1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/bitmap.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/idr.h> 8 #include <linux/io.h> 9 #include <linux/irqreturn.h> 10 #include <linux/log2.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/uacce.h> 15 #include <linux/uaccess.h> 16 #include <uapi/misc/uacce/hisi_qm.h> 17 #include <linux/hisi_acc_qm.h> 18 #include "qm_common.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 26 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 27 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_SHIFT 16 29 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 30 31 /* mailbox */ 32 #define QM_MB_PING_ALL_VFS 0xffff 33 #define QM_MB_CMD_DATA_SHIFT 32 34 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 35 #define QM_MB_STATUS_MASK GENMASK(12, 9) 36 37 /* sqc shift */ 38 #define QM_SQ_HOP_NUM_SHIFT 0 39 #define QM_SQ_PAGE_SIZE_SHIFT 4 40 #define QM_SQ_BUF_SIZE_SHIFT 8 41 #define QM_SQ_SQE_SIZE_SHIFT 12 42 #define QM_SQ_PRIORITY_SHIFT 0 43 #define QM_SQ_ORDERS_SHIFT 4 44 #define QM_SQ_TYPE_SHIFT 8 45 #define QM_QC_PASID_ENABLE 0x1 46 #define QM_QC_PASID_ENABLE_SHIFT 7 47 48 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 49 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) 50 51 /* cqc shift */ 52 #define QM_CQ_HOP_NUM_SHIFT 0 53 #define QM_CQ_PAGE_SIZE_SHIFT 4 54 #define QM_CQ_BUF_SIZE_SHIFT 8 55 #define QM_CQ_CQE_SIZE_SHIFT 12 56 #define QM_CQ_PHASE_SHIFT 0 57 #define QM_CQ_FLAG_SHIFT 1 58 59 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 60 #define QM_QC_CQE_SIZE 4 61 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) 62 63 /* eqc shift */ 64 #define QM_EQE_AEQE_SIZE (2UL << 12) 65 #define QM_EQC_PHASE_SHIFT 16 66 67 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 68 #define QM_EQE_CQN_MASK GENMASK(15, 0) 69 70 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 71 #define QM_AEQE_TYPE_SHIFT 17 72 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 73 #define QM_CQ_OVERFLOW 0 74 #define QM_EQ_OVERFLOW 1 75 #define QM_CQE_ERROR 2 76 77 #define QM_XQ_DEPTH_SHIFT 16 78 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 79 80 #define QM_DOORBELL_CMD_SQ 0 81 #define QM_DOORBELL_CMD_CQ 1 82 #define QM_DOORBELL_CMD_EQ 2 83 #define QM_DOORBELL_CMD_AEQ 3 84 85 #define QM_DOORBELL_BASE_V1 0x340 86 #define QM_DB_CMD_SHIFT_V1 16 87 #define QM_DB_INDEX_SHIFT_V1 32 88 #define QM_DB_PRIORITY_SHIFT_V1 48 89 #define QM_PAGE_SIZE 0x0034 90 #define QM_QP_DB_INTERVAL 0x10000 91 #define QM_DB_TIMEOUT_CFG 0x100074 92 #define QM_DB_TIMEOUT_SET 0x1fffff 93 94 #define QM_MEM_START_INIT 0x100040 95 #define QM_MEM_INIT_DONE 0x100044 96 #define QM_VFT_CFG_RDY 0x10006c 97 #define QM_VFT_CFG_OP_WR 0x100058 98 #define QM_VFT_CFG_TYPE 0x10005c 99 #define QM_VFT_CFG 0x100060 100 #define QM_VFT_CFG_OP_ENABLE 0x100054 101 #define QM_PM_CTRL 0x100148 102 #define QM_IDLE_DISABLE BIT(9) 103 104 #define QM_VFT_CFG_DATA_L 0x100064 105 #define QM_VFT_CFG_DATA_H 0x100068 106 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 107 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 108 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 109 #define QM_SQC_VFT_START_SQN_SHIFT 28 110 #define QM_SQC_VFT_VALID (1ULL << 44) 111 #define QM_SQC_VFT_SQN_SHIFT 45 112 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 113 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 114 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 115 #define QM_CQC_VFT_VALID (1ULL << 28) 116 117 #define QM_SQC_VFT_BASE_SHIFT_V2 28 118 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 119 #define QM_SQC_VFT_NUM_SHIFT_V2 45 120 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) 121 122 #define QM_ABNORMAL_INT_SOURCE 0x100000 123 #define QM_ABNORMAL_INT_MASK 0x100004 124 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 125 #define QM_ABNORMAL_INT_STATUS 0x100008 126 #define QM_ABNORMAL_INT_SET 0x10000c 127 #define QM_ABNORMAL_INF00 0x100010 128 #define QM_FIFO_OVERFLOW_TYPE 0xc0 129 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 130 #define QM_FIFO_OVERFLOW_VF 0x3f 131 #define QM_ABNORMAL_INF01 0x100014 132 #define QM_DB_TIMEOUT_TYPE 0xc0 133 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 134 #define QM_DB_TIMEOUT_VF 0x3f 135 #define QM_RAS_CE_ENABLE 0x1000ec 136 #define QM_RAS_FE_ENABLE 0x1000f0 137 #define QM_RAS_NFE_ENABLE 0x1000f4 138 #define QM_RAS_CE_THRESHOLD 0x1000f8 139 #define QM_RAS_CE_TIMES_PER_IRQ 1 140 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 141 #define QM_ECC_MBIT BIT(2) 142 #define QM_DB_TIMEOUT BIT(10) 143 #define QM_OF_FIFO_OF BIT(11) 144 145 #define QM_RESET_WAIT_TIMEOUT 400 146 #define QM_PEH_VENDOR_ID 0x1000d8 147 #define ACC_VENDOR_ID_VALUE 0x5a5a 148 #define QM_PEH_DFX_INFO0 0x1000fc 149 #define QM_PEH_DFX_INFO1 0x100100 150 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 151 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 152 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 153 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 154 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 155 #define ACC_MASTER_TRANS_RETURN_RW 3 156 #define ACC_MASTER_TRANS_RETURN 0x300150 157 #define ACC_MASTER_GLOBAL_CTRL 0x300000 158 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 159 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 160 #define ACC_AM_ROB_ECC_INT_STS 0x300104 161 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 162 #define QM_MSI_CAP_ENABLE BIT(16) 163 164 /* interfunction communication */ 165 #define QM_IFC_READY_STATUS 0x100128 166 #define QM_IFC_INT_SET_P 0x100130 167 #define QM_IFC_INT_CFG 0x100134 168 #define QM_IFC_INT_SOURCE_P 0x100138 169 #define QM_IFC_INT_SOURCE_V 0x0020 170 #define QM_IFC_INT_MASK 0x0024 171 #define QM_IFC_INT_STATUS 0x0028 172 #define QM_IFC_INT_SET_V 0x002C 173 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 174 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 175 #define QM_IFC_INT_SOURCE_MASK BIT(0) 176 #define QM_IFC_INT_DISABLE BIT(0) 177 #define QM_IFC_INT_STATUS_MASK BIT(0) 178 #define QM_IFC_INT_SET_MASK BIT(0) 179 #define QM_WAIT_DST_ACK 10 180 #define QM_MAX_PF_WAIT_COUNT 10 181 #define QM_MAX_VF_WAIT_COUNT 40 182 #define QM_VF_RESET_WAIT_US 20000 183 #define QM_VF_RESET_WAIT_CNT 3000 184 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 185 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 186 187 #define POLL_PERIOD 10 188 #define POLL_TIMEOUT 1000 189 #define WAIT_PERIOD_US_MAX 200 190 #define WAIT_PERIOD_US_MIN 100 191 #define MAX_WAIT_COUNTS 1000 192 #define QM_CACHE_WB_START 0x204 193 #define QM_CACHE_WB_DONE 0x208 194 #define QM_FUNC_CAPS_REG 0x3100 195 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 196 197 #define PCI_BAR_2 2 198 #define PCI_BAR_4 4 199 #define QMC_ALIGN(sz) ALIGN(sz, 32) 200 201 #define QM_DBG_READ_LEN 256 202 #define QM_PCI_COMMAND_INVALID ~0 203 #define QM_RESET_STOP_TX_OFFSET 1 204 #define QM_RESET_STOP_RX_OFFSET 2 205 206 #define WAIT_PERIOD 20 207 #define REMOVE_WAIT_DELAY 10 208 209 #define QM_DRIVER_REMOVING 0 210 #define QM_RST_SCHED 1 211 #define QM_QOS_PARAM_NUM 2 212 #define QM_QOS_MAX_VAL 1000 213 #define QM_QOS_RATE 100 214 #define QM_QOS_EXPAND_RATE 1000 215 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 216 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 217 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 218 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 219 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 220 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 221 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 222 #define QM_SHAPER_CBS_B 1 223 #define QM_SHAPER_VFT_OFFSET 6 224 #define QM_QOS_MIN_ERROR_RATE 5 225 #define QM_SHAPER_MIN_CBS_S 8 226 #define QM_QOS_TICK 0x300U 227 #define QM_QOS_DIVISOR_CLK 0x1f40U 228 #define QM_QOS_MAX_CIR_B 200 229 #define QM_QOS_MIN_CIR_B 100 230 #define QM_QOS_MAX_CIR_U 6 231 #define QM_AUTOSUSPEND_DELAY 3000 232 233 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 234 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 235 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 236 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 237 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 238 239 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 240 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 241 242 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 243 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 244 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 245 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 246 247 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 248 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 249 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 250 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 251 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 252 253 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 254 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 255 256 #define INIT_QC_COMMON(qc, base, pasid) do { \ 257 (qc)->head = 0; \ 258 (qc)->tail = 0; \ 259 (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ 260 (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ 261 (qc)->dw3 = 0; \ 262 (qc)->w8 = 0; \ 263 (qc)->rsvd0 = 0; \ 264 (qc)->pasid = cpu_to_le16(pasid); \ 265 (qc)->w11 = 0; \ 266 (qc)->rsvd1 = 0; \ 267 } while (0) 268 269 enum vft_type { 270 SQC_VFT = 0, 271 CQC_VFT, 272 SHAPER_VFT, 273 }; 274 275 enum acc_err_result { 276 ACC_ERR_NONE, 277 ACC_ERR_NEED_RESET, 278 ACC_ERR_RECOVERED, 279 }; 280 281 enum qm_alg_type { 282 ALG_TYPE_0, 283 ALG_TYPE_1, 284 }; 285 286 enum qm_mb_cmd { 287 QM_PF_FLR_PREPARE = 0x01, 288 QM_PF_SRST_PREPARE, 289 QM_PF_RESET_DONE, 290 QM_VF_PREPARE_DONE, 291 QM_VF_PREPARE_FAIL, 292 QM_VF_START_DONE, 293 QM_VF_START_FAIL, 294 QM_PF_SET_QOS, 295 QM_VF_GET_QOS, 296 }; 297 298 enum qm_basic_type { 299 QM_TOTAL_QP_NUM_CAP = 0x0, 300 QM_FUNC_MAX_QP_CAP, 301 QM_XEQ_DEPTH_CAP, 302 QM_QP_DEPTH_CAP, 303 QM_EQ_IRQ_TYPE_CAP, 304 QM_AEQ_IRQ_TYPE_CAP, 305 QM_ABN_IRQ_TYPE_CAP, 306 QM_PF2VF_IRQ_TYPE_CAP, 307 QM_PF_IRQ_NUM_CAP, 308 QM_VF_IRQ_NUM_CAP, 309 }; 310 311 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 312 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 313 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 314 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 315 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 316 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 317 }; 318 319 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 320 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 321 }; 322 323 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 324 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 325 }; 326 327 static const struct hisi_qm_cap_info qm_basic_info[] = { 328 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 329 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 330 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, 331 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 332 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 333 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 334 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 335 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 336 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 337 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 338 }; 339 340 struct qm_mailbox { 341 __le16 w0; 342 __le16 queue_num; 343 __le32 base_l; 344 __le32 base_h; 345 __le32 rsvd; 346 }; 347 348 struct qm_doorbell { 349 __le16 queue_num; 350 __le16 cmd; 351 __le16 index; 352 __le16 priority; 353 }; 354 355 struct hisi_qm_resource { 356 struct hisi_qm *qm; 357 int distance; 358 struct list_head list; 359 }; 360 361 /** 362 * struct qm_hw_err - Structure describing the device errors 363 * @list: hardware error list 364 * @timestamp: timestamp when the error occurred 365 */ 366 struct qm_hw_err { 367 struct list_head list; 368 unsigned long long timestamp; 369 }; 370 371 struct hisi_qm_hw_ops { 372 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 373 void (*qm_db)(struct hisi_qm *qm, u16 qn, 374 u8 cmd, u16 index, u8 priority); 375 int (*debug_init)(struct hisi_qm *qm); 376 void (*hw_error_init)(struct hisi_qm *qm); 377 void (*hw_error_uninit)(struct hisi_qm *qm); 378 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 379 int (*set_msi)(struct hisi_qm *qm, bool set); 380 }; 381 382 struct hisi_qm_hw_error { 383 u32 int_msk; 384 const char *msg; 385 }; 386 387 static const struct hisi_qm_hw_error qm_hw_error[] = { 388 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 389 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 390 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 391 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 392 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 393 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 394 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 395 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 396 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 397 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 398 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 399 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 400 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 401 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 402 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 403 { /* sentinel */ } 404 }; 405 406 static const char * const qm_db_timeout[] = { 407 "sq", "cq", "eq", "aeq", 408 }; 409 410 static const char * const qm_fifo_overflow[] = { 411 "cq", "eq", "aeq", 412 }; 413 414 static const char * const qp_s[] = { 415 "none", "init", "start", "stop", "close", 416 }; 417 418 struct qm_typical_qos_table { 419 u32 start; 420 u32 end; 421 u32 val; 422 }; 423 424 /* the qos step is 100 */ 425 static struct qm_typical_qos_table shaper_cir_s[] = { 426 {100, 100, 4}, 427 {200, 200, 3}, 428 {300, 500, 2}, 429 {600, 1000, 1}, 430 {1100, 100000, 0}, 431 }; 432 433 static struct qm_typical_qos_table shaper_cbs_s[] = { 434 {100, 200, 9}, 435 {300, 500, 11}, 436 {600, 1000, 12}, 437 {1100, 10000, 16}, 438 {10100, 25000, 17}, 439 {25100, 50000, 18}, 440 {50100, 100000, 19} 441 }; 442 443 static void qm_irqs_unregister(struct hisi_qm *qm); 444 445 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 446 { 447 enum qm_state curr = atomic_read(&qm->status.flags); 448 bool avail = false; 449 450 switch (curr) { 451 case QM_INIT: 452 if (new == QM_START || new == QM_CLOSE) 453 avail = true; 454 break; 455 case QM_START: 456 if (new == QM_STOP) 457 avail = true; 458 break; 459 case QM_STOP: 460 if (new == QM_CLOSE || new == QM_START) 461 avail = true; 462 break; 463 default: 464 break; 465 } 466 467 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 468 qm_s[curr], qm_s[new]); 469 470 if (!avail) 471 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 472 qm_s[curr], qm_s[new]); 473 474 return avail; 475 } 476 477 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 478 enum qp_state new) 479 { 480 enum qm_state qm_curr = atomic_read(&qm->status.flags); 481 enum qp_state qp_curr = 0; 482 bool avail = false; 483 484 if (qp) 485 qp_curr = atomic_read(&qp->qp_status.flags); 486 487 switch (new) { 488 case QP_INIT: 489 if (qm_curr == QM_START || qm_curr == QM_INIT) 490 avail = true; 491 break; 492 case QP_START: 493 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 494 (qm_curr == QM_START && qp_curr == QP_STOP)) 495 avail = true; 496 break; 497 case QP_STOP: 498 if ((qm_curr == QM_START && qp_curr == QP_START) || 499 (qp_curr == QP_INIT)) 500 avail = true; 501 break; 502 case QP_CLOSE: 503 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 504 (qm_curr == QM_START && qp_curr == QP_STOP) || 505 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 506 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 507 avail = true; 508 break; 509 default: 510 break; 511 } 512 513 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 514 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 515 516 if (!avail) 517 dev_warn(&qm->pdev->dev, 518 "Can not change qp state from %s to %s in QM %s\n", 519 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 520 521 return avail; 522 } 523 524 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 525 { 526 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 527 } 528 529 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 530 { 531 return qm->err_ini->get_dev_hw_err_status(qm); 532 } 533 534 /* Check if the error causes the master ooo block */ 535 static bool qm_check_dev_error(struct hisi_qm *qm) 536 { 537 u32 val, dev_val; 538 539 if (qm->fun_type == QM_HW_VF) 540 return false; 541 542 val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask; 543 dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask; 544 545 return val || dev_val; 546 } 547 548 static int qm_wait_reset_finish(struct hisi_qm *qm) 549 { 550 int delay = 0; 551 552 /* All reset requests need to be queued for processing */ 553 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 554 msleep(++delay); 555 if (delay > QM_RESET_WAIT_TIMEOUT) 556 return -EBUSY; 557 } 558 559 return 0; 560 } 561 562 static int qm_reset_prepare_ready(struct hisi_qm *qm) 563 { 564 struct pci_dev *pdev = qm->pdev; 565 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 566 567 /* 568 * PF and VF on host doesnot support resetting at the 569 * same time on Kunpeng920. 570 */ 571 if (qm->ver < QM_HW_V3) 572 return qm_wait_reset_finish(pf_qm); 573 574 return qm_wait_reset_finish(qm); 575 } 576 577 static void qm_reset_bit_clear(struct hisi_qm *qm) 578 { 579 struct pci_dev *pdev = qm->pdev; 580 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 581 582 if (qm->ver < QM_HW_V3) 583 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 584 585 clear_bit(QM_RESETTING, &qm->misc_ctl); 586 } 587 588 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 589 u64 base, u16 queue, bool op) 590 { 591 mailbox->w0 = cpu_to_le16((cmd) | 592 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 593 (0x1 << QM_MB_BUSY_SHIFT)); 594 mailbox->queue_num = cpu_to_le16(queue); 595 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 596 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 597 mailbox->rsvd = 0; 598 } 599 600 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 601 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 602 { 603 u32 val; 604 605 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 606 val, !