xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision 6bfb56e93bcef41859c2d5ab234ffd80b691be35)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/idr.h>
9 #include <linux/io.h>
10 #include <linux/irqreturn.h>
11 #include <linux/log2.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include <linux/hisi_acc_qm.h>
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 #define QM_IRQ_NUM_V1			1
26 #define QM_IRQ_NUM_PF_V2		4
27 #define QM_IRQ_NUM_VF_V2		2
28 #define QM_IRQ_NUM_VF_V3		3
29 
30 #define QM_EQ_EVENT_IRQ_VECTOR		0
31 #define QM_AEQ_EVENT_IRQ_VECTOR		1
32 #define QM_CMD_EVENT_IRQ_VECTOR		2
33 #define QM_ABNORMAL_EVENT_IRQ_VECTOR	3
34 
35 /* mailbox */
36 #define QM_MB_PING_ALL_VFS		0xffff
37 #define QM_MB_CMD_DATA_SHIFT		32
38 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
39 
40 /* sqc shift */
41 #define QM_SQ_HOP_NUM_SHIFT		0
42 #define QM_SQ_PAGE_SIZE_SHIFT		4
43 #define QM_SQ_BUF_SIZE_SHIFT		8
44 #define QM_SQ_SQE_SIZE_SHIFT		12
45 #define QM_SQ_PRIORITY_SHIFT		0
46 #define QM_SQ_ORDERS_SHIFT		4
47 #define QM_SQ_TYPE_SHIFT		8
48 #define QM_QC_PASID_ENABLE		0x1
49 #define QM_QC_PASID_ENABLE_SHIFT	7
50 
51 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
52 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
53 
54 /* cqc shift */
55 #define QM_CQ_HOP_NUM_SHIFT		0
56 #define QM_CQ_PAGE_SIZE_SHIFT		4
57 #define QM_CQ_BUF_SIZE_SHIFT		8
58 #define QM_CQ_CQE_SIZE_SHIFT		12
59 #define QM_CQ_PHASE_SHIFT		0
60 #define QM_CQ_FLAG_SHIFT		1
61 
62 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
63 #define QM_QC_CQE_SIZE			4
64 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
65 
66 /* eqc shift */
67 #define QM_EQE_AEQE_SIZE		(2UL << 12)
68 #define QM_EQC_PHASE_SHIFT		16
69 
70 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
71 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
72 
73 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
74 #define QM_AEQE_TYPE_SHIFT		17
75 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
76 #define QM_CQ_OVERFLOW			0
77 #define QM_EQ_OVERFLOW			1
78 #define QM_CQE_ERROR			2
79 
80 #define QM_DOORBELL_CMD_SQ		0
81 #define QM_DOORBELL_CMD_CQ		1
82 #define QM_DOORBELL_CMD_EQ		2
83 #define QM_DOORBELL_CMD_AEQ		3
84 
85 #define QM_DOORBELL_BASE_V1		0x340
86 #define QM_DB_CMD_SHIFT_V1		16
87 #define QM_DB_INDEX_SHIFT_V1		32
88 #define QM_DB_PRIORITY_SHIFT_V1		48
89 #define QM_QUE_ISO_CFG_V		0x0030
90 #define QM_PAGE_SIZE			0x0034
91 #define QM_QUE_ISO_EN			0x100154
92 #define QM_CAPBILITY			0x100158
93 #define QM_QP_NUN_MASK			GENMASK(10, 0)
94 #define QM_QP_DB_INTERVAL		0x10000
95 
96 #define QM_MEM_START_INIT		0x100040
97 #define QM_MEM_INIT_DONE		0x100044
98 #define QM_VFT_CFG_RDY			0x10006c
99 #define QM_VFT_CFG_OP_WR		0x100058
100 #define QM_VFT_CFG_TYPE			0x10005c
101 #define QM_SQC_VFT			0x0
102 #define QM_CQC_VFT			0x1
103 #define QM_VFT_CFG			0x100060
104 #define QM_VFT_CFG_OP_ENABLE		0x100054
105 #define QM_PM_CTRL			0x100148
106 #define QM_IDLE_DISABLE			BIT(9)
107 
108 #define QM_VFT_CFG_DATA_L		0x100064
109 #define QM_VFT_CFG_DATA_H		0x100068
110 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
111 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
112 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
113 #define QM_SQC_VFT_START_SQN_SHIFT	28
114 #define QM_SQC_VFT_VALID		(1ULL << 44)
115 #define QM_SQC_VFT_SQN_SHIFT		45
116 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
117 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
118 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
119 #define QM_CQC_VFT_VALID		(1ULL << 28)
120 
121 #define QM_SQC_VFT_BASE_SHIFT_V2	28
122 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
123 #define QM_SQC_VFT_NUM_SHIFT_V2		45
124 #define QM_SQC_VFT_NUM_MASK_v2		GENMASK(9, 0)
125 
126 #define QM_DFX_CNT_CLR_CE		0x100118
127 
128 #define QM_ABNORMAL_INT_SOURCE		0x100000
129 #define QM_ABNORMAL_INT_SOURCE_CLR	GENMASK(14, 0)
130 #define QM_ABNORMAL_INT_MASK		0x100004
131 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
132 #define QM_ABNORMAL_INT_STATUS		0x100008
133 #define QM_ABNORMAL_INT_SET		0x10000c
134 #define QM_ABNORMAL_INF00		0x100010
135 #define QM_FIFO_OVERFLOW_TYPE		0xc0
136 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
137 #define QM_FIFO_OVERFLOW_VF		0x3f
138 #define QM_ABNORMAL_INF01		0x100014
139 #define QM_DB_TIMEOUT_TYPE		0xc0
140 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
141 #define QM_DB_TIMEOUT_VF		0x3f
142 #define QM_RAS_CE_ENABLE		0x1000ec
143 #define QM_RAS_FE_ENABLE		0x1000f0
144 #define QM_RAS_NFE_ENABLE		0x1000f4
145 #define QM_RAS_CE_THRESHOLD		0x1000f8
146 #define QM_RAS_CE_TIMES_PER_IRQ		1
147 #define QM_RAS_MSI_INT_SEL		0x1040f4
148 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
149 
150 #define QM_RESET_WAIT_TIMEOUT		400
151 #define QM_PEH_VENDOR_ID		0x1000d8
152 #define ACC_VENDOR_ID_VALUE		0x5a5a
153 #define QM_PEH_DFX_INFO0		0x1000fc
154 #define QM_PEH_DFX_INFO1		0x100100
155 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
156 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
157 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
158 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
159 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
160 #define ACC_MASTER_TRANS_RETURN_RW	3
161 #define ACC_MASTER_TRANS_RETURN		0x300150
162 #define ACC_MASTER_GLOBAL_CTRL		0x300000
163 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
164 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
165 #define ACC_AM_ROB_ECC_INT_STS		0x300104
166 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
167 #define QM_MSI_CAP_ENABLE		BIT(16)
168 
169 /* interfunction communication */
170 #define QM_IFC_READY_STATUS		0x100128
171 #define QM_IFC_C_STS_M			0x10012C
172 #define QM_IFC_INT_SET_P		0x100130
173 #define QM_IFC_INT_CFG			0x100134
174 #define QM_IFC_INT_SOURCE_P		0x100138
175 #define QM_IFC_INT_SOURCE_V		0x0020
176 #define QM_IFC_INT_MASK			0x0024
177 #define QM_IFC_INT_STATUS		0x0028
178 #define QM_IFC_INT_SET_V		0x002C
179 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
180 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
181 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
182 #define QM_IFC_INT_DISABLE		BIT(0)
183 #define QM_IFC_INT_STATUS_MASK		BIT(0)
184 #define QM_IFC_INT_SET_MASK		BIT(0)
185 #define QM_WAIT_DST_ACK			10
186 #define QM_MAX_PF_WAIT_COUNT		10
187 #define QM_MAX_VF_WAIT_COUNT		40
188 #define QM_VF_RESET_WAIT_US            20000
189 #define QM_VF_RESET_WAIT_CNT           3000
190 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
191 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
192 
193 #define QM_DFX_MB_CNT_VF		0x104010
194 #define QM_DFX_DB_CNT_VF		0x104020
195 #define QM_DFX_SQE_CNT_VF_SQN		0x104030
196 #define QM_DFX_CQE_CNT_VF_CQN		0x104040
197 #define QM_DFX_QN_SHIFT			16
198 #define CURRENT_FUN_MASK		GENMASK(5, 0)
199 #define CURRENT_Q_MASK			GENMASK(31, 16)
200 
201 #define POLL_PERIOD			10
202 #define POLL_TIMEOUT			1000
203 #define WAIT_PERIOD_US_MAX		200
204 #define WAIT_PERIOD_US_MIN		100
205 #define MAX_WAIT_COUNTS			1000
206 #define QM_CACHE_WB_START		0x204
207 #define QM_CACHE_WB_DONE		0x208
208 
209 #define PCI_BAR_2			2
210 #define PCI_BAR_4			4
211 #define QM_SQE_DATA_ALIGN_MASK		GENMASK(6, 0)
212 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
213 
214 #define QM_DBG_READ_LEN		256
215 #define QM_DBG_WRITE_LEN		1024
216 #define QM_DBG_TMP_BUF_LEN		22
217 #define QM_PCI_COMMAND_INVALID		~0
218 #define QM_RESET_STOP_TX_OFFSET		1
219 #define QM_RESET_STOP_RX_OFFSET		2
220 
221 #define WAIT_PERIOD			20
222 #define REMOVE_WAIT_DELAY		10
223 #define QM_SQE_ADDR_MASK		GENMASK(7, 0)
224 #define QM_EQ_DEPTH			(1024 * 2)
225 
226 #define QM_DRIVER_REMOVING		0
227 #define QM_RST_SCHED			1
228 #define QM_RESETTING			2
229 #define QM_QOS_PARAM_NUM		2
230 #define QM_QOS_VAL_NUM			1
231 #define QM_QOS_BDF_PARAM_NUM		4
232 #define QM_QOS_MAX_VAL			1000
233 #define QM_QOS_RATE			100
234 #define QM_QOS_EXPAND_RATE		1000
235 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
236 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
237 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
238 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
239 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
240 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
241 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
242 #define QM_SHAPER_CBS_B			1
243 #define QM_SHAPER_CBS_S			16
244 #define QM_SHAPER_VFT_OFFSET		6
245 #define WAIT_FOR_QOS_VF			100
246 #define QM_QOS_MIN_ERROR_RATE		5
247 #define QM_QOS_TYPICAL_NUM		8
248 #define QM_SHAPER_MIN_CBS_S		8
249 #define QM_QOS_TICK			0x300U
250 #define QM_QOS_DIVISOR_CLK		0x1f40U
251 #define QM_QOS_MAX_CIR_B		200
252 #define QM_QOS_MIN_CIR_B		100
253 #define QM_QOS_MAX_CIR_U		6
254 #define QM_QOS_MAX_CIR_S		11
255 #define QM_QOS_VAL_MAX_LEN		32
256 #define QM_DFX_BASE		0x0100000
257 #define QM_DFX_STATE1		0x0104000
258 #define QM_DFX_STATE2		0x01040C8
259 #define QM_DFX_COMMON		0x0000
260 #define QM_DFX_BASE_LEN		0x5A
261 #define QM_DFX_STATE1_LEN		0x2E
262 #define QM_DFX_STATE2_LEN		0x11
263 #define QM_DFX_COMMON_LEN		0xC3
264 #define QM_DFX_REGS_LEN		4UL
265 #define QM_AUTOSUSPEND_DELAY		3000
266 
267 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
268 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT)	| \
269 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT)	| \
270 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT)	| \
271 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
272 
273 #define QM_MK_CQC_DW3_V2(cqe_sz) \
274 	((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
275 
276 #define QM_MK_SQC_W13(priority, orders, alg_type) \
277 	(((priority) << QM_SQ_PRIORITY_SHIFT)	| \
278 	((orders) << QM_SQ_ORDERS_SHIFT)	| \
279 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
280 
281 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
282 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT)	| \
283 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT)	| \
284 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT)	| \
285 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
286 
287 #define QM_MK_SQC_DW3_V2(sqe_sz) \
288 	((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
289 
290 #define INIT_QC_COMMON(qc, base, pasid) do {			\
291 	(qc)->head = 0;						\
292 	(qc)->tail = 0;						\
293 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
294 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
295 	(qc)->dw3 = 0;						\
296 	(qc)->w8 = 0;						\
297 	(qc)->rsvd0 = 0;					\
298 	(qc)->pasid = cpu_to_le16(pasid);			\
299 	(qc)->w11 = 0;						\
300 	(qc)->rsvd1 = 0;					\
301 } while (0)
302 
303 enum vft_type {
304 	SQC_VFT = 0,
305 	CQC_VFT,
306 	SHAPER_VFT,
307 };
308 
309 enum acc_err_result {
310 	ACC_ERR_NONE,
311 	ACC_ERR_NEED_RESET,
312 	ACC_ERR_RECOVERED,
313 };
314 
315 enum qm_alg_type {
316 	ALG_TYPE_0,
317 	ALG_TYPE_1,
318 };
319 
320 enum qm_mb_cmd {
321 	QM_PF_FLR_PREPARE = 0x01,
322 	QM_PF_SRST_PREPARE,
323 	QM_PF_RESET_DONE,
324 	QM_VF_PREPARE_DONE,
325 	QM_VF_PREPARE_FAIL,
326 	QM_VF_START_DONE,
327 	QM_VF_START_FAIL,
328 	QM_PF_SET_QOS,
329 	QM_VF_GET_QOS,
330 };
331 
332 struct qm_cqe {
333 	__le32 rsvd0;
334 	__le16 cmd_id;
335 	__le16 rsvd1;
336 	__le16 sq_head;
337 	__le16 sq_num;
338 	__le16 rsvd2;
339 	__le16 w7;
340 };
341 
342 struct qm_eqe {
343 	__le32 dw0;
344 };
345 
346 struct qm_aeqe {
347 	__le32 dw0;
348 };
349 
350 struct qm_sqc {
351 	__le16 head;
352 	__le16 tail;
353 	__le32 base_l;
354 	__le32 base_h;
355 	__le32 dw3;
356 	__le16 w8;
357 	__le16 rsvd0;
358 	__le16 pasid;
359 	__le16 w11;
360 	__le16 cq_num;
361 	__le16 w13;
362 	__le32 rsvd1;
363 };
364 
365 struct qm_cqc {
366 	__le16 head;
367 	__le16 tail;
368 	__le32 base_l;
369 	__le32 base_h;
370 	__le32 dw3;
371 	__le16 w8;
372 	__le16 rsvd0;
373 	__le16 pasid;
374 	__le16 w11;
375 	__le32 dw6;
376 	__le32 rsvd1;
377 };
378 
379 struct qm_eqc {
380 	__le16 head;
381 	__le16 tail;
382 	__le32 base_l;
383 	__le32 base_h;
384 	__le32 dw3;
385 	__le32 rsvd[2];
386 	__le32 dw6;
387 };
388 
389 struct qm_aeqc {
390 	__le16 head;
391 	__le16 tail;
392 	__le32 base_l;
393 	__le32 base_h;
394 	__le32 dw3;
395 	__le32 rsvd[2];
396 	__le32 dw6;
397 };
398 
399 struct qm_mailbox {
400 	__le16 w0;
401 	__le16 queue_num;
402 	__le32 base_l;
403 	__le32 base_h;
404 	__le32 rsvd;
405 };
406 
407 struct qm_doorbell {
408 	__le16 queue_num;
409 	__le16 cmd;
410 	__le16 index;
411 	__le16 priority;
412 };
413 
414 struct hisi_qm_resource {
415 	struct hisi_qm *qm;
416 	int distance;
417 	struct list_head list;
418 };
419 
420 struct hisi_qm_hw_ops {
421 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
422 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
423 		      u8 cmd, u16 index, u8 priority);
424 	u32 (*get_irq_num)(struct hisi_qm *qm);
425 	int (*debug_init)(struct hisi_qm *qm);
426 	void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe);
427 	void (*hw_error_uninit)(struct hisi_qm *qm);
428 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
429 	int (*stop_qp)(struct hisi_qp *qp);
430 	int (*set_msi)(struct hisi_qm *qm, bool set);
431 	int (*ping_all_vfs)(struct hisi_qm *qm, u64 cmd);
432 	int (*ping_pf)(struct hisi_qm *qm, u64 cmd);
433 };
434 
435 struct qm_dfx_item {
436 	const char *name;
437 	u32 offset;
438 };
439 
440 static struct qm_dfx_item qm_dfx_files[] = {
441 	{"err_irq", offsetof(struct qm_dfx, err_irq_cnt)},
442 	{"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)},
443 	{"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)},
444 	{"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)},
445 	{"mb_err", offsetof(struct qm_dfx, mb_err_cnt)},
446 };
447 
448 static const char * const qm_debug_file_name[] = {
449 	[CURRENT_QM]   = "current_qm",
450 	[CURRENT_Q]    = "current_q",
451 	[CLEAR_ENABLE] = "clear_enable",
452 };
453 
454 struct hisi_qm_hw_error {
455 	u32 int_msk;
456 	const char *msg;
457 };
458 
459 static const struct hisi_qm_hw_error qm_hw_error[] = {
460 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
461 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
462 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
463 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
464 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
465 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
466 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
467 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
468 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
469 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
470 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
471 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
472 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
473 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
474 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
475 	{ /* sentinel */ }
476 };
477 
478 /* define the QM's dfx regs region and region length */
479 static struct dfx_diff_registers qm_diff_regs[] = {
480 	{
481 		.reg_offset = QM_DFX_BASE,
482 		.reg_len = QM_DFX_BASE_LEN,
483 	}, {
484 		.reg_offset = QM_DFX_STATE1,
485 		.reg_len = QM_DFX_STATE1_LEN,
486 	}, {
487 		.reg_offset = QM_DFX_STATE2,
488 		.reg_len = QM_DFX_STATE2_LEN,
489 	}, {
490 		.reg_offset = QM_DFX_COMMON,
491 		.reg_len = QM_DFX_COMMON_LEN,
492 	},
493 };
494 
495 static const char * const qm_db_timeout[] = {
496 	"sq", "cq", "eq", "aeq",
497 };
498 
499 static const char * const qm_fifo_overflow[] = {
500 	"cq", "eq", "aeq",
501 };
502 
503 static const char * const qm_s[] = {
504 	"init", "start", "close", "stop",
505 };
506 
507 static const char * const qp_s[] = {
508 	"none", "init", "start", "stop", "close",
509 };
510 
511 struct qm_typical_qos_table {
512 	u32 start;
513 	u32 end;
514 	u32 val;
515 };
516 
517 /* the qos step is 100 */
518 static struct qm_typical_qos_table shaper_cir_s[] = {
519 	{100, 100, 4},
520 	{200, 200, 3},
521 	{300, 500, 2},
522 	{600, 1000, 1},
523 	{1100, 100000, 0},
524 };
525 
526 static struct qm_typical_qos_table shaper_cbs_s[] = {
527 	{100, 200, 9},
528 	{300, 500, 11},
529 	{600, 1000, 12},
530 	{1100, 10000, 16},
531 	{10100, 25000, 17},
532 	{25100, 50000, 18},
533 	{50100, 100000, 19}
534 };
535 
536 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
537 {
538 	enum qm_state curr = atomic_read(&qm->status.flags);
539 	bool avail = false;
540 
541 	switch (curr) {
542 	case QM_INIT:
543 		if (new == QM_START || new == QM_CLOSE)
544 			avail = true;
545 		break;
546 	case QM_START:
547 		if (new == QM_STOP)
548 			avail = true;
549 		break;
550 	case QM_STOP:
551 		if (new == QM_CLOSE || new == QM_START)
552 			avail = true;
553 		break;
554 	default:
555 		break;
556 	}
557 
558 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
559 		qm_s[curr], qm_s[new]);
560 
561 	if (!avail)
562 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
563 			 qm_s[curr], qm_s[new]);
564 
565 	return avail;
566 }
567 
568 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
569 			      enum qp_state new)
570 {
571 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
572 	enum qp_state qp_curr = 0;
573 	bool avail = false;
574 
575 	if (qp)
576 		qp_curr = atomic_read(&qp->qp_status.flags);
577 
578 	switch (new) {
579 	case QP_INIT:
580 		if (qm_curr == QM_START || qm_curr == QM_INIT)
581 			avail = true;
582 		break;
583 	case QP_START:
584 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
585 		    (qm_curr == QM_START && qp_curr == QP_STOP))
586 			avail = true;
587 		break;
588 	case QP_STOP:
589 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
590 		    (qp_curr == QP_INIT))
591 			avail = true;
592 		break;
593 	case QP_CLOSE:
594 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
595 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
596 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
597 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
598 			avail = true;
599 		break;
600 	default:
601 		break;
602 	}
603 
604 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
605 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
606 
607 	if (!avail)
608 		dev_warn(&qm->pdev->dev,
609 			 "Can not change qp state from %s to %s in QM %s\n",
610 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
611 
612 	return avail;
613 }
614 
615 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
616 {
617 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
618 }
619 
620 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
621 {
622 	return qm->err_ini->get_dev_hw_err_status(qm);
623 }
624 
625 /* Check if the error causes the master ooo block */
626 static int qm_check_dev_error(struct hisi_qm *qm)
627 {
628 	u32 val, dev_val;
629 
630 	if (qm->fun_type == QM_HW_VF)
631 		return 0;
632 
633 	val = qm_get_hw_error_status(qm);
634 	dev_val = qm_get_dev_err_status(qm);
635 
636 	if (qm->ver < QM_HW_V3)
637 		return (val & QM_ECC_MBIT) ||
638 		       (dev_val & qm->err_info.ecc_2bits_mask);
639 
640 	return (val & readl(qm->io_base + QM_OOO_SHUTDOWN_SEL)) ||
641 	       (dev_val & (~qm->err_info.dev_ce_mask));
642 }
643 
644 static int qm_wait_reset_finish(struct hisi_qm *qm)
645 {
646 	int delay = 0;
647 
648 	/* All reset requests need to be queued for processing */
649 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
650 		msleep(++delay);
651 		if (delay > QM_RESET_WAIT_TIMEOUT)
652 			return -EBUSY;
653 	}
654 
655 	return 0;
656 }
657 
658 static int qm_reset_prepare_ready(struct hisi_qm *qm)
659 {
660 	struct pci_dev *pdev = qm->pdev;
661 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
662 
663 	/*
664 	 * PF and VF on host doesnot support resetting at the
665 	 * same time on Kunpeng920.
