xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision 61c581a4)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/idr.h>
9 #include <linux/io.h>
10 #include <linux/irqreturn.h>
11 #include <linux/log2.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include <linux/hisi_acc_qm.h>
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 
26 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
27 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_SHIFT		16
29 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
30 
31 /* mailbox */
32 #define QM_MB_PING_ALL_VFS		0xffff
33 #define QM_MB_CMD_DATA_SHIFT		32
34 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
35 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
36 
37 /* sqc shift */
38 #define QM_SQ_HOP_NUM_SHIFT		0
39 #define QM_SQ_PAGE_SIZE_SHIFT		4
40 #define QM_SQ_BUF_SIZE_SHIFT		8
41 #define QM_SQ_SQE_SIZE_SHIFT		12
42 #define QM_SQ_PRIORITY_SHIFT		0
43 #define QM_SQ_ORDERS_SHIFT		4
44 #define QM_SQ_TYPE_SHIFT		8
45 #define QM_QC_PASID_ENABLE		0x1
46 #define QM_QC_PASID_ENABLE_SHIFT	7
47 
48 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
49 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
50 
51 /* cqc shift */
52 #define QM_CQ_HOP_NUM_SHIFT		0
53 #define QM_CQ_PAGE_SIZE_SHIFT		4
54 #define QM_CQ_BUF_SIZE_SHIFT		8
55 #define QM_CQ_CQE_SIZE_SHIFT		12
56 #define QM_CQ_PHASE_SHIFT		0
57 #define QM_CQ_FLAG_SHIFT		1
58 
59 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
60 #define QM_QC_CQE_SIZE			4
61 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
62 
63 /* eqc shift */
64 #define QM_EQE_AEQE_SIZE		(2UL << 12)
65 #define QM_EQC_PHASE_SHIFT		16
66 
67 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
68 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
69 
70 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
71 #define QM_AEQE_TYPE_SHIFT		17
72 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
73 #define QM_CQ_OVERFLOW			0
74 #define QM_EQ_OVERFLOW			1
75 #define QM_CQE_ERROR			2
76 
77 #define QM_XQ_DEPTH_SHIFT		16
78 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
79 
80 #define QM_DOORBELL_CMD_SQ		0
81 #define QM_DOORBELL_CMD_CQ		1
82 #define QM_DOORBELL_CMD_EQ		2
83 #define QM_DOORBELL_CMD_AEQ		3
84 
85 #define QM_DOORBELL_BASE_V1		0x340
86 #define QM_DB_CMD_SHIFT_V1		16
87 #define QM_DB_INDEX_SHIFT_V1		32
88 #define QM_DB_PRIORITY_SHIFT_V1		48
89 #define QM_PAGE_SIZE			0x0034
90 #define QM_QP_DB_INTERVAL		0x10000
91 
92 #define QM_MEM_START_INIT		0x100040
93 #define QM_MEM_INIT_DONE		0x100044
94 #define QM_VFT_CFG_RDY			0x10006c
95 #define QM_VFT_CFG_OP_WR		0x100058
96 #define QM_VFT_CFG_TYPE			0x10005c
97 #define QM_SQC_VFT			0x0
98 #define QM_CQC_VFT			0x1
99 #define QM_VFT_CFG			0x100060
100 #define QM_VFT_CFG_OP_ENABLE		0x100054
101 #define QM_PM_CTRL			0x100148
102 #define QM_IDLE_DISABLE			BIT(9)
103 
104 #define QM_VFT_CFG_DATA_L		0x100064
105 #define QM_VFT_CFG_DATA_H		0x100068
106 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
107 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
108 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
109 #define QM_SQC_VFT_START_SQN_SHIFT	28
110 #define QM_SQC_VFT_VALID		(1ULL << 44)
111 #define QM_SQC_VFT_SQN_SHIFT		45
112 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
113 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
114 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
115 #define QM_CQC_VFT_VALID		(1ULL << 28)
116 
117 #define QM_SQC_VFT_BASE_SHIFT_V2	28
118 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
119 #define QM_SQC_VFT_NUM_SHIFT_V2		45
120 #define QM_SQC_VFT_NUM_MASK_v2		GENMASK(9, 0)
121 
122 #define QM_DFX_CNT_CLR_CE		0x100118
123 
124 #define QM_ABNORMAL_INT_SOURCE		0x100000
125 #define QM_ABNORMAL_INT_MASK		0x100004
126 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
127 #define QM_ABNORMAL_INT_STATUS		0x100008
128 #define QM_ABNORMAL_INT_SET		0x10000c
129 #define QM_ABNORMAL_INF00		0x100010
130 #define QM_FIFO_OVERFLOW_TYPE		0xc0
131 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
132 #define QM_FIFO_OVERFLOW_VF		0x3f
133 #define QM_ABNORMAL_INF01		0x100014
134 #define QM_DB_TIMEOUT_TYPE		0xc0
135 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
136 #define QM_DB_TIMEOUT_VF		0x3f
137 #define QM_RAS_CE_ENABLE		0x1000ec
138 #define QM_RAS_FE_ENABLE		0x1000f0
139 #define QM_RAS_NFE_ENABLE		0x1000f4
140 #define QM_RAS_CE_THRESHOLD		0x1000f8
141 #define QM_RAS_CE_TIMES_PER_IRQ		1
142 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
143 #define QM_ECC_MBIT			BIT(2)
144 #define QM_DB_TIMEOUT			BIT(10)
145 #define QM_OF_FIFO_OF			BIT(11)
146 
147 #define QM_RESET_WAIT_TIMEOUT		400
148 #define QM_PEH_VENDOR_ID		0x1000d8
149 #define ACC_VENDOR_ID_VALUE		0x5a5a
150 #define QM_PEH_DFX_INFO0		0x1000fc
151 #define QM_PEH_DFX_INFO1		0x100100
152 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
153 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
154 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
155 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
156 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
157 #define ACC_MASTER_TRANS_RETURN_RW	3
158 #define ACC_MASTER_TRANS_RETURN		0x300150
159 #define ACC_MASTER_GLOBAL_CTRL		0x300000
160 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
161 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
162 #define ACC_AM_ROB_ECC_INT_STS		0x300104
163 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
164 #define QM_MSI_CAP_ENABLE		BIT(16)
165 
166 /* interfunction communication */
167 #define QM_IFC_READY_STATUS		0x100128
168 #define QM_IFC_C_STS_M			0x10012C
169 #define QM_IFC_INT_SET_P		0x100130
170 #define QM_IFC_INT_CFG			0x100134
171 #define QM_IFC_INT_SOURCE_P		0x100138
172 #define QM_IFC_INT_SOURCE_V		0x0020
173 #define QM_IFC_INT_MASK			0x0024
174 #define QM_IFC_INT_STATUS		0x0028
175 #define QM_IFC_INT_SET_V		0x002C
176 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
177 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
178 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
179 #define QM_IFC_INT_DISABLE		BIT(0)
180 #define QM_IFC_INT_STATUS_MASK		BIT(0)
181 #define QM_IFC_INT_SET_MASK		BIT(0)
182 #define QM_WAIT_DST_ACK			10
183 #define QM_MAX_PF_WAIT_COUNT		10
184 #define QM_MAX_VF_WAIT_COUNT		40
185 #define QM_VF_RESET_WAIT_US            20000
186 #define QM_VF_RESET_WAIT_CNT           3000
187 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
188 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
189 
190 #define QM_DFX_MB_CNT_VF		0x104010
191 #define QM_DFX_DB_CNT_VF		0x104020
192 #define QM_DFX_SQE_CNT_VF_SQN		0x104030
193 #define QM_DFX_CQE_CNT_VF_CQN		0x104040
194 #define QM_DFX_QN_SHIFT			16
195 #define CURRENT_FUN_MASK		GENMASK(5, 0)
196 #define CURRENT_Q_MASK			GENMASK(31, 16)
197 
198 #define POLL_PERIOD			10
199 #define POLL_TIMEOUT			1000
200 #define WAIT_PERIOD_US_MAX		200
201 #define WAIT_PERIOD_US_MIN		100
202 #define MAX_WAIT_COUNTS			1000
203 #define QM_CACHE_WB_START		0x204
204 #define QM_CACHE_WB_DONE		0x208
205 #define QM_FUNC_CAPS_REG		0x3100
206 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
207 
208 #define PCI_BAR_2			2
209 #define PCI_BAR_4			4
210 #define QM_SQE_DATA_ALIGN_MASK		GENMASK(6, 0)
211 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
212 
213 #define QM_DBG_READ_LEN		256
214 #define QM_DBG_WRITE_LEN		1024
215 #define QM_DBG_TMP_BUF_LEN		22
216 #define QM_PCI_COMMAND_INVALID		~0
217 #define QM_RESET_STOP_TX_OFFSET		1
218 #define QM_RESET_STOP_RX_OFFSET		2
219 
220 #define WAIT_PERIOD			20
221 #define REMOVE_WAIT_DELAY		10
222 #define QM_SQE_ADDR_MASK		GENMASK(7, 0)
223 
224 #define QM_DRIVER_REMOVING		0
225 #define QM_RST_SCHED			1
226 #define QM_RESETTING			2
227 #define QM_QOS_PARAM_NUM		2
228 #define QM_QOS_VAL_NUM			1
229 #define QM_QOS_BDF_PARAM_NUM		4
230 #define QM_QOS_MAX_VAL			1000
231 #define QM_QOS_RATE			100
232 #define QM_QOS_EXPAND_RATE		1000
233 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
234 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
235 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
236 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
237 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
238 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
239 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
240 #define QM_SHAPER_CBS_B			1
241 #define QM_SHAPER_CBS_S			16
242 #define QM_SHAPER_VFT_OFFSET		6
243 #define WAIT_FOR_QOS_VF			100
244 #define QM_QOS_MIN_ERROR_RATE		5
245 #define QM_QOS_TYPICAL_NUM		8
246 #define QM_SHAPER_MIN_CBS_S		8
247 #define QM_QOS_TICK			0x300U
248 #define QM_QOS_DIVISOR_CLK		0x1f40U
249 #define QM_QOS_MAX_CIR_B		200
250 #define QM_QOS_MIN_CIR_B		100
251 #define QM_QOS_MAX_CIR_U		6
252 #define QM_QOS_MAX_CIR_S		11
253 #define QM_DFX_BASE		0x0100000
254 #define QM_DFX_STATE1		0x0104000
255 #define QM_DFX_STATE2		0x01040C8
256 #define QM_DFX_COMMON		0x0000
257 #define QM_DFX_BASE_LEN		0x5A
258 #define QM_DFX_STATE1_LEN		0x2E
259 #define QM_DFX_STATE2_LEN		0x11
260 #define QM_DFX_COMMON_LEN		0xC3
261 #define QM_DFX_REGS_LEN		4UL
262 #define QM_AUTOSUSPEND_DELAY		3000
263 
264 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
265 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT)	| \
266 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT)	| \
267 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT)	| \
268 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
269 
270 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
271 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
272 
273 #define QM_MK_SQC_W13(priority, orders, alg_type) \
274 	(((priority) << QM_SQ_PRIORITY_SHIFT)	| \
275 	((orders) << QM_SQ_ORDERS_SHIFT)	| \
276 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
277 
278 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
279 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT)	| \
280 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT)	| \
281 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT)	| \
282 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
283 
284 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
285 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
286 
287 #define INIT_QC_COMMON(qc, base, pasid) do {			\
288 	(qc)->head = 0;						\
289 	(qc)->tail = 0;						\
290 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
291 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
292 	(qc)->dw3 = 0;						\
293 	(qc)->w8 = 0;						\
294 	(qc)->rsvd0 = 0;					\
295 	(qc)->pasid = cpu_to_le16(pasid);			\
296 	(qc)->w11 = 0;						\
297 	(qc)->rsvd1 = 0;					\
298 } while (0)
299 
300 enum vft_type {
301 	SQC_VFT = 0,
302 	CQC_VFT,
303 	SHAPER_VFT,
304 };
305 
306 enum acc_err_result {
307 	ACC_ERR_NONE,
308 	ACC_ERR_NEED_RESET,
309 	ACC_ERR_RECOVERED,
310 };
311 
312 enum qm_alg_type {
313 	ALG_TYPE_0,
314 	ALG_TYPE_1,
315 };
316 
317 enum qm_mb_cmd {
318 	QM_PF_FLR_PREPARE = 0x01,
319 	QM_PF_SRST_PREPARE,
320 	QM_PF_RESET_DONE,
321 	QM_VF_PREPARE_DONE,
322 	QM_VF_PREPARE_FAIL,
323 	QM_VF_START_DONE,
324 	QM_VF_START_FAIL,
325 	QM_PF_SET_QOS,
326 	QM_VF_GET_QOS,
327 };
328 
329 enum qm_basic_type {
330 	QM_TOTAL_QP_NUM_CAP = 0x0,
331 	QM_FUNC_MAX_QP_CAP,
332 	QM_XEQ_DEPTH_CAP,
333 	QM_QP_DEPTH_CAP,
334 	QM_EQ_IRQ_TYPE_CAP,
335 	QM_AEQ_IRQ_TYPE_CAP,
336 	QM_ABN_IRQ_TYPE_CAP,
337 	QM_PF2VF_IRQ_TYPE_CAP,
338 	QM_PF_IRQ_NUM_CAP,
339 	QM_VF_IRQ_NUM_CAP,
340 };
341 
342 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
343 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
344 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
345 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
346 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
347 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
348 };
349 
350 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
351 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
352 };
353 
354 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
355 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
356 };
357 
358 static const struct hisi_qm_cap_info qm_basic_info[] = {
359 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
360 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
361 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(15, 0), 0x800,     0x4000800, 0x4000800},
362 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
363 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
364 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
365 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
366 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
367 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
368 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
369 };
370 
371 struct qm_cqe {
372 	__le32 rsvd0;
373 	__le16 cmd_id;
374 	__le16 rsvd1;
375 	__le16 sq_head;
376 	__le16 sq_num;
377 	__le16 rsvd2;
378 	__le16 w7;
379 };
380 
381 struct qm_eqe {
382 	__le32 dw0;
383 };
384 
385 struct qm_aeqe {
386 	__le32 dw0;
387 };
388 
389 struct qm_sqc {
390 	__le16 head;
391 	__le16 tail;
392 	__le32 base_l;
393 	__le32 base_h;
394 	__le32 dw3;
395 	__le16 w8;
396 	__le16 rsvd0;
397 	__le16 pasid;
398 	__le16 w11;
399 	__le16 cq_num;
400 	__le16 w13;
401 	__le32 rsvd1;
402 };
403 
404 struct qm_cqc {
405 	__le16 head;
406 	__le16 tail;
407 	__le32 base_l;
408 	__le32 base_h;
409 	__le32 dw3;
410 	__le16 w8;
411 	__le16 rsvd0;
412 	__le16 pasid;
413 	__le16 w11;
414 	__le32 dw6;
415 	__le32 rsvd1;
416 };
417 
418 struct qm_eqc {
419 	__le16 head;
420 	__le16 tail;
421 	__le32 base_l;
422 	__le32 base_h;
423 	__le32 dw3;
424 	__le32 rsvd[2];
425 	__le32 dw6;
426 };
427 
428 struct qm_aeqc {
429 	__le16 head;
430 	__le16 tail;
431 	__le32 base_l;
432 	__le32 base_h;
433 	__le32 dw3;
434 	__le32 rsvd[2];
435 	__le32 dw6;
436 };
437 
438 struct qm_mailbox {
439 	__le16 w0;
440 	__le16 queue_num;
441 	__le32 base_l;
442 	__le32 base_h;
443 	__le32 rsvd;
444 };
445 
446 struct qm_doorbell {
447 	__le16 queue_num;
448 	__le16 cmd;
449 	__le16 index;
450 	__le16 priority;
451 };
452 
453 struct hisi_qm_resource {
454 	struct hisi_qm *qm;
455 	int distance;
456 	struct list_head list;
457 };
458 
459 struct hisi_qm_hw_ops {
460 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
461 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
462 		      u8 cmd, u16 index, u8 priority);
463 	int (*debug_init)(struct hisi_qm *qm);
464 	void (*hw_error_init)(struct hisi_qm *qm);
465 	void (*hw_error_uninit)(struct hisi_qm *qm);
466 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
467 	int (*set_msi)(struct hisi_qm *qm, bool set);
468 };
469 
470 struct qm_dfx_item {
471 	const char *name;
472 	u32 offset;
473 };
474 
475 static struct qm_dfx_item qm_dfx_files[] = {
476 	{"err_irq", offsetof(struct qm_dfx, err_irq_cnt)},
477 	{"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)},
478 	{"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)},
479 	{"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)},
480 	{"mb_err", offsetof(struct qm_dfx, mb_err_cnt)},
481 };
482 
483 static const char * const qm_debug_file_name[] = {
484 	[CURRENT_QM]   = "current_qm",
485 	[CURRENT_Q]    = "current_q",
486 	[CLEAR_ENABLE] = "clear_enable",
487 };
488 
489 struct hisi_qm_hw_error {
490 	u32 int_msk;
491 	const char *msg;
492 };
493 
494 static const struct hisi_qm_hw_error qm_hw_error[] = {
495 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
496 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
497 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
498 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
499 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
500 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
501 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
502 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
503 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
504 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
505 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
506 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
507 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
508 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
509 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
510 	{ /* sentinel */ }
511 };
512 
513 /* define the QM's dfx regs region and region length */
514 static struct dfx_diff_registers qm_diff_regs[] = {
515 	{
516 		.reg_offset = QM_DFX_BASE,
517 		.reg_len = QM_DFX_BASE_LEN,
518 	}, {
519 		.reg_offset = QM_DFX_STATE1,
520 		.reg_len = QM_DFX_STATE1_LEN,
521 	}, {
522 		.reg_offset = QM_DFX_STATE2,
523 		.reg_len = QM_DFX_STATE2_LEN,
524 	}, {
525 		.reg_offset = QM_DFX_COMMON,
526 		.reg_len = QM_DFX_COMMON_LEN,
527 	},
528 };
529 
530 static const char * const qm_db_timeout[] = {
531 	"sq", "cq", "eq", "aeq",
532 };
533 
534 static const char * const qm_fifo_overflow[] = {
535 	"cq", "eq", "aeq",
536 };
537 
538 static const char * const qm_s[] = {
539 	"init", "start", "close", "stop",
540 };
541 
542 static const char * const qp_s[] = {
543 	"none", "init", "start", "stop", "close",
544 };
545 
546 struct qm_typical_qos_table {
547 	u32 start;
548 	u32 end;
549 	u32 val;
550 };
551 
552 /* the qos step is 100 */
553 static struct qm_typical_qos_table shaper_cir_s[] = {
554 	{100, 100, 4},
555 	{200, 200, 3},
556 	{300, 500, 2},
557 	{600, 1000, 1},
558 	{1100, 100000, 0},
559 };
560 
561 static struct qm_typical_qos_table shaper_cbs_s[] = {
562 	{100, 200, 9},
563 	{300, 500, 11},
564 	{600, 1000, 12},
565 	{1100, 10000, 16},
566 	{10100, 25000, 17},
567 	{25100, 50000, 18},
568 	{50100, 100000, 19}
569 };
570 
571 static void qm_irqs_unregister(struct hisi_qm *qm);
572 
573 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
574 {
575 	enum qm_state curr = atomic_read(&qm->status.flags);
576 	bool avail = false;
577 
578 	switch (curr) {
579 	case QM_INIT:
580 		if (new == QM_START || new == QM_CLOSE)
581 			avail = true;
582 		break;
583 	case QM_START:
584 		if (new == QM_STOP)
585 			avail = true;
586 		break;
587 	case QM_STOP:
588 		if (new == QM_CLOSE || new == QM_START)
589 			avail = true;
590 		break;
591 	default:
592 		break;
593 	}
594 
595 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
596 		qm_s[curr], qm_s[new]);
597 
598 	if (!avail)
599 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
600 			 qm_s[curr], qm_s[new]);
601 
602 	return avail;
603 }
604 
605 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
606 			      enum qp_state new)
607 {
608 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
609 	enum qp_state qp_curr = 0;
610 	bool avail = false;
611 
612 	if (qp)
613 		qp_curr = atomic_read(&qp->qp_status.flags);
614 
615 	switch (new) {
616 	case QP_INIT:
617 		if (qm_curr == QM_START || qm_curr == QM_INIT)
618 			avail = true;
619 		break;
620 	case QP_START:
621 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
622 		    (qm_curr == QM_START && qp_curr == QP_STOP))
623 			avail = true;
624 		break;
625 	case QP_STOP:
626 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
627 		    (qp_curr == QP_INIT))
628 			avail = true;
629 		break;
630 	case QP_CLOSE:
631 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
632 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
633 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
634 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
635 			avail = true;
636 		break;
637 	default:
638 		break;
639 	}
640 
641 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
642 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
643 
644 	if (!avail)
645 		dev_warn(&qm->pdev->dev,
646 			 "Can not change qp state from %s to %s in QM %s\n",
647 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
648 
649 	return avail;
650 }
651 
652 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
653 {
654 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
655 }
656 
657 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
658 {
659 	return qm->err_ini->get_dev_hw_err_status(qm);
660 }
661 
662 /* Check if the error causes the master ooo block */
663 static bool qm_check_dev_error(struct hisi_qm *qm)
664 {
665 	u32 val, dev_val;
666 
667 	if (qm->fun_type == QM_HW_VF)
668 		return false;
669 
670 	val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
671 	dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
672 
673 	return val || dev_val;
674 }
675 
676 static int qm_wait_reset_finish(struct hisi_qm *qm)
677 {
678 	int delay = 0;
679 
680 	/* All reset requests need to be queued for processing */
681 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
682 		msleep(++delay);
683 		if (delay > QM_RESET_WAIT_TIMEOUT)
684 			return -EBUSY;
685 	}
686 
687 	return 0;
688 }
689 
690 static int qm_reset_prepare_ready(struct hisi_qm *qm)
691 {
692 	struct pci_dev *pdev = qm->pdev;
693 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
694 
695 	/*
696 	 * PF and VF on host doesnot support resetting at the
697 	 * same time on Kunpeng920.
698 	 */
699 	if (qm->ver < QM_HW_V3)
700 		return qm_wait_reset_finish(pf_qm);
701 
702 	return qm_wait_reset_finish(qm);
703 }
704 
705 static void qm_reset_bit_clear(struct hisi_qm *qm)
706 {
707 	struct pci_dev *pdev = qm->pdev;
708 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
709 
710 	if (qm->ver < QM_HW_V3)
711 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
712 
713 	clear_bit(QM_RESETTING, &qm->misc_ctl);
714 }
715 
716 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
717 			   u64 base, u16 queue, bool op)
718 {
719 	mailbox->w0 = cpu_to_le16((cmd) |
720 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
721 		(0x1 << QM_MB_BUSY_SHIFT));
722 	mailbox->queue_num = cpu_to_le16(queue);
723 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
724 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
725 	mailbox->rsvd = 0;
726 }
727 
728 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
729 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
730 {
731 	u32 val;
732 
733 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
734 					  val, !((val >> QM_MB_BUSY_SHIFT) &
735 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
736 }
737 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
738 
739 /* 128 bit should be written to hardware at one time to trigger a mailbox */
740 static void qm_mb_write(struct hisi_qm *qm, const void *src)
741 {
742 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
743 	unsigned long tmp0 = 0, tmp1 = 0;
744 
745 	if (!IS_ENABLED(CONFIG_ARM64)) {
746 		memcpy_toio(fun_base, src, 16);
747 		dma_wmb();
748 		return;
749 	}
750 
751 	asm volatile("ldp %0, %1, %3\n"
752 		     "stp %0, %1, %2\n"
753 		     "dmb oshst\n"
754 		     : "=&r" (tmp0),
755 		       "=&r" (tmp1),
756 		       "+Q" (*((char __iomem *)fun_base))
757 		     : "Q" (*((char *)src))
758 		     : "memory");
759 }
760 
761 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
762 {
763 	int ret;
764 	u32 val;
765 
766 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
767 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
768 		ret = -EBUSY;
769 		goto mb_busy;
770 	}
771 
772 	qm_mb_write(qm, mailbox);
773 
774 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
775 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
776 		ret = -ETIMEDOUT;
777 		goto mb_busy;
778 	}
779 
780 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
781 	if (val & QM_MB_STATUS_MASK) {
782 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
783 		ret = -EIO;
784 		goto mb_busy;
785 	}
786 
787 	return 0;
788 
789 mb_busy:
790 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
791 	return ret;
792 }
793 
794 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
795 	       bool op)
796 {
797 	struct qm_mailbox mailbox;
798 	int ret;
799 
800 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
801 		queue, cmd, (unsigned long long)dma_addr);
802 
803 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
804 
805 	mutex_lock(&qm->mailbox_lock);
806 	ret = qm_mb_nolock(qm, &mailbox);
807 	mutex_unlock(&qm->mailbox_lock);
808 
809 	return ret;
810 }
811 EXPORT_SYMBOL_GPL(hisi_qm_mb);
812 
813 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
814 {
815 	u64 doorbell;
816 
817 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
818 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
819 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
820 
821 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
822 }
823 
824 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
825 {
826 	void __iomem *io_base = qm->io_base;
827 	u16 randata = 0;
828 	u64 doorbell;
829 
830 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
831 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
832 			  QM_DOORBELL_SQ_CQ_BASE_V2;
833 	else
834 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
835 
836 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
837 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
838 		   ((u64)index << QM_DB_INDEX_SHIFT_V2)	 |
839 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
840 
841 	writeq(doorbell, io_base);
842 }
843 
844 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
845 {
846 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
847 		qn, cmd, index);
848 
849 	qm->ops->qm_db(qm, qn, cmd, index, priority);
850 }
851 
852 static void qm_disable_clock_gate(struct hisi_qm *qm)
853 {
854 	u32 val;
855 
856 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
857 	if (qm->ver < QM_HW_V3)
858 		return;
859 
860 	val = readl(qm->io_base + QM_PM_CTRL);
861 	val |= QM_IDLE_DISABLE;
862 	writel(val, qm->io_base +  QM_PM_CTRL);
863 }
864 
865 static int qm_dev_mem_reset(struct hisi_qm *qm)
866 {
867 	u32 val;
868 
869 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
870 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
871 					  val & BIT(0), POLL_PERIOD,
872 					  POLL_TIMEOUT);
873 }
874 
875 /**
876  * hisi_qm_get_hw_info() - Get device information.
