xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision 56ea353ea49ad21dd4c14e7baa235493ec27e766)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/idr.h>
9 #include <linux/io.h>
10 #include <linux/irqreturn.h>
11 #include <linux/log2.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include <linux/hisi_acc_qm.h>
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 
26 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
27 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_SHIFT		16
29 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
30 
31 /* mailbox */
32 #define QM_MB_PING_ALL_VFS		0xffff
33 #define QM_MB_CMD_DATA_SHIFT		32
34 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
35 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
36 
37 /* sqc shift */
38 #define QM_SQ_HOP_NUM_SHIFT		0
39 #define QM_SQ_PAGE_SIZE_SHIFT		4
40 #define QM_SQ_BUF_SIZE_SHIFT		8
41 #define QM_SQ_SQE_SIZE_SHIFT		12
42 #define QM_SQ_PRIORITY_SHIFT		0
43 #define QM_SQ_ORDERS_SHIFT		4
44 #define QM_SQ_TYPE_SHIFT		8
45 #define QM_QC_PASID_ENABLE		0x1
46 #define QM_QC_PASID_ENABLE_SHIFT	7
47 
48 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
49 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
50 
51 /* cqc shift */
52 #define QM_CQ_HOP_NUM_SHIFT		0
53 #define QM_CQ_PAGE_SIZE_SHIFT		4
54 #define QM_CQ_BUF_SIZE_SHIFT		8
55 #define QM_CQ_CQE_SIZE_SHIFT		12
56 #define QM_CQ_PHASE_SHIFT		0
57 #define QM_CQ_FLAG_SHIFT		1
58 
59 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
60 #define QM_QC_CQE_SIZE			4
61 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
62 
63 /* eqc shift */
64 #define QM_EQE_AEQE_SIZE		(2UL << 12)
65 #define QM_EQC_PHASE_SHIFT		16
66 
67 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
68 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
69 
70 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
71 #define QM_AEQE_TYPE_SHIFT		17
72 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
73 #define QM_CQ_OVERFLOW			0
74 #define QM_EQ_OVERFLOW			1
75 #define QM_CQE_ERROR			2
76 
77 #define QM_XQ_DEPTH_SHIFT		16
78 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
79 
80 #define QM_DOORBELL_CMD_SQ		0
81 #define QM_DOORBELL_CMD_CQ		1
82 #define QM_DOORBELL_CMD_EQ		2
83 #define QM_DOORBELL_CMD_AEQ		3
84 
85 #define QM_DOORBELL_BASE_V1		0x340
86 #define QM_DB_CMD_SHIFT_V1		16
87 #define QM_DB_INDEX_SHIFT_V1		32
88 #define QM_DB_PRIORITY_SHIFT_V1		48
89 #define QM_PAGE_SIZE			0x0034
90 #define QM_QP_DB_INTERVAL		0x10000
91 
92 #define QM_MEM_START_INIT		0x100040
93 #define QM_MEM_INIT_DONE		0x100044
94 #define QM_VFT_CFG_RDY			0x10006c
95 #define QM_VFT_CFG_OP_WR		0x100058
96 #define QM_VFT_CFG_TYPE			0x10005c
97 #define QM_SQC_VFT			0x0
98 #define QM_CQC_VFT			0x1
99 #define QM_VFT_CFG			0x100060
100 #define QM_VFT_CFG_OP_ENABLE		0x100054
101 #define QM_PM_CTRL			0x100148
102 #define QM_IDLE_DISABLE			BIT(9)
103 
104 #define QM_VFT_CFG_DATA_L		0x100064
105 #define QM_VFT_CFG_DATA_H		0x100068
106 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
107 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
108 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
109 #define QM_SQC_VFT_START_SQN_SHIFT	28
110 #define QM_SQC_VFT_VALID		(1ULL << 44)
111 #define QM_SQC_VFT_SQN_SHIFT		45
112 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
113 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
114 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
115 #define QM_CQC_VFT_VALID		(1ULL << 28)
116 
117 #define QM_SQC_VFT_BASE_SHIFT_V2	28
118 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
119 #define QM_SQC_VFT_NUM_SHIFT_V2		45
120 #define QM_SQC_VFT_NUM_MASK_v2		GENMASK(9, 0)
121 
122 #define QM_DFX_CNT_CLR_CE		0x100118
123 
124 #define QM_ABNORMAL_INT_SOURCE		0x100000
125 #define QM_ABNORMAL_INT_MASK		0x100004
126 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
127 #define QM_ABNORMAL_INT_STATUS		0x100008
128 #define QM_ABNORMAL_INT_SET		0x10000c
129 #define QM_ABNORMAL_INF00		0x100010
130 #define QM_FIFO_OVERFLOW_TYPE		0xc0
131 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
132 #define QM_FIFO_OVERFLOW_VF		0x3f
133 #define QM_ABNORMAL_INF01		0x100014
134 #define QM_DB_TIMEOUT_TYPE		0xc0
135 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
136 #define QM_DB_TIMEOUT_VF		0x3f
137 #define QM_RAS_CE_ENABLE		0x1000ec
138 #define QM_RAS_FE_ENABLE		0x1000f0
139 #define QM_RAS_NFE_ENABLE		0x1000f4
140 #define QM_RAS_CE_THRESHOLD		0x1000f8
141 #define QM_RAS_CE_TIMES_PER_IRQ		1
142 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
143 #define QM_ECC_MBIT			BIT(2)
144 #define QM_DB_TIMEOUT			BIT(10)
145 #define QM_OF_FIFO_OF			BIT(11)
146 
147 #define QM_RESET_WAIT_TIMEOUT		400
148 #define QM_PEH_VENDOR_ID		0x1000d8
149 #define ACC_VENDOR_ID_VALUE		0x5a5a
150 #define QM_PEH_DFX_INFO0		0x1000fc
151 #define QM_PEH_DFX_INFO1		0x100100
152 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
153 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
154 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
155 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
156 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
157 #define ACC_MASTER_TRANS_RETURN_RW	3
158 #define ACC_MASTER_TRANS_RETURN		0x300150
159 #define ACC_MASTER_GLOBAL_CTRL		0x300000
160 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
161 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
162 #define ACC_AM_ROB_ECC_INT_STS		0x300104
163 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
164 #define QM_MSI_CAP_ENABLE		BIT(16)
165 
166 /* interfunction communication */
167 #define QM_IFC_READY_STATUS		0x100128
168 #define QM_IFC_C_STS_M			0x10012C
169 #define QM_IFC_INT_SET_P		0x100130
170 #define QM_IFC_INT_CFG			0x100134
171 #define QM_IFC_INT_SOURCE_P		0x100138
172 #define QM_IFC_INT_SOURCE_V		0x0020
173 #define QM_IFC_INT_MASK			0x0024
174 #define QM_IFC_INT_STATUS		0x0028
175 #define QM_IFC_INT_SET_V		0x002C
176 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
177 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
178 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
179 #define QM_IFC_INT_DISABLE		BIT(0)
180 #define QM_IFC_INT_STATUS_MASK		BIT(0)
181 #define QM_IFC_INT_SET_MASK		BIT(0)
182 #define QM_WAIT_DST_ACK			10
183 #define QM_MAX_PF_WAIT_COUNT		10
184 #define QM_MAX_VF_WAIT_COUNT		40
185 #define QM_VF_RESET_WAIT_US            20000
186 #define QM_VF_RESET_WAIT_CNT           3000
187 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
188 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
189 
190 #define QM_DFX_MB_CNT_VF		0x104010
191 #define QM_DFX_DB_CNT_VF		0x104020
192 #define QM_DFX_SQE_CNT_VF_SQN		0x104030
193 #define QM_DFX_CQE_CNT_VF_CQN		0x104040
194 #define QM_DFX_QN_SHIFT			16
195 #define CURRENT_FUN_MASK		GENMASK(5, 0)
196 #define CURRENT_Q_MASK			GENMASK(31, 16)
197 
198 #define POLL_PERIOD			10
199 #define POLL_TIMEOUT			1000
200 #define WAIT_PERIOD_US_MAX		200
201 #define WAIT_PERIOD_US_MIN		100
202 #define MAX_WAIT_COUNTS			1000
203 #define QM_CACHE_WB_START		0x204
204 #define QM_CACHE_WB_DONE		0x208
205 #define QM_FUNC_CAPS_REG		0x3100
206 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
207 
208 #define PCI_BAR_2			2
209 #define PCI_BAR_4			4
210 #define QM_SQE_DATA_ALIGN_MASK		GENMASK(6, 0)
211 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
212 
213 #define QM_DBG_READ_LEN		256
214 #define QM_DBG_WRITE_LEN		1024
215 #define QM_DBG_TMP_BUF_LEN		22
216 #define QM_PCI_COMMAND_INVALID		~0
217 #define QM_RESET_STOP_TX_OFFSET		1
218 #define QM_RESET_STOP_RX_OFFSET		2
219 
220 #define WAIT_PERIOD			20
221 #define REMOVE_WAIT_DELAY		10
222 #define QM_SQE_ADDR_MASK		GENMASK(7, 0)
223 
224 #define QM_DRIVER_REMOVING		0
225 #define QM_RST_SCHED			1
226 #define QM_RESETTING			2
227 #define QM_QOS_PARAM_NUM		2
228 #define QM_QOS_VAL_NUM			1
229 #define QM_QOS_BDF_PARAM_NUM		4
230 #define QM_QOS_MAX_VAL			1000
231 #define QM_QOS_RATE			100
232 #define QM_QOS_EXPAND_RATE		1000
233 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
234 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
235 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
236 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
237 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
238 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
239 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
240 #define QM_SHAPER_CBS_B			1
241 #define QM_SHAPER_CBS_S			16
242 #define QM_SHAPER_VFT_OFFSET		6
243 #define WAIT_FOR_QOS_VF			100
244 #define QM_QOS_MIN_ERROR_RATE		5
245 #define QM_QOS_TYPICAL_NUM		8
246 #define QM_SHAPER_MIN_CBS_S		8
247 #define QM_QOS_TICK			0x300U
248 #define QM_QOS_DIVISOR_CLK		0x1f40U
249 #define QM_QOS_MAX_CIR_B		200
250 #define QM_QOS_MIN_CIR_B		100
251 #define QM_QOS_MAX_CIR_U		6
252 #define QM_QOS_MAX_CIR_S		11
253 #define QM_QOS_VAL_MAX_LEN		32
254 #define QM_DFX_BASE		0x0100000
255 #define QM_DFX_STATE1		0x0104000
256 #define QM_DFX_STATE2		0x01040C8
257 #define QM_DFX_COMMON		0x0000
258 #define QM_DFX_BASE_LEN		0x5A
259 #define QM_DFX_STATE1_LEN		0x2E
260 #define QM_DFX_STATE2_LEN		0x11
261 #define QM_DFX_COMMON_LEN		0xC3
262 #define QM_DFX_REGS_LEN		4UL
263 #define QM_AUTOSUSPEND_DELAY		3000
264 
265 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
266 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT)	| \
267 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT)	| \
268 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT)	| \
269 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
270 
271 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
272 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
273 
274 #define QM_MK_SQC_W13(priority, orders, alg_type) \
275 	(((priority) << QM_SQ_PRIORITY_SHIFT)	| \
276 	((orders) << QM_SQ_ORDERS_SHIFT)	| \
277 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
278 
279 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
280 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT)	| \
281 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT)	| \
282 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT)	| \
283 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
284 
285 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
286 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
287 
288 #define INIT_QC_COMMON(qc, base, pasid) do {			\
289 	(qc)->head = 0;						\
290 	(qc)->tail = 0;						\
291 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
292 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
293 	(qc)->dw3 = 0;						\
294 	(qc)->w8 = 0;						\
295 	(qc)->rsvd0 = 0;					\
296 	(qc)->pasid = cpu_to_le16(pasid);			\
297 	(qc)->w11 = 0;						\
298 	(qc)->rsvd1 = 0;					\
299 } while (0)
300 
301 enum vft_type {
302 	SQC_VFT = 0,
303 	CQC_VFT,
304 	SHAPER_VFT,
305 };
306 
307 enum acc_err_result {
308 	ACC_ERR_NONE,
309 	ACC_ERR_NEED_RESET,
310 	ACC_ERR_RECOVERED,
311 };
312 
313 enum qm_alg_type {
314 	ALG_TYPE_0,
315 	ALG_TYPE_1,
316 };
317 
318 enum qm_mb_cmd {
319 	QM_PF_FLR_PREPARE = 0x01,
320 	QM_PF_SRST_PREPARE,
321 	QM_PF_RESET_DONE,
322 	QM_VF_PREPARE_DONE,
323 	QM_VF_PREPARE_FAIL,
324 	QM_VF_START_DONE,
325 	QM_VF_START_FAIL,
326 	QM_PF_SET_QOS,
327 	QM_VF_GET_QOS,
328 };
329 
330 enum qm_basic_type {
331 	QM_TOTAL_QP_NUM_CAP = 0x0,
332 	QM_FUNC_MAX_QP_CAP,
333 	QM_XEQ_DEPTH_CAP,
334 	QM_QP_DEPTH_CAP,
335 	QM_EQ_IRQ_TYPE_CAP,
336 	QM_AEQ_IRQ_TYPE_CAP,
337 	QM_ABN_IRQ_TYPE_CAP,
338 	QM_PF2VF_IRQ_TYPE_CAP,
339 	QM_PF_IRQ_NUM_CAP,
340 	QM_VF_IRQ_NUM_CAP,
341 };
342 
343 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
344 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
345 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
346 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
347 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
348 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
349 };
350 
351 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
352 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
353 };
354 
355 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
356 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
357 };
358 
359 static const struct hisi_qm_cap_info qm_basic_info[] = {
360 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
361 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
362 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(15, 0), 0x800,     0x4000800, 0x4000800},
363 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
364 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
365 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
366 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
367 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
368 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
369 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
370 };
371 
372 struct qm_cqe {
373 	__le32 rsvd0;
374 	__le16 cmd_id;
375 	__le16 rsvd1;
376 	__le16 sq_head;
377 	__le16 sq_num;
378 	__le16 rsvd2;
379 	__le16 w7;
380 };
381 
382 struct qm_eqe {
383 	__le32 dw0;
384 };
385 
386 struct qm_aeqe {
387 	__le32 dw0;
388 };
389 
390 struct qm_sqc {
391 	__le16 head;
392 	__le16 tail;
393 	__le32 base_l;
394 	__le32 base_h;
395 	__le32 dw3;
396 	__le16 w8;
397 	__le16 rsvd0;
398 	__le16 pasid;
399 	__le16 w11;
400 	__le16 cq_num;
401 	__le16 w13;
402 	__le32 rsvd1;
403 };
404 
405 struct qm_cqc {
406 	__le16 head;
407 	__le16 tail;
408 	__le32 base_l;
409 	__le32 base_h;
410 	__le32 dw3;
411 	__le16 w8;
412 	__le16 rsvd0;
413 	__le16 pasid;
414 	__le16 w11;
415 	__le32 dw6;
416 	__le32 rsvd1;
417 };
418 
419 struct qm_eqc {
420 	__le16 head;
421 	__le16 tail;
422 	__le32 base_l;
423 	__le32 base_h;
424 	__le32 dw3;
425 	__le32 rsvd[2];
426 	__le32 dw6;
427 };
428 
429 struct qm_aeqc {
430 	__le16 head;
431 	__le16 tail;
432 	__le32 base_l;
433 	__le32 base_h;
434 	__le32 dw3;
435 	__le32 rsvd[2];
436 	__le32 dw6;
437 };
438 
439 struct qm_mailbox {
440 	__le16 w0;
441 	__le16 queue_num;
442 	__le32 base_l;
443 	__le32 base_h;
444 	__le32 rsvd;
445 };
446 
447 struct qm_doorbell {
448 	__le16 queue_num;
449 	__le16 cmd;
450 	__le16 index;
451 	__le16 priority;
452 };
453 
454 struct hisi_qm_resource {
455 	struct hisi_qm *qm;
456 	int distance;
457 	struct list_head list;
458 };
459 
460 struct hisi_qm_hw_ops {
461 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
462 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
463 		      u8 cmd, u16 index, u8 priority);
464 	int (*debug_init)(struct hisi_qm *qm);
465 	void (*hw_error_init)(struct hisi_qm *qm);
466 	void (*hw_error_uninit)(struct hisi_qm *qm);
467 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
468 	int (*set_msi)(struct hisi_qm *qm, bool set);
469 };
470 
471 struct qm_dfx_item {
472 	const char *name;
473 	u32 offset;
474 };
475 
476 static struct qm_dfx_item qm_dfx_files[] = {
477 	{"err_irq", offsetof(struct qm_dfx, err_irq_cnt)},
478 	{"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)},
479 	{"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)},
480 	{"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)},
481 	{"mb_err", offsetof(struct qm_dfx, mb_err_cnt)},
482 };
483 
484 static const char * const qm_debug_file_name[] = {
485 	[CURRENT_QM]   = "current_qm",
486 	[CURRENT_Q]    = "current_q",
487 	[CLEAR_ENABLE] = "clear_enable",
488 };
489 
490 struct hisi_qm_hw_error {
491 	u32 int_msk;
492 	const char *msg;
493 };
494 
495 static const struct hisi_qm_hw_error qm_hw_error[] = {
496 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
497 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
498 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
499 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
500 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
501 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
502 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
503 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
504 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
505 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
506 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
507 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
508 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
509 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
510 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
511 	{ /* sentinel */ }
512 };
513 
514 /* define the QM's dfx regs region and region length */
515 static struct dfx_diff_registers qm_diff_regs[] = {
516 	{
517 		.reg_offset = QM_DFX_BASE,
518 		.reg_len = QM_DFX_BASE_LEN,
519 	}, {
520 		.reg_offset = QM_DFX_STATE1,
521 		.reg_len = QM_DFX_STATE1_LEN,
522 	}, {
523 		.reg_offset = QM_DFX_STATE2,
524 		.reg_len = QM_DFX_STATE2_LEN,
525 	}, {
526 		.reg_offset = QM_DFX_COMMON,
527 		.reg_len = QM_DFX_COMMON_LEN,
528 	},
529 };
530 
531 static const char * const qm_db_timeout[] = {
532 	"sq", "cq", "eq", "aeq",
533 };
534 
535 static const char * const qm_fifo_overflow[] = {
536 	"cq", "eq", "aeq",
537 };
538 
539 static const char * const qm_s[] = {
540 	"init", "start", "close", "stop",
541 };
542 
543 static const char * const qp_s[] = {
544 	"none", "init", "start", "stop", "close",
545 };
546 
547 struct qm_typical_qos_table {
548 	u32 start;
549 	u32 end;
550 	u32 val;
551 };
552 
553 /* the qos step is 100 */
554 static struct qm_typical_qos_table shaper_cir_s[] = {
555 	{100, 100, 4},
556 	{200, 200, 3},
557 	{300, 500, 2},
558 	{600, 1000, 1},
559 	{1100, 100000, 0},
560 };
561 
562 static struct qm_typical_qos_table shaper_cbs_s[] = {
563 	{100, 200, 9},
564 	{300, 500, 11},
565 	{600, 1000, 12},
566 	{1100, 10000, 16},
567 	{10100, 25000, 17},
568 	{25100, 50000, 18},
569 	{50100, 100000, 19}
570 };
571 
572 static void qm_irqs_unregister(struct hisi_qm *qm);
573 
574 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
575 {
576 	enum qm_state curr = atomic_read(&qm->status.flags);
577 	bool avail = false;
578 
579 	switch (curr) {
580 	case QM_INIT:
581 		if (new == QM_START || new == QM_CLOSE)
582 			avail = true;
583 		break;
584 	case QM_START:
585 		if (new == QM_STOP)
586 			avail = true;
587 		break;
588 	case QM_STOP:
589 		if (new == QM_CLOSE || new == QM_START)
590 			avail = true;
591 		break;
592 	default:
593 		break;
594 	}
595 
596 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
597 		qm_s[curr], qm_s[new]);
598 
599 	if (!avail)
600 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
601 			 qm_s[curr], qm_s[new]);
602 
603 	return avail;
604 }
605 
606 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
607 			      enum qp_state new)
608 {
609 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
610 	enum qp_state qp_curr = 0;
611 	bool avail = false;
612 
613 	if (qp)
614 		qp_curr = atomic_read(&qp->qp_status.flags);
615 
616 	switch (new) {
617 	case QP_INIT:
618 		if (qm_curr == QM_START || qm_curr == QM_INIT)
619 			avail = true;
620 		break;
621 	case QP_START:
622 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
623 		    (qm_curr == QM_START && qp_curr == QP_STOP))
624 			avail = true;
625 		break;
626 	case QP_STOP:
627 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
628 		    (qp_curr == QP_INIT))
629 			avail = true;
630 		break;
631 	case QP_CLOSE:
632 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
633 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
634 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
635 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
636 			avail = true;
637 		break;
638 	default:
639 		break;
640 	}
641 
642 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
643 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
644 
645 	if (!avail)
646 		dev_warn(&qm->pdev->dev,
647 			 "Can not change qp state from %s to %s in QM %s\n",
648 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
649 
650 	return avail;
651 }
652 
653 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
654 {
655 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
656 }
657 
658 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
659 {
660 	return qm->err_ini->get_dev_hw_err_status(qm);
661 }
662 
663 /* Check if the error causes the master ooo block */
664 static bool qm_check_dev_error(struct hisi_qm *qm)
665 {
666 	u32 val, dev_val;
667 
668 	if (qm->fun_type == QM_HW_VF)
669 		return false;
670 
671 	val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
672 	dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
673 
674 	return val || dev_val;
675 }
676 
677 static int qm_wait_reset_finish(struct hisi_qm *qm)
678 {
679 	int delay = 0;
680 
681 	/* All reset requests need to be queued for processing */
682 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
683 		msleep(++delay);
684 		if (delay > QM_RESET_WAIT_TIMEOUT)
685 			return -EBUSY;
686 	}
687 
688 	return 0;
689 }
690 
691 static int qm_reset_prepare_ready(struct hisi_qm *qm)
692 {
693 	struct pci_dev *pdev = qm->pdev;
694 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
695 
696 	/*
697 	 * PF and VF on host doesnot support resetting at the
698 	 * same time on Kunpeng920.
699 	 */
700 	if (qm->ver < QM_HW_V3)
701 		return qm_wait_reset_finish(pf_qm);
702 
703 	return qm_wait_reset_finish(qm);
704 }
705 
706 static void qm_reset_bit_clear(struct hisi_qm *qm)
707 {
708 	struct pci_dev *pdev = qm->pdev;
709 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
710 
711 	if (qm->ver < QM_HW_V3)
712 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
713 
714 	clear_bit(QM_RESETTING, &qm->misc_ctl);
715 }
716 
717 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
718 			   u64 base, u16 queue, bool op)
719 {
720 	mailbox->w0 = cpu_to_le16((cmd) |
721 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
722 		(0x1 << QM_MB_BUSY_SHIFT));
723 	mailbox->queue_num = cpu_to_le16(queue);
724 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
725 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
726 	mailbox->rsvd = 0;
727 }
728 
729 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
730 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
731 {
732 	u32 val;
733 
734 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
735 					  val, !((val >> QM_MB_BUSY_SHIFT) &
736 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
737 }
738 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
739 
740 /* 128 bit should be written to hardware at one time to trigger a mailbox */
741 static void qm_mb_write(struct hisi_qm *qm, const void *src)
742 {
743 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
744 	unsigned long tmp0 = 0, tmp1 = 0;
745 
746 	if (!IS_ENABLED(CONFIG_ARM64)) {
747 		memcpy_toio(fun_base, src, 16);
748 		dma_wmb();
749 		return;
750 	}
751 
752 	asm volatile("ldp %0, %1, %3\n"
753 		     "stp %0, %1, %2\n"
754 		     "dmb oshst\n"
755 		     : "=&r" (tmp0),
756 		       "=&r" (tmp1),
757 		       "+Q" (*((char __iomem *)fun_base))
758 		     : "Q" (*((char *)src))
759 		     : "memory");
760 }
761 
762 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
763 {
764 	int ret;
765 	u32 val;
766 
767 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
768 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
769 		ret = -EBUSY;
770 		goto mb_busy;
771 	}
772 
773 	qm_mb_write(qm, mailbox);
774 
775 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
776 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
777 		ret = -ETIMEDOUT;
778 		goto mb_busy;
779 	}
780 
781 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
782 	if (val & QM_MB_STATUS_MASK) {
783 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
784 		ret = -EIO;
785 		goto mb_busy;
786 	}
787 
788 	return 0;
789 
790 mb_busy:
791 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
792 	return ret;
793 }
794 
795 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
796 	       bool op)
797 {
798 	struct qm_mailbox mailbox;
799 	int ret;
800 
801 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
802 		queue, cmd, (unsigned long long)dma_addr);
803 
804 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
805 
806 	mutex_lock(&qm->mailbox_lock);
807 	ret = qm_mb_nolock(qm, &mailbox);
808 	mutex_unlock(&qm->mailbox_lock);
809 
810 	return ret;
811 }
812 EXPORT_SYMBOL_GPL(hisi_qm_mb);
813 
814 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
815 {
816 	u64 doorbell;
817 
818 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
819 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
820 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
821 
822 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
823 }
824 
825 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
826 {
827 	void __iomem *io_base = qm->io_base;
828 	u16 randata = 0;
829 	u64 doorbell;
830 
831 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
832 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
833 			  QM_DOORBELL_SQ_CQ_BASE_V2;
834 	else
835 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
836 
837 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
838 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
839 		   ((u64)index << QM_DB_INDEX_SHIFT_V2)	 |
840 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
841 
842 	writeq(doorbell, io_base);
843 }
844 
845 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
846 {
847 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
848 		qn, cmd, index);
849 
850 	qm->ops->qm_db(qm, qn, cmd, index, priority);
851 }
852 
853 static void qm_disable_clock_gate(struct hisi_qm *qm)
854 {
855 	u32 val;
856 
857 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
858 	if (qm->ver < QM_HW_V3)
859 		return;
860 
861 	val = readl(qm->io_base + QM_PM_CTRL);
862 	val |= QM_IDLE_DISABLE;
863 	writel(val, qm->io_base +  QM_PM_CTRL);
864 }
865 
866 static int qm_dev_mem_reset(struct hisi_qm *qm)
867 {
868 	u32 val;
869 
870 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
871 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
872 					  val & BIT(0), POLL_PERIOD,
873 					  POLL_TIMEOUT);
874 }
875 
876 /**
877  * hisi_qm_get_hw_info() - Get device information.
