xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision 413d6ed3)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/debugfs.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/idr.h>
10 #include <linux/io.h>
11 #include <linux/irqreturn.h>
12 #include <linux/log2.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include "qm.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 #define QM_IRQ_NUM_V1			1
26 #define QM_IRQ_NUM_PF_V2		4
27 #define QM_IRQ_NUM_VF_V2		2
28 
29 #define QM_EQ_EVENT_IRQ_VECTOR		0
30 #define QM_AEQ_EVENT_IRQ_VECTOR		1
31 #define QM_ABNORMAL_EVENT_IRQ_VECTOR	3
32 
33 /* mailbox */
34 #define QM_MB_CMD_SQC			0x0
35 #define QM_MB_CMD_CQC			0x1
36 #define QM_MB_CMD_EQC			0x2
37 #define QM_MB_CMD_AEQC			0x3
38 #define QM_MB_CMD_SQC_BT		0x4
39 #define QM_MB_CMD_CQC_BT		0x5
40 #define QM_MB_CMD_SQC_VFT_V2		0x6
41 #define QM_MB_CMD_STOP_QP		0x8
42 
43 #define QM_MB_CMD_SEND_BASE		0x300
44 #define QM_MB_EVENT_SHIFT		8
45 #define QM_MB_BUSY_SHIFT		13
46 #define QM_MB_OP_SHIFT			14
47 #define QM_MB_CMD_DATA_ADDR_L		0x304
48 #define QM_MB_CMD_DATA_ADDR_H		0x308
49 
50 /* sqc shift */
51 #define QM_SQ_HOP_NUM_SHIFT		0
52 #define QM_SQ_PAGE_SIZE_SHIFT		4
53 #define QM_SQ_BUF_SIZE_SHIFT		8
54 #define QM_SQ_SQE_SIZE_SHIFT		12
55 #define QM_SQ_PRIORITY_SHIFT		0
56 #define QM_SQ_ORDERS_SHIFT		4
57 #define QM_SQ_TYPE_SHIFT		8
58 #define QM_QC_PASID_ENABLE		0x1
59 #define QM_QC_PASID_ENABLE_SHIFT	7
60 
61 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
62 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
63 
64 /* cqc shift */
65 #define QM_CQ_HOP_NUM_SHIFT		0
66 #define QM_CQ_PAGE_SIZE_SHIFT		4
67 #define QM_CQ_BUF_SIZE_SHIFT		8
68 #define QM_CQ_CQE_SIZE_SHIFT		12
69 #define QM_CQ_PHASE_SHIFT		0
70 #define QM_CQ_FLAG_SHIFT		1
71 
72 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
73 #define QM_QC_CQE_SIZE			4
74 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
75 
76 /* eqc shift */
77 #define QM_EQE_AEQE_SIZE		(2UL << 12)
78 #define QM_EQC_PHASE_SHIFT		16
79 
80 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
81 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
82 
83 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
84 #define QM_AEQE_TYPE_SHIFT		17
85 
86 #define QM_DOORBELL_CMD_SQ		0
87 #define QM_DOORBELL_CMD_CQ		1
88 #define QM_DOORBELL_CMD_EQ		2
89 #define QM_DOORBELL_CMD_AEQ		3
90 
91 #define QM_DOORBELL_BASE_V1		0x340
92 #define QM_DB_CMD_SHIFT_V1		16
93 #define QM_DB_INDEX_SHIFT_V1		32
94 #define QM_DB_PRIORITY_SHIFT_V1		48
95 #define QM_DOORBELL_SQ_CQ_BASE_V2	0x1000
96 #define QM_DOORBELL_EQ_AEQ_BASE_V2	0x2000
97 #define QM_QUE_ISO_CFG_V		0x0030
98 #define QM_QUE_ISO_EN			0x100154
99 #define QM_CAPBILITY			0x100158
100 #define QM_QP_NUN_MASK			GENMASK(10, 0)
101 #define QM_QP_DB_INTERVAL		0x10000
102 #define QM_QP_MAX_NUM_SHIFT		11
103 #define QM_DB_CMD_SHIFT_V2		12
104 #define QM_DB_RAND_SHIFT_V2		16
105 #define QM_DB_INDEX_SHIFT_V2		32
106 #define QM_DB_PRIORITY_SHIFT_V2		48
107 
108 #define QM_MEM_START_INIT		0x100040
109 #define QM_MEM_INIT_DONE		0x100044
110 #define QM_VFT_CFG_RDY			0x10006c
111 #define QM_VFT_CFG_OP_WR		0x100058
112 #define QM_VFT_CFG_TYPE			0x10005c
113 #define QM_SQC_VFT			0x0
114 #define QM_CQC_VFT			0x1
115 #define QM_VFT_CFG			0x100060
116 #define QM_VFT_CFG_OP_ENABLE		0x100054
117 
118 #define QM_VFT_CFG_DATA_L		0x100064
119 #define QM_VFT_CFG_DATA_H		0x100068
120 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
121 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
122 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
123 #define QM_SQC_VFT_START_SQN_SHIFT	28
124 #define QM_SQC_VFT_VALID		(1ULL << 44)
125 #define QM_SQC_VFT_SQN_SHIFT		45
126 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
127 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
128 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
129 #define QM_CQC_VFT_VALID		(1ULL << 28)
130 
131 #define QM_SQC_VFT_BASE_SHIFT_V2	28
132 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
133 #define QM_SQC_VFT_NUM_SHIFT_V2		45
134 #define QM_SQC_VFT_NUM_MASK_v2		GENMASK(9, 0)
135 
136 #define QM_DFX_CNT_CLR_CE		0x100118
137 
138 #define QM_ABNORMAL_INT_SOURCE		0x100000
139 #define QM_ABNORMAL_INT_SOURCE_CLR	GENMASK(14, 0)
140 #define QM_ABNORMAL_INT_MASK		0x100004
141 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
142 #define QM_ABNORMAL_INT_STATUS		0x100008
143 #define QM_ABNORMAL_INT_SET		0x10000c
144 #define QM_ABNORMAL_INF00		0x100010
145 #define QM_FIFO_OVERFLOW_TYPE		0xc0
146 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
147 #define QM_FIFO_OVERFLOW_VF		0x3f
148 #define QM_ABNORMAL_INF01		0x100014
149 #define QM_DB_TIMEOUT_TYPE		0xc0
150 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
151 #define QM_DB_TIMEOUT_VF		0x3f
152 #define QM_RAS_CE_ENABLE		0x1000ec
153 #define QM_RAS_FE_ENABLE		0x1000f0
154 #define QM_RAS_NFE_ENABLE		0x1000f4
155 #define QM_RAS_CE_THRESHOLD		0x1000f8
156 #define QM_RAS_CE_TIMES_PER_IRQ		1
157 #define QM_RAS_MSI_INT_SEL		0x1040f4
158 
159 #define QM_RESET_WAIT_TIMEOUT		400
160 #define QM_PEH_VENDOR_ID		0x1000d8
161 #define ACC_VENDOR_ID_VALUE		0x5a5a
162 #define QM_PEH_DFX_INFO0		0x1000fc