877  * @qm: The qm which want to get information.
878  * @info_table: Array for storing device information.
879  * @index: Index in info_table.
880  * @is_read: Whether read from reg, 0: not support read from reg.
881  *
882  * This function returns device information the caller needs.
883  */
884 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
885 			const struct hisi_qm_cap_info *info_table,
886 			u32 index, bool is_read)
887 {
888 	u32 val;
889 
890 	switch (qm->ver) {
891 	case QM_HW_V1:
892 		return info_table[index].v1_val;
893 	case QM_HW_V2:
894 		return info_table[index].v2_val;
895 	default:
896 		if (!is_read)
897 			return info_table[index].v3_val;
898 
899 		val = readl(qm->io_base + info_table[index].offset);
900 		return (val >> info_table[index].shift) & info_table[index].mask;
901 	}
902 }
903 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
904 
905 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
906 			     u16 *high_bits, enum qm_basic_type type)
907 {
908 	u32 depth;
909 
910 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
911 	*low_bits = depth & QM_XQ_DEPTH_MASK;
912 	*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
913 }
914 
915 static u32 qm_get_irq_num(struct hisi_qm *qm)
916 {
917 	if (qm->fun_type == QM_HW_PF)
918 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
919 
920 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
921 }
922 
923 static int qm_pm_get_sync(struct hisi_qm *qm)
924 {
925 	struct device *dev = &qm->pdev->dev;
926 	int ret;
927 
928 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
929 		return 0;
930 
931 	ret = pm_runtime_resume_and_get(dev);
932 	if (ret < 0) {
933 		dev_err(dev, "failed to get_sync(%d).\n", ret);
934 		return ret;
935 	}
936 
937 	return 0;
938 }
939 
940 static void qm_pm_put_sync(struct hisi_qm *qm)
941 {
942 	struct device *dev = &qm->pdev->dev;
943 
944 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
945 		return;
946 
947 	pm_runtime_mark_last_busy(dev);
948 	pm_runtime_put_autosuspend(dev);
949 }
950 
951 static void qm_cq_head_update(struct hisi_qp *qp)
952 {
953 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
954 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
955 		qp->qp_status.cq_head = 0;
956 	} else {
957 		qp->qp_status.cq_head++;
958 	}
959 }
960 
961 static void qm_poll_req_cb(struct hisi_qp *qp)
962 {
963 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
964 	struct hisi_qm *qm = qp->qm;
965 
966 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
967 		dma_rmb();
968 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
969 			   le16_to_cpu(cqe->sq_head));
970 		qm_cq_head_update(qp);
971 		cqe = qp->cqe + qp->qp_status.cq_head;
972 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
973 		      qp->qp_status.cq_head, 0);
974 		atomic_dec(&qp->qp_status.used);
975 	}
976 
977 	/* set c_flag */
978 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
979 }
980 
981 static int qm_get_complete_eqe_num(struct hisi_qm_poll_data *poll_data)
982 {
983 	struct hisi_qm *qm = poll_data->qm;
984 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
985 	u16 eq_depth = qm->eq_depth;
986 	int eqe_num = 0;
987 	u16 cqn;
988 
989 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
990 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
991 		poll_data->qp_finish_id[eqe_num] = cqn;
992 		eqe_num++;
993 
994 		if (qm->status.eq_head == eq_depth - 1) {
995 			qm->status.eqc_phase = !qm->status.eqc_phase;
996 			eqe = qm->eqe;
997 			qm->status.eq_head = 0;
998 		} else {
999 			eqe++;
1000 			qm->status.eq_head++;
1001 		}
1002 
1003 		if (eqe_num == (eq_depth >> 1) - 1)
1004 			break;
1005 	}
1006 
1007 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
1008 
1009 	return eqe_num;
1010 }
1011 
1012 static void qm_work_process(struct work_struct *work)
1013 {
1014 	struct hisi_qm_poll_data *poll_data =
1015 		container_of(work, struct hisi_qm_poll_data, work);
1016 	struct hisi_qm *qm = poll_data->qm;
1017 	struct hisi_qp *qp;
1018 	int eqe_num, i;
1019 
1020 	/* Get qp id of completed tasks and re-enable the interrupt. */
1021 	eqe_num = qm_get_complete_eqe_num(poll_data);
1022 	for (i = eqe_num - 1; i >= 0; i--) {
1023 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
1024 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
1025 			continue;
1026 
1027 		if (qp->event_cb) {
1028 			qp->event_cb(qp);
1029 			continue;
1030 		}
1031 
1032 		if (likely(qp->req_cb))
1033 			qm_poll_req_cb(qp);
1034 	}
1035 }
1036 
1037 static bool do_qm_irq(struct hisi_qm *qm)
1038 {
1039 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
1040 	struct hisi_qm_poll_data *poll_data;
1041 	u16 cqn;
1042 
1043 	if (!readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
1044 		return false;
1045 
1046 	if (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
1047 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
1048 		poll_data = &qm->poll_data[cqn];
1049 		queue_work(qm->wq, &poll_data->work);
1050 
1051 		return true;
1052 	}
1053 
1054 	return false;
1055 }
1056 
1057 static irqreturn_t qm_irq(int irq, void *data)
1058 {
1059 	struct hisi_qm *qm = data;
1060 	bool ret;
1061 
1062 	ret = do_qm_irq(qm);
1063 	if (ret)
1064 		return IRQ_HANDLED;
1065 
1066 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
1067 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
1068 
1069 	return IRQ_NONE;
1070 }
1071 
1072 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
1073 {
1074 	struct hisi_qm *qm = data;
1075 	u32 val;
1076 
1077 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
1078 	val &= QM_IFC_INT_STATUS_MASK;
1079 	if (!val)
1080 		return IRQ_NONE;
1081 
1082 	schedule_work(&qm->cmd_process);
1083 
1084 	return IRQ_HANDLED;
1085 }
1086 
1087 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
1088 {
1089 	u32 *addr;
1090 
1091 	if (qp->is_in_kernel)
1092 		return;
1093 
1094 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
1095 	*addr = 1;
1096 
1097 	/* make sure setup is completed */
1098 	smp_wmb();
1099 }
1100 
1101 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
1102 {
1103 	struct hisi_qp *qp = &qm->qp_array[qp_id];
1104 
1105 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
1106 	hisi_qm_stop_qp(qp);
1107 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
1108 }
1109 
1110 static void qm_reset_function(struct hisi_qm *qm)
1111 {
1112 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
1113 	struct device *dev = &qm->pdev->dev;
1114 	int ret;
1115 
1116 	if (qm_check_dev_error(pf_qm))
1117 		return;
1118 
1119 	ret = qm_reset_prepare_ready(qm);
1120 	if (ret) {
1121 		dev_err(dev, "reset function not ready\n");
1122 		return;
1123 	}
1124 
1125 	ret = hisi_qm_stop(qm, QM_FLR);
1126 	if (ret) {
1127 		dev_err(dev, "failed to stop qm when reset function\n");
1128 		goto clear_bit;
1129 	}
1130 
1131 	ret = hisi_qm_start(qm);
1132 	if (ret)
1133 		dev_err(dev, "failed to start qm when reset function\n");
1134 
1135 clear_bit:
1136 	qm_reset_bit_clear(qm);
1137 }
1138 
1139 static irqreturn_t qm_aeq_thread(int irq, void *data)
1140 {
1141 	struct hisi_qm *qm = data;
1142 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1143 	u16 aeq_depth = qm->aeq_depth;
1144 	u32 type, qp_id;
1145 
1146 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1147 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
1148 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1149 
1150 		switch (type) {
1151 		case QM_EQ_OVERFLOW:
1152 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1153 			qm_reset_function(qm);
1154 			return IRQ_HANDLED;
1155 		case QM_CQ_OVERFLOW:
1156 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1157 				qp_id);
1158 			fallthrough;
1159 		case QM_CQE_ERROR:
1160 			qm_disable_qp(qm, qp_id);
1161 			break;
1162 		default:
1163 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1164 				type);
1165 			break;
1166 		}
1167 
1168 		if (qm->status.aeq_head == aeq_depth - 1) {
1169 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1170 			aeqe = qm->aeqe;
1171 			qm->status.aeq_head = 0;
1172 		} else {
1173 			aeqe++;
1174 			qm->status.aeq_head++;
1175 		}
1176 	}
1177 
1178 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1179 
1180 	return IRQ_HANDLED;
1181 }
1182 
1183 static irqreturn_t qm_aeq_irq(int irq, void *data)
1184 {
1185 	struct hisi_qm *qm = data;
1186 
1187 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1188 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
1189 		return IRQ_NONE;
1190 
1191 	return IRQ_WAKE_THREAD;
1192 }
1193 
1194 static void qm_init_qp_status(struct hisi_qp *qp)
1195 {
1196 	struct hisi_qp_status *qp_status = &qp->qp_status;
1197 
1198 	qp_status->sq_tail = 0;
1199 	qp_status->cq_head = 0;
1200 	qp_status->cqc_phase = true;
1201 	atomic_set(&qp_status->used, 0);
1202 }
1203 
1204 static void qm_init_prefetch(struct hisi_qm *qm)
1205 {
1206 	struct device *dev = &qm->pdev->dev;
1207 	u32 page_type = 0x0;
1208 
1209 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1210 		return;
1211 
1212 	switch (PAGE_SIZE) {
1213 	case SZ_4K:
1214 		page_type = 0x0;
1215 		break;
1216 	case SZ_16K:
1217 		page_type = 0x1;
1218 		break;
1219 	case SZ_64K:
1220 		page_type = 0x2;
1221 		break;
1222 	default:
1223 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1224 			PAGE_SIZE);
1225 	}
1226 
1227 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1228 }
1229 
1230 /*
1231  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1232  * is the expected qos calculated.
1233  * the formula:
1234  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1235  *
1236  *		IR_b * (2 ^ IR_u) * 8000
1237  * IR(Mbps) = -------------------------
1238  *		  Tick * (2 ^ IR_s)
1239  */
1240 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1241 {
1242 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1243 					(QM_QOS_TICK * (1 << cir_s));
1244 }
1245 
1246 static u32 acc_shaper_calc_cbs_s(u32 ir)
1247 {
1248 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1249 	int i;
1250 
1251 	for (i = 0; i < table_size; i++) {
1252 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1253 			return shaper_cbs_s[i].val;
1254 	}
1255 
1256 	return QM_SHAPER_MIN_CBS_S;
1257 }
1258 
1259 static u32 acc_shaper_calc_cir_s(u32 ir)
1260 {
1261 	int table_size = ARRAY_SIZE(shaper_cir_s);
1262 	int i;
1263 
1264 	for (i = 0; i < table_size; i++) {
1265 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1266 			return shaper_cir_s[i].val;
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1273 {
1274 	u32 cir_b, cir_u, cir_s, ir_calc;
1275 	u32 error_rate;
1276 
1277 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1278 	cir_s = acc_shaper_calc_cir_s(ir);
1279 
1280 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1281 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1282 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1283 
1284 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1285 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1286 				factor->cir_b = cir_b;
1287 				factor->cir_u = cir_u;
1288 				factor->cir_s = cir_s;
1289 				return 0;
1290 			}
1291 		}
1292 	}
1293 
1294 	return -EINVAL;
1295 }
1296 
1297 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1298 			    u32 number, struct qm_shaper_factor *factor)
1299 {
1300 	u64 tmp = 0;
1301 
1302 	if (number > 0) {
1303 		switch (type) {
1304 		case SQC_VFT:
1305 			if (qm->ver == QM_HW_V1) {
1306 				tmp = QM_SQC_VFT_BUF_SIZE	|
1307 				      QM_SQC_VFT_SQC_SIZE	|
1308 				      QM_SQC_VFT_INDEX_NUMBER	|
1309 				      QM_SQC_VFT_VALID		|
1310 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1311 			} else {
1312 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1313 				      QM_SQC_VFT_VALID |
1314 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1315 			}
1316 			break;
1317 		case CQC_VFT:
1318 			if (qm->ver == QM_HW_V1) {
1319 				tmp = QM_CQC_VFT_BUF_SIZE	|
1320 				      QM_CQC_VFT_SQC_SIZE	|
1321 				      QM_CQC_VFT_INDEX_NUMBER	|
1322 				      QM_CQC_VFT_VALID;
1323 			} else {
1324 				tmp = QM_CQC_VFT_VALID;
1325 			}
1326 			break;
1327 		case SHAPER_VFT:
1328 			if (factor) {
1329 				tmp = factor->cir_b |
1330 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1331 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1332 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1333 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1334 			}
1335 			break;
1336 		}
1337 	}
1338 
1339 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1340 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1341 }
1342 
1343 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1344 			     u32 fun_num, u32 base, u32 number)
1345 {
1346 	struct qm_shaper_factor *factor = NULL;
1347 	unsigned int val;
1348 	int ret;
1349 
1350 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1351 		factor = &qm->factor[fun_num];
1352 
1353 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1354 					 val & BIT(0), POLL_PERIOD,
1355 					 POLL_TIMEOUT);
1356 	if (ret)
1357 		return ret;
1358 
1359 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1360 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1361 	if (type == SHAPER_VFT)
1362 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1363 
1364 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1365 
1366 	qm_vft_data_cfg(qm, type, base, number, factor);
1367 
1368 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1369 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1370 
1371 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1372 					  val & BIT(0), POLL_PERIOD,
1373 					  POLL_TIMEOUT);
1374 }
1375 
1376 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1377 {
1378 	u32 qos = qm->factor[fun_num].func_qos;
1379 	int ret, i;
1380 
1381 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1382 	if (ret) {
1383 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1384 		return ret;
1385 	}
1386 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1387 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1388 		/* The base number of queue reuse for different alg type */
1389 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1390 		if (ret)
1391 			return ret;
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 /* The config should be conducted after qm_dev_mem_reset() */
1398 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1399 			      u32 number)
1400 {
1401 	int ret, i;
1402 
1403 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1404 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1405 		if (ret)
1406 			return ret;
1407 	}
1408 
1409 	/* init default shaper qos val */
1410 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1411 		ret = qm_shaper_init_vft(qm, fun_num);
1412 		if (ret)
1413 			goto back_sqc_cqc;
1414 	}
1415 
1416 	return 0;
1417 back_sqc_cqc:
1418 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1419 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1420 
1421 	return ret;
1422 }
1423 
1424 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1425 {
1426 	u64 sqc_vft;
1427 	int ret;
1428 
1429 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1430 	if (ret)
1431 		return ret;
1432 
1433 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1434 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1435 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1436 	*number = (QM_SQC_VFT_NUM_MASK_v2 &
1437 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1438 
1439 	return 0;
1440 }
1441 
1442 static int qm_get_vf_qp_num(struct hisi_qm *qm, u32 fun_num)
1443 {
1444 	u32 remain_q_num, vfq_num;
1445 	u32 num_vfs = qm->vfs_num;
1446 
1447 	vfq_num = (qm->ctrl_qp_num - qm->qp_num) / num_vfs;
1448 	if (vfq_num >= qm->max_qp_num)
1449 		return qm->max_qp_num;
1450 
1451 	remain_q_num = (qm->ctrl_qp_num - qm->qp_num) % num_vfs;
1452 	if (vfq_num + remain_q_num <= qm->max_qp_num)
1453 		return fun_num == num_vfs ? vfq_num + remain_q_num : vfq_num;
1454 
1455 	/*
1456 	 * if vfq_num + remain_q_num > max_qp_num, the last VFs,
1457 	 * each with one more queue.
1458 	 */
1459 	return fun_num + remain_q_num > num_vfs ? vfq_num + 1 : vfq_num;
1460 }
1461 
1462 static struct hisi_qm *file_to_qm(struct debugfs_file *file)
1463 {
1464 	struct qm_debug *debug = file->debug;
1465 
1466 	return container_of(debug, struct hisi_qm, debug);
1467 }
1468 
1469 static u32 current_q_read(struct hisi_qm *qm)
1470 {
1471 	return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT;
1472 }
1473 
1474 static int current_q_write(struct hisi_qm *qm, u32 val)
1475 {
1476 	u32 tmp;
1477 
1478 	if (val >= qm->debug.curr_qm_qp_num)
1479 		return -EINVAL;
1480 
1481 	tmp = val << QM_DFX_QN_SHIFT |
1482 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK);
1483 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
1484 
1485 	tmp = val << QM_DFX_QN_SHIFT |
1486 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK);
1487 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
1488 
1489 	return 0;
1490 }
1491 
1492 static u32 clear_enable_read(struct hisi_qm *qm)
1493 {
1494 	return readl(qm->io_base + QM_DFX_CNT_CLR_CE);
1495 }
1496 
1497 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */
1498 static int clear_enable_write(struct hisi_qm *qm, u32 rd_clr_ctrl)
1499 {
1500 	if (rd_clr_ctrl > 1)
1501 		return -EINVAL;
1502 
1503 	writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE);
1504 
1505 	return 0;
1506 }
1507 
1508 static u32 current_qm_read(struct hisi_qm *qm)
1509 {
1510 	return readl(qm->io_base + QM_DFX_MB_CNT_VF);
1511 }
1512 
1513 static int current_qm_write(struct hisi_qm *qm, u32 val)
1514 {
1515 	u32 tmp;
1516 
1517 	if (val > qm->vfs_num)
1518 		return -EINVAL;
1519 
1520 	/* According PF or VF Dev ID to calculation curr_qm_qp_num and store */
1521 	if (!val)
1522 		qm->debug.curr_qm_qp_num = qm->qp_num;
1523 	else
1524 		qm->debug.curr_qm_qp_num = qm_get_vf_qp_num(qm, val);
1525 
1526 	writel(val, qm->io_base + QM_DFX_MB_CNT_VF);
1527 	writel(val, qm->io_base + QM_DFX_DB_CNT_VF);
1528 
1529 	tmp = val |
1530 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_Q_MASK);
1531 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
1532 
1533 	tmp = val |
1534 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_Q_MASK);
1535 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
1536 
1537 	return 0;
1538 }
1539 
1540 static ssize_t qm_debug_read(struct file *filp, char __user *buf,
1541 			     size_t count, loff_t *pos)
1542 {
1543 	struct debugfs_file *file = filp->private_data;
1544 	enum qm_debug_file index = file->index;
1545 	struct hisi_qm *qm = file_to_qm(file);
1546 	char tbuf[QM_DBG_TMP_BUF_LEN];
1547 	u32 val;
1548 	int ret;
1549 
1550 	ret = hisi_qm_get_dfx_access(qm);
1551 	if (ret)
1552 		return ret;
1553 
1554 	mutex_lock(&file->lock);
1555 	switch (index) {
1556 	case CURRENT_QM:
1557 		val = current_qm_read(qm);
1558 		break;
1559 	case CURRENT_Q:
1560 		val = current_q_read(qm);
1561 		break;
1562 	case CLEAR_ENABLE:
1563 		val = clear_enable_read(qm);
1564 		break;
1565 	default:
1566 		goto err_input;
1567 	}
1568 	mutex_unlock(&file->lock);
1569 
1570 	hisi_qm_put_dfx_access(qm);
1571 	ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val);
1572 	return simple_read_from_buffer(buf, count, pos, tbuf, ret);
1573 
1574 err_input:
1575 	mutex_unlock(&file->lock);
1576 	hisi_qm_put_dfx_access(qm);
1577 	return -EINVAL;
1578 }
1579 
1580 static ssize_t qm_debug_write(struct file *filp, const char __user *buf,
1581 			      size_t count, loff_t *pos)
1582 {
1583 	struct debugfs_file *file = filp->private_data;
1584 	enum qm_debug_file index = file->index;
1585 	struct hisi_qm *qm = file_to_qm(file);
1586 	unsigned long val;
1587 	char tbuf[QM_DBG_TMP_BUF_LEN];
1588 	int len, ret;
1589 
1590 	if (*pos != 0)
1591 		return 0;
1592 
1593 	if (count >= QM_DBG_TMP_BUF_LEN)
1594 		return -ENOSPC;
1595 
1596 	len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf,
1597 				     count);
1598 	if (len < 0)
1599 		return len;
1600 
1601 	tbuf[len] = '\0';
1602 	if (kstrtoul(tbuf, 0, &val))
1603 		return -EFAULT;
1604 
1605 	ret = hisi_qm_get_dfx_access(qm);
1606 	if (ret)
1607 		return ret;
1608 
1609 	mutex_lock(&file->lock);
1610 	switch (index) {
1611 	case CURRENT_QM:
1612 		ret = current_qm_write(qm, val);
1613 		break;
1614 	case CURRENT_Q:
1615 		ret = current_q_write(qm, val);
1616 		break;
1617 	case CLEAR_ENABLE:
1618 		ret = clear_enable_write(qm, val);
1619 		break;
1620 	default:
1621 		ret = -EINVAL;
1622 	}
1623 	mutex_unlock(&file->lock);
1624 
1625 	hisi_qm_put_dfx_access(qm);
1626 
1627 	if (ret)
1628 		return ret;
1629 
1630 	return count;
1631 }
1632 
1633 static const struct file_operations qm_debug_fops = {
1634 	.owner = THIS_MODULE,
1635 	.open = simple_open,
1636 	.read = qm_debug_read,
1637 	.write = qm_debug_write,
1638 };
1639 
1640 #define CNT_CYC_REGS_NUM		10
1641 static const struct debugfs_reg32 qm_dfx_regs[] = {
1642 	/* XXX_CNT are reading clear register */
1643 	{"QM_ECC_1BIT_CNT               ",  0x104000ull},
1644 	{"QM_ECC_MBIT_CNT               ",  0x104008ull},
1645 	{"QM_DFX_MB_CNT                 ",  0x104018ull},
1646 	{"QM_DFX_DB_CNT                 ",  0x104028ull},
1647 	{"QM_DFX_SQE_CNT                ",  0x104038ull},
1648 	{"QM_DFX_CQE_CNT                ",  0x104048ull},
1649 	{"QM_DFX_SEND_SQE_TO_ACC_CNT    ",  0x104050ull},
1650 	{"QM_DFX_WB_SQE_FROM_ACC_CNT    ",  0x104058ull},
1651 	{"QM_DFX_ACC_FINISH_CNT         ",  0x104060ull},
1652 	{"QM_DFX_CQE_ERR_CNT            ",  0x1040b4ull},
1653 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1654 	{"QM_ECC_1BIT_INF               ",  0x104004ull},
1655 	{"QM_ECC_MBIT_INF               ",  0x10400cull},
1656 	{"QM_DFX_ACC_RDY_VLD0           ",  0x1040a0ull},
1657 	{"QM_DFX_ACC_RDY_VLD1           ",  0x1040a4ull},
1658 	{"QM_DFX_AXI_RDY_VLD            ",  0x1040a8ull},
1659 	{"QM_DFX_FF_ST0                 ",  0x1040c8ull},
1660 	{"QM_DFX_FF_ST1                 ",  0x1040ccull},
1661 	{"QM_DFX_FF_ST2                 ",  0x1040d0ull},
1662 	{"QM_DFX_FF_ST3                 ",  0x1040d4ull},
1663 	{"QM_DFX_FF_ST4                 ",  0x1040d8ull},
1664 	{"QM_DFX_FF_ST5                 ",  0x1040dcull},
1665 	{"QM_DFX_FF_ST6                 ",  0x1040e0ull},
1666 	{"QM_IN_IDLE_ST                 ",  0x1040e4ull},
1667 };
1668 
1669 static const struct debugfs_reg32 qm_vf_dfx_regs[] = {
1670 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1671 };
1672 
1673 /**
1674  * hisi_qm_regs_dump() - Dump registers's value.