878  * @qm: The qm which want to get information.
879  * @info_table: Array for storing device information.
880  * @index: Index in info_table.
881  * @is_read: Whether read from reg, 0: not support read from reg.
882  *
883  * This function returns device information the caller needs.
884  */
885 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
886 			const struct hisi_qm_cap_info *info_table,
887 			u32 index, bool is_read)
888 {
889 	u32 val;
890 
891 	switch (qm->ver) {
892 	case QM_HW_V1:
893 		return info_table[index].v1_val;
894 	case QM_HW_V2:
895 		return info_table[index].v2_val;
896 	default:
897 		if (!is_read)
898 			return info_table[index].v3_val;
899 
900 		val = readl(qm->io_base + info_table[index].offset);
901 		return (val >> info_table[index].shift) & info_table[index].mask;
902 	}
903 }
904 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
905 
906 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
907 			     u16 *high_bits, enum qm_basic_type type)
908 {
909 	u32 depth;
910 
911 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
912 	*high_bits = depth & QM_XQ_DEPTH_MASK;
913 	*low_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
914 }
915 
916 static u32 qm_get_irq_num(struct hisi_qm *qm)
917 {
918 	if (qm->fun_type == QM_HW_PF)
919 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
920 
921 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
922 }
923 
924 static int qm_pm_get_sync(struct hisi_qm *qm)
925 {
926 	struct device *dev = &qm->pdev->dev;
927 	int ret;
928 
929 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
930 		return 0;
931 
932 	ret = pm_runtime_resume_and_get(dev);
933 	if (ret < 0) {
934 		dev_err(dev, "failed to get_sync(%d).\n", ret);
935 		return ret;
936 	}
937 
938 	return 0;
939 }
940 
941 static void qm_pm_put_sync(struct hisi_qm *qm)
942 {
943 	struct device *dev = &qm->pdev->dev;
944 
945 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
946 		return;
947 
948 	pm_runtime_mark_last_busy(dev);
949 	pm_runtime_put_autosuspend(dev);
950 }
951 
952 static void qm_cq_head_update(struct hisi_qp *qp)
953 {
954 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
955 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
956 		qp->qp_status.cq_head = 0;
957 	} else {
958 		qp->qp_status.cq_head++;
959 	}
960 }
961 
962 static void qm_poll_req_cb(struct hisi_qp *qp)
963 {
964 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
965 	struct hisi_qm *qm = qp->qm;
966 
967 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
968 		dma_rmb();
969 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
970 			   le16_to_cpu(cqe->sq_head));
971 		qm_cq_head_update(qp);
972 		cqe = qp->cqe + qp->qp_status.cq_head;
973 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
974 		      qp->qp_status.cq_head, 0);
975 		atomic_dec(&qp->qp_status.used);
976 	}
977 
978 	/* set c_flag */
979 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
980 }
981 
982 static int qm_get_complete_eqe_num(struct hisi_qm_poll_data *poll_data)
983 {
984 	struct hisi_qm *qm = poll_data->qm;
985 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
986 	u16 eq_depth = qm->eq_depth;
987 	int eqe_num = 0;
988 	u16 cqn;
989 
990 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
991 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
992 		poll_data->qp_finish_id[eqe_num] = cqn;
993 		eqe_num++;
994 
995 		if (qm->status.eq_head == eq_depth - 1) {
996 			qm->status.eqc_phase = !qm->status.eqc_phase;
997 			eqe = qm->eqe;
998 			qm->status.eq_head = 0;
999 		} else {
1000 			eqe++;
1001 			qm->status.eq_head++;
1002 		}
1003 
1004 		if (eqe_num == (eq_depth >> 1) - 1)
1005 			break;
1006 	}
1007 
1008 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
1009 
1010 	return eqe_num;
1011 }
1012 
1013 static void qm_work_process(struct work_struct *work)
1014 {
1015 	struct hisi_qm_poll_data *poll_data =
1016 		container_of(work, struct hisi_qm_poll_data, work);
1017 	struct hisi_qm *qm = poll_data->qm;
1018 	struct hisi_qp *qp;
1019 	int eqe_num, i;
1020 
1021 	/* Get qp id of completed tasks and re-enable the interrupt. */
1022 	eqe_num = qm_get_complete_eqe_num(poll_data);
1023 	for (i = eqe_num - 1; i >= 0; i--) {
1024 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
1025 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
1026 			continue;
1027 
1028 		if (qp->event_cb) {
1029 			qp->event_cb(qp);
1030 			continue;
1031 		}
1032 
1033 		if (likely(qp->req_cb))
1034 			qm_poll_req_cb(qp);
1035 	}
1036 }
1037 
1038 static bool do_qm_irq(struct hisi_qm *qm)
1039 {
1040 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
1041 	struct hisi_qm_poll_data *poll_data;
1042 	u16 cqn;
1043 
1044 	if (!readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
1045 		return false;
1046 
1047 	if (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
1048 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
1049 		poll_data = &qm->poll_data[cqn];
1050 		queue_work(qm->wq, &poll_data->work);
1051 
1052 		return true;
1053 	}
1054 
1055 	return false;
1056 }
1057 
1058 static irqreturn_t qm_irq(int irq, void *data)
1059 {
1060 	struct hisi_qm *qm = data;
1061 	bool ret;
1062 
1063 	ret = do_qm_irq(qm);
1064 	if (ret)
1065 		return IRQ_HANDLED;
1066 
1067 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
1068 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
1069 
1070 	return IRQ_NONE;
1071 }
1072 
1073 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
1074 {
1075 	struct hisi_qm *qm = data;
1076 	u32 val;
1077 
1078 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
1079 	val &= QM_IFC_INT_STATUS_MASK;
1080 	if (!val)
1081 		return IRQ_NONE;
1082 
1083 	schedule_work(&qm->cmd_process);
1084 
1085 	return IRQ_HANDLED;
1086 }
1087 
1088 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
1089 {
1090 	u32 *addr;
1091 
1092 	if (qp->is_in_kernel)
1093 		return;
1094 
1095 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
1096 	*addr = 1;
1097 
1098 	/* make sure setup is completed */
1099 	smp_wmb();
1100 }
1101 
1102 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
1103 {
1104 	struct hisi_qp *qp = &qm->qp_array[qp_id];
1105 
1106 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
1107 	hisi_qm_stop_qp(qp);
1108 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
1109 }
1110 
1111 static void qm_reset_function(struct hisi_qm *qm)
1112 {
1113 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
1114 	struct device *dev = &qm->pdev->dev;
1115 	int ret;
1116 
1117 	if (qm_check_dev_error(pf_qm))
1118 		return;
1119 
1120 	ret = qm_reset_prepare_ready(qm);
1121 	if (ret) {
1122 		dev_err(dev, "reset function not ready\n");
1123 		return;
1124 	}
1125 
1126 	ret = hisi_qm_stop(qm, QM_FLR);
1127 	if (ret) {
1128 		dev_err(dev, "failed to stop qm when reset function\n");
1129 		goto clear_bit;
1130 	}
1131 
1132 	ret = hisi_qm_start(qm);
1133 	if (ret)
1134 		dev_err(dev, "failed to start qm when reset function\n");
1135 
1136 clear_bit:
1137 	qm_reset_bit_clear(qm);
1138 }
1139 
1140 static irqreturn_t qm_aeq_thread(int irq, void *data)
1141 {
1142 	struct hisi_qm *qm = data;
1143 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1144 	u16 aeq_depth = qm->aeq_depth;
1145 	u32 type, qp_id;
1146 
1147 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1148 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
1149 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1150 
1151 		switch (type) {
1152 		case QM_EQ_OVERFLOW:
1153 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1154 			qm_reset_function(qm);
1155 			return IRQ_HANDLED;
1156 		case QM_CQ_OVERFLOW:
1157 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1158 				qp_id);
1159 			fallthrough;
1160 		case QM_CQE_ERROR:
1161 			qm_disable_qp(qm, qp_id);
1162 			break;
1163 		default:
1164 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1165 				type);
1166 			break;
1167 		}
1168 
1169 		if (qm->status.aeq_head == aeq_depth - 1) {
1170 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1171 			aeqe = qm->aeqe;
1172 			qm->status.aeq_head = 0;
1173 		} else {
1174 			aeqe++;
1175 			qm->status.aeq_head++;
1176 		}
1177 	}
1178 
1179 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1180 
1181 	return IRQ_HANDLED;
1182 }
1183 
1184 static irqreturn_t qm_aeq_irq(int irq, void *data)
1185 {
1186 	struct hisi_qm *qm = data;
1187 
1188 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1189 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
1190 		return IRQ_NONE;
1191 
1192 	return IRQ_WAKE_THREAD;
1193 }
1194 
1195 static void qm_init_qp_status(struct hisi_qp *qp)
1196 {
1197 	struct hisi_qp_status *qp_status = &qp->qp_status;
1198 
1199 	qp_status->sq_tail = 0;
1200 	qp_status->cq_head = 0;
1201 	qp_status->cqc_phase = true;
1202 	atomic_set(&qp_status->used, 0);
1203 }
1204 
1205 static void qm_init_prefetch(struct hisi_qm *qm)
1206 {
1207 	struct device *dev = &qm->pdev->dev;
1208 	u32 page_type = 0x0;
1209 
1210 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1211 		return;
1212 
1213 	switch (PAGE_SIZE) {
1214 	case SZ_4K:
1215 		page_type = 0x0;
1216 		break;
1217 	case SZ_16K:
1218 		page_type = 0x1;
1219 		break;
1220 	case SZ_64K:
1221 		page_type = 0x2;
1222 		break;
1223 	default:
1224 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1225 			PAGE_SIZE);
1226 	}
1227 
1228 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1229 }
1230 
1231 /*
1232  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1233  * is the expected qos calculated.
1234  * the formula:
1235  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1236  *
1237  *		IR_b * (2 ^ IR_u) * 8000
1238  * IR(Mbps) = -------------------------
1239  *		  Tick * (2 ^ IR_s)
1240  */
1241 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1242 {
1243 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1244 					(QM_QOS_TICK * (1 << cir_s));
1245 }
1246 
1247 static u32 acc_shaper_calc_cbs_s(u32 ir)
1248 {
1249 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1250 	int i;
1251 
1252 	for (i = 0; i < table_size; i++) {
1253 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1254 			return shaper_cbs_s[i].val;
1255 	}
1256 
1257 	return QM_SHAPER_MIN_CBS_S;
1258 }
1259 
1260 static u32 acc_shaper_calc_cir_s(u32 ir)
1261 {
1262 	int table_size = ARRAY_SIZE(shaper_cir_s);
1263 	int i;
1264 
1265 	for (i = 0; i < table_size; i++) {
1266 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1267 			return shaper_cir_s[i].val;
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1274 {
1275 	u32 cir_b, cir_u, cir_s, ir_calc;
1276 	u32 error_rate;
1277 
1278 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1279 	cir_s = acc_shaper_calc_cir_s(ir);
1280 
1281 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1282 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1283 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1284 
1285 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1286 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1287 				factor->cir_b = cir_b;
1288 				factor->cir_u = cir_u;
1289 				factor->cir_s = cir_s;
1290 				return 0;
1291 			}
1292 		}
1293 	}
1294 
1295 	return -EINVAL;
1296 }
1297 
1298 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1299 			    u32 number, struct qm_shaper_factor *factor)
1300 {
1301 	u64 tmp = 0;
1302 
1303 	if (number > 0) {
1304 		switch (type) {
1305 		case SQC_VFT:
1306 			if (qm->ver == QM_HW_V1) {
1307 				tmp = QM_SQC_VFT_BUF_SIZE	|
1308 				      QM_SQC_VFT_SQC_SIZE	|
1309 				      QM_SQC_VFT_INDEX_NUMBER	|
1310 				      QM_SQC_VFT_VALID		|
1311 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1312 			} else {
1313 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1314 				      QM_SQC_VFT_VALID |
1315 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1316 			}
1317 			break;
1318 		case CQC_VFT:
1319 			if (qm->ver == QM_HW_V1) {
1320 				tmp = QM_CQC_VFT_BUF_SIZE	|
1321 				      QM_CQC_VFT_SQC_SIZE	|
1322 				      QM_CQC_VFT_INDEX_NUMBER	|
1323 				      QM_CQC_VFT_VALID;
1324 			} else {
1325 				tmp = QM_CQC_VFT_VALID;
1326 			}
1327 			break;
1328 		case SHAPER_VFT:
1329 			if (factor) {
1330 				tmp = factor->cir_b |
1331 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1332 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1333 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1334 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1335 			}
1336 			break;
1337 		}
1338 	}
1339 
1340 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1341 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1342 }
1343 
1344 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1345 			     u32 fun_num, u32 base, u32 number)
1346 {
1347 	struct qm_shaper_factor *factor = NULL;
1348 	unsigned int val;
1349 	int ret;
1350 
1351 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1352 		factor = &qm->factor[fun_num];
1353 
1354 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1355 					 val & BIT(0), POLL_PERIOD,
1356 					 POLL_TIMEOUT);
1357 	if (ret)
1358 		return ret;
1359 
1360 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1361 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1362 	if (type == SHAPER_VFT)
1363 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1364 
1365 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1366 
1367 	qm_vft_data_cfg(qm, type, base, number, factor);
1368 
1369 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1370 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1371 
1372 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1373 					  val & BIT(0), POLL_PERIOD,
1374 					  POLL_TIMEOUT);
1375 }
1376 
1377 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1378 {
1379 	u32 qos = qm->factor[fun_num].func_qos;
1380 	int ret, i;
1381 
1382 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1383 	if (ret) {
1384 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1385 		return ret;
1386 	}
1387 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1388 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1389 		/* The base number of queue reuse for different alg type */
1390 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1391 		if (ret)
1392 			return ret;
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 /* The config should be conducted after qm_dev_mem_reset() */
1399 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1400 			      u32 number)
1401 {
1402 	int ret, i;
1403 
1404 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1405 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1406 		if (ret)
1407 			return ret;
1408 	}
1409 
1410 	/* init default shaper qos val */
1411 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1412 		ret = qm_shaper_init_vft(qm, fun_num);
1413 		if (ret)
1414 			goto back_sqc_cqc;
1415 	}
1416 
1417 	return 0;
1418 back_sqc_cqc:
1419 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1420 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1421 
1422 	return ret;
1423 }
1424 
1425 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1426 {
1427 	u64 sqc_vft;
1428 	int ret;
1429 
1430 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1431 	if (ret)
1432 		return ret;
1433 
1434 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1435 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1436 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1437 	*number = (QM_SQC_VFT_NUM_MASK_v2 &
1438 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1439 
1440 	return 0;
1441 }
1442 
1443 static int qm_get_vf_qp_num(struct hisi_qm *qm, u32 fun_num)
1444 {
1445 	u32 remain_q_num, vfq_num;
1446 	u32 num_vfs = qm->vfs_num;
1447 
1448 	vfq_num = (qm->ctrl_qp_num - qm->qp_num) / num_vfs;
1449 	if (vfq_num >= qm->max_qp_num)
1450 		return qm->max_qp_num;
1451 
1452 	remain_q_num = (qm->ctrl_qp_num - qm->qp_num) % num_vfs;
1453 	if (vfq_num + remain_q_num <= qm->max_qp_num)
1454 		return fun_num == num_vfs ? vfq_num + remain_q_num : vfq_num;
1455 
1456 	/*
1457 	 * if vfq_num + remain_q_num > max_qp_num, the last VFs,
1458 	 * each with one more queue.
1459 	 */
1460 	return fun_num + remain_q_num > num_vfs ? vfq_num + 1 : vfq_num;
1461 }
1462 
1463 static struct hisi_qm *file_to_qm(struct debugfs_file *file)
1464 {
1465 	struct qm_debug *debug = file->debug;
1466 
1467 	return container_of(debug, struct hisi_qm, debug);
1468 }
1469 
1470 static u32 current_q_read(struct hisi_qm *qm)
1471 {
1472 	return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT;
1473 }
1474 
1475 static int current_q_write(struct hisi_qm *qm, u32 val)
1476 {
1477 	u32 tmp;
1478 
1479 	if (val >= qm->debug.curr_qm_qp_num)
1480 		return -EINVAL;
1481 
1482 	tmp = val << QM_DFX_QN_SHIFT |
1483 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK);
1484 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
1485 
1486 	tmp = val << QM_DFX_QN_SHIFT |
1487 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK);
1488 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
1489 
1490 	return 0;
1491 }
1492 
1493 static u32 clear_enable_read(struct hisi_qm *qm)
1494 {
1495 	return readl(qm->io_base + QM_DFX_CNT_CLR_CE);
1496 }
1497 
1498 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */
1499 static int clear_enable_write(struct hisi_qm *qm, u32 rd_clr_ctrl)
1500 {
1501 	if (rd_clr_ctrl > 1)
1502 		return -EINVAL;
1503 
1504 	writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE);
1505 
1506 	return 0;
1507 }
1508 
1509 static u32 current_qm_read(struct hisi_qm *qm)
1510 {
1511 	return readl(qm->io_base + QM_DFX_MB_CNT_VF);
1512 }
1513 
1514 static int current_qm_write(struct hisi_qm *qm, u32 val)
1515 {
1516 	u32 tmp;
1517 
1518 	if (val > qm->vfs_num)
1519 		return -EINVAL;
1520 
1521 	/* According PF or VF Dev ID to calculation curr_qm_qp_num and store */
1522 	if (!val)
1523 		qm->debug.curr_qm_qp_num = qm->qp_num;
1524 	else
1525 		qm->debug.curr_qm_qp_num = qm_get_vf_qp_num(qm, val);
1526 
1527 	writel(val, qm->io_base + QM_DFX_MB_CNT_VF);
1528 	writel(val, qm->io_base + QM_DFX_DB_CNT_VF);
1529 
1530 	tmp = val |
1531 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_Q_MASK);
1532 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
1533 
1534 	tmp = val |
1535 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_Q_MASK);
1536 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
1537 
1538 	return 0;
1539 }
1540 
1541 static ssize_t qm_debug_read(struct file *filp, char __user *buf,
1542 			     size_t count, loff_t *pos)
1543 {
1544 	struct debugfs_file *file = filp->private_data;
1545 	enum qm_debug_file index = file->index;
1546 	struct hisi_qm *qm = file_to_qm(file);
1547 	char tbuf[QM_DBG_TMP_BUF_LEN];
1548 	u32 val;
1549 	int ret;
1550 
1551 	ret = hisi_qm_get_dfx_access(qm);
1552 	if (ret)
1553 		return ret;
1554 
1555 	mutex_lock(&file->lock);
1556 	switch (index) {
1557 	case CURRENT_QM:
1558 		val = current_qm_read(qm);
1559 		break;
1560 	case CURRENT_Q:
1561 		val = current_q_read(qm);
1562 		break;
1563 	case CLEAR_ENABLE:
1564 		val = clear_enable_read(qm);
1565 		break;
1566 	default:
1567 		goto err_input;
1568 	}
1569 	mutex_unlock(&file->lock);
1570 
1571 	hisi_qm_put_dfx_access(qm);
1572 	ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val);
1573 	return simple_read_from_buffer(buf, count, pos, tbuf, ret);
1574 
1575 err_input:
1576 	mutex_unlock(&file->lock);
1577 	hisi_qm_put_dfx_access(qm);
1578 	return -EINVAL;
1579 }
1580 
1581 static ssize_t qm_debug_write(struct file *filp, const char __user *buf,
1582 			      size_t count, loff_t *pos)
1583 {
1584 	struct debugfs_file *file = filp->private_data;
1585 	enum qm_debug_file index = file->index;
1586 	struct hisi_qm *qm = file_to_qm(file);
1587 	unsigned long val;
1588 	char tbuf[QM_DBG_TMP_BUF_LEN];
1589 	int len, ret;
1590 
1591 	if (*pos != 0)
1592 		return 0;
1593 
1594 	if (count >= QM_DBG_TMP_BUF_LEN)
1595 		return -ENOSPC;
1596 
1597 	len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf,
1598 				     count);
1599 	if (len < 0)
1600 		return len;
1601 
1602 	tbuf[len] = '\0';
1603 	if (kstrtoul(tbuf, 0, &val))
1604 		return -EFAULT;
1605 
1606 	ret = hisi_qm_get_dfx_access(qm);
1607 	if (ret)
1608 		return ret;
1609 
1610 	mutex_lock(&file->lock);
1611 	switch (index) {
1612 	case CURRENT_QM:
1613 		ret = current_qm_write(qm, val);
1614 		break;
1615 	case CURRENT_Q:
1616 		ret = current_q_write(qm, val);
1617 		break;
1618 	case CLEAR_ENABLE:
1619 		ret = clear_enable_write(qm, val);
1620 		break;
1621 	default:
1622 		ret = -EINVAL;
1623 	}
1624 	mutex_unlock(&file->lock);
1625 
1626 	hisi_qm_put_dfx_access(qm);
1627 
1628 	if (ret)
1629 		return ret;
1630 
1631 	return count;
1632 }
1633 
1634 static const struct file_operations qm_debug_fops = {
1635 	.owner = THIS_MODULE,
1636 	.open = simple_open,
1637 	.read = qm_debug_read,
1638 	.write = qm_debug_write,
1639 };
1640 
1641 #define CNT_CYC_REGS_NUM		10
1642 static const struct debugfs_reg32 qm_dfx_regs[] = {
1643 	/* XXX_CNT are reading clear register */
1644 	{"QM_ECC_1BIT_CNT               ",  0x104000ull},
1645 	{"QM_ECC_MBIT_CNT               ",  0x104008ull},
1646 	{"QM_DFX_MB_CNT                 ",  0x104018ull},
1647 	{"QM_DFX_DB_CNT                 ",  0x104028ull},
1648 	{"QM_DFX_SQE_CNT                ",  0x104038ull},
1649 	{"QM_DFX_CQE_CNT                ",  0x104048ull},
1650 	{"QM_DFX_SEND_SQE_TO_ACC_CNT    ",  0x104050ull},
1651 	{"QM_DFX_WB_SQE_FROM_ACC_CNT    ",  0x104058ull},
1652 	{"QM_DFX_ACC_FINISH_CNT         ",  0x104060ull},
1653 	{"QM_DFX_CQE_ERR_CNT            ",  0x1040b4ull},
1654 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1655 	{"QM_ECC_1BIT_INF               ",  0x104004ull},
1656 	{"QM_ECC_MBIT_INF               ",  0x10400cull},
1657 	{"QM_DFX_ACC_RDY_VLD0           ",  0x1040a0ull},
1658 	{"QM_DFX_ACC_RDY_VLD1           ",  0x1040a4ull},
1659 	{"QM_DFX_AXI_RDY_VLD            ",  0x1040a8ull},
1660 	{"QM_DFX_FF_ST0                 ",  0x1040c8ull},
1661 	{"QM_DFX_FF_ST1                 ",  0x1040ccull},
1662 	{"QM_DFX_FF_ST2                 ",  0x1040d0ull},
1663 	{"QM_DFX_FF_ST3                 ",  0x1040d4ull},
1664 	{"QM_DFX_FF_ST4                 ",  0x1040d8ull},
1665 	{"QM_DFX_FF_ST5                 ",  0x1040dcull},
1666 	{"QM_DFX_FF_ST6                 ",  0x1040e0ull},
1667 	{"QM_IN_IDLE_ST                 ",  0x1040e4ull},
1668 };
1669 
1670 static const struct debugfs_reg32 qm_vf_dfx_regs[] = {
1671 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1672 };
1673 
1674 /**
1675  * hisi_qm_regs_dump() - Dump registers's value.