163 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
164 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
165 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
166 #define ACC_MASTER_TRANS_RETURN_RW	3
167 #define ACC_MASTER_TRANS_RETURN		0x300150
168 #define ACC_MASTER_GLOBAL_CTRL		0x300000
169 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
170 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
171 #define ACC_AM_ROB_ECC_INT_STS		0x300104
172 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
173 
174 #define QM_DFX_MB_CNT_VF		0x104010
175 #define QM_DFX_DB_CNT_VF		0x104020
176 #define QM_DFX_SQE_CNT_VF_SQN		0x104030
177 #define QM_DFX_CQE_CNT_VF_CQN		0x104040
178 #define QM_DFX_QN_SHIFT			16
179 #define CURRENT_FUN_MASK		GENMASK(5, 0)
180 #define CURRENT_Q_MASK			GENMASK(31, 16)
181 
182 #define POLL_PERIOD			10
183 #define POLL_TIMEOUT			1000
184 #define WAIT_PERIOD_US_MAX		200
185 #define WAIT_PERIOD_US_MIN		100
186 #define MAX_WAIT_COUNTS			1000
187 #define QM_CACHE_WB_START		0x204
188 #define QM_CACHE_WB_DONE		0x208
189 
190 #define PCI_BAR_2			2
191 #define PCI_BAR_4			4
192 #define QM_SQE_DATA_ALIGN_MASK		GENMASK(6, 0)
193 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
194 
195 #define QM_DBG_READ_LEN		256
196 #define QM_DBG_WRITE_LEN		1024
197 #define QM_DBG_TMP_BUF_LEN		22
198 #define QM_PCI_COMMAND_INVALID		~0
199 
200 #define WAIT_PERIOD			20
201 #define REMOVE_WAIT_DELAY		10
202 #define QM_SQE_ADDR_MASK		GENMASK(7, 0)
203 #define QM_EQ_DEPTH			(1024 * 2)
204 
205 #define QM_DRIVER_REMOVING		0
206 #define QM_RST_SCHED			1
207 #define QM_RESETTING			2
208 
209 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
210 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT)	| \
211 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT)	| \
212 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT)	| \
213 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
214 
215 #define QM_MK_CQC_DW3_V2(cqe_sz) \
216 	((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
217 
218 #define QM_MK_SQC_W13(priority, orders, alg_type) \
219 	(((priority) << QM_SQ_PRIORITY_SHIFT)	| \
220 	((orders) << QM_SQ_ORDERS_SHIFT)	| \
221 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
222 
223 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
224 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT)	| \
225 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT)	| \
226 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT)	| \
227 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
228 
229 #define QM_MK_SQC_DW3_V2(sqe_sz) \
230 	((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
231 
232 #define INIT_QC_COMMON(qc, base, pasid) do {			\
233 	(qc)->head = 0;						\
234 	(qc)->tail = 0;						\
235 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
236 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
237 	(qc)->dw3 = 0;						\
238 	(qc)->w8 = 0;						\
239 	(qc)->rsvd0 = 0;					\
240 	(qc)->pasid = cpu_to_le16(pasid);			\
241 	(qc)->w11 = 0;						\
242 	(qc)->rsvd1 = 0;					\
243 } while (0)
244 
245 enum vft_type {
246 	SQC_VFT = 0,
247 	CQC_VFT,
248 };
249 
250 enum acc_err_result {
251 	ACC_ERR_NONE,
252 	ACC_ERR_NEED_RESET,
253 	ACC_ERR_RECOVERED,
254 };
255 
256 struct qm_cqe {
257 	__le32 rsvd0;
258 	__le16 cmd_id;
259 	__le16 rsvd1;
260 	__le16 sq_head;
261 	__le16 sq_num;
262 	__le16 rsvd2;
263 	__le16 w7;
264 };
265 
266 struct qm_eqe {
267 	__le32 dw0;
268 };
269 
270 struct qm_aeqe {
271 	__le32 dw0;
272 };
273 
274 struct qm_sqc {
275 	__le16 head;
276 	__le16 tail;
277 	__le32 base_l;
278 	__le32 base_h;
279 	__le32 dw3;
280 	__le16 w8;
281 	__le16 rsvd0;
282 	__le16 pasid;
283 	__le16 w11;
284 	__le16 cq_num;
285 	__le16 w13;
286 	__le32 rsvd1;
287 };
288 
289 struct qm_cqc {
290 	__le16 head;
291 	__le16 tail;
292 	__le32 base_l;
293 	__le32 base_h;
294 	__le32 dw3;
295 	__le16 w8;
296 	__le16 rsvd0;
297 	__le16 pasid;
298 	__le16 w11;
299 	__le32 dw6;
300 	__le32 rsvd1;
301 };
302 
303 struct qm_eqc {
304 	__le16 head;
305 	__le16 tail;
306 	__le32 base_l;
307 	__le32 base_h;
308 	__le32 dw3;
309 	__le32 rsvd[2];
310 	__le32 dw6;
311 };
312 
313 struct qm_aeqc {
314 	__le16 head;
315 	__le16 tail;
316 	__le32 base_l;
317 	__le32 base_h;
318 	__le32 dw3;
319 	__le32 rsvd[2];
320 	__le32 dw6;
321 };
322 
323 struct qm_mailbox {
324 	__le16 w0;
325 	__le16 queue_num;
326 	__le32 base_l;
327 	__le32 base_h;
328 	__le32 rsvd;
329 };
330 
331 struct qm_doorbell {
332 	__le16 queue_num;
333 	__le16 cmd;
334 	__le16 index;
335 	__le16 priority;
336 };
337 
338 struct hisi_qm_resource {
339 	struct hisi_qm *qm;
340 	int distance;
341 	struct list_head list;
342 };
343 
344 struct hisi_qm_hw_ops {
345 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
346 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
347 		      u8 cmd, u16 index, u8 priority);
348 	u32 (*get_irq_num)(struct hisi_qm *qm);
349 	int (*debug_init)(struct hisi_qm *qm);
350 	void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe);
351 	void (*hw_error_uninit)(struct hisi_qm *qm);
352 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
353 	int (*stop_qp)(struct hisi_qp *qp);
354 };
355 
356 struct qm_dfx_item {