1675  * @s: debugfs file handle.
1676  * @regset: accelerator registers information.
1677  *
1678  * Dump accelerator registers.
1679  */
1680 void hisi_qm_regs_dump(struct seq_file *s, struct debugfs_regset32 *regset)
1681 {
1682 	struct pci_dev *pdev = to_pci_dev(regset->dev);
1683 	struct hisi_qm *qm = pci_get_drvdata(pdev);
1684 	const struct debugfs_reg32 *regs = regset->regs;
1685 	int regs_len = regset->nregs;
1686 	int i, ret;
1687 	u32 val;
1688 
1689 	ret = hisi_qm_get_dfx_access(qm);
1690 	if (ret)
1691 		return;
1692 
1693 	for (i = 0; i < regs_len; i++) {
1694 		val = readl(regset->base + regs[i].offset);
1695 		seq_printf(s, "%s= 0x%08x\n", regs[i].name, val);
1696 	}
1697 
1698 	hisi_qm_put_dfx_access(qm);
1699 }
1700 EXPORT_SYMBOL_GPL(hisi_qm_regs_dump);
1701 
1702 static int qm_regs_show(struct seq_file *s, void *unused)
1703 {
1704 	struct hisi_qm *qm = s->private;
1705 	struct debugfs_regset32 regset;
1706 
1707 	if (qm->fun_type == QM_HW_PF) {
1708 		regset.regs = qm_dfx_regs;
1709 		regset.nregs = ARRAY_SIZE(qm_dfx_regs);
1710 	} else {
1711 		regset.regs = qm_vf_dfx_regs;
1712 		regset.nregs = ARRAY_SIZE(qm_vf_dfx_regs);
1713 	}
1714 
1715 	regset.base = qm->io_base;
1716 	regset.dev = &qm->pdev->dev;
1717 
1718 	hisi_qm_regs_dump(s, &regset);
1719 
1720 	return 0;
1721 }
1722 
1723 DEFINE_SHOW_ATTRIBUTE(qm_regs);
1724 
1725 static struct dfx_diff_registers *dfx_regs_init(struct hisi_qm *qm,
1726 	const struct dfx_diff_registers *cregs, int reg_len)
1727 {
1728 	struct dfx_diff_registers *diff_regs;
1729 	u32 j, base_offset;
1730 	int i;
1731 
1732 	diff_regs = kcalloc(reg_len, sizeof(*diff_regs), GFP_KERNEL);
1733 	if (!diff_regs)
1734 		return ERR_PTR(-ENOMEM);
1735 
1736 	for (i = 0; i < reg_len; i++) {
1737 		if (!cregs[i].reg_len)
1738 			continue;
1739 
1740 		diff_regs[i].reg_offset = cregs[i].reg_offset;
1741 		diff_regs[i].reg_len = cregs[i].reg_len;
1742 		diff_regs[i].regs = kcalloc(QM_DFX_REGS_LEN, cregs[i].reg_len,
1743 					 GFP_KERNEL);
1744 		if (!diff_regs[i].regs)
1745 			goto alloc_error;
1746 
1747 		for (j = 0; j < diff_regs[i].reg_len; j++) {
1748 			base_offset = diff_regs[i].reg_offset +
1749 					j * QM_DFX_REGS_LEN;
1750 			diff_regs[i].regs[j] = readl(qm->io_base + base_offset);
1751 		}
1752 	}
1753 
1754 	return diff_regs;
1755 
1756 alloc_error:
1757 	while (i > 0) {
1758 		i--;
1759 		kfree(diff_regs[i].regs);
1760 	}
1761 	kfree(diff_regs);
1762 	return ERR_PTR(-ENOMEM);
1763 }
1764 
1765 static void dfx_regs_uninit(struct hisi_qm *qm,
1766 		struct dfx_diff_registers *dregs, int reg_len)
1767 {
1768 	int i;
1769 
1770 	/* Setting the pointer is NULL to prevent double free */
1771 	for (i = 0; i < reg_len; i++) {
1772 		kfree(dregs[i].regs);
1773 		dregs[i].regs = NULL;
1774 	}
1775 	kfree(dregs);
1776 	dregs = NULL;
1777 }
1778 
1779 /**
1780  * hisi_qm_diff_regs_init() - Allocate memory for registers.
1781  * @qm: device qm handle.
1782  * @dregs: diff registers handle.
1783  * @reg_len: diff registers region length.
1784  */
1785 int hisi_qm_diff_regs_init(struct hisi_qm *qm,
1786 		struct dfx_diff_registers *dregs, int reg_len)
1787 {
1788 	if (!qm || !dregs || reg_len <= 0)
1789 		return -EINVAL;
1790 
1791 	if (qm->fun_type != QM_HW_PF)
1792 		return 0;
1793 
1794 	qm->debug.qm_diff_regs = dfx_regs_init(qm, qm_diff_regs,
1795 						ARRAY_SIZE(qm_diff_regs));
1796 	if (IS_ERR(qm->debug.qm_diff_regs))
1797 		return PTR_ERR(qm->debug.qm_diff_regs);
1798 
1799 	qm->debug.acc_diff_regs = dfx_regs_init(qm, dregs, reg_len);
1800 	if (IS_ERR(qm->debug.acc_diff_regs)) {
1801 		dfx_regs_uninit(qm, qm->debug.qm_diff_regs,
1802 				ARRAY_SIZE(qm_diff_regs));
1803 		return PTR_ERR(qm->debug.acc_diff_regs);
1804 	}
1805 
1806 	return 0;
1807 }
1808 EXPORT_SYMBOL_GPL(hisi_qm_diff_regs_init);
1809 
1810 /**
1811  * hisi_qm_diff_regs_uninit() - Free memory for registers.
1812  * @qm: device qm handle.
1813  * @reg_len: diff registers region length.
1814  */
1815 void hisi_qm_diff_regs_uninit(struct hisi_qm *qm, int reg_len)
1816 {
1817 	if (!qm  || reg_len <= 0 || qm->fun_type != QM_HW_PF)
1818 		return;
1819 
1820 	dfx_regs_uninit(qm, qm->debug.acc_diff_regs, reg_len);
1821 	dfx_regs_uninit(qm, qm->debug.qm_diff_regs, ARRAY_SIZE(qm_diff_regs));
1822 }
1823 EXPORT_SYMBOL_GPL(hisi_qm_diff_regs_uninit);
1824 
1825 /**
1826  * hisi_qm_acc_diff_regs_dump() - Dump registers's value.
1827  * @qm: device qm handle.
1828  * @s: Debugfs file handle.
1829  * @dregs: diff registers handle.
1830  * @regs_len: diff registers region length.
1831  */
1832 void hisi_qm_acc_diff_regs_dump(struct hisi_qm *qm, struct seq_file *s,
1833 	struct dfx_diff_registers *dregs, int regs_len)
1834 {
1835 	u32 j, val, base_offset;
1836 	int i, ret;
1837 
1838 	if (!qm || !s || !dregs || regs_len <= 0)
1839 		return;
1840 
1841 	ret = hisi_qm_get_dfx_access(qm);
1842 	if (ret)
1843 		return;
1844 
1845 	down_read(&qm->qps_lock);
1846 	for (i = 0; i < regs_len; i++) {
1847 		if (!dregs[i].reg_len)
1848 			continue;
1849 
1850 		for (j = 0; j < dregs[i].reg_len; j++) {
1851 			base_offset = dregs[i].reg_offset + j * QM_DFX_REGS_LEN;
1852 			val = readl(qm->io_base + base_offset);
1853 			if (val != dregs[i].regs[j])
1854 				seq_printf(s, "0x%08x = 0x%08x ---> 0x%08x\n",
1855 					   base_offset, dregs[i].regs[j], val);
1856 		}
1857 	}
1858 	up_read(&qm->qps_lock);
1859 
1860 	hisi_qm_put_dfx_access(qm);
1861 }
1862 EXPORT_SYMBOL_GPL(hisi_qm_acc_diff_regs_dump);
1863 
1864 static int qm_diff_regs_show(struct seq_file *s, void *unused)
1865 {
1866 	struct hisi_qm *qm = s->private;
1867 
1868 	hisi_qm_acc_diff_regs_dump(qm, s, qm->debug.qm_diff_regs,
1869 					ARRAY_SIZE(qm_diff_regs));
1870 
1871 	return 0;
1872 }
1873 DEFINE_SHOW_ATTRIBUTE(qm_diff_regs);
1874 
1875 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer,
1876 			   size_t count, loff_t *pos)
1877 {
1878 	char buf[QM_DBG_READ_LEN];
1879 	int len;
1880 
1881 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n",
1882 			"Please echo help to cmd to get help information");
1883 
1884 	return simple_read_from_buffer(buffer, count, pos, buf, len);
1885 }
1886 
1887 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1888 			  dma_addr_t *dma_addr)
1889 {
1890 	struct device *dev = &qm->pdev->dev;
1891 	void *ctx_addr;
1892 
1893 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1894 	if (!ctx_addr)
1895 		return ERR_PTR(-ENOMEM);
1896 
1897 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1898 	if (dma_mapping_error(dev, *dma_addr)) {
1899 		dev_err(dev, "DMA mapping error!\n");
1900 		kfree(ctx_addr);
1901 		return ERR_PTR(-ENOMEM);
1902 	}
1903 
1904 	return ctx_addr;
1905 }
1906 
1907 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1908 			const void *ctx_addr, dma_addr_t *dma_addr)
1909 {
1910 	struct device *dev = &qm->pdev->dev;
1911 
1912 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1913 	kfree(ctx_addr);
1914 }
1915 
1916 static void dump_show(struct hisi_qm *qm, void *info,
1917 		     unsigned int info_size, char *info_name)
1918 {
1919 	struct device *dev = &qm->pdev->dev;
1920 	u8 *info_curr = info;
1921 	u32 i;
1922 #define BYTE_PER_DW	4
1923 
1924 	dev_info(dev, "%s DUMP\n", info_name);
1925 	for (i = 0; i < info_size; i += BYTE_PER_DW, info_curr += BYTE_PER_DW) {
1926 		pr_info("DW%u: %02X%02X %02X%02X\n", i / BYTE_PER_DW,
1927 			*(info_curr + 3), *(info_curr + 2), *(info_curr + 1), *(info_curr));
1928 	}
1929 }
1930 
1931 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1932 {
1933 	return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1934 }
1935 
1936 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1937 {
1938 	return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1939 }
1940 
1941 static int qm_sqc_dump(struct hisi_qm *qm, const char *s)
1942 {
1943 	struct device *dev = &qm->pdev->dev;
1944 	struct qm_sqc *sqc, *sqc_curr;
1945 	dma_addr_t sqc_dma;
1946 	u32 qp_id;
1947 	int ret;
1948 
1949 	if (!s)
1950 		return -EINVAL;
1951 
1952 	ret = kstrtou32(s, 0, &qp_id);
1953 	if (ret || qp_id >= qm->qp_num) {
1954 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1955 		return -EINVAL;
1956 	}
1957 
1958 	sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma);
1959 	if (IS_ERR(sqc))
1960 		return PTR_ERR(sqc);
1961 
1962 	ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id);
1963 	if (ret) {
1964 		down_read(&qm->qps_lock);
1965 		if (qm->sqc) {
1966 			sqc_curr = qm->sqc + qp_id;
1967 
1968 			dump_show(qm, sqc_curr, sizeof(*sqc), "SOFT SQC");
1969 		}
1970 		up_read(&qm->qps_lock);
1971 
1972 		goto free_ctx;
1973 	}
1974 
1975 	dump_show(qm, sqc, sizeof(*sqc), "SQC");
1976 
1977 free_ctx:
1978 	qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma);
1979 	return 0;
1980 }
1981 
1982 static int qm_cqc_dump(struct hisi_qm *qm, const char *s)
1983 {
1984 	struct device *dev = &qm->pdev->dev;
1985 	struct qm_cqc *cqc, *cqc_curr;
1986 	dma_addr_t cqc_dma;
1987 	u32 qp_id;
1988 	int ret;
1989 
1990 	if (!s)
1991 		return -EINVAL;
1992 
1993 	ret = kstrtou32(s, 0, &qp_id);
1994 	if (ret || qp_id >= qm->qp_num) {
1995 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1996 		return -EINVAL;
1997 	}
1998 
1999 	cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma);
2000 	if (IS_ERR(cqc))
2001 		return PTR_ERR(cqc);
2002 
2003 	ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id);
2004 	if (ret) {
2005 		down_read(&qm->qps_lock);
2006 		if (qm->cqc) {
2007 			cqc_curr = qm->cqc + qp_id;
2008 
2009 			dump_show(qm, cqc_curr, sizeof(*cqc), "SOFT CQC");
2010 		}
2011 		up_read(&qm->qps_lock);
2012 
2013 		goto free_ctx;
2014 	}
2015 
2016 	dump_show(qm, cqc, sizeof(*cqc), "CQC");
2017 
2018 free_ctx:
2019 	qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma);
2020 	return 0;
2021 }
2022 
2023 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size,
2024 			    int cmd, char *name)
2025 {
2026 	struct device *dev = &qm->pdev->dev;
2027 	dma_addr_t xeqc_dma;
2028 	void *xeqc;
2029 	int ret;
2030 
2031 	if (strsep(&s, " ")) {
2032 		dev_err(dev, "Please do not input extra characters!\n");
2033 		return -EINVAL;
2034 	}
2035 
2036 	xeqc = qm_ctx_alloc(qm, size, &xeqc_dma);
2037 	if (IS_ERR(xeqc))
2038 		return PTR_ERR(xeqc);
2039 
2040 	ret = hisi_qm_mb(qm, cmd, xeqc_dma, 0, 1);
2041 	if (ret)
2042 		goto err_free_ctx;
2043 
2044 	dump_show(qm, xeqc, size, name);
2045 
2046 err_free_ctx:
2047 	qm_ctx_free(qm, size, xeqc, &xeqc_dma);
2048 	return ret;
2049 }
2050 
2051 static int q_dump_param_parse(struct hisi_qm *qm, char *s,
2052 			      u32 *e_id, u32 *q_id, u16 q_depth)
2053 {
2054 	struct device *dev = &qm->pdev->dev;
2055 	unsigned int qp_num = qm->qp_num;
2056 	char *presult;
2057 	int ret;
2058 
2059 	presult = strsep(&s, " ");
2060 	if (!presult) {
2061 		dev_err(dev, "Please input qp number!\n");
2062 		return -EINVAL;
2063 	}
2064 
2065 	ret = kstrtou32(presult, 0, q_id);
2066 	if (ret || *q_id >= qp_num) {
2067 		dev_err(dev, "Please input qp num (0-%u)", qp_num - 1);
2068 		return -EINVAL;
2069 	}
2070 
2071 	presult = strsep(&s, " ");
2072 	if (!presult) {
2073 		dev_err(dev, "Please input sqe number!\n");
2074 		return -EINVAL;
2075 	}
2076 
2077 	ret = kstrtou32(presult, 0, e_id);
2078 	if (ret || *e_id >= q_depth) {
2079 		dev_err(dev, "Please input sqe num (0-%u)", q_depth - 1);
2080 		return -EINVAL;
2081 	}
2082 
2083 	if (strsep(&s, " ")) {
2084 		dev_err(dev, "Please do not input extra characters!\n");
2085 		return -EINVAL;
2086 	}
2087 
2088 	return 0;
2089 }
2090 
2091 static int qm_sq_dump(struct hisi_qm *qm, char *s)
2092 {
2093 	u16 sq_depth = qm->qp_array->cq_depth;
2094 	void *sqe, *sqe_curr;
2095 	struct hisi_qp *qp;
2096 	u32 qp_id, sqe_id;
2097 	int ret;
2098 
2099 	ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id, sq_depth);
2100 	if (ret)
2101 		return ret;
2102 
2103 	sqe = kzalloc(qm->sqe_size * sq_depth, GFP_KERNEL);
2104 	if (!sqe)
2105 		return -ENOMEM;
2106 
2107 	qp = &qm->qp_array[qp_id];
2108 	memcpy(sqe, qp->sqe, qm->sqe_size * sq_depth);
2109 	sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size);
2110 	memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK,
2111 	       qm->debug.sqe_mask_len);
2112 
2113 	dump_show(qm, sqe_curr, qm->sqe_size, "SQE");
2114 
2115 	kfree(sqe);
2116 
2117 	return 0;
2118 }
2119 
2120 static int qm_cq_dump(struct hisi_qm *qm, char *s)
2121 {
2122 	struct qm_cqe *cqe_curr;
2123 	struct hisi_qp *qp;
2124 	u32 qp_id, cqe_id;
2125 	int ret;
2126 
2127 	ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id, qm->qp_array->cq_depth);
2128 	if (ret)
2129 		return ret;
2130 
2131 	qp = &qm->qp_array[qp_id];
2132 	cqe_curr = qp->cqe + cqe_id;
2133 	dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE");
2134 
2135 	return 0;
2136 }
2137 
2138 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s,
2139 			  size_t size, char *name)
2140 {
2141 	struct device *dev = &qm->pdev->dev;
2142 	void *xeqe;
2143 	u32 xeqe_id;
2144 	int ret;
2145 
2146 	if (!s)
2147 		return -EINVAL;
2148 
2149 	ret = kstrtou32(s, 0, &xeqe_id);
2150 	if (ret)
2151 		return -EINVAL;
2152 
2153 	if (!strcmp(name, "EQE") && xeqe_id >= qm->eq_depth) {
2154 		dev_err(dev, "Please input eqe num (0-%u)", qm->eq_depth - 1);
2155 		return -EINVAL;
2156 	} else if (!strcmp(name, "AEQE") && xeqe_id >= qm->aeq_depth) {
2157 		dev_err(dev, "Please input aeqe num (0-%u)", qm->eq_depth - 1);
2158 		return -EINVAL;
2159 	}
2160 
2161 	down_read(&qm->qps_lock);
2162 
2163 	if (qm->eqe && !strcmp(name, "EQE")) {
2164 		xeqe = qm->eqe + xeqe_id;
2165 	} else if (qm->aeqe && !strcmp(name, "AEQE")) {
2166 		xeqe = qm->aeqe + xeqe_id;
2167 	} else {
2168 		ret = -EINVAL;
2169 		goto err_unlock;
2170 	}
2171 
2172 	dump_show(qm, xeqe, size, name);
2173 
2174 err_unlock:
2175 	up_read(&qm->qps_lock);
2176 	return ret;
2177 }
2178 
2179 static int qm_dbg_help(struct hisi_qm *qm, char *s)
2180 {
2181 	struct device *dev = &qm->pdev->dev;
2182 
2183 	if (strsep(&s, " ")) {
2184 		dev_err(dev, "Please do not input extra characters!\n");
2185 		return -EINVAL;
2186 	}
2187 
2188 	dev_info(dev, "available commands:\n");
2189 	dev_info(dev, "sqc <num>\n");
2190 	dev_info(dev, "cqc <num>\n");
2191 	dev_info(dev, "eqc\n");
2192 	dev_info(dev, "aeqc\n");
2193 	dev_info(dev, "sq <num> <e>\n");
2194 	dev_info(dev, "cq <num> <e>\n");
2195 	dev_info(dev, "eq <e>\n");
2196 	dev_info(dev, "aeq <e>\n");
2197 
2198 	return 0;
2199 }
2200 
2201 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf)
2202 {
2203 	struct device *dev = &qm->pdev->dev;
2204 	char *presult, *s, *s_tmp;
2205 	int ret;
2206 
2207 	s = kstrdup(cmd_buf, GFP_KERNEL);
2208 	if (!s)
2209 		return -ENOMEM;
2210 
2211 	s_tmp = s;
2212 	presult = strsep(&s, " ");
2213 	if (!presult) {
2214 		ret = -EINVAL;
2215 		goto err_buffer_free;
2216 	}
2217 
2218 	if (!strcmp(presult, "sqc"))
2219 		ret = qm_sqc_dump(qm, s);
2220 	else if (!strcmp(presult, "cqc"))
2221 		ret = qm_cqc_dump(qm, s);
2222 	else if (!strcmp(presult, "eqc"))
2223 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc),
2224 				       QM_MB_CMD_EQC, "EQC");
2225 	else if (!strcmp(presult, "aeqc"))
2226 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc),
2227 				       QM_MB_CMD_AEQC, "AEQC");
2228 	else if (!strcmp(presult, "sq"))
2229 		ret = qm_sq_dump(qm, s);
2230 	else if (!strcmp(presult, "cq"))
2231 		ret = qm_cq_dump(qm, s);
2232 	else if (!strcmp(presult, "eq"))
2233 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE");
2234 	else if (!strcmp(presult, "aeq"))
2235 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE");
2236 	else if (!strcmp(presult, "help"))
2237 		ret = qm_dbg_help(qm, s);
2238 	else
2239 		ret = -EINVAL;
2240 
2241 	if (ret)
2242 		dev_info(dev, "Please echo help\n");
2243 
2244 err_buffer_free:
2245 	kfree(s_tmp);
2246 
2247 	return ret;
2248 }
2249 
2250 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer,
2251 			    size_t count, loff_t *pos)
2252 {
2253 	struct hisi_qm *qm = filp->private_data;
2254 	char *cmd_buf, *cmd_buf_tmp;
2255 	int ret;
2256 
2257 	if (*pos)
2258 		return 0;
2259 
2260 	ret = hisi_qm_get_dfx_access(qm);
2261 	if (ret)
2262 		return ret;
2263 
2264 	/* Judge if the instance is being reset. */
2265 	if (unlikely(atomic_read(&qm->status.flags) == QM_STOP)) {
2266 		ret = 0;
2267 		goto put_dfx_access;
2268 	}
2269 
2270 	if (count > QM_DBG_WRITE_LEN) {
2271 		ret = -ENOSPC;
2272 		goto put_dfx_access;
2273 	}
2274 
2275 	cmd_buf = memdup_user_nul(buffer, count);
2276 	if (IS_ERR(cmd_buf)) {
2277 		ret = PTR_ERR(cmd_buf);
2278 		goto put_dfx_access;
2279 	}
2280 
2281 	cmd_buf_tmp = strchr(cmd_buf, '\n');
2282 	if (cmd_buf_tmp) {
2283 		*cmd_buf_tmp = '\0';
2284 		count = cmd_buf_tmp - cmd_buf + 1;
2285 	}
2286 
2287 	ret = qm_cmd_write_dump(qm, cmd_buf);
2288 	if (ret) {
2289 		kfree(cmd_buf);
2290 		goto put_dfx_access;
2291 	}
2292 
2293 	kfree(cmd_buf);
2294 
2295 	ret = count;
2296 
2297 put_dfx_access:
2298 	hisi_qm_put_dfx_access(qm);
2299 	return ret;
2300 }
2301 
2302 static const struct file_operations qm_cmd_fops = {
2303 	.owner = THIS_MODULE,
2304 	.open = simple_open,
2305 	.read = qm_cmd_read,
2306 	.write = qm_cmd_write,
2307 };
2308 
2309 static void qm_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir,
2310 				   enum qm_debug_file index)
2311 {
2312 	struct debugfs_file *file = qm->debug.files + index;
2313 
2314 	debugfs_create_file(qm_debug_file_name[index], 0600, dir, file,
2315 			    &qm_debug_fops);
2316 
2317 	file->index = index;
2318 	mutex_init(&file->lock);
2319 	file->debug = &qm->debug;
2320 }
2321 
2322 static void qm_hw_error_init_v1(struct hisi_qm *qm)
2323 {
2324 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
2325 }
2326 
2327 static void qm_hw_error_cfg(struct hisi_qm *qm)
2328 {
2329 	struct hisi_qm_err_info *err_info = &qm->err_info;
2330 
2331 	qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
2332 	/* clear QM hw residual error source */
2333 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
2334 
2335 	/* configure error type */
2336 	writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
2337 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
2338 	writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
2339 	writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
2340 }
2341 
2342 static void qm_hw_error_init_v2(struct hisi_qm *qm)
2343 {
2344 	u32 irq_unmask;
2345 
2346 	qm_hw_error_cfg(qm);
2347 
2348 	irq_unmask = ~qm->error_mask;
2349 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
2350 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
2351 }
2352 
2353 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
2354 {
2355 	u32 irq_mask = qm->error_mask;
2356 
2357 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
2358 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
2359 }
2360 
2361 static void qm_hw_error_init_v3(struct hisi_qm *qm)
2362 {
2363 	u32 irq_unmask;
2364 
2365 	qm_hw_error_cfg(qm);
2366 
2367 	/* enable close master ooo when hardware error happened */
2368 	writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
2369 
2370 	irq_unmask = ~qm->error_mask;
2371 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
2372 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
2373 }
2374 
2375 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
2376 {
2377 	u32 irq_mask = qm->error_mask;
2378 
2379 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
2380 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
2381 
2382 	/* disable close master ooo when hardware error happened */
2383 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
2384 }
2385 
2386 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
2387 {
2388 	const struct hisi_qm_hw_error *err;
2389 	struct device *dev = &qm->pdev->dev;
2390 	u32 reg_val, type, vf_num;
2391 	int i;
2392 
2393 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
2394 		err = &qm_hw_error[i];
2395 		if (!(err->int_msk & error_status))
2396 			continue;
2397 
2398 		dev_err(dev, "%s [error status=0x%x] found\n",
2399 			err->msg, err->int_msk);
2400 
2401 		if (err->int_msk & QM_DB_TIMEOUT) {
2402 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
2403 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
2404 			       QM_DB_TIMEOUT_TYPE_SHIFT;
2405 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
2406 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
2407 				qm_db_timeout[type], vf_num);
2408 		} else if (err->int_msk & QM_OF_FIFO_OF) {
2409 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
2410 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
2411 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
2412 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
2413 
2414 			if (type < ARRAY_SIZE(qm_fifo_overflow))
2415 				dev_err(dev, "qm %s fifo overflow in function %u\n",
2416 					qm_fifo_overflow[type], vf_num);
2417 			else
2418 				dev_err(dev, "unknown error type\n");
2419 		}
2420 	}
2421 }
2422 
2423 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
2424 {
2425 	u32 error_status, tmp;
2426 
2427 	/* read err sts */
2428 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
2429 	error_status = qm->error_mask & tmp;
2430 
2431 	if (error_status) {
2432 		if (error_status & QM_ECC_MBIT)
2433 			qm->err_status.is_qm_ecc_mbit = true;
2434 
2435 		qm_log_hw_error(qm, error_status);
2436 		if (error_status & qm->err_info.qm_reset_mask)