1676  * @s: debugfs file handle.
1677  * @regset: accelerator registers information.
1678  *
1679  * Dump accelerator registers.
1680  */
1681 void hisi_qm_regs_dump(struct seq_file *s, struct debugfs_regset32 *regset)
1682 {
1683 	struct pci_dev *pdev = to_pci_dev(regset->dev);
1684 	struct hisi_qm *qm = pci_get_drvdata(pdev);
1685 	const struct debugfs_reg32 *regs = regset->regs;
1686 	int regs_len = regset->nregs;
1687 	int i, ret;
1688 	u32 val;
1689 
1690 	ret = hisi_qm_get_dfx_access(qm);
1691 	if (ret)
1692 		return;
1693 
1694 	for (i = 0; i < regs_len; i++) {
1695 		val = readl(regset->base + regs[i].offset);
1696 		seq_printf(s, "%s= 0x%08x\n", regs[i].name, val);
1697 	}
1698 
1699 	hisi_qm_put_dfx_access(qm);
1700 }
1701 EXPORT_SYMBOL_GPL(hisi_qm_regs_dump);
1702 
1703 static int qm_regs_show(struct seq_file *s, void *unused)
1704 {
1705 	struct hisi_qm *qm = s->private;
1706 	struct debugfs_regset32 regset;
1707 
1708 	if (qm->fun_type == QM_HW_PF) {
1709 		regset.regs = qm_dfx_regs;
1710 		regset.nregs = ARRAY_SIZE(qm_dfx_regs);
1711 	} else {
1712 		regset.regs = qm_vf_dfx_regs;
1713 		regset.nregs = ARRAY_SIZE(qm_vf_dfx_regs);
1714 	}
1715 
1716 	regset.base = qm->io_base;
1717 	regset.dev = &qm->pdev->dev;
1718 
1719 	hisi_qm_regs_dump(s, &regset);
1720 
1721 	return 0;
1722 }
1723 
1724 DEFINE_SHOW_ATTRIBUTE(qm_regs);
1725 
1726 static struct dfx_diff_registers *dfx_regs_init(struct hisi_qm *qm,
1727 	const struct dfx_diff_registers *cregs, int reg_len)
1728 {
1729 	struct dfx_diff_registers *diff_regs;
1730 	u32 j, base_offset;
1731 	int i;
1732 
1733 	diff_regs = kcalloc(reg_len, sizeof(*diff_regs), GFP_KERNEL);
1734 	if (!diff_regs)
1735 		return ERR_PTR(-ENOMEM);
1736 
1737 	for (i = 0; i < reg_len; i++) {
1738 		if (!cregs[i].reg_len)
1739 			continue;
1740 
1741 		diff_regs[i].reg_offset = cregs[i].reg_offset;
1742 		diff_regs[i].reg_len = cregs[i].reg_len;
1743 		diff_regs[i].regs = kcalloc(QM_DFX_REGS_LEN, cregs[i].reg_len,
1744 					 GFP_KERNEL);
1745 		if (!diff_regs[i].regs)
1746 			goto alloc_error;
1747 
1748 		for (j = 0; j < diff_regs[i].reg_len; j++) {
1749 			base_offset = diff_regs[i].reg_offset +
1750 					j * QM_DFX_REGS_LEN;
1751 			diff_regs[i].regs[j] = readl(qm->io_base + base_offset);
1752 		}
1753 	}
1754 
1755 	return diff_regs;
1756 
1757 alloc_error:
1758 	while (i > 0) {
1759 		i--;
1760 		kfree(diff_regs[i].regs);
1761 	}
1762 	kfree(diff_regs);
1763 	return ERR_PTR(-ENOMEM);
1764 }
1765 
1766 static void dfx_regs_uninit(struct hisi_qm *qm,
1767 		struct dfx_diff_registers *dregs, int reg_len)
1768 {
1769 	int i;
1770 
1771 	/* Setting the pointer is NULL to prevent double free */
1772 	for (i = 0; i < reg_len; i++) {
1773 		kfree(dregs[i].regs);
1774 		dregs[i].regs = NULL;
1775 	}
1776 	kfree(dregs);
1777 	dregs = NULL;
1778 }
1779 
1780 /**
1781  * hisi_qm_diff_regs_init() - Allocate memory for registers.
1782  * @qm: device qm handle.
1783  * @dregs: diff registers handle.
1784  * @reg_len: diff registers region length.
1785  */
1786 int hisi_qm_diff_regs_init(struct hisi_qm *qm,
1787 		struct dfx_diff_registers *dregs, int reg_len)
1788 {
1789 	if (!qm || !dregs || reg_len <= 0)
1790 		return -EINVAL;
1791 
1792 	if (qm->fun_type != QM_HW_PF)
1793 		return 0;
1794 
1795 	qm->debug.qm_diff_regs = dfx_regs_init(qm, qm_diff_regs,
1796 						ARRAY_SIZE(qm_diff_regs));
1797 	if (IS_ERR(qm->debug.qm_diff_regs))
1798 		return PTR_ERR(qm->debug.qm_diff_regs);
1799 
1800 	qm->debug.acc_diff_regs = dfx_regs_init(qm, dregs, reg_len);
1801 	if (IS_ERR(qm->debug.acc_diff_regs)) {
1802 		dfx_regs_uninit(qm, qm->debug.qm_diff_regs,
1803 				ARRAY_SIZE(qm_diff_regs));
1804 		return PTR_ERR(qm->debug.acc_diff_regs);
1805 	}
1806 
1807 	return 0;
1808 }
1809 EXPORT_SYMBOL_GPL(hisi_qm_diff_regs_init);
1810 
1811 /**
1812  * hisi_qm_diff_regs_uninit() - Free memory for registers.
1813  * @qm: device qm handle.
1814  * @reg_len: diff registers region length.
1815  */
1816 void hisi_qm_diff_regs_uninit(struct hisi_qm *qm, int reg_len)
1817 {
1818 	if (!qm  || reg_len <= 0 || qm->fun_type != QM_HW_PF)
1819 		return;
1820 
1821 	dfx_regs_uninit(qm, qm->debug.acc_diff_regs, reg_len);
1822 	dfx_regs_uninit(qm, qm->debug.qm_diff_regs, ARRAY_SIZE(qm_diff_regs));
1823 }
1824 EXPORT_SYMBOL_GPL(hisi_qm_diff_regs_uninit);
1825 
1826 /**
1827  * hisi_qm_acc_diff_regs_dump() - Dump registers's value.
1828  * @qm: device qm handle.
1829  * @s: Debugfs file handle.
1830  * @dregs: diff registers handle.
1831  * @regs_len: diff registers region length.
1832  */
1833 void hisi_qm_acc_diff_regs_dump(struct hisi_qm *qm, struct seq_file *s,
1834 	struct dfx_diff_registers *dregs, int regs_len)
1835 {
1836 	u32 j, val, base_offset;
1837 	int i, ret;
1838 
1839 	if (!qm || !s || !dregs || regs_len <= 0)
1840 		return;
1841 
1842 	ret = hisi_qm_get_dfx_access(qm);
1843 	if (ret)
1844 		return;
1845 
1846 	down_read(&qm->qps_lock);
1847 	for (i = 0; i < regs_len; i++) {
1848 		if (!dregs[i].reg_len)
1849 			continue;
1850 
1851 		for (j = 0; j < dregs[i].reg_len; j++) {
1852 			base_offset = dregs[i].reg_offset + j * QM_DFX_REGS_LEN;
1853 			val = readl(qm->io_base + base_offset);
1854 			if (val != dregs[i].regs[j])
1855 				seq_printf(s, "0x%08x = 0x%08x ---> 0x%08x\n",
1856 					   base_offset, dregs[i].regs[j], val);
1857 		}
1858 	}
1859 	up_read(&qm->qps_lock);
1860 
1861 	hisi_qm_put_dfx_access(qm);
1862 }
1863 EXPORT_SYMBOL_GPL(hisi_qm_acc_diff_regs_dump);
1864 
1865 static int qm_diff_regs_show(struct seq_file *s, void *unused)
1866 {
1867 	struct hisi_qm *qm = s->private;
1868 
1869 	hisi_qm_acc_diff_regs_dump(qm, s, qm->debug.qm_diff_regs,
1870 					ARRAY_SIZE(qm_diff_regs));
1871 
1872 	return 0;
1873 }
1874 DEFINE_SHOW_ATTRIBUTE(qm_diff_regs);
1875 
1876 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer,
1877 			   size_t count, loff_t *pos)
1878 {
1879 	char buf[QM_DBG_READ_LEN];
1880 	int len;
1881 
1882 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n",
1883 			"Please echo help to cmd to get help information");
1884 
1885 	return simple_read_from_buffer(buffer, count, pos, buf, len);
1886 }
1887 
1888 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1889 			  dma_addr_t *dma_addr)
1890 {
1891 	struct device *dev = &qm->pdev->dev;
1892 	void *ctx_addr;
1893 
1894 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1895 	if (!ctx_addr)
1896 		return ERR_PTR(-ENOMEM);
1897 
1898 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1899 	if (dma_mapping_error(dev, *dma_addr)) {
1900 		dev_err(dev, "DMA mapping error!\n");
1901 		kfree(ctx_addr);
1902 		return ERR_PTR(-ENOMEM);
1903 	}
1904 
1905 	return ctx_addr;
1906 }
1907 
1908 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1909 			const void *ctx_addr, dma_addr_t *dma_addr)
1910 {
1911 	struct device *dev = &qm->pdev->dev;
1912 
1913 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1914 	kfree(ctx_addr);
1915 }
1916 
1917 static void dump_show(struct hisi_qm *qm, void *info,
1918 		     unsigned int info_size, char *info_name)
1919 {
1920 	struct device *dev = &qm->pdev->dev;
1921 	u8 *info_curr = info;
1922 	u32 i;
1923 #define BYTE_PER_DW	4
1924 
1925 	dev_info(dev, "%s DUMP\n", info_name);
1926 	for (i = 0; i < info_size; i += BYTE_PER_DW, info_curr += BYTE_PER_DW) {
1927 		pr_info("DW%u: %02X%02X %02X%02X\n", i / BYTE_PER_DW,
1928 			*(info_curr + 3), *(info_curr + 2), *(info_curr + 1), *(info_curr));
1929 	}
1930 }
1931 
1932 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1933 {
1934 	return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1935 }
1936 
1937 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1938 {
1939 	return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1940 }
1941 
1942 static int qm_sqc_dump(struct hisi_qm *qm, const char *s)
1943 {
1944 	struct device *dev = &qm->pdev->dev;
1945 	struct qm_sqc *sqc, *sqc_curr;
1946 	dma_addr_t sqc_dma;
1947 	u32 qp_id;
1948 	int ret;
1949 
1950 	if (!s)
1951 		return -EINVAL;
1952 
1953 	ret = kstrtou32(s, 0, &qp_id);
1954 	if (ret || qp_id >= qm->qp_num) {
1955 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1956 		return -EINVAL;
1957 	}
1958 
1959 	sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma);
1960 	if (IS_ERR(sqc))
1961 		return PTR_ERR(sqc);
1962 
1963 	ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id);
1964 	if (ret) {
1965 		down_read(&qm->qps_lock);
1966 		if (qm->sqc) {
1967 			sqc_curr = qm->sqc + qp_id;
1968 
1969 			dump_show(qm, sqc_curr, sizeof(*sqc), "SOFT SQC");
1970 		}
1971 		up_read(&qm->qps_lock);
1972 
1973 		goto free_ctx;
1974 	}
1975 
1976 	dump_show(qm, sqc, sizeof(*sqc), "SQC");
1977 
1978 free_ctx:
1979 	qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma);
1980 	return 0;
1981 }
1982 
1983 static int qm_cqc_dump(struct hisi_qm *qm, const char *s)
1984 {
1985 	struct device *dev = &qm->pdev->dev;
1986 	struct qm_cqc *cqc, *cqc_curr;
1987 	dma_addr_t cqc_dma;
1988 	u32 qp_id;
1989 	int ret;
1990 
1991 	if (!s)
1992 		return -EINVAL;
1993 
1994 	ret = kstrtou32(s, 0, &qp_id);
1995 	if (ret || qp_id >= qm->qp_num) {
1996 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1997 		return -EINVAL;
1998 	}
1999 
2000 	cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma);
2001 	if (IS_ERR(cqc))
2002 		return PTR_ERR(cqc);
2003 
2004 	ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id);
2005 	if (ret) {
2006 		down_read(&qm->qps_lock);
2007 		if (qm->cqc) {
2008 			cqc_curr = qm->cqc + qp_id;
2009 
2010 			dump_show(qm, cqc_curr, sizeof(*cqc), "SOFT CQC");
2011 		}
2012 		up_read(&qm->qps_lock);
2013 
2014 		goto free_ctx;
2015 	}
2016 
2017 	dump_show(qm, cqc, sizeof(*cqc), "CQC");
2018 
2019 free_ctx:
2020 	qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma);
2021 	return 0;
2022 }
2023 
2024 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size,
2025 			    int cmd, char *name)
2026 {
2027 	struct device *dev = &qm->pdev->dev;
2028 	dma_addr_t xeqc_dma;
2029 	void *xeqc;
2030 	int ret;
2031 
2032 	if (strsep(&s, " ")) {
2033 		dev_err(dev, "Please do not input extra characters!\n");
2034 		return -EINVAL;
2035 	}
2036 
2037 	xeqc = qm_ctx_alloc(qm, size, &xeqc_dma);
2038 	if (IS_ERR(xeqc))
2039 		return PTR_ERR(xeqc);
2040 
2041 	ret = hisi_qm_mb(qm, cmd, xeqc_dma, 0, 1);
2042 	if (ret)
2043 		goto err_free_ctx;
2044 
2045 	dump_show(qm, xeqc, size, name);
2046 
2047 err_free_ctx:
2048 	qm_ctx_free(qm, size, xeqc, &xeqc_dma);
2049 	return ret;
2050 }
2051 
2052 static int q_dump_param_parse(struct hisi_qm *qm, char *s,
2053 			      u32 *e_id, u32 *q_id, u16 q_depth)
2054 {
2055 	struct device *dev = &qm->pdev->dev;
2056 	unsigned int qp_num = qm->qp_num;
2057 	char *presult;
2058 	int ret;
2059 
2060 	presult = strsep(&s, " ");
2061 	if (!presult) {
2062 		dev_err(dev, "Please input qp number!\n");
2063 		return -EINVAL;
2064 	}
2065 
2066 	ret = kstrtou32(presult, 0, q_id);
2067 	if (ret || *q_id >= qp_num) {
2068 		dev_err(dev, "Please input qp num (0-%u)", qp_num - 1);
2069 		return -EINVAL;
2070 	}
2071 
2072 	presult = strsep(&s, " ");
2073 	if (!presult) {
2074 		dev_err(dev, "Please input sqe number!\n");
2075 		return -EINVAL;
2076 	}
2077 
2078 	ret = kstrtou32(presult, 0, e_id);
2079 	if (ret || *e_id >= q_depth) {
2080 		dev_err(dev, "Please input sqe num (0-%u)", q_depth - 1);
2081 		return -EINVAL;
2082 	}
2083 
2084 	if (strsep(&s, " ")) {
2085 		dev_err(dev, "Please do not input extra characters!\n");
2086 		return -EINVAL;
2087 	}
2088 
2089 	return 0;
2090 }
2091 
2092 static int qm_sq_dump(struct hisi_qm *qm, char *s)
2093 {
2094 	u16 sq_depth = qm->qp_array->cq_depth;
2095 	void *sqe, *sqe_curr;
2096 	struct hisi_qp *qp;
2097 	u32 qp_id, sqe_id;
2098 	int ret;
2099 
2100 	ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id, sq_depth);
2101 	if (ret)
2102 		return ret;
2103 
2104 	sqe = kzalloc(qm->sqe_size * sq_depth, GFP_KERNEL);
2105 	if (!sqe)
2106 		return -ENOMEM;
2107 
2108 	qp = &qm->qp_array[qp_id];
2109 	memcpy(sqe, qp->sqe, qm->sqe_size * sq_depth);
2110 	sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size);
2111 	memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK,
2112 	       qm->debug.sqe_mask_len);
2113 
2114 	dump_show(qm, sqe_curr, qm->sqe_size, "SQE");
2115 
2116 	kfree(sqe);
2117 
2118 	return 0;
2119 }
2120 
2121 static int qm_cq_dump(struct hisi_qm *qm, char *s)
2122 {
2123 	struct qm_cqe *cqe_curr;
2124 	struct hisi_qp *qp;
2125 	u32 qp_id, cqe_id;
2126 	int ret;
2127 
2128 	ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id, qm->qp_array->cq_depth);
2129 	if (ret)
2130 		return ret;
2131 
2132 	qp = &qm->qp_array[qp_id];
2133 	cqe_curr = qp->cqe + cqe_id;
2134 	dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE");
2135 
2136 	return 0;
2137 }
2138 
2139 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s,
2140 			  size_t size, char *name)
2141 {
2142 	struct device *dev = &qm->pdev->dev;
2143 	void *xeqe;
2144 	u32 xeqe_id;
2145 	int ret;
2146 
2147 	if (!s)
2148 		return -EINVAL;
2149 
2150 	ret = kstrtou32(s, 0, &xeqe_id);
2151 	if (ret)
2152 		return -EINVAL;
2153 
2154 	if (!strcmp(name, "EQE") && xeqe_id >= qm->eq_depth) {
2155 		dev_err(dev, "Please input eqe num (0-%u)", qm->eq_depth - 1);
2156 		return -EINVAL;
2157 	} else if (!strcmp(name, "AEQE") && xeqe_id >= qm->aeq_depth) {
2158 		dev_err(dev, "Please input aeqe num (0-%u)", qm->eq_depth - 1);
2159 		return -EINVAL;
2160 	}
2161 
2162 	down_read(&qm->qps_lock);
2163 
2164 	if (qm->eqe && !strcmp(name, "EQE")) {
2165 		xeqe = qm->eqe + xeqe_id;
2166 	} else if (qm->aeqe && !strcmp(name, "AEQE")) {
2167 		xeqe = qm->aeqe + xeqe_id;
2168 	} else {
2169 		ret = -EINVAL;
2170 		goto err_unlock;
2171 	}
2172 
2173 	dump_show(qm, xeqe, size, name);
2174 
2175 err_unlock:
2176 	up_read(&qm->qps_lock);
2177 	return ret;
2178 }
2179 
2180 static int qm_dbg_help(struct hisi_qm *qm, char *s)
2181 {
2182 	struct device *dev = &qm->pdev->dev;
2183 
2184 	if (strsep(&s, " ")) {
2185 		dev_err(dev, "Please do not input extra characters!\n");
2186 		return -EINVAL;
2187 	}
2188 
2189 	dev_info(dev, "available commands:\n");
2190 	dev_info(dev, "sqc <num>\n");
2191 	dev_info(dev, "cqc <num>\n");
2192 	dev_info(dev, "eqc\n");
2193 	dev_info(dev, "aeqc\n");
2194 	dev_info(dev, "sq <num> <e>\n");
2195 	dev_info(dev, "cq <num> <e>\n");
2196 	dev_info(dev, "eq <e>\n");
2197 	dev_info(dev, "aeq <e>\n");
2198 
2199 	return 0;
2200 }
2201 
2202 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf)
2203 {
2204 	struct device *dev = &qm->pdev->dev;
2205 	char *presult, *s, *s_tmp;
2206 	int ret;
2207 
2208 	s = kstrdup(cmd_buf, GFP_KERNEL);
2209 	if (!s)
2210 		return -ENOMEM;
2211 
2212 	s_tmp = s;
2213 	presult = strsep(&s, " ");
2214 	if (!presult) {
2215 		ret = -EINVAL;
2216 		goto err_buffer_free;
2217 	}
2218 
2219 	if (!strcmp(presult, "sqc"))
2220 		ret = qm_sqc_dump(qm, s);
2221 	else if (!strcmp(presult, "cqc"))
2222 		ret = qm_cqc_dump(qm, s);
2223 	else if (!strcmp(presult, "eqc"))
2224 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc),
2225 				       QM_MB_CMD_EQC, "EQC");
2226 	else if (!strcmp(presult, "aeqc"))
2227 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc),
2228 				       QM_MB_CMD_AEQC, "AEQC");
2229 	else if (!strcmp(presult, "sq"))
2230 		ret = qm_sq_dump(qm, s);
2231 	else if (!strcmp(presult, "cq"))
2232 		ret = qm_cq_dump(qm, s);
2233 	else if (!strcmp(presult, "eq"))
2234 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE");
2235 	else if (!strcmp(presult, "aeq"))
2236 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE");
2237 	else if (!strcmp(presult, "help"))
2238 		ret = qm_dbg_help(qm, s);
2239 	else
2240 		ret = -EINVAL;
2241 
2242 	if (ret)
2243 		dev_info(dev, "Please echo help\n");
2244 
2245 err_buffer_free:
2246 	kfree(s_tmp);
2247 
2248 	return ret;
2249 }
2250 
2251 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer,
2252 			    size_t count, loff_t *pos)
2253 {
2254 	struct hisi_qm *qm = filp->private_data;
2255 	char *cmd_buf, *cmd_buf_tmp;
2256 	int ret;
2257 
2258 	if (*pos)
2259 		return 0;
2260 
2261 	ret = hisi_qm_get_dfx_access(qm);
2262 	if (ret)
2263 		return ret;
2264 
2265 	/* Judge if the instance is being reset. */
2266 	if (unlikely(atomic_read(&qm->status.flags) == QM_STOP)) {
2267 		ret = 0;
2268 		goto put_dfx_access;
2269 	}
2270 
2271 	if (count > QM_DBG_WRITE_LEN) {
2272 		ret = -ENOSPC;
2273 		goto put_dfx_access;
2274 	}
2275 
2276 	cmd_buf = memdup_user_nul(buffer, count);
2277 	if (IS_ERR(cmd_buf)) {
2278 		ret = PTR_ERR(cmd_buf);
2279 		goto put_dfx_access;
2280 	}
2281 
2282 	cmd_buf_tmp = strchr(cmd_buf, '\n');
2283 	if (cmd_buf_tmp) {
2284 		*cmd_buf_tmp = '\0';
2285 		count = cmd_buf_tmp - cmd_buf + 1;
2286 	}
2287 
2288 	ret = qm_cmd_write_dump(qm, cmd_buf);
2289 	if (ret) {
2290 		kfree(cmd_buf);
2291 		goto put_dfx_access;
2292 	}
2293 
2294 	kfree(cmd_buf);
2295 
2296 	ret = count;
2297 
2298 put_dfx_access:
2299 	hisi_qm_put_dfx_access(qm);
2300 	return ret;
2301 }
2302 
2303 static const struct file_operations qm_cmd_fops = {
2304 	.owner = THIS_MODULE,
2305 	.open = simple_open,
2306 	.read = qm_cmd_read,
2307 	.write = qm_cmd_write,
2308 };
2309 
2310 static void qm_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir,
2311 				   enum qm_debug_file index)
2312 {
2313 	struct debugfs_file *file = qm->debug.files + index;
2314 
2315 	debugfs_create_file(qm_debug_file_name[index], 0600, dir, file,
2316 			    &qm_debug_fops);
2317 
2318 	file->index = index;
2319 	mutex_init(&file->lock);
2320 	file->debug = &qm->debug;
2321 }
2322 
2323 static void qm_hw_error_init_v1(struct hisi_qm *qm)
2324 {
2325 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
2326 }
2327 
2328 static void qm_hw_error_cfg(struct hisi_qm *qm)
2329 {
2330 	struct hisi_qm_err_info *err_info = &qm->err_info;
2331 
2332 	qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
2333 	/* clear QM hw residual error source */
2334 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
2335 
2336 	/* configure error type */
2337 	writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
2338 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
2339 	writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
2340 	writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
2341 }
2342 
2343 static void qm_hw_error_init_v2(struct hisi_qm *qm)
2344 {
2345 	u32 irq_unmask;
2346 
2347 	qm_hw_error_cfg(qm);
2348 
2349 	irq_unmask = ~qm->error_mask;
2350 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
2351 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
2352 }
2353 
2354 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
2355 {
2356 	u32 irq_mask = qm->error_mask;
2357 
2358 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
2359 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
2360 }
2361 
2362 static void qm_hw_error_init_v3(struct hisi_qm *qm)
2363 {
2364 	u32 irq_unmask;
2365 
2366 	qm_hw_error_cfg(qm);
2367 
2368 	/* enable close master ooo when hardware error happened */
2369 	writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
2370 
2371 	irq_unmask = ~qm->error_mask;
2372 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
2373 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
2374 }
2375 
2376 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
2377 {
2378 	u32 irq_mask = qm->error_mask;
2379 
2380 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
2381 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
2382 
2383 	/* disable close master ooo when hardware error happened */
2384 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
2385 }
2386 
2387 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
2388 {
2389 	const struct hisi_qm_hw_error *err;
2390 	struct device *dev = &qm->pdev->dev;
2391 	u32 reg_val, type, vf_num;
2392 	int i;
2393 
2394 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
2395 		err = &qm_hw_error[i];
2396 		if (!(err->int_msk & error_status))
2397 			continue;
2398 
2399 		dev_err(dev, "%s [error status=0x%x] found\n",
2400 			err->msg, err->int_msk);
2401 
2402 		if (err->int_msk & QM_DB_TIMEOUT) {
2403 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
2404 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
2405 			       QM_DB_TIMEOUT_TYPE_SHIFT;
2406 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
2407 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
2408 				qm_db_timeout[type], vf_num);
2409 		} else if (err->int_msk & QM_OF_FIFO_OF) {
2410 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
2411 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
2412 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
2413 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
2414 
2415 			if (type < ARRAY_SIZE(qm_fifo_overflow))
2416 				dev_err(dev, "qm %s fifo overflow in function %u\n",
2417 					qm_fifo_overflow[type], vf_num);
2418 			else
2419 				dev_err(dev, "unknown error type\n");
2420 		}
2421 	}
2422 }
2423 
2424 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
2425 {
2426 	u32 error_status, tmp;
2427 
2428 	/* read err sts */
2429 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
2430 	error_status = qm->error_mask & tmp;
2431 
2432 	if (error_status) {
2433 		if (error_status & QM_ECC_MBIT)
2434 			qm->err_status.is_qm_ecc_mbit = true;
2435 
2436 		qm_log_hw_error(qm, error_status);
2437 		if (error_status & qm->err_info.qm_reset_mask)