((val >> QM_MB_BUSY_SHIFT) & 607 0x1), POLL_PERIOD, POLL_TIMEOUT); 608 } 609 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 610 611 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 612 static void qm_mb_write(struct hisi_qm *qm, const void *src) 613 { 614 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 615 616 #if IS_ENABLED(CONFIG_ARM64) 617 unsigned long tmp0 = 0, tmp1 = 0; 618 #endif 619 620 if (!IS_ENABLED(CONFIG_ARM64)) { 621 memcpy_toio(fun_base, src, 16); 622 dma_wmb(); 623 return; 624 } 625 626 #if IS_ENABLED(CONFIG_ARM64) 627 asm volatile("ldp %0, %1, %3\n" 628 "stp %0, %1, %2\n" 629 "dmb oshst\n" 630 : "=&r" (tmp0), 631 "=&r" (tmp1), 632 "+Q" (*((char __iomem *)fun_base)) 633 : "Q" (*((char *)src)) 634 : "memory"); 635 #endif 636 } 637 638 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 639 { 640 int ret; 641 u32 val; 642 643 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 644 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 645 ret = -EBUSY; 646 goto mb_busy; 647 } 648 649 qm_mb_write(qm, mailbox); 650 651 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 652 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 653 ret = -ETIMEDOUT; 654 goto mb_busy; 655 } 656 657 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 658 if (val & QM_MB_STATUS_MASK) { 659 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 660 ret = -EIO; 661 goto mb_busy; 662 } 663 664 return 0; 665 666 mb_busy: 667 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 668 return ret; 669 } 670 671 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 672 bool op) 673 { 674 struct qm_mailbox mailbox; 675 int ret; 676 677 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 678 queue, cmd, (unsigned long long)dma_addr); 679 680 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 681 682 mutex_lock(&qm->mailbox_lock); 683 ret = qm_mb_nolock(qm, &mailbox); 684 mutex_unlock(&qm->mailbox_lock); 685 686 return ret; 687 } 688 EXPORT_SYMBOL_GPL(hisi_qm_mb); 689 690 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 691 { 692 u64 doorbell; 693 694 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 695 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 696 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 697 698 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 699 } 700 701 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 702 { 703 void __iomem *io_base = qm->io_base; 704 u16 randata = 0; 705 u64 doorbell; 706 707 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 708 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 709 QM_DOORBELL_SQ_CQ_BASE_V2; 710 else 711 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 712 713 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 714 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 715 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 716 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 717 718 writeq(doorbell, io_base); 719 } 720 721 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 722 { 723 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 724 qn, cmd, index); 725 726 qm->ops->qm_db(qm, qn, cmd, index, priority); 727 } 728 729 static void qm_disable_clock_gate(struct hisi_qm *qm) 730 { 731 u32 val; 732 733 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 734 if (qm->ver < QM_HW_V3) 735 return; 736 737 val = readl(qm->io_base + QM_PM_CTRL); 738 val |= QM_IDLE_DISABLE; 739 writel(val, qm->io_base + QM_PM_CTRL); 740 } 741 742 static int qm_dev_mem_reset(struct hisi_qm *qm) 743 { 744 u32 val; 745 746 writel(0x1, qm->io_base + QM_MEM_START_INIT); 747 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 748 val & BIT(0), POLL_PERIOD, 749 POLL_TIMEOUT); 750 } 751 752 /** 753 * hisi_qm_get_hw_info() - Get device information. 754 * @qm: The qm which want to get information. 755 * @info_table: Array for storing device information. 756 * @index: Index in info_table. 757 * @is_read: Whether read from reg, 0: not support read from reg. 758 * 759 * This function returns device information the caller needs. 760 */ 761 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 762 const struct hisi_qm_cap_info *info_table, 763 u32 index, bool is_read) 764 { 765 u32 val; 766 767 switch (qm->ver) { 768 case QM_HW_V1: 769 return info_table[index].v1_val; 770 case QM_HW_V2: 771 return info_table[index].v2_val; 772 default: 773 if (!is_read) 774 return info_table[index].v3_val; 775 776 val = readl(qm->io_base + info_table[index].offset); 777 return (val >> info_table[index].shift) & info_table[index].mask; 778 } 779 } 780 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 781 782 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 783 u16 *high_bits, enum qm_basic_type type) 784 { 785 u32 depth; 786 787 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 788 *low_bits = depth & QM_XQ_DEPTH_MASK; 789 *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 790 } 791 792 static u32 qm_get_irq_num(struct hisi_qm *qm) 793 { 794 if (qm->fun_type == QM_HW_PF) 795 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 796 797 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 798 } 799 800 static int qm_pm_get_sync(struct hisi_qm *qm) 801 { 802 struct device *dev = &qm->pdev->dev; 803 int ret; 804 805 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 806 return 0; 807 808 ret = pm_runtime_resume_and_get(dev); 809 if (ret < 0) { 810 dev_err(dev, "failed to get_sync(%d).\n", ret); 811 return ret; 812 } 813 814 return 0; 815 } 816 817 static void qm_pm_put_sync(struct hisi_qm *qm) 818 { 819 struct device *dev = &qm->pdev->dev; 820 821 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 822 return; 823 824 pm_runtime_mark_last_busy(dev); 825 pm_runtime_put_autosuspend(dev); 826 } 827 828 static void qm_cq_head_update(struct hisi_qp *qp) 829 { 830 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 831 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 832 qp->qp_status.cq_head = 0; 833 } else { 834 qp->qp_status.cq_head++; 835 } 836 } 837 838 static void qm_poll_req_cb(struct hisi_qp *qp) 839 { 840 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 841 struct hisi_qm *qm = qp->qm; 842 843 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 844 dma_rmb(); 845 qp->req_cb(qp, qp->sqe + qm->sqe_size * 846 le16_to_cpu(cqe->sq_head)); 847 qm_cq_head_update(qp); 848 cqe = qp->cqe + qp->qp_status.cq_head; 849 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 850 qp->qp_status.cq_head, 0); 851 atomic_dec(&qp->qp_status.used); 852 } 853 854 /* set c_flag */ 855 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 856 } 857 858 static int qm_get_complete_eqe_num(struct hisi_qm_poll_data *poll_data) 859 { 860 struct hisi_qm *qm = poll_data->qm; 861 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 862 u16 eq_depth = qm->eq_depth; 863 int eqe_num = 0; 864 u16 cqn; 865 866 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 867 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 868 poll_data->qp_finish_id[eqe_num] = cqn; 869 eqe_num++; 870 871 if (qm->status.eq_head == eq_depth - 1) { 872 qm->status.eqc_phase = !qm->status.eqc_phase; 873 eqe = qm->eqe; 874 qm->status.eq_head = 0; 875 } else { 876 eqe++; 877 qm->status.eq_head++; 878 } 879 880 if (eqe_num == (eq_depth >> 1) - 1) 881 break; 882 } 883 884 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 885 886 return eqe_num; 887 } 888 889 static void qm_work_process(struct work_struct *work) 890 { 891 struct hisi_qm_poll_data *poll_data = 892 container_of(work, struct hisi_qm_poll_data, work); 893 struct hisi_qm *qm = poll_data->qm; 894 struct hisi_qp *qp; 895 int eqe_num, i; 896 897 /* Get qp id of completed tasks and re-enable the interrupt. */ 898 eqe_num = qm_get_complete_eqe_num(poll_data); 899 for (i = eqe_num - 1; i >= 0; i--) { 900 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 901 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 902 continue; 903 904 if (qp->event_cb) { 905 qp->event_cb(qp); 906 continue; 907 } 908 909 if (likely(qp->req_cb)) 910 qm_poll_req_cb(qp); 911 } 912 } 913 914 static bool do_qm_eq_irq(struct hisi_qm *qm) 915 { 916 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 917 struct hisi_qm_poll_data *poll_data; 918 u16 cqn; 919 920 if (!readl(qm->io_base + QM_VF_EQ_INT_SOURCE)) 921 return false; 922 923 if (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 924 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 925 poll_data = &qm->poll_data[cqn]; 926 queue_work(qm->wq, &poll_data->work); 927 928 return true; 929 } 930 931 return false; 932 } 933 934 static irqreturn_t qm_eq_irq(int irq, void *data) 935 { 936 struct hisi_qm *qm = data; 937 bool ret; 938 939 ret = do_qm_eq_irq(qm); 940 if (ret) 941 return IRQ_HANDLED; 942 943 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 944 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 945 946 return IRQ_NONE; 947 } 948 949 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 950 { 951 struct hisi_qm *qm = data; 952 u32 val; 953 954 val = readl(qm->io_base + QM_IFC_INT_STATUS); 955 val &= QM_IFC_INT_STATUS_MASK; 956 if (!val) 957 return IRQ_NONE; 958 959 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) { 960 dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n"); 961 return IRQ_HANDLED; 962 } 963 964 schedule_work(&qm->cmd_process); 965 966 return IRQ_HANDLED; 967 } 968 969 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 970 { 971 u32 *addr; 972 973 if (qp->is_in_kernel) 974 return; 975 976 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 977 *addr = 1; 978 979 /* make sure setup is completed */ 980 smp_wmb(); 981 } 982 983 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 984 { 985 struct hisi_qp *qp = &qm->qp_array[qp_id]; 986 987 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 988 hisi_qm_stop_qp(qp); 989 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 990 } 991 992 static void qm_reset_function(struct hisi_qm *qm) 993 { 994 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 995 struct device *dev = &qm->pdev->dev; 996 int ret; 997 998 if (qm_check_dev_error(pf_qm)) 999 return; 1000 1001 ret = qm_reset_prepare_ready(qm); 1002 if (ret) { 1003 dev_err(dev, "reset function not ready\n"); 1004 return; 1005 } 1006 1007 ret = hisi_qm_stop(qm, QM_DOWN); 1008 if (ret) { 1009 dev_err(dev, "failed to stop qm when reset function\n"); 1010 goto clear_bit; 1011 } 1012 1013 ret = hisi_qm_start(qm); 1014 if (ret) 1015 dev_err(dev, "failed to start qm when reset function\n"); 1016 1017 clear_bit: 1018 qm_reset_bit_clear(qm); 1019 } 1020 1021 static irqreturn_t qm_aeq_thread(int irq, void *data) 1022 { 1023 struct hisi_qm *qm = data; 1024 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1025 u16 aeq_depth = qm->aeq_depth; 1026 u32 type, qp_id; 1027 1028 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1029 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; 1030 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1031 1032 switch (type) { 1033 case QM_EQ_OVERFLOW: 1034 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1035 qm_reset_function(qm); 1036 return IRQ_HANDLED; 1037 case QM_CQ_OVERFLOW: 1038 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1039 qp_id); 1040 fallthrough; 1041 case QM_CQE_ERROR: 1042 qm_disable_qp(qm, qp_id); 1043 break; 1044 default: 1045 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1046 type); 1047 break; 1048 } 1049 1050 if (qm->status.aeq_head == aeq_depth - 1) { 1051 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1052 aeqe = qm->aeqe; 1053 qm->status.aeq_head = 0; 1054 } else { 1055 aeqe++; 1056 qm->status.aeq_head++; 1057 } 1058 } 1059 1060 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1061 1062 return IRQ_HANDLED; 1063 } 1064 1065 static irqreturn_t qm_aeq_irq(int irq, void *data) 1066 { 1067 struct hisi_qm *qm = data; 1068 1069 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1070 if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE)) 1071 return IRQ_NONE; 1072 1073 return IRQ_WAKE_THREAD; 1074 } 1075 1076 static void qm_init_qp_status(struct hisi_qp *qp) 1077 { 1078 struct hisi_qp_status *qp_status = &qp->qp_status; 1079 1080 qp_status->sq_tail = 0; 1081 qp_status->cq_head = 0; 1082 qp_status->cqc_phase = true; 1083 atomic_set(&qp_status->used, 0); 1084 } 1085 1086 static void qm_init_prefetch(struct hisi_qm *qm) 1087 { 1088 struct device *dev = &qm->pdev->dev; 1089 u32 page_type = 0x0; 1090 1091 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1092 return; 1093 1094 switch (PAGE_SIZE) { 1095 case SZ_4K: 1096 page_type = 0x0; 1097 break; 1098 case SZ_16K: 1099 page_type = 0x1; 1100 break; 1101 case SZ_64K: 1102 page_type = 0x2; 1103 break; 1104 default: 1105 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1106 PAGE_SIZE); 1107 } 1108 1109 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1110 } 1111 1112 /* 1113 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1114 * is the expected qos calculated. 1115 * the formula: 1116 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1117 * 1118 * IR_b * (2 ^ IR_u) * 8000 1119 * IR(Mbps) = ------------------------- 1120 * Tick * (2 ^ IR_s) 1121 */ 1122 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1123 { 1124 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1125 (QM_QOS_TICK * (1 << cir_s)); 1126 } 1127 1128 static u32 acc_shaper_calc_cbs_s(u32 ir) 1129 { 1130 int table_size = ARRAY_SIZE(shaper_cbs_s); 1131 int i; 1132 1133 for (i = 0; i < table_size; i++) { 1134 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1135 return shaper_cbs_s[i].val; 1136 } 1137 1138 return QM_SHAPER_MIN_CBS_S; 1139 } 1140 1141 static u32 acc_shaper_calc_cir_s(u32 ir) 1142 { 1143 int table_size = ARRAY_SIZE(shaper_cir_s); 1144 int i; 1145 1146 for (i = 0; i < table_size; i++) { 1147 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1148 return shaper_cir_s[i].val; 1149 } 1150 1151 return 0; 1152 } 1153 1154 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1155 { 1156 u32 cir_b, cir_u, cir_s, ir_calc; 1157 u32 error_rate; 1158 1159 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1160 cir_s = acc_shaper_calc_cir_s(ir); 1161 1162 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1163 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1164 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1165 1166 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1167 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1168 factor->cir_b = cir_b; 1169 factor->cir_u = cir_u; 1170 factor->cir_s = cir_s; 1171 return 0; 1172 } 1173 } 1174 } 1175 1176 return -EINVAL; 1177 } 1178 1179 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1180 u32 number, struct qm_shaper_factor *factor) 1181 { 1182 u64 tmp = 0; 1183 1184 if (number > 0) { 1185 switch (type) { 1186 case SQC_VFT: 1187 if (qm->ver == QM_HW_V1) { 1188 tmp = QM_SQC_VFT_BUF_SIZE | 1189 QM_SQC_VFT_SQC_SIZE | 1190 QM_SQC_VFT_INDEX_NUMBER | 1191 QM_SQC_VFT_VALID | 1192 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1193 } else { 1194 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1195 QM_SQC_VFT_VALID | 1196 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1197 } 1198 break; 1199 case CQC_VFT: 1200 if (qm->ver == QM_HW_V1) { 1201 tmp = QM_CQC_VFT_BUF_SIZE | 1202 QM_CQC_VFT_SQC_SIZE | 1203 QM_CQC_VFT_INDEX_NUMBER | 1204 QM_CQC_VFT_VALID; 1205 } else { 1206 tmp = QM_CQC_VFT_VALID; 1207 } 1208 break; 1209 case SHAPER_VFT: 1210 if (factor) { 1211 tmp = factor->cir_b | 1212 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1213 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1214 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1215 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1216 } 1217 break; 1218 } 1219 } 1220 1221 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1222 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1223 } 1224 1225 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1226 u32 fun_num, u32 base, u32 number) 1227 { 1228 struct qm_shaper_factor *factor = NULL; 1229 unsigned int val; 1230 int ret; 1231 1232 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1233 factor = &qm->factor[fun_num]; 1234 1235 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1236 val & BIT(0), POLL_PERIOD, 1237 POLL_TIMEOUT); 1238 if (ret) 1239 return ret; 1240 1241 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1242 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1243 if (type == SHAPER_VFT) 1244 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1245 1246 writel(fun_num, qm->io_base + QM_VFT_CFG); 1247 1248 qm_vft_data_cfg(qm, type, base, number, factor); 1249 1250 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1251 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1252 1253 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1254 val & BIT(0), POLL_PERIOD, 1255 POLL_TIMEOUT); 1256 } 1257 1258 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1259 { 1260 u32 qos = qm->factor[fun_num].func_qos; 1261 int ret, i; 1262 1263 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1264 if (ret) { 1265 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1266 return ret; 1267 } 1268 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1269 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1270 /* The base number of queue reuse for different alg type */ 1271 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1272 if (ret) 1273 return ret; 1274 } 1275 1276 return 0; 1277 } 1278 1279 /* The config should be conducted after qm_dev_mem_reset() */ 1280 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1281 u32 number) 1282 { 1283 int ret, i; 1284 1285 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1286 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1287 if (ret) 1288 return ret; 1289 } 1290 1291 /* init default shaper qos val */ 1292 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1293 ret = qm_shaper_init_vft(qm, fun_num); 1294 if (ret) 1295 goto back_sqc_cqc; 1296 } 1297 1298 return 0; 1299 back_sqc_cqc: 1300 for (i = SQC_VFT; i <= CQC_VFT; i++) 1301 qm_set_vft_common(qm, i, fun_num, 0, 0); 1302 1303 return ret; 1304 } 1305 1306 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1307 { 1308 u64 sqc_vft; 1309 int ret; 1310 1311 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1312 if (ret) 1313 return ret; 1314 1315 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1316 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1317 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1318 *number = (QM_SQC_VFT_NUM_MASK_V2 & 1319 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1320 1321 return 0; 1322 } 1323 1324 void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, 1325 dma_addr_t *dma_addr) 1326 { 1327 struct device *dev = &qm->pdev->dev; 1328 void *ctx_addr; 1329 1330 ctx_addr = kzalloc(ctx_size, GFP_KERNEL); 1331 if (!ctx_addr) 1332 return ERR_PTR(-ENOMEM); 1333 1334 *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); 1335 if (dma_mapping_error(dev, *dma_addr)) { 1336 dev_err(dev, "DMA mapping error!