2437 			return ACC_ERR_NEED_RESET;
2438 
2439 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
2440 		writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
2441 	}
2442 
2443 	return ACC_ERR_RECOVERED;
2444 }
2445 
2446 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
2447 {
2448 	struct qm_mailbox mailbox;
2449 	int ret;
2450 
2451 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
2452 	mutex_lock(&qm->mailbox_lock);
2453 	ret = qm_mb_nolock(qm, &mailbox);
2454 	if (ret)
2455 		goto err_unlock;
2456 
2457 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
2458 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
2459 
2460 err_unlock:
2461 	mutex_unlock(&qm->mailbox_lock);
2462 	return ret;
2463 }
2464 
2465 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
2466 {
2467 	u32 val;
2468 
2469 	if (qm->fun_type == QM_HW_PF)
2470 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
2471 
2472 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
2473 	val |= QM_IFC_INT_SOURCE_MASK;
2474 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
2475 }
2476 
2477 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
2478 {
2479 	struct device *dev = &qm->pdev->dev;
2480 	u32 cmd;
2481 	u64 msg;
2482 	int ret;
2483 
2484 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
2485 	if (ret) {
2486 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
2487 		return;
2488 	}
2489 
2490 	cmd = msg & QM_MB_CMD_DATA_MASK;
2491 	switch (cmd) {
2492 	case QM_VF_PREPARE_FAIL:
2493 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
2494 		break;
2495 	case QM_VF_START_FAIL:
2496 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
2497 		break;
2498 	case QM_VF_PREPARE_DONE:
2499 	case QM_VF_START_DONE:
2500 		break;
2501 	default:
2502 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
2503 		break;
2504 	}
2505 }
2506 
2507 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
2508 {
2509 	struct device *dev = &qm->pdev->dev;
2510 	u32 vfs_num = qm->vfs_num;
2511 	int cnt = 0;
2512 	int ret = 0;
2513 	u64 val;
2514 	u32 i;
2515 
2516 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2517 		return 0;
2518 
2519 	while (true) {
2520 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
2521 		/* All VFs send command to PF, break */
2522 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
2523 			break;
2524 
2525 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
2526 			ret = -EBUSY;
2527 			break;
2528 		}
2529 
2530 		msleep(QM_WAIT_DST_ACK);
2531 	}
2532 
2533 	/* PF check VFs msg */
2534 	for (i = 1; i <= vfs_num; i++) {
2535 		if (val & BIT(i))
2536 			qm_handle_vf_msg(qm, i);
2537 		else
2538 			dev_err(dev, "VF(%u) not ping PF!\n", i);
2539 	}
2540 
2541 	/* PF clear interrupt to ack VFs */
2542 	qm_clear_cmd_interrupt(qm, val);
2543 
2544 	return ret;
2545 }
2546 
2547 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
2548 {
2549 	u32 val;
2550 
2551 	val = readl(qm->io_base + QM_IFC_INT_CFG);
2552 	val &= ~QM_IFC_SEND_ALL_VFS;
2553 	val |= fun_num;
2554 	writel(val, qm->io_base + QM_IFC_INT_CFG);
2555 
2556 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
2557 	val |= QM_IFC_INT_SET_MASK;
2558 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
2559 }
2560 
2561 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
2562 {
2563 	u32 val;
2564 
2565 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
2566 	val |= QM_IFC_INT_SET_MASK;
2567 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
2568 }
2569 
2570 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
2571 {
2572 	struct device *dev = &qm->pdev->dev;
2573 	struct qm_mailbox mailbox;
2574 	int cnt = 0;
2575 	u64 val;
2576 	int ret;
2577 
2578 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
2579 	mutex_lock(&qm->mailbox_lock);
2580 	ret = qm_mb_nolock(qm, &mailbox);
2581 	if (ret) {
2582 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
2583 		goto err_unlock;
2584 	}
2585 
2586 	qm_trigger_vf_interrupt(qm, fun_num);
2587 	while (true) {
2588 		msleep(QM_WAIT_DST_ACK);
2589 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
2590 		/* if VF respond, PF notifies VF successfully. */
2591 		if (!(val & BIT(fun_num)))
2592 			goto err_unlock;
2593 
2594 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
2595 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
2596 			ret = -ETIMEDOUT;
2597 			break;
2598 		}
2599 	}
2600 
2601 err_unlock:
2602 	mutex_unlock(&qm->mailbox_lock);
2603 	return ret;
2604 }
2605 
2606 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
2607 {
2608 	struct device *dev = &qm->pdev->dev;
2609 	u32 vfs_num = qm->vfs_num;
2610 	struct qm_mailbox mailbox;
2611 	u64 val = 0;
2612 	int cnt = 0;
2613 	int ret;
2614 	u32 i;
2615 
2616 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
2617 	mutex_lock(&qm->mailbox_lock);
2618 	/* PF sends command to all VFs by mailbox */
2619 	ret = qm_mb_nolock(qm, &mailbox);
2620 	if (ret) {
2621 		dev_err(dev, "failed to send command to VFs!\n");
2622 		mutex_unlock(&qm->mailbox_lock);
2623 		return ret;
2624 	}
2625 
2626 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
2627 	while (true) {
2628 		msleep(QM_WAIT_DST_ACK);
2629 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
2630 		/* If all VFs acked, PF notifies VFs successfully. */
2631 		if (!(val & GENMASK(vfs_num, 1))) {
2632 			mutex_unlock(&qm->mailbox_lock);
2633 			return 0;
2634 		}
2635 
2636 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
2637 			break;
2638 	}
2639 
2640 	mutex_unlock(&qm->mailbox_lock);
2641 
2642 	/* Check which vf respond timeout. */
2643 	for (i = 1; i <= vfs_num; i++) {
2644 		if (val & BIT(i))
2645 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
2646 	}
2647 
2648 	return -ETIMEDOUT;
2649 }
2650 
2651 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
2652 {
2653 	struct qm_mailbox mailbox;
2654 	int cnt = 0;
2655 	u32 val;
2656 	int ret;
2657 
2658 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
2659 	mutex_lock(&qm->mailbox_lock);
2660 	ret = qm_mb_nolock(qm, &mailbox);
2661 	if (ret) {
2662 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
2663 		goto unlock;
2664 	}
2665 
2666 	qm_trigger_pf_interrupt(qm);
2667 	/* Waiting for PF response */
2668 	while (true) {
2669 		msleep(QM_WAIT_DST_ACK);
2670 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
2671 		if (!(val & QM_IFC_INT_STATUS_MASK))
2672 			break;
2673 
2674 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
2675 			ret = -ETIMEDOUT;
2676 			break;
2677 		}
2678 	}
2679 
2680 unlock:
2681 	mutex_unlock(&qm->mailbox_lock);
2682 	return ret;
2683 }
2684 
2685 static int qm_stop_qp(struct hisi_qp *qp)
2686 {
2687 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
2688 }
2689 
2690 static int qm_set_msi(struct hisi_qm *qm, bool set)
2691 {
2692 	struct pci_dev *pdev = qm->pdev;
2693 
2694 	if (set) {
2695 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
2696 				       0);
2697 	} else {
2698 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
2699 				       ACC_PEH_MSI_DISABLE);
2700 		if (qm->err_status.is_qm_ecc_mbit ||
2701 		    qm->err_status.is_dev_ecc_mbit)
2702 			return 0;
2703 
2704 		mdelay(1);
2705 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
2706 			return -EFAULT;
2707 	}
2708 
2709 	return 0;
2710 }
2711 
2712 static void qm_wait_msi_finish(struct hisi_qm *qm)
2713 {
2714 	struct pci_dev *pdev = qm->pdev;
2715 	u32 cmd = ~0;
2716 	int cnt = 0;
2717 	u32 val;
2718 	int ret;
2719 
2720 	while (true) {
2721 		pci_read_config_dword(pdev, pdev->msi_cap +
2722 				      PCI_MSI_PENDING_64, &cmd);
2723 		if (!cmd)
2724 			break;
2725 
2726 		if (++cnt > MAX_WAIT_COUNTS) {
2727 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
2728 			break;
2729 		}
2730 
2731 		udelay(1);
2732 	}
2733 
2734 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
2735 					 val, !(val & QM_PEH_DFX_MASK),
2736 					 POLL_PERIOD, POLL_TIMEOUT);
2737 	if (ret)
2738 		pci_warn(pdev, "failed to empty PEH MSI!\n");
2739 
2740 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
2741 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
2742 					 POLL_PERIOD, POLL_TIMEOUT);
2743 	if (ret)
2744 		pci_warn(pdev, "failed to finish MSI operation!\n");
2745 }
2746 
2747 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
2748 {
2749 	struct pci_dev *pdev = qm->pdev;
2750 	int ret = -ETIMEDOUT;
2751 	u32 cmd, i;
2752 
2753 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
2754 	if (set)
2755 		cmd |= QM_MSI_CAP_ENABLE;
2756 	else
2757 		cmd &= ~QM_MSI_CAP_ENABLE;
2758 
2759 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
2760 	if (set) {
2761 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
2762 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
2763 			if (cmd & QM_MSI_CAP_ENABLE)
2764 				return 0;
2765 
2766 			udelay(1);
2767 		}
2768 	} else {
2769 		udelay(WAIT_PERIOD_US_MIN);
2770 		qm_wait_msi_finish(qm);
2771 		ret = 0;
2772 	}
2773 
2774 	return ret;
2775 }
2776 
2777 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
2778 	.qm_db = qm_db_v1,
2779 	.hw_error_init = qm_hw_error_init_v1,
2780 	.set_msi = qm_set_msi,
2781 };
2782 
2783 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
2784 	.get_vft = qm_get_vft_v2,
2785 	.qm_db = qm_db_v2,
2786 	.hw_error_init = qm_hw_error_init_v2,
2787 	.hw_error_uninit = qm_hw_error_uninit_v2,
2788 	.hw_error_handle = qm_hw_error_handle_v2,
2789 	.set_msi = qm_set_msi,
2790 };
2791 
2792 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
2793 	.get_vft = qm_get_vft_v2,
2794 	.qm_db = qm_db_v2,
2795 	.hw_error_init = qm_hw_error_init_v3,
2796 	.hw_error_uninit = qm_hw_error_uninit_v3,
2797 	.hw_error_handle = qm_hw_error_handle_v2,
2798 	.set_msi = qm_set_msi_v3,
2799 };
2800 
2801 static void *qm_get_avail_sqe(struct hisi_qp *qp)
2802 {
2803 	struct hisi_qp_status *qp_status = &qp->qp_status;
2804 	u16 sq_tail = qp_status->sq_tail;
2805 
2806 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
2807 		return NULL;
2808 
2809 	return qp->sqe + sq_tail * qp->qm->sqe_size;
2810 }
2811 
2812 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
2813 {
2814 	u64 *addr;
2815 
2816 	/* Use last 64 bits of DUS to reset status. */
2817 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
2818 	*addr = 0;
2819 }
2820 
2821 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
2822 {
2823 	struct device *dev = &qm->pdev->dev;
2824 	struct hisi_qp *qp;
2825 	int qp_id;
2826 
2827 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
2828 		return ERR_PTR(-EPERM);
2829 
2830 	if (qm->qp_in_used == qm->qp_num) {
2831 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2832 				     qm->qp_num);
2833 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2834 		return ERR_PTR(-EBUSY);
2835 	}
2836 
2837 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
2838 	if (qp_id < 0) {
2839 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2840 				    qm->qp_num);
2841 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2842 		return ERR_PTR(-EBUSY);
2843 	}
2844 
2845 	qp = &qm->qp_array[qp_id];
2846 	hisi_qm_unset_hw_reset(qp);
2847 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
2848 
2849 	qp->event_cb = NULL;
2850 	qp->req_cb = NULL;
2851 	qp->qp_id = qp_id;
2852 	qp->alg_type = alg_type;
2853 	qp->is_in_kernel = true;
2854 	qm->qp_in_used++;
2855 	atomic_set(&qp->qp_status.flags, QP_INIT);
2856 
2857 	return qp;
2858 }
2859 
2860 /**
2861  * hisi_qm_create_qp() - Create a queue pair from qm.
2862  * @qm: The qm we create a qp from.
2863  * @alg_type: Accelerator specific algorithm type in sqc.
2864  *
2865  * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating
2866  * qp memory fails.
2867  */
2868 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
2869 {
2870 	struct hisi_qp *qp;
2871 	int ret;
2872 
2873 	ret = qm_pm_get_sync(qm);
2874 	if (ret)
2875 		return ERR_PTR(ret);
2876 
2877 	down_write(&qm->qps_lock);
2878 	qp = qm_create_qp_nolock(qm, alg_type);
2879 	up_write(&qm->qps_lock);
2880 
2881 	if (IS_ERR(qp))
2882 		qm_pm_put_sync(qm);
2883 
2884 	return qp;
2885 }
2886 
2887 /**
2888  * hisi_qm_release_qp() - Release a qp back to its qm.
2889  * @qp: The qp we want to release.
2890  *
2891  * This function releases the resource of a qp.
2892  */
2893 static void hisi_qm_release_qp(struct hisi_qp *qp)
2894 {
2895 	struct hisi_qm *qm = qp->qm;
2896 
2897 	down_write(&qm->qps_lock);
2898 
2899 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
2900 		up_write(&qm->qps_lock);
2901 		return;
2902 	}
2903 
2904 	qm->qp_in_used--;
2905 	idr_remove(&qm->qp_idr, qp->qp_id);
2906 
2907 	up_write(&qm->qps_lock);
2908 
2909 	qm_pm_put_sync(qm);
2910 }
2911 
2912 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2913 {
2914 	struct hisi_qm *qm = qp->qm;
2915 	struct device *dev = &qm->pdev->dev;
2916 	enum qm_hw_ver ver = qm->ver;
2917 	struct qm_sqc *sqc;
2918 	dma_addr_t sqc_dma;
2919 	int ret;
2920 
2921 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
2922 	if (!sqc)
2923 		return -ENOMEM;
2924 
2925 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
2926 	if (ver == QM_HW_V1) {
2927 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
2928 		sqc->w8 = cpu_to_le16(qp->sq_depth - 1);
2929 	} else {
2930 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
2931 		sqc->w8 = 0; /* rand_qc */
2932 	}
2933 	sqc->cq_num = cpu_to_le16(qp_id);
2934 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
2935 
2936 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2937 		sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
2938 				       QM_QC_PASID_ENABLE_SHIFT);
2939 
2940 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
2941 				 DMA_TO_DEVICE);
2942 	if (dma_mapping_error(dev, sqc_dma)) {
2943 		kfree(sqc);
2944 		return -ENOMEM;
2945 	}
2946 
2947 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
2948 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
2949 	kfree(sqc);
2950 
2951 	return ret;
2952 }
2953 
2954 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2955 {
2956 	struct hisi_qm *qm = qp->qm;
2957 	struct device *dev = &qm->pdev->dev;
2958 	enum qm_hw_ver ver = qm->ver;
2959 	struct qm_cqc *cqc;
2960 	dma_addr_t cqc_dma;
2961 	int ret;
2962 
2963 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
2964 	if (!cqc)
2965 		return -ENOMEM;
2966 
2967 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
2968 	if (ver == QM_HW_V1) {
2969 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
2970 							QM_QC_CQE_SIZE));
2971 		cqc->w8 = cpu_to_le16(qp->cq_depth - 1);
2972 	} else {
2973 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
2974 		cqc->w8 = 0; /* rand_qc */
2975 	}
2976 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2977 
2978 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2979 		cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2980 
2981 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
2982 				 DMA_TO_DEVICE);
2983 	if (dma_mapping_error(dev, cqc_dma)) {
2984 		kfree(cqc);
2985 		return -ENOMEM;
2986 	}
2987 
2988 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
2989 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
2990 	kfree(cqc);
2991 
2992 	return ret;
2993 }
2994 
2995 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2996 {
2997 	int ret;
2998 
2999 	qm_init_qp_status(qp);
3000 
3001 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
3002 	if (ret)
3003 		return ret;
3004 
3005 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
3006 }
3007 
3008 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
3009 {
3010 	struct hisi_qm *qm = qp->qm;
3011 	struct device *dev = &qm->pdev->dev;
3012 	int qp_id = qp->qp_id;
3013 	u32 pasid = arg;
3014 	int ret;
3015 
3016 	if (!qm_qp_avail_state(qm, qp, QP_START))
3017 		return -EPERM;
3018 
3019 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
3020 	if (ret)
3021 		return ret;
3022 
3023 	atomic_set(&qp->qp_status.flags, QP_START);
3024 	dev_dbg(dev, "queue %d started\n", qp_id);
3025 
3026 	return 0;
3027 }
3028 
3029 /**
3030  * hisi_qm_start_qp() - Start a qp into running.
3031  * @qp: The qp we want to start to run.
3032  * @arg: Accelerator specific argument.
3033  *
3034  * After this function, qp can receive request from user. Return 0 if
3035  * successful, Return -EBUSY if failed.
3036  */
3037 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
3038 {
3039 	struct hisi_qm *qm = qp->qm;
3040 	int ret;
3041 
3042 	down_write(&qm->qps_lock);
3043 	ret = qm_start_qp_nolock(qp, arg);
3044 	up_write(&qm->qps_lock);
3045 
3046 	return ret;
3047 }
3048 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
3049 
3050 /**
3051  * qp_stop_fail_cb() - call request cb.
3052  * @qp: stopped failed qp.
3053  *
3054  * Callback function should be called whether task completed or not.
3055  */
3056 static void qp_stop_fail_cb(struct hisi_qp *qp)
3057 {
3058 	int qp_used = atomic_read(&qp->qp_status.used);
3059 	u16 cur_tail = qp->qp_status.sq_tail;
3060 	u16 sq_depth = qp->sq_depth;
3061 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
3062 	struct hisi_qm *qm = qp->qm;
3063 	u16 pos;
3064 	int i;
3065 
3066 	for (i = 0; i < qp_used; i++) {
3067 		pos = (i + cur_head) % sq_depth;
3068 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
3069 		atomic_dec(&qp->qp_status.used);
3070 	}
3071 }
3072 
3073 /**
3074  * qm_drain_qp() - Drain a qp.
3075  * @qp: The qp we want to drain.
3076  *
3077  * Determine whether the queue is cleared by judging the tail pointers of
3078  * sq and cq.
3079  */
3080 static int qm_drain_qp(struct hisi_qp *qp)
3081 {
3082 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
3083 	struct hisi_qm *qm = qp->qm;
3084 	struct device *dev = &qm->pdev->dev;
3085 	struct qm_sqc *sqc;
3086 	struct qm_cqc *cqc;
3087 	dma_addr_t dma_addr;
3088 	int ret = 0, i = 0;
3089 	void *addr;
3090 
3091 	/* No need to judge if master OOO is blocked. */
3092 	if (qm_check_dev_error(qm))
3093 		return 0;
3094 
3095 	/* Kunpeng930 supports drain qp by device */
3096 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
3097 		ret = qm_stop_qp(qp);
3098 		if (ret)
3099 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
3100 		return ret;
3101 	}
3102 
3103 	addr = qm_ctx_alloc(qm, size, &dma_addr);
3104 	if (IS_ERR(addr)) {
3105 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
3106 		return -ENOMEM;
3107 	}
3108 
3109 	while (++i) {
3110 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
3111 		if (ret) {
3112 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
3113 			break;
3114 		}
3115 		sqc = addr;
3116 
3117 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
3118 				      qp->qp_id);
3119 		if (ret) {
3120 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
3121 			break;
3122 		}
3123 		cqc = addr + sizeof(struct qm_sqc);
3124 
3125 		if ((sqc->tail == cqc->tail) &&
3126 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
3127 			break;
3128 
3129 		if (i == MAX_WAIT_COUNTS) {
3130 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
3131 			ret = -EBUSY;
3132 			break;
3133 		}
3134 
3135 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
3136 	}
3137 
3138 	qm_ctx_free(qm, size, addr, &dma_addr);
3139 
3140 	return ret;
3141 }
3142 
3143 static int qm_stop_qp_nolock(struct hisi_qp *qp)
3144 {
3145 	struct device *dev = &qp->qm->pdev->dev;
3146 	int ret;
3147 
3148 	/*
3149 	 * It is allowed to stop and release qp when reset, If the qp is
3150 	 * stopped when reset but still want to be released then, the
3151 	 * is_resetting flag should be set negative so that this qp will not
3152 	 * be restarted after reset.
3153 	 */
3154 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
3155 		qp->is_resetting = false;
3156 		return 0;
3157 	}
3158 
3159 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
3160 		return -EPERM;
3161 
3162 	atomic_set(&qp->qp_status.flags, QP_STOP);
3163 
3164 	ret = qm_drain_qp(qp);
3165 	if (ret)
3166 		dev_err(dev, "Failed to drain out data for stopping!\n");
3167 
3168 
3169 	flush_workqueue(qp->qm->wq);
3170 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
3171 		qp_stop_fail_cb(qp);
3172 
3173 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
3174 
3175 	return 0;
3176 }
3177 
3178 /**
3179  * hisi_qm_stop_qp() - Stop a qp in qm.
3180  * @qp: The qp we want to stop.
3181  *
3182  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
3183  */
3184 int hisi_qm_stop_qp(struct hisi_qp *qp)
3185 {
3186 	int ret;
3187 
3188 	down_write(&qp->qm->qps_lock);
3189 	ret = qm_stop_qp_nolock(qp);
3190 	up_write(&qp->qm->qps_lock);
3191 
3192 	return ret;
3193 }
3194 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
3195 
3196 /**
3197  * hisi_qp_send() - Queue up a task in the hardware queue.
3198  * @qp: The qp in which to put the message.
3199  * @msg: The message.
3200  *
3201  * This function will return -EBUSY if qp is currently full, and -EAGAIN
3202  * if qp related qm is resetting.
3203  *
3204  * Note: This function may run with qm_irq_thread and ACC reset at same time.
3205  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
3206  *       reset may happen, we have no lock here considering performance. This
3207  *       causes current qm_db sending fail or can not receive sended sqe. QM
3208  *       sync/async receive function should handle the error sqe. ACC reset
3209  *       done function should clear used sqe to 0.