2438 			return ACC_ERR_NEED_RESET;
2439 
2440 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
2441 		writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
2442 	}
2443 
2444 	return ACC_ERR_RECOVERED;
2445 }
2446 
2447 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
2448 {
2449 	struct qm_mailbox mailbox;
2450 	int ret;
2451 
2452 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
2453 	mutex_lock(&qm->mailbox_lock);
2454 	ret = qm_mb_nolock(qm, &mailbox);
2455 	if (ret)
2456 		goto err_unlock;
2457 
2458 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
2459 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
2460 
2461 err_unlock:
2462 	mutex_unlock(&qm->mailbox_lock);
2463 	return ret;
2464 }
2465 
2466 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
2467 {
2468 	u32 val;
2469 
2470 	if (qm->fun_type == QM_HW_PF)
2471 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
2472 
2473 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
2474 	val |= QM_IFC_INT_SOURCE_MASK;
2475 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
2476 }
2477 
2478 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
2479 {
2480 	struct device *dev = &qm->pdev->dev;
2481 	u32 cmd;
2482 	u64 msg;
2483 	int ret;
2484 
2485 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
2486 	if (ret) {
2487 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
2488 		return;
2489 	}
2490 
2491 	cmd = msg & QM_MB_CMD_DATA_MASK;
2492 	switch (cmd) {
2493 	case QM_VF_PREPARE_FAIL:
2494 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
2495 		break;
2496 	case QM_VF_START_FAIL:
2497 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
2498 		break;
2499 	case QM_VF_PREPARE_DONE:
2500 	case QM_VF_START_DONE:
2501 		break;
2502 	default:
2503 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
2504 		break;
2505 	}
2506 }
2507 
2508 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
2509 {
2510 	struct device *dev = &qm->pdev->dev;
2511 	u32 vfs_num = qm->vfs_num;
2512 	int cnt = 0;
2513 	int ret = 0;
2514 	u64 val;
2515 	u32 i;
2516 
2517 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2518 		return 0;
2519 
2520 	while (true) {
2521 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
2522 		/* All VFs send command to PF, break */
2523 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
2524 			break;
2525 
2526 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
2527 			ret = -EBUSY;
2528 			break;
2529 		}
2530 
2531 		msleep(QM_WAIT_DST_ACK);
2532 	}
2533 
2534 	/* PF check VFs msg */
2535 	for (i = 1; i <= vfs_num; i++) {
2536 		if (val & BIT(i))
2537 			qm_handle_vf_msg(qm, i);
2538 		else
2539 			dev_err(dev, "VF(%u) not ping PF!\n", i);
2540 	}
2541 
2542 	/* PF clear interrupt to ack VFs */
2543 	qm_clear_cmd_interrupt(qm, val);
2544 
2545 	return ret;
2546 }
2547 
2548 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
2549 {
2550 	u32 val;
2551 
2552 	val = readl(qm->io_base + QM_IFC_INT_CFG);
2553 	val &= ~QM_IFC_SEND_ALL_VFS;
2554 	val |= fun_num;
2555 	writel(val, qm->io_base + QM_IFC_INT_CFG);
2556 
2557 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
2558 	val |= QM_IFC_INT_SET_MASK;
2559 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
2560 }
2561 
2562 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
2563 {
2564 	u32 val;
2565 
2566 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
2567 	val |= QM_IFC_INT_SET_MASK;
2568 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
2569 }
2570 
2571 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
2572 {
2573 	struct device *dev = &qm->pdev->dev;
2574 	struct qm_mailbox mailbox;
2575 	int cnt = 0;
2576 	u64 val;
2577 	int ret;
2578 
2579 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
2580 	mutex_lock(&qm->mailbox_lock);
2581 	ret = qm_mb_nolock(qm, &mailbox);
2582 	if (ret) {
2583 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
2584 		goto err_unlock;
2585 	}
2586 
2587 	qm_trigger_vf_interrupt(qm, fun_num);
2588 	while (true) {
2589 		msleep(QM_WAIT_DST_ACK);
2590 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
2591 		/* if VF respond, PF notifies VF successfully. */
2592 		if (!(val & BIT(fun_num)))
2593 			goto err_unlock;
2594 
2595 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
2596 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
2597 			ret = -ETIMEDOUT;
2598 			break;
2599 		}
2600 	}
2601 
2602 err_unlock:
2603 	mutex_unlock(&qm->mailbox_lock);
2604 	return ret;
2605 }
2606 
2607 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
2608 {
2609 	struct device *dev = &qm->pdev->dev;
2610 	u32 vfs_num = qm->vfs_num;
2611 	struct qm_mailbox mailbox;
2612 	u64 val = 0;
2613 	int cnt = 0;
2614 	int ret;
2615 	u32 i;
2616 
2617 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
2618 	mutex_lock(&qm->mailbox_lock);
2619 	/* PF sends command to all VFs by mailbox */
2620 	ret = qm_mb_nolock(qm, &mailbox);
2621 	if (ret) {
2622 		dev_err(dev, "failed to send command to VFs!\n");
2623 		mutex_unlock(&qm->mailbox_lock);
2624 		return ret;
2625 	}
2626 
2627 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
2628 	while (true) {
2629 		msleep(QM_WAIT_DST_ACK);
2630 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
2631 		/* If all VFs acked, PF notifies VFs successfully. */
2632 		if (!(val & GENMASK(vfs_num, 1))) {
2633 			mutex_unlock(&qm->mailbox_lock);
2634 			return 0;
2635 		}
2636 
2637 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
2638 			break;
2639 	}
2640 
2641 	mutex_unlock(&qm->mailbox_lock);
2642 
2643 	/* Check which vf respond timeout. */
2644 	for (i = 1; i <= vfs_num; i++) {
2645 		if (val & BIT(i))
2646 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
2647 	}
2648 
2649 	return -ETIMEDOUT;
2650 }
2651 
2652 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
2653 {
2654 	struct qm_mailbox mailbox;
2655 	int cnt = 0;
2656 	u32 val;
2657 	int ret;
2658 
2659 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
2660 	mutex_lock(&qm->mailbox_lock);
2661 	ret = qm_mb_nolock(qm, &mailbox);
2662 	if (ret) {
2663 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
2664 		goto unlock;
2665 	}
2666 
2667 	qm_trigger_pf_interrupt(qm);
2668 	/* Waiting for PF response */
2669 	while (true) {
2670 		msleep(QM_WAIT_DST_ACK);
2671 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
2672 		if (!(val & QM_IFC_INT_STATUS_MASK))
2673 			break;
2674 
2675 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
2676 			ret = -ETIMEDOUT;
2677 			break;
2678 		}
2679 	}
2680 
2681 unlock:
2682 	mutex_unlock(&qm->mailbox_lock);
2683 	return ret;
2684 }
2685 
2686 static int qm_stop_qp(struct hisi_qp *qp)
2687 {
2688 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
2689 }
2690 
2691 static int qm_set_msi(struct hisi_qm *qm, bool set)
2692 {
2693 	struct pci_dev *pdev = qm->pdev;
2694 
2695 	if (set) {
2696 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
2697 				       0);
2698 	} else {
2699 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
2700 				       ACC_PEH_MSI_DISABLE);
2701 		if (qm->err_status.is_qm_ecc_mbit ||
2702 		    qm->err_status.is_dev_ecc_mbit)
2703 			return 0;
2704 
2705 		mdelay(1);
2706 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
2707 			return -EFAULT;
2708 	}
2709 
2710 	return 0;
2711 }
2712 
2713 static void qm_wait_msi_finish(struct hisi_qm *qm)
2714 {
2715 	struct pci_dev *pdev = qm->pdev;
2716 	u32 cmd = ~0;
2717 	int cnt = 0;
2718 	u32 val;
2719 	int ret;
2720 
2721 	while (true) {
2722 		pci_read_config_dword(pdev, pdev->msi_cap +
2723 				      PCI_MSI_PENDING_64, &cmd);
2724 		if (!cmd)
2725 			break;
2726 
2727 		if (++cnt > MAX_WAIT_COUNTS) {
2728 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
2729 			break;
2730 		}
2731 
2732 		udelay(1);
2733 	}
2734 
2735 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
2736 					 val, !(val & QM_PEH_DFX_MASK),
2737 					 POLL_PERIOD, POLL_TIMEOUT);
2738 	if (ret)
2739 		pci_warn(pdev, "failed to empty PEH MSI!\n");
2740 
2741 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
2742 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
2743 					 POLL_PERIOD, POLL_TIMEOUT);
2744 	if (ret)
2745 		pci_warn(pdev, "failed to finish MSI operation!\n");
2746 }
2747 
2748 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
2749 {
2750 	struct pci_dev *pdev = qm->pdev;
2751 	int ret = -ETIMEDOUT;
2752 	u32 cmd, i;
2753 
2754 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
2755 	if (set)
2756 		cmd |= QM_MSI_CAP_ENABLE;
2757 	else
2758 		cmd &= ~QM_MSI_CAP_ENABLE;
2759 
2760 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
2761 	if (set) {
2762 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
2763 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
2764 			if (cmd & QM_MSI_CAP_ENABLE)
2765 				return 0;
2766 
2767 			udelay(1);
2768 		}
2769 	} else {
2770 		udelay(WAIT_PERIOD_US_MIN);
2771 		qm_wait_msi_finish(qm);
2772 		ret = 0;
2773 	}
2774 
2775 	return ret;
2776 }
2777 
2778 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
2779 	.qm_db = qm_db_v1,
2780 	.hw_error_init = qm_hw_error_init_v1,
2781 	.set_msi = qm_set_msi,
2782 };
2783 
2784 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
2785 	.get_vft = qm_get_vft_v2,
2786 	.qm_db = qm_db_v2,
2787 	.hw_error_init = qm_hw_error_init_v2,
2788 	.hw_error_uninit = qm_hw_error_uninit_v2,
2789 	.hw_error_handle = qm_hw_error_handle_v2,
2790 	.set_msi = qm_set_msi,
2791 };
2792 
2793 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
2794 	.get_vft = qm_get_vft_v2,
2795 	.qm_db = qm_db_v2,
2796 	.hw_error_init = qm_hw_error_init_v3,
2797 	.hw_error_uninit = qm_hw_error_uninit_v3,
2798 	.hw_error_handle = qm_hw_error_handle_v2,
2799 	.set_msi = qm_set_msi_v3,
2800 };
2801 
2802 static void *qm_get_avail_sqe(struct hisi_qp *qp)
2803 {
2804 	struct hisi_qp_status *qp_status = &qp->qp_status;
2805 	u16 sq_tail = qp_status->sq_tail;
2806 
2807 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
2808 		return NULL;
2809 
2810 	return qp->sqe + sq_tail * qp->qm->sqe_size;
2811 }
2812 
2813 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
2814 {
2815 	u64 *addr;
2816 
2817 	/* Use last 64 bits of DUS to reset status. */
2818 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
2819 	*addr = 0;
2820 }
2821 
2822 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
2823 {
2824 	struct device *dev = &qm->pdev->dev;
2825 	struct hisi_qp *qp;
2826 	int qp_id;
2827 
2828 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
2829 		return ERR_PTR(-EPERM);
2830 
2831 	if (qm->qp_in_used == qm->qp_num) {
2832 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2833 				     qm->qp_num);
2834 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2835 		return ERR_PTR(-EBUSY);
2836 	}
2837 
2838 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
2839 	if (qp_id < 0) {
2840 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2841 				    qm->qp_num);
2842 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2843 		return ERR_PTR(-EBUSY);
2844 	}
2845 
2846 	qp = &qm->qp_array[qp_id];
2847 	hisi_qm_unset_hw_reset(qp);
2848 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
2849 
2850 	qp->event_cb = NULL;
2851 	qp->req_cb = NULL;
2852 	qp->qp_id = qp_id;
2853 	qp->alg_type = alg_type;
2854 	qp->is_in_kernel = true;
2855 	qm->qp_in_used++;
2856 	atomic_set(&qp->qp_status.flags, QP_INIT);
2857 
2858 	return qp;
2859 }
2860 
2861 /**
2862  * hisi_qm_create_qp() - Create a queue pair from qm.
2863  * @qm: The qm we create a qp from.
2864  * @alg_type: Accelerator specific algorithm type in sqc.
2865  *
2866  * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating
2867  * qp memory fails.
2868  */
2869 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
2870 {
2871 	struct hisi_qp *qp;
2872 	int ret;
2873 
2874 	ret = qm_pm_get_sync(qm);
2875 	if (ret)
2876 		return ERR_PTR(ret);
2877 
2878 	down_write(&qm->qps_lock);
2879 	qp = qm_create_qp_nolock(qm, alg_type);
2880 	up_write(&qm->qps_lock);
2881 
2882 	if (IS_ERR(qp))
2883 		qm_pm_put_sync(qm);
2884 
2885 	return qp;
2886 }
2887 
2888 /**
2889  * hisi_qm_release_qp() - Release a qp back to its qm.
2890  * @qp: The qp we want to release.
2891  *
2892  * This function releases the resource of a qp.
2893  */
2894 static void hisi_qm_release_qp(struct hisi_qp *qp)
2895 {
2896 	struct hisi_qm *qm = qp->qm;
2897 
2898 	down_write(&qm->qps_lock);
2899 
2900 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
2901 		up_write(&qm->qps_lock);
2902 		return;
2903 	}
2904 
2905 	qm->qp_in_used--;
2906 	idr_remove(&qm->qp_idr, qp->qp_id);
2907 
2908 	up_write(&qm->qps_lock);
2909 
2910 	qm_pm_put_sync(qm);
2911 }
2912 
2913 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2914 {
2915 	struct hisi_qm *qm = qp->qm;
2916 	struct device *dev = &qm->pdev->dev;
2917 	enum qm_hw_ver ver = qm->ver;
2918 	struct qm_sqc *sqc;
2919 	dma_addr_t sqc_dma;
2920 	int ret;
2921 
2922 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
2923 	if (!sqc)
2924 		return -ENOMEM;
2925 
2926 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
2927 	if (ver == QM_HW_V1) {
2928 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
2929 		sqc->w8 = cpu_to_le16(qp->sq_depth - 1);
2930 	} else {
2931 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
2932 		sqc->w8 = 0; /* rand_qc */
2933 	}
2934 	sqc->cq_num = cpu_to_le16(qp_id);
2935 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
2936 
2937 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2938 		sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
2939 				       QM_QC_PASID_ENABLE_SHIFT);
2940 
2941 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
2942 				 DMA_TO_DEVICE);
2943 	if (dma_mapping_error(dev, sqc_dma)) {
2944 		kfree(sqc);
2945 		return -ENOMEM;
2946 	}
2947 
2948 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
2949 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
2950 	kfree(sqc);
2951 
2952 	return ret;
2953 }
2954 
2955 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2956 {
2957 	struct hisi_qm *qm = qp->qm;
2958 	struct device *dev = &qm->pdev->dev;
2959 	enum qm_hw_ver ver = qm->ver;
2960 	struct qm_cqc *cqc;
2961 	dma_addr_t cqc_dma;
2962 	int ret;
2963 
2964 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
2965 	if (!cqc)
2966 		return -ENOMEM;
2967 
2968 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
2969 	if (ver == QM_HW_V1) {
2970 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
2971 							QM_QC_CQE_SIZE));
2972 		cqc->w8 = cpu_to_le16(qp->cq_depth - 1);
2973 	} else {
2974 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
2975 		cqc->w8 = 0; /* rand_qc */
2976 	}
2977 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2978 
2979 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2980 		cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2981 
2982 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
2983 				 DMA_TO_DEVICE);
2984 	if (dma_mapping_error(dev, cqc_dma)) {
2985 		kfree(cqc);
2986 		return -ENOMEM;
2987 	}
2988 
2989 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
2990 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
2991 	kfree(cqc);
2992 
2993 	return ret;
2994 }
2995 
2996 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2997 {
2998 	int ret;
2999 
3000 	qm_init_qp_status(qp);
3001 
3002 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
3003 	if (ret)
3004 		return ret;
3005 
3006 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
3007 }
3008 
3009 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
3010 {
3011 	struct hisi_qm *qm = qp->qm;
3012 	struct device *dev = &qm->pdev->dev;
3013 	int qp_id = qp->qp_id;
3014 	u32 pasid = arg;
3015 	int ret;
3016 
3017 	if (!qm_qp_avail_state(qm, qp, QP_START))
3018 		return -EPERM;
3019 
3020 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
3021 	if (ret)
3022 		return ret;
3023 
3024 	atomic_set(&qp->qp_status.flags, QP_START);
3025 	dev_dbg(dev, "queue %d started\n", qp_id);
3026 
3027 	return 0;
3028 }
3029 
3030 /**
3031  * hisi_qm_start_qp() - Start a qp into running.
3032  * @qp: The qp we want to start to run.
3033  * @arg: Accelerator specific argument.
3034  *
3035  * After this function, qp can receive request from user. Return 0 if
3036  * successful, Return -EBUSY if failed.
3037  */
3038 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
3039 {
3040 	struct hisi_qm *qm = qp->qm;
3041 	int ret;
3042 
3043 	down_write(&qm->qps_lock);
3044 	ret = qm_start_qp_nolock(qp, arg);
3045 	up_write(&qm->qps_lock);
3046 
3047 	return ret;
3048 }
3049 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
3050 
3051 /**
3052  * qp_stop_fail_cb() - call request cb.
3053  * @qp: stopped failed qp.
3054  *
3055  * Callback function should be called whether task completed or not.
3056  */
3057 static void qp_stop_fail_cb(struct hisi_qp *qp)
3058 {
3059 	int qp_used = atomic_read(&qp->qp_status.used);
3060 	u16 cur_tail = qp->qp_status.sq_tail;
3061 	u16 sq_depth = qp->sq_depth;
3062 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
3063 	struct hisi_qm *qm = qp->qm;
3064 	u16 pos;
3065 	int i;
3066 
3067 	for (i = 0; i < qp_used; i++) {
3068 		pos = (i + cur_head) % sq_depth;
3069 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
3070 		atomic_dec(&qp->qp_status.used);
3071 	}
3072 }
3073 
3074 /**
3075  * qm_drain_qp() - Drain a qp.
3076  * @qp: The qp we want to drain.
3077  *
3078  * Determine whether the queue is cleared by judging the tail pointers of
3079  * sq and cq.
3080  */
3081 static int qm_drain_qp(struct hisi_qp *qp)
3082 {
3083 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
3084 	struct hisi_qm *qm = qp->qm;
3085 	struct device *dev = &qm->pdev->dev;
3086 	struct qm_sqc *sqc;
3087 	struct qm_cqc *cqc;
3088 	dma_addr_t dma_addr;
3089 	int ret = 0, i = 0;
3090 	void *addr;
3091 
3092 	/* No need to judge if master OOO is blocked. */
3093 	if (qm_check_dev_error(qm))
3094 		return 0;
3095 
3096 	/* Kunpeng930 supports drain qp by device */
3097 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
3098 		ret = qm_stop_qp(qp);
3099 		if (ret)
3100 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
3101 		return ret;
3102 	}
3103 
3104 	addr = qm_ctx_alloc(qm, size, &dma_addr);
3105 	if (IS_ERR(addr)) {
3106 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
3107 		return -ENOMEM;
3108 	}
3109 
3110 	while (++i) {
3111 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
3112 		if (ret) {
3113 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
3114 			break;
3115 		}
3116 		sqc = addr;
3117 
3118 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
3119 				      qp->qp_id);
3120 		if (ret) {
3121 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
3122 			break;
3123 		}
3124 		cqc = addr + sizeof(struct qm_sqc);
3125 
3126 		if ((sqc->tail == cqc->tail) &&
3127 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
3128 			break;
3129 
3130 		if (i == MAX_WAIT_COUNTS) {
3131 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
3132 			ret = -EBUSY;
3133 			break;
3134 		}
3135 
3136 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
3137 	}
3138 
3139 	qm_ctx_free(qm, size, addr, &dma_addr);
3140 
3141 	return ret;
3142 }
3143 
3144 static int qm_stop_qp_nolock(struct hisi_qp *qp)
3145 {
3146 	struct device *dev = &qp->qm->pdev->dev;
3147 	int ret;
3148 
3149 	/*
3150 	 * It is allowed to stop and release qp when reset, If the qp is
3151 	 * stopped when reset but still want to be released then, the
3152 	 * is_resetting flag should be set negative so that this qp will not
3153 	 * be restarted after reset.
3154 	 */
3155 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
3156 		qp->is_resetting = false;
3157 		return 0;
3158 	}
3159 
3160 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
3161 		return -EPERM;
3162 
3163 	atomic_set(&qp->qp_status.flags, QP_STOP);
3164 
3165 	ret = qm_drain_qp(qp);
3166 	if (ret)
3167 		dev_err(dev, "Failed to drain out data for stopping!\n");
3168 
3169 
3170 	flush_workqueue(qp->qm->wq);
3171 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
3172 		qp_stop_fail_cb(qp);
3173 
3174 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
3175 
3176 	return 0;
3177 }
3178 
3179 /**
3180  * hisi_qm_stop_qp() - Stop a qp in qm.
3181  * @qp: The qp we want to stop.
3182  *
3183  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
3184  */
3185 int hisi_qm_stop_qp(struct hisi_qp *qp)
3186 {
3187 	int ret;
3188 
3189 	down_write(&qp->qm->qps_lock);
3190 	ret = qm_stop_qp_nolock(qp);
3191 	up_write(&qp->qm->qps_lock);
3192 
3193 	return ret;
3194 }
3195 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
3196 
3197 /**
3198  * hisi_qp_send() - Queue up a task in the hardware queue.
3199  * @qp: The qp in which to put the message.
3200  * @msg: The message.
3201  *
3202  * This function will return -EBUSY if qp is currently full, and -EAGAIN
3203  * if qp related qm is resetting.
3204  *
3205  * Note: This function may run with qm_irq_thread and ACC reset at same time.
3206  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
3207  *       reset may happen, we have no lock here considering performance. This
3208  *       causes current qm_db sending fail or can not receive sended sqe. QM
3209  *       sync/async receive function should handle the error sqe. ACC reset
3210  *       done function should clear used sqe to 0.