357 	const char *name;
358 	u32 offset;
359 };
360 
361 static struct qm_dfx_item qm_dfx_files[] = {
362 	{"err_irq", offsetof(struct qm_dfx, err_irq_cnt)},
363 	{"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)},
364 	{"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)},
365 	{"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)},
366 	{"mb_err", offsetof(struct qm_dfx, mb_err_cnt)},
367 };
368 
369 static const char * const qm_debug_file_name[] = {
370 	[CURRENT_QM]   = "current_qm",
371 	[CURRENT_Q]    = "current_q",
372 	[CLEAR_ENABLE] = "clear_enable",
373 };
374 
375 struct hisi_qm_hw_error {
376 	u32 int_msk;
377 	const char *msg;
378 };
379 
380 static const struct hisi_qm_hw_error qm_hw_error[] = {
381 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
382 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
383 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
384 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
385 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
386 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
387 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
388 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
389 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
390 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
391 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
392 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
393 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
394 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
395 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
396 	{ /* sentinel */ }
397 };
398 
399 static const char * const qm_db_timeout[] = {
400 	"sq", "cq", "eq", "aeq",
401 };
402 
403 static const char * const qm_fifo_overflow[] = {
404 	"cq", "eq", "aeq",
405 };
406 
407 static const char * const qm_s[] = {
408 	"init", "start", "close", "stop",
409 };
410 
411 static const char * const qp_s[] = {
412 	"none", "init", "start", "stop", "close",
413 };
414 
415 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
416 {
417 	enum qm_state curr = atomic_read(&qm->status.flags);
418 	bool avail = false;
419 
420 	switch (curr) {
421 	case QM_INIT:
422 		if (new == QM_START || new == QM_CLOSE)
423 			avail = true;
424 		break;
425 	case QM_START:
426 		if (new == QM_STOP)
427 			avail = true;
428 		break;
429 	case QM_STOP:
430 		if (new == QM_CLOSE || new == QM_START)
431 			avail = true;
432 		break;
433 	default:
434 		break;
435 	}
436 
437 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
438 		qm_s[curr], qm_s[new]);
439 
440 	if (!avail)
441 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
442 			 qm_s[curr], qm_s[new]);
443 
444 	return avail;
445 }
446 
447 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
448 			      enum qp_state new)
449 {
450 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
451 	enum qp_state qp_curr = 0;
452 	bool avail = false;
453 
454 	if (qp)
455 		qp_curr = atomic_read(&qp->qp_status.flags);
456 
457 	switch (new) {
458 	case QP_INIT:
459 		if (qm_curr == QM_START || qm_curr == QM_INIT)
460 			avail = true;
461 		break;
462 	case QP_START:
463 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
464 		    (qm_curr == QM_START && qp_curr == QP_STOP))
465 			avail = true;
466 		break;
467 	case QP_STOP:
468 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
469 		    (qp_curr == QP_INIT))
470 			avail = true;
471 		break;
472 	case QP_CLOSE:
473 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
474 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
475 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
476 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
477 			avail = true;
478 		break;
479 	default:
480 		break;
481 	}
482 
483 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
484 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
485 
486 	if (!avail)
487 		dev_warn(&qm->pdev->dev,
488 			 "Can not change qp state from %s to %s in QM %s\n",
489 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
490 
491 	return avail;
492 }
493 
494 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
495 static int qm_wait_mb_ready(struct hisi_qm *qm)
496 {
497 	u32 val;
498 
499 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
500 					  val, !((val >> QM_MB_BUSY_SHIFT) &
501 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
502 }
503 
504 /* 128 bit should be written to hardware at one time to trigger a mailbox */
505 static void qm_mb_write(struct hisi_qm *qm, const void *src)
506 {
507 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
508 	unsigned long tmp0 = 0, tmp1 = 0;
509 
510 	if (!IS_ENABLED(CONFIG_ARM64)) {
511 		memcpy_toio(fun_base, src, 16);
512 		wmb();
513 		return;
514 	}
515 
516 	asm volatile("ldp %0, %1, %3\n"
517 		     "stp %0, %1, %2\n"
518 		     "dsb sy\n"
519 		     : "=&r" (tmp0),
520 		       "=&r" (tmp1),
521 		       "+Q" (*((char __iomem *)fun_base))
522 		     : "Q" (*((char *)src))
523 		     : "memory");
524 }
525 
526 static int qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
527 		 bool op)
528 {
529 	struct qm_mailbox mailbox;
530 	int ret = 0;
531 