3210  */
3211 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
3212 {
3213 	struct hisi_qp_status *qp_status = &qp->qp_status;
3214 	u16 sq_tail = qp_status->sq_tail;
3215 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
3216 	void *sqe = qm_get_avail_sqe(qp);
3217 
3218 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
3219 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
3220 		     qp->is_resetting)) {
3221 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
3222 		return -EAGAIN;
3223 	}
3224 
3225 	if (!sqe)
3226 		return -EBUSY;
3227 
3228 	memcpy(sqe, msg, qp->qm->sqe_size);
3229 
3230 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
3231 	atomic_inc(&qp->qp_status.used);
3232 	qp_status->sq_tail = sq_tail_next;
3233 
3234 	return 0;
3235 }
3236 EXPORT_SYMBOL_GPL(hisi_qp_send);
3237 
3238 static void hisi_qm_cache_wb(struct hisi_qm *qm)
3239 {
3240 	unsigned int val;
3241 
3242 	if (qm->ver == QM_HW_V1)
3243 		return;
3244 
3245 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
3246 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
3247 				       val, val & BIT(0), POLL_PERIOD,
3248 				       POLL_TIMEOUT))
3249 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
3250 }
3251 
3252 static void qm_qp_event_notifier(struct hisi_qp *qp)
3253 {
3254 	wake_up_interruptible(&qp->uacce_q->wait);
3255 }
3256 
3257  /* This function returns free number of qp in qm. */
3258 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
3259 {
3260 	struct hisi_qm *qm = uacce->priv;
3261 	int ret;
3262 
3263 	down_read(&qm->qps_lock);
3264 	ret = qm->qp_num - qm->qp_in_used;
3265 	up_read(&qm->qps_lock);
3266 
3267 	return ret;
3268 }
3269 
3270 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
3271 {
3272 	int i;
3273 
3274 	for (i = 0; i < qm->qp_num; i++)
3275 		qm_set_qp_disable(&qm->qp_array[i], offset);
3276 }
3277 
3278 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
3279 				   unsigned long arg,
3280 				   struct uacce_queue *q)
3281 {
3282 	struct hisi_qm *qm = uacce->priv;
3283 	struct hisi_qp *qp;
3284 	u8 alg_type = 0;
3285 
3286 	qp = hisi_qm_create_qp(qm, alg_type);
3287 	if (IS_ERR(qp))
3288 		return PTR_ERR(qp);
3289 
3290 	q->priv = qp;
3291 	q->uacce = uacce;
3292 	qp->uacce_q = q;
3293 	qp->event_cb = qm_qp_event_notifier;
3294 	qp->pasid = arg;
3295 	qp->is_in_kernel = false;
3296 
3297 	return 0;
3298 }
3299 
3300 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
3301 {
3302 	struct hisi_qp *qp = q->priv;
3303 
3304 	hisi_qm_release_qp(qp);
3305 }
3306 
3307 /* map sq/cq/doorbell to user space */
3308 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
3309 			      struct vm_area_struct *vma,
3310 			      struct uacce_qfile_region *qfr)
3311 {
3312 	struct hisi_qp *qp = q->priv;
3313 	struct hisi_qm *qm = qp->qm;
3314 	resource_size_t phys_base = qm->db_phys_base +
3315 				    qp->qp_id * qm->db_interval;
3316 	size_t sz = vma->vm_end - vma->vm_start;
3317 	struct pci_dev *pdev = qm->pdev;
3318 	struct device *dev = &pdev->dev;
3319 	unsigned long vm_pgoff;
3320 	int ret;
3321 
3322 	switch (qfr->type) {
3323 	case UACCE_QFRT_MMIO:
3324 		if (qm->ver == QM_HW_V1) {
3325 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
3326 				return -EINVAL;
3327 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
3328 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
3329 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
3330 				return -EINVAL;
3331 		} else {
3332 			if (sz > qm->db_interval)
3333 				return -EINVAL;
3334 		}
3335 
3336 		vma->vm_flags |= VM_IO;
3337 
3338 		return remap_pfn_range(vma, vma->vm_start,
3339 				       phys_base >> PAGE_SHIFT,
3340 				       sz, pgprot_noncached(vma->vm_page_prot));
3341 	case UACCE_QFRT_DUS:
3342 		if (sz != qp->qdma.size)
3343 			return -EINVAL;
3344 
3345 		/*
3346 		 * dma_mmap_coherent() requires vm_pgoff as 0
3347 		 * restore vm_pfoff to initial value for mmap()
3348 		 */
3349 		vm_pgoff = vma->vm_pgoff;
3350 		vma->vm_pgoff = 0;
3351 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
3352 					qp->qdma.dma, sz);
3353 		vma->vm_pgoff = vm_pgoff;
3354 		return ret;
3355 
3356 	default:
3357 		return -EINVAL;
3358 	}
3359 }
3360 
3361 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
3362 {
3363 	struct hisi_qp *qp = q->priv;
3364 
3365 	return hisi_qm_start_qp(qp, qp->pasid);
3366 }
3367 
3368 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
3369 {
3370 	hisi_qm_stop_qp(q->priv);
3371 }
3372 
3373 static int hisi_qm_is_q_updated(struct uacce_queue *q)
3374 {
3375 	struct hisi_qp *qp = q->priv;
3376 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
3377 	int updated = 0;
3378 
3379 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
3380 		/* make sure to read data from memory */
3381 		dma_rmb();
3382 		qm_cq_head_update(qp);
3383 		cqe = qp->cqe + qp->qp_status.cq_head;
3384 		updated = 1;
3385 	}
3386 
3387 	return updated;
3388 }
3389 
3390 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
3391 {
3392 	struct hisi_qm *qm = q->uacce->priv;
3393 	struct hisi_qp *qp = q->priv;
3394 
3395 	down_write(&qm->qps_lock);
3396 	qp->alg_type = type;
3397 	up_write(&qm->qps_lock);
3398 }
3399 
3400 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
3401 				unsigned long arg)
3402 {
3403 	struct hisi_qp *qp = q->priv;
3404 	struct hisi_qp_info qp_info;
3405 	struct hisi_qp_ctx qp_ctx;
3406 
3407 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
3408 		if (copy_from_user(&qp_ctx, (void __user *)arg,
3409 				   sizeof(struct hisi_qp_ctx)))
3410 			return -EFAULT;
3411 
3412 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
3413 			return -EINVAL;
3414 
3415 		qm_set_sqctype(q, qp_ctx.qc_type);
3416 		qp_ctx.id = qp->qp_id;
3417 
3418 		if (copy_to_user((void __user *)arg, &qp_ctx,
3419 				 sizeof(struct hisi_qp_ctx)))
3420 			return -EFAULT;
3421 
3422 		return 0;
3423 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
3424 		if (copy_from_user(&qp_info, (void __user *)arg,
3425 				   sizeof(struct hisi_qp_info)))
3426 			return -EFAULT;
3427 
3428 		qp_info.sqe_size = qp->qm->sqe_size;
3429 		qp_info.sq_depth = qp->sq_depth;
3430 		qp_info.cq_depth = qp->cq_depth;
3431 
3432 		if (copy_to_user((void __user *)arg, &qp_info,
3433 				  sizeof(struct hisi_qp_info)))
3434 			return -EFAULT;
3435 
3436 		return 0;
3437 	}
3438 
3439 	return -EINVAL;
3440 }
3441 
3442 static const struct uacce_ops uacce_qm_ops = {
3443 	.get_available_instances = hisi_qm_get_available_instances,
3444 	.get_queue = hisi_qm_uacce_get_queue,
3445 	.put_queue = hisi_qm_uacce_put_queue,
3446 	.start_queue = hisi_qm_uacce_start_queue,
3447 	.stop_queue = hisi_qm_uacce_stop_queue,
3448 	.mmap = hisi_qm_uacce_mmap,
3449 	.ioctl = hisi_qm_uacce_ioctl,
3450 	.is_q_updated = hisi_qm_is_q_updated,
3451 };
3452 
3453 static int qm_alloc_uacce(struct hisi_qm *qm)
3454 {
3455 	struct pci_dev *pdev = qm->pdev;
3456 	struct uacce_device *uacce;
3457 	unsigned long mmio_page_nr;
3458 	unsigned long dus_page_nr;
3459 	u16 sq_depth, cq_depth;
3460 	struct uacce_interface interface = {
3461 		.flags = UACCE_DEV_SVA,
3462 		.ops = &uacce_qm_ops,
3463 	};
3464 	int ret;
3465 
3466 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
3467 		      sizeof(interface.name));
3468 	if (ret < 0)
3469 		return -ENAMETOOLONG;
3470 
3471 	uacce = uacce_alloc(&pdev->dev, &interface);
3472 	if (IS_ERR(uacce))
3473 		return PTR_ERR(uacce);
3474 
3475 	if (uacce->flags & UACCE_DEV_SVA) {
3476 		qm->use_sva = true;
3477 	} else {
3478 		/* only consider sva case */
3479 		uacce_remove(uacce);
3480 		qm->uacce = NULL;
3481 		return -EINVAL;
3482 	}
3483 
3484 	uacce->is_vf = pdev->is_virtfn;
3485 	uacce->priv = qm;
3486 
3487 	if (qm->ver == QM_HW_V1)
3488 		uacce->api_ver = HISI_QM_API_VER_BASE;
3489 	else if (qm->ver == QM_HW_V2)
3490 		uacce->api_ver = HISI_QM_API_VER2_BASE;
3491 	else
3492 		uacce->api_ver = HISI_QM_API_VER3_BASE;
3493 
3494 	if (qm->ver == QM_HW_V1)
3495 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
3496 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
3497 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
3498 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
3499 	else
3500 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
3501 
3502 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
3503 
3504 	/* Add one more page for device or qp status */
3505 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
3506 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
3507 					 PAGE_SHIFT;
3508 
3509 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
3510 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
3511 
3512 	qm->uacce = uacce;
3513 
3514 	return 0;
3515 }
3516 
3517 /**
3518  * qm_frozen() - Try to froze QM to cut continuous queue request. If
3519  * there is user on the QM, return failure without doing anything.
3520  * @qm: The qm needed to be fronzen.
3521  *
3522  * This function frozes QM, then we can do SRIOV disabling.
3523  */
3524 static int qm_frozen(struct hisi_qm *qm)
3525 {
3526 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
3527 		return 0;
3528 
3529 	down_write(&qm->qps_lock);
3530 
3531 	if (!qm->qp_in_used) {
3532 		qm->qp_in_used = qm->qp_num;
3533 		up_write(&qm->qps_lock);
3534 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
3535 		return 0;
3536 	}
3537 
3538 	up_write(&qm->qps_lock);
3539 
3540 	return -EBUSY;
3541 }
3542 
3543 static int qm_try_frozen_vfs(struct pci_dev *pdev,
3544 			     struct hisi_qm_list *qm_list)
3545 {
3546 	struct hisi_qm *qm, *vf_qm;
3547 	struct pci_dev *dev;
3548 	int ret = 0;
3549 
3550 	if (!qm_list || !pdev)
3551 		return -EINVAL;
3552 
3553 	/* Try to frozen all the VFs as disable SRIOV */
3554 	mutex_lock(&qm_list->lock);
3555 	list_for_each_entry(qm, &qm_list->list, list) {
3556 		dev = qm->pdev;
3557 		if (dev == pdev)
3558 			continue;
3559 		if (pci_physfn(dev) == pdev) {
3560 			vf_qm = pci_get_drvdata(dev);
3561 			ret = qm_frozen(vf_qm);
3562 			if (ret)
3563 				goto frozen_fail;
3564 		}
3565 	}
3566 
3567 frozen_fail:
3568 	mutex_unlock(&qm_list->lock);
3569 
3570 	return ret;
3571 }
3572 
3573 /**
3574  * hisi_qm_wait_task_finish() - Wait until the task is finished
3575  * when removing the driver.
3576  * @qm: The qm needed to wait for the task to finish.
3577  * @qm_list: The list of all available devices.
3578  */
3579 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
3580 {
3581 	while (qm_frozen(qm) ||
3582 	       ((qm->fun_type == QM_HW_PF) &&
3583 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
3584 		msleep(WAIT_PERIOD);
3585 	}
3586 
3587 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
3588 	       test_bit(QM_RESETTING, &qm->misc_ctl))
3589 		msleep(WAIT_PERIOD);
3590 
3591 	udelay(REMOVE_WAIT_DELAY);
3592 }
3593 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
3594 
3595 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
3596 {
3597 	struct device *dev = &qm->pdev->dev;
3598 	struct qm_dma *qdma;
3599 	int i;
3600 
3601 	for (i = num - 1; i >= 0; i--) {
3602 		qdma = &qm->qp_array[i].qdma;
3603 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
3604 		kfree(qm->poll_data[i].qp_finish_id);
3605 	}
3606 
3607 	kfree(qm->poll_data);
3608 	kfree(qm->qp_array);
3609 }
3610 
3611 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
3612 			       u16 sq_depth, u16 cq_depth)
3613 {
3614 	struct device *dev = &qm->pdev->dev;
3615 	size_t off = qm->sqe_size * sq_depth;
3616 	struct hisi_qp *qp;
3617 	int ret = -ENOMEM;
3618 
3619 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
3620 						 GFP_KERNEL);
3621 	if (!qm->poll_data[id].qp_finish_id)
3622 		return -ENOMEM;
3623 
3624 	qp = &qm->qp_array[id];
3625 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
3626 					 GFP_KERNEL);
3627 	if (!qp->qdma.va)
3628 		goto err_free_qp_finish_id;
3629 
3630 	qp->sqe = qp->qdma.va;
3631 	qp->sqe_dma = qp->qdma.dma;
3632 	qp->cqe = qp->qdma.va + off;
3633 	qp->cqe_dma = qp->qdma.dma + off;
3634 	qp->qdma.size = dma_size;
3635 	qp->sq_depth = sq_depth;
3636 	qp->cq_depth = cq_depth;
3637 	qp->qm = qm;
3638 	qp->qp_id = id;
3639 
3640 	return 0;
3641 
3642 err_free_qp_finish_id:
3643 	kfree(qm->poll_data[id].qp_finish_id);
3644 	return ret;
3645 }
3646 
3647 static void hisi_qm_pre_init(struct hisi_qm *qm)
3648 {
3649 	struct pci_dev *pdev = qm->pdev;
3650 
3651 	if (qm->ver == QM_HW_V1)
3652 		qm->ops = &qm_hw_ops_v1;
3653 	else if (qm->ver == QM_HW_V2)
3654 		qm->ops = &qm_hw_ops_v2;
3655 	else
3656 		qm->ops = &qm_hw_ops_v3;
3657 
3658 	pci_set_drvdata(pdev, qm);
3659 	mutex_init(&qm->mailbox_lock);
3660 	init_rwsem(&qm->qps_lock);
3661 	qm->qp_in_used = 0;
3662 	qm->misc_ctl = false;
3663 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
3664 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
3665 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
3666 	}
3667 }
3668 
3669 static void qm_cmd_uninit(struct hisi_qm *qm)
3670 {
3671 	u32 val;
3672 
3673 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3674 		return;
3675 
3676 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3677 	val |= QM_IFC_INT_DISABLE;
3678 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3679 }
3680 
3681 static void qm_cmd_init(struct hisi_qm *qm)
3682 {
3683 	u32 val;
3684 
3685 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3686 		return;
3687 
3688 	/* Clear communication interrupt source */
3689 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
3690 
3691 	/* Enable pf to vf communication reg. */
3692 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3693 	val &= ~QM_IFC_INT_DISABLE;
3694 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3695 }
3696 
3697 static void qm_put_pci_res(struct hisi_qm *qm)
3698 {
3699 	struct pci_dev *pdev = qm->pdev;
3700 
3701 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
3702 		iounmap(qm->db_io_base);
3703 
3704 	iounmap(qm->io_base);
3705 	pci_release_mem_regions(pdev);
3706 }
3707 
3708 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
3709 {
3710 	struct pci_dev *pdev = qm->pdev;
3711 
3712 	pci_free_irq_vectors(pdev);
3713 	qm_put_pci_res(qm);
3714 	pci_disable_device(pdev);
3715 }
3716 
3717 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
3718 {
3719 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
3720 		writel(state, qm->io_base + QM_VF_STATE);
3721 }
3722 
3723 static void qm_last_regs_uninit(struct hisi_qm *qm)
3724 {
3725 	struct qm_debug *debug = &qm->debug;
3726 
3727 	if (qm->fun_type == QM_HW_VF || !debug->qm_last_words)
3728 		return;
3729 
3730 	kfree(debug->qm_last_words);
3731 	debug->qm_last_words = NULL;
3732 }
3733 
3734 static void hisi_qm_unint_work(struct hisi_qm *qm)
3735 {
3736 	destroy_workqueue(qm->wq);
3737 }
3738 
3739 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
3740 {
3741 	struct device *dev = &qm->pdev->dev;
3742 
3743 	hisi_qp_memory_uninit(qm, qm->qp_num);
3744 	if (qm->qdma.va) {
3745 		hisi_qm_cache_wb(qm);
3746 		dma_free_coherent(dev, qm->qdma.size,
3747 				  qm->qdma.va, qm->qdma.dma);
3748 	}
3749 
3750 	idr_destroy(&qm->qp_idr);
3751 
3752 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3753 		kfree(qm->factor);
3754 }
3755 
3756 /**
3757  * hisi_qm_uninit() - Uninitialize qm.
3758  * @qm: The qm needed uninit.
3759  *
3760  * This function uninits qm related device resources.
3761  */
3762 void hisi_qm_uninit(struct hisi_qm *qm)
3763 {
3764 	qm_last_regs_uninit(qm);
3765 
3766 	qm_cmd_uninit(qm);
3767 	hisi_qm_unint_work(qm);
3768 	down_write(&qm->qps_lock);
3769 
3770 	if (!qm_avail_state(qm, QM_CLOSE)) {
3771 		up_write(&qm->qps_lock);
3772 		return;
3773 	}
3774 
3775 	hisi_qm_memory_uninit(qm);
3776 	hisi_qm_set_state(qm, QM_NOT_READY);
3777 	up_write(&qm->qps_lock);
3778 
3779 	qm_irqs_unregister(qm);
3780 	hisi_qm_pci_uninit(qm);
3781 	if (qm->use_sva) {
3782 		uacce_remove(qm->uacce);
3783 		qm->uacce = NULL;
3784 	}
3785 }
3786 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
3787 
3788 /**
3789  * hisi_qm_get_vft() - Get vft from a qm.
3790  * @qm: The qm we want to get its vft.
3791  * @base: The base number of queue in vft.
3792  * @number: The number of queues in vft.
3793  *
3794  * We can allocate multiple queues to a qm by configuring virtual function
3795  * table. We get related configures by this function. Normally, we call this
3796  * function in VF driver to get the queue information.
3797  *
3798  * qm hw v1 does not support this interface.
3799  */
3800 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
3801 {
3802 	if (!base || !number)
3803 		return -EINVAL;
3804 
3805 	if (!qm->ops->get_vft) {
3806 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
3807 		return -EINVAL;
3808 	}
3809 
3810 	return qm->ops->get_vft(qm, base, number);
3811 }
3812 
3813 /**
3814  * hisi_qm_set_vft() - Set vft to a qm.
3815  * @qm: The qm we want to set its vft.
3816  * @fun_num: The function number.
3817  * @base: The base number of queue in vft.
3818  * @number: The number of queues in vft.
3819  *
3820  * This function is alway called in PF driver, it is used to assign queues
3821  * among PF and VFs.
3822  *
3823  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
3824  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
3825  * (VF function number 0x2)
3826  */
3827 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
3828 		    u32 number)
3829 {
3830 	u32 max_q_num = qm->ctrl_qp_num;
3831 
3832 	if (base >= max_q_num || number > max_q_num ||
3833 	    (base + number) > max_q_num)
3834 		return -EINVAL;
3835 
3836 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
3837 }
3838 
3839 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
3840 {
3841 	struct hisi_qm_status *status = &qm->status;
3842 
3843 	status->eq_head = 0;
3844 	status->aeq_head = 0;
3845 	status->eqc_phase = true;
3846 	status->aeqc_phase = true;
3847 }
3848 
3849 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
3850 {
3851 	/* Clear eq/aeq interrupt source */
3852 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
3853 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
3854 
3855 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
3856 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
3857 }
3858 
3859 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
3860 {
3861 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
3862 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3863 }
3864 
3865 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3866 {
3867 	struct device *dev = &qm->pdev->dev;
3868 	struct qm_eqc *eqc;
3869 	dma_addr_t eqc_dma;
3870 	int ret;
3871 
3872 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
3873 	if (!eqc)
3874 		return -ENOMEM;
3875 
3876 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3877 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3878 	if (qm->ver == QM_HW_V1)
3879 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3880 	eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3881 
3882 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
3883 				 DMA_TO_DEVICE);
3884 	if (dma_mapping_error(dev, eqc_dma)) {
3885 		kfree(eqc);
3886 		return -ENOMEM;
3887 	}
3888 
3889 	ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
3890 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
3891 	kfree(eqc);
3892 
3893 	return ret;
3894 }
3895 
3896 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3897 {
3898 	struct device *dev = &qm->pdev->dev;
3899 	struct qm_aeqc *aeqc;
3900 	dma_addr_t aeqc_dma;
3901 	int ret;
3902 
3903 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
3904 	if (!aeqc)
3905 		return -ENOMEM;
3906 
3907 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3908 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3909 	aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3910 
3911 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
3912 				  DMA_TO_DEVICE);
3913 	if (dma_mapping_error(dev, aeqc_dma)) {
3914 		kfree(aeqc);
3915 		return -ENOMEM;
3916 	}
3917 
3918 	ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
3919 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
3920 	kfree(aeqc);
3921 
3922 	return ret;
3923 }
3924 
3925 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3926 {
3927 	struct device *dev = &qm->pdev->dev;
3928 	int ret;
3929 
3930 	qm_init_eq_aeq_status(qm);
3931 
3932 	ret = qm_eq_ctx_cfg(qm);
3933 	if (ret) {
3934 		dev_err(dev, "Set eqc failed!\n");
3935 		return ret;
3936 	}
3937 
3938 	return qm_aeq_ctx_cfg(qm);
3939 }
3940 
3941 static int __hisi_qm_start(struct hisi_qm *qm)
3942 {
3943 	int ret;
3944 
3945 	WARN_ON(!qm->qdma.va);
3946 
3947 	if (qm->fun_type == QM_HW_PF) {
3948 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3949 		if (ret)
3950 			return ret;
3951 	}
3952 
3953 	ret = qm_eq_aeq_ctx_cfg(qm);
3954 	if (ret)
3955 		return ret;
3956 
3957 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3958 	if (ret)
3959 		return ret;
3960 
3961 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3962 	if (ret)
3963 		return ret;
3964 
3965 	qm_init_prefetch(qm);
3966 	qm_enable_eq_aeq_interrupts(qm);
3967 
3968 	return 0;
3969 }
3970 
3971 /**
3972  * hisi_qm_start() - start qm
3973  * @qm: The qm to be started.
3974  *
3975  * This function starts a qm, then we can allocate qp from this qm.
3976  */
3977 int hisi_qm_start(struct hisi_qm *qm)
3978 {
3979 	struct device *dev = &qm->pdev->dev;
3980 	int ret = 0;
3981 
3982 	down_write(&qm->qps_lock);
3983 
3984 	if (!qm_avail_state(qm, QM_START)) {
3985 		up_write(&qm->qps_lock);
3986 		return -EPERM;
3987 	}
3988 
3989 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3990 
3991 	if (!qm->qp_num) {
3992 		dev_err(dev, "qp_num should not be 0\n");
3993 		ret = -EINVAL;
3994 		goto err_unlock;
3995 	}
3996 
3997 	ret = __hisi_qm_start(qm);
3998 	if (!ret)
3999 		atomic_set(&qm->status.flags, QM_START);
4000 
4001 	hisi_qm_set_state(qm, QM_READY);
4002 err_unlock:
4003 	up_write(&qm->qps_lock);
4004 	return ret;
4005 }
4006 EXPORT_SYMBOL_GPL(hisi_qm_start);
4007 
4008 static int qm_restart(struct hisi_qm *qm)
4009 {
4010 	struct device *dev = &qm->pdev->dev;
4011 	struct hisi_qp *qp;
4012 	int ret, i;
4013 
4014 	ret = hisi_qm_start(qm);
4015 	if (ret < 0)
4016 		return ret;
4017 
4018 	down_write(&qm->qps_lock);
4019 	for (i = 0; i < qm->qp_num; i++) {
4020 		qp = &qm->qp_array[i];
4021 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
4022 		    qp->is_resetting == true) {
4023 			ret = qm_start_qp_nolock(qp, 0);
4024 			if (ret < 0) {
4025 				dev_err(dev, "Failed to start qp%d!\n", i);
4026 
4027 				up_write(&qm->qps_lock);
4028 				return ret;
4029 			}
4030 			qp->is_resetting = false;
4031 		}
4032 	}
4033 	up_write(&qm->qps_lock);
4034 
4035 	return 0;
4036 }
4037 
4038 /* Stop started qps in reset flow */
4039 static int qm_stop_started_qp(struct hisi_qm *qm)
4040 {
4041 	struct device *dev = &qm->pdev->dev;
4042 	struct hisi_qp *qp;
4043 	int i, ret;
4044 
4045 	for (i = 0; i < qm->qp_num; i++) {
4046 		qp = &qm->qp_array[i];
4047 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
4048 			qp->is_resetting = true;
4049 			ret = qm_stop_qp_nolock(qp);
4050 			if (ret < 0) {
4051 				dev_err(dev, "Failed to stop qp%d!\n", i);
4052 				return ret;
4053 			}
4054 		}
4055 	}
4056 
4057 	return 0;
4058 }
4059 
4060 
4061 /**
4062  * qm_clear_queues() - Clear all queues memory in a qm.