666 	 */
667 	if (qm->ver < QM_HW_V3)
668 		return qm_wait_reset_finish(pf_qm);
669 
670 	return qm_wait_reset_finish(qm);
671 }
672 
673 static void qm_reset_bit_clear(struct hisi_qm *qm)
674 {
675 	struct pci_dev *pdev = qm->pdev;
676 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
677 
678 	if (qm->ver < QM_HW_V3)
679 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
680 
681 	clear_bit(QM_RESETTING, &qm->misc_ctl);
682 }
683 
684 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
685 			   u64 base, u16 queue, bool op)
686 {
687 	mailbox->w0 = cpu_to_le16((cmd) |
688 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
689 		(0x1 << QM_MB_BUSY_SHIFT));
690 	mailbox->queue_num = cpu_to_le16(queue);
691 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
692 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
693 	mailbox->rsvd = 0;
694 }
695 
696 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
697 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
698 {
699 	u32 val;
700 
701 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
702 					  val, !((val >> QM_MB_BUSY_SHIFT) &
703 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
704 }
705 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
706 
707 /* 128 bit should be written to hardware at one time to trigger a mailbox */
708 static void qm_mb_write(struct hisi_qm *qm, const void *src)
709 {
710 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
711 	unsigned long tmp0 = 0, tmp1 = 0;
712 
713 	if (!IS_ENABLED(CONFIG_ARM64)) {
714 		memcpy_toio(fun_base, src, 16);
715 		dma_wmb();
716 		return;
717 	}
718 
719 	asm volatile("ldp %0, %1, %3\n"
720 		     "stp %0, %1, %2\n"
721 		     "dmb oshst\n"
722 		     : "=&r" (tmp0),
723 		       "=&r" (tmp1),
724 		       "+Q" (*((char __iomem *)fun_base))
725 		     : "Q" (*((char *)src))
726 		     : "memory");
727 }
728 
729 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
730 {
731 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
732 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
733 		goto mb_busy;
734 	}
735 
736 	qm_mb_write(qm, mailbox);
737 
738 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
739 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
740 		goto mb_busy;
741 	}
742 
743 	return 0;
744 
745 mb_busy:
746 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
747 	return -EBUSY;
748 }
749 
750 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
751 	       bool op)
752 {
753 	struct qm_mailbox mailbox;
754 	int ret;
755 
756 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
757 		queue, cmd, (unsigned long long)dma_addr);
758 
759 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
760 
761 	mutex_lock(&qm->mailbox_lock);
762 	ret = qm_mb_nolock(qm, &mailbox);
763 	mutex_unlock(&qm->mailbox_lock);
764 
765 	return ret;
766 }
767 EXPORT_SYMBOL_GPL(hisi_qm_mb);
768 
769 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
770 {
771 	u64 doorbell;
772 
773 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
774 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
775 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
776 
777 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
778 }
779 
780 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
781 {
782 	void __iomem *io_base = qm->io_base;
783 	u16 randata = 0;
784 	u64 doorbell;
785 
786 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
787 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
788 			  QM_DOORBELL_SQ_CQ_BASE_V2;
789 	else
790 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
791 
792 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
793 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
794 		   ((u64)index << QM_DB_INDEX_SHIFT_V2)	 |
795 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
796 
797 	writeq(doorbell, io_base);
798 }
799 
800 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
801 {
802 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
803 		qn, cmd, index);
804 
805 	qm->ops->qm_db(qm, qn, cmd, index, priority);
806 }
807 
808 static void qm_disable_clock_gate(struct hisi_qm *qm)
809 {
810 	u32 val;
811 
812 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
813 	if (qm->ver < QM_HW_V3)
814 		return;
815 
816 	val = readl(qm->io_base + QM_PM_CTRL);
817 	val |= QM_IDLE_DISABLE;
818 	writel(val, qm->io_base +  QM_PM_CTRL);
819 }
820 
821 static int qm_dev_mem_reset(struct hisi_qm *qm)
822 {
823 	u32 val;
824 
825 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
826 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
827 					  val & BIT(0), POLL_PERIOD,
828 					  POLL_TIMEOUT);
829 }
830 
831 static u32 qm_get_irq_num_v1(struct hisi_qm *qm)
832 {
833 	return QM_IRQ_NUM_V1;
834 }
835 
836 static u32 qm_get_irq_num_v2(struct hisi_qm *qm)
837 {
838 	if (qm->fun_type == QM_HW_PF)
839 		return QM_IRQ_NUM_PF_V2;
840 	else
841 		return QM_IRQ_NUM_VF_V2;
842 }
843 
844 static u32 qm_get_irq_num_v3(struct hisi_qm *qm)
845 {
846 	if (qm->fun_type == QM_HW_PF)
847 		return QM_IRQ_NUM_PF_V2;
848 
849 	return QM_IRQ_NUM_VF_V3;
850 }
851 
852 static int qm_pm_get_sync(struct hisi_qm *qm)
853 {
854 	struct device *dev = &qm->pdev->dev;
855 	int ret;
856 
857 	if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3)
858 		return 0;
859 
860 	ret = pm_runtime_resume_and_get(dev);
861 	if (ret < 0) {
862 		dev_err(dev, "failed to get_sync(%d).\n", ret);
863 		return ret;
864 	}
865 
866 	return 0;
867 }
868 
869 static void qm_pm_put_sync(struct hisi_qm *qm)
870 {
871 	struct device *dev = &qm->pdev->dev;
872 
873 	if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3)
874 		return;
875 
876 	pm_runtime_mark_last_busy(dev);
877 	pm_runtime_put_autosuspend(dev);
878 }
879 
880 static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe)
881 {
882 	u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
883 
884 	return &qm->qp_array[cqn];
885 }
886 
887 static void qm_cq_head_update(struct hisi_qp *qp)
888 {
889 	if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) {
890 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
891 		qp->qp_status.cq_head = 0;
892 	} else {
893 		qp->qp_status.cq_head++;
894 	}
895 }
896 
897 static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm)
898 {
899 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
900 		return;
901 
902 	if (qp->event_cb) {
903 		qp->event_cb(qp);
904 		return;
905 	}
906 
907 	if (qp->req_cb) {
908 		struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
909 
910 		while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
911 			dma_rmb();
912 			qp->req_cb(qp, qp->sqe + qm->sqe_size *
913 				   le16_to_cpu(cqe->sq_head));
914 			qm_cq_head_update(qp);
915 			cqe = qp->cqe + qp->qp_status.cq_head;
916 			qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
917 			      qp->qp_status.cq_head, 0);
918 			atomic_dec(&qp->qp_status.used);
919 		}
920 
921 		/* set c_flag */
922 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
923 		      qp->qp_status.cq_head, 1);
924 	}
925 }
926 
927 static void qm_work_process(struct work_struct *work)
928 {
929 	struct hisi_qm *qm = container_of(work, struct hisi_qm, work);
930 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
931 	struct hisi_qp *qp;
932 	int eqe_num = 0;
933 
934 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
935 		eqe_num++;
936 		qp = qm_to_hisi_qp(qm, eqe);
937 		qm_poll_qp(qp, qm);
938 
939 		if (qm->status.eq_head == QM_EQ_DEPTH - 1) {
940 			qm->status.eqc_phase = !qm->status.eqc_phase;
941 			eqe = qm->eqe;
942 			qm->status.eq_head = 0;
943 		} else {
944 			eqe++;
945 			qm->status.eq_head++;
946 		}
947 
948 		if (eqe_num == QM_EQ_DEPTH / 2 - 1) {
949 			eqe_num = 0;
950 			qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
951 		}
952 	}
953 
954 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
955 }
956 
957 static irqreturn_t do_qm_irq(int irq, void *data)
958 {
959 	struct hisi_qm *qm = (struct hisi_qm *)data;
960 
961 	/* the workqueue created by device driver of QM */
962 	if (qm->wq)
963 		queue_work(qm->wq, &qm->work);
964 	else
965 		schedule_work(&qm->work);
966 
967 	return IRQ_HANDLED;
968 }
969 
970 static irqreturn_t qm_irq(int irq, void *data)
971 {
972 	struct hisi_qm *qm = data;
973 
974 	if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
975 		return do_qm_irq(irq, data);
976 
977 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
978 	dev_err(&qm->pdev->dev, "invalid int source\n");
979 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
980 
981 	return IRQ_NONE;
982 }
983 
984 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
985 {
986 	struct hisi_qm *qm = data;
987 	u32 val;
988 
989 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
990 	val &= QM_IFC_INT_STATUS_MASK;
991 	if (!val)
992 		return IRQ_NONE;
993 
994 	schedule_work(&qm->cmd_process);
995 
996 	return IRQ_HANDLED;
997 }
998 
999 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
1000 {
1001 	u32 *addr;
1002 
1003 	if (qp->is_in_kernel)
1004 		return;
1005 
1006 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
1007 	*addr = 1;
1008 
1009 	/* make sure setup is completed */
1010 	smp_wmb();
1011 }
1012 
1013 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
1014 {
1015 	struct hisi_qp *qp = &qm->qp_array[qp_id];
1016 
1017 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
1018 	hisi_qm_stop_qp(qp);
1019 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
1020 }
1021 
1022 static void qm_reset_function(struct hisi_qm *qm)
1023 {
1024 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
1025 	struct device *dev = &qm->pdev->dev;
1026 	int ret;
1027 
1028 	if (qm_check_dev_error(pf_qm))
1029 		return;
1030 
1031 	ret = qm_reset_prepare_ready(qm);
1032 	if (ret) {
1033 		dev_err(dev, "reset function not ready\n");
1034 		return;
1035 	}
1036 
1037 	ret = hisi_qm_stop(qm, QM_FLR);
1038 	if (ret) {
1039 		dev_err(dev, "failed to stop qm when reset function\n");
1040 		goto clear_bit;
1041 	}
1042 
1043 	ret = hisi_qm_start(qm);
1044 	if (ret)
1045 		dev_err(dev, "failed to start qm when reset function\n");
1046 
1047 clear_bit:
1048 	qm_reset_bit_clear(qm);
1049 }
1050 
1051 static irqreturn_t qm_aeq_thread(int irq, void *data)
1052 {
1053 	struct hisi_qm *qm = data;
1054 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1055 	u32 type, qp_id;
1056 
1057 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1058 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
1059 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1060 
1061 		switch (type) {
1062 		case QM_EQ_OVERFLOW:
1063 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1064 			qm_reset_function(qm);
1065 			return IRQ_HANDLED;
1066 		case QM_CQ_OVERFLOW:
1067 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1068 				qp_id);
1069 			fallthrough;
1070 		case QM_CQE_ERROR:
1071 			qm_disable_qp(qm, qp_id);
1072 			break;
1073 		default:
1074 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1075 				type);
1076 			break;
1077 		}
1078 
1079 		if (qm->status.aeq_head == QM_Q_DEPTH - 1) {
1080 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1081 			aeqe = qm->aeqe;
1082 			qm->status.aeq_head = 0;
1083 		} else {
1084 			aeqe++;
1085 			qm->status.aeq_head++;
1086 		}
1087 	}
1088 
1089 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1090 
1091 	return IRQ_HANDLED;
1092 }
1093 
1094 static irqreturn_t qm_aeq_irq(int irq, void *data)
1095 {
1096 	struct hisi_qm *qm = data;
1097 
1098 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1099 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
1100 		return IRQ_NONE;
1101 
1102 	return IRQ_WAKE_THREAD;
1103 }
1104 
1105 static void qm_irq_unregister(struct hisi_qm *qm)
1106 {
1107 	struct pci_dev *pdev = qm->pdev;
1108 
1109 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
1110 
1111 	if (qm->ver > QM_HW_V1) {
1112 		free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
1113 
1114 		if (qm->fun_type == QM_HW_PF)
1115 			free_irq(pci_irq_vector(pdev,
1116 				 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
1117 	}
1118 
1119 	if (qm->ver > QM_HW_V2)
1120 		free_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR), qm);
1121 }
1122 
1123 static void qm_init_qp_status(struct hisi_qp *qp)
1124 {
1125 	struct hisi_qp_status *qp_status = &qp->qp_status;
1126 
1127 	qp_status->sq_tail = 0;
1128 	qp_status->cq_head = 0;
1129 	qp_status->cqc_phase = true;
1130 	atomic_set(&qp_status->used, 0);
1131 }
1132 
1133 static void qm_init_prefetch(struct hisi_qm *qm)
1134 {
1135 	struct device *dev = &qm->pdev->dev;
1136 	u32 page_type = 0x0;
1137 
1138 	if (qm->ver < QM_HW_V3)
1139 		return;
1140 
1141 	switch (PAGE_SIZE) {
1142 	case SZ_4K:
1143 		page_type = 0x0;
1144 		break;
1145 	case SZ_16K:
1146 		page_type = 0x1;
1147 		break;
1148 	case SZ_64K:
1149 		page_type = 0x2;
1150 		break;
1151 	default:
1152 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1153 			PAGE_SIZE);
1154 	}
1155 
1156 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1157 }
1158 
1159 /*
1160  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1161  * is the expected qos calculated.
1162  * the formula:
1163  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1164  *
1165  *		IR_b * (2 ^ IR_u) * 8000
1166  * IR(Mbps) = -------------------------
1167  *		  Tick * (2 ^ IR_s)
1168  */
1169 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1170 {
1171 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1172 					(QM_QOS_TICK * (1 << cir_s));
1173 }
1174 
1175 static u32 acc_shaper_calc_cbs_s(u32 ir)
1176 {
1177 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1178 	int i;
1179 
1180 	for (i = 0; i < table_size; i++) {
1181 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1182 			return shaper_cbs_s[i].val;
1183 	}
1184 
1185 	return QM_SHAPER_MIN_CBS_S;
1186 }
1187 
1188 static u32 acc_shaper_calc_cir_s(u32 ir)
1189 {
1190 	int table_size = ARRAY_SIZE(shaper_cir_s);
1191 	int i;
1192 
1193 	for (i = 0; i < table_size; i++) {
1194 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1195 			return shaper_cir_s[i].val;
1196 	}
1197 
1198 	return 0;
1199 }
1200 
1201 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1202 {
1203 	u32 cir_b, cir_u, cir_s, ir_calc;
1204 	u32 error_rate;
1205 
1206 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1207 	cir_s = acc_shaper_calc_cir_s(ir);
1208 
1209 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1210 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1211 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1212 
1213 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1214 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1215 				factor->cir_b = cir_b;
1216 				factor->cir_u = cir_u;
1217 				factor->cir_s = cir_s;
1218 				return 0;
1219 			}
1220 		}
1221 	}
1222 
1223 	return -EINVAL;
1224 }
1225 
1226 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1227 			    u32 number, struct qm_shaper_factor *factor)
1228 {
1229 	u64 tmp = 0;
1230 
1231 	if (number > 0) {
1232 		switch (type) {
1233 		case SQC_VFT:
1234 			if (qm->ver == QM_HW_V1) {
1235 				tmp = QM_SQC_VFT_BUF_SIZE	|
1236 				      QM_SQC_VFT_SQC_SIZE	|
1237 				      QM_SQC_VFT_INDEX_NUMBER	|
1238 				      QM_SQC_VFT_VALID		|
1239 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1240 			} else {
1241 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1242 				      QM_SQC_VFT_VALID |
1243 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1244 			}
1245 			break;
1246 		case CQC_VFT:
1247 			if (qm->ver == QM_HW_V1) {
1248 				tmp = QM_CQC_VFT_BUF_SIZE	|
1249 				      QM_CQC_VFT_SQC_SIZE	|
1250 				      QM_CQC_VFT_INDEX_NUMBER	|
1251 				      QM_CQC_VFT_VALID;
1252 			} else {
1253 				tmp = QM_CQC_VFT_VALID;
1254 			}
1255 			break;
1256 		case SHAPER_VFT:
1257 			if (qm->ver >= QM_HW_V3) {
1258 				tmp = factor->cir_b |
1259 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1260 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1261 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1262 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1263 			}
1264 			break;
1265 		}
1266 	}
1267 
1268 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1269 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1270 }
1271 
1272 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1273 			     u32 fun_num, u32 base, u32 number)
1274 {
1275 	struct qm_shaper_factor *factor = &qm->factor[fun_num];
1276 	unsigned int val;
1277 	int ret;
1278 
1279 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1280 					 val & BIT(0), POLL_PERIOD,
1281 					 POLL_TIMEOUT);
1282 	if (ret)
1283 		return ret;
1284 
1285 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1286 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1287 	if (type == SHAPER_VFT)
1288 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1289 
1290 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1291 
1292 	qm_vft_data_cfg(qm, type, base, number, factor);
1293 
1294 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1295 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1296 
1297 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1298 					  val & BIT(0), POLL_PERIOD,
1299 					  POLL_TIMEOUT);
1300 }
1301 
1302 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1303 {
1304 	u32 qos = qm->factor[fun_num].func_qos;
1305 	int ret, i;
1306 
1307 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1308 	if (ret) {
1309 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1310 		return ret;
1311 	}
1312 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1313 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1314 		/* The base number of queue reuse for different alg type */
1315 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1316 		if (ret)
1317 			return ret;
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 /* The config should be conducted after qm_dev_mem_reset() */
1324 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1325 			      u32 number)
1326 {
1327 	int ret, i;
1328 
1329 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1330 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1331 		if (ret)
1332 			return ret;
1333 	}
1334 
1335 	/* init default shaper qos val */
1336 	if (qm->ver >= QM_HW_V3) {
1337 		ret = qm_shaper_init_vft(qm, fun_num);
1338 		if (ret)
1339 			goto back_sqc_cqc;
1340 	}
1341 
1342 	return 0;
1343 back_sqc_cqc:
1344 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1345 		ret = qm_set_vft_common(qm, i, fun_num, 0, 0);
1346 		if (ret)
1347 			return ret;
1348 	}
1349 	return ret;
1350 }
1351 
1352 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1353 {
1354 	u64 sqc_vft;
1355 	int ret;
1356 
1357 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1358 	if (ret)
1359 		return ret;
1360 
1361 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1362 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1363 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1364 	*number = (QM_SQC_VFT_NUM_MASK_v2 &
1365 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1366 
1367 	return 0;
1368 }
1369 
1370 static int qm_get_vf_qp_num(struct hisi_qm *qm, u32 fun_num)
1371 {
1372 	u32 remain_q_num, vfq_num;
1373 	u32 num_vfs = qm->vfs_num;
1374 
1375 	vfq_num = (qm->ctrl_qp_num - qm->qp_num) / num_vfs;
1376 	if (vfq_num >= qm->max_qp_num)
1377 		return qm->max_qp_num;
1378 
1379 	remain_q_num = (qm->ctrl_qp_num - qm->qp_num) % num_vfs;
1380 	if (vfq_num + remain_q_num <= qm->max_qp_num)
1381 		return fun_num == num_vfs ? vfq_num + remain_q_num : vfq_num;
1382 
1383 	/*
1384 	 * if vfq_num + remain_q_num > max_qp_num, the last VFs,
1385 	 * each with one more queue.
1386 	 */
1387 	return fun_num + remain_q_num > num_vfs ? vfq_num + 1 : vfq_num;
1388 }
1389 
1390 static struct hisi_qm *file_to_qm(struct debugfs_file *file)
1391 {
1392 	struct qm_debug *debug = file->debug;
1393 
1394 	return container_of(debug, struct hisi_qm, debug);
1395 }
1396 
1397 static u32 current_q_read(struct hisi_qm *qm)
1398 {
1399 	return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT;
1400 }
1401 
1402 static int current_q_write(struct hisi_qm *qm, u32 val)
1403 {
1404 	u32 tmp;
1405 
1406 	if (val >= qm->debug.curr_qm_qp_num)
1407 		return -EINVAL;
1408 
1409 	tmp = val << QM_DFX_QN_SHIFT |
1410 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK);
1411 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
1412 
1413 	tmp = val << QM_DFX_QN_SHIFT |
1414 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK);
1415 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
1416 
1417 	return 0;
1418 }
1419 
1420 static u32 clear_enable_read(struct hisi_qm *qm)
1421 {
1422 	return readl(qm->io_base + QM_DFX_CNT_CLR_CE);
1423 }
1424 
1425 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */
1426 static int clear_enable_write(struct hisi_qm *qm, u32 rd_clr_ctrl)
1427 {
1428 	if (rd_clr_ctrl > 1)
1429 		return -EINVAL;
1430 
1431 	writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE);
1432 
1433 	return 0;
1434 }
1435 
1436 static u32 current_qm_read(struct hisi_qm *qm)
1437 {
1438 	return readl(qm->io_base + QM_DFX_MB_CNT_VF);
1439 }
1440 
1441 static int current_qm_write(struct hisi_qm *qm, u32 val)
1442 {
1443 	u32 tmp;
1444 
1445 	if (val > qm->vfs_num)
1446 		return -EINVAL;
1447 
1448 	/* According PF or VF Dev ID to calculation curr_qm_qp_num and store */
1449 	if (!val)
1450 		qm->debug.curr_qm_qp_num = qm->qp_num;
1451 	else
1452 		qm->debug.curr_qm_qp_num = qm_get_vf_qp_num(qm, val);
1453 
1454 	writel(val, qm->io_base + QM_DFX_MB_CNT_VF);
1455 	writel(val, qm->io_base + QM_DFX_DB_CNT_VF);
1456 
1457 	tmp = val |
1458 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_Q_MASK);
1459 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
1460 
1461 	tmp = val |
1462 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_Q_MASK);
1463 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
1464 
1465 	return 0;
1466 }
1467 
1468 static ssize_t qm_debug_read(struct file *filp, char __user *buf,
1469 			     size_t count, loff_t *pos)
1470 {
1471 	struct debugfs_file *file = filp->private_data;
1472 	enum qm_debug_file index = file->index;
1473 	struct hisi_qm *qm = file_to_qm(file);
1474 	char tbuf[QM_DBG_TMP_BUF_LEN];
1475 	u32 val;
1476 	int ret;
1477 
1478 	ret = hisi_qm_get_dfx_access(qm);
1479 	if (ret)
1480 		return ret;
1481 
1482 	mutex_lock(&file->lock);
1483 	switch (index) {
1484 	case CURRENT_QM:
1485 		val = current_qm_read(qm);
1486 		break;
1487 	case CURRENT_Q:
1488 		val = current_q_read(qm);
1489 		break;
1490 	case CLEAR_ENABLE:
1491 		val = clear_enable_read(qm);
1492 		break;
1493 	default:
1494 		goto err_input;
1495 	}
1496 	mutex_unlock(&file->lock);
1497 
1498 	hisi_qm_put_dfx_access(qm);
1499 	ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val);
1500 	return simple_read_from_buffer(buf, count, pos, tbuf, ret);
1501 
1502 err_input:
1503 	mutex_unlock(&file->lock);
1504 	hisi_qm_put_dfx_access(qm);
1505 	return -EINVAL;
1506 }
1507 
1508 static ssize_t qm_debug_write(struct file *filp, const char __user *buf,
1509 			      size_t count, loff_t *pos)
1510 {
1511 	struct debugfs_file *file = filp->private_data;
1512 	enum qm_debug_file index = file->index;
1513 	struct hisi_qm *qm = file_to_qm(file);
1514 	unsigned long val;
1515 	char tbuf[QM_DBG_TMP_BUF_LEN];
1516 	int len, ret;
1517 
1518 	if (*pos != 0)
1519 		return 0;
1520 
1521 	if (count >= QM_DBG_TMP_BUF_LEN)
1522 		return -ENOSPC;
1523 
1524 	len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf,
1525 				     count);
1526 	if (len < 0)
1527 		return len;
1528 
1529 	tbuf[len] = '\0';
1530 	if (kstrtoul(tbuf, 0, &val))
1531 		return -EFAULT;
1532 
1533 	ret = hisi_qm_get_dfx_access(qm);
1534 	if (ret)
1535 		return ret;
1536 
1537 	mutex_lock(&file->lock);
1538 	switch (index) {
1539 	case CURRENT_QM:
1540 		ret = current_qm_write(qm, val);
1541 		break;
1542 	case CURRENT_Q:
1543 		ret = current_q_write(qm, val);
1544 		break;
1545 	case CLEAR_ENABLE:
1546 		ret = clear_enable_write(qm, val);
1547 		break;
1548 	default:
1549 		ret = -EINVAL;
1550 	}
1551 	mutex_unlock(&file->lock);
1552 
1553 	hisi_qm_put_dfx_access(qm);
1554 
1555 	if (ret)
1556 		return ret;
1557 
1558 	return count;
1559 }
1560 
1561 static const struct file_operations qm_debug_fops = {
1562 	.owner = THIS_MODULE,
1563 	.open = simple_open,
1564 	.read = qm_debug_read,
1565 	.write = qm_debug_write,
1566 };
1567 
1568 #define CNT_CYC_REGS_NUM		10
1569 static const struct debugfs_reg32 qm_dfx_regs[] = {
1570 	/* XXX_CNT are reading clear register */
1571 	{"QM_ECC_1BIT_CNT               ",  0x104000ull},
1572 	{"QM_ECC_MBIT_CNT               ",  0x104008ull},
1573 	{"QM_DFX_MB_CNT                 ",  0x104018ull},
1574 	{"QM_DFX_DB_CNT                 ",  0x104028ull},
1575 	{"QM_DFX_SQE_CNT                ",  0x104038ull},
1576 	{"QM_DFX_CQE_CNT                ",  0x104048ull},
1577 	{"QM_DFX_SEND_SQE_TO_ACC_CNT    ",  0x104050ull},
1578 	{"QM_DFX_WB_SQE_FROM_ACC_CNT    ",  0x104058ull},
1579 	{"QM_DFX_ACC_FINISH_CNT         ",  0x104060ull},
1580 	{"QM_DFX_CQE_ERR_CNT            ",  0x1040b4ull},
1581 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1582 	{"QM_ECC_1BIT_INF               ",  0x104004ull},
1583 	{"QM_ECC_MBIT_INF               ",  0x10400cull},
1584 	{"QM_DFX_ACC_RDY_VLD0           ",  0x1040a0ull},
1585 	{"QM_DFX_ACC_RDY_VLD1           ",  0x1040a4ull},
1586 	{"QM_DFX_AXI_RDY_VLD            ",  0x1040a8ull},
1587 	{"QM_DFX_FF_ST0                 ",  0x1040c8ull},
1588 	{"QM_DFX_FF_ST1                 ",  0x1040ccull},
1589 	{"QM_DFX_FF_ST2                 ",  0x1040d0ull},
1590 	{"QM_DFX_FF_ST3                 ",  0x1040d4ull},
1591 	{"QM_DFX_FF_ST4                 ",  0x1040d8ull},
1592 	{"QM_DFX_FF_ST5                 ",  0x1040dcull},
1593 	{"QM_DFX_FF_ST6                 ",  0x1040e0ull},
1594 	{"QM_IN_IDLE_ST                 ",  0x1040e4ull},
1595 };
1596 
1597 static const struct debugfs_reg32 qm_vf_dfx_regs[] = {
1598 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1599 };
1600 
1601 /**
1602  * hisi_qm_regs_dump() - Dump registers's value.