532 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
533 		queue, cmd, (unsigned long long)dma_addr);
534 
535 	mailbox.w0 = cpu_to_le16(cmd |
536 		     (op ? 0x1 << QM_MB_OP_SHIFT : 0) |
537 		     (0x1 << QM_MB_BUSY_SHIFT));
538 	mailbox.queue_num = cpu_to_le16(queue);
539 	mailbox.base_l = cpu_to_le32(lower_32_bits(dma_addr));
540 	mailbox.base_h = cpu_to_le32(upper_32_bits(dma_addr));
541 	mailbox.rsvd = 0;
542 
543 	mutex_lock(&qm->mailbox_lock);
544 
545 	if (unlikely(qm_wait_mb_ready(qm))) {
546 		ret = -EBUSY;
547 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
548 		goto busy_unlock;
549 	}
550 
551 	qm_mb_write(qm, &mailbox);
552 
553 	if (unlikely(qm_wait_mb_ready(qm))) {
554 		ret = -EBUSY;
555 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
556 		goto busy_unlock;
557 	}
558 
559 busy_unlock:
560 	mutex_unlock(&qm->mailbox_lock);
561 
562 	if (ret)
563 		atomic64_inc(&qm->debug.dfx.mb_err_cnt);
564 	return ret;
565 }
566 
567 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
568 {
569 	u64 doorbell;
570 
571 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
572 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
573 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
574 
575 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
576 }
577 
578 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
579 {
580 	void __iomem *io_base = qm->io_base;
581 	u16 randata = 0;
582 	u64 doorbell;
583 
584 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
585 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
586 			  QM_DOORBELL_SQ_CQ_BASE_V2;
587 	else
588 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
589 
590 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
591 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
592 		   ((u64)index << QM_DB_INDEX_SHIFT_V2)	 |
593 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
594 
595 	writeq(doorbell, io_base);
596 }
597 
598 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
599 {
600 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
601 		qn, cmd, index);
602 
603 	qm->ops->qm_db(qm, qn, cmd, index, priority);
604 }
605 
606 static int qm_dev_mem_reset(struct hisi_qm *qm)
607 {
608 	u32 val;
609 
610 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
611 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
612 					  val & BIT(0), POLL_PERIOD,
613 					  POLL_TIMEOUT);
614 }
615 
616 static u32 qm_get_irq_num_v1(struct hisi_qm *qm)
617 {
618 	return QM_IRQ_NUM_V1;
619 }
620 
621 static u32 qm_get_irq_num_v2(struct hisi_qm *qm)
622 {
623 	if (qm->fun_type == QM_HW_PF)
624 		return QM_IRQ_NUM_PF_V2;
625 	else
626 		return QM_IRQ_NUM_VF_V2;
627 }
628 
629 static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe)
630 {
631 	u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
632 
633 	return &qm->qp_array[cqn];
634 }
635 
636 static void qm_cq_head_update(struct hisi_qp *qp)
637 {
638 	if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) {
639 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
640 		qp->qp_status.cq_head = 0;
641 	} else {
642 		qp->qp_status.cq_head++;
643 	}
644 }
645 
646 static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm)
647 {
648 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
649 		return;
650 
651 	if (qp->event_cb) {
652 		qp->event_cb(qp);
653 		return;
654 	}
655 
656 	if (qp->req_cb) {
657 		struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
658 
659 		while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
660 			dma_rmb();
661 			qp->req_cb(qp, qp->sqe + qm->sqe_size *
662 				   le16_to_cpu(cqe->sq_head));
663 			qm_cq_head_update(qp);
664 			cqe = qp->cqe + qp->qp_status.cq_head;
665 			qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
666 			      qp->qp_status.cq_head, 0);
667 			atomic_dec(&qp->qp_status.used);
668 		}
669 
670 		/* set c_flag */
671 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
672 		      qp->qp_status.cq_head, 1);
673 	}
674 }
675 
676 static void qm_work_process(struct work_struct *work)
677 {
678 	struct hisi_qm *qm = container_of(work, struct hisi_qm, work);
679 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
680 	struct hisi_qp *qp;
681 	int eqe_num = 0;
682 
683 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
684 		eqe_num++;
685 		qp = qm_to_hisi_qp(qm, eqe);
686 		qm_poll_qp(qp, qm);
687 
688 		if (qm->status.eq_head == QM_EQ_DEPTH - 1) {
689 			qm->status.eqc_phase = !qm->status.eqc_phase;
690 			eqe = qm->eqe;
691 			qm->status.eq_head = 0;
692 		} else {
693 			eqe++;
694 			qm->status.eq_head++;
695 		}
696 
697 		if (eqe_num == QM_EQ_DEPTH / 2 - 1) {
698 			eqe_num = 0;
699 			qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
700 		}
701 	}
702 
703 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
704 }
705 
706 static irqreturn_t do_qm_irq(int irq, void *data)
707 {
708 	struct hisi_qm *qm = (struct hisi_qm *)data;
709 
710 	/* the workqueue created by device driver of QM */
711 	if (qm->wq)
712 		queue_work(qm->wq, &qm->work);
713 	else
714 		schedule_work(&qm->work);
715 
716 	return IRQ_HANDLED;
717 }
718 
719 static irqreturn_t qm_irq(int irq, void *data)
720 {
721 	struct hisi_qm *qm = data;
722 