3211  */
3212 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
3213 {
3214 	struct hisi_qp_status *qp_status = &qp->qp_status;
3215 	u16 sq_tail = qp_status->sq_tail;
3216 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
3217 	void *sqe = qm_get_avail_sqe(qp);
3218 
3219 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
3220 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
3221 		     qp->is_resetting)) {
3222 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
3223 		return -EAGAIN;
3224 	}
3225 
3226 	if (!sqe)
3227 		return -EBUSY;
3228 
3229 	memcpy(sqe, msg, qp->qm->sqe_size);
3230 
3231 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
3232 	atomic_inc(&qp->qp_status.used);
3233 	qp_status->sq_tail = sq_tail_next;
3234 
3235 	return 0;
3236 }
3237 EXPORT_SYMBOL_GPL(hisi_qp_send);
3238 
3239 static void hisi_qm_cache_wb(struct hisi_qm *qm)
3240 {
3241 	unsigned int val;
3242 
3243 	if (qm->ver == QM_HW_V1)
3244 		return;
3245 
3246 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
3247 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
3248 				       val, val & BIT(0), POLL_PERIOD,
3249 				       POLL_TIMEOUT))
3250 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
3251 }
3252 
3253 static void qm_qp_event_notifier(struct hisi_qp *qp)
3254 {
3255 	wake_up_interruptible(&qp->uacce_q->wait);
3256 }
3257 
3258  /* This function returns free number of qp in qm. */
3259 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
3260 {
3261 	struct hisi_qm *qm = uacce->priv;
3262 	int ret;
3263 
3264 	down_read(&qm->qps_lock);
3265 	ret = qm->qp_num - qm->qp_in_used;
3266 	up_read(&qm->qps_lock);
3267 
3268 	return ret;
3269 }
3270 
3271 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
3272 {
3273 	int i;
3274 
3275 	for (i = 0; i < qm->qp_num; i++)
3276 		qm_set_qp_disable(&qm->qp_array[i], offset);
3277 }
3278 
3279 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
3280 				   unsigned long arg,
3281 				   struct uacce_queue *q)
3282 {
3283 	struct hisi_qm *qm = uacce->priv;
3284 	struct hisi_qp *qp;
3285 	u8 alg_type = 0;
3286 
3287 	qp = hisi_qm_create_qp(qm, alg_type);
3288 	if (IS_ERR(qp))
3289 		return PTR_ERR(qp);
3290 
3291 	q->priv = qp;
3292 	q->uacce = uacce;
3293 	qp->uacce_q = q;
3294 	qp->event_cb = qm_qp_event_notifier;
3295 	qp->pasid = arg;
3296 	qp->is_in_kernel = false;
3297 
3298 	return 0;
3299 }
3300 
3301 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
3302 {
3303 	struct hisi_qp *qp = q->priv;
3304 
3305 	hisi_qm_release_qp(qp);
3306 }
3307 
3308 /* map sq/cq/doorbell to user space */
3309 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
3310 			      struct vm_area_struct *vma,
3311 			      struct uacce_qfile_region *qfr)
3312 {
3313 	struct hisi_qp *qp = q->priv;
3314 	struct hisi_qm *qm = qp->qm;
3315 	resource_size_t phys_base = qm->db_phys_base +
3316 				    qp->qp_id * qm->db_interval;
3317 	size_t sz = vma->vm_end - vma->vm_start;
3318 	struct pci_dev *pdev = qm->pdev;
3319 	struct device *dev = &pdev->dev;
3320 	unsigned long vm_pgoff;
3321 	int ret;
3322 
3323 	switch (qfr->type) {
3324 	case UACCE_QFRT_MMIO:
3325 		if (qm->ver == QM_HW_V1) {
3326 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
3327 				return -EINVAL;
3328 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
3329 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
3330 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
3331 				return -EINVAL;
3332 		} else {
3333 			if (sz > qm->db_interval)
3334 				return -EINVAL;
3335 		}
3336 
3337 		vma->vm_flags |= VM_IO;
3338 
3339 		return remap_pfn_range(vma, vma->vm_start,
3340 				       phys_base >> PAGE_SHIFT,
3341 				       sz, pgprot_noncached(vma->vm_page_prot));
3342 	case UACCE_QFRT_DUS:
3343 		if (sz != qp->qdma.size)
3344 			return -EINVAL;
3345 
3346 		/*
3347 		 * dma_mmap_coherent() requires vm_pgoff as 0
3348 		 * restore vm_pfoff to initial value for mmap()
3349 		 */
3350 		vm_pgoff = vma->vm_pgoff;
3351 		vma->vm_pgoff = 0;
3352 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
3353 					qp->qdma.dma, sz);
3354 		vma->vm_pgoff = vm_pgoff;
3355 		return ret;
3356 
3357 	default:
3358 		return -EINVAL;
3359 	}
3360 }
3361 
3362 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
3363 {
3364 	struct hisi_qp *qp = q->priv;
3365 
3366 	return hisi_qm_start_qp(qp, qp->pasid);
3367 }
3368 
3369 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
3370 {
3371 	hisi_qm_stop_qp(q->priv);
3372 }
3373 
3374 static int hisi_qm_is_q_updated(struct uacce_queue *q)
3375 {
3376 	struct hisi_qp *qp = q->priv;
3377 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
3378 	int updated = 0;
3379 
3380 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
3381 		/* make sure to read data from memory */
3382 		dma_rmb();
3383 		qm_cq_head_update(qp);
3384 		cqe = qp->cqe + qp->qp_status.cq_head;
3385 		updated = 1;
3386 	}
3387 
3388 	return updated;
3389 }
3390 
3391 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
3392 {
3393 	struct hisi_qm *qm = q->uacce->priv;
3394 	struct hisi_qp *qp = q->priv;
3395 
3396 	down_write(&qm->qps_lock);
3397 	qp->alg_type = type;
3398 	up_write(&qm->qps_lock);
3399 }
3400 
3401 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
3402 				unsigned long arg)
3403 {
3404 	struct hisi_qp *qp = q->priv;
3405 	struct hisi_qp_info qp_info;
3406 	struct hisi_qp_ctx qp_ctx;
3407 
3408 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
3409 		if (copy_from_user(&qp_ctx, (void __user *)arg,
3410 				   sizeof(struct hisi_qp_ctx)))
3411 			return -EFAULT;
3412 
3413 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
3414 			return -EINVAL;
3415 
3416 		qm_set_sqctype(q, qp_ctx.qc_type);
3417 		qp_ctx.id = qp->qp_id;
3418 
3419 		if (copy_to_user((void __user *)arg, &qp_ctx,
3420 				 sizeof(struct hisi_qp_ctx)))
3421 			return -EFAULT;
3422 
3423 		return 0;
3424 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
3425 		if (copy_from_user(&qp_info, (void __user *)arg,
3426 				   sizeof(struct hisi_qp_info)))
3427 			return -EFAULT;
3428 
3429 		qp_info.sqe_size = qp->qm->sqe_size;
3430 		qp_info.sq_depth = qp->sq_depth;
3431 		qp_info.cq_depth = qp->cq_depth;
3432 
3433 		if (copy_to_user((void __user *)arg, &qp_info,
3434 				  sizeof(struct hisi_qp_info)))
3435 			return -EFAULT;
3436 
3437 		return 0;
3438 	}
3439 
3440 	return -EINVAL;
3441 }
3442 
3443 static const struct uacce_ops uacce_qm_ops = {
3444 	.get_available_instances = hisi_qm_get_available_instances,
3445 	.get_queue = hisi_qm_uacce_get_queue,
3446 	.put_queue = hisi_qm_uacce_put_queue,
3447 	.start_queue = hisi_qm_uacce_start_queue,
3448 	.stop_queue = hisi_qm_uacce_stop_queue,
3449 	.mmap = hisi_qm_uacce_mmap,
3450 	.ioctl = hisi_qm_uacce_ioctl,
3451 	.is_q_updated = hisi_qm_is_q_updated,
3452 };
3453 
3454 static int qm_alloc_uacce(struct hisi_qm *qm)
3455 {
3456 	struct pci_dev *pdev = qm->pdev;
3457 	struct uacce_device *uacce;
3458 	unsigned long mmio_page_nr;
3459 	unsigned long dus_page_nr;
3460 	u16 sq_depth, cq_depth;
3461 	struct uacce_interface interface = {
3462 		.flags = UACCE_DEV_SVA,
3463 		.ops = &uacce_qm_ops,
3464 	};
3465 	int ret;
3466 
3467 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
3468 		      sizeof(interface.name));
3469 	if (ret < 0)
3470 		return -ENAMETOOLONG;
3471 
3472 	uacce = uacce_alloc(&pdev->dev, &interface);
3473 	if (IS_ERR(uacce))
3474 		return PTR_ERR(uacce);
3475 
3476 	if (uacce->flags & UACCE_DEV_SVA) {
3477 		qm->use_sva = true;
3478 	} else {
3479 		/* only consider sva case */
3480 		uacce_remove(uacce);
3481 		qm->uacce = NULL;
3482 		return -EINVAL;
3483 	}
3484 
3485 	uacce->is_vf = pdev->is_virtfn;
3486 	uacce->priv = qm;
3487 
3488 	if (qm->ver == QM_HW_V1)
3489 		uacce->api_ver = HISI_QM_API_VER_BASE;
3490 	else if (qm->ver == QM_HW_V2)
3491 		uacce->api_ver = HISI_QM_API_VER2_BASE;
3492 	else
3493 		uacce->api_ver = HISI_QM_API_VER3_BASE;
3494 
3495 	if (qm->ver == QM_HW_V1)
3496 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
3497 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
3498 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
3499 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
3500 	else
3501 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
3502 
3503 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
3504 
3505 	/* Add one more page for device or qp status */
3506 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
3507 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
3508 					 PAGE_SHIFT;
3509 
3510 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
3511 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
3512 
3513 	qm->uacce = uacce;
3514 
3515 	return 0;
3516 }
3517 
3518 /**
3519  * qm_frozen() - Try to froze QM to cut continuous queue request. If
3520  * there is user on the QM, return failure without doing anything.
3521  * @qm: The qm needed to be fronzen.
3522  *
3523  * This function frozes QM, then we can do SRIOV disabling.
3524  */
3525 static int qm_frozen(struct hisi_qm *qm)
3526 {
3527 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
3528 		return 0;
3529 
3530 	down_write(&qm->qps_lock);
3531 
3532 	if (!qm->qp_in_used) {
3533 		qm->qp_in_used = qm->qp_num;
3534 		up_write(&qm->qps_lock);
3535 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
3536 		return 0;
3537 	}
3538 
3539 	up_write(&qm->qps_lock);
3540 
3541 	return -EBUSY;
3542 }
3543 
3544 static int qm_try_frozen_vfs(struct pci_dev *pdev,
3545 			     struct hisi_qm_list *qm_list)
3546 {
3547 	struct hisi_qm *qm, *vf_qm;
3548 	struct pci_dev *dev;
3549 	int ret = 0;
3550 
3551 	if (!qm_list || !pdev)
3552 		return -EINVAL;
3553 
3554 	/* Try to frozen all the VFs as disable SRIOV */
3555 	mutex_lock(&qm_list->lock);
3556 	list_for_each_entry(qm, &qm_list->list, list) {
3557 		dev = qm->pdev;
3558 		if (dev == pdev)
3559 			continue;
3560 		if (pci_physfn(dev) == pdev) {
3561 			vf_qm = pci_get_drvdata(dev);
3562 			ret = qm_frozen(vf_qm);
3563 			if (ret)
3564 				goto frozen_fail;
3565 		}
3566 	}
3567 
3568 frozen_fail:
3569 	mutex_unlock(&qm_list->lock);
3570 
3571 	return ret;
3572 }
3573 
3574 /**
3575  * hisi_qm_wait_task_finish() - Wait until the task is finished
3576  * when removing the driver.
3577  * @qm: The qm needed to wait for the task to finish.
3578  * @qm_list: The list of all available devices.
3579  */
3580 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
3581 {
3582 	while (qm_frozen(qm) ||
3583 	       ((qm->fun_type == QM_HW_PF) &&
3584 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
3585 		msleep(WAIT_PERIOD);
3586 	}
3587 
3588 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
3589 	       test_bit(QM_RESETTING, &qm->misc_ctl))
3590 		msleep(WAIT_PERIOD);
3591 
3592 	udelay(REMOVE_WAIT_DELAY);
3593 }
3594 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
3595 
3596 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
3597 {
3598 	struct device *dev = &qm->pdev->dev;
3599 	struct qm_dma *qdma;
3600 	int i;
3601 
3602 	for (i = num - 1; i >= 0; i--) {
3603 		qdma = &qm->qp_array[i].qdma;
3604 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
3605 		kfree(qm->poll_data[i].qp_finish_id);
3606 	}
3607 
3608 	kfree(qm->poll_data);
3609 	kfree(qm->qp_array);
3610 }
3611 
3612 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
3613 			       u16 sq_depth, u16 cq_depth)
3614 {
3615 	struct device *dev = &qm->pdev->dev;
3616 	size_t off = qm->sqe_size * sq_depth;
3617 	struct hisi_qp *qp;
3618 	int ret = -ENOMEM;
3619 
3620 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
3621 						 GFP_KERNEL);
3622 	if (!qm->poll_data[id].qp_finish_id)
3623 		return -ENOMEM;
3624 
3625 	qp = &qm->qp_array[id];
3626 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
3627 					 GFP_KERNEL);
3628 	if (!qp->qdma.va)
3629 		goto err_free_qp_finish_id;
3630 
3631 	qp->sqe = qp->qdma.va;
3632 	qp->sqe_dma = qp->qdma.dma;
3633 	qp->cqe = qp->qdma.va + off;
3634 	qp->cqe_dma = qp->qdma.dma + off;
3635 	qp->qdma.size = dma_size;
3636 	qp->sq_depth = sq_depth;
3637 	qp->cq_depth = cq_depth;
3638 	qp->qm = qm;
3639 	qp->qp_id = id;
3640 
3641 	return 0;
3642 
3643 err_free_qp_finish_id:
3644 	kfree(qm->poll_data[id].qp_finish_id);
3645 	return ret;
3646 }
3647 
3648 static void hisi_qm_pre_init(struct hisi_qm *qm)
3649 {
3650 	struct pci_dev *pdev = qm->pdev;
3651 
3652 	if (qm->ver == QM_HW_V1)
3653 		qm->ops = &qm_hw_ops_v1;
3654 	else if (qm->ver == QM_HW_V2)
3655 		qm->ops = &qm_hw_ops_v2;
3656 	else
3657 		qm->ops = &qm_hw_ops_v3;
3658 
3659 	pci_set_drvdata(pdev, qm);
3660 	mutex_init(&qm->mailbox_lock);
3661 	init_rwsem(&qm->qps_lock);
3662 	qm->qp_in_used = 0;
3663 	qm->misc_ctl = false;
3664 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
3665 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
3666 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
3667 	}
3668 }
3669 
3670 static void qm_cmd_uninit(struct hisi_qm *qm)
3671 {
3672 	u32 val;
3673 
3674 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3675 		return;
3676 
3677 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3678 	val |= QM_IFC_INT_DISABLE;
3679 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3680 }
3681 
3682 static void qm_cmd_init(struct hisi_qm *qm)
3683 {
3684 	u32 val;
3685 
3686 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3687 		return;
3688 
3689 	/* Clear communication interrupt source */
3690 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
3691 
3692 	/* Enable pf to vf communication reg. */
3693 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3694 	val &= ~QM_IFC_INT_DISABLE;
3695 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3696 }
3697 
3698 static void qm_put_pci_res(struct hisi_qm *qm)
3699 {
3700 	struct pci_dev *pdev = qm->pdev;
3701 
3702 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
3703 		iounmap(qm->db_io_base);
3704 
3705 	iounmap(qm->io_base);
3706 	pci_release_mem_regions(pdev);
3707 }
3708 
3709 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
3710 {
3711 	struct pci_dev *pdev = qm->pdev;
3712 
3713 	pci_free_irq_vectors(pdev);
3714 	qm_put_pci_res(qm);
3715 	pci_disable_device(pdev);
3716 }
3717 
3718 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
3719 {
3720 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
3721 		writel(state, qm->io_base + QM_VF_STATE);
3722 }
3723 
3724 static void qm_last_regs_uninit(struct hisi_qm *qm)
3725 {
3726 	struct qm_debug *debug = &qm->debug;
3727 
3728 	if (qm->fun_type == QM_HW_VF || !debug->qm_last_words)
3729 		return;
3730 
3731 	kfree(debug->qm_last_words);
3732 	debug->qm_last_words = NULL;
3733 }
3734 
3735 static void hisi_qm_unint_work(struct hisi_qm *qm)
3736 {
3737 	destroy_workqueue(qm->wq);
3738 }
3739 
3740 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
3741 {
3742 	struct device *dev = &qm->pdev->dev;
3743 
3744 	hisi_qp_memory_uninit(qm, qm->qp_num);
3745 	if (qm->qdma.va) {
3746 		hisi_qm_cache_wb(qm);
3747 		dma_free_coherent(dev, qm->qdma.size,
3748 				  qm->qdma.va, qm->qdma.dma);
3749 	}
3750 
3751 	idr_destroy(&qm->qp_idr);
3752 
3753 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3754 		kfree(qm->factor);
3755 }
3756 
3757 /**
3758  * hisi_qm_uninit() - Uninitialize qm.
3759  * @qm: The qm needed uninit.
3760  *
3761  * This function uninits qm related device resources.
3762  */
3763 void hisi_qm_uninit(struct hisi_qm *qm)
3764 {
3765 	qm_last_regs_uninit(qm);
3766 
3767 	qm_cmd_uninit(qm);
3768 	hisi_qm_unint_work(qm);
3769 	down_write(&qm->qps_lock);
3770 
3771 	if (!qm_avail_state(qm, QM_CLOSE)) {
3772 		up_write(&qm->qps_lock);
3773 		return;
3774 	}
3775 
3776 	hisi_qm_memory_uninit(qm);
3777 	hisi_qm_set_state(qm, QM_NOT_READY);
3778 	up_write(&qm->qps_lock);
3779 
3780 	qm_irqs_unregister(qm);
3781 	hisi_qm_pci_uninit(qm);
3782 	if (qm->use_sva) {
3783 		uacce_remove(qm->uacce);
3784 		qm->uacce = NULL;
3785 	}
3786 }
3787 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
3788 
3789 /**
3790  * hisi_qm_get_vft() - Get vft from a qm.
3791  * @qm: The qm we want to get its vft.
3792  * @base: The base number of queue in vft.
3793  * @number: The number of queues in vft.
3794  *
3795  * We can allocate multiple queues to a qm by configuring virtual function
3796  * table. We get related configures by this function. Normally, we call this
3797  * function in VF driver to get the queue information.
3798  *
3799  * qm hw v1 does not support this interface.
3800  */
3801 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
3802 {
3803 	if (!base || !number)
3804 		return -EINVAL;
3805 
3806 	if (!qm->ops->get_vft) {
3807 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
3808 		return -EINVAL;
3809 	}
3810 
3811 	return qm->ops->get_vft(qm, base, number);
3812 }
3813 
3814 /**
3815  * hisi_qm_set_vft() - Set vft to a qm.
3816  * @qm: The qm we want to set its vft.
3817  * @fun_num: The function number.
3818  * @base: The base number of queue in vft.
3819  * @number: The number of queues in vft.
3820  *
3821  * This function is alway called in PF driver, it is used to assign queues
3822  * among PF and VFs.
3823  *
3824  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
3825  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
3826  * (VF function number 0x2)
3827  */
3828 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
3829 		    u32 number)
3830 {
3831 	u32 max_q_num = qm->ctrl_qp_num;
3832 
3833 	if (base >= max_q_num || number > max_q_num ||
3834 	    (base + number) > max_q_num)
3835 		return -EINVAL;
3836 
3837 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
3838 }
3839 
3840 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
3841 {
3842 	struct hisi_qm_status *status = &qm->status;
3843 
3844 	status->eq_head = 0;
3845 	status->aeq_head = 0;
3846 	status->eqc_phase = true;
3847 	status->aeqc_phase = true;
3848 }
3849 
3850 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
3851 {
3852 	/* Clear eq/aeq interrupt source */
3853 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
3854 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
3855 
3856 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
3857 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
3858 }
3859 
3860 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
3861 {
3862 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
3863 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3864 }
3865 
3866 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3867 {
3868 	struct device *dev = &qm->pdev->dev;
3869 	struct qm_eqc *eqc;
3870 	dma_addr_t eqc_dma;
3871 	int ret;
3872 
3873 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
3874 	if (!eqc)
3875 		return -ENOMEM;
3876 
3877 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3878 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3879 	if (qm->ver == QM_HW_V1)
3880 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3881 	eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3882 
3883 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
3884 				 DMA_TO_DEVICE);
3885 	if (dma_mapping_error(dev, eqc_dma)) {
3886 		kfree(eqc);
3887 		return -ENOMEM;
3888 	}
3889 
3890 	ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
3891 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
3892 	kfree(eqc);
3893 
3894 	return ret;
3895 }
3896 
3897 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3898 {
3899 	struct device *dev = &qm->pdev->dev;
3900 	struct qm_aeqc *aeqc;
3901 	dma_addr_t aeqc_dma;
3902 	int ret;
3903 
3904 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
3905 	if (!aeqc)
3906 		return -ENOMEM;
3907 
3908 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3909 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3910 	aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3911 
3912 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
3913 				  DMA_TO_DEVICE);
3914 	if (dma_mapping_error(dev, aeqc_dma)) {
3915 		kfree(aeqc);
3916 		return -ENOMEM;
3917 	}
3918 
3919 	ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
3920 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
3921 	kfree(aeqc);
3922 
3923 	return ret;
3924 }
3925 
3926 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3927 {
3928 	struct device *dev = &qm->pdev->dev;
3929 	int ret;
3930 
3931 	qm_init_eq_aeq_status(qm);
3932 
3933 	ret = qm_eq_ctx_cfg(qm);
3934 	if (ret) {
3935 		dev_err(dev, "Set eqc failed!\n");
3936 		return ret;
3937 	}
3938 
3939 	return qm_aeq_ctx_cfg(qm);
3940 }
3941 
3942 static int __hisi_qm_start(struct hisi_qm *qm)
3943 {
3944 	int ret;
3945 
3946 	WARN_ON(!qm->qdma.va);
3947 
3948 	if (qm->fun_type == QM_HW_PF) {
3949 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3950 		if (ret)
3951 			return ret;
3952 	}
3953 
3954 	ret = qm_eq_aeq_ctx_cfg(qm);
3955 	if (ret)
3956 		return ret;
3957 
3958 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3959 	if (ret)
3960 		return ret;
3961 
3962 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3963 	if (ret)
3964 		return ret;
3965 
3966 	qm_init_prefetch(qm);
3967 	qm_enable_eq_aeq_interrupts(qm);
3968 
3969 	return 0;
3970 }
3971 
3972 /**
3973  * hisi_qm_start() - start qm
3974  * @qm: The qm to be started.
3975  *
3976  * This function starts a qm, then we can allocate qp from this qm.
3977  */
3978 int hisi_qm_start(struct hisi_qm *qm)
3979 {
3980 	struct device *dev = &qm->pdev->dev;
3981 	int ret = 0;
3982 
3983 	down_write(&qm->qps_lock);
3984 
3985 	if (!qm_avail_state(qm, QM_START)) {
3986 		up_write(&qm->qps_lock);
3987 		return -EPERM;
3988 	}
3989 
3990 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3991 
3992 	if (!qm->qp_num) {
3993 		dev_err(dev, "qp_num should not be 0\n");
3994 		ret = -EINVAL;
3995 		goto err_unlock;
3996 	}
3997 
3998 	ret = __hisi_qm_start(qm);
3999 	if (!ret)
4000 		atomic_set(&qm->status.flags, QM_START);
4001 
4002 	hisi_qm_set_state(qm, QM_READY);
4003 err_unlock:
4004 	up_write(&qm->qps_lock);
4005 	return ret;
4006 }
4007 EXPORT_SYMBOL_GPL(hisi_qm_start);
4008 
4009 static int qm_restart(struct hisi_qm *qm)
4010 {
4011 	struct device *dev = &qm->pdev->dev;
4012 	struct hisi_qp *qp;
4013 	int ret, i;
4014 
4015 	ret = hisi_qm_start(qm);
4016 	if (ret < 0)
4017 		return ret;
4018 
4019 	down_write(&qm->qps_lock);
4020 	for (i = 0; i < qm->qp_num; i++) {
4021 		qp = &qm->qp_array[i];
4022 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
4023 		    qp->is_resetting == true) {
4024 			ret = qm_start_qp_nolock(qp, 0);
4025 			if (ret < 0) {
4026 				dev_err(dev, "Failed to start qp%d!\n", i);
4027 
4028 				up_write(&qm->qps_lock);
4029 				return ret;
4030 			}
4031 			qp->is_resetting = false;
4032 		}
4033 	}
4034 	up_write(&qm->qps_lock);
4035 
4036 	return 0;
4037 }
4038 
4039 /* Stop started qps in reset flow */
4040 static int qm_stop_started_qp(struct hisi_qm *qm)
4041 {
4042 	struct device *dev = &qm->pdev->dev;
4043 	struct hisi_qp *qp;
4044 	int i, ret;
4045 
4046 	for (i = 0; i < qm->qp_num; i++) {
4047 		qp = &qm->qp_array[i];
4048 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
4049 			qp->is_resetting = true;
4050 			ret = qm_stop_qp_nolock(qp);
4051 			if (ret < 0) {
4052 				dev_err(dev, "Failed to stop qp%d!\n", i);
4053 				return ret;
4054 			}
4055 		}
4056 	}
4057 
4058 	return 0;
4059 }
4060 
4061 
4062 /**
4063  * qm_clear_queues() - Clear all queues memory in a qm.
4064  * @qm: The qm in which the queues will be cleared.
4065  *
4066  * This function clears all queues memory in a qm. Reset of accelerator can
4067  * use this to clear queues.