1603  * @s: debugfs file handle.
1604  * @regset: accelerator registers information.
1605  *
1606  * Dump accelerator registers.
1607  */
1608 void hisi_qm_regs_dump(struct seq_file *s, struct debugfs_regset32 *regset)
1609 {
1610 	struct pci_dev *pdev = to_pci_dev(regset->dev);
1611 	struct hisi_qm *qm = pci_get_drvdata(pdev);
1612 	const struct debugfs_reg32 *regs = regset->regs;
1613 	int regs_len = regset->nregs;
1614 	int i, ret;
1615 	u32 val;
1616 
1617 	ret = hisi_qm_get_dfx_access(qm);
1618 	if (ret)
1619 		return;
1620 
1621 	for (i = 0; i < regs_len; i++) {
1622 		val = readl(regset->base + regs[i].offset);
1623 		seq_printf(s, "%s= 0x%08x\n", regs[i].name, val);
1624 	}
1625 
1626 	hisi_qm_put_dfx_access(qm);
1627 }
1628 EXPORT_SYMBOL_GPL(hisi_qm_regs_dump);
1629 
1630 static int qm_regs_show(struct seq_file *s, void *unused)
1631 {
1632 	struct hisi_qm *qm = s->private;
1633 	struct debugfs_regset32 regset;
1634 
1635 	if (qm->fun_type == QM_HW_PF) {
1636 		regset.regs = qm_dfx_regs;
1637 		regset.nregs = ARRAY_SIZE(qm_dfx_regs);
1638 	} else {
1639 		regset.regs = qm_vf_dfx_regs;
1640 		regset.nregs = ARRAY_SIZE(qm_vf_dfx_regs);
1641 	}
1642 
1643 	regset.base = qm->io_base;
1644 	regset.dev = &qm->pdev->dev;
1645 
1646 	hisi_qm_regs_dump(s, &regset);
1647 
1648 	return 0;
1649 }
1650 
1651 DEFINE_SHOW_ATTRIBUTE(qm_regs);
1652 
1653 static struct dfx_diff_registers *dfx_regs_init(struct hisi_qm *qm,
1654 	const struct dfx_diff_registers *cregs, int reg_len)
1655 {
1656 	struct dfx_diff_registers *diff_regs;
1657 	u32 j, base_offset;
1658 	int i;
1659 
1660 	diff_regs = kcalloc(reg_len, sizeof(*diff_regs), GFP_KERNEL);
1661 	if (!diff_regs)
1662 		return ERR_PTR(-ENOMEM);
1663 
1664 	for (i = 0; i < reg_len; i++) {
1665 		if (!cregs[i].reg_len)
1666 			continue;
1667 
1668 		diff_regs[i].reg_offset = cregs[i].reg_offset;
1669 		diff_regs[i].reg_len = cregs[i].reg_len;
1670 		diff_regs[i].regs = kcalloc(QM_DFX_REGS_LEN, cregs[i].reg_len,
1671 					 GFP_KERNEL);
1672 		if (!diff_regs[i].regs)
1673 			goto alloc_error;
1674 
1675 		for (j = 0; j < diff_regs[i].reg_len; j++) {
1676 			base_offset = diff_regs[i].reg_offset +
1677 					j * QM_DFX_REGS_LEN;
1678 			diff_regs[i].regs[j] = readl(qm->io_base + base_offset);
1679 		}
1680 	}
1681 
1682 	return diff_regs;
1683 
1684 alloc_error:
1685 	while (i > 0) {
1686 		i--;
1687 		kfree(diff_regs[i].regs);
1688 	}
1689 	kfree(diff_regs);
1690 	return ERR_PTR(-ENOMEM);
1691 }
1692 
1693 static void dfx_regs_uninit(struct hisi_qm *qm,
1694 		struct dfx_diff_registers *dregs, int reg_len)
1695 {
1696 	int i;
1697 
1698 	/* Setting the pointer is NULL to prevent double free */
1699 	for (i = 0; i < reg_len; i++) {
1700 		kfree(dregs[i].regs);
1701 		dregs[i].regs = NULL;
1702 	}
1703 	kfree(dregs);
1704 	dregs = NULL;
1705 }
1706 
1707 /**
1708  * hisi_qm_diff_regs_init() - Allocate memory for registers.
1709  * @qm: device qm handle.
1710  * @dregs: diff registers handle.
1711  * @reg_len: diff registers region length.
1712  */
1713 int hisi_qm_diff_regs_init(struct hisi_qm *qm,
1714 		struct dfx_diff_registers *dregs, int reg_len)
1715 {
1716 	if (!qm || !dregs || reg_len <= 0)
1717 		return -EINVAL;
1718 
1719 	if (qm->fun_type != QM_HW_PF)
1720 		return 0;
1721 
1722 	qm->debug.qm_diff_regs = dfx_regs_init(qm, qm_diff_regs,
1723 						ARRAY_SIZE(qm_diff_regs));
1724 	if (IS_ERR(qm->debug.qm_diff_regs))
1725 		return PTR_ERR(qm->debug.qm_diff_regs);
1726 
1727 	qm->debug.acc_diff_regs = dfx_regs_init(qm, dregs, reg_len);
1728 	if (IS_ERR(qm->debug.acc_diff_regs)) {
1729 		dfx_regs_uninit(qm, qm->debug.qm_diff_regs,
1730 				ARRAY_SIZE(qm_diff_regs));
1731 		return PTR_ERR(qm->debug.acc_diff_regs);
1732 	}
1733 
1734 	return 0;
1735 }
1736 EXPORT_SYMBOL_GPL(hisi_qm_diff_regs_init);
1737 
1738 /**
1739  * hisi_qm_diff_regs_uninit() - Free memory for registers.
1740  * @qm: device qm handle.
1741  * @reg_len: diff registers region length.
1742  */
1743 void hisi_qm_diff_regs_uninit(struct hisi_qm *qm, int reg_len)
1744 {
1745 	if (!qm  || reg_len <= 0 || qm->fun_type != QM_HW_PF)
1746 		return;
1747 
1748 	dfx_regs_uninit(qm, qm->debug.acc_diff_regs, reg_len);
1749 	dfx_regs_uninit(qm, qm->debug.qm_diff_regs, ARRAY_SIZE(qm_diff_regs));
1750 }
1751 EXPORT_SYMBOL_GPL(hisi_qm_diff_regs_uninit);
1752 
1753 /**
1754  * hisi_qm_acc_diff_regs_dump() - Dump registers's value.
1755  * @qm: device qm handle.
1756  * @s: Debugfs file handle.
1757  * @dregs: diff registers handle.
1758  * @regs_len: diff registers region length.
1759  */
1760 void hisi_qm_acc_diff_regs_dump(struct hisi_qm *qm, struct seq_file *s,
1761 	struct dfx_diff_registers *dregs, int regs_len)
1762 {
1763 	u32 j, val, base_offset;
1764 	int i, ret;
1765 
1766 	if (!qm || !s || !dregs || regs_len <= 0)
1767 		return;
1768 
1769 	ret = hisi_qm_get_dfx_access(qm);
1770 	if (ret)
1771 		return;
1772 
1773 	down_read(&qm->qps_lock);
1774 	for (i = 0; i < regs_len; i++) {
1775 		if (!dregs[i].reg_len)
1776 			continue;
1777 
1778 		for (j = 0; j < dregs[i].reg_len; j++) {
1779 			base_offset = dregs[i].reg_offset + j * QM_DFX_REGS_LEN;
1780 			val = readl(qm->io_base + base_offset);
1781 			if (val != dregs[i].regs[j])
1782 				seq_printf(s, "0x%08x = 0x%08x ---> 0x%08x\n",
1783 					   base_offset, dregs[i].regs[j], val);
1784 		}
1785 	}
1786 	up_read(&qm->qps_lock);
1787 
1788 	hisi_qm_put_dfx_access(qm);
1789 }
1790 EXPORT_SYMBOL_GPL(hisi_qm_acc_diff_regs_dump);
1791 
1792 static int qm_diff_regs_show(struct seq_file *s, void *unused)
1793 {
1794 	struct hisi_qm *qm = s->private;
1795 
1796 	hisi_qm_acc_diff_regs_dump(qm, s, qm->debug.qm_diff_regs,
1797 					ARRAY_SIZE(qm_diff_regs));
1798 
1799 	return 0;
1800 }
1801 DEFINE_SHOW_ATTRIBUTE(qm_diff_regs);
1802 
1803 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer,
1804 			   size_t count, loff_t *pos)
1805 {
1806 	char buf[QM_DBG_READ_LEN];
1807 	int len;
1808 
1809 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n",
1810 			"Please echo help to cmd to get help information");
1811 
1812 	return simple_read_from_buffer(buffer, count, pos, buf, len);
1813 }
1814 
1815 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1816 			  dma_addr_t *dma_addr)
1817 {
1818 	struct device *dev = &qm->pdev->dev;
1819 	void *ctx_addr;
1820 
1821 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1822 	if (!ctx_addr)
1823 		return ERR_PTR(-ENOMEM);
1824 
1825 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1826 	if (dma_mapping_error(dev, *dma_addr)) {
1827 		dev_err(dev, "DMA mapping error!\n");
1828 		kfree(ctx_addr);
1829 		return ERR_PTR(-ENOMEM);
1830 	}
1831 
1832 	return ctx_addr;
1833 }
1834 
1835 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1836 			const void *ctx_addr, dma_addr_t *dma_addr)
1837 {
1838 	struct device *dev = &qm->pdev->dev;
1839 
1840 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1841 	kfree(ctx_addr);
1842 }
1843 
1844 static int dump_show(struct hisi_qm *qm, void *info,
1845 		     unsigned int info_size, char *info_name)
1846 {
1847 	struct device *dev = &qm->pdev->dev;
1848 	u8 *info_buf, *info_curr = info;
1849 	u32 i;
1850 #define BYTE_PER_DW	4
1851 
1852 	info_buf = kzalloc(info_size, GFP_KERNEL);
1853 	if (!info_buf)
1854 		return -ENOMEM;
1855 
1856 	for (i = 0; i < info_size; i++, info_curr++) {
1857 		if (i % BYTE_PER_DW == 0)
1858 			info_buf[i + 3UL] = *info_curr;
1859 		else if (i % BYTE_PER_DW == 1)
1860 			info_buf[i + 1UL] = *info_curr;
1861 		else if (i % BYTE_PER_DW == 2)
1862 			info_buf[i - 1] = *info_curr;
1863 		else if (i % BYTE_PER_DW == 3)
1864 			info_buf[i - 3] = *info_curr;
1865 	}
1866 
1867 	dev_info(dev, "%s DUMP\n", info_name);
1868 	for (i = 0; i < info_size; i += BYTE_PER_DW) {
1869 		pr_info("DW%u: %02X%02X %02X%02X\n", i / BYTE_PER_DW,
1870 			info_buf[i], info_buf[i + 1UL],
1871 			info_buf[i + 2UL], info_buf[i + 3UL]);
1872 	}
1873 
1874 	kfree(info_buf);
1875 
1876 	return 0;
1877 }
1878 
1879 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1880 {
1881 	return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1882 }
1883 
1884 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1885 {
1886 	return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1887 }
1888 
1889 static int qm_sqc_dump(struct hisi_qm *qm, const char *s)
1890 {
1891 	struct device *dev = &qm->pdev->dev;
1892 	struct qm_sqc *sqc, *sqc_curr;
1893 	dma_addr_t sqc_dma;
1894 	u32 qp_id;
1895 	int ret;
1896 
1897 	if (!s)
1898 		return -EINVAL;
1899 
1900 	ret = kstrtou32(s, 0, &qp_id);
1901 	if (ret || qp_id >= qm->qp_num) {
1902 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1903 		return -EINVAL;
1904 	}
1905 
1906 	sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma);
1907 	if (IS_ERR(sqc))
1908 		return PTR_ERR(sqc);
1909 
1910 	ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id);
1911 	if (ret) {
1912 		down_read(&qm->qps_lock);
1913 		if (qm->sqc) {
1914 			sqc_curr = qm->sqc + qp_id;
1915 
1916 			ret = dump_show(qm, sqc_curr, sizeof(*sqc),
1917 					"SOFT SQC");
1918 			if (ret)
1919 				dev_info(dev, "Show soft sqc failed!\n");
1920 		}
1921 		up_read(&qm->qps_lock);
1922 
1923 		goto err_free_ctx;
1924 	}
1925 
1926 	ret = dump_show(qm, sqc, sizeof(*sqc), "SQC");
1927 	if (ret)
1928 		dev_info(dev, "Show hw sqc failed!\n");
1929 
1930 err_free_ctx:
1931 	qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma);
1932 	return ret;
1933 }
1934 
1935 static int qm_cqc_dump(struct hisi_qm *qm, const char *s)
1936 {
1937 	struct device *dev = &qm->pdev->dev;
1938 	struct qm_cqc *cqc, *cqc_curr;
1939 	dma_addr_t cqc_dma;
1940 	u32 qp_id;
1941 	int ret;
1942 
1943 	if (!s)
1944 		return -EINVAL;
1945 
1946 	ret = kstrtou32(s, 0, &qp_id);
1947 	if (ret || qp_id >= qm->qp_num) {
1948 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1949 		return -EINVAL;
1950 	}
1951 
1952 	cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma);
1953 	if (IS_ERR(cqc))
1954 		return PTR_ERR(cqc);
1955 
1956 	ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id);
1957 	if (ret) {
1958 		down_read(&qm->qps_lock);
1959 		if (qm->cqc) {
1960 			cqc_curr = qm->cqc + qp_id;
1961 
1962 			ret = dump_show(qm, cqc_curr, sizeof(*cqc),
1963 					"SOFT CQC");
1964 			if (ret)
1965 				dev_info(dev, "Show soft cqc failed!\n");
1966 		}
1967 		up_read(&qm->qps_lock);
1968 
1969 		goto err_free_ctx;
1970 	}
1971 
1972 	ret = dump_show(qm, cqc, sizeof(*cqc), "CQC");
1973 	if (ret)
1974 		dev_info(dev, "Show hw cqc failed!\n");
1975 
1976 err_free_ctx:
1977 	qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma);
1978 	return ret;
1979 }
1980 
1981 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size,
1982 			    int cmd, char *name)
1983 {
1984 	struct device *dev = &qm->pdev->dev;
1985 	dma_addr_t xeqc_dma;
1986 	void *xeqc;
1987 	int ret;
1988 
1989 	if (strsep(&s, " ")) {
1990 		dev_err(dev, "Please do not input extra characters!\n");
1991 		return -EINVAL;
1992 	}
1993 
1994 	xeqc = qm_ctx_alloc(qm, size, &xeqc_dma);
1995 	if (IS_ERR(xeqc))
1996 		return PTR_ERR(xeqc);
1997 
1998 	ret = hisi_qm_mb(qm, cmd, xeqc_dma, 0, 1);
1999 	if (ret)
2000 		goto err_free_ctx;
2001 
2002 	ret = dump_show(qm, xeqc, size, name);
2003 	if (ret)
2004 		dev_info(dev, "Show hw %s failed!\n", name);
2005 
2006 err_free_ctx:
2007 	qm_ctx_free(qm, size, xeqc, &xeqc_dma);
2008 	return ret;
2009 }
2010 
2011 static int q_dump_param_parse(struct hisi_qm *qm, char *s,
2012 			      u32 *e_id, u32 *q_id)
2013 {
2014 	struct device *dev = &qm->pdev->dev;
2015 	unsigned int qp_num = qm->qp_num;
2016 	char *presult;
2017 	int ret;
2018 
2019 	presult = strsep(&s, " ");
2020 	if (!presult) {
2021 		dev_err(dev, "Please input qp number!\n");
2022 		return -EINVAL;
2023 	}
2024 
2025 	ret = kstrtou32(presult, 0, q_id);
2026 	if (ret || *q_id >= qp_num) {
2027 		dev_err(dev, "Please input qp num (0-%u)", qp_num - 1);
2028 		return -EINVAL;
2029 	}
2030 
2031 	presult = strsep(&s, " ");
2032 	if (!presult) {
2033 		dev_err(dev, "Please input sqe number!\n");
2034 		return -EINVAL;
2035 	}
2036 
2037 	ret = kstrtou32(presult, 0, e_id);
2038 	if (ret || *e_id >= QM_Q_DEPTH) {
2039 		dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1);
2040 		return -EINVAL;
2041 	}
2042 
2043 	if (strsep(&s, " ")) {
2044 		dev_err(dev, "Please do not input extra characters!\n");
2045 		return -EINVAL;
2046 	}
2047 
2048 	return 0;
2049 }
2050 
2051 static int qm_sq_dump(struct hisi_qm *qm, char *s)
2052 {
2053 	struct device *dev = &qm->pdev->dev;
2054 	void *sqe, *sqe_curr;
2055 	struct hisi_qp *qp;
2056 	u32 qp_id, sqe_id;
2057 	int ret;
2058 
2059 	ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id);
2060 	if (ret)
2061 		return ret;
2062 
2063 	sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL);
2064 	if (!sqe)
2065 		return -ENOMEM;
2066 
2067 	qp = &qm->qp_array[qp_id];
2068 	memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH);
2069 	sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size);
2070 	memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK,
2071 	       qm->debug.sqe_mask_len);
2072 
2073 	ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE");
2074 	if (ret)
2075 		dev_info(dev, "Show sqe failed!\n");
2076 
2077 	kfree(sqe);
2078 
2079 	return ret;
2080 }
2081 
2082 static int qm_cq_dump(struct hisi_qm *qm, char *s)
2083 {
2084 	struct device *dev = &qm->pdev->dev;
2085 	struct qm_cqe *cqe_curr;
2086 	struct hisi_qp *qp;
2087 	u32 qp_id, cqe_id;
2088 	int ret;
2089 
2090 	ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id);
2091 	if (ret)
2092 		return ret;
2093 
2094 	qp = &qm->qp_array[qp_id];
2095 	cqe_curr = qp->cqe + cqe_id;
2096 	ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE");
2097 	if (ret)
2098 		dev_info(dev, "Show cqe failed!\n");
2099 
2100 	return ret;
2101 }
2102 
2103 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s,
2104 			  size_t size, char *name)
2105 {
2106 	struct device *dev = &qm->pdev->dev;
2107 	void *xeqe;
2108 	u32 xeqe_id;
2109 	int ret;
2110 
2111 	if (!s)
2112 		return -EINVAL;
2113 
2114 	ret = kstrtou32(s, 0, &xeqe_id);
2115 	if (ret)
2116 		return -EINVAL;
2117 
2118 	if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) {
2119 		dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1);
2120 		return -EINVAL;
2121 	} else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) {
2122 		dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1);
2123 		return -EINVAL;
2124 	}
2125 
2126 	down_read(&qm->qps_lock);
2127 
2128 	if (qm->eqe && !strcmp(name, "EQE")) {
2129 		xeqe = qm->eqe + xeqe_id;
2130 	} else if (qm->aeqe && !strcmp(name, "AEQE")) {
2131 		xeqe = qm->aeqe + xeqe_id;
2132 	} else {
2133 		ret = -EINVAL;
2134 		goto err_unlock;
2135 	}
2136 
2137 	ret = dump_show(qm, xeqe, size, name);
2138 	if (ret)
2139 		dev_info(dev, "Show %s failed!\n", name);
2140 
2141 err_unlock:
2142 	up_read(&qm->qps_lock);
2143 	return ret;
2144 }
2145 
2146 static int qm_dbg_help(struct hisi_qm *qm, char *s)
2147 {
2148 	struct device *dev = &qm->pdev->dev;
2149 
2150 	if (strsep(&s, " ")) {
2151 		dev_err(dev, "Please do not input extra characters!\n");
2152 		return -EINVAL;
2153 	}
2154 
2155 	dev_info(dev, "available commands:\n");
2156 	dev_info(dev, "sqc <num>\n");
2157 	dev_info(dev, "cqc <num>\n");
2158 	dev_info(dev, "eqc\n");
2159 	dev_info(dev, "aeqc\n");
2160 	dev_info(dev, "sq <num> <e>\n");
2161 	dev_info(dev, "cq <num> <e>\n");
2162 	dev_info(dev, "eq <e>\n");
2163 	dev_info(dev, "aeq <e>\n");
2164 
2165 	return 0;
2166 }
2167 
2168 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf)
2169 {
2170 	struct device *dev = &qm->pdev->dev;
2171 	char *presult, *s, *s_tmp;
2172 	int ret;
2173 
2174 	s = kstrdup(cmd_buf, GFP_KERNEL);
2175 	if (!s)
2176 		return -ENOMEM;
2177 
2178 	s_tmp = s;
2179 	presult = strsep(&s, " ");
2180 	if (!presult) {
2181 		ret = -EINVAL;
2182 		goto err_buffer_free;
2183 	}
2184 
2185 	if (!strcmp(presult, "sqc"))
2186 		ret = qm_sqc_dump(qm, s);
2187 	else if (!strcmp(presult, "cqc"))
2188 		ret = qm_cqc_dump(qm, s);
2189 	else if (!strcmp(presult, "eqc"))
2190 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc),
2191 				       QM_MB_CMD_EQC, "EQC");
2192 	else if (!strcmp(presult, "aeqc"))
2193 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc),
2194 				       QM_MB_CMD_AEQC, "AEQC");
2195 	else if (!strcmp(presult, "sq"))
2196 		ret = qm_sq_dump(qm, s);
2197 	else if (!strcmp(presult, "cq"))
2198 		ret = qm_cq_dump(qm, s);
2199 	else if (!strcmp(presult, "eq"))
2200 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE");
2201 	else if (!strcmp(presult, "aeq"))
2202 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE");
2203 	else if (!strcmp(presult, "help"))
2204 		ret = qm_dbg_help(qm, s);
2205 	else
2206 		ret = -EINVAL;
2207 
2208 	if (ret)
2209 		dev_info(dev, "Please echo help\n");
2210 
2211 err_buffer_free:
2212 	kfree(s_tmp);
2213 
2214 	return ret;
2215 }
2216 
2217 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer,
2218 			    size_t count, loff_t *pos)
2219 {
2220 	struct hisi_qm *qm = filp->private_data;
2221 	char *cmd_buf, *cmd_buf_tmp;
2222 	int ret;
2223 
2224 	if (*pos)
2225 		return 0;
2226 
2227 	ret = hisi_qm_get_dfx_access(qm);
2228 	if (ret)
2229 		return ret;
2230 
2231 	/* Judge if the instance is being reset. */
2232 	if (unlikely(atomic_read(&qm->status.flags) == QM_STOP))
2233 		return 0;
2234 
2235 	if (count > QM_DBG_WRITE_LEN) {
2236 		ret = -ENOSPC;
2237 		goto put_dfx_access;
2238 	}
2239 
2240 	cmd_buf = memdup_user_nul(buffer, count);
2241 	if (IS_ERR(cmd_buf)) {
2242 		ret = PTR_ERR(cmd_buf);
2243 		goto put_dfx_access;
2244 	}
2245 
2246 	cmd_buf_tmp = strchr(cmd_buf, '\n');
2247 	if (cmd_buf_tmp) {
2248 		*cmd_buf_tmp = '\0';
2249 		count = cmd_buf_tmp - cmd_buf + 1;
2250 	}
2251 
2252 	ret = qm_cmd_write_dump(qm, cmd_buf);
2253 	if (ret) {
2254 		kfree(cmd_buf);
2255 		goto put_dfx_access;
2256 	}
2257 
2258 	kfree(cmd_buf);
2259 
2260 	ret = count;
2261 
2262 put_dfx_access:
2263 	hisi_qm_put_dfx_access(qm);
2264 	return ret;
2265 }
2266 
2267 static const struct file_operations qm_cmd_fops = {
2268 	.owner = THIS_MODULE,
2269 	.open = simple_open,
2270 	.read = qm_cmd_read,
2271 	.write = qm_cmd_write,
2272 };
2273 
2274 static void qm_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir,
2275 				   enum qm_debug_file index)
2276 {
2277 	struct debugfs_file *file = qm->debug.files + index;
2278 
2279 	debugfs_create_file(qm_debug_file_name[index], 0600, dir, file,
2280 			    &qm_debug_fops);
2281 
2282 	file->index = index;
2283 	mutex_init(&file->lock);
2284 	file->debug = &qm->debug;
2285 }
2286 
2287 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
2288 {
2289 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
2290 }
2291 
2292 static void qm_hw_error_cfg(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
2293 {
2294 	qm->error_mask = ce | nfe | fe;
2295 	/* clear QM hw residual error source */
2296 	writel(QM_ABNORMAL_INT_SOURCE_CLR,
2297 	       qm->io_base + QM_ABNORMAL_INT_SOURCE);
2298 
2299 	/* configure error type */
2300 	writel(ce, qm->io_base + QM_RAS_CE_ENABLE);
2301 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
2302 	writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE);
2303 	writel(fe, qm->io_base + QM_RAS_FE_ENABLE);
2304 }
2305 
2306 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
2307 {
2308 	u32 irq_enable = ce | nfe | fe;
2309 	u32 irq_unmask = ~irq_enable;
2310 
2311 	qm_hw_error_cfg(qm, ce, nfe, fe);
2312 
2313 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
2314 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
2315 }
2316 
2317 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
2318 {
2319 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
2320 }
2321 
2322 static void qm_hw_error_init_v3(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
2323 {
2324 	u32 irq_enable = ce | nfe | fe;
2325 	u32 irq_unmask = ~irq_enable;
2326 
2327 	qm_hw_error_cfg(qm, ce, nfe, fe);
2328 
2329 	/* enable close master ooo when hardware error happened */
2330 	writel(nfe & (~QM_DB_RANDOM_INVALID), qm->io_base + QM_OOO_SHUTDOWN_SEL);
2331 
2332 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
2333 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
2334 }
2335 
2336 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
2337 {
2338 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
2339 
2340 	/* disable close master ooo when hardware error happened */
2341 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
2342 }
2343 
2344 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
2345 {
2346 	const struct hisi_qm_hw_error *err;
2347 	struct device *dev = &qm->pdev->dev;
2348 	u32 reg_val, type, vf_num;
2349 	int i;
2350 
2351 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
2352 		err = &qm_hw_error[i];
2353 		if (!(err->int_msk & error_status))
2354 			continue;
2355 
2356 		dev_err(dev, "%s [error status=0x%x] found\n",
2357 			err->msg, err->int_msk);
2358 
2359 		if (err->int_msk & QM_DB_TIMEOUT) {
2360 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
2361 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
2362 			       QM_DB_TIMEOUT_TYPE_SHIFT;
2363 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
2364 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
2365 				qm_db_timeout[type], vf_num);
2366 		} else if (err->int_msk & QM_OF_FIFO_OF) {
2367 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
2368 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