\n"); 1337 kfree(ctx_addr); 1338 return ERR_PTR(-ENOMEM); 1339 } 1340 1341 return ctx_addr; 1342 } 1343 1344 void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, 1345 const void *ctx_addr, dma_addr_t *dma_addr) 1346 { 1347 struct device *dev = &qm->pdev->dev; 1348 1349 dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); 1350 kfree(ctx_addr); 1351 } 1352 1353 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1354 { 1355 return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); 1356 } 1357 1358 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1359 { 1360 return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); 1361 } 1362 1363 static void qm_hw_error_init_v1(struct hisi_qm *qm) 1364 { 1365 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1366 } 1367 1368 static void qm_hw_error_cfg(struct hisi_qm *qm) 1369 { 1370 struct hisi_qm_err_info *err_info = &qm->err_info; 1371 1372 qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; 1373 /* clear QM hw residual error source */ 1374 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1375 1376 /* configure error type */ 1377 writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); 1378 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1379 writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1380 writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); 1381 } 1382 1383 static void qm_hw_error_init_v2(struct hisi_qm *qm) 1384 { 1385 u32 irq_unmask; 1386 1387 qm_hw_error_cfg(qm); 1388 1389 irq_unmask = ~qm->error_mask; 1390 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1391 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1392 } 1393 1394 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1395 { 1396 u32 irq_mask = qm->error_mask; 1397 1398 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1399 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1400 } 1401 1402 static void qm_hw_error_init_v3(struct hisi_qm *qm) 1403 { 1404 u32 irq_unmask; 1405 1406 qm_hw_error_cfg(qm); 1407 1408 /* enable close master ooo when hardware error happened */ 1409 writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1410 1411 irq_unmask = ~qm->error_mask; 1412 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1413 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1414 } 1415 1416 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1417 { 1418 u32 irq_mask = qm->error_mask; 1419 1420 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1421 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1422 1423 /* disable close master ooo when hardware error happened */ 1424 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1425 } 1426 1427 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1428 { 1429 const struct hisi_qm_hw_error *err; 1430 struct device *dev = &qm->pdev->dev; 1431 u32 reg_val, type, vf_num; 1432 int i; 1433 1434 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1435 err = &qm_hw_error[i]; 1436 if (!(err->int_msk & error_status)) 1437 continue; 1438 1439 dev_err(dev, "%s [error status=0x%x] found\n", 1440 err->msg, err->int_msk); 1441 1442 if (err->int_msk & QM_DB_TIMEOUT) { 1443 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1444 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1445 QM_DB_TIMEOUT_TYPE_SHIFT; 1446 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1447 dev_err(dev, "qm %s doorbell timeout in function %u\n", 1448 qm_db_timeout[type], vf_num); 1449 } else if (err->int_msk & QM_OF_FIFO_OF) { 1450 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1451 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1452 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1453 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1454 1455 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1456 dev_err(dev, "qm %s fifo overflow in function %u\n", 1457 qm_fifo_overflow[type], vf_num); 1458 else 1459 dev_err(dev, "unknown error type\n"); 1460 } 1461 } 1462 } 1463 1464 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1465 { 1466 u32 error_status, tmp; 1467 1468 /* read err sts */ 1469 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 1470 error_status = qm->error_mask & tmp; 1471 1472 if (error_status) { 1473 if (error_status & QM_ECC_MBIT) 1474 qm->err_status.is_qm_ecc_mbit = true; 1475 1476 qm_log_hw_error(qm, error_status); 1477 if (error_status & qm->err_info.qm_reset_mask) 1478 return ACC_ERR_NEED_RESET; 1479 1480 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1481 writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1482 } 1483 1484 return ACC_ERR_RECOVERED; 1485 } 1486 1487 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 1488 { 1489 struct qm_mailbox mailbox; 1490 int ret; 1491 1492 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 1493 mutex_lock(&qm->mailbox_lock); 1494 ret = qm_mb_nolock(qm, &mailbox); 1495 if (ret) 1496 goto err_unlock; 1497 1498 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1499 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1500 1501 err_unlock: 1502 mutex_unlock(&qm->mailbox_lock); 1503 return ret; 1504 } 1505 1506 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 1507 { 1508 u32 val; 1509 1510 if (qm->fun_type == QM_HW_PF) 1511 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 1512 1513 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 1514 val |= QM_IFC_INT_SOURCE_MASK; 1515 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 1516 } 1517 1518 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 1519 { 1520 struct device *dev = &qm->pdev->dev; 1521 u32 cmd; 1522 u64 msg; 1523 int ret; 1524 1525 ret = qm_get_mb_cmd(qm, &msg, vf_id); 1526 if (ret) { 1527 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 1528 return; 1529 } 1530 1531 cmd = msg & QM_MB_CMD_DATA_MASK; 1532 switch (cmd) { 1533 case QM_VF_PREPARE_FAIL: 1534 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 1535 break; 1536 case QM_VF_START_FAIL: 1537 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 1538 break; 1539 case QM_VF_PREPARE_DONE: 1540 case QM_VF_START_DONE: 1541 break; 1542 default: 1543 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 1544 break; 1545 } 1546 } 1547 1548 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 1549 { 1550 struct device *dev = &qm->pdev->dev; 1551 u32 vfs_num = qm->vfs_num; 1552 int cnt = 0; 1553 int ret = 0; 1554 u64 val; 1555 u32 i; 1556 1557 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 1558 return 0; 1559 1560 while (true) { 1561 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 1562 /* All VFs send command to PF, break */ 1563 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 1564 break; 1565 1566 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1567 ret = -EBUSY; 1568 break; 1569 } 1570 1571 msleep(QM_WAIT_DST_ACK); 1572 } 1573 1574 /* PF check VFs msg */ 1575 for (i = 1; i <= vfs_num; i++) { 1576 if (val & BIT(i)) 1577 qm_handle_vf_msg(qm, i); 1578 else 1579 dev_err(dev, "VF(%u) not ping PF!\n", i); 1580 } 1581 1582 /* PF clear interrupt to ack VFs */ 1583 qm_clear_cmd_interrupt(qm, val); 1584 1585 return ret; 1586 } 1587 1588 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 1589 { 1590 u32 val; 1591 1592 val = readl(qm->io_base + QM_IFC_INT_CFG); 1593 val &= ~QM_IFC_SEND_ALL_VFS; 1594 val |= fun_num; 1595 writel(val, qm->io_base + QM_IFC_INT_CFG); 1596 1597 val = readl(qm->io_base + QM_IFC_INT_SET_P); 1598 val |= QM_IFC_INT_SET_MASK; 1599 writel(val, qm->io_base + QM_IFC_INT_SET_P); 1600 } 1601 1602 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 1603 { 1604 u32 val; 1605 1606 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1607 val |= QM_IFC_INT_SET_MASK; 1608 writel(val, qm->io_base + QM_IFC_INT_SET_V); 1609 } 1610 1611 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 1612 { 1613 struct device *dev = &qm->pdev->dev; 1614 struct qm_mailbox mailbox; 1615 int cnt = 0; 1616 u64 val; 1617 int ret; 1618 1619 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 1620 mutex_lock(&qm->mailbox_lock); 1621 ret = qm_mb_nolock(qm, &mailbox); 1622 if (ret) { 1623 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 1624 goto err_unlock; 1625 } 1626 1627 qm_trigger_vf_interrupt(qm, fun_num); 1628 while (true) { 1629 msleep(QM_WAIT_DST_ACK); 1630 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1631 /* if VF respond, PF notifies VF successfully. */ 1632 if (!(val & BIT(fun_num))) 1633 goto err_unlock; 1634 1635 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1636 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 1637 ret = -ETIMEDOUT; 1638 break; 1639 } 1640 } 1641 1642 err_unlock: 1643 mutex_unlock(&qm->mailbox_lock); 1644 return ret; 1645 } 1646 1647 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 1648 { 1649 struct device *dev = &qm->pdev->dev; 1650 u32 vfs_num = qm->vfs_num; 1651 struct qm_mailbox mailbox; 1652 u64 val = 0; 1653 int cnt = 0; 1654 int ret; 1655 u32 i; 1656 1657 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 1658 mutex_lock(&qm->mailbox_lock); 1659 /* PF sends command to all VFs by mailbox */ 1660 ret = qm_mb_nolock(qm, &mailbox); 1661 if (ret) { 1662 dev_err(dev, "failed to send command to VFs!\n"); 1663 mutex_unlock(&qm->mailbox_lock); 1664 return ret; 1665 } 1666 1667 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 1668 while (true) { 1669 msleep(QM_WAIT_DST_ACK); 1670 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1671 /* If all VFs acked, PF notifies VFs successfully. */ 1672 if (!(val & GENMASK(vfs_num, 1))) { 1673 mutex_unlock(&qm->mailbox_lock); 1674 return 0; 1675 } 1676 1677 if (++cnt > QM_MAX_PF_WAIT_COUNT) 1678 break; 1679 } 1680 1681 mutex_unlock(&qm->mailbox_lock); 1682 1683 /* Check which vf respond timeout. */ 1684 for (i = 1; i <= vfs_num; i++) { 1685 if (val & BIT(i)) 1686 dev_err(dev, "failed to get response from VF(%u)!\n", i); 1687 } 1688 1689 return -ETIMEDOUT; 1690 } 1691 1692 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 1693 { 1694 struct qm_mailbox mailbox; 1695 int cnt = 0; 1696 u32 val; 1697 int ret; 1698 1699 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 1700 mutex_lock(&qm->mailbox_lock); 1701 ret = qm_mb_nolock(qm, &mailbox); 1702 if (ret) { 1703 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 1704 goto unlock; 1705 } 1706 1707 qm_trigger_pf_interrupt(qm); 1708 /* Waiting for PF response */ 1709 while (true) { 1710 msleep(QM_WAIT_DST_ACK); 1711 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1712 if (!(val & QM_IFC_INT_STATUS_MASK)) 1713 break; 1714 1715 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 1716 ret = -ETIMEDOUT; 1717 break; 1718 } 1719 } 1720 1721 unlock: 1722 mutex_unlock(&qm->mailbox_lock); 1723 return ret; 1724 } 1725 1726 static int qm_stop_qp(struct hisi_qp *qp) 1727 { 1728 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1729 } 1730 1731 static int qm_set_msi(struct hisi_qm *qm, bool set) 1732 { 1733 struct pci_dev *pdev = qm->pdev; 1734 1735 if (set) { 1736 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1737 0); 1738 } else { 1739 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1740 ACC_PEH_MSI_DISABLE); 1741 if (qm->err_status.is_qm_ecc_mbit || 1742 qm->err_status.is_dev_ecc_mbit) 1743 return 0; 1744 1745 mdelay(1); 1746 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 1747 return -EFAULT; 1748 } 1749 1750 return 0; 1751 } 1752 1753 static void qm_wait_msi_finish(struct hisi_qm *qm) 1754 { 1755 struct pci_dev *pdev = qm->pdev; 1756 u32 cmd = ~0; 1757 int cnt = 0; 1758 u32 val; 1759 int ret; 1760 1761 while (true) { 1762 pci_read_config_dword(pdev, pdev->msi_cap + 1763 PCI_MSI_PENDING_64, &cmd); 1764 if (!cmd) 1765 break; 1766 1767 if (++cnt > MAX_WAIT_COUNTS) { 1768 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 1769 break; 1770 } 1771 1772 udelay(1); 1773 } 1774 1775 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 1776 val, !(val & QM_PEH_DFX_MASK), 1777 POLL_PERIOD, POLL_TIMEOUT); 1778 if (ret) 1779 pci_warn(pdev, "failed to empty PEH MSI!\n"); 1780 1781 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 1782 val, !(val & QM_PEH_MSI_FINISH_MASK), 1783 POLL_PERIOD, POLL_TIMEOUT); 1784 if (ret) 1785 pci_warn(pdev, "failed to finish MSI operation!\n"); 1786 } 1787 1788 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 1789 { 1790 struct pci_dev *pdev = qm->pdev; 1791 int ret = -ETIMEDOUT; 1792 u32 cmd, i; 1793 1794 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1795 if (set) 1796 cmd |= QM_MSI_CAP_ENABLE; 1797 else 1798 cmd &= ~QM_MSI_CAP_ENABLE; 1799 1800 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 1801 if (set) { 1802 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 1803 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1804 if (cmd & QM_MSI_CAP_ENABLE) 1805 return 0; 1806 1807 udelay(1); 1808 } 1809 } else { 1810 udelay(WAIT_PERIOD_US_MIN); 1811 qm_wait_msi_finish(qm); 1812 ret = 0; 1813 } 1814 1815 return ret; 1816 } 1817 1818 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1819 .qm_db = qm_db_v1, 1820 .hw_error_init = qm_hw_error_init_v1, 1821 .set_msi = qm_set_msi, 1822 }; 1823 1824 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1825 .get_vft = qm_get_vft_v2, 1826 .qm_db = qm_db_v2, 1827 .hw_error_init = qm_hw_error_init_v2, 1828 .hw_error_uninit = qm_hw_error_uninit_v2, 1829 .hw_error_handle = qm_hw_error_handle_v2, 1830 .set_msi = qm_set_msi, 1831 }; 1832 1833 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1834 .get_vft = qm_get_vft_v2, 1835 .qm_db = qm_db_v2, 1836 .hw_error_init = qm_hw_error_init_v3, 1837 .hw_error_uninit = qm_hw_error_uninit_v3, 1838 .hw_error_handle = qm_hw_error_handle_v2, 1839 .set_msi = qm_set_msi_v3, 1840 }; 1841 1842 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1843 { 1844 struct hisi_qp_status *qp_status = &qp->qp_status; 1845 u16 sq_tail = qp_status->sq_tail; 1846 1847 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 1848 return NULL; 1849 1850 return qp->sqe + sq_tail * qp->qm->sqe_size; 1851 } 1852 1853 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 1854 { 1855 u64 *addr; 1856 1857 /* Use last 64 bits of DUS to reset status. */ 1858 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 1859 *addr = 0; 1860 } 1861 1862 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1863 { 1864 struct device *dev = &qm->pdev->dev; 1865 struct hisi_qp *qp; 1866 int qp_id; 1867 1868 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 1869 return ERR_PTR(-EPERM); 1870 1871 if (qm->qp_in_used == qm->qp_num) { 1872 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1873 qm->qp_num); 1874 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1875 return ERR_PTR(-EBUSY); 1876 } 1877 1878 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 1879 if (qp_id < 0) { 1880 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1881 qm->qp_num); 1882 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1883 return ERR_PTR(-EBUSY); 1884 } 1885 1886 qp = &qm->qp_array[qp_id]; 1887 hisi_qm_unset_hw_reset(qp); 1888 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 1889 1890 qp->event_cb = NULL; 1891 qp->req_cb = NULL; 1892 qp->qp_id = qp_id; 1893 qp->alg_type = alg_type; 1894 qp->is_in_kernel = true; 1895 qm->qp_in_used++; 1896 atomic_set(&qp->qp_status.flags, QP_INIT); 1897 1898 return qp; 1899 } 1900 1901 /** 1902 * hisi_qm_create_qp() - Create a queue pair from qm. 1903 * @qm: The qm we create a qp from. 1904 * @alg_type: Accelerator specific algorithm type in sqc. 1905 * 1906 * Return created qp, negative error code if failed. 1907 */ 1908 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 1909 { 1910 struct hisi_qp *qp; 1911 int ret; 1912 1913 ret = qm_pm_get_sync(qm); 1914 if (ret) 1915 return ERR_PTR(ret); 1916 1917 down_write(&qm->qps_lock); 1918 qp = qm_create_qp_nolock(qm, alg_type); 1919 up_write(&qm->qps_lock); 1920 1921 if (IS_ERR(qp)) 1922 qm_pm_put_sync(qm); 1923 1924 return qp; 1925 } 1926 1927 /** 1928 * hisi_qm_release_qp() - Release a qp back to its qm. 1929 * @qp: The qp we want to release. 1930 * 1931 * This function releases the resource of a qp. 1932 */ 1933 static void hisi_qm_release_qp(struct hisi_qp *qp) 1934 { 1935 struct hisi_qm *qm = qp->qm; 1936 1937 down_write(&qm->qps_lock); 1938 1939 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 1940 up_write(&qm->qps_lock); 1941 return; 1942 } 1943 1944 qm->qp_in_used--; 1945 idr_remove(&qm->qp_idr, qp->qp_id); 1946 1947 up_write(&qm->qps_lock); 1948 1949 qm_pm_put_sync(qm); 1950 } 1951 1952 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1953 { 1954 struct hisi_qm *qm = qp->qm; 1955 struct device *dev = &qm->pdev->dev; 1956 enum qm_hw_ver ver = qm->ver; 1957 struct qm_sqc *sqc; 1958 dma_addr_t sqc_dma; 1959 int ret; 1960 1961 sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); 1962 if (!sqc) 1963 return -ENOMEM; 1964 1965 INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); 1966 if (ver == QM_HW_V1) { 1967 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 1968 sqc->w8 = cpu_to_le16(qp->sq_depth - 1); 1969 } else { 1970 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 1971 sqc->w8 = 0; /* rand_qc */ 1972 } 1973 sqc->cq_num = cpu_to_le16(qp_id); 1974 sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 1975 1976 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1977 sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 1978 QM_QC_PASID_ENABLE_SHIFT); 1979 1980 sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), 1981 DMA_TO_DEVICE); 1982 if (dma_mapping_error(dev, sqc_dma)) { 1983 kfree(sqc); 1984 return -ENOMEM; 1985 } 1986 1987 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); 1988 dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); 1989 kfree(sqc); 1990 1991 return ret; 1992 } 1993 1994 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1995 { 1996 struct hisi_qm *qm = qp->qm; 1997 struct device *dev = &qm->pdev->dev; 1998 enum qm_hw_ver ver = qm->ver; 1999 struct qm_cqc *cqc; 2000 dma_addr_t cqc_dma; 2001 int ret; 2002 2003 cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); 2004 if (!cqc) 2005 return -ENOMEM; 2006 2007 INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); 2008 if (ver == QM_HW_V1) { 2009 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 2010 QM_QC_CQE_SIZE)); 2011 cqc->w8 = cpu_to_le16(qp->cq_depth - 1); 2012 } else { 2013 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 2014 cqc->w8 = 0; /* rand_qc */ 2015 } 2016 cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 2017 2018 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2019 cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 2020 2021 cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), 2022 DMA_TO_DEVICE); 2023 if (dma_mapping_error(dev, cqc_dma)) { 2024 kfree(cqc); 2025 return -ENOMEM; 2026 } 2027 2028 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); 2029 dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); 2030 kfree(cqc); 2031 2032 return ret; 2033 } 2034 2035 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2036 { 2037 int ret; 2038 2039 qm_init_qp_status(qp); 2040 2041 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2042 if (ret) 2043 return ret; 2044 2045 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2046 } 2047 2048 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2049 { 2050 struct hisi_qm *qm = qp->qm; 2051 struct device *dev = &qm->pdev->dev; 2052 int qp_id = qp->qp_id; 2053 u32 pasid = arg; 2054 int ret; 2055 2056 if (!qm_qp_avail_state(qm, qp, QP_START)) 2057 return -EPERM; 2058 2059 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2060 if (ret) 2061 return ret; 2062 2063 atomic_set(&qp->qp_status.flags, QP_START); 2064 dev_dbg(dev, "queue %d started\n", qp_id); 2065 2066 return 0; 2067 } 2068 2069 /** 2070 * hisi_qm_start_qp() - Start a qp into running. 