(struct hisi_qm *qm)
4924 {
4925 	struct pci_dev *pdev = qm->pdev;
4926 	u32 irq_vector, val;
4927 	int ret;
4928 
4929 	if (qm->fun_type == QM_HW_VF)
4930 		return 0;
4931 
4932 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
4933 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4934 		return 0;
4935 
4936 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4937 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
4938 	if (ret)
4939 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
4940 
4941 	return ret;
4942 }
4943 
4944 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
4945 {
4946 	struct pci_dev *pdev = qm->pdev;
4947 	u32 irq_vector, val;
4948 
4949 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
4950 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4951 		return;
4952 
4953 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4954 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4955 }
4956 
4957 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
4958 {
4959 	struct pci_dev *pdev = qm->pdev;
4960 	u32 irq_vector, val;
4961 	int ret;
4962 
4963 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
4964 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4965 		return 0;
4966 
4967 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4968 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
4969 	if (ret)
4970 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
4971 
4972 	return ret;
4973 }
4974 
4975 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
4976 {
4977 	struct pci_dev *pdev = qm->pdev;
4978 	u32 irq_vector, val;
4979 
4980 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
4981 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4982 		return;
4983 
4984 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4985 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4986 }
4987 
4988 static int qm_register_aeq_irq(struct hisi_qm *qm)
4989 {
4990 	struct pci_dev *pdev = qm->pdev;
4991 	u32 irq_vector, val;
4992 	int ret;
4993 
4994 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
4995 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4996 		return 0;
4997 
4998 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4999 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), qm_aeq_irq,
5000 						   qm_aeq_thread, 0, qm->dev_name, qm);
5001 	if (ret)
5002 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5003 
5004 	return ret;
5005 }
5006 
5007 static void qm_unregister_eq_irq(struct hisi_qm *qm)
5008 {
5009 	struct pci_dev *pdev = qm->pdev;
5010 	u32 irq_vector, val;
5011 
5012 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
5013 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5014 		return;
5015 
5016 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5017 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5018 }
5019 
5020 static int qm_register_eq_irq(struct hisi_qm *qm)
5021 {
5022 	struct pci_dev *pdev = qm->pdev;
5023 	u32 irq_vector, val;
5024 	int ret;
5025 
5026 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
5027 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5028 		return 0;
5029 
5030 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5031 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
5032 	if (ret)
5033 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5034 
5035 	return ret;
5036 }
5037 
5038 static void qm_irqs_unregister(struct hisi_qm *qm)
5039 {
5040 	qm_unregister_mb_cmd_irq(qm);
5041 	qm_unregister_abnormal_irq(qm);
5042 	qm_unregister_aeq_irq(qm);
5043 	qm_unregister_eq_irq(qm);
5044 }
5045 
5046 static int qm_irqs_register(struct hisi_qm *qm)
5047 {
5048 	int ret;
5049 
5050 	ret = qm_register_eq_irq(qm);
5051 	if (ret)
5052 		return ret;
5053 
5054 	ret = qm_register_aeq_irq(qm);
5055 	if (ret)
5056 		goto free_eq_irq;
5057 
5058 	ret = qm_register_abnormal_irq(qm);
5059 	if (ret)
5060 		goto free_aeq_irq;
5061 
5062 	ret = qm_register_mb_cmd_irq(qm);
5063 	if (ret)
5064 		goto free_abnormal_irq;
5065 
5066 	return 0;
5067 
5068 free_abnormal_irq:
5069 	qm_unregister_abnormal_irq(qm);
5070 free_aeq_irq:
5071 	qm_unregister_aeq_irq(qm);
5072 free_eq_irq:
5073 	qm_unregister_eq_irq(qm);
5074 	return ret;
5075 }
5076 
5077 static int qm_get_qp_num(struct hisi_qm *qm)
5078 {
5079 	bool is_db_isolation;
5080 
5081 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
5082 	if (qm->fun_type == QM_HW_VF) {
5083 		if (qm->ver != QM_HW_V1)
5084 			/* v2 starts to support get vft by mailbox */
5085 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
5086 
5087 		return 0;
5088 	}
5089 
5090 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5091 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
5092 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