2369 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
2370 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
2371 
2372 			if (type < ARRAY_SIZE(qm_fifo_overflow))
2373 				dev_err(dev, "qm %s fifo overflow in function %u\n",
2374 					qm_fifo_overflow[type], vf_num);
2375 			else
2376 				dev_err(dev, "unknown error type\n");
2377 		}
2378 	}
2379 }
2380 
2381 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
2382 {
2383 	u32 error_status, tmp, val;
2384 
2385 	/* read err sts */
2386 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
2387 	error_status = qm->error_mask & tmp;
2388 
2389 	if (error_status) {
2390 		if (error_status & QM_ECC_MBIT)
2391 			qm->err_status.is_qm_ecc_mbit = true;
2392 
2393 		qm_log_hw_error(qm, error_status);
2394 		val = error_status | QM_DB_RANDOM_INVALID | QM_BASE_CE;
2395 		/* ce error does not need to be reset */
2396 		if (val == (QM_DB_RANDOM_INVALID | QM_BASE_CE)) {
2397 			writel(error_status, qm->io_base +
2398 			       QM_ABNORMAL_INT_SOURCE);
2399 			writel(qm->err_info.nfe,
2400 			       qm->io_base + QM_RAS_NFE_ENABLE);
2401 			return ACC_ERR_RECOVERED;
2402 		}
2403 
2404 		return ACC_ERR_NEED_RESET;
2405 	}
2406 
2407 	return ACC_ERR_RECOVERED;
2408 }
2409 
2410 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
2411 {
2412 	struct qm_mailbox mailbox;
2413 	int ret;
2414 
2415 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
2416 	mutex_lock(&qm->mailbox_lock);
2417 	ret = qm_mb_nolock(qm, &mailbox);
2418 	if (ret)
2419 		goto err_unlock;
2420 
2421 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
2422 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
2423 
2424 err_unlock:
2425 	mutex_unlock(&qm->mailbox_lock);
2426 	return ret;
2427 }
2428 
2429 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
2430 {
2431 	u32 val;
2432 
2433 	if (qm->fun_type == QM_HW_PF)
2434 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
2435 
2436 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
2437 	val |= QM_IFC_INT_SOURCE_MASK;
2438 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
2439 }
2440 
2441 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
2442 {
2443 	struct device *dev = &qm->pdev->dev;
2444 	u32 cmd;
2445 	u64 msg;
2446 	int ret;
2447 
2448 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
2449 	if (ret) {
2450 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
2451 		return;
2452 	}
2453 
2454 	cmd = msg & QM_MB_CMD_DATA_MASK;
2455 	switch (cmd) {
2456 	case QM_VF_PREPARE_FAIL:
2457 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
2458 		break;
2459 	case QM_VF_START_FAIL:
2460 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
2461 		break;
2462 	case QM_VF_PREPARE_DONE:
2463 	case QM_VF_START_DONE:
2464 		break;
2465 	default:
2466 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
2467 		break;
2468 	}
2469 }
2470 
2471 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
2472 {
2473 	struct device *dev = &qm->pdev->dev;
2474 	u32 vfs_num = qm->vfs_num;
2475 	int cnt = 0;
2476 	int ret = 0;
2477 	u64 val;
2478 	u32 i;
2479 
2480 	if (!qm->vfs_num || qm->ver < QM_HW_V3)
2481 		return 0;
2482 
2483 	while (true) {
2484 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
2485 		/* All VFs send command to PF, break */
2486 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
2487 			break;
2488 
2489 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
2490 			ret = -EBUSY;
2491 			break;
2492 		}
2493 
2494 		msleep(QM_WAIT_DST_ACK);
2495 	}
2496 
2497 	/* PF check VFs msg */
2498 	for (i = 1; i <= vfs_num; i++) {
2499 		if (val & BIT(i))
2500 			qm_handle_vf_msg(qm, i);
2501 		else
2502 			dev_err(dev, "VF(%u) not ping PF!\n", i);
2503 	}
2504 
2505 	/* PF clear interrupt to ack VFs */
2506 	qm_clear_cmd_interrupt(qm, val);
2507 
2508 	return ret;
2509 }
2510 
2511 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
2512 {
2513 	u32 val;
2514 
2515 	val = readl(qm->io_base + QM_IFC_INT_CFG);
2516 	val &= ~QM_IFC_SEND_ALL_VFS;
2517 	val |= fun_num;
2518 	writel(val, qm->io_base + QM_IFC_INT_CFG);
2519 
2520 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
2521 	val |= QM_IFC_INT_SET_MASK;
2522 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
2523 }
2524 
2525 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
2526 {
2527 	u32 val;
2528 
2529 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
2530 	val |= QM_IFC_INT_SET_MASK;
2531 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
2532 }
2533 
2534 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
2535 {
2536 	struct device *dev = &qm->pdev->dev;
2537 	struct qm_mailbox mailbox;
2538 	int cnt = 0;
2539 	u64 val;
2540 	int ret;
2541 
2542 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
2543 	mutex_lock(&qm->mailbox_lock);
2544 	ret = qm_mb_nolock(qm, &mailbox);
2545 	if (ret) {
2546 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
2547 		goto err_unlock;
2548 	}
2549 
2550 	qm_trigger_vf_interrupt(qm, fun_num);
2551 	while (true) {
2552 		msleep(QM_WAIT_DST_ACK);
2553 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
2554 		/* if VF respond, PF notifies VF successfully. */
2555 		if (!(val & BIT(fun_num)))
2556 			goto err_unlock;
2557 
2558 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
2559 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
2560 			ret = -ETIMEDOUT;
2561 			break;
2562 		}
2563 	}
2564 
2565 err_unlock:
2566 	mutex_unlock(&qm->mailbox_lock);
2567 	return ret;
2568 }
2569 
2570 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
2571 {
2572 	struct device *dev = &qm->pdev->dev;
2573 	u32 vfs_num = qm->vfs_num;
2574 	struct qm_mailbox mailbox;
2575 	u64 val = 0;
2576 	int cnt = 0;
2577 	int ret;
2578 	u32 i;
2579 
2580 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
2581 	mutex_lock(&qm->mailbox_lock);
2582 	/* PF sends command to all VFs by mailbox */
2583 	ret = qm_mb_nolock(qm, &mailbox);
2584 	if (ret) {
2585 		dev_err(dev, "failed to send command to VFs!\n");
2586 		mutex_unlock(&qm->mailbox_lock);
2587 		return ret;
2588 	}
2589 
2590 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
2591 	while (true) {
2592 		msleep(QM_WAIT_DST_ACK);
2593 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
2594 		/* If all VFs acked, PF notifies VFs successfully. */
2595 		if (!(val & GENMASK(vfs_num, 1))) {
2596 			mutex_unlock(&qm->mailbox_lock);
2597 			return 0;
2598 		}
2599 
2600 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
2601 			break;
2602 	}
2603 
2604 	mutex_unlock(&qm->mailbox_lock);
2605 
2606 	/* Check which vf respond timeout. */
2607 	for (i = 1; i <= vfs_num; i++) {
2608 		if (val & BIT(i))
2609 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
2610 	}
2611 
2612 	return -ETIMEDOUT;
2613 }
2614 
2615 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
2616 {
2617 	struct qm_mailbox mailbox;
2618 	int cnt = 0;
2619 	u32 val;
2620 	int ret;
2621 
2622 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
2623 	mutex_lock(&qm->mailbox_lock);
2624 	ret = qm_mb_nolock(qm, &mailbox);
2625 	if (ret) {
2626 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
2627 		goto unlock;
2628 	}
2629 
2630 	qm_trigger_pf_interrupt(qm);
2631 	/* Waiting for PF response */
2632 	while (true) {
2633 		msleep(QM_WAIT_DST_ACK);
2634 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
2635 		if (!(val & QM_IFC_INT_STATUS_MASK))
2636 			break;
2637 
2638 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
2639 			ret = -ETIMEDOUT;
2640 			break;
2641 		}
2642 	}
2643 
2644 unlock:
2645 	mutex_unlock(&qm->mailbox_lock);
2646 	return ret;
2647 }
2648 
2649 static int qm_stop_qp(struct hisi_qp *qp)
2650 {
2651 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
2652 }
2653 
2654 static int qm_set_msi(struct hisi_qm *qm, bool set)
2655 {
2656 	struct pci_dev *pdev = qm->pdev;
2657 
2658 	if (set) {
2659 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
2660 				       0);
2661 	} else {
2662 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
2663 				       ACC_PEH_MSI_DISABLE);
2664 		if (qm->err_status.is_qm_ecc_mbit ||
2665 		    qm->err_status.is_dev_ecc_mbit)
2666 			return 0;
2667 
2668 		mdelay(1);
2669 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
2670 			return -EFAULT;
2671 	}
2672 
2673 	return 0;
2674 }
2675 
2676 static void qm_wait_msi_finish(struct hisi_qm *qm)
2677 {
2678 	struct pci_dev *pdev = qm->pdev;
2679 	u32 cmd = ~0;
2680 	int cnt = 0;
2681 	u32 val;
2682 	int ret;
2683 
2684 	while (true) {
2685 		pci_read_config_dword(pdev, pdev->msi_cap +
2686 				      PCI_MSI_PENDING_64, &cmd);
2687 		if (!cmd)
2688 			break;
2689 
2690 		if (++cnt > MAX_WAIT_COUNTS) {
2691 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
2692 			break;
2693 		}
2694 
2695 		udelay(1);
2696 	}
2697 
2698 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
2699 					 val, !(val & QM_PEH_DFX_MASK),
2700 					 POLL_PERIOD, POLL_TIMEOUT);
2701 	if (ret)
2702 		pci_warn(pdev, "failed to empty PEH MSI!\n");
2703 
2704 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
2705 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
2706 					 POLL_PERIOD, POLL_TIMEOUT);
2707 	if (ret)
2708 		pci_warn(pdev, "failed to finish MSI operation!\n");
2709 }
2710 
2711 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
2712 {
2713 	struct pci_dev *pdev = qm->pdev;
2714 	int ret = -ETIMEDOUT;
2715 	u32 cmd, i;
2716 
2717 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
2718 	if (set)
2719 		cmd |= QM_MSI_CAP_ENABLE;
2720 	else
2721 		cmd &= ~QM_MSI_CAP_ENABLE;
2722 
2723 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
2724 	if (set) {
2725 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
2726 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
2727 			if (cmd & QM_MSI_CAP_ENABLE)
2728 				return 0;
2729 
2730 			udelay(1);
2731 		}
2732 	} else {
2733 		udelay(WAIT_PERIOD_US_MIN);
2734 		qm_wait_msi_finish(qm);
2735 		ret = 0;
2736 	}
2737 
2738 	return ret;
2739 }
2740 
2741 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
2742 	.qm_db = qm_db_v1,
2743 	.get_irq_num = qm_get_irq_num_v1,
2744 	.hw_error_init = qm_hw_error_init_v1,
2745 	.set_msi = qm_set_msi,
2746 };
2747 
2748 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
2749 	.get_vft = qm_get_vft_v2,
2750 	.qm_db = qm_db_v2,
2751 	.get_irq_num = qm_get_irq_num_v2,
2752 	.hw_error_init = qm_hw_error_init_v2,
2753 	.hw_error_uninit = qm_hw_error_uninit_v2,
2754 	.hw_error_handle = qm_hw_error_handle_v2,
2755 	.set_msi = qm_set_msi,
2756 };
2757 
2758 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
2759 	.get_vft = qm_get_vft_v2,
2760 	.qm_db = qm_db_v2,
2761 	.get_irq_num = qm_get_irq_num_v3,
2762 	.hw_error_init = qm_hw_error_init_v3,
2763 	.hw_error_uninit = qm_hw_error_uninit_v3,
2764 	.hw_error_handle = qm_hw_error_handle_v2,
2765 	.stop_qp = qm_stop_qp,
2766 	.set_msi = qm_set_msi_v3,
2767 	.ping_all_vfs = qm_ping_all_vfs,
2768 	.ping_pf = qm_ping_pf,
2769 };
2770 
2771 static void *qm_get_avail_sqe(struct hisi_qp *qp)
2772 {
2773 	struct hisi_qp_status *qp_status = &qp->qp_status;
2774 	u16 sq_tail = qp_status->sq_tail;
2775 
2776 	if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1))
2777 		return NULL;
2778 
2779 	return qp->sqe + sq_tail * qp->qm->sqe_size;
2780 }
2781 
2782 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
2783 {
2784 	u64 *addr;
2785 
2786 	/* Use last 64 bits of DUS to reset status. */
2787 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
2788 	*addr = 0;
2789 }
2790 
2791 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
2792 {
2793 	struct device *dev = &qm->pdev->dev;
2794 	struct hisi_qp *qp;
2795 	int qp_id;
2796 
2797 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
2798 		return ERR_PTR(-EPERM);
2799 
2800 	if (qm->qp_in_used == qm->qp_num) {
2801 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2802 				     qm->qp_num);
2803 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2804 		return ERR_PTR(-EBUSY);
2805 	}
2806 
2807 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
2808 	if (qp_id < 0) {
2809 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2810 				    qm->qp_num);
2811 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2812 		return ERR_PTR(-EBUSY);
2813 	}
2814 
2815 	qp = &qm->qp_array[qp_id];
2816 	hisi_qm_unset_hw_reset(qp);
2817 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH);
2818 
2819 	qp->event_cb = NULL;
2820 	qp->req_cb = NULL;
2821 	qp->qp_id = qp_id;
2822 	qp->alg_type = alg_type;
2823 	qp->is_in_kernel = true;
2824 	qm->qp_in_used++;
2825 	atomic_set(&qp->qp_status.flags, QP_INIT);
2826 
2827 	return qp;
2828 }
2829 
2830 /**
2831  * hisi_qm_create_qp() - Create a queue pair from qm.
2832  * @qm: The qm we create a qp from.
2833  * @alg_type: Accelerator specific algorithm type in sqc.
2834  *
2835  * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating
2836  * qp memory fails.
2837  */
2838 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
2839 {
2840 	struct hisi_qp *qp;
2841 	int ret;
2842 
2843 	ret = qm_pm_get_sync(qm);
2844 	if (ret)
2845 		return ERR_PTR(ret);
2846 
2847 	down_write(&qm->qps_lock);
2848 	qp = qm_create_qp_nolock(qm, alg_type);
2849 	up_write(&qm->qps_lock);
2850 
2851 	if (IS_ERR(qp))
2852 		qm_pm_put_sync(qm);
2853 
2854 	return qp;
2855 }
2856 
2857 /**
2858  * hisi_qm_release_qp() - Release a qp back to its qm.
2859  * @qp: The qp we want to release.
2860  *
2861  * This function releases the resource of a qp.
2862  */
2863 static void hisi_qm_release_qp(struct hisi_qp *qp)
2864 {
2865 	struct hisi_qm *qm = qp->qm;
2866 
2867 	down_write(&qm->qps_lock);
2868 
2869 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
2870 		up_write(&qm->qps_lock);
2871 		return;
2872 	}
2873 
2874 	qm->qp_in_used--;
2875 	idr_remove(&qm->qp_idr, qp->qp_id);
2876 
2877 	up_write(&qm->qps_lock);
2878 
2879 	qm_pm_put_sync(qm);
2880 }
2881 
2882 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2883 {
2884 	struct hisi_qm *qm = qp->qm;
2885 	struct device *dev = &qm->pdev->dev;
2886 	enum qm_hw_ver ver = qm->ver;
2887 	struct qm_sqc *sqc;
2888 	dma_addr_t sqc_dma;
2889 	int ret;
2890 
2891 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
2892 	if (!sqc)
2893 		return -ENOMEM;
2894 
2895 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
2896 	if (ver == QM_HW_V1) {
2897 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
2898 		sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
2899 	} else {
2900 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size));
2901 		sqc->w8 = 0; /* rand_qc */
2902 	}
2903 	sqc->cq_num = cpu_to_le16(qp_id);
2904 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
2905 
2906 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2907 		sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
2908 				       QM_QC_PASID_ENABLE_SHIFT);
2909 
2910 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
2911 				 DMA_TO_DEVICE);
2912 	if (dma_mapping_error(dev, sqc_dma)) {
2913 		kfree(sqc);
2914 		return -ENOMEM;
2915 	}
2916 
2917 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
2918 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
2919 	kfree(sqc);
2920 
2921 	return ret;
2922 }
2923 
2924 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2925 {
2926 	struct hisi_qm *qm = qp->qm;
2927 	struct device *dev = &qm->pdev->dev;
2928 	enum qm_hw_ver ver = qm->ver;
2929 	struct qm_cqc *cqc;
2930 	dma_addr_t cqc_dma;
2931 	int ret;
2932 
2933 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
2934 	if (!cqc)
2935 		return -ENOMEM;
2936 
2937 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
2938 	if (ver == QM_HW_V1) {
2939 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
2940 							QM_QC_CQE_SIZE));
2941 		cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
2942 	} else {
2943 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE));
2944 		cqc->w8 = 0; /* rand_qc */
2945 	}
2946 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2947 
2948 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2949 		cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2950 
2951 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
2952 				 DMA_TO_DEVICE);
2953 	if (dma_mapping_error(dev, cqc_dma)) {
2954 		kfree(cqc);
2955 		return -ENOMEM;
2956 	}
2957 
2958 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
2959 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
2960 	kfree(cqc);
2961 
2962 	return ret;
2963 }
2964 
2965 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2966 {
2967 	int ret;
2968 
2969 	qm_init_qp_status(qp);
2970 
2971 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2972 	if (ret)
2973 		return ret;
2974 
2975 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
2976 }
2977 
2978 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2979 {
2980 	struct hisi_qm *qm = qp->qm;
2981 	struct device *dev = &qm->pdev->dev;
2982 	int qp_id = qp->qp_id;
2983 	u32 pasid = arg;
2984 	int ret;
2985 
2986 	if (!qm_qp_avail_state(qm, qp, QP_START))
2987 		return -EPERM;
2988 
2989 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2990 	if (ret)
2991 		return ret;
2992 
2993 	atomic_set(&qp->qp_status.flags, QP_START);
2994 	dev_dbg(dev, "queue %d started\n", qp_id);
2995 
2996 	return 0;
2997 }
2998 
2999 /**
3000  * hisi_qm_start_qp() - Start a qp into running.
3001  * @qp: The qp we want to start to run.
3002  * @arg: Accelerator specific argument.
3003  *
3004  * After this function, qp can receive request from user. Return 0 if
3005  * successful, Return -EBUSY if failed.
3006  */
3007 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
3008 {
3009 	struct hisi_qm *qm = qp->qm;
3010 	int ret;
3011 
3012 	down_write(&qm->qps_lock);
3013 	ret = qm_start_qp_nolock(qp, arg);
3014 	up_write(&qm->qps_lock);
3015 
3016 	return ret;
3017 }
3018 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
3019 
3020 /**
3021  * qp_stop_fail_cb() - call request cb.
3022  * @qp: stopped failed qp.
3023  *
3024  * Callback function should be called whether task completed or not.
3025  */
3026 static void qp_stop_fail_cb(struct hisi_qp *qp)
3027 {
3028 	int qp_used = atomic_read(&qp->qp_status.used);
3029 	u16 cur_tail = qp->qp_status.sq_tail;
3030 	u16 cur_head = (cur_tail + QM_Q_DEPTH - qp_used) % QM_Q_DEPTH;
3031 	struct hisi_qm *qm = qp->qm;
3032 	u16 pos;
3033 	int i;
3034 
3035 	for (i = 0; i < qp_used; i++) {
3036 		pos = (i + cur_head) % QM_Q_DEPTH;
3037 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
3038 		atomic_dec(&qp->qp_status.used);
3039 	}
3040 }
3041 
3042 /**
3043  * qm_drain_qp() - Drain a qp.
3044  * @qp: The qp we want to drain.
3045  *
3046  * Determine whether the queue is cleared by judging the tail pointers of
3047  * sq and cq.
3048  */
3049 static int qm_drain_qp(struct hisi_qp *qp)
3050 {
3051 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
3052 	struct hisi_qm *qm = qp->qm;
3053 	struct device *dev = &qm->pdev->dev;
3054 	struct qm_sqc *sqc;
3055 	struct qm_cqc *cqc;
3056 	dma_addr_t dma_addr;
3057 	int ret = 0, i = 0;
3058 	void *addr;
3059 
3060 	/* No need to judge if master OOO is blocked. */
3061 	if (qm_check_dev_error(qm))
3062 		return 0;
3063 
3064 	/* Kunpeng930 supports drain qp by device */
3065 	if (qm->ops->stop_qp) {
3066 		ret = qm->ops->stop_qp(qp);
3067 		if (ret)
3068 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
3069 		return ret;
3070 	}
3071 
3072 	addr = qm_ctx_alloc(qm, size, &dma_addr);
3073 	if (IS_ERR(addr)) {
3074 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
3075 		return -ENOMEM;
3076 	}
3077 
3078 	while (++i) {
3079 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
3080 		if (ret) {
3081 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
3082 			break;
3083 		}
3084 		sqc = addr;
3085 
3086 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
3087 				      qp->qp_id);
3088 		if (ret) {
3089 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
3090 			break;
3091 		}
3092 		cqc = addr + sizeof(struct qm_sqc);
3093 
3094 		if ((sqc->tail == cqc->tail) &&
3095 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
3096 			break;
3097 
3098 		if (i == MAX_WAIT_COUNTS) {
3099 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
3100 			ret = -EBUSY;
3101 			break;
3102 		}
3103 
3104 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
3105 	}
3106 
3107 	qm_ctx_free(qm, size, addr, &dma_addr);
3108 
3109 	return ret;
3110 }
3111 
3112 static int qm_stop_qp_nolock(struct hisi_qp *qp)
3113 {
3114 	struct device *dev = &qp->qm->pdev->dev;
3115 	int ret;
3116 
3117 	/*
3118 	 * It is allowed to stop and release qp when reset, If the qp is
3119 	 * stopped when reset but still want to be released then, the
3120 	 * is_resetting flag should be set negative so that this qp will not
3121 	 * be restarted after reset.
3122 	 */
3123 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
3124 		qp->is_resetting = false;
3125 		return 0;
3126 	}
3127 
3128 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
3129 		return -EPERM;
3130 
3131 	atomic_set(&qp->qp_status.flags, QP_STOP);
3132 
3133 	ret = qm_drain_qp(qp);
3134 	if (ret)
3135 		dev_err(dev, "Failed to drain out data for stopping!\n");
3136 
3137 	if (qp->qm->wq)
3138 		flush_workqueue(qp->qm->wq);
3139 	else
3140 		flush_work(&qp->qm->work);
3141 
3142 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
3143 		qp_stop_fail_cb(qp);
3144 
3145 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
3146 
3147 	return 0;
3148 }
3149 
3150 /**
3151  * hisi_qm_stop_qp() - Stop a qp in qm.