4068  */
4069 static void qm_clear_queues(struct hisi_qm *qm)
4070 {
4071 	struct hisi_qp *qp;
4072 	int i;
4073 
4074 	for (i = 0; i < qm->qp_num; i++) {
4075 		qp = &qm->qp_array[i];
4076 		if (qp->is_in_kernel && qp->is_resetting)
4077 			memset(qp->qdma.va, 0, qp->qdma.size);
4078 	}
4079 
4080 	memset(qm->qdma.va, 0, qm->qdma.size);
4081 }
4082 
4083 /**
4084  * hisi_qm_stop() - Stop a qm.
4085  * @qm: The qm which will be stopped.
4086  * @r: The reason to stop qm.
4087  *
4088  * This function stops qm and its qps, then qm can not accept request.
4089  * Related resources are not released at this state, we can use hisi_qm_start
4090  * to let qm start again.
4091  */
4092 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
4093 {
4094 	struct device *dev = &qm->pdev->dev;
4095 	int ret = 0;
4096 
4097 	down_write(&qm->qps_lock);
4098 
4099 	qm->status.stop_reason = r;
4100 	if (!qm_avail_state(qm, QM_STOP)) {
4101 		ret = -EPERM;
4102 		goto err_unlock;
4103 	}
4104 
4105 	if (qm->status.stop_reason == QM_SOFT_RESET ||
4106 	    qm->status.stop_reason == QM_FLR) {
4107 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4108 		ret = qm_stop_started_qp(qm);
4109 		if (ret < 0) {
4110 			dev_err(dev, "Failed to stop started qp!\n");
4111 			goto err_unlock;
4112 		}
4113 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4114 	}
4115 
4116 	qm_disable_eq_aeq_interrupts(qm);
4117 	if (qm->fun_type == QM_HW_PF) {
4118 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
4119 		if (ret < 0) {
4120 			dev_err(dev, "Failed to set vft!\n");
4121 			ret = -EBUSY;
4122 			goto err_unlock;
4123 		}
4124 	}
4125 
4126 	qm_clear_queues(qm);
4127 	atomic_set(&qm->status.flags, QM_STOP);
4128 
4129 err_unlock:
4130 	up_write(&qm->qps_lock);
4131 	return ret;
4132 }
4133 EXPORT_SYMBOL_GPL(hisi_qm_stop);
4134 
4135 static ssize_t qm_status_read(struct file *filp, char __user *buffer,
4136 			      size_t count, loff_t *pos)
4137 {
4138 	struct hisi_qm *qm = filp->private_data;
4139 	char buf[QM_DBG_READ_LEN];
4140 	int val, len;
4141 
4142 	val = atomic_read(&qm->status.flags);
4143 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]);
4144 
4145 	return simple_read_from_buffer(buffer, count, pos, buf, len);
4146 }
4147 
4148 static const struct file_operations qm_status_fops = {
4149 	.owner = THIS_MODULE,
4150 	.open = simple_open,
4151 	.read = qm_status_read,
4152 };
4153 
4154 static int qm_debugfs_atomic64_set(void *data, u64 val)
4155 {
4156 	if (val)
4157 		return -EINVAL;
4158 
4159 	atomic64_set((atomic64_t *)data, 0);
4160 
4161 	return 0;
4162 }
4163 
4164 static int qm_debugfs_atomic64_get(void *data, u64 *val)
4165 {
4166 	*val = atomic64_read((atomic64_t *)data);
4167 
4168 	return 0;
4169 }
4170 
4171 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get,
4172 			 qm_debugfs_atomic64_set, "%llu\n");
4173 
4174 static void qm_hw_error_init(struct hisi_qm *qm)
4175 {
4176 	if (!qm->ops->hw_error_init) {
4177 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
4178 		return;
4179 	}
4180 
4181 	qm->ops->hw_error_init(qm);
4182 }
4183 
4184 static void qm_hw_error_uninit(struct hisi_qm *qm)
4185 {
4186 	if (!qm->ops->hw_error_uninit) {
4187 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
4188 		return;
4189 	}
4190 
4191 	qm->ops->hw_error_uninit(qm);
4192 }
4193 
4194 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
4195 {
4196 	if (!qm->ops->hw_error_handle) {
4197 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
4198 		return ACC_ERR_NONE;
4199 	}
4200 
4201 	return qm->ops->hw_error_handle(qm);
4202 }
4203 
4204 /**
4205  * hisi_qm_dev_err_init() - Initialize device error configuration.
4206  * @qm: The qm for which we want to do error initialization.
4207  *
4208  * Initialize QM and device error related configuration.
4209  */
4210 void hisi_qm_dev_err_init(struct hisi_qm *qm)
4211 {
4212 	if (qm->fun_type == QM_HW_VF)
4213 		return;
4214 
4215 	qm_hw_error_init(qm);
4216 
4217 	if (!qm->err_ini->hw_err_enable) {
4218 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
4219 		return;
4220 	}
4221 	qm->err_ini->hw_err_enable(qm);
4222 }
4223 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
4224 
4225 /**
4226  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
4227  * @qm: The qm for which we want to do error uninitialization.
4228  *
4229  * Uninitialize QM and device error related configuration.
4230  */
4231 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
4232 {
4233 	if (qm->fun_type == QM_HW_VF)
4234 		return;
4235 
4236 	qm_hw_error_uninit(qm);
4237 
4238 	if (!qm->err_ini->hw_err_disable) {
4239 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
4240 		return;
4241 	}
4242 	qm->err_ini->hw_err_disable(qm);
4243 }
4244 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
4245 
4246 /**
4247  * hisi_qm_free_qps() - free multiple queue pairs.
4248  * @qps: The queue pairs need to be freed.
4249  * @qp_num: The num of queue pairs.
4250  */
4251 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
4252 {
4253 	int i;
4254 
4255 	if (!qps || qp_num <= 0)
4256 		return;
4257 
4258 	for (i = qp_num - 1; i >= 0; i--)
4259 		hisi_qm_release_qp(qps[i]);
4260 }
4261 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
4262 
4263 static void free_list(struct list_head *head)
4264 {
4265 	struct hisi_qm_resource *res, *tmp;
4266 
4267 	list_for_each_entry_safe(res, tmp, head, list) {
4268 		list_del(&res->list);
4269 		kfree(res);
4270 	}
4271 }
4272 
4273 static int hisi_qm_sort_devices(int node, struct list_head *head,
4274 				struct hisi_qm_list *qm_list)
4275 {
4276 	struct hisi_qm_resource *res, *tmp;
4277 	struct hisi_qm *qm;
4278 	struct list_head *n;
4279 	struct device *dev;
4280 	int dev_node = 0;
4281 
4282 	list_for_each_entry(qm, &qm_list->list, list) {
4283 		dev = &qm->pdev->dev;
4284 
4285 		if (IS_ENABLED(CONFIG_NUMA)) {
4286 			dev_node = dev_to_node(dev);
4287 			if (dev_node < 0)
4288 				dev_node = 0;
4289 		}
4290 
4291 		res = kzalloc(sizeof(*res), GFP_KERNEL);
4292 		if (!res)
4293 			return -ENOMEM;
4294 
4295 		res->qm = qm;
4296 		res->distance = node_distance(dev_node, node);
4297 		n = head;
4298 		list_for_each_entry(tmp, head, list) {
4299 			if (res->distance < tmp->distance) {
4300 				n = &tmp->list;
4301 				break;
4302 			}
4303 		}
4304 		list_add_tail(&res->list, n);
4305 	}
4306 
4307 	return 0;
4308 }
4309 
4310 /**
4311  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
4312  * @qm_list: The list of all available devices.
4313  * @qp_num: The number of queue pairs need created.
4314  * @alg_type: The algorithm type.
4315  * @node: The numa node.
4316  * @qps: The queue pairs need created.
4317  *
4318  * This function will sort all available device according to numa distance.
4319  * Then try to create all queue pairs from one device, if all devices do
4320  * not meet the requirements will return error.
4321  */
4322 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
4323 			   u8 alg_type, int node, struct hisi_qp **qps)
4324 {
4325 	struct hisi_qm_resource *tmp;
4326 	int ret = -ENODEV;
4327 	LIST_HEAD(head);
4328 	int i;
4329 
4330 	if (!qps || !qm_list || qp_num <= 0)
4331 		return -EINVAL;
4332 
4333 	mutex_lock(&qm_list->lock);
4334 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
4335 		mutex_unlock(&qm_list->lock);
4336 		goto err;
4337 	}
4338 
4339 	list_for_each_entry(tmp, &head, list) {
4340 		for (i = 0; i < qp_num; i++) {
4341 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
4342 			if (IS_ERR(qps[i])) {
4343 				hisi_qm_free_qps(qps, i);
4344 				break;
4345 			}
4346 		}
4347 
4348 		if (i == qp_num) {
4349 			ret = 0;
4350 			break;
4351 		}
4352 	}
4353 
4354 	mutex_unlock(&qm_list->lock);
4355 	if (ret)
4356 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
4357 			node, alg_type, qp_num);
4358 
4359 err:
4360 	free_list(&head);
4361 	return ret;
4362 }
4363 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
4364 
4365 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
4366 {
4367 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
4368 	u32 max_qp_num = qm->max_qp_num;
4369 	u32 q_base = qm->qp_num;
4370 	int ret;
4371 
4372 	if (!num_vfs)
4373 		return -EINVAL;
4374 
4375 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
4376 
4377 	/* If vfs_q_num is less than num_vfs, return error. */
4378 	if (vfs_q_num < num_vfs)
4379 		return -EINVAL;
4380 
4381 	q_num = vfs_q_num / num_vfs;
4382 	remain_q_num = vfs_q_num % num_vfs;
4383 
4384 	for (i = num_vfs; i > 0; i--) {
4385 		/*
4386 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
4387 		 * remaining queues equally.
4388 		 */
4389 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
4390 			act_q_num = q_num + remain_q_num;
4391 			remain_q_num = 0;
4392 		} else if (remain_q_num > 0) {
4393 			act_q_num = q_num + 1;
4394 			remain_q_num--;
4395 		} else {
4396 			act_q_num = q_num;
4397 		}
4398 
4399 		act_q_num = min_t(int, act_q_num, max_qp_num);
4400 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
4401 		if (ret) {
4402 			for (j = num_vfs; j > i; j--)
4403 				hisi_qm_set_vft(qm, j, 0, 0);
4404 			return ret;
4405 		}
4406 		q_base += act_q_num;
4407 	}
4408 
4409 	return 0;
4410 }
4411 
4412 static int qm_clear_vft_config(struct hisi_qm *qm)
4413 {
4414 	int ret;
4415 	u32 i;
4416 
4417 	for (i = 1; i <= qm->vfs_num; i++) {
4418 		ret = hisi_qm_set_vft(qm, i, 0, 0);
4419 		if (ret)
4420 			return ret;
4421 	}
4422 	qm->vfs_num = 0;
4423 
4424 	return 0;
4425 }
4426 
4427 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
4428 {
4429 	struct device *dev = &qm->pdev->dev;
4430 	u32 ir = qos * QM_QOS_RATE;
4431 	int ret, total_vfs, i;
4432 
4433 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
4434 	if (fun_index > total_vfs)
4435 		return -EINVAL;
4436 
4437 	qm->factor[fun_index].func_qos = qos;
4438 
4439 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
4440 	if (ret) {
4441 		dev_err(dev, "failed to calculate shaper parameter!\n");
4442 		return -EINVAL;
4443 	}
4444 
4445 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
4446 		/* The base number of queue reuse for different alg type */
4447 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
4448 		if (ret) {
4449 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
4450 			return -EINVAL;
4451 		}
4452 	}
4453 
4454 	return 0;
4455 }
4456 
4457 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
4458 {
4459 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
4460 	u64 shaper_vft, ir_calc, ir;
4461 	unsigned int val;
4462 	u32 error_rate;
4463 	int ret;
4464 
4465 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
4466 					 val & BIT(0), POLL_PERIOD,
4467 					 POLL_TIMEOUT);
4468 	if (ret)
4469 		return 0;
4470 
4471 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
4472 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
4473 	writel(fun_index, qm->io_base + QM_VFT_CFG);
4474 
4475 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
4476 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
4477 
4478 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
4479 					 val & BIT(0), POLL_PERIOD,
4480 					 POLL_TIMEOUT);
4481 	if (ret)
4482 		return 0;
4483 
4484 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
4485 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
4486 
4487 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
4488 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
4489 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
4490 
4491 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
4492 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
4493 
4494 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
4495 
4496 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
4497 
4498 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
4499 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
4500 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
4501 		return 0;
4502 	}
4503 
4504 	return ir;
4505 }
4506 
4507 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
4508 {
4509 	struct device *dev = &qm->pdev->dev;
4510 	u64 mb_cmd;
4511 	u32 qos;
4512 	int ret;
4513 
4514 	qos = qm_get_shaper_vft_qos(qm, fun_num);
4515 	if (!qos) {
4516 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
4517 		return;
4518 	}
4519 
4520 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
4521 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
4522 	if (ret)
4523 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
4524 }
4525 
4526 static int qm_vf_read_qos(struct hisi_qm *qm)
4527 {
4528 	int cnt = 0;
4529 	int ret = -EINVAL;
4530 
4531 	/* reset mailbox qos val */
4532 	qm->mb_qos = 0;
4533 
4534 	/* vf ping pf to get function qos */
4535 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
4536 	if (ret) {
4537 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
4538 		return ret;
4539 	}
4540 
4541 	while (true) {
4542 		msleep(QM_WAIT_DST_ACK);
4543 		if (qm->mb_qos)
4544 			break;
4545 
4546 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
4547 			pci_err(qm->pdev, "PF ping VF timeout!\n");
4548 			return  -ETIMEDOUT;
4549 		}
4550 	}
4551 
4552 	return ret;
4553 }
4554 
4555 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
4556 			       size_t count, loff_t *pos)
4557 {
4558 	struct hisi_qm *qm = filp->private_data;
4559 	char tbuf[QM_DBG_READ_LEN];
4560 	u32 qos_val, ir;
4561 	int ret;
4562 
4563 	ret = hisi_qm_get_dfx_access(qm);
4564 	if (ret)
4565 		return ret;
4566 
4567 	/* Mailbox and reset cannot be operated at the same time */
4568 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4569 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
4570 		ret = -EAGAIN;
4571 		goto err_put_dfx_access;
4572 	}
4573 
4574 	if (qm->fun_type == QM_HW_PF) {
4575 		ir = qm_get_shaper_vft_qos(qm, 0);
4576 	} else {
4577 		ret = qm_vf_read_qos(qm);
4578 		if (ret)
4579 			goto err_get_status;
4580 		ir = qm->mb_qos;
4581 	}
4582 
4583 	qos_val = ir / QM_QOS_RATE;
4584 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
4585 
4586 	ret =  simple_read_from_buffer(buf, count, pos, tbuf, ret);
4587 
4588 err_get_status:
4589 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4590 err_put_dfx_access:
4591 	hisi_qm_put_dfx_access(qm);
4592 	return ret;
4593 }
4594 
4595 static ssize_t qm_qos_value_init(const char *buf, unsigned long *val)
4596 {
4597 	int buflen = strlen(buf);
4598 	int ret, i;
4599 
4600 	for (i = 0; i < buflen; i++) {
4601 		if (!isdigit(buf[i]))
4602 			return -EINVAL;
4603 	}
4604 
4605 	ret = sscanf(buf, "%lu", val);
4606 	if (ret != QM_QOS_VAL_NUM)
4607 		return -EINVAL;
4608 
4609 	return 0;
4610 }
4611 
4612 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
4613 			       unsigned long *val,
4614 			       unsigned int *fun_index)
4615 {
4616 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
4617 	char val_buf[QM_QOS_VAL_MAX_LEN] = {0};
4618 	u32 tmp1, device, function;
4619 	int ret, bus;
4620 
4621 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
4622 	if (ret != QM_QOS_PARAM_NUM)
4623 		return -EINVAL;
4624 
4625 	ret = qm_qos_value_init(val_buf, val);
4626 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
4627 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
4628 		return -EINVAL;
4629 	}
4630 
4631 	ret = sscanf(tbuf_bdf, "%u:%x:%u.%u", &tmp1, &bus, &device, &function);
4632 	if (ret != QM_QOS_BDF_PARAM_NUM) {
4633 		pci_err(qm->pdev, "input pci bdf value is error!\n");
4634 		return -EINVAL;
4635 	}
4636 
4637 	*fun_index = PCI_DEVFN(device, function);
4638 
4639 	return 0;
4640 }
4641 
4642 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
4643 			       size_t count, loff_t *pos)
4644 {
4645 	struct hisi_qm *qm = filp->private_data;
4646 	char tbuf[QM_DBG_READ_LEN];
4647 	unsigned int fun_index;
4648 	unsigned long val;
4649 	int len, ret;
4650 
4651 	if (qm->fun_type == QM_HW_VF)
4652 		return -EINVAL;
4653 
4654 	if (*pos != 0)
4655 		return 0;
4656 
4657 	if (count >= QM_DBG_READ_LEN)
4658 		return -ENOSPC;
4659 
4660 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
4661 	if (len < 0)
4662 		return len;
4663 
4664 	tbuf[len] = '\0';
4665 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
4666 	if (ret)
4667 		return ret;
4668 
4669 	/* Mailbox and reset cannot be operated at the same time */
4670 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4671 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
4672 		return -EAGAIN;
4673 	}
4674 
4675 	ret = qm_pm_get_sync(qm);
4676 	if (ret) {
4677 		ret = -EINVAL;
4678 		goto err_get_status;
4679 	}
4680 
4681 	ret = qm_func_shaper_enable(qm, fun_index, val);
4682 	if (ret) {
4683 		pci_err(qm->pdev, "failed to enable function shaper!\n");
4684 		ret = -EINVAL;
4685 		goto err_put_sync;
4686 	}
4687 
4688 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
4689 		 fun_index, val);
4690 	ret = count;
4691 
4692 err_put_sync:
4693 	qm_pm_put_sync(qm);
4694 err_get_status:
4695 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4696 	return ret;
4697 }
4698 
4699 static const struct file_operations qm_algqos_fops = {
4700 	.owner = THIS_MODULE,
4701 	.open = simple_open,
4702 	.read = qm_algqos_read,
4703 	.write = qm_algqos_write,
4704 };
4705 
4706 /**
4707  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
4708  * @qm: The qm for which we want to add debugfs files.
4709  *
4710  * Create function qos debugfs files, VF ping PF to get function qos.
4711  */
4712 static void hisi_qm_set_algqos_init(struct hisi_qm *qm)
4713 {
4714 	if (qm->fun_type == QM_HW_PF)
4715 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
4716 				    qm, &qm_algqos_fops);
4717 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
4718 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
4719 				    qm, &qm_algqos_fops);
4720 }
4721 
4722 /**
4723  * hisi_qm_debug_init() - Initialize qm related debugfs files.
4724  * @qm: The qm for which we want to add debugfs files.
4725  *
4726  * Create qm related debugfs files.
4727  */
4728 void hisi_qm_debug_init(struct hisi_qm *qm)
4729 {
4730 	struct dfx_diff_registers *qm_regs = qm->debug.qm_diff_regs;
4731 	struct qm_dfx *dfx = &qm->debug.dfx;
4732 	struct dentry *qm_d;
4733 	void *data;
4734 	int i;
4735 
4736 	qm_d = debugfs_create_dir("qm", qm->debug.debug_root);
4737 	qm->debug.qm_d = qm_d;
4738 
4739 	/* only show this in PF */
4740 	if (qm->fun_type == QM_HW_PF) {
4741 		qm_create_debugfs_file(qm, qm->debug.debug_root, CURRENT_QM);
4742 		for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++)
4743 			qm_create_debugfs_file(qm, qm->debug.qm_d, i);
4744 	}
4745 
4746 	if (qm_regs)
4747 		debugfs_create_file("diff_regs", 0444, qm->debug.qm_d,
4748 					qm, &qm_diff_regs_fops);
4749 
4750 	debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops);
4751 
4752 	debugfs_create_file("cmd", 0600, qm->debug.qm_d, qm, &qm_cmd_fops);
4753 
4754 	debugfs_create_file("status", 0444, qm->debug.qm_d, qm,
4755 			&qm_status_fops);
4756 	for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) {
4757 		data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset);
4758 		debugfs_create_file(qm_dfx_files[i].name,
4759 			0644,
4760 			qm_d,
4761 			data,
4762 			&qm_atomic64_ops);
4763 	}
4764 
4765 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
4766 		hisi_qm_set_algqos_init(qm);
4767 }
4768 EXPORT_SYMBOL_GPL(hisi_qm_debug_init);
4769 
4770 /**
4771  * hisi_qm_debug_regs_clear() - clear qm debug related registers.
4772  * @qm: The qm for which we want to clear its debug registers.
4773  */
4774 void hisi_qm_debug_regs_clear(struct hisi_qm *qm)
4775 {
4776 	const struct debugfs_reg32 *regs;
4777 	int i;
4778 
4779 	/* clear current_qm */
4780 	writel(0x0, qm->io_base + QM_DFX_MB_CNT_VF);
4781 	writel(0x0, qm->io_base + QM_DFX_DB_CNT_VF);
4782 
4783 	/* clear current_q */
4784 	writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
4785 	writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
4786 
4787 	/*
4788 	 * these registers are reading and clearing, so clear them after
4789 	 * reading them.
4790 	 */
4791 	writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE);
4792 
4793 	regs = qm_dfx_regs;
4794 	for (i = 0; i < CNT_CYC_REGS_NUM; i++) {
4795 		readl(qm->io_base + regs->offset);
4796 		regs++;
4797 	}
4798 
4799 	/* clear clear_enable */
4800 	writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE);
4801 }
4802 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear);
4803 
4804 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
4805 {
4806 	int i;
4807 
4808 	for (i = 1; i <= total_func; i++)
4809 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
4810 }
4811 
4812 /**
4813  * hisi_qm_sriov_enable() - enable virtual functions
4814  * @pdev: the PCIe device
4815  * @max_vfs: the number of virtual functions to enable
4816  *
4817  * Returns the number of enabled VFs. If there are VFs enabled already or
4818  * max_vfs is more than the total number of device can be enabled, returns
4819  * failure.
4820  */
4821 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
4822 {
4823 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4824 	int pre_existing_vfs, num_vfs, total_vfs, ret;
4825 
4826 	ret = qm_pm_get_sync(qm);
4827 	if (ret)
4828 		return ret;
4829 
4830 	total_vfs = pci_sriov_get_totalvfs(pdev);
4831 	pre_existing_vfs = pci_num_vf(pdev);
4832 	if (pre_existing_vfs) {
4833 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
4834 			pre_existing_vfs);
4835 		goto err_put_sync;
4836 	}
4837 
4838 	if (max_vfs > total_vfs) {
4839 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
4840 		ret = -ERANGE;
4841 		goto err_put_sync;
4842 	}
4843 
4844 	num_vfs = max_vfs;
4845 
4846 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
4847 		hisi_qm_init_vf_qos(qm, num_vfs);
4848 
4849 	ret = qm_vf_q_assign(qm, num_vfs);
4850 	if (ret) {
4851 		pci_err(pdev, "Can't assign queues for VF!\n");
4852 		goto err_put_sync;
4853 	}
4854 
4855 	qm->vfs_num = num_vfs;
4856 
4857 	ret = pci_enable_sriov(pdev, num_vfs);
4858 	if (ret) {
4859 		pci_err(pdev, "Can't enable VF!\n");
4860 		qm_clear_vft_config(qm);
4861 		goto err_put_sync;
4862 	}
4863 
4864 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
4865 
4866 	return num_vfs;
4867 
4868 err_put_sync:
4869 	qm_pm_put_sync(qm);
4870 	return ret;
4871 }
4872 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
4873 
4874 /**
4875  * hisi_qm_sriov_disable - disable virtual functions
4876  * @pdev: the PCI device.
4877  * @is_frozen: true when all the VFs are frozen.
4878  *
4879  * Return failure if there are VFs assigned already or VF is in used.
4880  */
4881 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
4882 {
4883 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4884 	int ret;
4885 
4886 	if (pci_vfs_assigned(pdev)) {
4887 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
4888 		return -EPERM;
4889 	}
4890 
4891 	/* While VF is in used, SRIOV cannot be disabled. */
4892 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
4893 		pci_err(pdev, "Task is using its VF!\n");
4894 		return -EBUSY;
4895 	}
4896 
4897 	pci_disable_sriov(pdev);
4898 
4899 	ret = qm_clear_vft_config(qm);
4900 	if (ret)
4901 		return ret;
4902 
4903 	qm_pm_put_sync(qm);
4904 
4905 	return 0;
4906 }
4907 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
4908 
4909 /**
4910  * hisi_qm_sriov_configure - configure the number of VFs
4911  * @pdev: The PCI device
4912  * @num_vfs: The number of VFs need enabled
4913  *
4914  * Enable SR-IOV according to num_vfs, 0 means disable.