2071 * @qp: The qp we want to start to run. 2072 * @arg: Accelerator specific argument. 2073 * 2074 * After this function, qp can receive request from user. Return 0 if 2075 * successful, negative error code if failed. 2076 */ 2077 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2078 { 2079 struct hisi_qm *qm = qp->qm; 2080 int ret; 2081 2082 down_write(&qm->qps_lock); 2083 ret = qm_start_qp_nolock(qp, arg); 2084 up_write(&qm->qps_lock); 2085 2086 return ret; 2087 } 2088 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2089 2090 /** 2091 * qp_stop_fail_cb() - call request cb. 2092 * @qp: stopped failed qp. 2093 * 2094 * Callback function should be called whether task completed or not. 2095 */ 2096 static void qp_stop_fail_cb(struct hisi_qp *qp) 2097 { 2098 int qp_used = atomic_read(&qp->qp_status.used); 2099 u16 cur_tail = qp->qp_status.sq_tail; 2100 u16 sq_depth = qp->sq_depth; 2101 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 2102 struct hisi_qm *qm = qp->qm; 2103 u16 pos; 2104 int i; 2105 2106 for (i = 0; i < qp_used; i++) { 2107 pos = (i + cur_head) % sq_depth; 2108 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2109 atomic_dec(&qp->qp_status.used); 2110 } 2111 } 2112 2113 /** 2114 * qm_drain_qp() - Drain a qp. 2115 * @qp: The qp we want to drain. 2116 * 2117 * Determine whether the queue is cleared by judging the tail pointers of 2118 * sq and cq. 2119 */ 2120 static int qm_drain_qp(struct hisi_qp *qp) 2121 { 2122 size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); 2123 struct hisi_qm *qm = qp->qm; 2124 struct device *dev = &qm->pdev->dev; 2125 struct qm_sqc *sqc; 2126 struct qm_cqc *cqc; 2127 dma_addr_t dma_addr; 2128 int ret = 0, i = 0; 2129 void *addr; 2130 2131 /* No need to judge if master OOO is blocked. */ 2132 if (qm_check_dev_error(qm)) 2133 return 0; 2134 2135 /* Kunpeng930 supports drain qp by device */ 2136 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 2137 ret = qm_stop_qp(qp); 2138 if (ret) 2139 dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); 2140 return ret; 2141 } 2142 2143 addr = hisi_qm_ctx_alloc(qm, size, &dma_addr); 2144 if (IS_ERR(addr)) { 2145 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); 2146 return -ENOMEM; 2147 } 2148 2149 while (++i) { 2150 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); 2151 if (ret) { 2152 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2153 break; 2154 } 2155 sqc = addr; 2156 2157 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), 2158 qp->qp_id); 2159 if (ret) { 2160 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2161 break; 2162 } 2163 cqc = addr + sizeof(struct qm_sqc); 2164 2165 if ((sqc->tail == cqc->tail) && 2166 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2167 break; 2168 2169 if (i == MAX_WAIT_COUNTS) { 2170 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 2171 ret = -EBUSY; 2172 break; 2173 } 2174 2175 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2176 } 2177 2178 hisi_qm_ctx_free(qm, size, addr, &dma_addr); 2179 2180 return ret; 2181 } 2182 2183 static int qm_stop_qp_nolock(struct hisi_qp *qp) 2184 { 2185 struct device *dev = &qp->qm->pdev->dev; 2186 int ret; 2187 2188 /* 2189 * It is allowed to stop and release qp when reset, If the qp is 2190 * stopped when reset but still want to be released then, the 2191 * is_resetting flag should be set negative so that this qp will not 2192 * be restarted after reset. 2193 */ 2194 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 2195 qp->is_resetting = false; 2196 return 0; 2197 } 2198 2199 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 2200 return -EPERM; 2201 2202 atomic_set(&qp->qp_status.flags, QP_STOP); 2203 2204 ret = qm_drain_qp(qp); 2205 if (ret) 2206 dev_err(dev, "Failed to drain out data for stopping!\n"); 2207 2208 2209 flush_workqueue(qp->qm->wq); 2210 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2211 qp_stop_fail_cb(qp); 2212 2213 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2214 2215 return 0; 2216 } 2217 2218 /** 2219 * hisi_qm_stop_qp() - Stop a qp in qm. 2220 * @qp: The qp we want to stop. 2221 * 2222 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 2223 */ 2224 int hisi_qm_stop_qp(struct hisi_qp *qp) 2225 { 2226 int ret; 2227 2228 down_write(&qp->qm->qps_lock); 2229 ret = qm_stop_qp_nolock(qp); 2230 up_write(&qp->qm->qps_lock); 2231 2232 return ret; 2233 } 2234 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2235 2236 /** 2237 * hisi_qp_send() - Queue up a task in the hardware queue. 2238 * @qp: The qp in which to put the message. 2239 * @msg: The message. 2240 * 2241 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2242 * if qp related qm is resetting. 2243 * 2244 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2245 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2246 * reset may happen, we have no lock here considering performance. This 2247 * causes current qm_db sending fail or can not receive sended sqe. QM 2248 * sync/async receive function should handle the error sqe. ACC reset 2249 * done function should clear used sqe to 0. 2250 */ 2251 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2252 { 2253 struct hisi_qp_status *qp_status = &qp->qp_status; 2254 u16 sq_tail = qp_status->sq_tail; 2255 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 2256 void *sqe = qm_get_avail_sqe(qp); 2257 2258 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2259 atomic_read(&qp->qm->status.flags) == QM_STOP || 2260 qp->is_resetting)) { 2261 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2262 return -EAGAIN; 2263 } 2264 2265 if (!sqe) 2266 return -EBUSY; 2267 2268 memcpy(sqe, msg, qp->qm->sqe_size); 2269 2270 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2271 atomic_inc(&qp->qp_status.used); 2272 qp_status->sq_tail = sq_tail_next; 2273 2274 return 0; 2275 } 2276 EXPORT_SYMBOL_GPL(hisi_qp_send); 2277 2278 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2279 { 2280 unsigned int val; 2281 2282 if (qm->ver == QM_HW_V1) 2283 return; 2284 2285 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2286 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2287 val, val & BIT(0), POLL_PERIOD, 2288 POLL_TIMEOUT)) 2289 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2290 } 2291 2292 static void qm_qp_event_notifier(struct hisi_qp *qp) 2293 { 2294 wake_up_interruptible(&qp->uacce_q->wait); 2295 } 2296 2297 /* This function returns free number of qp in qm. */ 2298 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2299 { 2300 struct hisi_qm *qm = uacce->priv; 2301 int ret; 2302 2303 down_read(&qm->qps_lock); 2304 ret = qm->qp_num - qm->qp_in_used; 2305 up_read(&qm->qps_lock); 2306 2307 return ret; 2308 } 2309 2310 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 2311 { 2312 int i; 2313 2314 for (i = 0; i < qm->qp_num; i++) 2315 qm_set_qp_disable(&qm->qp_array[i], offset); 2316 } 2317 2318 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2319 unsigned long arg, 2320 struct uacce_queue *q) 2321 { 2322 struct hisi_qm *qm = uacce->priv; 2323 struct hisi_qp *qp; 2324 u8 alg_type = 0; 2325 2326 qp = hisi_qm_create_qp(qm, alg_type); 2327 if (IS_ERR(qp)) 2328 return PTR_ERR(qp); 2329 2330 q->priv = qp; 2331 q->uacce = uacce; 2332 qp->uacce_q = q; 2333 qp->event_cb = qm_qp_event_notifier; 2334 qp->pasid = arg; 2335 qp->is_in_kernel = false; 2336 2337 return 0; 2338 } 2339 2340 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2341 { 2342 struct hisi_qp *qp = q->priv; 2343 2344 hisi_qm_release_qp(qp); 2345 } 2346 2347 /* map sq/cq/doorbell to user space */ 2348 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2349 struct vm_area_struct *vma, 2350 struct uacce_qfile_region *qfr) 2351 { 2352 struct hisi_qp *qp = q->priv; 2353 struct hisi_qm *qm = qp->qm; 2354 resource_size_t phys_base = qm->db_phys_base + 2355 qp->qp_id * qm->db_interval; 2356 size_t sz = vma->vm_end - vma->vm_start; 2357 struct pci_dev *pdev = qm->pdev; 2358 struct device *dev = &pdev->dev; 2359 unsigned long vm_pgoff; 2360 int ret; 2361 2362 switch (qfr->type) { 2363 case UACCE_QFRT_MMIO: 2364 if (qm->ver == QM_HW_V1) { 2365 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2366 return -EINVAL; 2367 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 2368 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2369 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2370 return -EINVAL; 2371 } else { 2372 if (sz > qm->db_interval) 2373 return -EINVAL; 2374 } 2375 2376 vm_flags_set(vma, VM_IO); 2377 2378 return remap_pfn_range(vma, vma->vm_start, 2379 phys_base >> PAGE_SHIFT, 2380 sz, pgprot_noncached(vma->vm_page_prot)); 2381 case UACCE_QFRT_DUS: 2382 if (sz != qp->qdma.size) 2383 return -EINVAL; 2384 2385 /* 2386 * dma_mmap_coherent() requires vm_pgoff as 0 2387 * restore vm_pfoff to initial value for mmap() 2388 */ 2389 vm_pgoff = vma->vm_pgoff; 2390 vma->vm_pgoff = 0; 2391 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2392 qp->qdma.dma, sz); 2393 vma->vm_pgoff = vm_pgoff; 2394 return ret; 2395 2396 default: 2397 return -EINVAL; 2398 } 2399 } 2400 2401 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2402 { 2403 struct hisi_qp *qp = q->priv; 2404 2405 return hisi_qm_start_qp(qp, qp->pasid); 2406 } 2407 2408 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2409 { 2410 hisi_qm_stop_qp(q->priv); 2411 } 2412 2413 static int hisi_qm_is_q_updated(struct uacce_queue *q) 2414 { 2415 struct hisi_qp *qp = q->priv; 2416 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 2417 int updated = 0; 2418 2419 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 2420 /* make sure to read data from memory */ 2421 dma_rmb(); 2422 qm_cq_head_update(qp); 2423 cqe = qp->cqe + qp->qp_status.cq_head; 2424 updated = 1; 2425 } 2426 2427 return updated; 2428 } 2429 2430 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2431 { 2432 struct hisi_qm *qm = q->uacce->priv; 2433 struct hisi_qp *qp = q->priv; 2434 2435 down_write(&qm->qps_lock); 2436 qp->alg_type = type; 2437 up_write(&qm->qps_lock); 2438 } 2439 2440 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2441 unsigned long arg) 2442 { 2443 struct hisi_qp *qp = q->priv; 2444 struct hisi_qp_info qp_info; 2445 struct hisi_qp_ctx qp_ctx; 2446 2447 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2448 if (copy_from_user(&qp_ctx, (void __user *)arg, 2449 sizeof(struct hisi_qp_ctx))) 2450 return -EFAULT; 2451 2452 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 2453 return -EINVAL; 2454 2455 qm_set_sqctype(q, qp_ctx.qc_type); 2456 qp_ctx.id = qp->qp_id; 2457 2458 if (copy_to_user((void __user *)arg, &qp_ctx, 2459 sizeof(struct hisi_qp_ctx))) 2460 return -EFAULT; 2461 2462 return 0; 2463 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 2464 if (copy_from_user(&qp_info, (void __user *)arg, 2465 sizeof(struct hisi_qp_info))) 2466 return -EFAULT; 2467 2468 qp_info.sqe_size = qp->qm->sqe_size; 2469 qp_info.sq_depth = qp->sq_depth; 2470 qp_info.cq_depth = qp->cq_depth; 2471 2472 if (copy_to_user((void __user *)arg, &qp_info, 2473 sizeof(struct hisi_qp_info))) 2474 return -EFAULT; 2475 2476 return 0; 2477 } 2478 2479 return -EINVAL; 2480 } 2481 2482 /** 2483 * qm_hw_err_isolate() - Try to set the isolation status of the uacce device 2484 * according to user's configuration of error threshold. 2485 * @qm: the uacce device 2486 */ 2487 static int qm_hw_err_isolate(struct hisi_qm *qm) 2488 { 2489 struct qm_hw_err *err, *tmp, *hw_err; 2490 struct qm_err_isolate *isolate; 2491 u32 count = 0; 2492 2493 isolate = &qm->isolate_data; 2494 2495 #define SECONDS_PER_HOUR 3600 2496 2497 /* All the hw errs are processed by PF driver */ 2498 if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold) 2499 return 0; 2500 2501 hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL); 2502 if (!hw_err) 2503 return -ENOMEM; 2504 2505 /* 2506 * Time-stamp every slot AER error. Then check the AER error log when the 2507 * next device AER error occurred. if the device slot AER error count exceeds 2508 * the setting error threshold in one hour, the isolated state will be set 2509 * to true. And the AER error logs that exceed one hour will be cleared. 2510 */ 2511 mutex_lock(&isolate->isolate_lock); 2512 hw_err->timestamp = jiffies; 2513 list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) { 2514 if ((hw_err->timestamp - err->timestamp) / HZ > 2515 SECONDS_PER_HOUR) { 2516 list_del(&err->list); 2517 kfree(err); 2518 } else { 2519 count++; 2520 } 2521 } 2522 list_add(&hw_err->list, &isolate->qm_hw_errs); 2523 mutex_unlock(&isolate->isolate_lock); 2524 2525 if (count >= isolate->err_threshold) 2526 isolate->is_isolate = true; 2527 2528 return 0; 2529 } 2530 2531 static void qm_hw_err_destroy(struct hisi_qm *qm) 2532 { 2533 struct qm_hw_err *err, *tmp; 2534 2535 mutex_lock(&qm->isolate_data.isolate_lock); 2536 list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) { 2537 list_del(&err->list); 2538 kfree(err); 2539 } 2540 mutex_unlock(&qm->isolate_data.isolate_lock); 2541 } 2542 2543 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce) 2544 { 2545 struct hisi_qm *qm = uacce->priv; 2546 struct hisi_qm *pf_qm; 2547 2548 if (uacce->is_vf) 2549 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2550 else 2551 pf_qm = qm; 2552 2553 return pf_qm->isolate_data.is_isolate ? 2554 UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL; 2555 } 2556 2557 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num) 2558 { 2559 struct hisi_qm *qm = uacce->priv; 2560 2561 /* Must be set by PF */ 2562 if (uacce->is_vf) 2563 return -EPERM; 2564 2565 if (qm->isolate_data.is_isolate) 2566 return -EPERM; 2567 2568 qm->isolate_data.err_threshold = num; 2569 2570 /* After the policy is updated, need to reset the hardware err list */ 2571 qm_hw_err_destroy(qm); 2572 2573 return 0; 2574 } 2575 2576 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce) 2577 { 2578 struct hisi_qm *qm = uacce->priv; 2579 struct hisi_qm *pf_qm; 2580 2581 if (uacce->is_vf) { 2582 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2583 return pf_qm->isolate_data.err_threshold; 2584 } 2585 2586 return qm->isolate_data.err_threshold; 2587 } 2588 2589 static const struct uacce_ops uacce_qm_ops = { 2590 .get_available_instances = hisi_qm_get_available_instances, 2591 .get_queue = hisi_qm_uacce_get_queue, 2592 .put_queue = hisi_qm_uacce_put_queue, 2593 .start_queue = hisi_qm_uacce_start_queue, 2594 .stop_queue = hisi_qm_uacce_stop_queue, 2595 .mmap = hisi_qm_uacce_mmap, 2596 .ioctl = hisi_qm_uacce_ioctl, 2597 .is_q_updated = hisi_qm_is_q_updated, 2598 .get_isolate_state = hisi_qm_get_isolate_state, 2599 .isolate_err_threshold_write = hisi_qm_isolate_threshold_write, 2600 .isolate_err_threshold_read = hisi_qm_isolate_threshold_read, 2601 }; 2602 2603 static void qm_remove_uacce(struct hisi_qm *qm) 2604 { 2605 struct uacce_device *uacce = qm->uacce; 2606 2607 if (qm->use_sva) { 2608 qm_hw_err_destroy(qm); 2609 uacce_remove(uacce); 2610 qm->uacce = NULL; 2611 } 2612 } 2613 2614 static int qm_alloc_uacce(struct hisi_qm *qm) 2615 { 2616 struct pci_dev *pdev = qm->pdev; 2617 struct uacce_device *uacce; 2618 unsigned long mmio_page_nr; 2619 unsigned long dus_page_nr; 2620 u16 sq_depth, cq_depth; 2621 struct uacce_interface interface = { 2622 .flags = UACCE_DEV_SVA, 2623 .ops = &uacce_qm_ops, 2624 }; 2625 int ret; 2626 2627 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 2628 sizeof(interface.name)); 2629 if (ret < 0) 2630 return -ENAMETOOLONG; 2631 2632 uacce = uacce_alloc(&pdev->dev, &interface); 2633 if (IS_ERR(uacce)) 2634 return PTR_ERR(uacce); 2635 2636 if (uacce->flags & UACCE_DEV_SVA) { 2637 qm->use_sva = true; 2638 } else { 2639 /* only consider sva case */ 2640 qm_remove_uacce(qm); 2641 return -EINVAL; 2642 } 2643 2644 uacce->is_vf = pdev->is_virtfn; 2645 uacce->priv = qm; 2646 2647 if (qm->ver == QM_HW_V1) 2648 uacce->api_ver = HISI_QM_API_VER_BASE; 2649 else if (qm->ver == QM_HW_V2) 2650 uacce->api_ver = HISI_QM_API_VER2_BASE; 2651 else 2652 uacce->api_ver = HISI_QM_API_VER3_BASE; 2653 2654 if (qm->ver == QM_HW_V1) 2655 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2656 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2657 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2658 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2659 else 2660 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2661 2662 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 2663 2664 /* Add one more page for device or qp status */ 2665 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 2666 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 2667 PAGE_SHIFT; 2668 2669 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2670 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2671 2672 qm->uacce = uacce; 2673 INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs); 2674 mutex_init(&qm->isolate_data.isolate_lock); 2675 2676 return 0; 2677 } 2678 2679 /** 2680 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2681 * there is user on the QM, return failure without doing anything. 2682 * @qm: The qm needed to be fronzen. 2683 * 2684 * This function frozes QM, then we can do SRIOV disabling. 2685 */ 2686 static int qm_frozen(struct hisi_qm *qm) 2687 { 2688 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2689 return 0; 2690 2691 down_write(&qm->qps_lock); 2692 2693 if (!qm->qp_in_used) { 2694 qm->qp_in_used = qm->qp_num; 2695 up_write(&qm->qps_lock); 2696 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2697 return 0; 2698 } 2699 2700 up_write(&qm->qps_lock); 2701 2702 return -EBUSY; 2703 } 2704 2705 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2706 struct hisi_qm_list *qm_list) 2707 { 2708 struct hisi_qm *qm, *vf_qm; 2709 struct pci_dev *dev; 2710 int ret = 0; 2711 2712 if (!qm_list || !pdev) 2713 return -EINVAL; 2714 2715 /* Try to frozen all the VFs as disable SRIOV */ 2716 mutex_lock(&qm_list->lock); 2717 list_for_each_entry(qm, &qm_list->list, list) { 2718 dev = qm->pdev; 2719 if (dev == pdev) 2720 continue; 2721 if (pci_physfn(dev) == pdev) { 2722 vf_qm = pci_get_drvdata(dev); 2723 ret = qm_frozen(vf_qm); 2724 if (ret) 2725 goto frozen_fail; 2726 } 2727 } 2728 2729 frozen_fail: 2730 mutex_unlock(&qm_list->lock); 2731 2732 return ret; 2733 } 2734 2735 /** 2736 * hisi_qm_wait_task_finish() - Wait until the task is finished 2737 * when removing the driver. 2738 * @qm: The qm needed to wait for the task to finish. 2739 * @qm_list: The list of all available devices. 