5093 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
5094 
5095 	/* check if qp number is valid */
5096 	if (qm->qp_num > qm->max_qp_num) {
5097 		dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n",
5098 			qm->qp_num, qm->max_qp_num);
5099 		return -EINVAL;
5100 	}
5101 
5102 	return 0;
5103 }
5104 
5105 static void qm_get_hw_caps(struct hisi_qm *qm)
5106 {
5107 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
5108 						  qm_cap_info_pf : qm_cap_info_vf;
5109 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
5110 				   ARRAY_SIZE(qm_cap_info_vf);
5111 	u32 val, i;
5112 
5113 	/* Doorbell isolate register is a independent register. */
5114 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
5115 	if (val)
5116 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5117 
5118 	if (qm->ver >= QM_HW_V3) {
5119 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
5120 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
5121 	}
5122 
5123 	/* Get PF/VF common capbility */
5124 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
5125 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
5126 		if (val)
5127 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
5128 	}
5129 
5130 	/* Get PF/VF different capbility */
5131 	for (i = 0; i < size; i++) {
5132 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
5133 		if (val)
5134 			set_bit(cap_info[i].type, &qm->caps);
5135 	}
5136 }
5137 
5138 static int qm_get_pci_res(struct hisi_qm *qm)
5139 {
5140 	struct pci_dev *pdev = qm->pdev;
5141 	struct device *dev = &pdev->dev;
5142 	int ret;
5143 
5144 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5145 	if (ret < 0) {
5146 		dev_err(dev, "Failed to request mem regions!\n");
5147 		return ret;
5148 	}
5149 
5150 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5151 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5152 	if (!qm->io_base) {
5153 		ret = -EIO;
5154 		goto err_request_mem_regions;
5155 	}
5156 
5157 	qm_get_hw_caps(qm);
5158 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5159 		qm->db_interval = QM_QP_DB_INTERVAL;
5160 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5161 		qm->db_io_base = ioremap(qm->db_phys_base,
5162 					 pci_resource_len(pdev, PCI_BAR_4));
5163 		if (!qm->db_io_base) {
5164 			ret = -EIO;
5165 			goto err_ioremap;
5166 		}
5167 	} else {
5168 		qm->db_phys_base = qm->phys_base;
5169 		qm->db_io_base = qm->io_base;
5170 		qm->db_interval = 0;
5171 	}
5172 
5173 	ret = qm_get_qp_num(qm);
5174 	if (ret)
5175 		goto err_db_ioremap;
5176 
5177 	return 0;
5178 
5179 err_db_ioremap:
5180 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5181 		iounmap(qm->db_io_base);
5182 err_ioremap:
5183 	iounmap(qm->io_base);
5184 err_request_mem_regions:
5185 	pci_release_mem_regions(pdev);
5186 	return ret;
5187 }
5188 
5189 static int hisi_qm_pci_init(struct hisi_qm *qm)
5190 {
5191 	struct pci_dev *pdev = qm->pdev;
5192 	struct device *dev = &pdev->dev;
5193 	unsigned int num_vec;
5194 	int ret;
5195 
5196 	ret = pci_enable_device_mem(pdev);
5197 	if (ret < 0) {
5198 		dev_err(dev, "Failed to enable device mem!\n");
5199 		return ret;
5200 	}
5201 
5202 	ret = qm_get_pci_res(qm);
5203 	if (ret)
5204 		goto err_disable_pcidev;
5205 
5206 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5207 	if (ret < 0)
5208 		goto err_get_pci_res;
5209 	pci_set_master(pdev);
5210 
5211 	num_vec = qm_get_irq_num(qm);
5212 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5213 	if (ret < 0) {
5214 		dev_err(dev, "Failed to enable MSI vectors!\n");
5215 		goto err_get_pci_res;
5216 	}
5217 
5218 	return 0;
5219 
5220 err_get_pci_res:
5221 	qm_put_pci_res(qm);
5222 err_disable_pcidev:
5223 	pci_disable_device(pdev);
5224 	return ret;
5225 }
5226 
5227 static int hisi_qm_init_work(struct hisi_qm *qm)
5228 {
5229 	int i;
5230 
5231 	for (i = 0; i < qm->qp_num; i++)
5232 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5233 
5234 	if (qm->fun_type == QM_HW_PF)
5235 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5236 
5237 	if (qm->ver > QM_HW_V2)
5238 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5239 
5240 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5241 				 WQ_UNBOUND, num_online_cpus(),
5242 				 pci_name(qm->pdev));
5243 	if (!qm->wq) {
5244 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
5245 		return -ENOMEM;
5246 	}
5247 
5248 	return 0;
5249 }
5250 
5251 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5252 {
5253 	struct device *dev = &qm->pdev->dev;
5254 	u16 sq_depth, cq_depth;
5255 	size_t qp_dma_size;
5256 	int i, ret;
5257 
5258 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5259 	if (!qm->qp_array)
5260 		return -ENOMEM;
5261 
5262 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5263 	if (!qm->poll_data) {
5264 		kfree(qm->qp_array);