4063  * @qm: The qm in which the queues will be cleared.
4064  *
4065  * This function clears all queues memory in a qm. Reset of accelerator can
4066  * use this to clear queues.
4067  */
4068 static void qm_clear_queues(struct hisi_qm *qm)
4069 {
4070 	struct hisi_qp *qp;
4071 	int i;
4072 
4073 	for (i = 0; i < qm->qp_num; i++) {
4074 		qp = &qm->qp_array[i];
4075 		if (qp->is_in_kernel && qp->is_resetting)
4076 			memset(qp->qdma.va, 0, qp->qdma.size);
4077 	}
4078 
4079 	memset(qm->qdma.va, 0, qm->qdma.size);
4080 }
4081 
4082 /**
4083  * hisi_qm_stop() - Stop a qm.
4084  * @qm: The qm which will be stopped.
4085  * @r: The reason to stop qm.
4086  *
4087  * This function stops qm and its qps, then qm can not accept request.
4088  * Related resources are not released at this state, we can use hisi_qm_start
4089  * to let qm start again.
4090  */
4091 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
4092 {
4093 	struct device *dev = &qm->pdev->dev;
4094 	int ret = 0;
4095 
4096 	down_write(&qm->qps_lock);
4097 
4098 	qm->status.stop_reason = r;
4099 	if (!qm_avail_state(qm, QM_STOP)) {
4100 		ret = -EPERM;
4101 		goto err_unlock;
4102 	}
4103 
4104 	if (qm->status.stop_reason == QM_SOFT_RESET ||
4105 	    qm->status.stop_reason == QM_FLR) {
4106 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4107 		ret = qm_stop_started_qp(qm);
4108 		if (ret < 0) {
4109 			dev_err(dev, "Failed to stop started qp!\n");
4110 			goto err_unlock;
4111 		}
4112 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4113 	}
4114 
4115 	qm_disable_eq_aeq_interrupts(qm);
4116 	if (qm->fun_type == QM_HW_PF) {
4117 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
4118 		if (ret < 0) {
4119 			dev_err(dev, "Failed to set vft!\n");
4120 			ret = -EBUSY;
4121 			goto err_unlock;
4122 		}
4123 	}
4124 
4125 	qm_clear_queues(qm);
4126 	atomic_set(&qm->status.flags, QM_STOP);
4127 
4128 err_unlock:
4129 	up_write(&qm->qps_lock);
4130 	return ret;
4131 }
4132 EXPORT_SYMBOL_GPL(hisi_qm_stop);
4133 
4134 static ssize_t qm_status_read(struct file *filp, char __user *buffer,
4135 			      size_t count, loff_t *pos)
4136 {
4137 	struct hisi_qm *qm = filp->private_data;
4138 	char buf[QM_DBG_READ_LEN];
4139 	int val, len;
4140 
4141 	val = atomic_read(&qm->status.flags);
4142 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]);
4143 
4144 	return simple_read_from_buffer(buffer, count, pos, buf, len);
4145 }
4146 
4147 static const struct file_operations qm_status_fops = {
4148 	.owner = THIS_MODULE,
4149 	.open = simple_open,
4150 	.read = qm_status_read,
4151 };
4152 
4153 static int qm_debugfs_atomic64_set(void *data, u64 val)
4154 {
4155 	if (val)
4156 		return -EINVAL;
4157 
4158 	atomic64_set((atomic64_t *)data, 0);
4159 
4160 	return 0;
4161 }
4162 
4163 static int qm_debugfs_atomic64_get(void *data, u64 *val)
4164 {
4165 	*val = atomic64_read((atomic64_t *)data);
4166 
4167 	return 0;
4168 }
4169 
4170 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get,
4171 			 qm_debugfs_atomic64_set, "%llu\n");
4172 
4173 static void qm_hw_error_init(struct hisi_qm *qm)
4174 {
4175 	if (!qm->ops->hw_error_init) {
4176 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
4177 		return;
4178 	}
4179 
4180 	qm->ops->hw_error_init(qm);
4181 }
4182 
4183 static void qm_hw_error_uninit(struct hisi_qm *qm)
4184 {
4185 	if (!qm->ops->hw_error_uninit) {
4186 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
4187 		return;
4188 	}
4189 
4190 	qm->ops->hw_error_uninit(qm);
4191 }
4192 
4193 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
4194 {
4195 	if (!qm->ops->hw_error_handle) {
4196 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
4197 		return ACC_ERR_NONE;
4198 	}
4199 
4200 	return qm->ops->hw_error_handle(qm);
4201 }
4202 
4203 /**
4204  * hisi_qm_dev_err_init() - Initialize device error configuration.
4205  * @qm: The qm for which we want to do error initialization.
4206  *
4207  * Initialize QM and device error related configuration.
4208  */
4209 void hisi_qm_dev_err_init(struct hisi_qm *qm)
4210 {
4211 	if (qm->fun_type == QM_HW_VF)
4212 		return;
4213 
4214 	qm_hw_error_init(qm);
4215 
4216 	if (!qm->err_ini->hw_err_enable) {
4217 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
4218 		return;
4219 	}
4220 	qm->err_ini->hw_err_enable(qm);
4221 }
4222 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
4223 
4224 /**
4225  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
4226  * @qm: The qm for which we want to do error uninitialization.
4227  *
4228  * Uninitialize QM and device error related configuration.
4229  */
4230 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
4231 {
4232 	if (qm->fun_type == QM_HW_VF)
4233 		return;
4234 
4235 	qm_hw_error_uninit(qm);
4236 
4237 	if (!qm->err_ini->hw_err_disable) {
4238 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
4239 		return;
4240 	}
4241 	qm->err_ini->hw_err_disable(qm);
4242 }
4243 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
4244 
4245 /**
4246  * hisi_qm_free_qps() - free multiple queue pairs.
4247  * @qps: The queue pairs need to be freed.
4248  * @qp_num: The num of queue pairs.
4249  */
4250 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
4251 {
4252 	int i;
4253 
4254 	if (!qps || qp_num <= 0)
4255 		return;
4256 
4257 	for (i = qp_num - 1; i >= 0; i--)
4258 		hisi_qm_release_qp(qps[i]);
4259 }
4260 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
4261 
4262 static void free_list(struct list_head *head)
4263 {
4264 	struct hisi_qm_resource *res, *tmp;
4265 
4266 	list_for_each_entry_safe(res, tmp, head, list) {
4267 		list_del(&res->list);
4268 		kfree(res);
4269 	}
4270 }
4271 
4272 static int hisi_qm_sort_devices(int node, struct list_head *head,
4273 				struct hisi_qm_list *qm_list)
4274 {
4275 	struct hisi_qm_resource *res, *tmp;
4276 	struct hisi_qm *qm;
4277 	struct list_head *n;
4278 	struct device *dev;
4279 	int dev_node;
4280 
4281 	list_for_each_entry(qm, &qm_list->list, list) {
4282 		dev = &qm->pdev->dev;
4283 
4284 		dev_node = dev_to_node(dev);
4285 		if (dev_node < 0)
4286 			dev_node = 0;
4287 
4288 		res = kzalloc(sizeof(*res), GFP_KERNEL);
4289 		if (!res)
4290 			return -ENOMEM;
4291 
4292 		res->qm = qm;
4293 		res->distance = node_distance(dev_node, node);
4294 		n = head;
4295 		list_for_each_entry(tmp, head, list) {
4296 			if (res->distance < tmp->distance) {
4297 				n = &tmp->list;
4298 				break;
4299 			}
4300 		}
4301 		list_add_tail(&res->list, n);
4302 	}
4303 
4304 	return 0;
4305 }
4306 
4307 /**
4308  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
4309  * @qm_list: The list of all available devices.
4310  * @qp_num: The number of queue pairs need created.
4311  * @alg_type: The algorithm type.
4312  * @node: The numa node.
4313  * @qps: The queue pairs need created.
4314  *
4315  * This function will sort all available device according to numa distance.
4316  * Then try to create all queue pairs from one device, if all devices do
4317  * not meet the requirements will return error.
4318  */
4319 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
4320 			   u8 alg_type, int node, struct hisi_qp **qps)
4321 {
4322 	struct hisi_qm_resource *tmp;
4323 	int ret = -ENODEV;
4324 	LIST_HEAD(head);
4325 	int i;
4326 
4327 	if (!qps || !qm_list || qp_num <= 0)
4328 		return -EINVAL;
4329 
4330 	mutex_lock(&qm_list->lock);
4331 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
4332 		mutex_unlock(&qm_list->lock);
4333 		goto err;
4334 	}
4335 
4336 	list_for_each_entry(tmp, &head, list) {
4337 		for (i = 0; i < qp_num; i++) {
4338 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
4339 			if (IS_ERR(qps[i])) {
4340 				hisi_qm_free_qps(qps, i);
4341 				break;
4342 			}
4343 		}
4344 
4345 		if (i == qp_num) {
4346 			ret = 0;
4347 			break;
4348 		}
4349 	}
4350 
4351 	mutex_unlock(&qm_list->lock);
4352 	if (ret)
4353 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
4354 			node, alg_type, qp_num);
4355 
4356 err:
4357 	free_list(&head);
4358 	return ret;
4359 }
4360 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
4361 
4362 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
4363 {
4364 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
4365 	u32 max_qp_num = qm->max_qp_num;
4366 	u32 q_base = qm->qp_num;
4367 	int ret;
4368 
4369 	if (!num_vfs)
4370 		return -EINVAL;
4371 
4372 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
4373 
4374 	/* If vfs_q_num is less than num_vfs, return error. */
4375 	if (vfs_q_num < num_vfs)
4376 		return -EINVAL;
4377 
4378 	q_num = vfs_q_num / num_vfs;
4379 	remain_q_num = vfs_q_num % num_vfs;
4380 
4381 	for (i = num_vfs; i > 0; i--) {
4382 		/*
4383 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
4384 		 * remaining queues equally.
4385 		 */
4386 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
4387 			act_q_num = q_num + remain_q_num;
4388 			remain_q_num = 0;
4389 		} else if (remain_q_num > 0) {
4390 			act_q_num = q_num + 1;
4391 			remain_q_num--;
4392 		} else {
4393 			act_q_num = q_num;
4394 		}
4395 
4396 		act_q_num = min_t(int, act_q_num, max_qp_num);
4397 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
4398 		if (ret) {
4399 			for (j = num_vfs; j > i; j--)
4400 				hisi_qm_set_vft(qm, j, 0, 0);
4401 			return ret;
4402 		}
4403 		q_base += act_q_num;
4404 	}
4405 
4406 	return 0;
4407 }
4408 
4409 static int qm_clear_vft_config(struct hisi_qm *qm)
4410 {
4411 	int ret;
4412 	u32 i;
4413 
4414 	for (i = 1; i <= qm->vfs_num; i++) {
4415 		ret = hisi_qm_set_vft(qm, i, 0, 0);
4416 		if (ret)
4417 			return ret;
4418 	}
4419 	qm->vfs_num = 0;
4420 
4421 	return 0;
4422 }
4423 
4424 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
4425 {
4426 	struct device *dev = &qm->pdev->dev;
4427 	u32 ir = qos * QM_QOS_RATE;
4428 	int ret, total_vfs, i;
4429 
4430 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
4431 	if (fun_index > total_vfs)
4432 		return -EINVAL;
4433 
4434 	qm->factor[fun_index].func_qos = qos;
4435 
4436 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
4437 	if (ret) {
4438 		dev_err(dev, "failed to calculate shaper parameter!\n");
4439 		return -EINVAL;
4440 	}
4441 
4442 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
4443 		/* The base number of queue reuse for different alg type */
4444 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
4445 		if (ret) {
4446 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
4447 			return -EINVAL;
4448 		}
4449 	}
4450 
4451 	return 0;
4452 }
4453 
4454 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
4455 {
4456 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
4457 	u64 shaper_vft, ir_calc, ir;
4458 	unsigned int val;
4459 	u32 error_rate;
4460 	int ret;
4461 
4462 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
4463 					 val & BIT(0), POLL_PERIOD,
4464 					 POLL_TIMEOUT);
4465 	if (ret)
4466 		return 0;
4467 
4468 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
4469 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
4470 	writel(fun_index, qm->io_base + QM_VFT_CFG);
4471 
4472 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
4473 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
4474 
4475 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
4476 					 val & BIT(0), POLL_PERIOD,
4477 					 POLL_TIMEOUT);
4478 	if (ret)
4479 		return 0;
4480 
4481 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
4482 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
4483 
4484 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
4485 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
4486 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
4487 
4488 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
4489 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
4490 
4491 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
4492 
4493 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
4494 
4495 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
4496 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
4497 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
4498 		return 0;
4499 	}
4500 
4501 	return ir;
4502 }
4503 
4504 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
4505 {
4506 	struct device *dev = &qm->pdev->dev;
4507 	u64 mb_cmd;
4508 	u32 qos;
4509 	int ret;
4510 
4511 	qos = qm_get_shaper_vft_qos(qm, fun_num);
4512 	if (!qos) {
4513 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
4514 		return;
4515 	}
4516 
4517 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
4518 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
4519 	if (ret)
4520 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
4521 }
4522 
4523 static int qm_vf_read_qos(struct hisi_qm *qm)
4524 {
4525 	int cnt = 0;
4526 	int ret = -EINVAL;
4527 
4528 	/* reset mailbox qos val */
4529 	qm->mb_qos = 0;
4530 
4531 	/* vf ping pf to get function qos */
4532 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
4533 	if (ret) {
4534 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
4535 		return ret;
4536 	}
4537 
4538 	while (true) {
4539 		msleep(QM_WAIT_DST_ACK);
4540 		if (qm->mb_qos)
4541 			break;
4542 
4543 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
4544 			pci_err(qm->pdev, "PF ping VF timeout!\n");
4545 			return  -ETIMEDOUT;
4546 		}
4547 	}
4548 
4549 	return ret;
4550 }
4551 
4552 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
4553 			       size_t count, loff_t *pos)
4554 {
4555 	struct hisi_qm *qm = filp->private_data;
4556 	char tbuf[QM_DBG_READ_LEN];
4557 	u32 qos_val, ir;
4558 	int ret;
4559 
4560 	ret = hisi_qm_get_dfx_access(qm);
4561 	if (ret)
4562 		return ret;
4563 
4564 	/* Mailbox and reset cannot be operated at the same time */
4565 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4566 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
4567 		ret = -EAGAIN;
4568 		goto err_put_dfx_access;
4569 	}
4570 
4571 	if (qm->fun_type == QM_HW_PF) {
4572 		ir = qm_get_shaper_vft_qos(qm, 0);
4573 	} else {
4574 		ret = qm_vf_read_qos(qm);
4575 		if (ret)
4576 			goto err_get_status;
4577 		ir = qm->mb_qos;
4578 	}
4579 
4580 	qos_val = ir / QM_QOS_RATE;
4581 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
4582 
4583 	ret =  simple_read_from_buffer(buf, count, pos, tbuf, ret);
4584 
4585 err_get_status:
4586 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4587 err_put_dfx_access:
4588 	hisi_qm_put_dfx_access(qm);
4589 	return ret;
4590 }
4591 
4592 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
4593 			       unsigned long *val,
4594 			       unsigned int *fun_index)
4595 {
4596 	struct bus_type *bus_type = qm->pdev->dev.bus;
4597 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
4598 	char val_buf[QM_DBG_READ_LEN] = {0};
4599 	struct pci_dev *pdev;
4600 	struct device *dev;
4601 	int ret;
4602 
4603 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
4604 	if (ret != QM_QOS_PARAM_NUM)
4605 		return -EINVAL;
4606 
4607 	ret = kstrtoul(val_buf, 10, val);
4608 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
4609 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
4610 		return -EINVAL;
4611 	}
4612 
4613 	dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
4614 	if (!dev) {
4615 		pci_err(qm->pdev, "input pci bdf number is error!\n");
4616 		return -ENODEV;
4617 	}
4618 
4619 	pdev = container_of(dev, struct pci_dev, dev);
4620 
4621 	*fun_index = pdev->devfn;
4622 
4623 	return 0;
4624 }
4625 
4626 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
4627 			       size_t count, loff_t *pos)
4628 {
4629 	struct hisi_qm *qm = filp->private_data;
4630 	char tbuf[QM_DBG_READ_LEN];
4631 	unsigned int fun_index;
4632 	unsigned long val;
4633 	int len, ret;
4634 
4635 	if (*pos != 0)
4636 		return 0;
4637 
4638 	if (count >= QM_DBG_READ_LEN)
4639 		return -ENOSPC;
4640 
4641 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
4642 	if (len < 0)
4643 		return len;
4644 
4645 	tbuf[len] = '\0';
4646 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
4647 	if (ret)
4648 		return ret;
4649 
4650 	/* Mailbox and reset cannot be operated at the same time */
4651 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4652 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
4653 		return -EAGAIN;
4654 	}
4655 
4656 	ret = qm_pm_get_sync(qm);
4657 	if (ret) {
4658 		ret = -EINVAL;
4659 		goto err_get_status;
4660 	}
4661 
4662 	ret = qm_func_shaper_enable(qm, fun_index, val);
4663 	if (ret) {
4664 		pci_err(qm->pdev, "failed to enable function shaper!\n");
4665 		ret = -EINVAL;
4666 		goto err_put_sync;
4667 	}
4668 
4669 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
4670 		 fun_index, val);
4671 	ret = count;
4672 
4673 err_put_sync:
4674 	qm_pm_put_sync(qm);
4675 err_get_status:
4676 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4677 	return ret;
4678 }
4679 
4680 static const struct file_operations qm_algqos_fops = {
4681 	.owner = THIS_MODULE,
4682 	.open = simple_open,
4683 	.read = qm_algqos_read,
4684 	.write = qm_algqos_write,
4685 };
4686 
4687 /**
4688  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
4689  * @qm: The qm for which we want to add debugfs files.
4690  *
4691  * Create function qos debugfs files, VF ping PF to get function qos.
4692  */
4693 static void hisi_qm_set_algqos_init(struct hisi_qm *qm)
4694 {
4695 	if (qm->fun_type == QM_HW_PF)
4696 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
4697 				    qm, &qm_algqos_fops);
4698 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
4699 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
4700 				    qm, &qm_algqos_fops);
4701 }
4702 
4703 /**
4704  * hisi_qm_debug_init() - Initialize qm related debugfs files.
4705  * @qm: The qm for which we want to add debugfs files.
4706  *
4707  * Create qm related debugfs files.
4708  */
4709 void hisi_qm_debug_init(struct hisi_qm *qm)
4710 {
4711 	struct dfx_diff_registers *qm_regs = qm->debug.qm_diff_regs;
4712 	struct qm_dfx *dfx = &qm->debug.dfx;
4713 	struct dentry *qm_d;
4714 	void *data;
4715 	int i;
4716 
4717 	qm_d = debugfs_create_dir("qm", qm->debug.debug_root);
4718 	qm->debug.qm_d = qm_d;
4719 
4720 	/* only show this in PF */
4721 	if (qm->fun_type == QM_HW_PF) {
4722 		qm_create_debugfs_file(qm, qm->debug.debug_root, CURRENT_QM);
4723 		for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++)
4724 			qm_create_debugfs_file(qm, qm->debug.qm_d, i);
4725 	}
4726 
4727 	if (qm_regs)
4728 		debugfs_create_file("diff_regs", 0444, qm->debug.qm_d,
4729 					qm, &qm_diff_regs_fops);
4730 
4731 	debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops);
4732 
4733 	debugfs_create_file("cmd", 0600, qm->debug.qm_d, qm, &qm_cmd_fops);
4734 
4735 	debugfs_create_file("status", 0444, qm->debug.qm_d, qm,
4736 			&qm_status_fops);
4737 	for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) {
4738 		data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset);
4739 		debugfs_create_file(qm_dfx_files[i].name,
4740 			0644,
4741 			qm_d,
4742 			data,
4743 			&qm_atomic64_ops);
4744 	}
4745 
4746 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
4747 		hisi_qm_set_algqos_init(qm);
4748 }
4749 EXPORT_SYMBOL_GPL(hisi_qm_debug_init);
4750 
4751 /**
4752  * hisi_qm_debug_regs_clear() - clear qm debug related registers.
4753  * @qm: The qm for which we want to clear its debug registers.
4754  */
4755 void hisi_qm_debug_regs_clear(struct hisi_qm *qm)
4756 {
4757 	const struct debugfs_reg32 *regs;
4758 	int i;
4759 
4760 	/* clear current_qm */
4761 	writel(0x0, qm->io_base + QM_DFX_MB_CNT_VF);
4762 	writel(0x0, qm->io_base + QM_DFX_DB_CNT_VF);
4763 
4764 	/* clear current_q */
4765 	writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
4766 	writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
4767 
4768 	/*
4769 	 * these registers are reading and clearing, so clear them after
4770 	 * reading them.
4771 	 */
4772 	writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE);
4773 
4774 	regs = qm_dfx_regs;
4775 	for (i = 0; i < CNT_CYC_REGS_NUM; i++) {
4776 		readl(qm->io_base + regs->offset);
4777 		regs++;
4778 	}
4779 
4780 	/* clear clear_enable */
4781 	writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE);
4782 }
4783 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear);
4784 
4785 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
4786 {
4787 	int i;
4788 
4789 	for (i = 1; i <= total_func; i++)
4790 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
4791 }
4792 
4793 /**
4794  * hisi_qm_sriov_enable() - enable virtual functions
4795  * @pdev: the PCIe device
4796  * @max_vfs: the number of virtual functions to enable
4797  *
4798  * Returns the number of enabled VFs. If there are VFs enabled already or
4799  * max_vfs is more than the total number of device can be enabled, returns
4800  * failure.
4801  */
4802 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
4803 {
4804 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4805 	int pre_existing_vfs, num_vfs, total_vfs, ret;
4806 
4807 	ret = qm_pm_get_sync(qm);
4808 	if (ret)
4809 		return ret;
4810 
4811 	total_vfs = pci_sriov_get_totalvfs(pdev);
4812 	pre_existing_vfs = pci_num_vf(pdev);
4813 	if (pre_existing_vfs) {
4814 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
4815 			pre_existing_vfs);
4816 		goto err_put_sync;
4817 	}
4818 
4819 	if (max_vfs > total_vfs) {
4820 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
4821 		ret = -ERANGE;
4822 		goto err_put_sync;
4823 	}
4824 
4825 	num_vfs = max_vfs;
4826 
4827 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
4828 		hisi_qm_init_vf_qos(qm, num_vfs);
4829 
4830 	ret = qm_vf_q_assign(qm, num_vfs);
4831 	if (ret) {
4832 		pci_err(pdev, "Can't assign queues for VF!\n");
4833 		goto err_put_sync;
4834 	}
4835 
4836 	qm->vfs_num = num_vfs;
4837 
4838 	ret = pci_enable_sriov(pdev, num_vfs);
4839 	if (ret) {
4840 		pci_err(pdev, "Can't enable VF!\n");
4841 		qm_clear_vft_config(qm);
4842 		goto err_put_sync;
4843 	}
4844 
4845 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
4846 
4847 	return num_vfs;
4848 
4849 err_put_sync:
4850 	qm_pm_put_sync(qm);
4851 	return ret;
4852 }
4853 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
4854 
4855 /**
4856  * hisi_qm_sriov_disable - disable virtual functions
4857  * @pdev: the PCI device.
4858  * @is_frozen: true when all the VFs are frozen.
4859  *
4860  * Return failure if there are VFs assigned already or VF is in used.
4861  */
4862 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
4863 {
4864 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4865 	int ret;
4866 
4867 	if (pci_vfs_assigned(pdev)) {
4868 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
4869 		return -EPERM;
4870 	}
4871 
4872 	/* While VF is in used, SRIOV cannot be disabled. */
4873 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
4874 		pci_err(pdev, "Task is using its VF!\n");
4875 		return -EBUSY;
4876 	}
4877 
4878 	pci_disable_sriov(pdev);
4879 
4880 	ret = qm_clear_vft_config(qm);
4881 	if (ret)
4882 		return ret;
4883 
4884 	qm_pm_put_sync(qm);
4885 
4886 	return 0;
4887 }
4888 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
4889 
4890 /**
4891  * hisi_qm_sriov_configure - configure the number of VFs
4892  * @pdev: The PCI device
4893  * @num_vfs: The number of VFs need enabled
4894  *
4895  * Enable SR-IOV according to num_vfs, 0 means disable.