3152  * @qp: The qp we want to stop.
3153  *
3154  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
3155  */
3156 int hisi_qm_stop_qp(struct hisi_qp *qp)
3157 {
3158 	int ret;
3159 
3160 	down_write(&qp->qm->qps_lock);
3161 	ret = qm_stop_qp_nolock(qp);
3162 	up_write(&qp->qm->qps_lock);
3163 
3164 	return ret;
3165 }
3166 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
3167 
3168 /**
3169  * hisi_qp_send() - Queue up a task in the hardware queue.
3170  * @qp: The qp in which to put the message.
3171  * @msg: The message.
3172  *
3173  * This function will return -EBUSY if qp is currently full, and -EAGAIN
3174  * if qp related qm is resetting.
3175  *
3176  * Note: This function may run with qm_irq_thread and ACC reset at same time.
3177  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
3178  *       reset may happen, we have no lock here considering performance. This
3179  *       causes current qm_db sending fail or can not receive sended sqe. QM
3180  *       sync/async receive function should handle the error sqe. ACC reset
3181  *       done function should clear used sqe to 0.
3182  */
3183 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
3184 {
3185 	struct hisi_qp_status *qp_status = &qp->qp_status;
3186 	u16 sq_tail = qp_status->sq_tail;
3187 	u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH;
3188 	void *sqe = qm_get_avail_sqe(qp);
3189 
3190 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
3191 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
3192 		     qp->is_resetting)) {
3193 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
3194 		return -EAGAIN;
3195 	}
3196 
3197 	if (!sqe)
3198 		return -EBUSY;
3199 
3200 	memcpy(sqe, msg, qp->qm->sqe_size);
3201 
3202 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
3203 	atomic_inc(&qp->qp_status.used);
3204 	qp_status->sq_tail = sq_tail_next;
3205 
3206 	return 0;
3207 }
3208 EXPORT_SYMBOL_GPL(hisi_qp_send);
3209 
3210 static void hisi_qm_cache_wb(struct hisi_qm *qm)
3211 {
3212 	unsigned int val;
3213 
3214 	if (qm->ver == QM_HW_V1)
3215 		return;
3216 
3217 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
3218 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
3219 				       val, val & BIT(0), POLL_PERIOD,
3220 				       POLL_TIMEOUT))
3221 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
3222 }
3223 
3224 static void qm_qp_event_notifier(struct hisi_qp *qp)
3225 {
3226 	wake_up_interruptible(&qp->uacce_q->wait);
3227 }
3228 
3229  /* This function returns free number of qp in qm. */
3230 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
3231 {
3232 	struct hisi_qm *qm = uacce->priv;
3233 	int ret;
3234 
3235 	down_read(&qm->qps_lock);
3236 	ret = qm->qp_num - qm->qp_in_used;
3237 	up_read(&qm->qps_lock);
3238 
3239 	return ret;
3240 }
3241 
3242 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
3243 {
3244 	int i;
3245 
3246 	for (i = 0; i < qm->qp_num; i++)
3247 		qm_set_qp_disable(&qm->qp_array[i], offset);
3248 }
3249 
3250 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
3251 				   unsigned long arg,
3252 				   struct uacce_queue *q)
3253 {
3254 	struct hisi_qm *qm = uacce->priv;
3255 	struct hisi_qp *qp;
3256 	u8 alg_type = 0;
3257 
3258 	qp = hisi_qm_create_qp(qm, alg_type);
3259 	if (IS_ERR(qp))
3260 		return PTR_ERR(qp);
3261 
3262 	q->priv = qp;
3263 	q->uacce = uacce;
3264 	qp->uacce_q = q;
3265 	qp->event_cb = qm_qp_event_notifier;
3266 	qp->pasid = arg;
3267 	qp->is_in_kernel = false;
3268 
3269 	return 0;
3270 }
3271 
3272 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
3273 {
3274 	struct hisi_qp *qp = q->priv;
3275 
3276 	hisi_qm_cache_wb(qp->qm);
3277 	hisi_qm_release_qp(qp);
3278 }
3279 
3280 /* map sq/cq/doorbell to user space */
3281 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
3282 			      struct vm_area_struct *vma,
3283 			      struct uacce_qfile_region *qfr)
3284 {
3285 	struct hisi_qp *qp = q->priv;
3286 	struct hisi_qm *qm = qp->qm;
3287 	resource_size_t phys_base = qm->db_phys_base +
3288 				    qp->qp_id * qm->db_interval;
3289 	size_t sz = vma->vm_end - vma->vm_start;
3290 	struct pci_dev *pdev = qm->pdev;
3291 	struct device *dev = &pdev->dev;
3292 	unsigned long vm_pgoff;
3293 	int ret;
3294 
3295 	switch (qfr->type) {
3296 	case UACCE_QFRT_MMIO:
3297 		if (qm->ver == QM_HW_V1) {
3298 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
3299 				return -EINVAL;
3300 		} else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) {
3301 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
3302 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
3303 				return -EINVAL;
3304 		} else {
3305 			if (sz > qm->db_interval)
3306 				return -EINVAL;
3307 		}
3308 
3309 		vma->vm_flags |= VM_IO;
3310 
3311 		return remap_pfn_range(vma, vma->vm_start,
3312 				       phys_base >> PAGE_SHIFT,
3313 				       sz, pgprot_noncached(vma->vm_page_prot));
3314 	case UACCE_QFRT_DUS:
3315 		if (sz != qp->qdma.size)
3316 			return -EINVAL;
3317 
3318 		/*
3319 		 * dma_mmap_coherent() requires vm_pgoff as 0
3320 		 * restore vm_pfoff to initial value for mmap()
3321 		 */
3322 		vm_pgoff = vma->vm_pgoff;
3323 		vma->vm_pgoff = 0;
3324 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
3325 					qp->qdma.dma, sz);
3326 		vma->vm_pgoff = vm_pgoff;
3327 		return ret;
3328 
3329 	default:
3330 		return -EINVAL;
3331 	}
3332 }
3333 
3334 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
3335 {
3336 	struct hisi_qp *qp = q->priv;
3337 
3338 	return hisi_qm_start_qp(qp, qp->pasid);
3339 }
3340 
3341 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
3342 {
3343 	hisi_qm_stop_qp(q->priv);
3344 }
3345 
3346 static int hisi_qm_is_q_updated(struct uacce_queue *q)
3347 {
3348 	struct hisi_qp *qp = q->priv;
3349 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
3350 	int updated = 0;
3351 
3352 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
3353 		/* make sure to read data from memory */
3354 		dma_rmb();
3355 		qm_cq_head_update(qp);
3356 		cqe = qp->cqe + qp->qp_status.cq_head;
3357 		updated = 1;
3358 	}
3359 
3360 	return updated;
3361 }
3362 
3363 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
3364 {
3365 	struct hisi_qm *qm = q->uacce->priv;
3366 	struct hisi_qp *qp = q->priv;
3367 
3368 	down_write(&qm->qps_lock);
3369 	qp->alg_type = type;
3370 	up_write(&qm->qps_lock);
3371 }
3372 
3373 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
3374 				unsigned long arg)
3375 {
3376 	struct hisi_qp *qp = q->priv;
3377 	struct hisi_qp_ctx qp_ctx;
3378 
3379 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
3380 		if (copy_from_user(&qp_ctx, (void __user *)arg,
3381 				   sizeof(struct hisi_qp_ctx)))
3382 			return -EFAULT;
3383 
3384 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
3385 			return -EINVAL;
3386 
3387 		qm_set_sqctype(q, qp_ctx.qc_type);
3388 		qp_ctx.id = qp->qp_id;
3389 
3390 		if (copy_to_user((void __user *)arg, &qp_ctx,
3391 				 sizeof(struct hisi_qp_ctx)))
3392 			return -EFAULT;
3393 	} else {
3394 		return -EINVAL;
3395 	}
3396 
3397 	return 0;
3398 }
3399 
3400 static const struct uacce_ops uacce_qm_ops = {
3401 	.get_available_instances = hisi_qm_get_available_instances,
3402 	.get_queue = hisi_qm_uacce_get_queue,
3403 	.put_queue = hisi_qm_uacce_put_queue,
3404 	.start_queue = hisi_qm_uacce_start_queue,
3405 	.stop_queue = hisi_qm_uacce_stop_queue,
3406 	.mmap = hisi_qm_uacce_mmap,
3407 	.ioctl = hisi_qm_uacce_ioctl,
3408 	.is_q_updated = hisi_qm_is_q_updated,
3409 };
3410 
3411 static int qm_alloc_uacce(struct hisi_qm *qm)
3412 {
3413 	struct pci_dev *pdev = qm->pdev;
3414 	struct uacce_device *uacce;
3415 	unsigned long mmio_page_nr;
3416 	unsigned long dus_page_nr;
3417 	struct uacce_interface interface = {
3418 		.flags = UACCE_DEV_SVA,
3419 		.ops = &uacce_qm_ops,
3420 	};
3421 	int ret;
3422 
3423 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
3424 		      sizeof(interface.name));
3425 	if (ret < 0)
3426 		return -ENAMETOOLONG;
3427 
3428 	uacce = uacce_alloc(&pdev->dev, &interface);
3429 	if (IS_ERR(uacce))
3430 		return PTR_ERR(uacce);
3431 
3432 	if (uacce->flags & UACCE_DEV_SVA) {
3433 		qm->use_sva = true;
3434 	} else {
3435 		/* only consider sva case */
3436 		uacce_remove(uacce);
3437 		qm->uacce = NULL;
3438 		return -EINVAL;
3439 	}
3440 
3441 	uacce->is_vf = pdev->is_virtfn;
3442 	uacce->priv = qm;
3443 	uacce->algs = qm->algs;
3444 
3445 	if (qm->ver == QM_HW_V1)
3446 		uacce->api_ver = HISI_QM_API_VER_BASE;
3447 	else if (qm->ver == QM_HW_V2)
3448 		uacce->api_ver = HISI_QM_API_VER2_BASE;
3449 	else
3450 		uacce->api_ver = HISI_QM_API_VER3_BASE;
3451 
3452 	if (qm->ver == QM_HW_V1)
3453 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
3454 	else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation)
3455 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
3456 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
3457 	else
3458 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
3459 
3460 	/* Add one more page for device or qp status */
3461 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH +
3462 		       sizeof(struct qm_cqe) * QM_Q_DEPTH  + PAGE_SIZE) >>
3463 					 PAGE_SHIFT;
3464 
3465 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
3466 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
3467 
3468 	qm->uacce = uacce;
3469 
3470 	return 0;
3471 }
3472 
3473 /**
3474  * qm_frozen() - Try to froze QM to cut continuous queue request. If
3475  * there is user on the QM, return failure without doing anything.
3476  * @qm: The qm needed to be fronzen.
3477  *
3478  * This function frozes QM, then we can do SRIOV disabling.
3479  */
3480 static int qm_frozen(struct hisi_qm *qm)
3481 {
3482 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
3483 		return 0;
3484 
3485 	down_write(&qm->qps_lock);
3486 
3487 	if (!qm->qp_in_used) {
3488 		qm->qp_in_used = qm->qp_num;
3489 		up_write(&qm->qps_lock);
3490 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
3491 		return 0;
3492 	}
3493 
3494 	up_write(&qm->qps_lock);
3495 
3496 	return -EBUSY;
3497 }
3498 
3499 static int qm_try_frozen_vfs(struct pci_dev *pdev,
3500 			     struct hisi_qm_list *qm_list)
3501 {
3502 	struct hisi_qm *qm, *vf_qm;
3503 	struct pci_dev *dev;
3504 	int ret = 0;
3505 
3506 	if (!qm_list || !pdev)
3507 		return -EINVAL;
3508 
3509 	/* Try to frozen all the VFs as disable SRIOV */
3510 	mutex_lock(&qm_list->lock);
3511 	list_for_each_entry(qm, &qm_list->list, list) {
3512 		dev = qm->pdev;
3513 		if (dev == pdev)
3514 			continue;
3515 		if (pci_physfn(dev) == pdev) {
3516 			vf_qm = pci_get_drvdata(dev);
3517 			ret = qm_frozen(vf_qm);
3518 			if (ret)
3519 				goto frozen_fail;
3520 		}
3521 	}
3522 
3523 frozen_fail:
3524 	mutex_unlock(&qm_list->lock);
3525 
3526 	return ret;
3527 }
3528 
3529 /**
3530  * hisi_qm_wait_task_finish() - Wait until the task is finished
3531  * when removing the driver.
3532  * @qm: The qm needed to wait for the task to finish.
3533  * @qm_list: The list of all available devices.
3534  */
3535 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
3536 {
3537 	while (qm_frozen(qm) ||
3538 	       ((qm->fun_type == QM_HW_PF) &&
3539 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
3540 		msleep(WAIT_PERIOD);
3541 	}
3542 
3543 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
3544 	       test_bit(QM_RESETTING, &qm->misc_ctl))
3545 		msleep(WAIT_PERIOD);
3546 
3547 	udelay(REMOVE_WAIT_DELAY);
3548 }
3549 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
3550 
3551 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
3552 {
3553 	struct device *dev = &qm->pdev->dev;
3554 	struct qm_dma *qdma;
3555 	int i;
3556 
3557 	for (i = num - 1; i >= 0; i--) {
3558 		qdma = &qm->qp_array[i].qdma;
3559 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
3560 	}
3561 
3562 	kfree(qm->qp_array);
3563 }
3564 
3565 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id)
3566 {
3567 	struct device *dev = &qm->pdev->dev;
3568 	size_t off = qm->sqe_size * QM_Q_DEPTH;
3569 	struct hisi_qp *qp;
3570 
3571 	qp = &qm->qp_array[id];
3572 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
3573 					 GFP_KERNEL);
3574 	if (!qp->qdma.va)
3575 		return -ENOMEM;
3576 
3577 	qp->sqe = qp->qdma.va;
3578 	qp->sqe_dma = qp->qdma.dma;
3579 	qp->cqe = qp->qdma.va + off;
3580 	qp->cqe_dma = qp->qdma.dma + off;
3581 	qp->qdma.size = dma_size;
3582 	qp->qm = qm;
3583 	qp->qp_id = id;
3584 
3585 	return 0;
3586 }
3587 
3588 static void hisi_qm_pre_init(struct hisi_qm *qm)
3589 {
3590 	struct pci_dev *pdev = qm->pdev;
3591 
3592 	if (qm->ver == QM_HW_V1)
3593 		qm->ops = &qm_hw_ops_v1;
3594 	else if (qm->ver == QM_HW_V2)
3595 		qm->ops = &qm_hw_ops_v2;
3596 	else
3597 		qm->ops = &qm_hw_ops_v3;
3598 
3599 	pci_set_drvdata(pdev, qm);
3600 	mutex_init(&qm->mailbox_lock);
3601 	init_rwsem(&qm->qps_lock);
3602 	qm->qp_in_used = 0;
3603 	qm->misc_ctl = false;
3604 	if (qm->fun_type == QM_HW_PF && qm->ver > QM_HW_V2) {
3605 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
3606 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
3607 	}
3608 }
3609 
3610 static void qm_cmd_uninit(struct hisi_qm *qm)
3611 {
3612 	u32 val;
3613 
3614 	if (qm->ver < QM_HW_V3)
3615 		return;
3616 
3617 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3618 	val |= QM_IFC_INT_DISABLE;
3619 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3620 }
3621 
3622 static void qm_cmd_init(struct hisi_qm *qm)
3623 {
3624 	u32 val;
3625 
3626 	if (qm->ver < QM_HW_V3)
3627 		return;
3628 
3629 	/* Clear communication interrupt source */
3630 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
3631 
3632 	/* Enable pf to vf communication reg. */
3633 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3634 	val &= ~QM_IFC_INT_DISABLE;
3635 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3636 }
3637 
3638 static void qm_put_pci_res(struct hisi_qm *qm)
3639 {
3640 	struct pci_dev *pdev = qm->pdev;
3641 
3642 	if (qm->use_db_isolation)
3643 		iounmap(qm->db_io_base);
3644 
3645 	iounmap(qm->io_base);
3646 	pci_release_mem_regions(pdev);
3647 }
3648 
3649 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
3650 {
3651 	struct pci_dev *pdev = qm->pdev;
3652 
3653 	pci_free_irq_vectors(pdev);
3654 	qm_put_pci_res(qm);
3655 	pci_disable_device(pdev);
3656 }
3657 
3658 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
3659 {
3660 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
3661 		writel(state, qm->io_base + QM_VF_STATE);
3662 }
3663 
3664 static void qm_last_regs_uninit(struct hisi_qm *qm)
3665 {
3666 	struct qm_debug *debug = &qm->debug;
3667 
3668 	if (qm->fun_type == QM_HW_VF || !debug->qm_last_words)
3669 		return;
3670 
3671 	kfree(debug->qm_last_words);
3672 	debug->qm_last_words = NULL;
3673 }
3674 
3675 /**
3676  * hisi_qm_uninit() - Uninitialize qm.
3677  * @qm: The qm needed uninit.
3678  *
3679  * This function uninits qm related device resources.
3680  */
3681 void hisi_qm_uninit(struct hisi_qm *qm)
3682 {
3683 	struct pci_dev *pdev = qm->pdev;
3684 	struct device *dev = &pdev->dev;
3685 
3686 	qm_last_regs_uninit(qm);
3687 
3688 	qm_cmd_uninit(qm);
3689 	kfree(qm->factor);
3690 	down_write(&qm->qps_lock);
3691 
3692 	if (!qm_avail_state(qm, QM_CLOSE)) {
3693 		up_write(&qm->qps_lock);
3694 		return;
3695 	}
3696 
3697 	hisi_qp_memory_uninit(qm, qm->qp_num);
3698 	idr_destroy(&qm->qp_idr);
3699 
3700 	if (qm->qdma.va) {
3701 		hisi_qm_cache_wb(qm);
3702 		dma_free_coherent(dev, qm->qdma.size,
3703 				  qm->qdma.va, qm->qdma.dma);
3704 	}
3705 	hisi_qm_set_state(qm, QM_NOT_READY);
3706 	up_write(&qm->qps_lock);
3707 
3708 	qm_irq_unregister(qm);
3709 	hisi_qm_pci_uninit(qm);
3710 	if (qm->use_sva) {
3711 		uacce_remove(qm->uacce);
3712 		qm->uacce = NULL;
3713 	}
3714 }
3715 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
3716 
3717 /**
3718  * hisi_qm_get_vft() - Get vft from a qm.
3719  * @qm: The qm we want to get its vft.
3720  * @base: The base number of queue in vft.
3721  * @number: The number of queues in vft.
3722  *
3723  * We can allocate multiple queues to a qm by configuring virtual function
3724  * table. We get related configures by this function. Normally, we call this
3725  * function in VF driver to get the queue information.
3726  *
3727  * qm hw v1 does not support this interface.
3728  */
3729 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
3730 {
3731 	if (!base || !number)
3732 		return -EINVAL;
3733 
3734 	if (!qm->ops->get_vft) {
3735 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
3736 		return -EINVAL;
3737 	}
3738 
3739 	return qm->ops->get_vft(qm, base, number);
3740 }
3741 
3742 /**
3743  * hisi_qm_set_vft() - Set vft to a qm.
3744  * @qm: The qm we want to set its vft.
3745  * @fun_num: The function number.
3746  * @base: The base number of queue in vft.
3747  * @number: The number of queues in vft.
3748  *
3749  * This function is alway called in PF driver, it is used to assign queues
3750  * among PF and VFs.
3751  *
3752  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
3753  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
3754  * (VF function number 0x2)
3755  */
3756 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
3757 		    u32 number)
3758 {
3759 	u32 max_q_num = qm->ctrl_qp_num;
3760 
3761 	if (base >= max_q_num || number > max_q_num ||
3762 	    (base + number) > max_q_num)
3763 		return -EINVAL;
3764 
3765 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
3766 }
3767 
3768 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
3769 {
3770 	struct hisi_qm_status *status = &qm->status;
3771 
3772 	status->eq_head = 0;
3773 	status->aeq_head = 0;
3774 	status->eqc_phase = true;
3775 	status->aeqc_phase = true;
3776 }
3777 
3778 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
3779 {
3780 	/* Clear eq/aeq interrupt source */
3781 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
3782 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
3783 
3784 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
3785 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
3786 }
3787 
3788 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
3789 {
3790 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
3791 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3792 }
3793 
3794 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3795 {
3796 	struct device *dev = &qm->pdev->dev;
3797 	struct qm_eqc *eqc;
3798 	dma_addr_t eqc_dma;
3799 	int ret;
3800 
3801 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
3802 	if (!eqc)
3803 		return -ENOMEM;
3804 
3805 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3806 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3807 	if (qm->ver == QM_HW_V1)
3808 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3809 	eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
3810 
3811 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
3812 				 DMA_TO_DEVICE);
3813 	if (dma_mapping_error(dev, eqc_dma)) {
3814 		kfree(eqc);
3815 		return -ENOMEM;
3816 	}
3817 
3818 	ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
3819 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
3820 	kfree(eqc);
3821 
3822 	return ret;
3823 }
3824 
3825 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3826 {
3827 	struct device *dev = &qm->pdev->dev;
3828 	struct qm_aeqc *aeqc;
3829 	dma_addr_t aeqc_dma;
3830 	int ret;
3831 
3832 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
3833 	if (!aeqc)
3834 		return -ENOMEM;
3835 
3836 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3837 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3838 	aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
3839 
3840 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
3841 				  DMA_TO_DEVICE);
3842 	if (dma_mapping_error(dev, aeqc_dma)) {
3843 		kfree(aeqc);
3844 		return -ENOMEM;
3845 	}
3846 
3847 	ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
3848 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
3849 	kfree(aeqc);
3850 
3851 	return ret;
3852 }
3853 
3854 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3855 {
3856 	struct device *dev = &qm->pdev->dev;
3857 	int ret;
3858 
3859 	qm_init_eq_aeq_status(qm);
3860 
3861 	ret = qm_eq_ctx_cfg(qm);
3862 	if (ret) {
3863 		dev_err(dev, "Set eqc failed!\n");
3864 		return ret;
3865 	}
3866 
3867 	return qm_aeq_ctx_cfg(qm);
3868 }
3869 
3870 static int __hisi_qm_start(struct hisi_qm *qm)
3871 {
3872 	int ret;
3873 
3874 	WARN_ON(!qm->qdma.va);
3875 
3876 	if (qm->fun_type == QM_HW_PF) {
3877 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3878 		if (ret)
3879 			return ret;
3880 	}
3881 
3882 	ret = qm_eq_aeq_ctx_cfg(qm);
3883 	if (ret)
3884 		return ret;
3885 
3886 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3887 	if (ret)
3888 		return ret;
3889 
3890 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3891 	if (ret)
3892 		return ret;
3893 
3894 	qm_init_prefetch(qm);
3895 	qm_enable_eq_aeq_interrupts(qm);
3896 
3897 	return 0;
3898 }
3899 
3900 /**
3901  * hisi_qm_start() - start qm
3902  * @qm: The qm to be started.
3903  *
3904  * This function starts a qm, then we can allocate qp from this qm.
3905  */
3906 int hisi_qm_start(struct hisi_qm *qm)
3907 {
3908 	struct device *dev = &qm->pdev->dev;
3909 	int ret = 0;
3910 
3911 	down_write(&qm->qps_lock);
3912 
3913 	if (!qm_avail_state(qm, QM_START)) {
3914 		up_write(&qm->qps_lock);
3915 		return -EPERM;
3916 	}
3917 
3918 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3919 
3920 	if (!qm->qp_num) {
3921 		dev_err(dev, "qp_num should not be 0\n");
3922 		ret = -EINVAL;
3923 		goto err_unlock;
3924 	}
3925 
3926 	ret = __hisi_qm_start(qm);
3927 	if (!ret)
3928 		atomic_set(&qm->status.flags, QM_START);
3929 
3930 	hisi_qm_set_state(qm, QM_READY);
3931 err_unlock:
3932 	up_write(&qm->qps_lock);
3933 	return ret;
3934 }
3935 EXPORT_SYMBOL_GPL(hisi_qm_start);
3936 
3937 static int qm_restart(struct hisi_qm *qm)
3938 {
3939 	struct device *dev = &qm->pdev->dev;
3940 	struct hisi_qp *qp;
3941 	int ret, i;
3942 
3943 	ret = hisi_qm_start(qm);
3944 	if (ret < 0)
3945 		return ret;
3946 
3947 	down_write(&qm->qps_lock);
3948 	for (i = 0; i < qm->qp_num; i++) {
3949 		qp = &qm->qp_array[i];
3950 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3951 		    qp->is_resetting == true) {
3952 			ret = qm_start_qp_nolock(qp, 0);
3953 			if (ret < 0) {
3954 				dev_err(dev, "Failed to start qp%d!\n", i);
3955 
3956 				up_write(&qm->qps_lock);
3957 				return ret;
3958 			}
3959 			qp->is_resetting = false;
3960 		}
3961 	}
3962 	up_write(&qm->qps_lock);
3963 
3964 	return 0;
3965 }
3966 
3967 /* Stop started qps in reset flow */
3968 static int qm_stop_started_qp(struct hisi_qm *qm)
3969 {
3970 	struct device *dev = &qm->pdev->dev;
3971 	struct hisi_qp *qp;
3972 	int i, ret;
3973 
3974 	for (i = 0; i < qm->qp_num; i++) {
3975 		qp = &qm->qp_array[i];
3976 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
3977 			qp->is_resetting = true;
3978 			ret = qm_stop_qp_nolock(qp);
3979 			if (ret < 0) {
3980 				dev_err(dev, "Failed to stop qp%d!\n", i);
3981 				return ret;
3982 			}
3983 		}
3984 	}
3985 
3986 	return 0;
3987 }
3988 
3989 
3990 /**
3991  * qm_clear_queues() - Clear all queues memory in a qm.