5265 		return -ENOMEM;
5266 	}
5267 
5268 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5269 
5270 	/* one more page for device or qp statuses */
5271 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5272 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5273 	for (i = 0; i < qm->qp_num; i++) {
5274 		qm->poll_data[i].qm = qm;
5275 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5276 		if (ret)
5277 			goto err_init_qp_mem;
5278 
5279 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5280 	}
5281 
5282 	return 0;
5283 err_init_qp_mem:
5284 	hisi_qp_memory_uninit(qm, i);
5285 
5286 	return ret;
5287 }
5288 
5289 static int hisi_qm_memory_init(struct hisi_qm *qm)
5290 {
5291 	struct device *dev = &qm->pdev->dev;
5292 	int ret, total_func;
5293 	size_t off = 0;
5294 
5295 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5296 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5297 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5298 		if (!qm->factor)
5299 			return -ENOMEM;
5300 
5301 		/* Only the PF value needs to be initialized */
5302 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5303 	}
5304 
5305 #define QM_INIT_BUF(qm, type, num) do { \
5306 	(qm)->type = ((qm)->qdma.va + (off)); \
5307 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5308 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5309 } while (0)
5310 
5311 	idr_init(&qm->qp_idr);
5312 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5313 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5314 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5315 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5316 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5317 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5318 					 GFP_ATOMIC);
5319 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5320 	if (!qm->qdma.va) {
5321 		ret = -ENOMEM;
5322 		goto err_destroy_idr;
5323 	}
5324 
5325 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
5326 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5327 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5328 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5329 
5330 	ret = hisi_qp_alloc_memory(qm);
5331 	if (ret)
5332 		goto err_alloc_qp_array;
5333 
5334 	return 0;
5335 
5336 err_alloc_qp_array:
5337 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5338 err_destroy_idr:
5339 	idr_destroy(&qm->qp_idr);
5340 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5341 		kfree(qm->factor);
5342 
5343 	return ret;
5344 }
5345 
5346 /**
5347  * hisi_qm_init() - Initialize configures about qm.
5348  * @qm: The qm needing init.
5349  *
5350  * This function init qm, then we can call hisi_qm_start to put qm into work.
5351  */
5352 int hisi_qm_init(struct hisi_qm *qm)
5353 {
5354 	struct pci_dev *pdev = qm->pdev;
5355 	struct device *dev = &pdev->dev;
5356 	int ret;
5357 
5358 	hisi_qm_pre_init(qm);
5359 
5360 	ret = hisi_qm_pci_init(qm);
5361 	if (ret)
5362 		return ret;
5363 
5364 	ret = qm_irqs_register(qm);
5365 	if (ret)
5366 		goto err_pci_init;
5367 
5368 	if (qm->fun_type == QM_HW_PF) {
5369 		qm_disable_clock_gate(qm);
5370 		ret = qm_dev_mem_reset(qm);
5371 		if (ret) {
5372 			dev_err(dev, "failed to reset device memory\n");
5373 			goto err_irq_register;
5374 		}
5375 	}
5376 
5377 	if (qm->mode == UACCE_MODE_SVA) {
5378 		ret = qm_alloc_uacce(qm);
5379 		if (ret < 0)
5380 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5381 	}
5382 
5383 	ret = hisi_qm_memory_init(qm);
5384 	if (ret)
5385 		goto err_alloc_uacce;
5386 
5387 	ret = hisi_qm_init_work(qm);
5388 	if (ret)
5389 		goto err_free_qm_memory;
5390 
5391 	qm_cmd_init(qm);
5392 	atomic_set(&qm->status.flags, QM_INIT);
5393 
5394 	return 0;
5395 
5396 err_free_qm_memory:
5397 	hisi_qm_memory_uninit(qm);
5398 err_alloc_uacce:
5399 	qm_remove_uacce(qm);
5400 err_irq_register:
5401 	qm_irqs_unregister(qm);
5402 err_pci_init:
5403 	hisi_qm_pci_uninit(qm);
5404 	return ret;
5405 }
5406 EXPORT_SYMBOL_GPL(hisi_qm_init);
5407 
5408 /**
5409  * hisi_qm_get_dfx_access() - Try to get dfx access.
5410  * @qm: pointer to accelerator device.
5411  *
5412  * Try to get dfx access, then user can get message.
5413  *
5414  * If device is in suspended, return failure, otherwise
5415  * bump up the runtime PM usage counter.
5416  */
5417 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5418 {
5419 	struct device *dev = &qm->pdev->dev;
5420 
5421 	if (pm_runtime_suspended(dev)) {
5422 		dev_info(dev, "can not read/write - device in suspended.\n");
5423 		return -EAGAIN;
5424 	}
5425 
5426 	return qm_pm_get_sync(qm);
5427 }
5428 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5429 
5430 /**
5431  * hisi_qm_put_dfx_access() - Put dfx access.
5432  * @qm: pointer to accelerator device.