4896  */
4897 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
4898 {
4899 	if (num_vfs == 0)
4900 		return hisi_qm_sriov_disable(pdev, false);
4901 	else
4902 		return hisi_qm_sriov_enable(pdev, num_vfs);
4903 }
4904 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
4905 
4906 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
4907 {
4908 	u32 err_sts;
4909 
4910 	if (!qm->err_ini->get_dev_hw_err_status) {
4911 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
4912 		return ACC_ERR_NONE;
4913 	}
4914 
4915 	/* get device hardware error status */
4916 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
4917 	if (err_sts) {
4918 		if (err_sts & qm->err_info.ecc_2bits_mask)
4919 			qm->err_status.is_dev_ecc_mbit = true;
4920 
4921 		if (qm->err_ini->log_dev_hw_err)
4922 			qm->err_ini->log_dev_hw_err(qm, err_sts);
4923 
4924 		if (err_sts & qm->err_info.dev_reset_mask)
4925 			return ACC_ERR_NEED_RESET;
4926 
4927 		if (qm->err_ini->clear_dev_hw_err_status)
4928 			qm->err_ini->clear_dev_hw_err_status(qm, err_sts);
4929 	}
4930 
4931 	return ACC_ERR_RECOVERED;
4932 }
4933 
4934 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
4935 {
4936 	enum acc_err_result qm_ret, dev_ret;
4937 
4938 	/* log qm error */
4939 	qm_ret = qm_hw_error_handle(qm);
4940 
4941 	/* log device error */
4942 	dev_ret = qm_dev_err_handle(qm);
4943 
4944 	return (qm_ret == ACC_ERR_NEED_RESET ||
4945 		dev_ret == ACC_ERR_NEED_RESET) ?
4946 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
4947 }
4948 
4949 /**
4950  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
4951  * @pdev: The PCI device which need report error.
4952  * @state: The connectivity between CPU and device.
4953  *
4954  * We register this function into PCIe AER handlers, It will report device or
4955  * qm hardware error status when error occur.
4956  */
4957 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
4958 					  pci_channel_state_t state)
4959 {
4960 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4961 	enum acc_err_result ret;
4962 
4963 	if (pdev->is_virtfn)
4964 		return PCI_ERS_RESULT_NONE;
4965 
4966 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
4967 	if (state == pci_channel_io_perm_failure)
4968 		return PCI_ERS_RESULT_DISCONNECT;
4969 
4970 	ret = qm_process_dev_error(qm);
4971 	if (ret == ACC_ERR_NEED_RESET)
4972 		return PCI_ERS_RESULT_NEED_RESET;
4973 
4974 	return PCI_ERS_RESULT_RECOVERED;
4975 }
4976 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
4977 
4978 static int qm_check_req_recv(struct hisi_qm *qm)
4979 {
4980 	struct pci_dev *pdev = qm->pdev;
4981 	int ret;
4982 	u32 val;
4983 
4984 	if (qm->ver >= QM_HW_V3)
4985 		return 0;
4986 
4987 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
4988 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4989 					 (val == ACC_VENDOR_ID_VALUE),
4990 					 POLL_PERIOD, POLL_TIMEOUT);
4991 	if (ret) {
4992 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
4993 		return ret;
4994 	}
4995 
4996 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
4997 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4998 					 (val == PCI_VENDOR_ID_HUAWEI),
4999 					 POLL_PERIOD, POLL_TIMEOUT);
5000 	if (ret)
5001 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
5002 
5003 	return ret;
5004 }
5005 
5006 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
5007 {
5008 	struct pci_dev *pdev = qm->pdev;
5009 	u16 cmd;
5010 	int i;
5011 
5012 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
5013 	if (set)
5014 		cmd |= PCI_COMMAND_MEMORY;
5015 	else
5016 		cmd &= ~PCI_COMMAND_MEMORY;
5017 
5018 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
5019 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
5020 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
5021 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
5022 			return 0;
5023 
5024 		udelay(1);
5025 	}
5026 
5027 	return -ETIMEDOUT;
5028 }
5029 
5030 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
5031 {
5032 	struct pci_dev *pdev = qm->pdev;
5033 	u16 sriov_ctrl;
5034 	int pos;
5035 	int i;
5036 
5037 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
5038 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
5039 	if (set)
5040 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
5041 	else
5042 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
5043 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
5044 
5045 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
5046 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
5047 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
5048 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
5049 			return 0;
5050 
5051 		udelay(1);
5052 	}
5053 
5054 	return -ETIMEDOUT;
5055 }
5056 
5057 static int qm_vf_reset_prepare(struct hisi_qm *qm,
5058 			       enum qm_stop_reason stop_reason)
5059 {
5060 	struct hisi_qm_list *qm_list = qm->qm_list;
5061 	struct pci_dev *pdev = qm->pdev;
5062 	struct pci_dev *virtfn;
5063 	struct hisi_qm *vf_qm;
5064 	int ret = 0;
5065 
5066 	mutex_lock(&qm_list->lock);
5067 	list_for_each_entry(vf_qm, &qm_list->list, list) {
5068 		virtfn = vf_qm->pdev;
5069 		if (virtfn == pdev)
5070 			continue;
5071 
5072 		if (pci_physfn(virtfn) == pdev) {
5073 			/* save VFs PCIE BAR configuration */
5074 			pci_save_state(virtfn);
5075 
5076 			ret = hisi_qm_stop(vf_qm, stop_reason);
5077 			if (ret)
5078 				goto stop_fail;
5079 		}
5080 	}
5081 
5082 stop_fail:
5083 	mutex_unlock(&qm_list->lock);
5084 	return ret;
5085 }
5086 
5087 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
5088 			   enum qm_stop_reason stop_reason)
5089 {
5090 	struct pci_dev *pdev = qm->pdev;
5091 	int ret;
5092 
5093 	if (!qm->vfs_num)
5094 		return 0;
5095 
5096 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
5097 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
5098 		ret = qm_ping_all_vfs(qm, cmd);
5099 		if (ret)
5100 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
5101 	} else {
5102 		ret = qm_vf_reset_prepare(qm, stop_reason);
5103 		if (ret)
5104 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
5105 	}
5106 
5107 	return ret;
5108 }
5109 
5110 static int qm_controller_reset_prepare(struct hisi_qm *qm)
5111 {
5112 	struct pci_dev *pdev = qm->pdev;
5113 	int ret;
5114 
5115 	ret = qm_reset_prepare_ready(qm);
5116 	if (ret) {
5117 		pci_err(pdev, "Controller reset not ready!\n");
5118 		return ret;
5119 	}
5120 
5121 	/* PF obtains the information of VF by querying the register. */
5122 	qm_cmd_uninit(qm);
5123 
5124 	/* Whether VFs stop successfully, soft reset will continue. */
5125 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
5126 	if (ret)
5127 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
5128 
5129 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
5130 	if (ret) {
5131 		pci_err(pdev, "Fails to stop QM!\n");
5132 		qm_reset_bit_clear(qm);
5133 		return ret;
5134 	}
5135 
5136 	ret = qm_wait_vf_prepare_finish(qm);
5137 	if (ret)
5138 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
5139 
5140 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
5141 
5142 	return 0;
5143 }
5144 
5145 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
5146 {
5147 	u32 nfe_enb = 0;
5148 
5149 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
5150 	if (qm->ver >= QM_HW_V3)
5151 		return;
5152 
5153 	if (!qm->err_status.is_dev_ecc_mbit &&
5154 	    qm->err_status.is_qm_ecc_mbit &&
5155 	    qm->err_ini->close_axi_master_ooo) {
5156 
5157 		qm->err_ini->close_axi_master_ooo(qm);
5158 
5159 	} else if (qm->err_status.is_dev_ecc_mbit &&
5160 		   !qm->err_status.is_qm_ecc_mbit &&
5161 		   !qm->err_ini->close_axi_master_ooo) {
5162 
5163 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
5164 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
5165 		       qm->io_base + QM_RAS_NFE_ENABLE);
5166 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
5167 	}
5168 }
5169 
5170 static int qm_soft_reset(struct hisi_qm *qm)
5171 {
5172 	struct pci_dev *pdev = qm->pdev;
5173 	int ret;
5174 	u32 val;
5175 
5176 	/* Ensure all doorbells and mailboxes received by QM */
5177 	ret = qm_check_req_recv(qm);
5178 	if (ret)
5179 		return ret;
5180 
5181 	if (qm->vfs_num) {
5182 		ret = qm_set_vf_mse(qm, false);
5183 		if (ret) {
5184 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
5185 			return ret;
5186 		}
5187 	}
5188 
5189 	ret = qm->ops->set_msi(qm, false);
5190 	if (ret) {
5191 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
5192 		return ret;
5193 	}
5194 
5195 	qm_dev_ecc_mbit_handle(qm);
5196 
5197 	/* OOO register set and check */
5198 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
5199 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5200 
5201 	/* If bus lock, reset chip */
5202 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
5203 					 val,
5204 					 (val == ACC_MASTER_TRANS_RETURN_RW),
5205 					 POLL_PERIOD, POLL_TIMEOUT);
5206 	if (ret) {
5207 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
5208 		return ret;
5209 	}
5210 
5211 	if (qm->err_ini->close_sva_prefetch)
5212 		qm->err_ini->close_sva_prefetch(qm);
5213 
5214 	ret = qm_set_pf_mse(qm, false);
5215 	if (ret) {
5216 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
5217 		return ret;
5218 	}
5219 
5220 	/* The reset related sub-control registers are not in PCI BAR */
5221 	if (ACPI_HANDLE(&pdev->dev)) {
5222 		unsigned long long value = 0;
5223 		acpi_status s;
5224 
5225 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
5226 					  qm->err_info.acpi_rst,
5227 					  NULL, &value);
5228 		if (ACPI_FAILURE(s)) {
5229 			pci_err(pdev, "NO controller reset method!\n");
5230 			return -EIO;
5231 		}
5232 
5233 		if (value) {
5234 			pci_err(pdev, "Reset step %llu failed!\n", value);
5235 			return -EIO;
5236 		}
5237 	} else {
5238 		pci_err(pdev, "No reset method!\n");
5239 		return -EINVAL;
5240 	}
5241 
5242 	return 0;
5243 }
5244 
5245 static int qm_vf_reset_done(struct hisi_qm *qm)
5246 {
5247 	struct hisi_qm_list *qm_list = qm->qm_list;
5248 	struct pci_dev *pdev = qm->pdev;
5249 	struct pci_dev *virtfn;
5250 	struct hisi_qm *vf_qm;
5251 	int ret = 0;
5252 
5253 	mutex_lock(&qm_list->lock);
5254 	list_for_each_entry(vf_qm, &qm_list->list, list) {
5255 		virtfn = vf_qm->pdev;
5256 		if (virtfn == pdev)
5257 			continue;
5258 
5259 		if (pci_physfn(virtfn) == pdev) {
5260 			/* enable VFs PCIE BAR configuration */
5261 			pci_restore_state(virtfn);
5262 
5263 			ret = qm_restart(vf_qm);
5264 			if (ret)
5265 				goto restart_fail;
5266 		}
5267 	}
5268 
5269 restart_fail:
5270 	mutex_unlock(&qm_list->lock);
5271 	return ret;
5272 }
5273 
5274 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
5275 {
5276 	struct pci_dev *pdev = qm->pdev;
5277 	int ret;
5278 
5279 	if (!qm->vfs_num)
5280 		return 0;
5281 
5282 	ret = qm_vf_q_assign(qm, qm->vfs_num);
5283 	if (ret) {
5284 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
5285 		return ret;
5286 	}
5287 
5288 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
5289 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
5290 		ret = qm_ping_all_vfs(qm, cmd);
5291 		if (ret)
5292 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
5293 	} else {
5294 		ret = qm_vf_reset_done(qm);
5295 		if (ret)
5296 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
5297 	}
5298 
5299 	return ret;
5300 }
5301 
5302 static int qm_dev_hw_init(struct hisi_qm *qm)
5303 {
5304 	return qm->err_ini->hw_init(qm);
5305 }
5306 
5307 static void qm_restart_prepare(struct hisi_qm *qm)
5308 {
5309 	u32 value;
5310 
5311 	if (qm->err_ini->open_sva_prefetch)
5312 		qm->err_ini->open_sva_prefetch(qm);
5313 
5314 	if (qm->ver >= QM_HW_V3)
5315 		return;
5316 
5317 	if (!qm->err_status.is_qm_ecc_mbit &&
5318 	    !qm->err_status.is_dev_ecc_mbit)
5319 		return;
5320 
5321 	/* temporarily close the OOO port used for PEH to write out MSI */
5322 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5323 	writel(value & ~qm->err_info.msi_wr_port,
5324 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5325 
5326 	/* clear dev ecc 2bit error source if having */
5327 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
5328 	if (value && qm->err_ini->clear_dev_hw_err_status)
5329 		qm->err_ini->clear_dev_hw_err_status(qm, value);
5330 
5331 	/* clear QM ecc mbit error source */
5332 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
5333 
5334 	/* clear AM Reorder Buffer ecc mbit source */
5335 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
5336 }
5337 
5338 static void qm_restart_done(struct hisi_qm *qm)
5339 {
5340 	u32 value;
5341 
5342 	if (qm->ver >= QM_HW_V3)
5343 		goto clear_flags;
5344 
5345 	if (!qm->err_status.is_qm_ecc_mbit &&
5346 	    !qm->err_status.is_dev_ecc_mbit)
5347 		return;
5348 
5349 	/* open the OOO port for PEH to write out MSI */
5350 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5351 	value |= qm->err_info.msi_wr_port;
5352 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5353 
5354 clear_flags:
5355 	qm->err_status.is_qm_ecc_mbit = false;
5356 	qm->err_status.is_dev_ecc_mbit = false;
5357 }
5358 
5359 static int qm_controller_reset_done(struct hisi_qm *qm)
5360 {
5361 	struct pci_dev *pdev = qm->pdev;
5362 	int ret;
5363 
5364 	ret = qm->ops->set_msi(qm, true);
5365 	if (ret) {
5366 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
5367 		return ret;
5368 	}
5369 
5370 	ret = qm_set_pf_mse(qm, true);
5371 	if (ret) {
5372 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
5373 		return ret;
5374 	}
5375 
5376 	if (qm->vfs_num) {
5377 		ret = qm_set_vf_mse(qm, true);
5378 		if (ret) {
5379 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
5380 			return ret;
5381 		}
5382 	}
5383 
5384 	ret = qm_dev_hw_init(qm);
5385 	if (ret) {
5386 		pci_err(pdev, "Failed to init device\n");
5387 		return ret;
5388 	}
5389 
5390 	qm_restart_prepare(qm);
5391 	hisi_qm_dev_err_init(qm);
5392 	if (qm->err_ini->open_axi_master_ooo)
5393 		qm->err_ini->open_axi_master_ooo(qm);
5394 
5395 	ret = qm_dev_mem_reset(qm);
5396 	if (ret) {
5397 		pci_err(pdev, "failed to reset device memory\n");
5398 		return ret;
5399 	}
5400 
5401 	ret = qm_restart(qm);
5402 	if (ret) {
5403 		pci_err(pdev, "Failed to start QM!\n");
5404 		return ret;
5405 	}
5406 
5407 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
5408 	if (ret)
5409 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
5410 
5411 	ret = qm_wait_vf_prepare_finish(qm);
5412 	if (ret)
5413 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
5414 
5415 	qm_cmd_init(qm);
5416 	qm_restart_done(qm);
5417 
5418 	qm_reset_bit_clear(qm);
5419 
5420 	return 0;
5421 }
5422 
5423 static void qm_show_last_dfx_regs(struct hisi_qm *qm)
5424 {
5425 	struct qm_debug *debug = &qm->debug;
5426 	struct pci_dev *pdev = qm->pdev;
5427 	u32 val;
5428 	int i;
5429 
5430 	if (qm->fun_type == QM_HW_VF || !debug->qm_last_words)
5431 		return;
5432 
5433 	for (i = 0; i < ARRAY_SIZE(qm_dfx_regs); i++) {
5434 		val = readl_relaxed(qm->io_base + qm_dfx_regs[i].offset);
5435 		if (debug->qm_last_words[i] != val)
5436 			pci_info(pdev, "%s \t= 0x%08x => 0x%08x\n",
5437 			qm_dfx_regs[i].name, debug->qm_last_words[i], val);
5438 	}
5439 }
5440 
5441 static int qm_controller_reset(struct hisi_qm *qm)
5442 {
5443 	struct pci_dev *pdev = qm->pdev;
5444 	int ret;
5445 
5446 	pci_info(pdev, "Controller resetting...\n");
5447 
5448 	ret = qm_controller_reset_prepare(qm);
5449 	if (ret) {
5450 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
5451 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
5452 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
5453 		return ret;
5454 	}
5455 
5456 	qm_show_last_dfx_regs(qm);
5457 	if (qm->err_ini->show_last_dfx_regs)
5458 		qm->err_ini->show_last_dfx_regs(qm);
5459 
5460 	ret = qm_soft_reset(qm);
5461 	if (ret) {
5462 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
5463 		qm_reset_bit_clear(qm);
5464 		return ret;
5465 	}
5466 
5467 	ret = qm_controller_reset_done(qm);
5468 	if (ret) {
5469 		qm_reset_bit_clear(qm);
5470 		return ret;
5471 	}
5472 
5473 	pci_info(pdev, "Controller reset complete\n");
5474 
5475 	return 0;
5476 }
5477 
5478 /**
5479  * hisi_qm_dev_slot_reset() - slot reset
5480  * @pdev: the PCIe device
5481  *
5482  * This function offers QM relate PCIe device reset interface. Drivers which
5483  * use QM can use this function as slot_reset in its struct pci_error_handlers.
5484  */
5485 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
5486 {
5487 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5488 	int ret;
5489 
5490 	if (pdev->is_virtfn)
5491 		return PCI_ERS_RESULT_RECOVERED;
5492 
5493 	/* reset pcie device controller */
5494 	ret = qm_controller_reset(qm);
5495 	if (ret) {
5496 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
5497 		return PCI_ERS_RESULT_DISCONNECT;
5498 	}
5499 
5500 	return PCI_ERS_RESULT_RECOVERED;
5501 }
5502 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
5503 
5504 void hisi_qm_reset_prepare(struct pci_dev *pdev)
5505 {
5506 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
5507 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5508 	u32 delay = 0;
5509 	int ret;
5510 
5511 	hisi_qm_dev_err_uninit(pf_qm);
5512 
5513 	/*
5514 	 * Check whether there is an ECC mbit error, If it occurs, need to
5515 	 * wait for soft reset to fix it.
5516 	 */
5517 	while (qm_check_dev_error(pf_qm)) {
5518 		msleep(++delay);
5519 		if (delay > QM_RESET_WAIT_TIMEOUT)
5520 			return;
5521 	}
5522 
5523 	ret = qm_reset_prepare_ready(qm);
5524 	if (ret) {
5525 		pci_err(pdev, "FLR not ready!\n");
5526 		return;
5527 	}
5528 
5529 	/* PF obtains the information of VF by querying the register. */
5530 	if (qm->fun_type == QM_HW_PF)
5531 		qm_cmd_uninit(qm);
5532 
5533 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR);
5534 	if (ret)
5535 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
5536 
5537 	ret = hisi_qm_stop(qm, QM_FLR);
5538 	if (ret) {
5539 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
5540 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
5541 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
5542 		return;
5543 	}
5544 
5545 	ret = qm_wait_vf_prepare_finish(qm);
5546 	if (ret)
5547 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
5548 
5549 	pci_info(pdev, "FLR resetting...\n");
5550 }
5551 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
5552 
5553 static bool qm_flr_reset_complete(struct pci_dev *pdev)
5554 {
5555 	struct pci_dev *pf_pdev = pci_physfn(pdev);
5556 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
5557 	u32 id;
5558 
5559 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
5560 	if (id == QM_PCI_COMMAND_INVALID) {
5561 		pci_err(pdev, "Device can not be used!\n");
5562 		return false;
5563 	}
5564 
5565 	return true;
5566 }
5567 
5568 void hisi_qm_reset_done(struct pci_dev *pdev)
5569 {
5570 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
5571 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5572 	int ret;
5573 
5574 	if (qm->fun_type == QM_HW_PF) {
5575 		ret = qm_dev_hw_init(qm);
5576 		if (ret) {
5577 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
5578 			goto flr_done;
5579 		}
5580 	}
5581 
5582 	hisi_qm_dev_err_init(pf_qm);
5583 
5584 	ret = qm_restart(qm);
5585 	if (ret) {
5586 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
5587 		goto flr_done;
5588 	}
5589 
5590 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
5591 	if (ret)
5592 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
5593 
5594 	ret = qm_wait_vf_prepare_finish(qm);
5595 	if (ret)
5596 		pci_err(pdev, "failed to start by vfs in FLR!\n");
5597 
5598 flr_done:
5599 	if (qm->fun_type == QM_HW_PF)
5600 		qm_cmd_init(qm);
5601 
5602 	if (qm_flr_reset_complete(pdev))
5603 		pci_info(pdev, "FLR reset complete\n");
5604 
5605 	qm_reset_bit_clear(qm);
5606 }
5607 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
5608 
5609 static irqreturn_t qm_abnormal_irq(int irq, void *data)
5610 {
5611 	struct hisi_qm *qm = data;
5612 	enum acc_err_result ret;
5613 
5614 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
5615 	ret = qm_process_dev_error(qm);
5616 	if (ret == ACC_ERR_NEED_RESET &&
5617 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
5618 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
5619 		schedule_work(&qm->rst_work);
5620 
5621 	return IRQ_HANDLED;
5622 }
5623 
5624 
5625 /**
5626  * hisi_qm_dev_shutdown() - Shutdown device.
5627  * @pdev: The device will be shutdown.
5628  *
5629  * This function will stop qm when OS shutdown or rebooting.
5630  */
5631 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
5632 {
5633 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5634 	int ret;
5635 
5636 	ret = hisi_qm_stop(qm, QM_NORMAL);
5637 	if (ret)
5638 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
5639 }
5640 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
5641 
5642 static void hisi_qm_controller_reset(struct work_struct *rst_work)
5643 {
5644 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
5645 	int ret;
5646 
5647 	ret = qm_pm_get_sync(qm);
5648 	if (ret) {
5649 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
5650 		return;
5651 	}
5652 
5653 	/* reset pcie device controller */
5654 	ret = qm_controller_reset(qm);
5655 	if (ret)
5656 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
5657 
5658 	qm_pm_put_sync(qm);
5659 }
5660 
5661 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
5662 				   enum qm_stop_reason stop_reason)
5663 {
5664 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
5665 	struct pci_dev *pdev = qm->pdev;
5666 	int ret;
5667 
5668 	ret = qm_reset_prepare_ready(qm);
5669 	if (ret) {
5670 		dev_err(&pdev->dev, "reset prepare not ready!\n");
5671 		atomic_set(&qm->status.flags, QM_STOP);
5672 		cmd = QM_VF_PREPARE_FAIL;
5673 		goto err_prepare;
5674 	}
5675 
5676 	ret = hisi_qm_stop(qm, stop_reason);
5677 	if (ret) {
5678 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
5679 		atomic_set(&qm->status.flags, QM_STOP);
5680 		cmd = QM_VF_PREPARE_FAIL;
5681 		goto err_prepare;
5682 	} else {
5683 		goto out;
5684 	}
5685 
5686 err_prepare:
5687 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
5688 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
5689 out:
5690 	pci_save_state(pdev);
5691 	ret = qm_ping_pf(qm, cmd);
5692 	if (ret)
5693 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
5694 }
5695 
5696 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
5697 {
5698 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
5699 	struct pci_dev *pdev = qm->pdev;
5700 	int ret;
5701 
5702 	pci_restore_state(pdev);
5703 	ret = hisi_qm_start(qm);
5704 	if (ret) {
5705 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
5706 		cmd = QM_VF_START_FAIL;
5707 	}
5708 
5709 	qm_cmd_init(qm);
5710 	ret = qm_ping_pf(qm, cmd);
5711 	if (ret)
5712 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
5713 
5714 	qm_reset_bit_clear(qm);
5715 }
5716 
5717 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
5718 {
5719 	struct device *dev = &qm->pdev->dev;
5720 	u32 val, cmd;
5721 	u64 msg;
5722 	int ret;
5723 
5724 	/* Wait for reset to finish */
5725 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
5726 					 val == BIT(0), QM_VF_RESET_WAIT_US,
5727 					 QM_VF_RESET_WAIT_TIMEOUT_US);
5728 	/* hardware completion status should be available by this time */
5729 	if (ret) {
5730 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
5731 		return -ETIMEDOUT;
5732 	}
5733 
5734 	/*
5735 	 * Whether message is got successfully,
5736 	 * VF needs to ack PF by clearing the interrupt.