2740 */ 2741 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2742 { 2743 while (qm_frozen(qm) || 2744 ((qm->fun_type == QM_HW_PF) && 2745 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2746 msleep(WAIT_PERIOD); 2747 } 2748 2749 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2750 test_bit(QM_RESETTING, &qm->misc_ctl)) 2751 msleep(WAIT_PERIOD); 2752 2753 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2754 flush_work(&qm->cmd_process); 2755 2756 udelay(REMOVE_WAIT_DELAY); 2757 } 2758 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2759 2760 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2761 { 2762 struct device *dev = &qm->pdev->dev; 2763 struct qm_dma *qdma; 2764 int i; 2765 2766 for (i = num - 1; i >= 0; i--) { 2767 qdma = &qm->qp_array[i].qdma; 2768 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2769 kfree(qm->poll_data[i].qp_finish_id); 2770 } 2771 2772 kfree(qm->poll_data); 2773 kfree(qm->qp_array); 2774 } 2775 2776 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 2777 u16 sq_depth, u16 cq_depth) 2778 { 2779 struct device *dev = &qm->pdev->dev; 2780 size_t off = qm->sqe_size * sq_depth; 2781 struct hisi_qp *qp; 2782 int ret = -ENOMEM; 2783 2784 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 2785 GFP_KERNEL); 2786 if (!qm->poll_data[id].qp_finish_id) 2787 return -ENOMEM; 2788 2789 qp = &qm->qp_array[id]; 2790 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2791 GFP_KERNEL); 2792 if (!qp->qdma.va) 2793 goto err_free_qp_finish_id; 2794 2795 qp->sqe = qp->qdma.va; 2796 qp->sqe_dma = qp->qdma.dma; 2797 qp->cqe = qp->qdma.va + off; 2798 qp->cqe_dma = qp->qdma.dma + off; 2799 qp->qdma.size = dma_size; 2800 qp->sq_depth = sq_depth; 2801 qp->cq_depth = cq_depth; 2802 qp->qm = qm; 2803 qp->qp_id = id; 2804 2805 return 0; 2806 2807 err_free_qp_finish_id: 2808 kfree(qm->poll_data[id].qp_finish_id); 2809 return ret; 2810 } 2811 2812 static void hisi_qm_pre_init(struct hisi_qm *qm) 2813 { 2814 struct pci_dev *pdev = qm->pdev; 2815 2816 if (qm->ver == QM_HW_V1) 2817 qm->ops = &qm_hw_ops_v1; 2818 else if (qm->ver == QM_HW_V2) 2819 qm->ops = &qm_hw_ops_v2; 2820 else 2821 qm->ops = &qm_hw_ops_v3; 2822 2823 pci_set_drvdata(pdev, qm); 2824 mutex_init(&qm->mailbox_lock); 2825 init_rwsem(&qm->qps_lock); 2826 qm->qp_in_used = 0; 2827 qm->misc_ctl = false; 2828 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 2829 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 2830 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 2831 } 2832 } 2833 2834 static void qm_cmd_uninit(struct hisi_qm *qm) 2835 { 2836 u32 val; 2837 2838 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2839 return; 2840 2841 val = readl(qm->io_base + QM_IFC_INT_MASK); 2842 val |= QM_IFC_INT_DISABLE; 2843 writel(val, qm->io_base + QM_IFC_INT_MASK); 2844 } 2845 2846 static void qm_cmd_init(struct hisi_qm *qm) 2847 { 2848 u32 val; 2849 2850 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2851 return; 2852 2853 /* Clear communication interrupt source */ 2854 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 2855 2856 /* Enable pf to vf communication reg. */ 2857 val = readl(qm->io_base + QM_IFC_INT_MASK); 2858 val &= ~QM_IFC_INT_DISABLE; 2859 writel(val, qm->io_base + QM_IFC_INT_MASK); 2860 } 2861 2862 static void qm_put_pci_res(struct hisi_qm *qm) 2863 { 2864 struct pci_dev *pdev = qm->pdev; 2865 2866 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2867 iounmap(qm->db_io_base); 2868 2869 iounmap(qm->io_base); 2870 pci_release_mem_regions(pdev); 2871 } 2872 2873 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 2874 { 2875 struct pci_dev *pdev = qm->pdev; 2876 2877 pci_free_irq_vectors(pdev); 2878 qm_put_pci_res(qm); 2879 pci_disable_device(pdev); 2880 } 2881 2882 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 2883 { 2884 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 2885 writel(state, qm->io_base + QM_VF_STATE); 2886 } 2887 2888 static void hisi_qm_unint_work(struct hisi_qm *qm) 2889 { 2890 destroy_workqueue(qm->wq); 2891 } 2892 2893 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 2894 { 2895 struct device *dev = &qm->pdev->dev; 2896 2897 hisi_qp_memory_uninit(qm, qm->qp_num); 2898 if (qm->qdma.va) { 2899 hisi_qm_cache_wb(qm); 2900 dma_free_coherent(dev, qm->qdma.size, 2901 qm->qdma.va, qm->qdma.dma); 2902 } 2903 2904 idr_destroy(&qm->qp_idr); 2905 2906 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 2907 kfree(qm->factor); 2908 } 2909 2910 /** 2911 * hisi_qm_uninit() - Uninitialize qm. 2912 * @qm: The qm needed uninit. 2913 * 2914 * This function uninits qm related device resources. 2915 */ 2916 void hisi_qm_uninit(struct hisi_qm *qm) 2917 { 2918 qm_cmd_uninit(qm); 2919 hisi_qm_unint_work(qm); 2920 down_write(&qm->qps_lock); 2921 2922 if (!qm_avail_state(qm, QM_CLOSE)) { 2923 up_write(&qm->qps_lock); 2924 return; 2925 } 2926 2927 hisi_qm_memory_uninit(qm); 2928 hisi_qm_set_state(qm, QM_NOT_READY); 2929 up_write(&qm->qps_lock); 2930 2931 qm_irqs_unregister(qm); 2932 hisi_qm_pci_uninit(qm); 2933 if (qm->use_sva) { 2934 uacce_remove(qm->uacce); 2935 qm->uacce = NULL; 2936 } 2937 } 2938 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 2939 2940 /** 2941 * hisi_qm_get_vft() - Get vft from a qm. 2942 * @qm: The qm we want to get its vft. 2943 * @base: The base number of queue in vft. 2944 * @number: The number of queues in vft. 2945 * 2946 * We can allocate multiple queues to a qm by configuring virtual function 2947 * table. We get related configures by this function. Normally, we call this 2948 * function in VF driver to get the queue information. 2949 * 2950 * qm hw v1 does not support this interface. 2951 */ 2952 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 2953 { 2954 if (!base || !number) 2955 return -EINVAL; 2956 2957 if (!qm->ops->get_vft) { 2958 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 2959 return -EINVAL; 2960 } 2961 2962 return qm->ops->get_vft(qm, base, number); 2963 } 2964 2965 /** 2966 * hisi_qm_set_vft() - Set vft to a qm. 2967 * @qm: The qm we want to set its vft. 2968 * @fun_num: The function number. 2969 * @base: The base number of queue in vft. 2970 * @number: The number of queues in vft. 2971 * 2972 * This function is alway called in PF driver, it is used to assign queues 2973 * among PF and VFs. 2974 * 2975 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 2976 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 2977 * (VF function number 0x2) 2978 */ 2979 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 2980 u32 number) 2981 { 2982 u32 max_q_num = qm->ctrl_qp_num; 2983 2984 if (base >= max_q_num || number > max_q_num || 2985 (base + number) > max_q_num) 2986 return -EINVAL; 2987 2988 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 2989 } 2990 2991 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 2992 { 2993 struct hisi_qm_status *status = &qm->status; 2994 2995 status->eq_head = 0; 2996 status->aeq_head = 0; 2997 status->eqc_phase = true; 2998 status->aeqc_phase = true; 2999 } 3000 3001 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 3002 { 3003 /* Clear eq/aeq interrupt source */ 3004 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 3005 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 3006 3007 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 3008 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 3009 } 3010 3011 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 3012 { 3013 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 3014 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 3015 } 3016 3017 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 3018 { 3019 struct device *dev = &qm->pdev->dev; 3020 struct qm_eqc *eqc; 3021 dma_addr_t eqc_dma; 3022 int ret; 3023 3024 eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); 3025 if (!eqc) 3026 return -ENOMEM; 3027 3028 eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3029 eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3030 if (qm->ver == QM_HW_V1) 3031 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3032 eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3033 3034 eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), 3035 DMA_TO_DEVICE); 3036 if (dma_mapping_error(dev, eqc_dma)) { 3037 kfree(eqc); 3038 return -ENOMEM; 3039 } 3040 3041 ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); 3042 dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); 3043 kfree(eqc); 3044 3045 return ret; 3046 } 3047 3048 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3049 { 3050 struct device *dev = &qm->pdev->dev; 3051 struct qm_aeqc *aeqc; 3052 dma_addr_t aeqc_dma; 3053 int ret; 3054 3055 aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); 3056 if (!aeqc) 3057 return -ENOMEM; 3058 3059 aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3060 aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3061 aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3062 3063 aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), 3064 DMA_TO_DEVICE); 3065 if (dma_mapping_error(dev, aeqc_dma)) { 3066 kfree(aeqc); 3067 return -ENOMEM; 3068 } 3069 3070 ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); 3071 dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); 3072 kfree(aeqc); 3073 3074 return ret; 3075 } 3076 3077 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3078 { 3079 struct device *dev = &qm->pdev->dev; 3080 int ret; 3081 3082 qm_init_eq_aeq_status(qm); 3083 3084 ret = qm_eq_ctx_cfg(qm); 3085 if (ret) { 3086 dev_err(dev, "Set eqc failed!\n"); 3087 return ret; 3088 } 3089 3090 return qm_aeq_ctx_cfg(qm); 3091 } 3092 3093 static int __hisi_qm_start(struct hisi_qm *qm) 3094 { 3095 int ret; 3096 3097 WARN_ON(!qm->qdma.va); 3098 3099 if (qm->fun_type == QM_HW_PF) { 3100 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3101 if (ret) 3102 return ret; 3103 } 3104 3105 ret = qm_eq_aeq_ctx_cfg(qm); 3106 if (ret) 3107 return ret; 3108 3109 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3110 if (ret) 3111 return ret; 3112 3113 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3114 if (ret) 3115 return ret; 3116 3117 qm_init_prefetch(qm); 3118 qm_enable_eq_aeq_interrupts(qm); 3119 3120 return 0; 3121 } 3122 3123 /** 3124 * hisi_qm_start() - start qm 3125 * @qm: The qm to be started. 3126 * 3127 * This function starts a qm, then we can allocate qp from this qm. 3128 */ 3129 int hisi_qm_start(struct hisi_qm *qm) 3130 { 3131 struct device *dev = &qm->pdev->dev; 3132 int ret = 0; 3133 3134 down_write(&qm->qps_lock); 3135 3136 if (!qm_avail_state(qm, QM_START)) { 3137 up_write(&qm->qps_lock); 3138 return -EPERM; 3139 } 3140 3141 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3142 3143 if (!qm->qp_num) { 3144 dev_err(dev, "qp_num should not be 0\n"); 3145 ret = -EINVAL; 3146 goto err_unlock; 3147 } 3148 3149 ret = __hisi_qm_start(qm); 3150 if (!ret) 3151 atomic_set(&qm->status.flags, QM_START); 3152 3153 hisi_qm_set_state(qm, QM_READY); 3154 err_unlock: 3155 up_write(&qm->qps_lock); 3156 return ret; 3157 } 3158 EXPORT_SYMBOL_GPL(hisi_qm_start); 3159 3160 static int qm_restart(struct hisi_qm *qm) 3161 { 3162 struct device *dev = &qm->pdev->dev; 3163 struct hisi_qp *qp; 3164 int ret, i; 3165 3166 ret = hisi_qm_start(qm); 3167 if (ret < 0) 3168 return ret; 3169 3170 down_write(&qm->qps_lock); 3171 for (i = 0; i < qm->qp_num; i++) { 3172 qp = &qm->qp_array[i]; 3173 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3174 qp->is_resetting == true) { 3175 ret = qm_start_qp_nolock(qp, 0); 3176 if (ret < 0) { 3177 dev_err(dev, "Failed to start qp%d!\n", i); 3178 3179 up_write(&qm->qps_lock); 3180 return ret; 3181 } 3182 qp->is_resetting = false; 3183 } 3184 } 3185 up_write(&qm->qps_lock); 3186 3187 return 0; 3188 } 3189 3190 /* Stop started qps in reset flow */ 3191 static int qm_stop_started_qp(struct hisi_qm *qm) 3192 { 3193 struct device *dev = &qm->pdev->dev; 3194 struct hisi_qp *qp; 3195 int i, ret; 3196 3197 for (i = 0; i < qm->qp_num; i++) { 3198 qp = &qm->qp_array[i]; 3199 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 3200 qp->is_resetting = true; 3201 ret = qm_stop_qp_nolock(qp); 3202 if (ret < 0) { 3203 dev_err(dev, "Failed to stop qp%d!\n", i); 3204 return ret; 3205 } 3206 } 3207 } 3208 3209 return 0; 3210 } 3211 3212 /** 3213 * qm_clear_queues() - Clear all queues memory in a qm. 3214 * @qm: The qm in which the queues will be cleared. 3215 * 3216 * This function clears all queues memory in a qm. Reset of accelerator can 3217 * use this to clear queues. 3218 */ 3219 static void qm_clear_queues(struct hisi_qm *qm) 3220 { 3221 struct hisi_qp *qp; 3222 int i; 3223 3224 for (i = 0; i < qm->qp_num; i++) { 3225 qp = &qm->qp_array[i]; 3226 if (qp->is_in_kernel && qp->is_resetting) 3227 memset(qp->qdma.va, 0, qp->qdma.size); 3228 } 3229 3230 memset(qm->qdma.va, 0, qm->qdma.size); 3231 } 3232 3233 /** 3234 * hisi_qm_stop() - Stop a qm. 3235 * @qm: The qm which will be stopped. 3236 * @r: The reason to stop qm. 3237 * 3238 * This function stops qm and its qps, then qm can not accept request. 3239 * Related resources are not released at this state, we can use hisi_qm_start 3240 * to let qm start again. 3241 */ 3242 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3243 { 3244 struct device *dev = &qm->pdev->dev; 3245 int ret = 0; 3246 3247 down_write(&qm->qps_lock); 3248 3249 qm->status.stop_reason = r; 3250 if (!qm_avail_state(qm, QM_STOP)) { 3251 ret = -EPERM; 3252 goto err_unlock; 3253 } 3254 3255 if (qm->status.stop_reason == QM_SOFT_RESET || 3256 qm->status.stop_reason == QM_DOWN) { 3257 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3258 ret = qm_stop_started_qp(qm); 3259 if (ret < 0) { 3260 dev_err(dev, "Failed to stop started qp!\n"); 3261 goto err_unlock; 3262 } 3263 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3264 } 3265 3266 qm_disable_eq_aeq_interrupts(qm); 3267 if (qm->fun_type == QM_HW_PF) { 3268 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3269 if (ret < 0) { 3270 dev_err(dev, "Failed to set vft!\n"); 3271 ret = -EBUSY; 3272 goto err_unlock; 3273 } 3274 } 3275 3276 qm_clear_queues(qm); 3277 atomic_set(&qm->status.flags, QM_STOP); 3278 3279 err_unlock: 3280 up_write(&qm->qps_lock); 3281 return ret; 3282 } 3283 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3284 3285 static void qm_hw_error_init(struct hisi_qm *qm) 3286 { 3287 if (!qm->ops->hw_error_init) { 3288 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3289 return; 3290 } 3291 3292 qm->ops->hw_error_init(qm); 3293 } 3294 3295 static void qm_hw_error_uninit(struct hisi_qm *qm) 3296 { 3297 if (!qm->ops->hw_error_uninit) { 3298 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3299 return; 3300 } 3301 3302 qm->ops->hw_error_uninit(qm); 3303 } 3304 3305 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3306 { 3307 if (!qm->ops->hw_error_handle) { 3308 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3309 return ACC_ERR_NONE; 3310 } 3311 3312 return qm->ops->hw_error_handle(qm); 3313 } 3314 3315 /** 3316 * hisi_qm_dev_err_init() - Initialize device error configuration. 3317 * @qm: The qm for which we want to do error initialization. 3318 * 3319 * Initialize QM and device error related configuration. 3320 */ 3321 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3322 { 3323 if (qm->fun_type == QM_HW_VF) 3324 return; 3325 3326 qm_hw_error_init(qm); 3327 3328 if (!qm->err_ini->hw_err_enable) { 3329 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3330 return; 3331 } 3332 qm->err_ini->hw_err_enable(qm); 3333 } 3334 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3335 3336 /** 3337 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3338 * @qm: The qm for which we want to do error uninitialization. 3339 * 3340 * Uninitialize QM and device error related configuration. 3341 */ 3342 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3343 { 3344 if (qm->fun_type == QM_HW_VF) 3345 return; 3346 3347 qm_hw_error_uninit(qm); 3348 3349 if (!qm->err_ini->hw_err_disable) { 3350 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3351 return; 3352 } 3353 qm->err_ini->hw_err_disable(qm); 3354 } 3355 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3356 3357 /** 3358 * hisi_qm_free_qps() - free multiple queue pairs. 3359 * @qps: The queue pairs need to be freed. 3360 * @qp_num: The num of queue pairs. 3361 */ 3362 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3363 { 3364 int i; 3365 3366 if (!qps || qp_num <= 0) 3367 return; 3368 3369 for (i = qp_num - 1; i >= 0; i--) 3370 hisi_qm_release_qp(qps[i]); 3371 } 3372 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3373 3374 static void free_list(struct list_head *head) 3375 { 3376 struct hisi_qm_resource *res, *tmp; 3377 3378 list_for_each_entry_safe(res, tmp, head, list) { 3379 list_del(&res->list); 3380 kfree(res); 3381 } 3382 } 3383 3384 static int hisi_qm_sort_devices(int node, struct list_head *head, 3385 struct hisi_qm_list *qm_list) 3386 { 3387 struct hisi_qm_resource *res, *tmp; 3388 struct hisi_qm *qm; 3389 struct list_head *n; 3390 struct device *dev; 3391 int dev_node; 3392 3393 list_for_each_entry(qm, &qm_list->list, list) { 3394 dev = &qm->pdev->dev; 3395 3396 dev_node = dev_to_node(dev); 3397 if (dev_node < 0) 3398 dev_node = 0; 3399 3400 res = kzalloc(sizeof(*res), GFP_KERNEL); 3401 if (!res) 3402 return -ENOMEM; 3403 3404 res->qm = qm; 3405 res->distance = node_distance(dev_node, node); 3406 n = head; 3407 list_for_each_entry(tmp, head, list) { 3408 if (res->distance < tmp->distance) { 3409 n = &tmp->list; 3410 break; 3411 } 3412 } 3413 list_add_tail(&res->list, n); 3414 } 3415 3416 return 0; 3417 } 3418 3419 /** 3420 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3421 * @qm_list: The list of all available devices. 3422 * @qp_num: The number of queue pairs need created. 3423 * @alg_type: The algorithm type. 3424 * @node: The numa node. 3425 * @qps: The queue pairs need created. 3426 * 3427 * This function will sort all available device according to numa distance. 3428 * Then try to create all queue pairs from one device, if all devices do 3429 * not meet the requirements will return error. 3430 */ 3431 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3432 u8 alg_type, int node, struct hisi_qp **qps) 3433 { 3434 struct hisi_qm_resource *tmp; 3435 int ret = -ENODEV; 3436 LIST_HEAD(head); 3437 int i; 3438 3439 if (!qps || !qm_list || qp_num <= 0) 3440 return -EINVAL; 3441 3442 mutex_lock(&qm_list->lock); 3443 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3444 mutex_unlock(&qm_list->lock); 3445 goto err; 3446 } 3447 3448 list_for_each_entry(tmp, &head, list) { 3449 for (i = 0; i < qp_num; i++) { 3450 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3451 if (IS_ERR(qps[i])) { 3452 hisi_qm_free_qps(qps, i); 3453 break; 3454 } 3455 } 3456 3457 if (i == qp_num) { 3458 ret = 0; 3459 break; 3460 } 3461 } 3462 3463 mutex_unlock(&qm_list->lock); 3464 if (ret) 3465 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3466 node, alg_type, qp_num); 3467 3468 err: 3469 free_list(&head); 3470 return ret; 3471 } 3472 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3473 3474 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3475 { 3476 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3477 u32 max_qp_num = qm->max_qp_num; 3478 u32 q_base = qm->qp_num; 3479 int ret; 3480 3481 if (!num_vfs) 3482 return -EINVAL; 3483 3484 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3485 3486 /* If vfs_q_num is less than num_vfs, return error. */ 3487 if (vfs_q_num < num_vfs) 3488 return -EINVAL; 3489 3490 q_num = vfs_q_num / num_vfs; 3491 remain_q_num = vfs_q_num % num_vfs; 3492 3493 for (i = num_vfs; i > 0; i--) { 3494 /* 3495 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3496 * remaining queues equally. 