723 	if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
724 		return do_qm_irq(irq, data);
725 
726 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
727 	dev_err(&qm->pdev->dev, "invalid int source\n");
728 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
729 
730 	return IRQ_NONE;
731 }
732 
733 static irqreturn_t qm_aeq_irq(int irq, void *data)
734 {
735 	struct hisi_qm *qm = data;
736 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
737 	u32 type;
738 
739 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
740 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
741 		return IRQ_NONE;
742 
743 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
744 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
745 		if (type < ARRAY_SIZE(qm_fifo_overflow))
746 			dev_err(&qm->pdev->dev, "%s overflow\n",
747 				qm_fifo_overflow[type]);
748 		else
749 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
750 				type);
751 
752 		if (qm->status.aeq_head == QM_Q_DEPTH - 1) {
753 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
754 			aeqe = qm->aeqe;
755 			qm->status.aeq_head = 0;
756 		} else {
757 			aeqe++;
758 			qm->status.aeq_head++;
759 		}
760 
761 		qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
762 	}
763 
764 	return IRQ_HANDLED;
765 }
766 
767 static void qm_irq_unregister(struct hisi_qm *qm)
768 {
769 	struct pci_dev *pdev = qm->pdev;
770 
771 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
772 
773 	if (qm->ver == QM_HW_V1)
774 		return;
775 
776 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
777 
778 	if (qm->fun_type == QM_HW_PF)
779 		free_irq(pci_irq_vector(pdev,
780 			 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
781 }
782 
783 static void qm_init_qp_status(struct hisi_qp *qp)
784 {
785 	struct hisi_qp_status *qp_status = &qp->qp_status;
786 
787 	qp_status->sq_tail = 0;
788 	qp_status->cq_head = 0;
789 	qp_status->cqc_phase = true;
790 	atomic_set(&qp_status->used, 0);
791 }
792 
793 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
794 			    u32 number)
795 {
796 	u64 tmp = 0;
797 
798 	if (number > 0) {
799 		switch (type) {
800 		case SQC_VFT:
801 			if (qm->ver == QM_HW_V1) {
802 				tmp = QM_SQC_VFT_BUF_SIZE	|
803 				      QM_SQC_VFT_SQC_SIZE	|
804 				      QM_SQC_VFT_INDEX_NUMBER	|
805 				      QM_SQC_VFT_VALID		|
806 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
807 			} else {
808 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
809 				      QM_SQC_VFT_VALID |
810 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
811 			}
812 			break;
813 		case CQC_VFT:
814 			if (qm->ver == QM_HW_V1) {
815 				tmp = QM_CQC_VFT_BUF_SIZE	|
816 				      QM_CQC_VFT_SQC_SIZE	|
817 				      QM_CQC_VFT_INDEX_NUMBER	|
818 				      QM_CQC_VFT_VALID;
819 			} else {
820 				tmp = QM_CQC_VFT_VALID;
821 			}
822 			break;
823 		}
824 	}
825 
826 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
827 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
828 }
829 
830 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
831 			     u32 fun_num, u32 base, u32 number)
832 {
833 	unsigned int val;
834 	int ret;
835 
836 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
837 					 val & BIT(0), POLL_PERIOD,
838 					 POLL_TIMEOUT);
839 	if (ret)
840 		return ret;
841 
842 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
843 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
844 	writel(fun_num, qm->io_base + QM_VFT_CFG);
845 
846 	qm_vft_data_cfg(qm, type, base, number);
847 
848 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
849 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
850 
851 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
852 					  val & BIT(0), POLL_PERIOD,
853 					  POLL_TIMEOUT);
854 }
855 
856 /* The config should be conducted after qm_dev_mem_reset() */
857 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
858 			      u32 number)
859 {
860 	int ret, i;
861 
862 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
863 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
864 		if (ret)
865 			return ret;
866 	}
867 
868 	return 0;
869 }
870 
871 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
872 {
873 	u64 sqc_vft;
874 	int ret;
875 
876 	ret = qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
877 	if (ret)
878 		return ret;
879 
880 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
881 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
882 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
883 	*number = (QM_SQC_VFT_NUM_MASK_v2 &
884 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
885 
886 	return 0;
887 }
888 
889 static int qm_get_vf_qp_num(struct hisi_qm *qm, u32 fun_num)
890 {
891 	u32 remain_q_num, vfq_num;
892 	u32 num_vfs = qm->vfs_num;
893 
894 	vfq_num = (qm->ctrl_qp_num - qm->qp_num) / num_vfs;
895 	if (vfq_num >= qm->max_qp_num)
896 		return qm->max_qp_num;
897 
898 	remain_q_num = (qm->ctrl_qp_num - qm->qp_num) % num_vfs;
899 	if (vfq_num + remain_q_num <= qm->max_qp_num)
900 		return fun_num == num_vfs ? vfq_num + remain_q_num : vfq_num;
901 
902 	/*
903 	 * if vfq_num + remain_q_num > max_qp_num, the last VFs,
904 	 * each with one more queue.