5737 	 */
5738 	ret = qm_get_mb_cmd(qm, &msg, 0);
5739 	qm_clear_cmd_interrupt(qm, 0);
5740 	if (ret) {
5741 		dev_err(dev, "failed to get msg from PF in reset done!\n");
5742 		return ret;
5743 	}
5744 
5745 	cmd = msg & QM_MB_CMD_DATA_MASK;
5746 	if (cmd != QM_PF_RESET_DONE) {
5747 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
5748 		ret = -EINVAL;
5749 	}
5750 
5751 	return ret;
5752 }
5753 
5754 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
5755 				   enum qm_stop_reason stop_reason)
5756 {
5757 	struct device *dev = &qm->pdev->dev;
5758 	int ret;
5759 
5760 	dev_info(dev, "device reset start...\n");
5761 
5762 	/* The message is obtained by querying the register during resetting */
5763 	qm_cmd_uninit(qm);
5764 	qm_pf_reset_vf_prepare(qm, stop_reason);
5765 
5766 	ret = qm_wait_pf_reset_finish(qm);
5767 	if (ret)
5768 		goto err_get_status;
5769 
5770 	qm_pf_reset_vf_done(qm);
5771 
5772 	dev_info(dev, "device reset done.\n");
5773 
5774 	return;
5775 
5776 err_get_status:
5777 	qm_cmd_init(qm);
5778 	qm_reset_bit_clear(qm);
5779 }
5780 
5781 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
5782 {
5783 	struct device *dev = &qm->pdev->dev;
5784 	u64 msg;
5785 	u32 cmd;
5786 	int ret;
5787 
5788 	/*
5789 	 * Get the msg from source by sending mailbox. Whether message is got
5790 	 * successfully, destination needs to ack source by clearing the interrupt.
5791 	 */
5792 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
5793 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
5794 	if (ret) {
5795 		dev_err(dev, "failed to get msg from source!\n");
5796 		return;
5797 	}
5798 
5799 	cmd = msg & QM_MB_CMD_DATA_MASK;
5800 	switch (cmd) {
5801 	case QM_PF_FLR_PREPARE:
5802 		qm_pf_reset_vf_process(qm, QM_FLR);
5803 		break;
5804 	case QM_PF_SRST_PREPARE:
5805 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
5806 		break;
5807 	case QM_VF_GET_QOS:
5808 		qm_vf_get_qos(qm, fun_num);
5809 		break;
5810 	case QM_PF_SET_QOS:
5811 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
5812 		break;
5813 	default:
5814 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
5815 		break;
5816 	}
5817 }
5818 
5819 static void qm_cmd_process(struct work_struct *cmd_process)
5820 {
5821 	struct hisi_qm *qm = container_of(cmd_process,
5822 					struct hisi_qm, cmd_process);
5823 	u32 vfs_num = qm->vfs_num;
5824 	u64 val;
5825 	u32 i;
5826 
5827 	if (qm->fun_type == QM_HW_PF) {
5828 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
5829 		if (!val)
5830 			return;
5831 
5832 		for (i = 1; i <= vfs_num; i++) {
5833 			if (val & BIT(i))
5834 				qm_handle_cmd_msg(qm, i);
5835 		}
5836 
5837 		return;
5838 	}
5839 
5840 	qm_handle_cmd_msg(qm, 0);
5841 }
5842 
5843 /**
5844  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
5845  * @qm: The qm needs add.
5846  * @qm_list: The qm list.
5847  *
5848  * This function adds qm to qm list, and will register algorithm to
5849  * crypto when the qm list is empty.
5850  */
5851 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
5852 {
5853 	struct device *dev = &qm->pdev->dev;
5854 	int flag = 0;
5855 	int ret = 0;
5856 
5857 	mutex_lock(&qm_list->lock);
5858 	if (list_empty(&qm_list->list))
5859 		flag = 1;
5860 	list_add_tail(&qm->list, &qm_list->list);
5861 	mutex_unlock(&qm_list->lock);
5862 
5863 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
5864 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
5865 		return 0;
5866 	}
5867 
5868 	if (flag) {
5869 		ret = qm_list->register_to_crypto(qm);
5870 		if (ret) {
5871 			mutex_lock(&qm_list->lock);
5872 			list_del(&qm->list);
5873 			mutex_unlock(&qm_list->lock);
5874 		}
5875 	}
5876 
5877 	return ret;
5878 }
5879 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
5880 
5881 /**
5882  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
5883  * qm list.
5884  * @qm: The qm needs delete.
5885  * @qm_list: The qm list.
5886  *
5887  * This function deletes qm from qm list, and will unregister algorithm
5888  * from crypto when the qm list is empty.
5889  */
5890 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
5891 {
5892 	mutex_lock(&qm_list->lock);
5893 	list_del(&qm->list);
5894 	mutex_unlock(&qm_list->lock);
5895 
5896 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
5897 		return;
5898 
5899 	if (list_empty(&qm_list->list))
5900 		qm_list->unregister_from_crypto(qm);
5901 }
5902 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
5903 
5904 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
5905 {
5906 	struct pci_dev *pdev = qm->pdev;
5907 	u32 irq_vector, val;
5908 
5909 	if (qm->fun_type == QM_HW_VF)
5910 		return;
5911 
5912 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
5913 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
5914 		return;
5915 
5916 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5917 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5918 }
5919 
5920 static int qm_register_abnormal_irq(struct hisi_qm *qm)
5921 {
5922 	struct pci_dev *pdev = qm->pdev;
5923 	u32 irq_vector, val;
5924 	int ret;
5925 
5926 	if (qm->fun_type == QM_HW_VF)
5927 		return 0;
5928 
5929 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
5930 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
5931 		return 0;
5932 
5933 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5934 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
5935 	if (ret)
5936 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
5937 
5938 	return ret;
5939 }
5940 
5941 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
5942 {
5943 	struct pci_dev *pdev = qm->pdev;
5944 	u32 irq_vector, val;
5945 
5946 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
5947 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5948 		return;
5949 
5950 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5951 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5952 }
5953 
5954 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
5955 {
5956 	struct pci_dev *pdev = qm->pdev;
5957 	u32 irq_vector, val;
5958 	int ret;
5959 
5960 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
5961 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5962 		return 0;
5963 
5964 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5965 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
5966 	if (ret)
5967 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
5968 
5969 	return ret;
5970 }
5971 
5972 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
5973 {
5974 	struct pci_dev *pdev = qm->pdev;
5975 	u32 irq_vector, val;
5976 
5977 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
5978 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5979 		return;
5980 
5981 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5982 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5983 }
5984 
5985 static int qm_register_aeq_irq(struct hisi_qm *qm)
5986 {
5987 	struct pci_dev *pdev = qm->pdev;
5988 	u32 irq_vector, val;
5989 	int ret;
5990 
5991 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
5992 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5993 		return 0;
5994 
5995 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5996 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), qm_aeq_irq,
5997 						   qm_aeq_thread, 0, qm->dev_name, qm);
5998 	if (ret)
5999 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
6000 
6001 	return ret;
6002 }
6003 
6004 static void qm_unregister_eq_irq(struct hisi_qm *qm)
6005 {
6006 	struct pci_dev *pdev = qm->pdev;
6007 	u32 irq_vector, val;
6008 
6009 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
6010 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
6011 		return;
6012 
6013 	irq_vector = val & QM_IRQ_VECTOR_MASK;
6014 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
6015 }
6016 
6017 static int qm_register_eq_irq(struct hisi_qm *qm)
6018 {
6019 	struct pci_dev *pdev = qm->pdev;
6020 	u32 irq_vector, val;
6021 	int ret;
6022 
6023 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
6024 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
6025 		return 0;
6026 
6027 	irq_vector = val & QM_IRQ_VECTOR_MASK;
6028 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_irq, 0, qm->dev_name, qm);
6029 	if (ret)
6030 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
6031 
6032 	return ret;
6033 }
6034 
6035 static void qm_irqs_unregister(struct hisi_qm *qm)
6036 {
6037 	qm_unregister_mb_cmd_irq(qm);
6038 	qm_unregister_abnormal_irq(qm);
6039 	qm_unregister_aeq_irq(qm);
6040 	qm_unregister_eq_irq(qm);
6041 }
6042 
6043 static int qm_irqs_register(struct hisi_qm *qm)
6044 {
6045 	int ret;
6046 
6047 	ret = qm_register_eq_irq(qm);
6048 	if (ret)
6049 		return ret;
6050 
6051 	ret = qm_register_aeq_irq(qm);
6052 	if (ret)
6053 		goto free_eq_irq;
6054 
6055 	ret = qm_register_abnormal_irq(qm);
6056 	if (ret)
6057 		goto free_aeq_irq;
6058 
6059 	ret = qm_register_mb_cmd_irq(qm);
6060 	if (ret)
6061 		goto free_abnormal_irq;
6062 
6063 	return 0;
6064 
6065 free_abnormal_irq:
6066 	qm_unregister_abnormal_irq(qm);
6067 free_aeq_irq:
6068 	qm_unregister_aeq_irq(qm);
6069 free_eq_irq:
6070 	qm_unregister_eq_irq(qm);
6071 	return ret;
6072 }
6073 
6074 static int qm_get_qp_num(struct hisi_qm *qm)
6075 {
6076 	bool is_db_isolation;
6077 
6078 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
6079 	if (qm->fun_type == QM_HW_VF) {
6080 		if (qm->ver != QM_HW_V1)
6081 			/* v2 starts to support get vft by mailbox */
6082 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
6083 
6084 		return 0;
6085 	}
6086 
6087 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
6088 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
6089 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
6090 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
6091 
6092 	/* check if qp number is valid */
6093 	if (qm->qp_num > qm->max_qp_num) {
6094 		dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n",
6095 			qm->qp_num, qm->max_qp_num);
6096 		return -EINVAL;
6097 	}
6098 
6099 	return 0;
6100 }
6101 
6102 static void qm_get_hw_caps(struct hisi_qm *qm)
6103 {
6104 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
6105 						  qm_cap_info_pf : qm_cap_info_vf;
6106 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
6107 				   ARRAY_SIZE(qm_cap_info_vf);
6108 	u32 val, i;
6109 
6110 	/* Doorbell isolate register is a independent register. */
6111 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
6112 	if (val)
6113 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
6114 
6115 	if (qm->ver >= QM_HW_V3) {
6116 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
6117 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
6118 	}
6119 
6120 	/* Get PF/VF common capbility */
6121 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
6122 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
6123 		if (val)
6124 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
6125 	}
6126 
6127 	/* Get PF/VF different capbility */
6128 	for (i = 0; i < size; i++) {
6129 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
6130 		if (val)
6131 			set_bit(cap_info[i].type, &qm->caps);
6132 	}
6133 }
6134 
6135 static int qm_get_pci_res(struct hisi_qm *qm)
6136 {
6137 	struct pci_dev *pdev = qm->pdev;
6138 	struct device *dev = &pdev->dev;
6139 	int ret;
6140 
6141 	ret = pci_request_mem_regions(pdev, qm->dev_name);
6142 	if (ret < 0) {
6143 		dev_err(dev, "Failed to request mem regions!\n");
6144 		return ret;
6145 	}
6146 
6147 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
6148 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
6149 	if (!qm->io_base) {
6150 		ret = -EIO;
6151 		goto err_request_mem_regions;
6152 	}
6153 
6154 	qm_get_hw_caps(qm);
6155 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
6156 		qm->db_interval = QM_QP_DB_INTERVAL;
6157 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
6158 		qm->db_io_base = ioremap(qm->db_phys_base,
6159 					 pci_resource_len(pdev, PCI_BAR_4));
6160 		if (!qm->db_io_base) {
6161 			ret = -EIO;
6162 			goto err_ioremap;
6163 		}
6164 	} else {
6165 		qm->db_phys_base = qm->phys_base;
6166 		qm->db_io_base = qm->io_base;
6167 		qm->db_interval = 0;
6168 	}
6169 
6170 	ret = qm_get_qp_num(qm);
6171 	if (ret)
6172 		goto err_db_ioremap;
6173 
6174 	return 0;
6175 
6176 err_db_ioremap:
6177 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
6178 		iounmap(qm->db_io_base);
6179 err_ioremap:
6180 	iounmap(qm->io_base);
6181 err_request_mem_regions:
6182 	pci_release_mem_regions(pdev);
6183 	return ret;
6184 }
6185 
6186 static int hisi_qm_pci_init(struct hisi_qm *qm)
6187 {
6188 	struct pci_dev *pdev = qm->pdev;
6189 	struct device *dev = &pdev->dev;
6190 	unsigned int num_vec;
6191 	int ret;
6192 
6193 	ret = pci_enable_device_mem(pdev);
6194 	if (ret < 0) {
6195 		dev_err(dev, "Failed to enable device mem!\n");
6196 		return ret;
6197 	}
6198 
6199 	ret = qm_get_pci_res(qm);
6200 	if (ret)
6201 		goto err_disable_pcidev;
6202 
6203 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
6204 	if (ret < 0)
6205 		goto err_get_pci_res;
6206 	pci_set_master(pdev);
6207 
6208 	num_vec = qm_get_irq_num(qm);
6209 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
6210 	if (ret < 0) {
6211 		dev_err(dev, "Failed to enable MSI vectors!\n");
6212 		goto err_get_pci_res;
6213 	}
6214 
6215 	return 0;
6216 
6217 err_get_pci_res:
6218 	qm_put_pci_res(qm);
6219 err_disable_pcidev:
6220 	pci_disable_device(pdev);
6221 	return ret;
6222 }
6223 
6224 static int hisi_qm_init_work(struct hisi_qm *qm)
6225 {
6226 	int i;
6227 
6228 	for (i = 0; i < qm->qp_num; i++)
6229 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
6230 
6231 	if (qm->fun_type == QM_HW_PF)
6232 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
6233 
6234 	if (qm->ver > QM_HW_V2)
6235 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
6236 
6237 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
6238 				 WQ_UNBOUND, num_online_cpus(),
6239 				 pci_name(qm->pdev));
6240 	if (!qm->wq) {
6241 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
6242 		return -ENOMEM;
6243 	}
6244 
6245 	return 0;
6246 }
6247 
6248 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
6249 {
6250 	struct device *dev = &qm->pdev->dev;
6251 	u16 sq_depth, cq_depth;
6252 	size_t qp_dma_size;
6253 	int i, ret;
6254 
6255 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
6256 	if (!qm->qp_array)
6257 		return -ENOMEM;
6258 
6259 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
6260 	if (!qm->poll_data) {
6261 		kfree(qm->qp_array);
6262 		return -ENOMEM;
6263 	}
6264 
6265 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
6266 
6267 	/* one more page for device or qp statuses */
6268 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
6269 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
6270 	for (i = 0; i < qm->qp_num; i++) {
6271 		qm->poll_data[i].qm = qm;
6272 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
6273 		if (ret)
6274 			goto err_init_qp_mem;
6275 
6276 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
6277 	}
6278 
6279 	return 0;
6280 err_init_qp_mem:
6281 	hisi_qp_memory_uninit(qm, i);
6282 
6283 	return ret;
6284 }
6285 
6286 static int hisi_qm_memory_init(struct hisi_qm *qm)
6287 {
6288 	struct device *dev = &qm->pdev->dev;
6289 	int ret, total_func;
6290 	size_t off = 0;
6291 
6292 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
6293 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
6294 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
6295 		if (!qm->factor)
6296 			return -ENOMEM;
6297 
6298 		/* Only the PF value needs to be initialized */
6299 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
6300 	}
6301 
6302 #define QM_INIT_BUF(qm, type, num) do { \
6303 	(qm)->type = ((qm)->qdma.va + (off)); \
6304 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
6305 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
6306 } while (0)
6307 
6308 	idr_init(&qm->qp_idr);
6309 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
6310 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
6311 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
6312 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
6313 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
6314 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
6315 					 GFP_ATOMIC);
6316 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
6317 	if (!qm->qdma.va) {
6318 		ret = -ENOMEM;
6319 		goto err_destroy_idr;
6320 	}
6321 
6322 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
6323 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
6324 	QM_INIT_BUF(qm, sqc, qm->qp_num);
6325 	QM_INIT_BUF(qm, cqc, qm->qp_num);
6326 
6327 	ret = hisi_qp_alloc_memory(qm);
6328 	if (ret)
6329 		goto err_alloc_qp_array;
6330 
6331 	return 0;
6332 
6333 err_alloc_qp_array:
6334 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
6335 err_destroy_idr:
6336 	idr_destroy(&qm->qp_idr);
6337 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
6338 		kfree(qm->factor);
6339 
6340 	return ret;
6341 }
6342 
6343 static void qm_last_regs_init(struct hisi_qm *qm)
6344 {
6345 	int dfx_regs_num = ARRAY_SIZE(qm_dfx_regs);
6346 	struct qm_debug *debug = &qm->debug;
6347 	int i;
6348 
6349 	if (qm->fun_type == QM_HW_VF)
6350 		return;
6351 
6352 	debug->qm_last_words = kcalloc(dfx_regs_num, sizeof(unsigned int),
6353 								GFP_KERNEL);
6354 	if (!debug->qm_last_words)
6355 		return;
6356 
6357 	for (i = 0; i < dfx_regs_num; i++) {
6358 		debug->qm_last_words[i] = readl_relaxed(qm->io_base +
6359 			qm_dfx_regs[i].offset);
6360 	}
6361 }
6362 
6363 /**
6364  * hisi_qm_init() - Initialize configures about qm.
6365  * @qm: The qm needing init.
6366  *
6367  * This function init qm, then we can call hisi_qm_start to put qm into work.
6368  */
6369 int hisi_qm_init(struct hisi_qm *qm)
6370 {
6371 	struct pci_dev *pdev = qm->pdev;
6372 	struct device *dev = &pdev->dev;
6373 	int ret;
6374 
6375 	hisi_qm_pre_init(qm);
6376 
6377 	ret = hisi_qm_pci_init(qm);
6378 	if (ret)
6379 		return ret;
6380 
6381 	ret = qm_irqs_register(qm);
6382 	if (ret)
6383 		goto err_pci_init;
6384 
6385 	if (qm->fun_type == QM_HW_PF) {
6386 		qm_disable_clock_gate(qm);
6387 		ret = qm_dev_mem_reset(qm);
6388 		if (ret) {
6389 			dev_err(dev, "failed to reset device memory\n");
6390 			goto err_irq_register;
6391 		}
6392 	}
6393 
6394 	if (qm->mode == UACCE_MODE_SVA) {
6395 		ret = qm_alloc_uacce(qm);
6396 		if (ret < 0)
6397 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
6398 	}
6399 
6400 	ret = hisi_qm_memory_init(qm);
6401 	if (ret)
6402 		goto err_alloc_uacce;
6403 
6404 	ret = hisi_qm_init_work(qm);
6405 	if (ret)
6406 		goto err_free_qm_memory;
6407 
6408 	qm_cmd_init(qm);
6409 	atomic_set(&qm->status.flags, QM_INIT);
6410 
6411 	qm_last_regs_init(qm);
6412 
6413 	return 0;
6414 
6415 err_free_qm_memory:
6416 	hisi_qm_memory_uninit(qm);
6417 err_alloc_uacce:
6418 	if (qm->use_sva) {
6419 		uacce_remove(qm->uacce);
6420 		qm->uacce = NULL;
6421 	}
6422 err_irq_register:
6423 	qm_irqs_unregister(qm);
6424 err_pci_init:
6425 	hisi_qm_pci_uninit(qm);
6426 	return ret;
6427 }
6428 EXPORT_SYMBOL_GPL(hisi_qm_init);
6429 
6430 /**
6431  * hisi_qm_get_dfx_access() - Try to get dfx access.
6432  * @qm: pointer to accelerator device.
6433  *
6434  * Try to get dfx access, then user can get message.
6435  *
6436  * If device is in suspended, return failure, otherwise
6437  * bump up the runtime PM usage counter.
6438  */
6439 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
6440 {
6441 	struct device *dev = &qm->pdev->dev;
6442 
6443 	if (pm_runtime_suspended(dev)) {
6444 		dev_info(dev, "can not read/write - device in suspended.\n");
6445 		return -EAGAIN;
6446 	}
6447 
6448 	return qm_pm_get_sync(qm);
6449 }
6450 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
6451 
6452 /**
6453  * hisi_qm_put_dfx_access() - Put dfx access.
6454  * @qm: pointer to accelerator device.
6455  *
6456  * Put dfx access, drop runtime PM usage counter.
6457  */
6458 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
6459 {
6460 	qm_pm_put_sync(qm);
6461 }
6462 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
6463 
6464 /**
6465  * hisi_qm_pm_init() - Initialize qm runtime PM.
6466  * @qm: pointer to accelerator device.
6467  *
6468  * Function that initialize qm runtime PM.
6469  */
6470 void hisi_qm_pm_init(struct hisi_qm *qm)
6471 {
6472 	struct device *dev = &qm->pdev->dev;
6473 
6474 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
6475 		return;
6476 
6477 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
6478 	pm_runtime_use_autosuspend(dev);
6479 	pm_runtime_put_noidle(dev);
6480 }
6481 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
6482 
6483 /**
6484  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
6485  * @qm: pointer to accelerator device.
6486  *
6487  * Function that uninitialize qm runtime PM.
6488  */
6489 void hisi_qm_pm_uninit(struct hisi_qm *qm)
6490 {
6491 	struct device *dev = &qm->pdev->dev;
6492 
6493 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
6494 		return;
6495 
6496 	pm_runtime_get_noresume(dev);
6497 	pm_runtime_dont_use_autosuspend(dev);
6498 }
6499 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
6500 
6501 static int qm_prepare_for_suspend(struct hisi_qm *qm)
6502 {
6503 	struct pci_dev *pdev = qm->pdev;
6504 	int ret;
6505 	u32 val;
6506 
6507 	ret = qm->ops->set_msi(qm, false);
6508 	if (ret) {
6509 		pci_err(pdev, "failed to disable MSI before suspending!\n");
6510 		return ret;
6511 	}
6512 
6513 	/* shutdown OOO register */
6514 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
6515 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
6516 
6517 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
6518 					 val,
6519 					 (val == ACC_MASTER_TRANS_RETURN_RW),
6520 					 POLL_PERIOD, POLL_TIMEOUT);
6521 	if (ret) {
6522 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
6523 		return ret;
6524 	}
6525 
6526 	ret = qm_set_pf_mse(qm, false);
6527 	if (ret)
6528 		pci_err(pdev, "failed to disable MSE before suspending!\n");
6529 
6530 	return ret;
6531 }
6532 
6533 static int qm_rebuild_for_resume(struct hisi_qm *qm)
6534 {
6535 	struct pci_dev *pdev = qm->pdev;
6536 	int ret;
6537 
6538 	ret = qm_set_pf_mse(qm, true);
6539 	if (ret) {
6540 		pci_err(pdev, "failed to enable MSE after resuming!\n");
6541 		return ret;
6542 	}
6543 
6544 	ret = qm->ops->set_msi(qm, true);
6545 	if (ret) {
6546 		pci_err(pdev, "failed to enable MSI after resuming!\n");
6547 		return ret;
6548 	}
6549 
6550 	ret = qm_dev_hw_init(qm);
6551 	if (ret) {
6552 		pci_err(pdev, "failed to init device after resuming\n");
6553 		return ret;
6554 	}
6555 
6556 	qm_cmd_init(qm);
6557 	hisi_qm_dev_err_init(qm);
6558 	qm_disable_clock_gate(qm);
6559 	ret = qm_dev_mem_reset(qm);
6560 	if (ret)
6561 		pci_err(pdev, "failed to reset device memory\n");
6562 
6563 	return ret;
6564 }
6565 
6566 /**
6567  * hisi_qm_suspend() - Runtime suspend of given device.
6568  * @dev: device to suspend.
6569  *
6570  * Function that suspend the device.
6571  */
6572 int hisi_qm_suspend(struct device *dev)
6573 {
6574 	struct pci_dev *pdev = to_pci_dev(dev);
6575 	struct hisi_qm *qm = pci_get_drvdata(pdev);
6576 	int ret;
6577 
6578 	pci_info(pdev, "entering suspended state\n");
6579 
6580 	ret = hisi_qm_stop(qm, QM_NORMAL);
6581 	if (ret) {
6582 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
6583 		return ret;
6584 	}
6585 
6586 	ret = qm_prepare_for_suspend(qm);
6587 	if (ret)
6588 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
6589 
6590 	return ret;
6591 }
6592 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
6593 
6594 /**
6595  * hisi_qm_resume() - Runtime resume of given device.
6596  * @dev: device to resume.
6597  *
6598  * Function that resume the device.
6599  */
6600 int hisi_qm_resume(struct device *dev)
6601 {
6602 	struct pci_dev *pdev = to_pci_dev(dev);
6603 	struct hisi_qm *qm = pci_get_drvdata(pdev);
6604 	int ret;
6605 
6606 	pci_info(pdev, "resuming from suspend state\n");
6607 
6608 	ret = qm_rebuild_for_resume(qm);
6609 	if (ret) {
6610 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
6611 		return ret;
6612 	}
6613 
6614 	ret = hisi_qm_start(qm);
6615 	if (ret)
6616 		pci_err(pdev, "failed to start qm(%d)\n", ret);
6617 
6618 	return ret;
6619 }
6620 EXPORT_SYMBOL_GPL(hisi_qm_resume);
6621 
6622 MODULE_LICENSE("GPL v2");
6623 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
6624 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
6625