3992  * @qm: The qm in which the queues will be cleared.
3993  *
3994  * This function clears all queues memory in a qm. Reset of accelerator can
3995  * use this to clear queues.
3996  */
3997 static void qm_clear_queues(struct hisi_qm *qm)
3998 {
3999 	struct hisi_qp *qp;
4000 	int i;
4001 
4002 	for (i = 0; i < qm->qp_num; i++) {
4003 		qp = &qm->qp_array[i];
4004 		if (qp->is_in_kernel && qp->is_resetting)
4005 			memset(qp->qdma.va, 0, qp->qdma.size);
4006 	}
4007 
4008 	memset(qm->qdma.va, 0, qm->qdma.size);
4009 }
4010 
4011 /**
4012  * hisi_qm_stop() - Stop a qm.
4013  * @qm: The qm which will be stopped.
4014  * @r: The reason to stop qm.
4015  *
4016  * This function stops qm and its qps, then qm can not accept request.
4017  * Related resources are not released at this state, we can use hisi_qm_start
4018  * to let qm start again.
4019  */
4020 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
4021 {
4022 	struct device *dev = &qm->pdev->dev;
4023 	int ret = 0;
4024 
4025 	down_write(&qm->qps_lock);
4026 
4027 	qm->status.stop_reason = r;
4028 	if (!qm_avail_state(qm, QM_STOP)) {
4029 		ret = -EPERM;
4030 		goto err_unlock;
4031 	}
4032 
4033 	if (qm->status.stop_reason == QM_SOFT_RESET ||
4034 	    qm->status.stop_reason == QM_FLR) {
4035 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4036 		ret = qm_stop_started_qp(qm);
4037 		if (ret < 0) {
4038 			dev_err(dev, "Failed to stop started qp!\n");
4039 			goto err_unlock;
4040 		}
4041 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4042 	}
4043 
4044 	qm_disable_eq_aeq_interrupts(qm);
4045 	if (qm->fun_type == QM_HW_PF) {
4046 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
4047 		if (ret < 0) {
4048 			dev_err(dev, "Failed to set vft!\n");
4049 			ret = -EBUSY;
4050 			goto err_unlock;
4051 		}
4052 	}
4053 
4054 	qm_clear_queues(qm);
4055 	atomic_set(&qm->status.flags, QM_STOP);
4056 
4057 err_unlock:
4058 	up_write(&qm->qps_lock);
4059 	return ret;
4060 }
4061 EXPORT_SYMBOL_GPL(hisi_qm_stop);
4062 
4063 static ssize_t qm_status_read(struct file *filp, char __user *buffer,
4064 			      size_t count, loff_t *pos)
4065 {
4066 	struct hisi_qm *qm = filp->private_data;
4067 	char buf[QM_DBG_READ_LEN];
4068 	int val, len;
4069 
4070 	val = atomic_read(&qm->status.flags);
4071 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]);
4072 
4073 	return simple_read_from_buffer(buffer, count, pos, buf, len);
4074 }
4075 
4076 static const struct file_operations qm_status_fops = {
4077 	.owner = THIS_MODULE,
4078 	.open = simple_open,
4079 	.read = qm_status_read,
4080 };
4081 
4082 static int qm_debugfs_atomic64_set(void *data, u64 val)
4083 {
4084 	if (val)
4085 		return -EINVAL;
4086 
4087 	atomic64_set((atomic64_t *)data, 0);
4088 
4089 	return 0;
4090 }
4091 
4092 static int qm_debugfs_atomic64_get(void *data, u64 *val)
4093 {
4094 	*val = atomic64_read((atomic64_t *)data);
4095 
4096 	return 0;
4097 }
4098 
4099 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get,
4100 			 qm_debugfs_atomic64_set, "%llu\n");
4101 
4102 static void qm_hw_error_init(struct hisi_qm *qm)
4103 {
4104 	struct hisi_qm_err_info *err_info = &qm->err_info;
4105 
4106 	if (!qm->ops->hw_error_init) {
4107 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
4108 		return;
4109 	}
4110 
4111 	qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe);
4112 }
4113 
4114 static void qm_hw_error_uninit(struct hisi_qm *qm)
4115 {
4116 	if (!qm->ops->hw_error_uninit) {
4117 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
4118 		return;
4119 	}
4120 
4121 	qm->ops->hw_error_uninit(qm);
4122 }
4123 
4124 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
4125 {
4126 	if (!qm->ops->hw_error_handle) {
4127 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
4128 		return ACC_ERR_NONE;
4129 	}
4130 
4131 	return qm->ops->hw_error_handle(qm);
4132 }
4133 
4134 /**
4135  * hisi_qm_dev_err_init() - Initialize device error configuration.
4136  * @qm: The qm for which we want to do error initialization.
4137  *
4138  * Initialize QM and device error related configuration.
4139  */
4140 void hisi_qm_dev_err_init(struct hisi_qm *qm)
4141 {
4142 	if (qm->fun_type == QM_HW_VF)
4143 		return;
4144 
4145 	qm_hw_error_init(qm);
4146 
4147 	if (!qm->err_ini->hw_err_enable) {
4148 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
4149 		return;
4150 	}
4151 	qm->err_ini->hw_err_enable(qm);
4152 }
4153 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
4154 
4155 /**
4156  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
4157  * @qm: The qm for which we want to do error uninitialization.
4158  *
4159  * Uninitialize QM and device error related configuration.
4160  */
4161 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
4162 {
4163 	if (qm->fun_type == QM_HW_VF)
4164 		return;
4165 
4166 	qm_hw_error_uninit(qm);
4167 
4168 	if (!qm->err_ini->hw_err_disable) {
4169 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
4170 		return;
4171 	}
4172 	qm->err_ini->hw_err_disable(qm);
4173 }
4174 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
4175 
4176 /**
4177  * hisi_qm_free_qps() - free multiple queue pairs.
4178  * @qps: The queue pairs need to be freed.
4179  * @qp_num: The num of queue pairs.
4180  */
4181 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
4182 {
4183 	int i;
4184 
4185 	if (!qps || qp_num <= 0)
4186 		return;
4187 
4188 	for (i = qp_num - 1; i >= 0; i--)
4189 		hisi_qm_release_qp(qps[i]);
4190 }
4191 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
4192 
4193 static void free_list(struct list_head *head)
4194 {
4195 	struct hisi_qm_resource *res, *tmp;
4196 
4197 	list_for_each_entry_safe(res, tmp, head, list) {
4198 		list_del(&res->list);
4199 		kfree(res);
4200 	}
4201 }
4202 
4203 static int hisi_qm_sort_devices(int node, struct list_head *head,
4204 				struct hisi_qm_list *qm_list)
4205 {
4206 	struct hisi_qm_resource *res, *tmp;
4207 	struct hisi_qm *qm;
4208 	struct list_head *n;
4209 	struct device *dev;
4210 	int dev_node = 0;
4211 
4212 	list_for_each_entry(qm, &qm_list->list, list) {
4213 		dev = &qm->pdev->dev;
4214 
4215 		if (IS_ENABLED(CONFIG_NUMA)) {
4216 			dev_node = dev_to_node(dev);
4217 			if (dev_node < 0)
4218 				dev_node = 0;
4219 		}
4220 
4221 		res = kzalloc(sizeof(*res), GFP_KERNEL);
4222 		if (!res)
4223 			return -ENOMEM;
4224 
4225 		res->qm = qm;
4226 		res->distance = node_distance(dev_node, node);
4227 		n = head;
4228 		list_for_each_entry(tmp, head, list) {
4229 			if (res->distance < tmp->distance) {
4230 				n = &tmp->list;
4231 				break;
4232 			}
4233 		}
4234 		list_add_tail(&res->list, n);
4235 	}
4236 
4237 	return 0;
4238 }
4239 
4240 /**
4241  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
4242  * @qm_list: The list of all available devices.
4243  * @qp_num: The number of queue pairs need created.
4244  * @alg_type: The algorithm type.
4245  * @node: The numa node.
4246  * @qps: The queue pairs need created.
4247  *
4248  * This function will sort all available device according to numa distance.
4249  * Then try to create all queue pairs from one device, if all devices do
4250  * not meet the requirements will return error.
4251  */
4252 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
4253 			   u8 alg_type, int node, struct hisi_qp **qps)
4254 {
4255 	struct hisi_qm_resource *tmp;
4256 	int ret = -ENODEV;
4257 	LIST_HEAD(head);
4258 	int i;
4259 
4260 	if (!qps || !qm_list || qp_num <= 0)
4261 		return -EINVAL;
4262 
4263 	mutex_lock(&qm_list->lock);
4264 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
4265 		mutex_unlock(&qm_list->lock);
4266 		goto err;
4267 	}
4268 
4269 	list_for_each_entry(tmp, &head, list) {
4270 		for (i = 0; i < qp_num; i++) {
4271 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
4272 			if (IS_ERR(qps[i])) {
4273 				hisi_qm_free_qps(qps, i);
4274 				break;
4275 			}
4276 		}
4277 
4278 		if (i == qp_num) {
4279 			ret = 0;
4280 			break;
4281 		}
4282 	}
4283 
4284 	mutex_unlock(&qm_list->lock);
4285 	if (ret)
4286 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
4287 			node, alg_type, qp_num);
4288 
4289 err:
4290 	free_list(&head);
4291 	return ret;
4292 }
4293 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
4294 
4295 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
4296 {
4297 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
4298 	u32 max_qp_num = qm->max_qp_num;
4299 	u32 q_base = qm->qp_num;
4300 	int ret;
4301 
4302 	if (!num_vfs)
4303 		return -EINVAL;
4304 
4305 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
4306 
4307 	/* If vfs_q_num is less than num_vfs, return error. */
4308 	if (vfs_q_num < num_vfs)
4309 		return -EINVAL;
4310 
4311 	q_num = vfs_q_num / num_vfs;
4312 	remain_q_num = vfs_q_num % num_vfs;
4313 
4314 	for (i = num_vfs; i > 0; i--) {
4315 		/*
4316 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
4317 		 * remaining queues equally.
4318 		 */
4319 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
4320 			act_q_num = q_num + remain_q_num;
4321 			remain_q_num = 0;
4322 		} else if (remain_q_num > 0) {
4323 			act_q_num = q_num + 1;
4324 			remain_q_num--;
4325 		} else {
4326 			act_q_num = q_num;
4327 		}
4328 
4329 		act_q_num = min_t(int, act_q_num, max_qp_num);
4330 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
4331 		if (ret) {
4332 			for (j = num_vfs; j > i; j--)
4333 				hisi_qm_set_vft(qm, j, 0, 0);
4334 			return ret;
4335 		}
4336 		q_base += act_q_num;
4337 	}
4338 
4339 	return 0;
4340 }
4341 
4342 static int qm_clear_vft_config(struct hisi_qm *qm)
4343 {
4344 	int ret;
4345 	u32 i;
4346 
4347 	for (i = 1; i <= qm->vfs_num; i++) {
4348 		ret = hisi_qm_set_vft(qm, i, 0, 0);
4349 		if (ret)
4350 			return ret;
4351 	}
4352 	qm->vfs_num = 0;
4353 
4354 	return 0;
4355 }
4356 
4357 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
4358 {
4359 	struct device *dev = &qm->pdev->dev;
4360 	u32 ir = qos * QM_QOS_RATE;
4361 	int ret, total_vfs, i;
4362 
4363 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
4364 	if (fun_index > total_vfs)
4365 		return -EINVAL;
4366 
4367 	qm->factor[fun_index].func_qos = qos;
4368 
4369 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
4370 	if (ret) {
4371 		dev_err(dev, "failed to calculate shaper parameter!\n");
4372 		return -EINVAL;
4373 	}
4374 
4375 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
4376 		/* The base number of queue reuse for different alg type */
4377 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
4378 		if (ret) {
4379 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
4380 			return -EINVAL;
4381 		}
4382 	}
4383 
4384 	return 0;
4385 }
4386 
4387 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
4388 {
4389 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
4390 	u64 shaper_vft, ir_calc, ir;
4391 	unsigned int val;
4392 	u32 error_rate;
4393 	int ret;
4394 
4395 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
4396 					 val & BIT(0), POLL_PERIOD,
4397 					 POLL_TIMEOUT);
4398 	if (ret)
4399 		return 0;
4400 
4401 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
4402 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
4403 	writel(fun_index, qm->io_base + QM_VFT_CFG);
4404 
4405 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
4406 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
4407 
4408 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
4409 					 val & BIT(0), POLL_PERIOD,
4410 					 POLL_TIMEOUT);
4411 	if (ret)
4412 		return 0;
4413 
4414 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
4415 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
4416 
4417 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
4418 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
4419 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
4420 
4421 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
4422 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
4423 
4424 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
4425 
4426 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
4427 
4428 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
4429 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
4430 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
4431 		return 0;
4432 	}
4433 
4434 	return ir;
4435 }
4436 
4437 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
4438 {
4439 	struct device *dev = &qm->pdev->dev;
4440 	u64 mb_cmd;
4441 	u32 qos;
4442 	int ret;
4443 
4444 	qos = qm_get_shaper_vft_qos(qm, fun_num);
4445 	if (!qos) {
4446 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
4447 		return;
4448 	}
4449 
4450 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
4451 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
4452 	if (ret)
4453 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
4454 }
4455 
4456 static int qm_vf_read_qos(struct hisi_qm *qm)
4457 {
4458 	int cnt = 0;
4459 	int ret = -EINVAL;
4460 
4461 	/* reset mailbox qos val */
4462 	qm->mb_qos = 0;
4463 
4464 	/* vf ping pf to get function qos */
4465 	if (qm->ops->ping_pf) {
4466 		ret = qm->ops->ping_pf(qm, QM_VF_GET_QOS);
4467 		if (ret) {
4468 			pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
4469 			return ret;
4470 		}
4471 	}
4472 
4473 	while (true) {
4474 		msleep(QM_WAIT_DST_ACK);
4475 		if (qm->mb_qos)
4476 			break;
4477 
4478 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
4479 			pci_err(qm->pdev, "PF ping VF timeout!\n");
4480 			return  -ETIMEDOUT;
4481 		}
4482 	}
4483 
4484 	return ret;
4485 }
4486 
4487 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
4488 			       size_t count, loff_t *pos)
4489 {
4490 	struct hisi_qm *qm = filp->private_data;
4491 	char tbuf[QM_DBG_READ_LEN];
4492 	u32 qos_val, ir;
4493 	int ret;
4494 
4495 	ret = hisi_qm_get_dfx_access(qm);
4496 	if (ret)
4497 		return ret;
4498 
4499 	/* Mailbox and reset cannot be operated at the same time */
4500 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4501 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
4502 		ret = -EAGAIN;
4503 		goto err_put_dfx_access;
4504 	}
4505 
4506 	if (qm->fun_type == QM_HW_PF) {
4507 		ir = qm_get_shaper_vft_qos(qm, 0);
4508 	} else {
4509 		ret = qm_vf_read_qos(qm);
4510 		if (ret)
4511 			goto err_get_status;
4512 		ir = qm->mb_qos;
4513 	}
4514 
4515 	qos_val = ir / QM_QOS_RATE;
4516 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
4517 
4518 	ret =  simple_read_from_buffer(buf, count, pos, tbuf, ret);
4519 
4520 err_get_status:
4521 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4522 err_put_dfx_access:
4523 	hisi_qm_put_dfx_access(qm);
4524 	return ret;
4525 }
4526 
4527 static ssize_t qm_qos_value_init(const char *buf, unsigned long *val)
4528 {
4529 	int buflen = strlen(buf);
4530 	int ret, i;
4531 
4532 	for (i = 0; i < buflen; i++) {
4533 		if (!isdigit(buf[i]))
4534 			return -EINVAL;
4535 	}
4536 
4537 	ret = sscanf(buf, "%lu", val);
4538 	if (ret != QM_QOS_VAL_NUM)
4539 		return -EINVAL;
4540 
4541 	return 0;
4542 }
4543 
4544 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
4545 			       unsigned long *val,
4546 			       unsigned int *fun_index)
4547 {
4548 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
4549 	char val_buf[QM_QOS_VAL_MAX_LEN] = {0};
4550 	u32 tmp1, device, function;
4551 	int ret, bus;
4552 
4553 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
4554 	if (ret != QM_QOS_PARAM_NUM)
4555 		return -EINVAL;
4556 
4557 	ret = qm_qos_value_init(val_buf, val);
4558 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
4559 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
4560 		return -EINVAL;
4561 	}
4562 
4563 	ret = sscanf(tbuf_bdf, "%u:%x:%u.%u", &tmp1, &bus, &device, &function);
4564 	if (ret != QM_QOS_BDF_PARAM_NUM) {
4565 		pci_err(qm->pdev, "input pci bdf value is error!\n");
4566 		return -EINVAL;
4567 	}
4568 
4569 	*fun_index = PCI_DEVFN(device, function);
4570 
4571 	return 0;
4572 }
4573 
4574 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
4575 			       size_t count, loff_t *pos)
4576 {
4577 	struct hisi_qm *qm = filp->private_data;
4578 	char tbuf[QM_DBG_READ_LEN];
4579 	unsigned int fun_index;
4580 	unsigned long val;
4581 	int len, ret;
4582 
4583 	if (qm->fun_type == QM_HW_VF)
4584 		return -EINVAL;
4585 
4586 	if (*pos != 0)
4587 		return 0;
4588 
4589 	if (count >= QM_DBG_READ_LEN)
4590 		return -ENOSPC;
4591 
4592 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
4593 	if (len < 0)
4594 		return len;
4595 
4596 	tbuf[len] = '\0';
4597 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
4598 	if (ret)
4599 		return ret;
4600 
4601 	/* Mailbox and reset cannot be operated at the same time */
4602 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4603 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
4604 		return -EAGAIN;
4605 	}
4606 
4607 	ret = qm_pm_get_sync(qm);
4608 	if (ret) {
4609 		ret = -EINVAL;
4610 		goto err_get_status;
4611 	}
4612 
4613 	ret = qm_func_shaper_enable(qm, fun_index, val);
4614 	if (ret) {
4615 		pci_err(qm->pdev, "failed to enable function shaper!\n");
4616 		ret = -EINVAL;
4617 		goto err_put_sync;
4618 	}
4619 
4620 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
4621 		 fun_index, val);
4622 	ret = count;
4623 
4624 err_put_sync:
4625 	qm_pm_put_sync(qm);
4626 err_get_status:
4627 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4628 	return ret;
4629 }
4630 
4631 static const struct file_operations qm_algqos_fops = {
4632 	.owner = THIS_MODULE,
4633 	.open = simple_open,
4634 	.read = qm_algqos_read,
4635 	.write = qm_algqos_write,
4636 };
4637 
4638 /**
4639  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
4640  * @qm: The qm for which we want to add debugfs files.
4641  *
4642  * Create function qos debugfs files.
4643  */
4644 static void hisi_qm_set_algqos_init(struct hisi_qm *qm)
4645 {
4646 	if (qm->fun_type == QM_HW_PF)
4647 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
4648 				    qm, &qm_algqos_fops);
4649 	else
4650 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
4651 				    qm, &qm_algqos_fops);
4652 }
4653 
4654 /**
4655  * hisi_qm_debug_init() - Initialize qm related debugfs files.
4656  * @qm: The qm for which we want to add debugfs files.
4657  *
4658  * Create qm related debugfs files.
4659  */
4660 void hisi_qm_debug_init(struct hisi_qm *qm)
4661 {
4662 	struct dfx_diff_registers *qm_regs = qm->debug.qm_diff_regs;
4663 	struct qm_dfx *dfx = &qm->debug.dfx;
4664 	struct dentry *qm_d;
4665 	void *data;
4666 	int i;
4667 
4668 	qm_d = debugfs_create_dir("qm", qm->debug.debug_root);
4669 	qm->debug.qm_d = qm_d;
4670 
4671 	/* only show this in PF */
4672 	if (qm->fun_type == QM_HW_PF) {
4673 		qm_create_debugfs_file(qm, qm->debug.debug_root, CURRENT_QM);
4674 		for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++)
4675 			qm_create_debugfs_file(qm, qm->debug.qm_d, i);
4676 	}
4677 
4678 	if (qm_regs)
4679 		debugfs_create_file("diff_regs", 0444, qm->debug.qm_d,
4680 					qm, &qm_diff_regs_fops);
4681 
4682 	debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops);
4683 
4684 	debugfs_create_file("cmd", 0600, qm->debug.qm_d, qm, &qm_cmd_fops);
4685 
4686 	debugfs_create_file("status", 0444, qm->debug.qm_d, qm,
4687 			&qm_status_fops);
4688 	for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) {
4689 		data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset);
4690 		debugfs_create_file(qm_dfx_files[i].name,
4691 			0644,
4692 			qm_d,
4693 			data,
4694 			&qm_atomic64_ops);
4695 	}
4696 
4697 	if (qm->ver >= QM_HW_V3)
4698 		hisi_qm_set_algqos_init(qm);
4699 }
4700 EXPORT_SYMBOL_GPL(hisi_qm_debug_init);
4701 
4702 /**
4703  * hisi_qm_debug_regs_clear() - clear qm debug related registers.
4704  * @qm: The qm for which we want to clear its debug registers.
4705  */
4706 void hisi_qm_debug_regs_clear(struct hisi_qm *qm)
4707 {
4708 	const struct debugfs_reg32 *regs;
4709 	int i;
4710 
4711 	/* clear current_qm */
4712 	writel(0x0, qm->io_base + QM_DFX_MB_CNT_VF);
4713 	writel(0x0, qm->io_base + QM_DFX_DB_CNT_VF);
4714 
4715 	/* clear current_q */
4716 	writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
4717 	writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
4718 
4719 	/*
4720 	 * these registers are reading and clearing, so clear them after
4721 	 * reading them.
4722 	 */
4723 	writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE);
4724 
4725 	regs = qm_dfx_regs;
4726 	for (i = 0; i < CNT_CYC_REGS_NUM; i++) {
4727 		readl(qm->io_base + regs->offset);
4728 		regs++;
4729 	}
4730 
4731 	/* clear clear_enable */
4732 	writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE);
4733 }
4734 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear);
4735 
4736 /**
4737  * hisi_qm_sriov_enable() - enable virtual functions
4738  * @pdev: the PCIe device
4739  * @max_vfs: the number of virtual functions to enable
4740  *
4741  * Returns the number of enabled VFs. If there are VFs enabled already or
4742  * max_vfs is more than the total number of device can be enabled, returns
4743  * failure.
4744  */
4745 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
4746 {
4747 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4748 	int pre_existing_vfs, num_vfs, total_vfs, ret;
4749 
4750 	ret = qm_pm_get_sync(qm);
4751 	if (ret)
4752 		return ret;
4753 
4754 	total_vfs = pci_sriov_get_totalvfs(pdev);
4755 	pre_existing_vfs = pci_num_vf(pdev);
4756 	if (pre_existing_vfs) {
4757 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
4758 			pre_existing_vfs);
4759 		goto err_put_sync;
4760 	}
4761 
4762 	num_vfs = min_t(int, max_vfs, total_vfs);
4763 	ret = qm_vf_q_assign(qm, num_vfs);
4764 	if (ret) {
4765 		pci_err(pdev, "Can't assign queues for VF!\n");
4766 		goto err_put_sync;
4767 	}
4768 
4769 	qm->vfs_num = num_vfs;
4770 
4771 	ret = pci_enable_sriov(pdev, num_vfs);
4772 	if (ret) {
4773 		pci_err(pdev, "Can't enable VF!\n");
4774 		qm_clear_vft_config(qm);
4775 		goto err_put_sync;
4776 	}
4777 
4778 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
4779 
4780 	return num_vfs;
4781 
4782 err_put_sync:
4783 	qm_pm_put_sync(qm);
4784 	return ret;
4785 }
4786 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
4787 
4788 /**
4789  * hisi_qm_sriov_disable - disable virtual functions
4790  * @pdev: the PCI device.