3497 */ 3498 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3499 act_q_num = q_num + remain_q_num; 3500 remain_q_num = 0; 3501 } else if (remain_q_num > 0) { 3502 act_q_num = q_num + 1; 3503 remain_q_num--; 3504 } else { 3505 act_q_num = q_num; 3506 } 3507 3508 act_q_num = min(act_q_num, max_qp_num); 3509 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3510 if (ret) { 3511 for (j = num_vfs; j > i; j--) 3512 hisi_qm_set_vft(qm, j, 0, 0); 3513 return ret; 3514 } 3515 q_base += act_q_num; 3516 } 3517 3518 return 0; 3519 } 3520 3521 static int qm_clear_vft_config(struct hisi_qm *qm) 3522 { 3523 int ret; 3524 u32 i; 3525 3526 for (i = 1; i <= qm->vfs_num; i++) { 3527 ret = hisi_qm_set_vft(qm, i, 0, 0); 3528 if (ret) 3529 return ret; 3530 } 3531 qm->vfs_num = 0; 3532 3533 return 0; 3534 } 3535 3536 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 3537 { 3538 struct device *dev = &qm->pdev->dev; 3539 u32 ir = qos * QM_QOS_RATE; 3540 int ret, total_vfs, i; 3541 3542 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 3543 if (fun_index > total_vfs) 3544 return -EINVAL; 3545 3546 qm->factor[fun_index].func_qos = qos; 3547 3548 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 3549 if (ret) { 3550 dev_err(dev, "failed to calculate shaper parameter!\n"); 3551 return -EINVAL; 3552 } 3553 3554 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 3555 /* The base number of queue reuse for different alg type */ 3556 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 3557 if (ret) { 3558 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 3559 return -EINVAL; 3560 } 3561 } 3562 3563 return 0; 3564 } 3565 3566 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 3567 { 3568 u64 cir_u = 0, cir_b = 0, cir_s = 0; 3569 u64 shaper_vft, ir_calc, ir; 3570 unsigned int val; 3571 u32 error_rate; 3572 int ret; 3573 3574 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3575 val & BIT(0), POLL_PERIOD, 3576 POLL_TIMEOUT); 3577 if (ret) 3578 return 0; 3579 3580 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 3581 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 3582 writel(fun_index, qm->io_base + QM_VFT_CFG); 3583 3584 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 3585 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 3586 3587 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3588 val & BIT(0), POLL_PERIOD, 3589 POLL_TIMEOUT); 3590 if (ret) 3591 return 0; 3592 3593 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 3594 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 3595 3596 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 3597 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 3598 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 3599 3600 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 3601 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 3602 3603 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 3604 3605 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 3606 3607 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 3608 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 3609 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 3610 return 0; 3611 } 3612 3613 return ir; 3614 } 3615 3616 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 3617 { 3618 struct device *dev = &qm->pdev->dev; 3619 u64 mb_cmd; 3620 u32 qos; 3621 int ret; 3622 3623 qos = qm_get_shaper_vft_qos(qm, fun_num); 3624 if (!qos) { 3625 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 3626 return; 3627 } 3628 3629 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 3630 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 3631 if (ret) 3632 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 3633 } 3634 3635 static int qm_vf_read_qos(struct hisi_qm *qm) 3636 { 3637 int cnt = 0; 3638 int ret = -EINVAL; 3639 3640 /* reset mailbox qos val */ 3641 qm->mb_qos = 0; 3642 3643 /* vf ping pf to get function qos */ 3644 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 3645 if (ret) { 3646 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 3647 return ret; 3648 } 3649 3650 while (true) { 3651 msleep(QM_WAIT_DST_ACK); 3652 if (qm->mb_qos) 3653 break; 3654 3655 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 3656 pci_err(qm->pdev, "PF ping VF timeout!\n"); 3657 return -ETIMEDOUT; 3658 } 3659 } 3660 3661 return ret; 3662 } 3663 3664 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 3665 size_t count, loff_t *pos) 3666 { 3667 struct hisi_qm *qm = filp->private_data; 3668 char tbuf[QM_DBG_READ_LEN]; 3669 u32 qos_val, ir; 3670 int ret; 3671 3672 ret = hisi_qm_get_dfx_access(qm); 3673 if (ret) 3674 return ret; 3675 3676 /* Mailbox and reset cannot be operated at the same time */ 3677 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3678 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 3679 ret = -EAGAIN; 3680 goto err_put_dfx_access; 3681 } 3682 3683 if (qm->fun_type == QM_HW_PF) { 3684 ir = qm_get_shaper_vft_qos(qm, 0); 3685 } else { 3686 ret = qm_vf_read_qos(qm); 3687 if (ret) 3688 goto err_get_status; 3689 ir = qm->mb_qos; 3690 } 3691 3692 qos_val = ir / QM_QOS_RATE; 3693 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 3694 3695 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 3696 3697 err_get_status: 3698 clear_bit(QM_RESETTING, &qm->misc_ctl); 3699 err_put_dfx_access: 3700 hisi_qm_put_dfx_access(qm); 3701 return ret; 3702 } 3703 3704 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 3705 unsigned long *val, 3706 unsigned int *fun_index) 3707 { 3708 const struct bus_type *bus_type = qm->pdev->dev.bus; 3709 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 3710 char val_buf[QM_DBG_READ_LEN] = {0}; 3711 struct pci_dev *pdev; 3712 struct device *dev; 3713 int ret; 3714 3715 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 3716 if (ret != QM_QOS_PARAM_NUM) 3717 return -EINVAL; 3718 3719 ret = kstrtoul(val_buf, 10, val); 3720 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 3721 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 3722 return -EINVAL; 3723 } 3724 3725 dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); 3726 if (!dev) { 3727 pci_err(qm->pdev, "input pci bdf number is error!\n"); 3728 return -ENODEV; 3729 } 3730 3731 pdev = container_of(dev, struct pci_dev, dev); 3732 3733 *fun_index = pdev->devfn; 3734 3735 return 0; 3736 } 3737 3738 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 3739 size_t count, loff_t *pos) 3740 { 3741 struct hisi_qm *qm = filp->private_data; 3742 char tbuf[QM_DBG_READ_LEN]; 3743 unsigned int fun_index; 3744 unsigned long val; 3745 int len, ret; 3746 3747 if (*pos != 0) 3748 return 0; 3749 3750 if (count >= QM_DBG_READ_LEN) 3751 return -ENOSPC; 3752 3753 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 3754 if (len < 0) 3755 return len; 3756 3757 tbuf[len] = '\0'; 3758 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 3759 if (ret) 3760 return ret; 3761 3762 /* Mailbox and reset cannot be operated at the same time */ 3763 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3764 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 3765 return -EAGAIN; 3766 } 3767 3768 ret = qm_pm_get_sync(qm); 3769 if (ret) { 3770 ret = -EINVAL; 3771 goto err_get_status; 3772 } 3773 3774 ret = qm_func_shaper_enable(qm, fun_index, val); 3775 if (ret) { 3776 pci_err(qm->pdev, "failed to enable function shaper!\n"); 3777 ret = -EINVAL; 3778 goto err_put_sync; 3779 } 3780 3781 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 3782 fun_index, val); 3783 ret = count; 3784 3785 err_put_sync: 3786 qm_pm_put_sync(qm); 3787 err_get_status: 3788 clear_bit(QM_RESETTING, &qm->misc_ctl); 3789 return ret; 3790 } 3791 3792 static const struct file_operations qm_algqos_fops = { 3793 .owner = THIS_MODULE, 3794 .open = simple_open, 3795 .read = qm_algqos_read, 3796 .write = qm_algqos_write, 3797 }; 3798 3799 /** 3800 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 3801 * @qm: The qm for which we want to add debugfs files. 3802 * 3803 * Create function qos debugfs files, VF ping PF to get function qos. 3804 */ 3805 void hisi_qm_set_algqos_init(struct hisi_qm *qm) 3806 { 3807 if (qm->fun_type == QM_HW_PF) 3808 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 3809 qm, &qm_algqos_fops); 3810 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3811 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 3812 qm, &qm_algqos_fops); 3813 } 3814 3815 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 3816 { 3817 int i; 3818 3819 for (i = 1; i <= total_func; i++) 3820 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 3821 } 3822 3823 /** 3824 * hisi_qm_sriov_enable() - enable virtual functions 3825 * @pdev: the PCIe device 3826 * @max_vfs: the number of virtual functions to enable 3827 * 3828 * Returns the number of enabled VFs. If there are VFs enabled already or 3829 * max_vfs is more than the total number of device can be enabled, returns 3830 * failure. 3831 */ 3832 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3833 { 3834 struct hisi_qm *qm = pci_get_drvdata(pdev); 3835 int pre_existing_vfs, num_vfs, total_vfs, ret; 3836 3837 ret = qm_pm_get_sync(qm); 3838 if (ret) 3839 return ret; 3840 3841 total_vfs = pci_sriov_get_totalvfs(pdev); 3842 pre_existing_vfs = pci_num_vf(pdev); 3843 if (pre_existing_vfs) { 3844 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3845 pre_existing_vfs); 3846 goto err_put_sync; 3847 } 3848 3849 if (max_vfs > total_vfs) { 3850 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 3851 ret = -ERANGE; 3852 goto err_put_sync; 3853 } 3854 3855 num_vfs = max_vfs; 3856 3857 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3858 hisi_qm_init_vf_qos(qm, num_vfs); 3859 3860 ret = qm_vf_q_assign(qm, num_vfs); 3861 if (ret) { 3862 pci_err(pdev, "Can't assign queues for VF!\n"); 3863 goto err_put_sync; 3864 } 3865 3866 qm->vfs_num = num_vfs; 3867 3868 ret = pci_enable_sriov(pdev, num_vfs); 3869 if (ret) { 3870 pci_err(pdev, "Can't enable VF!\n"); 3871 qm_clear_vft_config(qm); 3872 goto err_put_sync; 3873 } 3874 3875 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3876 3877 return num_vfs; 3878 3879 err_put_sync: 3880 qm_pm_put_sync(qm); 3881 return ret; 3882 } 3883 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3884 3885 /** 3886 * hisi_qm_sriov_disable - disable virtual functions 3887 * @pdev: the PCI device. 3888 * @is_frozen: true when all the VFs are frozen. 3889 * 3890 * Return failure if there are VFs assigned already or VF is in used. 3891 */ 3892 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3893 { 3894 struct hisi_qm *qm = pci_get_drvdata(pdev); 3895 int ret; 3896 3897 if (pci_vfs_assigned(pdev)) { 3898 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3899 return -EPERM; 3900 } 3901 3902 /* While VF is in used, SRIOV cannot be disabled. */ 3903 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 3904 pci_err(pdev, "Task is using its VF!\n"); 3905 return -EBUSY; 3906 } 3907 3908 pci_disable_sriov(pdev); 3909 3910 ret = qm_clear_vft_config(qm); 3911 if (ret) 3912 return ret; 3913 3914 qm_pm_put_sync(qm); 3915 3916 return 0; 3917 } 3918 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 3919 3920 /** 3921 * hisi_qm_sriov_configure - configure the number of VFs 3922 * @pdev: The PCI device 3923 * @num_vfs: The number of VFs need enabled 3924 * 3925 * Enable SR-IOV according to num_vfs, 0 means disable. 3926 */ 3927 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 3928 { 3929 if (num_vfs == 0) 3930 return hisi_qm_sriov_disable(pdev, false); 3931 else 3932 return hisi_qm_sriov_enable(pdev, num_vfs); 3933 } 3934 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 3935 3936 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 3937 { 3938 u32 err_sts; 3939 3940 if (!qm->err_ini->get_dev_hw_err_status) { 3941 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 3942 return ACC_ERR_NONE; 3943 } 3944 3945 /* get device hardware error status */ 3946 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 3947 if (err_sts) { 3948 if (err_sts & qm->err_info.ecc_2bits_mask) 3949 qm->err_status.is_dev_ecc_mbit = true; 3950 3951 if (qm->err_ini->log_dev_hw_err) 3952 qm->err_ini->log_dev_hw_err(qm, err_sts); 3953 3954 if (err_sts & qm->err_info.dev_reset_mask) 3955 return ACC_ERR_NEED_RESET; 3956 3957 if (qm->err_ini->clear_dev_hw_err_status) 3958 qm->err_ini->clear_dev_hw_err_status(qm, err_sts); 3959 } 3960 3961 return ACC_ERR_RECOVERED; 3962 } 3963 3964 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 3965 { 3966 enum acc_err_result qm_ret, dev_ret; 3967 3968 /* log qm error */ 3969 qm_ret = qm_hw_error_handle(qm); 3970 3971 /* log device error */ 3972 dev_ret = qm_dev_err_handle(qm); 3973 3974 return (qm_ret == ACC_ERR_NEED_RESET || 3975 dev_ret == ACC_ERR_NEED_RESET) ? 3976 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 3977 } 3978 3979 /** 3980 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 3981 * @pdev: The PCI device which need report error. 3982 * @state: The connectivity between CPU and device. 3983 * 3984 * We register this function into PCIe AER handlers, It will report device or 3985 * qm hardware error status when error occur. 3986 */ 3987 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 3988 pci_channel_state_t state) 3989 { 3990 struct hisi_qm *qm = pci_get_drvdata(pdev); 3991 enum acc_err_result ret; 3992 3993 if (pdev->is_virtfn) 3994 return PCI_ERS_RESULT_NONE; 3995 3996 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 3997 if (state == pci_channel_io_perm_failure) 3998 return PCI_ERS_RESULT_DISCONNECT; 3999 4000 ret = qm_process_dev_error(qm); 4001 if (ret == ACC_ERR_NEED_RESET) 4002 return PCI_ERS_RESULT_NEED_RESET; 4003 4004 return PCI_ERS_RESULT_RECOVERED; 4005 } 4006 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 4007 4008 static int qm_check_req_recv(struct hisi_qm *qm) 4009 { 4010 struct pci_dev *pdev = qm->pdev; 4011 int ret; 4012 u32 val; 4013 4014 if (qm->ver >= QM_HW_V3) 4015 return 0; 4016 4017 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 4018 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4019 (val == ACC_VENDOR_ID_VALUE), 4020 POLL_PERIOD, POLL_TIMEOUT); 4021 if (ret) { 4022 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 4023 return ret; 4024 } 4025 4026 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 4027 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4028 (val == PCI_VENDOR_ID_HUAWEI), 4029 POLL_PERIOD, POLL_TIMEOUT); 4030 if (ret) 4031 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 4032 4033 return ret; 4034 } 4035 4036 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 4037 { 4038 struct pci_dev *pdev = qm->pdev; 4039 u16 cmd; 4040 int i; 4041 4042 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4043 if (set) 4044 cmd |= PCI_COMMAND_MEMORY; 4045 else 4046 cmd &= ~PCI_COMMAND_MEMORY; 4047 4048 pci_write_config_word(pdev, PCI_COMMAND, cmd); 4049 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4050 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4051 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 4052 return 0; 4053 4054 udelay(1); 4055 } 4056 4057 return -ETIMEDOUT; 4058 } 4059 4060 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 4061 { 4062 struct pci_dev *pdev = qm->pdev; 4063 u16 sriov_ctrl; 4064 int pos; 4065 int i; 4066 4067 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 4068 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4069 if (set) 4070 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4071 else 4072 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4073 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4074 4075 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4076 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4077 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4078 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4079 return 0; 4080 4081 udelay(1); 4082 } 4083 4084 return -ETIMEDOUT; 4085 } 4086 4087 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4088 enum qm_stop_reason stop_reason) 4089 { 4090 struct hisi_qm_list *qm_list = qm->qm_list; 4091 struct pci_dev *pdev = qm->pdev; 4092 struct pci_dev *virtfn; 4093 struct hisi_qm *vf_qm; 4094 int ret = 0; 4095 4096 mutex_lock(&qm_list->lock); 4097 list_for_each_entry(vf_qm, &qm_list->list, list) { 4098 virtfn = vf_qm->pdev; 4099 if (virtfn == pdev) 4100 continue; 4101 4102 if (pci_physfn(virtfn) == pdev) { 4103 /* save VFs PCIE BAR configuration */ 4104 pci_save_state(virtfn); 4105 4106 ret = hisi_qm_stop(vf_qm, stop_reason); 4107 if (ret) 4108 goto stop_fail; 4109 } 4110 } 4111 4112 stop_fail: 4113 mutex_unlock(&qm_list->lock); 4114 return ret; 4115 } 4116 4117 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 4118 enum qm_stop_reason stop_reason) 4119 { 4120 struct pci_dev *pdev = qm->pdev; 4121 int ret; 4122 4123 if (!qm->vfs_num) 4124 return 0; 4125 4126 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4127 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4128 ret = qm_ping_all_vfs(qm, cmd); 4129 if (ret) 4130 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 4131 } else { 4132 ret = qm_vf_reset_prepare(qm, stop_reason); 4133 if (ret) 4134 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4135 } 4136 4137 return ret; 4138 } 4139 4140 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4141 { 4142 struct pci_dev *pdev = qm->pdev; 4143 int ret; 4144 4145 ret = qm_reset_prepare_ready(qm); 4146 if (ret) { 4147 pci_err(pdev, "Controller reset not ready!\n"); 4148 return ret; 4149 } 4150 4151 /* PF obtains the information of VF by querying the register. */ 4152 qm_cmd_uninit(qm); 4153 4154 /* Whether VFs stop successfully, soft reset will continue. */ 4155 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4156 if (ret) 4157 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4158 4159 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4160 if (ret) { 4161 pci_err(pdev, "Fails to stop QM!\n"); 4162 qm_reset_bit_clear(qm); 4163 return ret; 4164 } 4165 4166 if (qm->use_sva) { 4167 ret = qm_hw_err_isolate(qm); 4168 if (ret) 4169 pci_err(pdev, "failed to isolate hw err!