4915  */
4916 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
4917 {
4918 	if (num_vfs == 0)
4919 		return hisi_qm_sriov_disable(pdev, false);
4920 	else
4921 		return hisi_qm_sriov_enable(pdev, num_vfs);
4922 }
4923 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
4924 
4925 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
4926 {
4927 	u32 err_sts;
4928 
4929 	if (!qm->err_ini->get_dev_hw_err_status) {
4930 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
4931 		return ACC_ERR_NONE;
4932 	}
4933 
4934 	/* get device hardware error status */
4935 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
4936 	if (err_sts) {
4937 		if (err_sts & qm->err_info.ecc_2bits_mask)
4938 			qm->err_status.is_dev_ecc_mbit = true;
4939 
4940 		if (qm->err_ini->log_dev_hw_err)
4941 			qm->err_ini->log_dev_hw_err(qm, err_sts);
4942 
4943 		if (err_sts & qm->err_info.dev_reset_mask)
4944 			return ACC_ERR_NEED_RESET;
4945 
4946 		if (qm->err_ini->clear_dev_hw_err_status)
4947 			qm->err_ini->clear_dev_hw_err_status(qm, err_sts);
4948 	}
4949 
4950 	return ACC_ERR_RECOVERED;
4951 }
4952 
4953 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
4954 {
4955 	enum acc_err_result qm_ret, dev_ret;
4956 
4957 	/* log qm error */
4958 	qm_ret = qm_hw_error_handle(qm);
4959 
4960 	/* log device error */
4961 	dev_ret = qm_dev_err_handle(qm);
4962 
4963 	return (qm_ret == ACC_ERR_NEED_RESET ||
4964 		dev_ret == ACC_ERR_NEED_RESET) ?
4965 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
4966 }
4967 
4968 /**
4969  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
4970  * @pdev: The PCI device which need report error.
4971  * @state: The connectivity between CPU and device.
4972  *
4973  * We register this function into PCIe AER handlers, It will report device or
4974  * qm hardware error status when error occur.
4975  */
4976 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
4977 					  pci_channel_state_t state)
4978 {
4979 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4980 	enum acc_err_result ret;
4981 
4982 	if (pdev->is_virtfn)
4983 		return PCI_ERS_RESULT_NONE;
4984 
4985 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
4986 	if (state == pci_channel_io_perm_failure)
4987 		return PCI_ERS_RESULT_DISCONNECT;
4988 
4989 	ret = qm_process_dev_error(qm);
4990 	if (ret == ACC_ERR_NEED_RESET)
4991 		return PCI_ERS_RESULT_NEED_RESET;
4992 
4993 	return PCI_ERS_RESULT_RECOVERED;
4994 }
4995 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
4996 
4997 static int qm_check_req_recv(struct hisi_qm *qm)
4998 {
4999 	struct pci_dev *pdev = qm->pdev;
5000 	int ret;
5001 	u32 val;
5002 
5003 	if (qm->ver >= QM_HW_V3)
5004 		return 0;
5005 
5006 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
5007 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
5008 					 (val == ACC_VENDOR_ID_VALUE),
5009 					 POLL_PERIOD, POLL_TIMEOUT);
5010 	if (ret) {
5011 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
5012 		return ret;
5013 	}
5014 
5015 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
5016 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
5017 					 (val == PCI_VENDOR_ID_HUAWEI),
5018 					 POLL_PERIOD, POLL_TIMEOUT);
5019 	if (ret)
5020 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
5021 
5022 	return ret;
5023 }
5024 
5025 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
5026 {
5027 	struct pci_dev *pdev = qm->pdev;
5028 	u16 cmd;
5029 	int i;
5030 
5031 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
5032 	if (set)
5033 		cmd |= PCI_COMMAND_MEMORY;
5034 	else
5035 		cmd &= ~PCI_COMMAND_MEMORY;
5036 
5037 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
5038 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
5039 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
5040 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
5041 			return 0;
5042 
5043 		udelay(1);
5044 	}
5045 
5046 	return -ETIMEDOUT;
5047 }
5048 
5049 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
5050 {
5051 	struct pci_dev *pdev = qm->pdev;
5052 	u16 sriov_ctrl;
5053 	int pos;
5054 	int i;
5055 
5056 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
5057 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
5058 	if (set)
5059 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
5060 	else
5061 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
5062 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
5063 
5064 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
5065 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
5066 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
5067 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
5068 			return 0;
5069 
5070 		udelay(1);
5071 	}
5072 
5073 	return -ETIMEDOUT;
5074 }
5075 
5076 static int qm_vf_reset_prepare(struct hisi_qm *qm,
5077 			       enum qm_stop_reason stop_reason)
5078 {
5079 	struct hisi_qm_list *qm_list = qm->qm_list;
5080 	struct pci_dev *pdev = qm->pdev;
5081 	struct pci_dev *virtfn;
5082 	struct hisi_qm *vf_qm;
5083 	int ret = 0;
5084 
5085 	mutex_lock(&qm_list->lock);
5086 	list_for_each_entry(vf_qm, &qm_list->list, list) {
5087 		virtfn = vf_qm->pdev;
5088 		if (virtfn == pdev)
5089 			continue;
5090 
5091 		if (pci_physfn(virtfn) == pdev) {
5092 			/* save VFs PCIE BAR configuration */
5093 			pci_save_state(virtfn);
5094 
5095 			ret = hisi_qm_stop(vf_qm, stop_reason);
5096 			if (ret)
5097 				goto stop_fail;
5098 		}
5099 	}
5100 
5101 stop_fail:
5102 	mutex_unlock(&qm_list->lock);
5103 	return ret;
5104 }
5105 
5106 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
5107 			   enum qm_stop_reason stop_reason)
5108 {
5109 	struct pci_dev *pdev = qm->pdev;
5110 	int ret;
5111 
5112 	if (!qm->vfs_num)
5113 		return 0;
5114 
5115 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
5116 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
5117 		ret = qm_ping_all_vfs(qm, cmd);
5118 		if (ret)
5119 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
5120 	} else {
5121 		ret = qm_vf_reset_prepare(qm, stop_reason);
5122 		if (ret)
5123 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
5124 	}
5125 
5126 	return ret;
5127 }
5128 
5129 static int qm_controller_reset_prepare(struct hisi_qm *qm)
5130 {
5131 	struct pci_dev *pdev = qm->pdev;
5132 	int ret;
5133 
5134 	ret = qm_reset_prepare_ready(qm);
5135 	if (ret) {
5136 		pci_err(pdev, "Controller reset not ready!\n");
5137 		return ret;
5138 	}
5139 
5140 	/* PF obtains the information of VF by querying the register. */
5141 	qm_cmd_uninit(qm);
5142 
5143 	/* Whether VFs stop successfully, soft reset will continue. */
5144 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
5145 	if (ret)
5146 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
5147 
5148 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
5149 	if (ret) {
5150 		pci_err(pdev, "Fails to stop QM!\n");
5151 		qm_reset_bit_clear(qm);
5152 		return ret;
5153 	}
5154 
5155 	ret = qm_wait_vf_prepare_finish(qm);
5156 	if (ret)
5157 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
5158 
5159 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
5160 
5161 	return 0;
5162 }
5163 
5164 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
5165 {
5166 	u32 nfe_enb = 0;
5167 
5168 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
5169 	if (qm->ver >= QM_HW_V3)
5170 		return;
5171 
5172 	if (!qm->err_status.is_dev_ecc_mbit &&
5173 	    qm->err_status.is_qm_ecc_mbit &&
5174 	    qm->err_ini->close_axi_master_ooo) {
5175 
5176 		qm->err_ini->close_axi_master_ooo(qm);
5177 
5178 	} else if (qm->err_status.is_dev_ecc_mbit &&
5179 		   !qm->err_status.is_qm_ecc_mbit &&
5180 		   !qm->err_ini->close_axi_master_ooo) {
5181 
5182 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
5183 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
5184 		       qm->io_base + QM_RAS_NFE_ENABLE);
5185 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
5186 	}
5187 }
5188 
5189 static int qm_soft_reset(struct hisi_qm *qm)
5190 {
5191 	struct pci_dev *pdev = qm->pdev;
5192 	int ret;
5193 	u32 val;
5194 
5195 	/* Ensure all doorbells and mailboxes received by QM */
5196 	ret = qm_check_req_recv(qm);
5197 	if (ret)
5198 		return ret;
5199 
5200 	if (qm->vfs_num) {
5201 		ret = qm_set_vf_mse(qm, false);
5202 		if (ret) {
5203 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
5204 			return ret;
5205 		}
5206 	}
5207 
5208 	ret = qm->ops->set_msi(qm, false);
5209 	if (ret) {
5210 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
5211 		return ret;
5212 	}
5213 
5214 	qm_dev_ecc_mbit_handle(qm);
5215 
5216 	/* OOO register set and check */
5217 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
5218 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5219 
5220 	/* If bus lock, reset chip */
5221 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
5222 					 val,
5223 					 (val == ACC_MASTER_TRANS_RETURN_RW),
5224 					 POLL_PERIOD, POLL_TIMEOUT);
5225 	if (ret) {
5226 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
5227 		return ret;
5228 	}
5229 
5230 	if (qm->err_ini->close_sva_prefetch)
5231 		qm->err_ini->close_sva_prefetch(qm);
5232 
5233 	ret = qm_set_pf_mse(qm, false);
5234 	if (ret) {
5235 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
5236 		return ret;
5237 	}
5238 
5239 	/* The reset related sub-control registers are not in PCI BAR */
5240 	if (ACPI_HANDLE(&pdev->dev)) {
5241 		unsigned long long value = 0;
5242 		acpi_status s;
5243 
5244 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
5245 					  qm->err_info.acpi_rst,
5246 					  NULL, &value);
5247 		if (ACPI_FAILURE(s)) {
5248 			pci_err(pdev, "NO controller reset method!\n");
5249 			return -EIO;
5250 		}
5251 
5252 		if (value) {
5253 			pci_err(pdev, "Reset step %llu failed!\n", value);
5254 			return -EIO;
5255 		}
5256 	} else {
5257 		pci_err(pdev, "No reset method!\n");
5258 		return -EINVAL;
5259 	}
5260 
5261 	return 0;
5262 }
5263 
5264 static int qm_vf_reset_done(struct hisi_qm *qm)
5265 {
5266 	struct hisi_qm_list *qm_list = qm->qm_list;
5267 	struct pci_dev *pdev = qm->pdev;
5268 	struct pci_dev *virtfn;
5269 	struct hisi_qm *vf_qm;
5270 	int ret = 0;
5271 
5272 	mutex_lock(&qm_list->lock);
5273 	list_for_each_entry(vf_qm, &qm_list->list, list) {
5274 		virtfn = vf_qm->pdev;
5275 		if (virtfn == pdev)
5276 			continue;
5277 
5278 		if (pci_physfn(virtfn) == pdev) {
5279 			/* enable VFs PCIE BAR configuration */
5280 			pci_restore_state(virtfn);
5281 
5282 			ret = qm_restart(vf_qm);
5283 			if (ret)
5284 				goto restart_fail;
5285 		}
5286 	}
5287 
5288 restart_fail:
5289 	mutex_unlock(&qm_list->lock);
5290 	return ret;
5291 }
5292 
5293 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
5294 {
5295 	struct pci_dev *pdev = qm->pdev;
5296 	int ret;
5297 
5298 	if (!qm->vfs_num)
5299 		return 0;
5300 
5301 	ret = qm_vf_q_assign(qm, qm->vfs_num);
5302 	if (ret) {
5303 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
5304 		return ret;
5305 	}
5306 
5307 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
5308 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
5309 		ret = qm_ping_all_vfs(qm, cmd);
5310 		if (ret)
5311 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
5312 	} else {
5313 		ret = qm_vf_reset_done(qm);
5314 		if (ret)
5315 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
5316 	}
5317 
5318 	return ret;
5319 }
5320 
5321 static int qm_dev_hw_init(struct hisi_qm *qm)
5322 {
5323 	return qm->err_ini->hw_init(qm);
5324 }
5325 
5326 static void qm_restart_prepare(struct hisi_qm *qm)
5327 {
5328 	u32 value;
5329 
5330 	if (qm->err_ini->open_sva_prefetch)
5331 		qm->err_ini->open_sva_prefetch(qm);
5332 
5333 	if (qm->ver >= QM_HW_V3)
5334 		return;
5335 
5336 	if (!qm->err_status.is_qm_ecc_mbit &&
5337 	    !qm->err_status.is_dev_ecc_mbit)
5338 		return;
5339 
5340 	/* temporarily close the OOO port used for PEH to write out MSI */
5341 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5342 	writel(value & ~qm->err_info.msi_wr_port,
5343 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5344 
5345 	/* clear dev ecc 2bit error source if having */
5346 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
5347 	if (value && qm->err_ini->clear_dev_hw_err_status)
5348 		qm->err_ini->clear_dev_hw_err_status(qm, value);
5349 
5350 	/* clear QM ecc mbit error source */
5351 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
5352 
5353 	/* clear AM Reorder Buffer ecc mbit source */
5354 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
5355 }
5356 
5357 static void qm_restart_done(struct hisi_qm *qm)
5358 {
5359 	u32 value;
5360 
5361 	if (qm->ver >= QM_HW_V3)
5362 		goto clear_flags;
5363 
5364 	if (!qm->err_status.is_qm_ecc_mbit &&
5365 	    !qm->err_status.is_dev_ecc_mbit)
5366 		return;
5367 
5368 	/* open the OOO port for PEH to write out MSI */
5369 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5370 	value |= qm->err_info.msi_wr_port;
5371 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5372 
5373 clear_flags:
5374 	qm->err_status.is_qm_ecc_mbit = false;
5375 	qm->err_status.is_dev_ecc_mbit = false;
5376 }
5377 
5378 static int qm_controller_reset_done(struct hisi_qm *qm)
5379 {
5380 	struct pci_dev *pdev = qm->pdev;
5381 	int ret;
5382 
5383 	ret = qm->ops->set_msi(qm, true);
5384 	if (ret) {
5385 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
5386 		return ret;
5387 	}
5388 
5389 	ret = qm_set_pf_mse(qm, true);
5390 	if (ret) {
5391 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
5392 		return ret;
5393 	}
5394 
5395 	if (qm->vfs_num) {
5396 		ret = qm_set_vf_mse(qm, true);
5397 		if (ret) {
5398 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
5399 			return ret;
5400 		}
5401 	}
5402 
5403 	ret = qm_dev_hw_init(qm);
5404 	if (ret) {
5405 		pci_err(pdev, "Failed to init device\n");
5406 		return ret;
5407 	}
5408 
5409 	qm_restart_prepare(qm);
5410 	hisi_qm_dev_err_init(qm);
5411 	if (qm->err_ini->open_axi_master_ooo)
5412 		qm->err_ini->open_axi_master_ooo(qm);
5413 
5414 	ret = qm_dev_mem_reset(qm);
5415 	if (ret) {
5416 		pci_err(pdev, "failed to reset device memory\n");
5417 		return ret;
5418 	}
5419 
5420 	ret = qm_restart(qm);
5421 	if (ret) {
5422 		pci_err(pdev, "Failed to start QM!\n");
5423 		return ret;
5424 	}
5425 
5426 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
5427 	if (ret)
5428 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
5429 
5430 	ret = qm_wait_vf_prepare_finish(qm);
5431 	if (ret)
5432 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
5433 
5434 	qm_cmd_init(qm);
5435 	qm_restart_done(qm);
5436 
5437 	qm_reset_bit_clear(qm);
5438 
5439 	return 0;
5440 }
5441 
5442 static void qm_show_last_dfx_regs(struct hisi_qm *qm)
5443 {
5444 	struct qm_debug *debug = &qm->debug;
5445 	struct pci_dev *pdev = qm->pdev;
5446 	u32 val;
5447 	int i;
5448 
5449 	if (qm->fun_type == QM_HW_VF || !debug->qm_last_words)
5450 		return;
5451 
5452 	for (i = 0; i < ARRAY_SIZE(qm_dfx_regs); i++) {
5453 		val = readl_relaxed(qm->io_base + qm_dfx_regs[i].offset);
5454 		if (debug->qm_last_words[i] != val)
5455 			pci_info(pdev, "%s \t= 0x%08x => 0x%08x\n",
5456 			qm_dfx_regs[i].name, debug->qm_last_words[i], val);
5457 	}
5458 }
5459 
5460 static int qm_controller_reset(struct hisi_qm *qm)
5461 {
5462 	struct pci_dev *pdev = qm->pdev;
5463 	int ret;
5464 
5465 	pci_info(pdev, "Controller resetting...\n");
5466 
5467 	ret = qm_controller_reset_prepare(qm);
5468 	if (ret) {
5469 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
5470 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
5471 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
5472 		return ret;
5473 	}
5474 
5475 	qm_show_last_dfx_regs(qm);
5476 	if (qm->err_ini->show_last_dfx_regs)
5477 		qm->err_ini->show_last_dfx_regs(qm);
5478 
5479 	ret = qm_soft_reset(qm);
5480 	if (ret) {
5481 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
5482 		qm_reset_bit_clear(qm);
5483 		return ret;
5484 	}
5485 
5486 	ret = qm_controller_reset_done(qm);
5487 	if (ret) {
5488 		qm_reset_bit_clear(qm);
5489 		return ret;
5490 	}
5491 
5492 	pci_info(pdev, "Controller reset complete\n");
5493 
5494 	return 0;
5495 }
5496 
5497 /**
5498  * hisi_qm_dev_slot_reset() - slot reset
5499  * @pdev: the PCIe device
5500  *
5501  * This function offers QM relate PCIe device reset interface. Drivers which
5502  * use QM can use this function as slot_reset in its struct pci_error_handlers.
5503  */
5504 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
5505 {
5506 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5507 	int ret;
5508 
5509 	if (pdev->is_virtfn)
5510 		return PCI_ERS_RESULT_RECOVERED;
5511 
5512 	/* reset pcie device controller */
5513 	ret = qm_controller_reset(qm);
5514 	if (ret) {
5515 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
5516 		return PCI_ERS_RESULT_DISCONNECT;
5517 	}
5518 
5519 	return PCI_ERS_RESULT_RECOVERED;
5520 }
5521 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
5522 
5523 void hisi_qm_reset_prepare(struct pci_dev *pdev)
5524 {
5525 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
5526 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5527 	u32 delay = 0;
5528 	int ret;
5529 
5530 	hisi_qm_dev_err_uninit(pf_qm);
5531 
5532 	/*
5533 	 * Check whether there is an ECC mbit error, If it occurs, need to
5534 	 * wait for soft reset to fix it.
5535 	 */
5536 	while (qm_check_dev_error(pf_qm)) {
5537 		msleep(++delay);
5538 		if (delay > QM_RESET_WAIT_TIMEOUT)
5539 			return;
5540 	}
5541 
5542 	ret = qm_reset_prepare_ready(qm);
5543 	if (ret) {
5544 		pci_err(pdev, "FLR not ready!\n");
5545 		return;
5546 	}
5547 
5548 	/* PF obtains the information of VF by querying the register. */
5549 	if (qm->fun_type == QM_HW_PF)
5550 		qm_cmd_uninit(qm);
5551 
5552 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR);
5553 	if (ret)
5554 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
5555 
5556 	ret = hisi_qm_stop(qm, QM_FLR);
5557 	if (ret) {
5558 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
5559 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
5560 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
5561 		return;
5562 	}
5563 
5564 	ret = qm_wait_vf_prepare_finish(qm);
5565 	if (ret)
5566 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
5567 
5568 	pci_info(pdev, "FLR resetting...\n");
5569 }
5570 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
5571 
5572 static bool qm_flr_reset_complete(struct pci_dev *pdev)
5573 {
5574 	struct pci_dev *pf_pdev = pci_physfn(pdev);
5575 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
5576 	u32 id;
5577 
5578 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
5579 	if (id == QM_PCI_COMMAND_INVALID) {
5580 		pci_err(pdev, "Device can not be used!\n");
5581 		return false;
5582 	}
5583 
5584 	return true;
5585 }
5586 
5587 void hisi_qm_reset_done(struct pci_dev *pdev)
5588 {
5589 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
5590 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5591 	int ret;
5592 
5593 	if (qm->fun_type == QM_HW_PF) {
5594 		ret = qm_dev_hw_init(qm);
5595 		if (ret) {
5596 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
5597 			goto flr_done;
5598 		}
5599 	}
5600 
5601 	hisi_qm_dev_err_init(pf_qm);
5602 
5603 	ret = qm_restart(qm);
5604 	if (ret) {
5605 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
5606 		goto flr_done;
5607 	}
5608 
5609 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
5610 	if (ret)
5611 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
5612 
5613 	ret = qm_wait_vf_prepare_finish(qm);
5614 	if (ret)
5615 		pci_err(pdev, "failed to start by vfs in FLR!\n");
5616 
5617 flr_done:
5618 	if (qm->fun_type == QM_HW_PF)
5619 		qm_cmd_init(qm);
5620 
5621 	if (qm_flr_reset_complete(pdev))
5622 		pci_info(pdev, "FLR reset complete\n");
5623 
5624 	qm_reset_bit_clear(qm);
5625 }
5626 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
5627 
5628 static irqreturn_t qm_abnormal_irq(int irq, void *data)
5629 {
5630 	struct hisi_qm *qm = data;
5631 	enum acc_err_result ret;
5632 
5633 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
5634 	ret = qm_process_dev_error(qm);
5635 	if (ret == ACC_ERR_NEED_RESET &&
5636 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
5637 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
5638 		schedule_work(&qm->rst_work);
5639 
5640 	return IRQ_HANDLED;
5641 }
5642 
5643 
5644 /**
5645  * hisi_qm_dev_shutdown() - Shutdown device.
5646  * @pdev: The device will be shutdown.
5647  *
5648  * This function will stop qm when OS shutdown or rebooting.
5649  */
5650 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
5651 {
5652 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5653 	int ret;
5654 
5655 	ret = hisi_qm_stop(qm, QM_NORMAL);
5656 	if (ret)
5657 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
5658 }
5659 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
5660 
5661 static void hisi_qm_controller_reset(struct work_struct *rst_work)
5662 {
5663 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
5664 	int ret;
5665 
5666 	ret = qm_pm_get_sync(qm);
5667 	if (ret) {
5668 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
5669 		return;
5670 	}
5671 
5672 	/* reset pcie device controller */
5673 	ret = qm_controller_reset(qm);
5674 	if (ret)
5675 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
5676 
5677 	qm_pm_put_sync(qm);
5678 }
5679 
5680 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
5681 				   enum qm_stop_reason stop_reason)
5682 {
5683 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
5684 	struct pci_dev *pdev = qm->pdev;
5685 	int ret;
5686 
5687 	ret = qm_reset_prepare_ready(qm);
5688 	if (ret) {
5689 		dev_err(&pdev->dev, "reset prepare not ready!\n");
5690 		atomic_set(&qm->status.flags, QM_STOP);
5691 		cmd = QM_VF_PREPARE_FAIL;
5692 		goto err_prepare;
5693 	}
5694 
5695 	ret = hisi_qm_stop(qm, stop_reason);
5696 	if (ret) {
5697 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
5698 		atomic_set(&qm->status.flags, QM_STOP);
5699 		cmd = QM_VF_PREPARE_FAIL;
5700 		goto err_prepare;
5701 	} else {
5702 		goto out;
5703 	}
5704 
5705 err_prepare:
5706 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
5707 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
5708 out:
5709 	pci_save_state(pdev);
5710 	ret = qm_ping_pf(qm, cmd);
5711 	if (ret)
5712 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
5713 }
5714 
5715 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
5716 {
5717 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
5718 	struct pci_dev *pdev = qm->pdev;
5719 	int ret;
5720 
5721 	pci_restore_state(pdev);
5722 	ret = hisi_qm_start(qm);
5723 	if (ret) {
5724 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
5725 		cmd = QM_VF_START_FAIL;
5726 	}
5727 
5728 	ret = qm_ping_pf(qm, cmd);
5729 	if (ret)
5730 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
5731 
5732 	qm_reset_bit_clear(qm);
5733 }
5734 
5735 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
5736 {
5737 	struct device *dev = &qm->pdev->dev;
5738 	u32 val, cmd;
5739 	u64 msg;
5740 	int ret;
5741 
5742 	/* Wait for reset to finish */
5743 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
5744 					 val == BIT(0), QM_VF_RESET_WAIT_US,
5745 					 QM_VF_RESET_WAIT_TIMEOUT_US);
5746 	/* hardware completion status should be available by this time */
5747 	if (ret) {
5748 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
5749 		return -ETIMEDOUT;
5750 	}
5751 
5752 	/*
5753 	 * Whether message is got successfully,
5754 	 * VF needs to ack PF by clearing the interrupt.