4791  * @is_frozen: true when all the VFs are frozen.
4792  *
4793  * Return failure if there are VFs assigned already or VF is in used.
4794  */
4795 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
4796 {
4797 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4798 	int total_vfs = pci_sriov_get_totalvfs(qm->pdev);
4799 	int ret;
4800 
4801 	if (pci_vfs_assigned(pdev)) {
4802 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
4803 		return -EPERM;
4804 	}
4805 
4806 	/* While VF is in used, SRIOV cannot be disabled. */
4807 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
4808 		pci_err(pdev, "Task is using its VF!\n");
4809 		return -EBUSY;
4810 	}
4811 
4812 	pci_disable_sriov(pdev);
4813 	/* clear vf function shaper configure array */
4814 	memset(qm->factor + 1, 0, sizeof(struct qm_shaper_factor) * total_vfs);
4815 	ret = qm_clear_vft_config(qm);
4816 	if (ret)
4817 		return ret;
4818 
4819 	qm_pm_put_sync(qm);
4820 
4821 	return 0;
4822 }
4823 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
4824 
4825 /**
4826  * hisi_qm_sriov_configure - configure the number of VFs
4827  * @pdev: The PCI device
4828  * @num_vfs: The number of VFs need enabled
4829  *
4830  * Enable SR-IOV according to num_vfs, 0 means disable.
4831  */
4832 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
4833 {
4834 	if (num_vfs == 0)
4835 		return hisi_qm_sriov_disable(pdev, false);
4836 	else
4837 		return hisi_qm_sriov_enable(pdev, num_vfs);
4838 }
4839 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
4840 
4841 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
4842 {
4843 	u32 err_sts;
4844 
4845 	if (!qm->err_ini->get_dev_hw_err_status) {
4846 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
4847 		return ACC_ERR_NONE;
4848 	}
4849 
4850 	/* get device hardware error status */
4851 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
4852 	if (err_sts) {
4853 		if (err_sts & qm->err_info.ecc_2bits_mask)
4854 			qm->err_status.is_dev_ecc_mbit = true;
4855 
4856 		if (qm->err_ini->log_dev_hw_err)
4857 			qm->err_ini->log_dev_hw_err(qm, err_sts);
4858 
4859 		/* ce error does not need to be reset */
4860 		if ((err_sts | qm->err_info.dev_ce_mask) ==
4861 		     qm->err_info.dev_ce_mask) {
4862 			if (qm->err_ini->clear_dev_hw_err_status)
4863 				qm->err_ini->clear_dev_hw_err_status(qm,
4864 								err_sts);
4865 
4866 			return ACC_ERR_RECOVERED;
4867 		}
4868 
4869 		return ACC_ERR_NEED_RESET;
4870 	}
4871 
4872 	return ACC_ERR_RECOVERED;
4873 }
4874 
4875 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
4876 {
4877 	enum acc_err_result qm_ret, dev_ret;
4878 
4879 	/* log qm error */
4880 	qm_ret = qm_hw_error_handle(qm);
4881 
4882 	/* log device error */
4883 	dev_ret = qm_dev_err_handle(qm);
4884 
4885 	return (qm_ret == ACC_ERR_NEED_RESET ||
4886 		dev_ret == ACC_ERR_NEED_RESET) ?
4887 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
4888 }
4889 
4890 /**
4891  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
4892  * @pdev: The PCI device which need report error.
4893  * @state: The connectivity between CPU and device.
4894  *
4895  * We register this function into PCIe AER handlers, It will report device or
4896  * qm hardware error status when error occur.
4897  */
4898 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
4899 					  pci_channel_state_t state)
4900 {
4901 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4902 	enum acc_err_result ret;
4903 
4904 	if (pdev->is_virtfn)
4905 		return PCI_ERS_RESULT_NONE;
4906 
4907 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
4908 	if (state == pci_channel_io_perm_failure)
4909 		return PCI_ERS_RESULT_DISCONNECT;
4910 
4911 	ret = qm_process_dev_error(qm);
4912 	if (ret == ACC_ERR_NEED_RESET)
4913 		return PCI_ERS_RESULT_NEED_RESET;
4914 
4915 	return PCI_ERS_RESULT_RECOVERED;
4916 }
4917 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
4918 
4919 static int qm_check_req_recv(struct hisi_qm *qm)
4920 {
4921 	struct pci_dev *pdev = qm->pdev;
4922 	int ret;
4923 	u32 val;
4924 
4925 	if (qm->ver >= QM_HW_V3)
4926 		return 0;
4927 
4928 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
4929 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4930 					 (val == ACC_VENDOR_ID_VALUE),
4931 					 POLL_PERIOD, POLL_TIMEOUT);
4932 	if (ret) {
4933 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
4934 		return ret;
4935 	}
4936 
4937 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
4938 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4939 					 (val == PCI_VENDOR_ID_HUAWEI),
4940 					 POLL_PERIOD, POLL_TIMEOUT);
4941 	if (ret)
4942 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
4943 
4944 	return ret;
4945 }
4946 
4947 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
4948 {
4949 	struct pci_dev *pdev = qm->pdev;
4950 	u16 cmd;
4951 	int i;
4952 
4953 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4954 	if (set)
4955 		cmd |= PCI_COMMAND_MEMORY;
4956 	else
4957 		cmd &= ~PCI_COMMAND_MEMORY;
4958 
4959 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
4960 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4961 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4962 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
4963 			return 0;
4964 
4965 		udelay(1);
4966 	}
4967 
4968 	return -ETIMEDOUT;
4969 }
4970 
4971 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
4972 {
4973 	struct pci_dev *pdev = qm->pdev;
4974 	u16 sriov_ctrl;
4975 	int pos;
4976 	int i;
4977 
4978 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4979 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4980 	if (set)
4981 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
4982 	else
4983 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
4984 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
4985 
4986 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4987 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4988 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
4989 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
4990 			return 0;
4991 
4992 		udelay(1);
4993 	}
4994 
4995 	return -ETIMEDOUT;
4996 }
4997 
4998 static int qm_vf_reset_prepare(struct hisi_qm *qm,
4999 			       enum qm_stop_reason stop_reason)
5000 {
5001 	struct hisi_qm_list *qm_list = qm->qm_list;
5002 	struct pci_dev *pdev = qm->pdev;
5003 	struct pci_dev *virtfn;
5004 	struct hisi_qm *vf_qm;
5005 	int ret = 0;
5006 
5007 	mutex_lock(&qm_list->lock);
5008 	list_for_each_entry(vf_qm, &qm_list->list, list) {
5009 		virtfn = vf_qm->pdev;
5010 		if (virtfn == pdev)
5011 			continue;
5012 
5013 		if (pci_physfn(virtfn) == pdev) {
5014 			/* save VFs PCIE BAR configuration */
5015 			pci_save_state(virtfn);
5016 
5017 			ret = hisi_qm_stop(vf_qm, stop_reason);
5018 			if (ret)
5019 				goto stop_fail;
5020 		}
5021 	}
5022 
5023 stop_fail:
5024 	mutex_unlock(&qm_list->lock);
5025 	return ret;
5026 }
5027 
5028 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
5029 			   enum qm_stop_reason stop_reason)
5030 {
5031 	struct pci_dev *pdev = qm->pdev;
5032 	int ret;
5033 
5034 	if (!qm->vfs_num)
5035 		return 0;
5036 
5037 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
5038 	if (qm->ops->ping_all_vfs) {
5039 		ret = qm->ops->ping_all_vfs(qm, cmd);
5040 		if (ret)
5041 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
5042 	} else {
5043 		ret = qm_vf_reset_prepare(qm, stop_reason);
5044 		if (ret)
5045 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
5046 	}
5047 
5048 	return ret;
5049 }
5050 
5051 static int qm_controller_reset_prepare(struct hisi_qm *qm)
5052 {
5053 	struct pci_dev *pdev = qm->pdev;
5054 	int ret;
5055 
5056 	ret = qm_reset_prepare_ready(qm);
5057 	if (ret) {
5058 		pci_err(pdev, "Controller reset not ready!\n");
5059 		return ret;
5060 	}
5061 
5062 	/* PF obtains the information of VF by querying the register. */
5063 	qm_cmd_uninit(qm);
5064 
5065 	/* Whether VFs stop successfully, soft reset will continue. */
5066 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
5067 	if (ret)
5068 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
5069 
5070 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
5071 	if (ret) {
5072 		pci_err(pdev, "Fails to stop QM!\n");
5073 		qm_reset_bit_clear(qm);
5074 		return ret;
5075 	}
5076 
5077 	ret = qm_wait_vf_prepare_finish(qm);
5078 	if (ret)
5079 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
5080 
5081 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
5082 
5083 	return 0;
5084 }
5085 
5086 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
5087 {
5088 	u32 nfe_enb = 0;
5089 
5090 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
5091 	if (qm->ver >= QM_HW_V3)
5092 		return;
5093 
5094 	if (!qm->err_status.is_dev_ecc_mbit &&
5095 	    qm->err_status.is_qm_ecc_mbit &&
5096 	    qm->err_ini->close_axi_master_ooo) {
5097 
5098 		qm->err_ini->close_axi_master_ooo(qm);
5099 
5100 	} else if (qm->err_status.is_dev_ecc_mbit &&
5101 		   !qm->err_status.is_qm_ecc_mbit &&
5102 		   !qm->err_ini->close_axi_master_ooo) {
5103 
5104 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
5105 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
5106 		       qm->io_base + QM_RAS_NFE_ENABLE);
5107 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
5108 	}
5109 }
5110 
5111 static int qm_soft_reset(struct hisi_qm *qm)
5112 {
5113 	struct pci_dev *pdev = qm->pdev;
5114 	int ret;
5115 	u32 val;
5116 
5117 	/* Ensure all doorbells and mailboxes received by QM */
5118 	ret = qm_check_req_recv(qm);
5119 	if (ret)
5120 		return ret;
5121 
5122 	if (qm->vfs_num) {
5123 		ret = qm_set_vf_mse(qm, false);
5124 		if (ret) {
5125 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
5126 			return ret;
5127 		}
5128 	}
5129 
5130 	ret = qm->ops->set_msi(qm, false);
5131 	if (ret) {
5132 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
5133 		return ret;
5134 	}
5135 
5136 	qm_dev_ecc_mbit_handle(qm);
5137 
5138 	/* OOO register set and check */
5139 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
5140 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5141 
5142 	/* If bus lock, reset chip */
5143 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
5144 					 val,
5145 					 (val == ACC_MASTER_TRANS_RETURN_RW),
5146 					 POLL_PERIOD, POLL_TIMEOUT);
5147 	if (ret) {
5148 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
5149 		return ret;
5150 	}
5151 
5152 	if (qm->err_ini->close_sva_prefetch)
5153 		qm->err_ini->close_sva_prefetch(qm);
5154 
5155 	ret = qm_set_pf_mse(qm, false);
5156 	if (ret) {
5157 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
5158 		return ret;
5159 	}
5160 
5161 	/* The reset related sub-control registers are not in PCI BAR */
5162 	if (ACPI_HANDLE(&pdev->dev)) {
5163 		unsigned long long value = 0;
5164 		acpi_status s;
5165 
5166 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
5167 					  qm->err_info.acpi_rst,
5168 					  NULL, &value);
5169 		if (ACPI_FAILURE(s)) {
5170 			pci_err(pdev, "NO controller reset method!\n");
5171 			return -EIO;
5172 		}
5173 
5174 		if (value) {
5175 			pci_err(pdev, "Reset step %llu failed!\n", value);
5176 			return -EIO;
5177 		}
5178 	} else {
5179 		pci_err(pdev, "No reset method!\n");
5180 		return -EINVAL;
5181 	}
5182 
5183 	return 0;
5184 }
5185 
5186 static int qm_vf_reset_done(struct hisi_qm *qm)
5187 {
5188 	struct hisi_qm_list *qm_list = qm->qm_list;
5189 	struct pci_dev *pdev = qm->pdev;
5190 	struct pci_dev *virtfn;
5191 	struct hisi_qm *vf_qm;
5192 	int ret = 0;
5193 
5194 	mutex_lock(&qm_list->lock);
5195 	list_for_each_entry(vf_qm, &qm_list->list, list) {
5196 		virtfn = vf_qm->pdev;
5197 		if (virtfn == pdev)
5198 			continue;
5199 
5200 		if (pci_physfn(virtfn) == pdev) {
5201 			/* enable VFs PCIE BAR configuration */
5202 			pci_restore_state(virtfn);
5203 
5204 			ret = qm_restart(vf_qm);
5205 			if (ret)
5206 				goto restart_fail;
5207 		}
5208 	}
5209 
5210 restart_fail:
5211 	mutex_unlock(&qm_list->lock);
5212 	return ret;
5213 }
5214 
5215 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
5216 {
5217 	struct pci_dev *pdev = qm->pdev;
5218 	int ret;
5219 
5220 	if (!qm->vfs_num)
5221 		return 0;
5222 
5223 	ret = qm_vf_q_assign(qm, qm->vfs_num);
5224 	if (ret) {
5225 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
5226 		return ret;
5227 	}
5228 
5229 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
5230 	if (qm->ops->ping_all_vfs) {
5231 		ret = qm->ops->ping_all_vfs(qm, cmd);
5232 		if (ret)
5233 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
5234 	} else {
5235 		ret = qm_vf_reset_done(qm);
5236 		if (ret)
5237 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
5238 	}
5239 
5240 	return ret;
5241 }
5242 
5243 static int qm_dev_hw_init(struct hisi_qm *qm)
5244 {
5245 	return qm->err_ini->hw_init(qm);
5246 }
5247 
5248 static void qm_restart_prepare(struct hisi_qm *qm)
5249 {
5250 	u32 value;
5251 
5252 	if (qm->err_ini->open_sva_prefetch)
5253 		qm->err_ini->open_sva_prefetch(qm);
5254 
5255 	if (qm->ver >= QM_HW_V3)
5256 		return;
5257 
5258 	if (!qm->err_status.is_qm_ecc_mbit &&
5259 	    !qm->err_status.is_dev_ecc_mbit)
5260 		return;
5261 
5262 	/* temporarily close the OOO port used for PEH to write out MSI */
5263 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5264 	writel(value & ~qm->err_info.msi_wr_port,
5265 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5266 
5267 	/* clear dev ecc 2bit error source if having */
5268 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
5269 	if (value && qm->err_ini->clear_dev_hw_err_status)
5270 		qm->err_ini->clear_dev_hw_err_status(qm, value);
5271 
5272 	/* clear QM ecc mbit error source */
5273 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
5274 
5275 	/* clear AM Reorder Buffer ecc mbit source */
5276 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
5277 }
5278 
5279 static void qm_restart_done(struct hisi_qm *qm)
5280 {
5281 	u32 value;
5282 
5283 	if (qm->ver >= QM_HW_V3)
5284 		goto clear_flags;
5285 
5286 	if (!qm->err_status.is_qm_ecc_mbit &&
5287 	    !qm->err_status.is_dev_ecc_mbit)
5288 		return;
5289 
5290 	/* open the OOO port for PEH to write out MSI */
5291 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5292 	value |= qm->err_info.msi_wr_port;
5293 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5294 
5295 clear_flags:
5296 	qm->err_status.is_qm_ecc_mbit = false;
5297 	qm->err_status.is_dev_ecc_mbit = false;
5298 }
5299 
5300 static int qm_controller_reset_done(struct hisi_qm *qm)
5301 {
5302 	struct pci_dev *pdev = qm->pdev;
5303 	int ret;
5304 
5305 	ret = qm->ops->set_msi(qm, true);
5306 	if (ret) {
5307 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
5308 		return ret;
5309 	}
5310 
5311 	ret = qm_set_pf_mse(qm, true);
5312 	if (ret) {
5313 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
5314 		return ret;
5315 	}
5316 
5317 	if (qm->vfs_num) {
5318 		ret = qm_set_vf_mse(qm, true);
5319 		if (ret) {
5320 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
5321 			return ret;
5322 		}
5323 	}
5324 
5325 	ret = qm_dev_hw_init(qm);
5326 	if (ret) {
5327 		pci_err(pdev, "Failed to init device\n");
5328 		return ret;
5329 	}
5330 
5331 	qm_restart_prepare(qm);
5332 	hisi_qm_dev_err_init(qm);
5333 	if (qm->err_ini->open_axi_master_ooo)
5334 		qm->err_ini->open_axi_master_ooo(qm);
5335 
5336 	ret = qm_dev_mem_reset(qm);
5337 	if (ret) {
5338 		pci_err(pdev, "failed to reset device memory\n");
5339 		return ret;
5340 	}
5341 
5342 	ret = qm_restart(qm);
5343 	if (ret) {
5344 		pci_err(pdev, "Failed to start QM!\n");
5345 		return ret;
5346 	}
5347 
5348 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
5349 	if (ret)
5350 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
5351 
5352 	ret = qm_wait_vf_prepare_finish(qm);
5353 	if (ret)
5354 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
5355 
5356 	qm_cmd_init(qm);
5357 	qm_restart_done(qm);
5358 
5359 	qm_reset_bit_clear(qm);
5360 
5361 	return 0;
5362 }
5363 
5364 static void qm_show_last_dfx_regs(struct hisi_qm *qm)
5365 {
5366 	struct qm_debug *debug = &qm->debug;
5367 	struct pci_dev *pdev = qm->pdev;
5368 	u32 val;
5369 	int i;
5370 
5371 	if (qm->fun_type == QM_HW_VF || !debug->qm_last_words)
5372 		return;
5373 
5374 	for (i = 0; i < ARRAY_SIZE(qm_dfx_regs); i++) {
5375 		val = readl_relaxed(qm->io_base + qm_dfx_regs[i].offset);
5376 		if (debug->qm_last_words[i] != val)
5377 			pci_info(pdev, "%s \t= 0x%08x => 0x%08x\n",
5378 			qm_dfx_regs[i].name, debug->qm_last_words[i], val);
5379 	}
5380 }
5381 
5382 static int qm_controller_reset(struct hisi_qm *qm)
5383 {
5384 	struct pci_dev *pdev = qm->pdev;
5385 	int ret;
5386 
5387 	pci_info(pdev, "Controller resetting...\n");
5388 
5389 	ret = qm_controller_reset_prepare(qm);
5390 	if (ret) {
5391 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
5392 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
5393 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
5394 		return ret;
5395 	}
5396 
5397 	qm_show_last_dfx_regs(qm);
5398 	if (qm->err_ini->show_last_dfx_regs)
5399 		qm->err_ini->show_last_dfx_regs(qm);
5400 
5401 	ret = qm_soft_reset(qm);
5402 	if (ret) {
5403 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
5404 		qm_reset_bit_clear(qm);
5405 		return ret;
5406 	}
5407 
5408 	ret = qm_controller_reset_done(qm);
5409 	if (ret) {
5410 		qm_reset_bit_clear(qm);
5411 		return ret;
5412 	}
5413 
5414 	pci_info(pdev, "Controller reset complete\n");
5415 
5416 	return 0;
5417 }
5418 
5419 /**
5420  * hisi_qm_dev_slot_reset() - slot reset
5421  * @pdev: the PCIe device
5422  *
5423  * This function offers QM relate PCIe device reset interface. Drivers which
5424  * use QM can use this function as slot_reset in its struct pci_error_handlers.
5425  */
5426 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
5427 {
5428 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5429 	int ret;
5430 
5431 	if (pdev->is_virtfn)
5432 		return PCI_ERS_RESULT_RECOVERED;
5433 
5434 	pci_aer_clear_nonfatal_status(pdev);
5435 
5436 	/* reset pcie device controller */
5437 	ret = qm_controller_reset(qm);
5438 	if (ret) {
5439 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
5440 		return PCI_ERS_RESULT_DISCONNECT;
5441 	}
5442 
5443 	return PCI_ERS_RESULT_RECOVERED;
5444 }
5445 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
5446 
5447 void hisi_qm_reset_prepare(struct pci_dev *pdev)
5448 {
5449 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
5450 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5451 	u32 delay = 0;
5452 	int ret;
5453 
5454 	hisi_qm_dev_err_uninit(pf_qm);
5455 
5456 	/*
5457 	 * Check whether there is an ECC mbit error, If it occurs, need to
5458 	 * wait for soft reset to fix it.
5459 	 */
5460 	while (qm_check_dev_error(pf_qm)) {
5461 		msleep(++delay);
5462 		if (delay > QM_RESET_WAIT_TIMEOUT)
5463 			return;
5464 	}
5465 
5466 	ret = qm_reset_prepare_ready(qm);
5467 	if (ret) {
5468 		pci_err(pdev, "FLR not ready!\n");
5469 		return;
5470 	}
5471 
5472 	/* PF obtains the information of VF by querying the register. */
5473 	if (qm->fun_type == QM_HW_PF)
5474 		qm_cmd_uninit(qm);
5475 
5476 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR);
5477 	if (ret)
5478 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
5479 
5480 	ret = hisi_qm_stop(qm, QM_FLR);
5481 	if (ret) {
5482 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
5483 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
5484 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
5485 		return;
5486 	}
5487 
5488 	ret = qm_wait_vf_prepare_finish(qm);
5489 	if (ret)
5490 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
5491 
5492 	pci_info(pdev, "FLR resetting...\n");
5493 }
5494 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
5495 
5496 static bool qm_flr_reset_complete(struct pci_dev *pdev)
5497 {
5498 	struct pci_dev *pf_pdev = pci_physfn(pdev);
5499 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
5500 	u32 id;
5501 
5502 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
5503 	if (id == QM_PCI_COMMAND_INVALID) {
5504 		pci_err(pdev, "Device can not be used!\n");
5505 		return false;
5506 	}
5507 
5508 	return true;
5509 }
5510 
5511 void hisi_qm_reset_done(struct pci_dev *pdev)
5512 {
5513 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
5514 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5515 	int ret;
5516 
5517 	if (qm->fun_type == QM_HW_PF) {
5518 		ret = qm_dev_hw_init(qm);
5519 		if (ret) {
5520 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
5521 			goto flr_done;
5522 		}
5523 	}
5524 
5525 	hisi_qm_dev_err_init(pf_qm);
5526 
5527 	ret = qm_restart(qm);
5528 	if (ret) {
5529 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
5530 		goto flr_done;
5531 	}
5532 
5533 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
5534 	if (ret)
5535 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
5536 
5537 	ret = qm_wait_vf_prepare_finish(qm);
5538 	if (ret)
5539 		pci_err(pdev, "failed to start by vfs in FLR!\n");
5540 
5541 flr_done:
5542 	if (qm->fun_type == QM_HW_PF)
5543 		qm_cmd_init(qm);
5544 
5545 	if (qm_flr_reset_complete(pdev))
5546 		pci_info(pdev, "FLR reset complete\n");
5547 
5548 	qm_reset_bit_clear(qm);
5549 }
5550 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
5551 
5552 static irqreturn_t qm_abnormal_irq(int irq, void *data)
5553 {
5554 	struct hisi_qm *qm = data;
5555 	enum acc_err_result ret;
5556 
5557 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
5558 	ret = qm_process_dev_error(qm);
5559 	if (ret == ACC_ERR_NEED_RESET &&
5560 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
5561 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
5562 		schedule_work(&qm->rst_work);
5563 
5564 	return IRQ_HANDLED;
5565 }
5566 
5567 static int qm_irq_register(struct hisi_qm *qm)
5568 {
5569 	struct pci_dev *pdev = qm->pdev;
5570 	int ret;
5571 
5572 	ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR),
5573 			  qm_irq, 0, qm->dev_name, qm);
5574 	if (ret)
5575 		return ret;
5576 
5577 	if (qm->ver > QM_HW_V1) {
5578 		ret = request_threaded_irq(pci_irq_vector(pdev,
5579 					   QM_AEQ_EVENT_IRQ_VECTOR),
5580 					   qm_aeq_irq, qm_aeq_thread,
5581 					   0, qm->dev_name, qm);
5582 		if (ret)
5583 			goto err_aeq_irq;
5584 
5585 		if (qm->fun_type == QM_HW_PF) {
5586 			ret = request_irq(pci_irq_vector(pdev,
5587 					  QM_ABNORMAL_EVENT_IRQ_VECTOR),
5588 					  qm_abnormal_irq, 0, qm->dev_name, qm);
5589 			if (ret)
5590 				goto err_abonormal_irq;
5591 		}
5592 	}
5593 
5594 	if (qm->ver > QM_HW_V2) {
5595 		ret = request_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR),
5596 				qm_mb_cmd_irq, 0, qm->dev_name, qm);
5597 		if (ret)
5598 			goto err_mb_cmd_irq;
5599 	}
5600 
5601 	return 0;
5602 
5603 err_mb_cmd_irq:
5604 	if (qm->fun_type == QM_HW_PF)
5605 		free_irq(pci_irq_vector(pdev, QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
5606 err_abonormal_irq:
5607 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
5608 err_aeq_irq:
5609 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
5610 	return ret;
5611 }
5612 
5613 /**
5614  * hisi_qm_dev_shutdown() - Shutdown device.