905 	 */
906 	return fun_num + remain_q_num > num_vfs ? vfq_num + 1 : vfq_num;
907 }
908 
909 static struct hisi_qm *file_to_qm(struct debugfs_file *file)
910 {
911 	struct qm_debug *debug = file->debug;
912 
913 	return container_of(debug, struct hisi_qm, debug);
914 }
915 
916 static u32 current_q_read(struct debugfs_file *file)
917 {
918 	struct hisi_qm *qm = file_to_qm(file);
919 
920 	return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT;
921 }
922 
923 static int current_q_write(struct debugfs_file *file, u32 val)
924 {
925 	struct hisi_qm *qm = file_to_qm(file);
926 	u32 tmp;
927 
928 	if (val >= qm->debug.curr_qm_qp_num)
929 		return -EINVAL;
930 
931 	tmp = val << QM_DFX_QN_SHIFT |
932 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK);
933 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
934 
935 	tmp = val << QM_DFX_QN_SHIFT |
936 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK);
937 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
938 
939 	return 0;
940 }
941 
942 static u32 clear_enable_read(struct debugfs_file *file)
943 {
944 	struct hisi_qm *qm = file_to_qm(file);
945 
946 	return readl(qm->io_base + QM_DFX_CNT_CLR_CE);
947 }
948 
949 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */
950 static int clear_enable_write(struct debugfs_file *file, u32 rd_clr_ctrl)
951 {
952 	struct hisi_qm *qm = file_to_qm(file);
953 
954 	if (rd_clr_ctrl > 1)
955 		return -EINVAL;
956 
957 	writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE);
958 
959 	return 0;
960 }
961 
962 static u32 current_qm_read(struct debugfs_file *file)
963 {
964 	struct hisi_qm *qm = file_to_qm(file);
965 
966 	return readl(qm->io_base + QM_DFX_MB_CNT_VF);
967 }
968 
969 static int current_qm_write(struct debugfs_file *file, u32 val)
970 {
971 	struct hisi_qm *qm = file_to_qm(file);
972 	u32 tmp;
973 
974 	if (val > qm->vfs_num)
975 		return -EINVAL;
976 
977 	/* According PF or VF Dev ID to calculation curr_qm_qp_num and store */
978 	if (!val)
979 		qm->debug.curr_qm_qp_num = qm->qp_num;
980 	else
981 		qm->debug.curr_qm_qp_num = qm_get_vf_qp_num(qm, val);
982 
983 	writel(val, qm->io_base + QM_DFX_MB_CNT_VF);
984 	writel(val, qm->io_base + QM_DFX_DB_CNT_VF);
985 
986 	tmp = val |
987 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_Q_MASK);
988 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
989 
990 	tmp = val |
991 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_Q_MASK);
992 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
993 
994 	return 0;
995 }
996 
997 static ssize_t qm_debug_read(struct file *filp, char __user *buf,
998 			     size_t count, loff_t *pos)
999 {
1000 	struct debugfs_file *file = filp->private_data;
1001 	enum qm_debug_file index = file->index;
1002 	char tbuf[QM_DBG_TMP_BUF_LEN];
1003 	u32 val;
1004 	int ret;
1005 
1006 	mutex_lock(&file->lock);
1007 	switch (index) {
1008 	case CURRENT_QM:
1009 		val = current_qm_read(file);
1010 		break;
1011 	case CURRENT_Q:
1012 		val = current_q_read(file);
1013 		break;
1014 	case CLEAR_ENABLE:
1015 		val = clear_enable_read(file);
1016 		break;
1017 	default:
1018 		mutex_unlock(&file->lock);
1019 		return -EINVAL;
1020 	}
1021 	mutex_unlock(&file->lock);
1022 
1023 	ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val);
1024 	return simple_read_from_buffer(buf, count, pos, tbuf, ret);
1025 }
1026 
1027 static ssize_t qm_debug_write(struct file *filp, const char __user *buf,
1028 			      size_t count, loff_t *pos)
1029 {
1030 	struct debugfs_file *file = filp->private_data;
1031 	enum qm_debug_file index = file->index;
1032 	unsigned long val;
1033 	char tbuf[QM_DBG_TMP_BUF_LEN];
1034 	int len, ret;
1035 
1036 	if (*pos != 0)
1037 		return 0;
1038 
1039 	if (count >= QM_DBG_TMP_BUF_LEN)
1040 		return -ENOSPC;
1041 
1042 	len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf,
1043 				     count);
1044 	if (len < 0)
1045 		return len;
1046 
1047 	tbuf[len] = '\0';
1048 	if (kstrtoul(tbuf, 0, &val))
1049 		return -EFAULT;
1050 
1051 	mutex_lock(&file->lock);
1052 	switch (index) {
1053 	case CURRENT_QM:
1054 		ret = current_qm_write(file, val);
1055 		break;
1056 	case CURRENT_Q:
1057 		ret = current_q_write(file, val);
1058 		break;
1059 	case CLEAR_ENABLE:
1060 		ret = clear_enable_write(file, val);
1061 		break;
1062 	default:
1063 		ret = -EINVAL;
1064 	}
1065 	mutex_unlock(&file->lock);
1066 
1067 	if (ret)
1068 		return ret;
1069 