\n"); 4170 } 4171 4172 ret = qm_wait_vf_prepare_finish(qm); 4173 if (ret) 4174 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4175 4176 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4177 4178 return 0; 4179 } 4180 4181 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4182 { 4183 u32 nfe_enb = 0; 4184 4185 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4186 if (qm->ver >= QM_HW_V3) 4187 return; 4188 4189 if (!qm->err_status.is_dev_ecc_mbit && 4190 qm->err_status.is_qm_ecc_mbit && 4191 qm->err_ini->close_axi_master_ooo) { 4192 qm->err_ini->close_axi_master_ooo(qm); 4193 } else if (qm->err_status.is_dev_ecc_mbit && 4194 !qm->err_status.is_qm_ecc_mbit && 4195 !qm->err_ini->close_axi_master_ooo) { 4196 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4197 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4198 qm->io_base + QM_RAS_NFE_ENABLE); 4199 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4200 } 4201 } 4202 4203 static int qm_soft_reset(struct hisi_qm *qm) 4204 { 4205 struct pci_dev *pdev = qm->pdev; 4206 int ret; 4207 u32 val; 4208 4209 /* Ensure all doorbells and mailboxes received by QM */ 4210 ret = qm_check_req_recv(qm); 4211 if (ret) 4212 return ret; 4213 4214 if (qm->vfs_num) { 4215 ret = qm_set_vf_mse(qm, false); 4216 if (ret) { 4217 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4218 return ret; 4219 } 4220 } 4221 4222 ret = qm->ops->set_msi(qm, false); 4223 if (ret) { 4224 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4225 return ret; 4226 } 4227 4228 qm_dev_ecc_mbit_handle(qm); 4229 4230 /* OOO register set and check */ 4231 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 4232 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4233 4234 /* If bus lock, reset chip */ 4235 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4236 val, 4237 (val == ACC_MASTER_TRANS_RETURN_RW), 4238 POLL_PERIOD, POLL_TIMEOUT); 4239 if (ret) { 4240 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 4241 return ret; 4242 } 4243 4244 if (qm->err_ini->close_sva_prefetch) 4245 qm->err_ini->close_sva_prefetch(qm); 4246 4247 ret = qm_set_pf_mse(qm, false); 4248 if (ret) { 4249 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4250 return ret; 4251 } 4252 4253 /* The reset related sub-control registers are not in PCI BAR */ 4254 if (ACPI_HANDLE(&pdev->dev)) { 4255 unsigned long long value = 0; 4256 acpi_status s; 4257 4258 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4259 qm->err_info.acpi_rst, 4260 NULL, &value); 4261 if (ACPI_FAILURE(s)) { 4262 pci_err(pdev, "NO controller reset method!\n"); 4263 return -EIO; 4264 } 4265 4266 if (value) { 4267 pci_err(pdev, "Reset step %llu failed!\n", value); 4268 return -EIO; 4269 } 4270 } else { 4271 pci_err(pdev, "No reset method!\n"); 4272 return -EINVAL; 4273 } 4274 4275 return 0; 4276 } 4277 4278 static int qm_vf_reset_done(struct hisi_qm *qm) 4279 { 4280 struct hisi_qm_list *qm_list = qm->qm_list; 4281 struct pci_dev *pdev = qm->pdev; 4282 struct pci_dev *virtfn; 4283 struct hisi_qm *vf_qm; 4284 int ret = 0; 4285 4286 mutex_lock(&qm_list->lock); 4287 list_for_each_entry(vf_qm, &qm_list->list, list) { 4288 virtfn = vf_qm->pdev; 4289 if (virtfn == pdev) 4290 continue; 4291 4292 if (pci_physfn(virtfn) == pdev) { 4293 /* enable VFs PCIE BAR configuration */ 4294 pci_restore_state(virtfn); 4295 4296 ret = qm_restart(vf_qm); 4297 if (ret) 4298 goto restart_fail; 4299 } 4300 } 4301 4302 restart_fail: 4303 mutex_unlock(&qm_list->lock); 4304 return ret; 4305 } 4306 4307 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 4308 { 4309 struct pci_dev *pdev = qm->pdev; 4310 int ret; 4311 4312 if (!qm->vfs_num) 4313 return 0; 4314 4315 ret = qm_vf_q_assign(qm, qm->vfs_num); 4316 if (ret) { 4317 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4318 return ret; 4319 } 4320 4321 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4322 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4323 ret = qm_ping_all_vfs(qm, cmd); 4324 if (ret) 4325 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4326 } else { 4327 ret = qm_vf_reset_done(qm); 4328 if (ret) 4329 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4330 } 4331 4332 return ret; 4333 } 4334 4335 static int qm_dev_hw_init(struct hisi_qm *qm) 4336 { 4337 return qm->err_ini->hw_init(qm); 4338 } 4339 4340 static void qm_restart_prepare(struct hisi_qm *qm) 4341 { 4342 u32 value; 4343 4344 if (qm->err_ini->open_sva_prefetch) 4345 qm->err_ini->open_sva_prefetch(qm); 4346 4347 if (qm->ver >= QM_HW_V3) 4348 return; 4349 4350 if (!qm->err_status.is_qm_ecc_mbit && 4351 !qm->err_status.is_dev_ecc_mbit) 4352 return; 4353 4354 /* temporarily close the OOO port used for PEH to write out MSI */ 4355 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4356 writel(value & ~qm->err_info.msi_wr_port, 4357 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4358 4359 /* clear dev ecc 2bit error source if having */ 4360 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 4361 if (value && qm->err_ini->clear_dev_hw_err_status) 4362 qm->err_ini->clear_dev_hw_err_status(qm, value); 4363 4364 /* clear QM ecc mbit error source */ 4365 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4366 4367 /* clear AM Reorder Buffer ecc mbit source */ 4368 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4369 } 4370 4371 static void qm_restart_done(struct hisi_qm *qm) 4372 { 4373 u32 value; 4374 4375 if (qm->ver >= QM_HW_V3) 4376 goto clear_flags; 4377 4378 if (!qm->err_status.is_qm_ecc_mbit && 4379 !qm->err_status.is_dev_ecc_mbit) 4380 return; 4381 4382 /* open the OOO port for PEH to write out MSI */ 4383 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4384 value |= qm->err_info.msi_wr_port; 4385 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4386 4387 clear_flags: 4388 qm->err_status.is_qm_ecc_mbit = false; 4389 qm->err_status.is_dev_ecc_mbit = false; 4390 } 4391 4392 static int qm_controller_reset_done(struct hisi_qm *qm) 4393 { 4394 struct pci_dev *pdev = qm->pdev; 4395 int ret; 4396 4397 ret = qm->ops->set_msi(qm, true); 4398 if (ret) { 4399 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4400 return ret; 4401 } 4402 4403 ret = qm_set_pf_mse(qm, true); 4404 if (ret) { 4405 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4406 return ret; 4407 } 4408 4409 if (qm->vfs_num) { 4410 ret = qm_set_vf_mse(qm, true); 4411 if (ret) { 4412 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 4413 return ret; 4414 } 4415 } 4416 4417 ret = qm_dev_hw_init(qm); 4418 if (ret) { 4419 pci_err(pdev, "Failed to init device\n"); 4420 return ret; 4421 } 4422 4423 qm_restart_prepare(qm); 4424 hisi_qm_dev_err_init(qm); 4425 if (qm->err_ini->open_axi_master_ooo) 4426 qm->err_ini->open_axi_master_ooo(qm); 4427 4428 ret = qm_dev_mem_reset(qm); 4429 if (ret) { 4430 pci_err(pdev, "failed to reset device memory\n"); 4431 return ret; 4432 } 4433 4434 ret = qm_restart(qm); 4435 if (ret) { 4436 pci_err(pdev, "Failed to start QM!\n"); 4437 return ret; 4438 } 4439 4440 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4441 if (ret) 4442 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 4443 4444 ret = qm_wait_vf_prepare_finish(qm); 4445 if (ret) 4446 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 4447 4448 qm_cmd_init(qm); 4449 qm_restart_done(qm); 4450 4451 qm_reset_bit_clear(qm); 4452 4453 return 0; 4454 } 4455 4456 static int qm_controller_reset(struct hisi_qm *qm) 4457 { 4458 struct pci_dev *pdev = qm->pdev; 4459 int ret; 4460 4461 pci_info(pdev, "Controller resetting...\n"); 4462 4463 ret = qm_controller_reset_prepare(qm); 4464 if (ret) { 4465 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4466 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4467 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4468 return ret; 4469 } 4470 4471 hisi_qm_show_last_dfx_regs(qm); 4472 if (qm->err_ini->show_last_dfx_regs) 4473 qm->err_ini->show_last_dfx_regs(qm); 4474 4475 ret = qm_soft_reset(qm); 4476 if (ret) 4477 goto err_reset; 4478 4479 ret = qm_controller_reset_done(qm); 4480 if (ret) 4481 goto err_reset; 4482 4483 pci_info(pdev, "Controller reset complete\n"); 4484 4485 return 0; 4486 4487 err_reset: 4488 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4489 qm_reset_bit_clear(qm); 4490 4491 /* if resetting fails, isolate the device */ 4492 if (qm->use_sva) 4493 qm->isolate_data.is_isolate = true; 4494 return ret; 4495 } 4496 4497 /** 4498 * hisi_qm_dev_slot_reset() - slot reset 4499 * @pdev: the PCIe device 4500 * 4501 * This function offers QM relate PCIe device reset interface. Drivers which 4502 * use QM can use this function as slot_reset in its struct pci_error_handlers. 4503 */ 4504 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 4505 { 4506 struct hisi_qm *qm = pci_get_drvdata(pdev); 4507 int ret; 4508 4509 if (pdev->is_virtfn) 4510 return PCI_ERS_RESULT_RECOVERED; 4511 4512 /* reset pcie device controller */ 4513 ret = qm_controller_reset(qm); 4514 if (ret) { 4515 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4516 return PCI_ERS_RESULT_DISCONNECT; 4517 } 4518 4519 return PCI_ERS_RESULT_RECOVERED; 4520 } 4521 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4522 4523 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4524 { 4525 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4526 struct hisi_qm *qm = pci_get_drvdata(pdev); 4527 u32 delay = 0; 4528 int ret; 4529 4530 hisi_qm_dev_err_uninit(pf_qm); 4531 4532 /* 4533 * Check whether there is an ECC mbit error, If it occurs, need to 4534 * wait for soft reset to fix it. 4535 */ 4536 while (qm_check_dev_error(pf_qm)) { 4537 msleep(++delay); 4538 if (delay > QM_RESET_WAIT_TIMEOUT) 4539 return; 4540 } 4541 4542 ret = qm_reset_prepare_ready(qm); 4543 if (ret) { 4544 pci_err(pdev, "FLR not ready!\n"); 4545 return; 4546 } 4547 4548 /* PF obtains the information of VF by querying the register. */ 4549 if (qm->fun_type == QM_HW_PF) 4550 qm_cmd_uninit(qm); 4551 4552 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN); 4553 if (ret) 4554 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 4555 4556 ret = hisi_qm_stop(qm, QM_DOWN); 4557 if (ret) { 4558 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4559 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4560 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4561 return; 4562 } 4563 4564 ret = qm_wait_vf_prepare_finish(qm); 4565 if (ret) 4566 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 4567 4568 pci_info(pdev, "FLR resetting...\n"); 4569 } 4570 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4571 4572 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4573 { 4574 struct pci_dev *pf_pdev = pci_physfn(pdev); 4575 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4576 u32 id; 4577 4578 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4579 if (id == QM_PCI_COMMAND_INVALID) { 4580 pci_err(pdev, "Device can not be used!\n"); 4581 return false; 4582 } 4583 4584 return true; 4585 } 4586 4587 void hisi_qm_reset_done(struct pci_dev *pdev) 4588 { 4589 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4590 struct hisi_qm *qm = pci_get_drvdata(pdev); 4591 int ret; 4592 4593 if (qm->fun_type == QM_HW_PF) { 4594 ret = qm_dev_hw_init(qm); 4595 if (ret) { 4596 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4597 goto flr_done; 4598 } 4599 } 4600 4601 hisi_qm_dev_err_init(pf_qm); 4602 4603 ret = qm_restart(qm); 4604 if (ret) { 4605 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4606 goto flr_done; 4607 } 4608 4609 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4610 if (ret) 4611 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 4612 4613 ret = qm_wait_vf_prepare_finish(qm); 4614 if (ret) 4615 pci_err(pdev, "failed to start by vfs in FLR!\n"); 4616 4617 flr_done: 4618 if (qm->fun_type == QM_HW_PF) 4619 qm_cmd_init(qm); 4620 4621 if (qm_flr_reset_complete(pdev)) 4622 pci_info(pdev, "FLR reset complete\n"); 4623 4624 qm_reset_bit_clear(qm); 4625 } 4626 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4627 4628 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4629 { 4630 struct hisi_qm *qm = data; 4631 enum acc_err_result ret; 4632 4633 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4634 ret = qm_process_dev_error(qm); 4635 if (ret == ACC_ERR_NEED_RESET && 4636 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4637 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4638 schedule_work(&qm->rst_work); 4639 4640 return IRQ_HANDLED; 4641 } 4642 4643 /** 4644 * hisi_qm_dev_shutdown() - Shutdown device. 4645 * @pdev: The device will be shutdown. 4646 * 4647 * This function will stop qm when OS shutdown or rebooting. 4648 */ 4649 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4650 { 4651 struct hisi_qm *qm = pci_get_drvdata(pdev); 4652 int ret; 4653 4654 ret = hisi_qm_stop(qm, QM_DOWN); 4655 if (ret) 4656 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4657 4658 hisi_qm_cache_wb(qm); 4659 } 4660 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4661 4662 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4663 { 4664 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4665 int ret; 4666 4667 ret = qm_pm_get_sync(qm); 4668 if (ret) { 4669 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4670 return; 4671 } 4672 4673 /* reset pcie device controller */ 4674 ret = qm_controller_reset(qm); 4675 if (ret) 4676 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4677 4678 qm_pm_put_sync(qm); 4679 } 4680 4681 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 4682 enum qm_stop_reason stop_reason) 4683 { 4684 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 4685 struct pci_dev *pdev = qm->pdev; 4686 int ret; 4687 4688 ret = qm_reset_prepare_ready(qm); 4689 if (ret) { 4690 dev_err(&pdev->dev, "reset prepare not ready!\n"); 4691 atomic_set(&qm->status.flags, QM_STOP); 4692 cmd = QM_VF_PREPARE_FAIL; 4693 goto err_prepare; 4694 } 4695 4696 ret = hisi_qm_stop(qm, stop_reason); 4697 if (ret) { 4698 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 4699 atomic_set(&qm->status.flags, QM_STOP); 4700 cmd = QM_VF_PREPARE_FAIL; 4701 goto err_prepare; 4702 } else { 4703 goto out; 4704 } 4705 4706 err_prepare: 4707 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4708 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4709 out: 4710 pci_save_state(pdev); 4711 ret = qm_ping_pf(qm, cmd); 4712 if (ret) 4713 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 4714 } 4715 4716 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 4717 { 4718 enum qm_mb_cmd cmd = QM_VF_START_DONE; 4719 struct pci_dev *pdev = qm->pdev; 4720 int ret; 4721 4722 pci_restore_state(pdev); 4723 ret = hisi_qm_start(qm); 4724 if (ret) { 4725 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 4726 cmd = QM_VF_START_FAIL; 4727 } 4728 4729 qm_cmd_init(qm); 4730 ret = qm_ping_pf(qm, cmd); 4731 if (ret) 4732 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 4733 4734 qm_reset_bit_clear(qm); 4735 } 4736 4737 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 4738 { 4739 struct device *dev = &qm->pdev->dev; 4740 u32 val, cmd; 4741 u64 msg; 4742 int ret; 4743 4744 /* Wait for reset to finish */ 4745 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 4746 val == BIT(0), QM_VF_RESET_WAIT_US, 4747 QM_VF_RESET_WAIT_TIMEOUT_US); 4748 /* hardware completion status should be available by this time */ 4749 if (ret) { 4750 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 4751 return -ETIMEDOUT; 4752 } 4753 4754 /* 4755 * Whether message is got successfully, 4756 * VF needs to ack PF by clearing the interrupt. 4757 */ 4758 ret = qm_get_mb_cmd(qm, &msg, 0); 4759 qm_clear_cmd_interrupt(qm, 0); 4760 if (ret) { 4761 dev_err(dev, "failed to get msg from PF in reset done!\n"); 4762 return ret; 4763 } 4764 4765 cmd = msg & QM_MB_CMD_DATA_MASK; 4766 if (cmd != QM_PF_RESET_DONE) { 4767 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 4768 ret = -EINVAL; 4769 } 4770 4771 return ret; 4772 } 4773 4774 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 4775 enum qm_stop_reason stop_reason) 4776 { 4777 struct device *dev = &qm->pdev->dev; 4778 int ret; 4779 4780 dev_info(dev, "device reset start...\n"); 4781 4782 /* The message is obtained by querying the register during resetting */ 4783 qm_cmd_uninit(qm); 4784 qm_pf_reset_vf_prepare(qm, stop_reason); 4785 4786 ret = qm_wait_pf_reset_finish(qm); 4787 if (ret) 4788 goto err_get_status; 4789 4790 qm_pf_reset_vf_done(qm); 4791 4792 dev_info(dev, "device reset done.\n"); 4793 4794 return; 4795 4796 err_get_status: 4797 qm_cmd_init(qm); 4798 qm_reset_bit_clear(qm); 4799 } 4800 4801 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 4802 { 4803 struct device *dev = &qm->pdev->dev; 4804 u64 msg; 4805 u32 cmd; 4806 int ret; 4807 4808 /* 4809 * Get the msg from source by sending mailbox. Whether message is got 4810 * successfully, destination needs to ack source by clearing the interrupt. 4811 */ 4812 ret = qm_get_mb_cmd(qm, &msg, fun_num); 4813 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 4814 if (ret) { 4815 dev_err(dev, "failed to get msg from source!\n"); 4816 return; 4817 } 4818 4819 cmd = msg & QM_MB_CMD_DATA_MASK; 4820 switch (cmd) { 4821 case QM_PF_FLR_PREPARE: 4822 qm_pf_reset_vf_process(qm, QM_DOWN); 4823 break; 4824 case QM_PF_SRST_PREPARE: 4825 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 4826 break; 4827 case QM_VF_GET_QOS: 4828 qm_vf_get_qos(qm, fun_num); 4829 break; 4830 case QM_PF_SET_QOS: 4831 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 4832 break; 4833 default: 4834 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 4835 break; 4836 } 4837 } 4838 4839 static void qm_cmd_process(struct work_struct *cmd_process) 4840 { 4841 struct hisi_qm *qm = container_of(cmd_process, 4842 struct hisi_qm, cmd_process); 4843 u32 vfs_num = qm->vfs_num; 4844 u64 val; 4845 u32 i; 4846 4847 if (qm->fun_type == QM_HW_PF) { 4848 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 4849 if (!val) 4850 return; 4851 4852 for (i = 1; i <= vfs_num; i++) { 4853 if (val & BIT(i)) 4854 qm_handle_cmd_msg(qm, i); 4855 } 4856 4857 return; 4858 } 4859 4860 qm_handle_cmd_msg(qm, 0); 4861 } 4862 4863 /** 4864 * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. 4865 * @qm: The qm needs add. 4866 * @qm_list: The qm list. 4867 * 4868 * This function adds qm to qm list, and will register algorithm to 4869 * crypto when the qm list is empty. 4870 */ 4871 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4872 { 4873 struct device *dev = &qm->pdev->dev; 4874 int flag = 0; 4875 int ret = 0; 4876 4877 mutex_lock(&qm_list->lock); 4878 if (list_empty(&qm_list->list)) 4879 flag = 1; 4880 list_add_tail(&qm->list, &qm_list->list); 4881 mutex_unlock(&qm_list->lock); 4882 4883 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 4884 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 4885 return 0; 4886 } 4887 4888 if (flag) { 4889 ret = qm_list->register_to_crypto(qm); 4890 if (ret) { 4891 mutex_lock(&qm_list->lock); 4892 list_del(&qm->list); 4893 mutex_unlock(&qm_list->lock); 4894 } 4895 } 4896 4897 return ret; 4898 } 4899 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4900 4901 /** 4902 * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from 4903 * qm list. 4904 * @qm: The qm needs delete. 4905 * @qm_list: The qm list. 4906 * 4907 * This function deletes qm from qm list, and will unregister algorithm 4908 * from crypto when the qm list is empty. 