5755 	 */
5756 	ret = qm_get_mb_cmd(qm, &msg, 0);
5757 	qm_clear_cmd_interrupt(qm, 0);
5758 	if (ret) {
5759 		dev_err(dev, "failed to get msg from PF in reset done!\n");
5760 		return ret;
5761 	}
5762 
5763 	cmd = msg & QM_MB_CMD_DATA_MASK;
5764 	if (cmd != QM_PF_RESET_DONE) {
5765 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
5766 		ret = -EINVAL;
5767 	}
5768 
5769 	return ret;
5770 }
5771 
5772 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
5773 				   enum qm_stop_reason stop_reason)
5774 {
5775 	struct device *dev = &qm->pdev->dev;
5776 	int ret;
5777 
5778 	dev_info(dev, "device reset start...\n");
5779 
5780 	/* The message is obtained by querying the register during resetting */
5781 	qm_cmd_uninit(qm);
5782 	qm_pf_reset_vf_prepare(qm, stop_reason);
5783 
5784 	ret = qm_wait_pf_reset_finish(qm);
5785 	if (ret)
5786 		goto err_get_status;
5787 
5788 	qm_pf_reset_vf_done(qm);
5789 	qm_cmd_init(qm);
5790 
5791 	dev_info(dev, "device reset done.\n");
5792 
5793 	return;
5794 
5795 err_get_status:
5796 	qm_cmd_init(qm);
5797 	qm_reset_bit_clear(qm);
5798 }
5799 
5800 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
5801 {
5802 	struct device *dev = &qm->pdev->dev;
5803 	u64 msg;
5804 	u32 cmd;
5805 	int ret;
5806 
5807 	/*
5808 	 * Get the msg from source by sending mailbox. Whether message is got
5809 	 * successfully, destination needs to ack source by clearing the interrupt.
5810 	 */
5811 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
5812 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
5813 	if (ret) {
5814 		dev_err(dev, "failed to get msg from source!\n");
5815 		return;
5816 	}
5817 
5818 	cmd = msg & QM_MB_CMD_DATA_MASK;
5819 	switch (cmd) {
5820 	case QM_PF_FLR_PREPARE:
5821 		qm_pf_reset_vf_process(qm, QM_FLR);
5822 		break;
5823 	case QM_PF_SRST_PREPARE:
5824 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
5825 		break;
5826 	case QM_VF_GET_QOS:
5827 		qm_vf_get_qos(qm, fun_num);
5828 		break;
5829 	case QM_PF_SET_QOS:
5830 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
5831 		break;
5832 	default:
5833 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
5834 		break;
5835 	}
5836 }
5837 
5838 static void qm_cmd_process(struct work_struct *cmd_process)
5839 {
5840 	struct hisi_qm *qm = container_of(cmd_process,
5841 					struct hisi_qm, cmd_process);
5842 	u32 vfs_num = qm->vfs_num;
5843 	u64 val;
5844 	u32 i;
5845 
5846 	if (qm->fun_type == QM_HW_PF) {
5847 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
5848 		if (!val)
5849 			return;
5850 
5851 		for (i = 1; i <= vfs_num; i++) {
5852 			if (val & BIT(i))
5853 				qm_handle_cmd_msg(qm, i);
5854 		}
5855 
5856 		return;
5857 	}
5858 
5859 	qm_handle_cmd_msg(qm, 0);
5860 }
5861 
5862 /**
5863  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
5864  * @qm: The qm needs add.
5865  * @qm_list: The qm list.
5866  *
5867  * This function adds qm to qm list, and will register algorithm to
5868  * crypto when the qm list is empty.
5869  */
5870 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
5871 {
5872 	struct device *dev = &qm->pdev->dev;
5873 	int flag = 0;
5874 	int ret = 0;
5875 
5876 	mutex_lock(&qm_list->lock);
5877 	if (list_empty(&qm_list->list))
5878 		flag = 1;
5879 	list_add_tail(&qm->list, &qm_list->list);
5880 	mutex_unlock(&qm_list->lock);
5881 
5882 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
5883 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
5884 		return 0;
5885 	}
5886 
5887 	if (flag) {
5888 		ret = qm_list->register_to_crypto(qm);
5889 		if (ret) {
5890 			mutex_lock(&qm_list->lock);
5891 			list_del(&qm->list);
5892 			mutex_unlock(&qm_list->lock);
5893 		}
5894 	}
5895 
5896 	return ret;
5897 }
5898 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
5899 
5900 /**
5901  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
5902  * qm list.
5903  * @qm: The qm needs delete.
5904  * @qm_list: The qm list.
5905  *
5906  * This function deletes qm from qm list, and will unregister algorithm
5907  * from crypto when the qm list is empty.
5908  */
5909 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
5910 {
5911 	mutex_lock(&qm_list->lock);
5912 	list_del(&qm->list);
5913 	mutex_unlock(&qm_list->lock);
5914 
5915 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
5916 		return;
5917 
5918 	if (list_empty(&qm_list->list))
5919 		qm_list->unregister_from_crypto(qm);
5920 }
5921 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
5922 
5923 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
5924 {
5925 	struct pci_dev *pdev = qm->pdev;
5926 	u32 irq_vector, val;
5927 
5928 	if (qm->fun_type == QM_HW_VF)
5929 		return;
5930 
5931 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
5932 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
5933 		return;
5934 
5935 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5936 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5937 }
5938 
5939 static int qm_register_abnormal_irq(struct hisi_qm *qm)
5940 {
5941 	struct pci_dev *pdev = qm->pdev;
5942 	u32 irq_vector, val;
5943 	int ret;
5944 
5945 	if (qm->fun_type == QM_HW_VF)
5946 		return 0;
5947 
5948 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
5949 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
5950 		return 0;
5951 
5952 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5953 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
5954 	if (ret)
5955 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
5956 
5957 	return ret;
5958 }
5959 
5960 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
5961 {
5962 	struct pci_dev *pdev = qm->pdev;
5963 	u32 irq_vector, val;
5964 
5965 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
5966 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5967 		return;
5968 
5969 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5970 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5971 }
5972 
5973 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
5974 {
5975 	struct pci_dev *pdev = qm->pdev;
5976 	u32 irq_vector, val;
5977 	int ret;
5978 
5979 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
5980 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5981 		return 0;
5982 
5983 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5984 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
5985 	if (ret)
5986 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
5987 
5988 	return ret;
5989 }
5990 
5991 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
5992 {
5993 	struct pci_dev *pdev = qm->pdev;
5994 	u32 irq_vector, val;
5995 
5996 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
5997 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5998 		return;
5999 
6000 	irq_vector = val & QM_IRQ_VECTOR_MASK;
6001 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
6002 }
6003 
6004 static int qm_register_aeq_irq(struct hisi_qm *qm)
6005 {
6006 	struct pci_dev *pdev = qm->pdev;
6007 	u32 irq_vector, val;
6008 	int ret;
6009 
6010 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
6011 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
6012 		return 0;
6013 
6014 	irq_vector = val & QM_IRQ_VECTOR_MASK;
6015 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), qm_aeq_irq,
6016 						   qm_aeq_thread, 0, qm->dev_name, qm);
6017 	if (ret)
6018 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
6019 
6020 	return ret;
6021 }
6022 
6023 static void qm_unregister_eq_irq(struct hisi_qm *qm)
6024 {
6025 	struct pci_dev *pdev = qm->pdev;
6026 	u32 irq_vector, val;
6027 
6028 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
6029 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
6030 		return;
6031 
6032 	irq_vector = val & QM_IRQ_VECTOR_MASK;
6033 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
6034 }
6035 
6036 static int qm_register_eq_irq(struct hisi_qm *qm)
6037 {
6038 	struct pci_dev *pdev = qm->pdev;
6039 	u32 irq_vector, val;
6040 	int ret;
6041 
6042 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
6043 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
6044 		return 0;
6045 
6046 	irq_vector = val & QM_IRQ_VECTOR_MASK;
6047 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_irq, 0, qm->dev_name, qm);
6048 	if (ret)
6049 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
6050 
6051 	return ret;
6052 }
6053 
6054 static void qm_irqs_unregister(struct hisi_qm *qm)
6055 {
6056 	qm_unregister_mb_cmd_irq(qm);
6057 	qm_unregister_abnormal_irq(qm);
6058 	qm_unregister_aeq_irq(qm);
6059 	qm_unregister_eq_irq(qm);
6060 }
6061 
6062 static int qm_irqs_register(struct hisi_qm *qm)
6063 {
6064 	int ret;
6065 
6066 	ret = qm_register_eq_irq(qm);
6067 	if (ret)
6068 		return ret;
6069 
6070 	ret = qm_register_aeq_irq(qm);
6071 	if (ret)
6072 		goto free_eq_irq;
6073 
6074 	ret = qm_register_abnormal_irq(qm);
6075 	if (ret)
6076 		goto free_aeq_irq;
6077 
6078 	ret = qm_register_mb_cmd_irq(qm);
6079 	if (ret)
6080 		goto free_abnormal_irq;
6081 
6082 	return 0;
6083 
6084 free_abnormal_irq:
6085 	qm_unregister_abnormal_irq(qm);
6086 free_aeq_irq:
6087 	qm_unregister_aeq_irq(qm);
6088 free_eq_irq:
6089 	qm_unregister_eq_irq(qm);
6090 	return ret;
6091 }
6092 
6093 static int qm_get_qp_num(struct hisi_qm *qm)
6094 {
6095 	bool is_db_isolation;
6096 
6097 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
6098 	if (qm->fun_type == QM_HW_VF) {
6099 		if (qm->ver != QM_HW_V1)
6100 			/* v2 starts to support get vft by mailbox */
6101 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
6102 
6103 		return 0;
6104 	}
6105 
6106 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
6107 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
6108 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
6109 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
6110 
6111 	/* check if qp number is valid */
6112 	if (qm->qp_num > qm->max_qp_num) {
6113 		dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n",
6114 			qm->qp_num, qm->max_qp_num);
6115 		return -EINVAL;
6116 	}
6117 
6118 	return 0;
6119 }
6120 
6121 static void qm_get_hw_caps(struct hisi_qm *qm)
6122 {
6123 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
6124 						  qm_cap_info_pf : qm_cap_info_vf;
6125 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
6126 				   ARRAY_SIZE(qm_cap_info_vf);
6127 	u32 val, i;
6128 
6129 	/* Doorbell isolate register is a independent register. */
6130 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
6131 	if (val)
6132 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
6133 
6134 	if (qm->ver >= QM_HW_V3) {
6135 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
6136 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
6137 	}
6138 
6139 	/* Get PF/VF common capbility */
6140 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
6141 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
6142 		if (val)
6143 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
6144 	}
6145 
6146 	/* Get PF/VF different capbility */
6147 	for (i = 0; i < size; i++) {
6148 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
6149 		if (val)
6150 			set_bit(cap_info[i].type, &qm->caps);
6151 	}
6152 }
6153 
6154 static int qm_get_pci_res(struct hisi_qm *qm)
6155 {
6156 	struct pci_dev *pdev = qm->pdev;
6157 	struct device *dev = &pdev->dev;
6158 	int ret;
6159 
6160 	ret = pci_request_mem_regions(pdev, qm->dev_name);
6161 	if (ret < 0) {
6162 		dev_err(dev, "Failed to request mem regions!\n");
6163 		return ret;
6164 	}
6165 
6166 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
6167 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
6168 	if (!qm->io_base) {
6169 		ret = -EIO;
6170 		goto err_request_mem_regions;
6171 	}
6172 
6173 	qm_get_hw_caps(qm);
6174 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
6175 		qm->db_interval = QM_QP_DB_INTERVAL;
6176 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
6177 		qm->db_io_base = ioremap(qm->db_phys_base,
6178 					 pci_resource_len(pdev, PCI_BAR_4));
6179 		if (!qm->db_io_base) {
6180 			ret = -EIO;
6181 			goto err_ioremap;
6182 		}
6183 	} else {
6184 		qm->db_phys_base = qm->phys_base;
6185 		qm->db_io_base = qm->io_base;
6186 		qm->db_interval = 0;
6187 	}
6188 
6189 	ret = qm_get_qp_num(qm);
6190 	if (ret)
6191 		goto err_db_ioremap;
6192 
6193 	return 0;
6194 
6195 err_db_ioremap:
6196 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
6197 		iounmap(qm->db_io_base);
6198 err_ioremap:
6199 	iounmap(qm->io_base);
6200 err_request_mem_regions:
6201 	pci_release_mem_regions(pdev);
6202 	return ret;
6203 }
6204 
6205 static int hisi_qm_pci_init(struct hisi_qm *qm)
6206 {
6207 	struct pci_dev *pdev = qm->pdev;
6208 	struct device *dev = &pdev->dev;
6209 	unsigned int num_vec;
6210 	int ret;
6211 
6212 	ret = pci_enable_device_mem(pdev);
6213 	if (ret < 0) {
6214 		dev_err(dev, "Failed to enable device mem!\n");
6215 		return ret;
6216 	}
6217 
6218 	ret = qm_get_pci_res(qm);
6219 	if (ret)
6220 		goto err_disable_pcidev;
6221 
6222 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
6223 	if (ret < 0)
6224 		goto err_get_pci_res;
6225 	pci_set_master(pdev);
6226 
6227 	num_vec = qm_get_irq_num(qm);
6228 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
6229 	if (ret < 0) {
6230 		dev_err(dev, "Failed to enable MSI vectors!\n");
6231 		goto err_get_pci_res;
6232 	}
6233 
6234 	return 0;
6235 
6236 err_get_pci_res:
6237 	qm_put_pci_res(qm);
6238 err_disable_pcidev:
6239 	pci_disable_device(pdev);
6240 	return ret;
6241 }
6242 
6243 static int hisi_qm_init_work(struct hisi_qm *qm)
6244 {
6245 	int i;
6246 
6247 	for (i = 0; i < qm->qp_num; i++)
6248 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
6249 
6250 	if (qm->fun_type == QM_HW_PF)
6251 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
6252 
6253 	if (qm->ver > QM_HW_V2)
6254 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
6255 
6256 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
6257 				 WQ_UNBOUND, num_online_cpus(),
6258 				 pci_name(qm->pdev));
6259 	if (!qm->wq) {
6260 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
6261 		return -ENOMEM;
6262 	}
6263 
6264 	return 0;
6265 }
6266 
6267 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
6268 {
6269 	struct device *dev = &qm->pdev->dev;
6270 	u16 sq_depth, cq_depth;
6271 	size_t qp_dma_size;
6272 	int i, ret;
6273 
6274 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
6275 	if (!qm->qp_array)
6276 		return -ENOMEM;
6277 
6278 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
6279 	if (!qm->poll_data) {
6280 		kfree(qm->qp_array);
6281 		return -ENOMEM;
6282 	}
6283 
6284 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
6285 
6286 	/* one more page for device or qp statuses */
6287 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
6288 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
6289 	for (i = 0; i < qm->qp_num; i++) {
6290 		qm->poll_data[i].qm = qm;
6291 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
6292 		if (ret)
6293 			goto err_init_qp_mem;
6294 
6295 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
6296 	}
6297 
6298 	return 0;
6299 err_init_qp_mem:
6300 	hisi_qp_memory_uninit(qm, i);
6301 
6302 	return ret;
6303 }
6304 
6305 static int hisi_qm_memory_init(struct hisi_qm *qm)
6306 {
6307 	struct device *dev = &qm->pdev->dev;
6308 	int ret, total_func;
6309 	size_t off = 0;
6310 
6311 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
6312 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
6313 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
6314 		if (!qm->factor)
6315 			return -ENOMEM;
6316 
6317 		/* Only the PF value needs to be initialized */
6318 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
6319 	}
6320 
6321 #define QM_INIT_BUF(qm, type, num) do { \
6322 	(qm)->type = ((qm)->qdma.va + (off)); \
6323 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
6324 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
6325 } while (0)
6326 
6327 	idr_init(&qm->qp_idr);
6328 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
6329 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
6330 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
6331 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
6332 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
6333 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
6334 					 GFP_ATOMIC);
6335 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
6336 	if (!qm->qdma.va) {
6337 		ret = -ENOMEM;
6338 		goto err_destroy_idr;
6339 	}
6340 
6341 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
6342 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
6343 	QM_INIT_BUF(qm, sqc, qm->qp_num);
6344 	QM_INIT_BUF(qm, cqc, qm->qp_num);
6345 
6346 	ret = hisi_qp_alloc_memory(qm);
6347 	if (ret)
6348 		goto err_alloc_qp_array;
6349 
6350 	return 0;
6351 
6352 err_alloc_qp_array:
6353 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
6354 err_destroy_idr:
6355 	idr_destroy(&qm->qp_idr);
6356 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
6357 		kfree(qm->factor);
6358 
6359 	return ret;
6360 }
6361 
6362 static void qm_last_regs_init(struct hisi_qm *qm)
6363 {
6364 	int dfx_regs_num = ARRAY_SIZE(qm_dfx_regs);
6365 	struct qm_debug *debug = &qm->debug;
6366 	int i;
6367 
6368 	if (qm->fun_type == QM_HW_VF)
6369 		return;
6370 
6371 	debug->qm_last_words = kcalloc(dfx_regs_num, sizeof(unsigned int),
6372 								GFP_KERNEL);
6373 	if (!debug->qm_last_words)
6374 		return;
6375 
6376 	for (i = 0; i < dfx_regs_num; i++) {
6377 		debug->qm_last_words[i] = readl_relaxed(qm->io_base +
6378 			qm_dfx_regs[i].offset);
6379 	}
6380 }
6381 
6382 /**
6383  * hisi_qm_init() - Initialize configures about qm.
6384  * @qm: The qm needing init.
6385  *
6386  * This function init qm, then we can call hisi_qm_start to put qm into work.
6387  */
6388 int hisi_qm_init(struct hisi_qm *qm)
6389 {
6390 	struct pci_dev *pdev = qm->pdev;
6391 	struct device *dev = &pdev->dev;
6392 	int ret;
6393 
6394 	hisi_qm_pre_init(qm);
6395 
6396 	ret = hisi_qm_pci_init(qm);
6397 	if (ret)
6398 		return ret;
6399 
6400 	ret = qm_irqs_register(qm);
6401 	if (ret)
6402 		goto err_pci_init;
6403 
6404 	if (qm->fun_type == QM_HW_PF) {
6405 		qm_disable_clock_gate(qm);
6406 		ret = qm_dev_mem_reset(qm);
6407 		if (ret) {
6408 			dev_err(dev, "failed to reset device memory\n");
6409 			goto err_irq_register;
6410 		}
6411 	}
6412 
6413 	if (qm->mode == UACCE_MODE_SVA) {
6414 		ret = qm_alloc_uacce(qm);
6415 		if (ret < 0)
6416 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
6417 	}
6418 
6419 	ret = hisi_qm_memory_init(qm);
6420 	if (ret)
6421 		goto err_alloc_uacce;
6422 
6423 	ret = hisi_qm_init_work(qm);
6424 	if (ret)
6425 		goto err_free_qm_memory;
6426 
6427 	qm_cmd_init(qm);
6428 	atomic_set(&qm->status.flags, QM_INIT);
6429 
6430 	qm_last_regs_init(qm);
6431 
6432 	return 0;
6433 
6434 err_free_qm_memory:
6435 	hisi_qm_memory_uninit(qm);
6436 err_alloc_uacce:
6437 	if (qm->use_sva) {
6438 		uacce_remove(qm->uacce);
6439 		qm->uacce = NULL;
6440 	}
6441 err_irq_register:
6442 	qm_irqs_unregister(qm);
6443 err_pci_init:
6444 	hisi_qm_pci_uninit(qm);
6445 	return ret;
6446 }
6447 EXPORT_SYMBOL_GPL(hisi_qm_init);
6448 
6449 /**
6450  * hisi_qm_get_dfx_access() - Try to get dfx access.
6451  * @qm: pointer to accelerator device.
6452  *
6453  * Try to get dfx access, then user can get message.
6454  *
6455  * If device is in suspended, return failure, otherwise
6456  * bump up the runtime PM usage counter.
6457  */
6458 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
6459 {
6460 	struct device *dev = &qm->pdev->dev;
6461 
6462 	if (pm_runtime_suspended(dev)) {
6463 		dev_info(dev, "can not read/write - device in suspended.\n");
6464 		return -EAGAIN;
6465 	}
6466 
6467 	return qm_pm_get_sync(qm);
6468 }
6469 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
6470 
6471 /**
6472  * hisi_qm_put_dfx_access() - Put dfx access.
6473  * @qm: pointer to accelerator device.
6474  *
6475  * Put dfx access, drop runtime PM usage counter.
6476  */
6477 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
6478 {
6479 	qm_pm_put_sync(qm);
6480 }
6481 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
6482 
6483 /**
6484  * hisi_qm_pm_init() - Initialize qm runtime PM.
6485  * @qm: pointer to accelerator device.
6486  *
6487  * Function that initialize qm runtime PM.
6488  */
6489 void hisi_qm_pm_init(struct hisi_qm *qm)
6490 {
6491 	struct device *dev = &qm->pdev->dev;
6492 
6493 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
6494 		return;
6495 
6496 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
6497 	pm_runtime_use_autosuspend(dev);
6498 	pm_runtime_put_noidle(dev);
6499 }
6500 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
6501 
6502 /**
6503  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
6504  * @qm: pointer to accelerator device.
6505  *
6506  * Function that uninitialize qm runtime PM.
6507  */
6508 void hisi_qm_pm_uninit(struct hisi_qm *qm)
6509 {
6510 	struct device *dev = &qm->pdev->dev;
6511 
6512 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
6513 		return;
6514 
6515 	pm_runtime_get_noresume(dev);
6516 	pm_runtime_dont_use_autosuspend(dev);
6517 }
6518 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
6519 
6520 static int qm_prepare_for_suspend(struct hisi_qm *qm)
6521 {
6522 	struct pci_dev *pdev = qm->pdev;
6523 	int ret;
6524 	u32 val;
6525 
6526 	ret = qm->ops->set_msi(qm, false);
6527 	if (ret) {
6528 		pci_err(pdev, "failed to disable MSI before suspending!\n");
6529 		return ret;
6530 	}
6531 
6532 	/* shutdown OOO register */
6533 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
6534 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
6535 
6536 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
6537 					 val,
6538 					 (val == ACC_MASTER_TRANS_RETURN_RW),
6539 					 POLL_PERIOD, POLL_TIMEOUT);
6540 	if (ret) {
6541 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
6542 		return ret;
6543 	}
6544 
6545 	ret = qm_set_pf_mse(qm, false);
6546 	if (ret)
6547 		pci_err(pdev, "failed to disable MSE before suspending!\n");
6548 
6549 	return ret;
6550 }
6551 
6552 static int qm_rebuild_for_resume(struct hisi_qm *qm)
6553 {
6554 	struct pci_dev *pdev = qm->pdev;
6555 	int ret;
6556 
6557 	ret = qm_set_pf_mse(qm, true);
6558 	if (ret) {
6559 		pci_err(pdev, "failed to enable MSE after resuming!\n");
6560 		return ret;
6561 	}
6562 
6563 	ret = qm->ops->set_msi(qm, true);
6564 	if (ret) {
6565 		pci_err(pdev, "failed to enable MSI after resuming!\n");
6566 		return ret;
6567 	}
6568 
6569 	ret = qm_dev_hw_init(qm);
6570 	if (ret) {
6571 		pci_err(pdev, "failed to init device after resuming\n");
6572 		return ret;
6573 	}
6574 
6575 	qm_cmd_init(qm);
6576 	hisi_qm_dev_err_init(qm);
6577 	qm_disable_clock_gate(qm);
6578 	ret = qm_dev_mem_reset(qm);
6579 	if (ret)
6580 		pci_err(pdev, "failed to reset device memory\n");
6581 
6582 	return ret;
6583 }
6584 
6585 /**
6586  * hisi_qm_suspend() - Runtime suspend of given device.
6587  * @dev: device to suspend.
6588  *
6589  * Function that suspend the device.
6590  */
6591 int hisi_qm_suspend(struct device *dev)
6592 {
6593 	struct pci_dev *pdev = to_pci_dev(dev);
6594 	struct hisi_qm *qm = pci_get_drvdata(pdev);
6595 	int ret;
6596 
6597 	pci_info(pdev, "entering suspended state\n");
6598 
6599 	ret = hisi_qm_stop(qm, QM_NORMAL);
6600 	if (ret) {
6601 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
6602 		return ret;
6603 	}
6604 
6605 	ret = qm_prepare_for_suspend(qm);
6606 	if (ret)
6607 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
6608 
6609 	return ret;
6610 }
6611 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
6612 
6613 /**
6614  * hisi_qm_resume() - Runtime resume of given device.
6615  * @dev: device to resume.
6616  *
6617  * Function that resume the device.
6618  */
6619 int hisi_qm_resume(struct device *dev)
6620 {
6621 	struct pci_dev *pdev = to_pci_dev(dev);
6622 	struct hisi_qm *qm = pci_get_drvdata(pdev);
6623 	int ret;
6624 
6625 	pci_info(pdev, "resuming from suspend state\n");
6626 
6627 	ret = qm_rebuild_for_resume(qm);
6628 	if (ret) {
6629 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
6630 		return ret;
6631 	}
6632 
6633 	ret = hisi_qm_start(qm);
6634 	if (ret)
6635 		pci_err(pdev, "failed to start qm(%d)\n", ret);
6636 
6637 	return ret;
6638 }
6639 EXPORT_SYMBOL_GPL(hisi_qm_resume);
6640 
6641 MODULE_LICENSE("GPL v2");
6642 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
6643 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
6644