1070 	return count;
1071 }
1072 
1073 static const struct file_operations qm_debug_fops = {
1074 	.owner = THIS_MODULE,
1075 	.open = simple_open,
1076 	.read = qm_debug_read,
1077 	.write = qm_debug_write,
1078 };
1079 
1080 struct qm_dfx_registers {
1081 	char  *reg_name;
1082 	u64   reg_offset;
1083 };
1084 
1085 #define CNT_CYC_REGS_NUM		10
1086 static struct qm_dfx_registers qm_dfx_regs[] = {
1087 	/* XXX_CNT are reading clear register */
1088 	{"QM_ECC_1BIT_CNT               ",  0x104000ull},
1089 	{"QM_ECC_MBIT_CNT               ",  0x104008ull},
1090 	{"QM_DFX_MB_CNT                 ",  0x104018ull},
1091 	{"QM_DFX_DB_CNT                 ",  0x104028ull},
1092 	{"QM_DFX_SQE_CNT                ",  0x104038ull},
1093 	{"QM_DFX_CQE_CNT                ",  0x104048ull},
1094 	{"QM_DFX_SEND_SQE_TO_ACC_CNT    ",  0x104050ull},
1095 	{"QM_DFX_WB_SQE_FROM_ACC_CNT    ",  0x104058ull},
1096 	{"QM_DFX_ACC_FINISH_CNT         ",  0x104060ull},
1097 	{"QM_DFX_CQE_ERR_CNT            ",  0x1040b4ull},
1098 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1099 	{"QM_ECC_1BIT_INF               ",  0x104004ull},
1100 	{"QM_ECC_MBIT_INF               ",  0x10400cull},
1101 	{"QM_DFX_ACC_RDY_VLD0           ",  0x1040a0ull},
1102 	{"QM_DFX_ACC_RDY_VLD1           ",  0x1040a4ull},
1103 	{"QM_DFX_AXI_RDY_VLD            ",  0x1040a8ull},
1104 	{"QM_DFX_FF_ST0                 ",  0x1040c8ull},
1105 	{"QM_DFX_FF_ST1                 ",  0x1040ccull},
1106 	{"QM_DFX_FF_ST2                 ",  0x1040d0ull},
1107 	{"QM_DFX_FF_ST3                 ",  0x1040d4ull},
1108 	{"QM_DFX_FF_ST4                 ",  0x1040d8ull},
1109 	{"QM_DFX_FF_ST5                 ",  0x1040dcull},
1110 	{"QM_DFX_FF_ST6                 ",  0x1040e0ull},
1111 	{"QM_IN_IDLE_ST                 ",  0x1040e4ull},
1112 	{ NULL, 0}
1113 };
1114 
1115 static struct qm_dfx_registers qm_vf_dfx_regs[] = {
1116 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1117 	{ NULL, 0}
1118 };
1119 
1120 static int qm_regs_show(struct seq_file *s, void *unused)
1121 {
1122 	struct hisi_qm *qm = s->private;
1123 	struct qm_dfx_registers *regs;
1124 	u32 val;
1125 
1126 	if (qm->fun_type == QM_HW_PF)
1127 		regs = qm_dfx_regs;
1128 	else
1129 		regs = qm_vf_dfx_regs;
1130 
1131 	while (regs->reg_name) {
1132 		val = readl(qm->io_base + regs->reg_offset);
1133 		seq_printf(s, "%s= 0x%08x\n", regs->reg_name, val);
1134 		regs++;
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 DEFINE_SHOW_ATTRIBUTE(qm_regs);
1141 
1142 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer,
1143 			   size_t count, loff_t *pos)
1144 {
1145 	char buf[QM_DBG_READ_LEN];
1146 	int len;
1147 
1148 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n",
1149 			"Please echo help to cmd to get help information");
1150 
1151 	return simple_read_from_buffer(buffer, count, pos, buf, len);
1152 }
1153 
1154 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1155 			  dma_addr_t *dma_addr)
1156 {
1157 	struct device *dev = &qm->pdev->dev;
1158 	void *ctx_addr;
1159 
1160 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1161 	if (!ctx_addr)
1162 		return ERR_PTR(-ENOMEM);
1163 
1164 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1165 	if (dma_mapping_error(dev, *dma_addr)) {
1166 		dev_err(dev, "DMA mapping error!\n");
1167 		kfree(ctx_addr);
1168 		return ERR_PTR(-ENOMEM);
1169 	}
1170 
1171 	return ctx_addr;
1172 }
1173 
1174 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1175 			const void *ctx_addr, dma_addr_t *dma_addr)
1176 {
1177 	struct device *dev = &qm->pdev->dev;
1178 
1179 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1180 	kfree(ctx_addr);
1181 }
1182 
1183 static int dump_show(struct hisi_qm *qm, void *info,
1184 		     unsigned int info_size, char *info_name)
1185 {
1186 	struct device *dev = &qm->pdev->dev;
1187 	u8 *info_buf, *info_curr = info;
1188 	u32 i;
1189 #define BYTE_PER_DW	4
1190 
1191 	info_buf = kzalloc(info_size, GFP_KERNEL);
1192 	if (!info_buf)
1193 		return -ENOMEM;
1194 
1195 	for (i = 0; i < info_size; i++, info_curr++) {
1196 		if (i % BYTE_PER_DW == 0)
1197 			info_buf[i + 3UL] = *info_curr;
1198 		else if (i % BYTE_PER_DW == 1)
1199 			info_buf[i + 1UL] = *info_curr;
1200 		else if (i % BYTE_PER_DW == 2)
1201 			info_buf[i - 1] = *info_curr;
1202 		else if (i % BYTE_PER_DW == 3)
1203 			info_buf[i - 3] = *info_curr;
1204 	}
1205 
1206 	dev_info(dev, "%s DUMP\n", info_name);