4909 */ 4910 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4911 { 4912 mutex_lock(&qm_list->lock); 4913 list_del(&qm->list); 4914 mutex_unlock(&qm_list->lock); 4915 4916 if (qm->ver <= QM_HW_V2 && qm->use_sva) 4917 return; 4918 4919 if (list_empty(&qm_list->list)) 4920 qm_list->unregister_from_crypto(qm); 4921 } 4922 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 4923 4924 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 4925 { 4926 struct pci_dev *pdev = qm->pdev; 4927 u32 irq_vector, val; 4928 4929 if (qm->fun_type == QM_HW_VF) 4930 return; 4931 4932 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver); 4933 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4934 return; 4935 4936 irq_vector = val & QM_IRQ_VECTOR_MASK; 4937 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4938 } 4939 4940 static int qm_register_abnormal_irq(struct hisi_qm *qm) 4941 { 4942 struct pci_dev *pdev = qm->pdev; 4943 u32 irq_vector, val; 4944 int ret; 4945 4946 if (qm->fun_type == QM_HW_VF) 4947 return 0; 4948 4949 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver); 4950 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4951 return 0; 4952 4953 irq_vector = val & QM_IRQ_VECTOR_MASK; 4954 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 4955 if (ret) 4956 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); 4957 4958 return ret; 4959 } 4960 4961 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 4962 { 4963 struct pci_dev *pdev = qm->pdev; 4964 u32 irq_vector, val; 4965 4966 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver); 4967 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4968 return; 4969 4970 irq_vector = val & QM_IRQ_VECTOR_MASK; 4971 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4972 } 4973 4974 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 4975 { 4976 struct pci_dev *pdev = qm->pdev; 4977 u32 irq_vector, val; 4978 int ret; 4979 4980 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver); 4981 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4982 return 0; 4983 4984 irq_vector = val & QM_IRQ_VECTOR_MASK; 4985 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 4986 if (ret) 4987 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 4988 4989 return ret; 4990 } 4991 4992 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 4993 { 4994 struct pci_dev *pdev = qm->pdev; 4995 u32 irq_vector, val; 4996 4997 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver); 4998 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4999 return; 5000 5001 irq_vector = val & QM_IRQ_VECTOR_MASK; 5002 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5003 } 5004 5005 static int qm_register_aeq_irq(struct hisi_qm *qm) 5006 { 5007 struct pci_dev *pdev = qm->pdev; 5008 u32 irq_vector, val; 5009 int ret; 5010 5011 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver); 5012 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5013 return 0; 5014 5015 irq_vector = val & QM_IRQ_VECTOR_MASK; 5016 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), qm_aeq_irq, 5017 qm_aeq_thread, 0, qm->dev_name, qm); 5018 if (ret) 5019 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5020 5021 return ret; 5022 } 5023 5024 static void qm_unregister_eq_irq(struct hisi_qm *qm) 5025 { 5026 struct pci_dev *pdev = qm->pdev; 5027 u32 irq_vector, val; 5028 5029 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver); 5030 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5031 return; 5032 5033 irq_vector = val & QM_IRQ_VECTOR_MASK; 5034 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5035 } 5036 5037 static int qm_register_eq_irq(struct hisi_qm *qm) 5038 { 5039 struct pci_dev *pdev = qm->pdev; 5040 u32 irq_vector, val; 5041 int ret; 5042 5043 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver); 5044 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5045 return 0; 5046 5047 irq_vector = val & QM_IRQ_VECTOR_MASK; 5048 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); 5049 if (ret) 5050 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5051 5052 return ret; 5053 } 5054 5055 static void qm_irqs_unregister(struct hisi_qm *qm) 5056 { 5057 qm_unregister_mb_cmd_irq(qm); 5058 qm_unregister_abnormal_irq(qm); 5059 qm_unregister_aeq_irq(qm); 5060 qm_unregister_eq_irq(qm); 5061 } 5062 5063 static int qm_irqs_register(struct hisi_qm *qm) 5064 { 5065 int ret; 5066 5067 ret = qm_register_eq_irq(qm); 5068 if (ret) 5069 return ret; 5070 5071 ret = qm_register_aeq_irq(qm); 5072 if (ret) 5073 goto free_eq_irq; 5074 5075 ret = qm_register_abnormal_irq(qm); 5076 if (ret) 5077 goto free_aeq_irq; 5078 5079 ret = qm_register_mb_cmd_irq(qm); 5080 if (ret) 5081 goto free_abnormal_irq; 5082 5083 return 0; 5084 5085 free_abnormal_irq: 5086 qm_unregister_abnormal_irq(qm); 5087 free_aeq_irq: 5088 qm_unregister_aeq_irq(qm); 5089 free_eq_irq: 5090 qm_unregister_eq_irq(qm); 5091 return ret; 5092 } 5093 5094 static int qm_get_qp_num(struct hisi_qm *qm) 5095 { 5096 bool is_db_isolation; 5097 5098 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 5099 if (qm->fun_type == QM_HW_VF) { 5100 if (qm->ver != QM_HW_V1) 5101 /* v2 starts to support get vft by mailbox */ 5102 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 5103 5104 return 0; 5105 } 5106 5107 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5108 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 5109 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 5110 QM_FUNC_MAX_QP_CAP, is_db_isolation); 5111 5112 /* check if qp number is valid */ 5113 if (qm->qp_num > qm->max_qp_num) { 5114 dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n", 5115 qm->qp_num, qm->max_qp_num); 5116 return -EINVAL; 5117 } 5118 5119 return 0; 5120 } 5121 5122 static void qm_get_hw_caps(struct hisi_qm *qm) 5123 { 5124 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 5125 qm_cap_info_pf : qm_cap_info_vf; 5126 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 5127 ARRAY_SIZE(qm_cap_info_vf); 5128 u32 val, i; 5129 5130 /* Doorbell isolate register is a independent register. */ 5131 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 5132 if (val) 5133 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5134 5135 if (qm->ver >= QM_HW_V3) { 5136 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 5137 qm->cap_ver = val & QM_CAPBILITY_VERSION; 5138 } 5139 5140 /* Get PF/VF common capbility */ 5141 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 5142 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 5143 if (val) 5144 set_bit(qm_cap_info_comm[i].type, &qm->caps); 5145 } 5146 5147 /* Get PF/VF different capbility */ 5148 for (i = 0; i < size; i++) { 5149 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 5150 if (val) 5151 set_bit(cap_info[i].type, &qm->caps); 5152 } 5153 } 5154 5155 static int qm_get_pci_res(struct hisi_qm *qm) 5156 { 5157 struct pci_dev *pdev = qm->pdev; 5158 struct device *dev = &pdev->dev; 5159 int ret; 5160 5161 ret = pci_request_mem_regions(pdev, qm->dev_name); 5162 if (ret < 0) { 5163 dev_err(dev, "Failed to request mem regions!\n"); 5164 return ret; 5165 } 5166 5167 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5168 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5169 if (!qm->io_base) { 5170 ret = -EIO; 5171 goto err_request_mem_regions; 5172 } 5173 5174 qm_get_hw_caps(qm); 5175 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 5176 qm->db_interval = QM_QP_DB_INTERVAL; 5177 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5178 qm->db_io_base = ioremap(qm->db_phys_base, 5179 pci_resource_len(pdev, PCI_BAR_4)); 5180 if (!qm->db_io_base) { 5181 ret = -EIO; 5182 goto err_ioremap; 5183 } 5184 } else { 5185 qm->db_phys_base = qm->phys_base; 5186 qm->db_io_base = qm->io_base; 5187 qm->db_interval = 0; 5188 } 5189 5190 ret = qm_get_qp_num(qm); 5191 if (ret) 5192 goto err_db_ioremap; 5193 5194 return 0; 5195 5196 err_db_ioremap: 5197 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 5198 iounmap(qm->db_io_base); 5199 err_ioremap: 5200 iounmap(qm->io_base); 5201 err_request_mem_regions: 5202 pci_release_mem_regions(pdev); 5203 return ret; 5204 } 5205 5206 static int hisi_qm_pci_init(struct hisi_qm *qm) 5207 { 5208 struct pci_dev *pdev = qm->pdev; 5209 struct device *dev = &pdev->dev; 5210 unsigned int num_vec; 5211 int ret; 5212 5213 ret = pci_enable_device_mem(pdev); 5214 if (ret < 0) { 5215 dev_err(dev, "Failed to enable device mem!\n"); 5216 return ret; 5217 } 5218 5219 ret = qm_get_pci_res(qm); 5220 if (ret) 5221 goto err_disable_pcidev; 5222 5223 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5224 if (ret < 0) 5225 goto err_get_pci_res; 5226 pci_set_master(pdev); 5227 5228 num_vec = qm_get_irq_num(qm); 5229 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5230 if (ret < 0) { 5231 dev_err(dev, "Failed to enable MSI vectors!\n"); 5232 goto err_get_pci_res; 5233 } 5234 5235 return 0; 5236 5237 err_get_pci_res: 5238 qm_put_pci_res(qm); 5239 err_disable_pcidev: 5240 pci_disable_device(pdev); 5241 return ret; 5242 } 5243 5244 static int hisi_qm_init_work(struct hisi_qm *qm) 5245 { 5246 int i; 5247 5248 for (i = 0; i < qm->qp_num; i++) 5249 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 5250 5251 if (qm->fun_type == QM_HW_PF) 5252 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5253 5254 if (qm->ver > QM_HW_V2) 5255 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5256 5257 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 5258 WQ_UNBOUND, num_online_cpus(), 5259 pci_name(qm->pdev)); 5260 if (!qm->wq) { 5261 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 5262 return -ENOMEM; 5263 } 5264 5265 return 0; 5266 } 5267 5268 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5269 { 5270 struct device *dev = &qm->pdev->dev; 5271 u16 sq_depth, cq_depth; 5272 size_t qp_dma_size; 5273 int i, ret; 5274 5275 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5276 if (!qm->qp_array) 5277 return -ENOMEM; 5278 5279 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 5280 if (!qm->poll_data) { 5281 kfree(qm->qp_array); 5282 return -ENOMEM; 5283 } 5284 5285 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 5286 5287 /* one more page for device or qp statuses */ 5288 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 5289 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5290 for (i = 0; i < qm->qp_num; i++) { 5291 qm->poll_data[i].qm = qm; 5292 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 5293 if (ret) 5294 goto err_init_qp_mem; 5295 5296 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5297 } 5298 5299 return 0; 5300 err_init_qp_mem: 5301 hisi_qp_memory_uninit(qm, i); 5302 5303 return ret; 5304 } 5305 5306 static int hisi_qm_memory_init(struct hisi_qm *qm) 5307 { 5308 struct device *dev = &qm->pdev->dev; 5309 int ret, total_func; 5310 size_t off = 0; 5311 5312 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 5313 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5314 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5315 if (!qm->factor) 5316 return -ENOMEM; 5317 5318 /* Only the PF value needs to be initialized */ 5319 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 5320 } 5321 5322 #define QM_INIT_BUF(qm, type, num) do { \ 5323 (qm)->type = ((qm)->qdma.va + (off)); \ 5324 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5325 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5326 } while (0) 5327 5328 idr_init(&qm->qp_idr); 5329 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 5330 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 5331 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 5332 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5333 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5334 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5335 GFP_ATOMIC); 5336 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5337 if (!qm->qdma.va) { 5338 ret = -ENOMEM; 5339 goto err_destroy_idr; 5340 } 5341 5342 QM_INIT_BUF(qm, eqe, qm->eq_depth); 5343 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 5344 QM_INIT_BUF(qm, sqc, qm->qp_num); 5345 QM_INIT_BUF(qm, cqc, qm->qp_num); 5346 5347 ret = hisi_qp_alloc_memory(qm); 5348 if (ret) 5349 goto err_alloc_qp_array; 5350 5351 return 0; 5352 5353 err_alloc_qp_array: 5354 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5355 err_destroy_idr: 5356 idr_destroy(&qm->qp_idr); 5357 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 5358 kfree(qm->factor); 5359 5360 return ret; 5361 } 5362 5363 /** 5364 * hisi_qm_init() - Initialize configures about qm. 5365 * @qm: The qm needing init. 5366 * 5367 * This function init qm, then we can call hisi_qm_start to put qm into work. 5368 */ 5369 int hisi_qm_init(struct hisi_qm *qm) 5370 { 5371 struct pci_dev *pdev = qm->pdev; 5372 struct device *dev = &pdev->dev; 5373 int ret; 5374 5375 hisi_qm_pre_init(qm); 5376 5377 ret = hisi_qm_pci_init(qm); 5378 if (ret) 5379 return ret; 5380 5381 ret = qm_irqs_register(qm); 5382 if (ret) 5383 goto err_pci_init; 5384 5385 if (qm->fun_type == QM_HW_PF) { 5386 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5387 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5388 qm_disable_clock_gate(qm); 5389 ret = qm_dev_mem_reset(qm); 5390 if (ret) { 5391 dev_err(dev, "failed to reset device memory\n"); 5392 goto err_irq_register; 5393 } 5394 } 5395 5396 if (qm->mode == UACCE_MODE_SVA) { 5397 ret = qm_alloc_uacce(qm); 5398 if (ret < 0) 5399 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5400 } 5401 5402 ret = hisi_qm_memory_init(qm); 5403 if (ret) 5404 goto err_alloc_uacce; 5405 5406 ret = hisi_qm_init_work(qm); 5407 if (ret) 5408 goto err_free_qm_memory; 5409 5410 qm_cmd_init(qm); 5411 atomic_set(&qm->status.flags, QM_INIT); 5412 5413 return 0; 5414 5415 err_free_qm_memory: 5416 hisi_qm_memory_uninit(qm); 5417 err_alloc_uacce: 5418 qm_remove_uacce(qm); 5419 err_irq_register: 5420 qm_irqs_unregister(qm); 5421 err_pci_init: 5422 hisi_qm_pci_uninit(qm); 5423 return ret; 5424 } 5425 EXPORT_SYMBOL_GPL(hisi_qm_init); 5426 5427 /** 5428 * hisi_qm_get_dfx_access() - Try to get dfx access. 5429 * @qm: pointer to accelerator device. 5430 * 5431 * Try to get dfx access, then user can get message. 5432 * 5433 * If device is in suspended, return failure, otherwise 5434 * bump up the runtime PM usage counter. 5435 */ 5436 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5437 { 5438 struct device *dev = &qm->pdev->dev; 5439 5440 if (pm_runtime_suspended(dev)) { 5441 dev_info(dev, "can not read/write - device in suspended.\n"); 5442 return -EAGAIN; 5443 } 5444 5445 return qm_pm_get_sync(qm); 5446 } 5447 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5448 5449 /** 5450 * hisi_qm_put_dfx_access() - Put dfx access. 5451 * @qm: pointer to accelerator device. 5452 * 5453 * Put dfx access, drop runtime PM usage counter. 5454 */ 5455 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5456 { 5457 qm_pm_put_sync(qm); 5458 } 5459 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5460 5461 /** 5462 * hisi_qm_pm_init() - Initialize qm runtime PM. 5463 * @qm: pointer to accelerator device. 5464 * 5465 * Function that initialize qm runtime PM. 5466 */ 5467 void hisi_qm_pm_init(struct hisi_qm *qm) 5468 { 5469 struct device *dev = &qm->pdev->dev; 5470 5471 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5472 return; 5473 5474 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5475 pm_runtime_use_autosuspend(dev); 5476 pm_runtime_put_noidle(dev); 5477 } 5478 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5479 5480 /** 5481 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5482 * @qm: pointer to accelerator device. 5483 * 5484 * Function that uninitialize qm runtime PM. 5485 */ 5486 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5487 { 5488 struct device *dev = &qm->pdev->dev; 5489 5490 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5491 return; 5492 5493 pm_runtime_get_noresume(dev); 5494 pm_runtime_dont_use_autosuspend(dev); 5495 } 5496 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5497 5498 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5499 { 5500 struct pci_dev *pdev = qm->pdev; 5501 int ret; 5502 u32 val; 5503 5504 ret = qm->ops->set_msi(qm, false); 5505 if (ret) { 5506 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5507 return ret; 5508 } 5509 5510 /* shutdown OOO register */ 5511 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 5512 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5513 5514 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 5515 val, 5516 (val == ACC_MASTER_TRANS_RETURN_RW), 5517 POLL_PERIOD, POLL_TIMEOUT); 5518 if (ret) { 5519 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 5520 return ret; 5521 } 5522 5523 ret = qm_set_pf_mse(qm, false); 5524 if (ret) 5525 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5526 5527 return ret; 5528 } 5529 5530 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5531 { 5532 struct pci_dev *pdev = qm->pdev; 5533 int ret; 5534 5535 ret = qm_set_pf_mse(qm, true); 5536 if (ret) { 5537 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5538 return ret; 5539 } 5540 5541 ret = qm->ops->set_msi(qm, true); 5542 if (ret) { 5543 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5544 return ret; 5545 } 5546 5547 ret = qm_dev_hw_init(qm); 5548 if (ret) { 5549 pci_err(pdev, "failed to init device after resuming\n"); 5550 return ret; 5551 } 5552 5553 qm_cmd_init(qm); 5554 hisi_qm_dev_err_init(qm); 5555 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5556 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5557 qm_disable_clock_gate(qm); 5558 ret = qm_dev_mem_reset(qm); 5559 if (ret) 5560 pci_err(pdev, "failed to reset device memory\n"); 5561 5562 return ret; 5563 } 5564 5565 /** 5566 * hisi_qm_suspend() - Runtime suspend of given device. 5567 * @dev: device to suspend. 5568 * 5569 * Function that suspend the device. 5570 */ 5571 int hisi_qm_suspend(struct device *dev) 5572 { 5573 struct pci_dev *pdev = to_pci_dev(dev); 5574 struct hisi_qm *qm = pci_get_drvdata(pdev); 5575 int ret; 5576 5577 pci_info(pdev, "entering suspended state\n"); 5578 5579 ret = hisi_qm_stop(qm, QM_NORMAL); 5580 if (ret) { 5581 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5582 return ret; 5583 } 5584 5585 ret = qm_prepare_for_suspend(qm); 5586 if (ret) 5587 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5588 5589 return ret; 5590 } 5591 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5592 5593 /** 5594 * hisi_qm_resume() - Runtime resume of given device. 5595 * @dev: device to resume. 5596 * 5597 * Function that resume the device. 5598 */ 5599 int hisi_qm_resume(struct device *dev) 5600 { 5601 struct pci_dev *pdev = to_pci_dev(dev); 5602 struct hisi_qm *qm = pci_get_drvdata(pdev); 5603 int ret; 5604 5605 pci_info(pdev, "resuming from suspend state\n"); 5606 5607 ret = qm_rebuild_for_resume(qm); 5608 if (ret) { 5609 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5610 return ret; 5611 } 5612 5613 ret = hisi_qm_start(qm); 5614 if (ret) { 5615 if (qm_check_dev_error(qm)) { 5616 pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); 5617 return 0; 5618 } 5619 5620 pci_err(pdev, "failed to start qm(%d)!\n", ret); 5621 } 5622 5623 return ret; 5624 } 5625 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5626 5627 MODULE_LICENSE("GPL v2"); 5628 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5629 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5630