5433  *
5434  * Put dfx access, drop runtime PM usage counter.
5435  */
5436 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5437 {
5438 	qm_pm_put_sync(qm);
5439 }
5440 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5441 
5442 /**
5443  * hisi_qm_pm_init() - Initialize qm runtime PM.
5444  * @qm: pointer to accelerator device.
5445  *
5446  * Function that initialize qm runtime PM.
5447  */
5448 void hisi_qm_pm_init(struct hisi_qm *qm)
5449 {
5450 	struct device *dev = &qm->pdev->dev;
5451 
5452 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5453 		return;
5454 
5455 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5456 	pm_runtime_use_autosuspend(dev);
5457 	pm_runtime_put_noidle(dev);
5458 }
5459 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5460 
5461 /**
5462  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5463  * @qm: pointer to accelerator device.
5464  *
5465  * Function that uninitialize qm runtime PM.
5466  */
5467 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5468 {
5469 	struct device *dev = &qm->pdev->dev;
5470 
5471 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5472 		return;
5473 
5474 	pm_runtime_get_noresume(dev);
5475 	pm_runtime_dont_use_autosuspend(dev);
5476 }
5477 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5478 
5479 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5480 {
5481 	struct pci_dev *pdev = qm->pdev;
5482 	int ret;
5483 	u32 val;
5484 
5485 	ret = qm->ops->set_msi(qm, false);
5486 	if (ret) {
5487 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5488 		return ret;
5489 	}
5490 
5491 	/* shutdown OOO register */
5492 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
5493 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5494 
5495 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
5496 					 val,
5497 					 (val == ACC_MASTER_TRANS_RETURN_RW),
5498 					 POLL_PERIOD, POLL_TIMEOUT);
5499 	if (ret) {
5500 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
5501 		return ret;
5502 	}
5503 
5504 	ret = qm_set_pf_mse(qm, false);
5505 	if (ret)
5506 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5507 
5508 	return ret;
5509 }
5510 
5511 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5512 {
5513 	struct pci_dev *pdev = qm->pdev;
5514 	int ret;
5515 
5516 	ret = qm_set_pf_mse(qm, true);
5517 	if (ret) {
5518 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5519 		return ret;
5520 	}
5521 
5522 	ret = qm->ops->set_msi(qm, true);
5523 	if (ret) {
5524 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5525 		return ret;
5526 	}
5527 
5528 	ret = qm_dev_hw_init(qm);
5529 	if (ret) {
5530 		pci_err(pdev, "failed to init device after resuming\n");
5531 		return ret;
5532 	}
5533 
5534 	qm_cmd_init(qm);
5535 	hisi_qm_dev_err_init(qm);
5536 	qm_disable_clock_gate(qm);
5537 	ret = qm_dev_mem_reset(qm);
5538 	if (ret)
5539 		pci_err(pdev, "failed to reset device memory\n");
5540 
5541 	return ret;
5542 }
5543 
5544 /**
5545  * hisi_qm_suspend() - Runtime suspend of given device.
5546  * @dev: device to suspend.
5547  *
5548  * Function that suspend the device.
5549  */
5550 int hisi_qm_suspend(struct device *dev)
5551 {
5552 	struct pci_dev *pdev = to_pci_dev(dev);
5553 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5554 	int ret;
5555 
5556 	pci_info(pdev, "entering suspended state\n");
5557 
5558 	ret = hisi_qm_stop(qm, QM_NORMAL);
5559 	if (ret) {
5560 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
5561 		return ret;
5562 	}
5563 
5564 	ret = qm_prepare_for_suspend(qm);
5565 	if (ret)
5566 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5567 
5568 	return ret;
5569 }
5570 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5571 
5572 /**
5573  * hisi_qm_resume() - Runtime resume of given device.
5574  * @dev: device to resume.
5575  *
5576  * Function that resume the device.
5577  */
5578 int hisi_qm_resume(struct device *dev)
5579 {
5580 	struct pci_dev *pdev = to_pci_dev(dev);
5581 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5582 	int ret;
5583 
5584 	pci_info(pdev, "resuming from suspend state\n");
5585 
5586 	ret = qm_rebuild_for_resume(qm);
5587 	if (ret) {
5588 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5589 		return ret;
5590 	}
5591 
5592 	ret = hisi_qm_start(qm);
5593 	if (ret) {
5594 		if (qm_check_dev_error(qm)) {
5595 			pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5596 			return 0;
5597 		}
5598 
5599 		pci_err(pdev, "failed to start qm(%d)!\n", ret);
5600 	}
5601 
5602 	return ret;
5603 }
5604 EXPORT_SYMBOL_GPL(hisi_qm_resume);
5605 
5606 MODULE_LICENSE("GPL v2");
5607 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5608 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5609