5615  * @pdev: The device will be shutdown.
5616  *
5617  * This function will stop qm when OS shutdown or rebooting.
5618  */
5619 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
5620 {
5621 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5622 	int ret;
5623 
5624 	ret = hisi_qm_stop(qm, QM_NORMAL);
5625 	if (ret)
5626 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
5627 }
5628 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
5629 
5630 static void hisi_qm_controller_reset(struct work_struct *rst_work)
5631 {
5632 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
5633 	int ret;
5634 
5635 	ret = qm_pm_get_sync(qm);
5636 	if (ret) {
5637 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
5638 		return;
5639 	}
5640 
5641 	/* reset pcie device controller */
5642 	ret = qm_controller_reset(qm);
5643 	if (ret)
5644 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
5645 
5646 	qm_pm_put_sync(qm);
5647 }
5648 
5649 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
5650 				   enum qm_stop_reason stop_reason)
5651 {
5652 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
5653 	struct pci_dev *pdev = qm->pdev;
5654 	int ret;
5655 
5656 	ret = qm_reset_prepare_ready(qm);
5657 	if (ret) {
5658 		dev_err(&pdev->dev, "reset prepare not ready!\n");
5659 		atomic_set(&qm->status.flags, QM_STOP);
5660 		cmd = QM_VF_PREPARE_FAIL;
5661 		goto err_prepare;
5662 	}
5663 
5664 	ret = hisi_qm_stop(qm, stop_reason);
5665 	if (ret) {
5666 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
5667 		atomic_set(&qm->status.flags, QM_STOP);
5668 		cmd = QM_VF_PREPARE_FAIL;
5669 		goto err_prepare;
5670 	} else {
5671 		goto out;
5672 	}
5673 
5674 err_prepare:
5675 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
5676 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
5677 out:
5678 	pci_save_state(pdev);
5679 	ret = qm->ops->ping_pf(qm, cmd);
5680 	if (ret)
5681 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
5682 }
5683 
5684 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
5685 {
5686 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
5687 	struct pci_dev *pdev = qm->pdev;
5688 	int ret;
5689 
5690 	pci_restore_state(pdev);
5691 	ret = hisi_qm_start(qm);
5692 	if (ret) {
5693 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
5694 		cmd = QM_VF_START_FAIL;
5695 	}
5696 
5697 	ret = qm->ops->ping_pf(qm, cmd);
5698 	if (ret)
5699 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
5700 
5701 	qm_reset_bit_clear(qm);
5702 }
5703 
5704 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
5705 {
5706 	struct device *dev = &qm->pdev->dev;
5707 	u32 val, cmd;
5708 	u64 msg;
5709 	int ret;
5710 
5711 	/* Wait for reset to finish */
5712 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
5713 					 val == BIT(0), QM_VF_RESET_WAIT_US,
5714 					 QM_VF_RESET_WAIT_TIMEOUT_US);
5715 	/* hardware completion status should be available by this time */
5716 	if (ret) {
5717 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
5718 		return -ETIMEDOUT;
5719 	}
5720 
5721 	/*
5722 	 * Whether message is got successfully,
5723 	 * VF needs to ack PF by clearing the interrupt.
5724 	 */
5725 	ret = qm_get_mb_cmd(qm, &msg, 0);
5726 	qm_clear_cmd_interrupt(qm, 0);
5727 	if (ret) {
5728 		dev_err(dev, "failed to get msg from PF in reset done!\n");
5729 		return ret;
5730 	}
5731 
5732 	cmd = msg & QM_MB_CMD_DATA_MASK;
5733 	if (cmd != QM_PF_RESET_DONE) {
5734 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
5735 		ret = -EINVAL;
5736 	}
5737 
5738 	return ret;
5739 }
5740 
5741 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
5742 				   enum qm_stop_reason stop_reason)
5743 {
5744 	struct device *dev = &qm->pdev->dev;
5745 	int ret;
5746 
5747 	dev_info(dev, "device reset start...\n");
5748 
5749 	/* The message is obtained by querying the register during resetting */
5750 	qm_cmd_uninit(qm);
5751 	qm_pf_reset_vf_prepare(qm, stop_reason);
5752 
5753 	ret = qm_wait_pf_reset_finish(qm);
5754 	if (ret)
5755 		goto err_get_status;
5756 
5757 	qm_pf_reset_vf_done(qm);
5758 	qm_cmd_init(qm);
5759 
5760 	dev_info(dev, "device reset done.\n");
5761 
5762 	return;
5763 
5764 err_get_status:
5765 	qm_cmd_init(qm);
5766 	qm_reset_bit_clear(qm);
5767 }
5768 
5769 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
5770 {
5771 	struct device *dev = &qm->pdev->dev;
5772 	u64 msg;
5773 	u32 cmd;
5774 	int ret;
5775 
5776 	/*
5777 	 * Get the msg from source by sending mailbox. Whether message is got
5778 	 * successfully, destination needs to ack source by clearing the interrupt.
5779 	 */
5780 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
5781 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
5782 	if (ret) {
5783 		dev_err(dev, "failed to get msg from source!\n");
5784 		return;
5785 	}
5786 
5787 	cmd = msg & QM_MB_CMD_DATA_MASK;
5788 	switch (cmd) {
5789 	case QM_PF_FLR_PREPARE:
5790 		qm_pf_reset_vf_process(qm, QM_FLR);
5791 		break;
5792 	case QM_PF_SRST_PREPARE:
5793 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
5794 		break;
5795 	case QM_VF_GET_QOS:
5796 		qm_vf_get_qos(qm, fun_num);
5797 		break;
5798 	case QM_PF_SET_QOS:
5799 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
5800 		break;
5801 	default:
5802 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
5803 		break;
5804 	}
5805 }
5806 
5807 static void qm_cmd_process(struct work_struct *cmd_process)
5808 {
5809 	struct hisi_qm *qm = container_of(cmd_process,
5810 					struct hisi_qm, cmd_process);
5811 	u32 vfs_num = qm->vfs_num;
5812 	u64 val;
5813 	u32 i;
5814 
5815 	if (qm->fun_type == QM_HW_PF) {
5816 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
5817 		if (!val)
5818 			return;
5819 
5820 		for (i = 1; i <= vfs_num; i++) {
5821 			if (val & BIT(i))
5822 				qm_handle_cmd_msg(qm, i);
5823 		}
5824 
5825 		return;
5826 	}
5827 
5828 	qm_handle_cmd_msg(qm, 0);
5829 }
5830 
5831 /**
5832  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
5833  * @qm: The qm needs add.
5834  * @qm_list: The qm list.
5835  *
5836  * This function adds qm to qm list, and will register algorithm to
5837  * crypto when the qm list is empty.
5838  */
5839 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
5840 {
5841 	struct device *dev = &qm->pdev->dev;
5842 	int flag = 0;
5843 	int ret = 0;
5844 
5845 	mutex_lock(&qm_list->lock);
5846 	if (list_empty(&qm_list->list))
5847 		flag = 1;
5848 	list_add_tail(&qm->list, &qm_list->list);
5849 	mutex_unlock(&qm_list->lock);
5850 
5851 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
5852 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
5853 		return 0;
5854 	}
5855 
5856 	if (flag) {
5857 		ret = qm_list->register_to_crypto(qm);
5858 		if (ret) {
5859 			mutex_lock(&qm_list->lock);
5860 			list_del(&qm->list);
5861 			mutex_unlock(&qm_list->lock);
5862 		}
5863 	}
5864 
5865 	return ret;
5866 }
5867 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
5868 
5869 /**
5870  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
5871  * qm list.
5872  * @qm: The qm needs delete.
5873  * @qm_list: The qm list.
5874  *
5875  * This function deletes qm from qm list, and will unregister algorithm
5876  * from crypto when the qm list is empty.
5877  */
5878 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
5879 {
5880 	mutex_lock(&qm_list->lock);
5881 	list_del(&qm->list);
5882 	mutex_unlock(&qm_list->lock);
5883 
5884 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
5885 		return;
5886 
5887 	if (list_empty(&qm_list->list))
5888 		qm_list->unregister_from_crypto(qm);
5889 }
5890 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
5891 
5892 static int qm_get_qp_num(struct hisi_qm *qm)
5893 {
5894 	if (qm->ver == QM_HW_V1)
5895 		qm->ctrl_qp_num = QM_QNUM_V1;
5896 	else if (qm->ver == QM_HW_V2)
5897 		qm->ctrl_qp_num = QM_QNUM_V2;
5898 	else
5899 		qm->ctrl_qp_num = readl(qm->io_base + QM_CAPBILITY) &
5900 					QM_QP_NUN_MASK;
5901 
5902 	if (qm->use_db_isolation)
5903 		qm->max_qp_num = (readl(qm->io_base + QM_CAPBILITY) >>
5904 				  QM_QP_MAX_NUM_SHIFT) & QM_QP_NUN_MASK;
5905 	else
5906 		qm->max_qp_num = qm->ctrl_qp_num;
5907 
5908 	/* check if qp number is valid */
5909 	if (qm->qp_num > qm->max_qp_num) {
5910 		dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n",
5911 			qm->qp_num, qm->max_qp_num);
5912 		return -EINVAL;
5913 	}
5914 
5915 	return 0;
5916 }
5917 
5918 static int qm_get_pci_res(struct hisi_qm *qm)
5919 {
5920 	struct pci_dev *pdev = qm->pdev;
5921 	struct device *dev = &pdev->dev;
5922 	int ret;
5923 
5924 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5925 	if (ret < 0) {
5926 		dev_err(dev, "Failed to request mem regions!\n");
5927 		return ret;
5928 	}
5929 
5930 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5931 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5932 	if (!qm->io_base) {
5933 		ret = -EIO;
5934 		goto err_request_mem_regions;
5935 	}
5936 
5937 	if (qm->ver > QM_HW_V2) {
5938 		if (qm->fun_type == QM_HW_PF)
5939 			qm->use_db_isolation = readl(qm->io_base +
5940 						     QM_QUE_ISO_EN) & BIT(0);
5941 		else
5942 			qm->use_db_isolation = readl(qm->io_base +
5943 						     QM_QUE_ISO_CFG_V) & BIT(0);
5944 	}
5945 
5946 	if (qm->use_db_isolation) {
5947 		qm->db_interval = QM_QP_DB_INTERVAL;
5948 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5949 		qm->db_io_base = ioremap(qm->db_phys_base,
5950 					 pci_resource_len(pdev, PCI_BAR_4));
5951 		if (!qm->db_io_base) {
5952 			ret = -EIO;
5953 			goto err_ioremap;
5954 		}
5955 	} else {
5956 		qm->db_phys_base = qm->phys_base;
5957 		qm->db_io_base = qm->io_base;
5958 		qm->db_interval = 0;
5959 	}
5960 
5961 	if (qm->fun_type == QM_HW_PF) {
5962 		ret = qm_get_qp_num(qm);
5963 		if (ret)
5964 			goto err_db_ioremap;
5965 	}
5966 
5967 	return 0;
5968 
5969 err_db_ioremap:
5970 	if (qm->use_db_isolation)
5971 		iounmap(qm->db_io_base);
5972 err_ioremap:
5973 	iounmap(qm->io_base);
5974 err_request_mem_regions:
5975 	pci_release_mem_regions(pdev);
5976 	return ret;
5977 }
5978 
5979 static int hisi_qm_pci_init(struct hisi_qm *qm)
5980 {
5981 	struct pci_dev *pdev = qm->pdev;
5982 	struct device *dev = &pdev->dev;
5983 	unsigned int num_vec;
5984 	int ret;
5985 
5986 	ret = pci_enable_device_mem(pdev);
5987 	if (ret < 0) {
5988 		dev_err(dev, "Failed to enable device mem!\n");
5989 		return ret;
5990 	}
5991 
5992 	ret = qm_get_pci_res(qm);
5993 	if (ret)
5994 		goto err_disable_pcidev;
5995 
5996 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5997 	if (ret < 0)
5998 		goto err_get_pci_res;
5999 	pci_set_master(pdev);
6000 
6001 	if (!qm->ops->get_irq_num) {
6002 		ret = -EOPNOTSUPP;
6003 		goto err_get_pci_res;
6004 	}
6005 	num_vec = qm->ops->get_irq_num(qm);
6006 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
6007 	if (ret < 0) {
6008 		dev_err(dev, "Failed to enable MSI vectors!\n");
6009 		goto err_get_pci_res;
6010 	}
6011 
6012 	return 0;
6013 
6014 err_get_pci_res:
6015 	qm_put_pci_res(qm);
6016 err_disable_pcidev:
6017 	pci_disable_device(pdev);
6018 	return ret;
6019 }
6020 
6021 static void hisi_qm_init_work(struct hisi_qm *qm)
6022 {
6023 	INIT_WORK(&qm->work, qm_work_process);
6024 	if (qm->fun_type == QM_HW_PF)
6025 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
6026 
6027 	if (qm->ver > QM_HW_V2)
6028 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
6029 }
6030 
6031 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
6032 {
6033 	struct device *dev = &qm->pdev->dev;
6034 	size_t qp_dma_size;
6035 	int i, ret;
6036 
6037 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
6038 	if (!qm->qp_array)
6039 		return -ENOMEM;
6040 
6041 	/* one more page for device or qp statuses */
6042 	qp_dma_size = qm->sqe_size * QM_Q_DEPTH +
6043 		      sizeof(struct qm_cqe) * QM_Q_DEPTH;
6044 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
6045 	for (i = 0; i < qm->qp_num; i++) {
6046 		ret = hisi_qp_memory_init(qm, qp_dma_size, i);
6047 		if (ret)
6048 			goto err_init_qp_mem;
6049 
6050 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
6051 	}
6052 
6053 	return 0;
6054 err_init_qp_mem:
6055 	hisi_qp_memory_uninit(qm, i);
6056 
6057 	return ret;
6058 }
6059 
6060 static int hisi_qm_memory_init(struct hisi_qm *qm)
6061 {
6062 	struct device *dev = &qm->pdev->dev;
6063 	int ret, total_func, i;
6064 	size_t off = 0;
6065 
6066 	total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
6067 	qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
6068 	if (!qm->factor)
6069 		return -ENOMEM;
6070 	for (i = 0; i < total_func; i++)
6071 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
6072 
6073 #define QM_INIT_BUF(qm, type, num) do { \
6074 	(qm)->type = ((qm)->qdma.va + (off)); \
6075 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
6076 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
6077 } while (0)
6078 
6079 	idr_init(&qm->qp_idr);
6080 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) +
6081 			QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) +
6082 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
6083 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
6084 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
6085 					 GFP_ATOMIC);
6086 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
6087 	if (!qm->qdma.va) {
6088 		ret =  -ENOMEM;
6089 		goto err_alloc_qdma;
6090 	}
6091 
6092 	QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH);
6093 	QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH);
6094 	QM_INIT_BUF(qm, sqc, qm->qp_num);
6095 	QM_INIT_BUF(qm, cqc, qm->qp_num);
6096 
6097 	ret = hisi_qp_alloc_memory(qm);
6098 	if (ret)
6099 		goto err_alloc_qp_array;
6100 
6101 	return 0;
6102 
6103 err_alloc_qp_array:
6104 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
6105 err_alloc_qdma:
6106 	kfree(qm->factor);
6107 
6108 	return ret;
6109 }
6110 
6111 static void qm_last_regs_init(struct hisi_qm *qm)
6112 {
6113 	int dfx_regs_num = ARRAY_SIZE(qm_dfx_regs);
6114 	struct qm_debug *debug = &qm->debug;
6115 	int i;
6116 
6117 	if (qm->fun_type == QM_HW_VF)
6118 		return;
6119 
6120 	debug->qm_last_words = kcalloc(dfx_regs_num, sizeof(unsigned int),
6121 								GFP_KERNEL);
6122 	if (!debug->qm_last_words)
6123 		return;
6124 
6125 	for (i = 0; i < dfx_regs_num; i++) {
6126 		debug->qm_last_words[i] = readl_relaxed(qm->io_base +
6127 			qm_dfx_regs[i].offset);
6128 	}
6129 }
6130 
6131 /**
6132  * hisi_qm_init() - Initialize configures about qm.
6133  * @qm: The qm needing init.
6134  *
6135  * This function init qm, then we can call hisi_qm_start to put qm into work.
6136  */
6137 int hisi_qm_init(struct hisi_qm *qm)
6138 {
6139 	struct pci_dev *pdev = qm->pdev;
6140 	struct device *dev = &pdev->dev;
6141 	int ret;
6142 
6143 	hisi_qm_pre_init(qm);
6144 
6145 	ret = hisi_qm_pci_init(qm);
6146 	if (ret)
6147 		return ret;
6148 
6149 	ret = qm_irq_register(qm);
6150 	if (ret)
6151 		goto err_pci_init;
6152 
6153 	if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) {
6154 		/* v2 starts to support get vft by mailbox */
6155 		ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
6156 		if (ret)
6157 			goto err_irq_register;
6158 	}
6159 
6160 	if (qm->fun_type == QM_HW_PF) {
6161 		qm_disable_clock_gate(qm);
6162 		ret = qm_dev_mem_reset(qm);
6163 		if (ret) {
6164 			dev_err(dev, "failed to reset device memory\n");
6165 			goto err_irq_register;
6166 		}
6167 	}
6168 
6169 	if (qm->mode == UACCE_MODE_SVA) {
6170 		ret = qm_alloc_uacce(qm);
6171 		if (ret < 0)
6172 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
6173 	}
6174 
6175 	ret = hisi_qm_memory_init(qm);
6176 	if (ret)
6177 		goto err_alloc_uacce;
6178 
6179 	hisi_qm_init_work(qm);
6180 	qm_cmd_init(qm);
6181 	atomic_set(&qm->status.flags, QM_INIT);
6182 
6183 	qm_last_regs_init(qm);
6184 
6185 	return 0;
6186 
6187 err_alloc_uacce:
6188 	if (qm->use_sva) {
6189 		uacce_remove(qm->uacce);
6190 		qm->uacce = NULL;
6191 	}
6192 err_irq_register:
6193 	qm_irq_unregister(qm);
6194 err_pci_init:
6195 	hisi_qm_pci_uninit(qm);
6196 	return ret;
6197 }
6198 EXPORT_SYMBOL_GPL(hisi_qm_init);
6199 
6200 /**
6201  * hisi_qm_get_dfx_access() - Try to get dfx access.
6202  * @qm: pointer to accelerator device.
6203  *
6204  * Try to get dfx access, then user can get message.
6205  *
6206  * If device is in suspended, return failure, otherwise
6207  * bump up the runtime PM usage counter.
6208  */
6209 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
6210 {
6211 	struct device *dev = &qm->pdev->dev;
6212 
6213 	if (pm_runtime_suspended(dev)) {
6214 		dev_info(dev, "can not read/write - device in suspended.\n");
6215 		return -EAGAIN;
6216 	}
6217 
6218 	return qm_pm_get_sync(qm);
6219 }
6220 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
6221 
6222 /**
6223  * hisi_qm_put_dfx_access() - Put dfx access.
6224  * @qm: pointer to accelerator device.
6225  *
6226  * Put dfx access, drop runtime PM usage counter.
6227  */
6228 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
6229 {
6230 	qm_pm_put_sync(qm);
6231 }
6232 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
6233 
6234 /**
6235  * hisi_qm_pm_init() - Initialize qm runtime PM.
6236  * @qm: pointer to accelerator device.
6237  *
6238  * Function that initialize qm runtime PM.
6239  */
6240 void hisi_qm_pm_init(struct hisi_qm *qm)
6241 {
6242 	struct device *dev = &qm->pdev->dev;
6243 
6244 	if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3)
6245 		return;
6246 
6247 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
6248 	pm_runtime_use_autosuspend(dev);
6249 	pm_runtime_put_noidle(dev);
6250 }
6251 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
6252 
6253 /**
6254  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
6255  * @qm: pointer to accelerator device.
6256  *
6257  * Function that uninitialize qm runtime PM.
6258  */
6259 void hisi_qm_pm_uninit(struct hisi_qm *qm)
6260 {
6261 	struct device *dev = &qm->pdev->dev;
6262 
6263 	if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3)
6264 		return;
6265 
6266 	pm_runtime_get_noresume(dev);
6267 	pm_runtime_dont_use_autosuspend(dev);
6268 }
6269 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
6270 
6271 static int qm_prepare_for_suspend(struct hisi_qm *qm)
6272 {
6273 	struct pci_dev *pdev = qm->pdev;
6274 	int ret;
6275 	u32 val;
6276 
6277 	ret = qm->ops->set_msi(qm, false);
6278 	if (ret) {
6279 		pci_err(pdev, "failed to disable MSI before suspending!\n");
6280 		return ret;
6281 	}
6282 
6283 	/* shutdown OOO register */
6284 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
6285 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
6286 
6287 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
6288 					 val,
6289 					 (val == ACC_MASTER_TRANS_RETURN_RW),
6290 					 POLL_PERIOD, POLL_TIMEOUT);
6291 	if (ret) {
6292 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
6293 		return ret;
6294 	}
6295 
6296 	ret = qm_set_pf_mse(qm, false);
6297 	if (ret)
6298 		pci_err(pdev, "failed to disable MSE before suspending!\n");
6299 
6300 	return ret;
6301 }
6302 
6303 static int qm_rebuild_for_resume(struct hisi_qm *qm)
6304 {
6305 	struct pci_dev *pdev = qm->pdev;
6306 	int ret;
6307 
6308 	ret = qm_set_pf_mse(qm, true);
6309 	if (ret) {
6310 		pci_err(pdev, "failed to enable MSE after resuming!\n");
6311 		return ret;
6312 	}
6313 
6314 	ret = qm->ops->set_msi(qm, true);
6315 	if (ret) {
6316 		pci_err(pdev, "failed to enable MSI after resuming!\n");
6317 		return ret;
6318 	}
6319 
6320 	ret = qm_dev_hw_init(qm);
6321 	if (ret) {
6322 		pci_err(pdev, "failed to init device after resuming\n");
6323 		return ret;
6324 	}
6325 
6326 	qm_cmd_init(qm);
6327 	hisi_qm_dev_err_init(qm);
6328 	qm_disable_clock_gate(qm);
6329 	ret = qm_dev_mem_reset(qm);
6330 	if (ret)
6331 		pci_err(pdev, "failed to reset device memory\n");
6332 
6333 	return ret;
6334 }
6335 
6336 /**
6337  * hisi_qm_suspend() - Runtime suspend of given device.
6338  * @dev: device to suspend.
6339  *
6340  * Function that suspend the device.
6341  */
6342 int hisi_qm_suspend(struct device *dev)
6343 {
6344 	struct pci_dev *pdev = to_pci_dev(dev);
6345 	struct hisi_qm *qm = pci_get_drvdata(pdev);
6346 	int ret;
6347 
6348 	pci_info(pdev, "entering suspended state\n");
6349 
6350 	ret = hisi_qm_stop(qm, QM_NORMAL);
6351 	if (ret) {
6352 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
6353 		return ret;
6354 	}
6355 
6356 	ret = qm_prepare_for_suspend(qm);
6357 	if (ret)
6358 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
6359 
6360 	return ret;
6361 }
6362 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
6363 
6364 /**
6365  * hisi_qm_resume() - Runtime resume of given device.
6366  * @dev: device to resume.
6367  *
6368  * Function that resume the device.
6369  */
6370 int hisi_qm_resume(struct device *dev)
6371 {
6372 	struct pci_dev *pdev = to_pci_dev(dev);
6373 	struct hisi_qm *qm = pci_get_drvdata(pdev);
6374 	int ret;
6375 
6376 	pci_info(pdev, "resuming from suspend state\n");
6377 
6378 	ret = qm_rebuild_for_resume(qm);
6379 	if (ret) {
6380 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
6381 		return ret;
6382 	}
6383 
6384 	ret = hisi_qm_start(qm);
6385 	if (ret)
6386 		pci_err(pdev, "failed to start qm(%d)\n", ret);
6387 
6388 	return ret;
6389 }
6390 EXPORT_SYMBOL_GPL(hisi_qm_resume);
6391 
6392 MODULE_LICENSE("GPL v2");
6393 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
6394 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
6395