1207 	for (i = 0; i < info_size; i += BYTE_PER_DW) {
1208 		pr_info("DW%u: %02X%02X %02X%02X\n", i / BYTE_PER_DW,
1209 			info_buf[i], info_buf[i + 1UL],
1210 			info_buf[i + 2UL], info_buf[i + 3UL]);
1211 	}
1212 
1213 	kfree(info_buf);
1214 
1215 	return 0;
1216 }
1217 
1218 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1219 {
1220 	return qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1221 }
1222 
1223 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1224 {
1225 	return qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1226 }
1227 
1228 static int qm_sqc_dump(struct hisi_qm *qm, const char *s)
1229 {
1230 	struct device *dev = &qm->pdev->dev;
1231 	struct qm_sqc *sqc, *sqc_curr;
1232 	dma_addr_t sqc_dma;
1233 	u32 qp_id;
1234 	int ret;
1235 
1236 	if (!s)
1237 		return -EINVAL;
1238 
1239 	ret = kstrtou32(s, 0, &qp_id);
1240 	if (ret || qp_id >= qm->qp_num) {
1241 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1242 		return -EINVAL;
1243 	}
1244 
1245 	sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma);
1246 	if (IS_ERR(sqc))
1247 		return PTR_ERR(sqc);
1248 
1249 	ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id);
1250 	if (ret) {
1251 		down_read(&qm->qps_lock);
1252 		if (qm->sqc) {
1253 			sqc_curr = qm->sqc + qp_id;
1254 
1255 			ret = dump_show(qm, sqc_curr, sizeof(*sqc),
1256 					"SOFT SQC");
1257 			if (ret)
1258 				dev_info(dev, "Show soft sqc failed!\n");
1259 		}
1260 		up_read(&qm->qps_lock);
1261 
1262 		goto err_free_ctx;
1263 	}
1264 
1265 	ret = dump_show(qm, sqc, sizeof(*sqc), "SQC");
1266 	if (ret)
1267 		dev_info(dev, "Show hw sqc failed!\n");
1268 
1269 err_free_ctx:
1270 	qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma);
1271 	return ret;
1272 }
1273 
1274 static int qm_cqc_dump(struct hisi_qm *qm, const char *s)
1275 {
1276 	struct device *dev = &qm->pdev->dev;
1277 	struct qm_cqc *cqc, *cqc_curr;
1278 	dma_addr_t cqc_dma;
1279 	u32 qp_id;
1280 	int ret;
1281 
1282 	if (!s)
1283 		return -EINVAL;
1284 
1285 	ret = kstrtou32(s, 0, &qp_id);
1286 	if (ret || qp_id >= qm->qp_num) {
1287 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1288 		return -EINVAL;
1289 	}
1290 
1291 	cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma);
1292 	if (IS_ERR(cqc))
1293 		return PTR_ERR(cqc);
1294 
1295 	ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id);
1296 	if (ret) {
1297 		down_read(&qm->qps_lock);
1298 		if (qm->cqc) {
1299 			cqc_curr = qm->cqc + qp_id;
1300 
1301 			ret = dump_show(qm, cqc_curr, sizeof(*cqc),
1302 					"SOFT CQC");
1303 			if (ret)
1304 				dev_info(dev, "Show soft cqc failed!\n");
1305 		}
1306 		up_read(&qm->qps_lock);
1307 
1308 		goto err_free_ctx;
1309 	}
1310 
1311 	ret = dump_show(qm, cqc, sizeof(*cqc), "CQC");
1312 	if (ret)
1313 		dev_info(dev, "Show hw cqc failed!\n");
1314 
1315 err_free_ctx:
1316 	qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma);
1317 	return ret;
1318 }
1319 
1320 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size,
1321 			    int cmd, char *name)
1322 {
1323 	struct device *dev = &qm->pdev->dev;
1324 	dma_addr_t xeqc_dma;
1325 	void *xeqc;
1326 	int ret;
1327 
1328 	if (strsep(&s, " ")) {
1329 		dev_err(dev, "Please do not input extra characters!\n");
1330 		return -EINVAL;
1331 	}
1332 
1333 	xeqc = qm_ctx_alloc(qm, size, &xeqc_dma);
1334 	if (IS_ERR(xeqc))
1335 		return PTR_ERR(xeqc);
1336 
1337 	ret = qm_mb(qm, cmd, xeqc_dma, 0, 1);
1338 	if (ret)
1339 		goto err_free_ctx;
1340 
1341 	ret = dump_show(qm, xeqc, size, name);
1342 	if (ret)
1343 		dev_info(dev, "Show hw %s failed!\n", name);
1344 
1345 err_free_ctx:
1346 	qm_ctx_free(qm, size, xeqc, &xeqc_dma);
1347 	return ret;
1348 }
1349 
1350 static int q_dump_param_parse(struct hisi_qm *qm, char *s,
1351 			      u32 *e_id, u32 *q_id)
1352 {
1353 	struct device *dev = &qm->pdev->dev;
1354 	unsigned int qp_num = qm->qp_num;
1355 	char *presult;
1356 	int ret;
1357 
1358 	presult = strsep(&s, " ");
1359 	if (!presult) {
1360 		dev_err(dev, "Please input qp number!\n");
1361 		return -EINVAL;
1362 	}
1363 
1364 	ret = kstrtou32(presult, 0, q_id);
1365 	if (ret || *q_id >= qp_num) {
1366 		dev_err(dev, "Please input qp num (0-%u)", qp_num - 1);
1367 		return -EINVAL;
1368 	}
1369 
1370 	presult = strsep(&s, " ");
1371 	if (!presult) {
1372 		dev_err(dev, "Please input sqe number!\n");
1373 		return -EINVAL;
1374 	}
1375 
1376 	ret = kstrtou32(presult, 0, e_id);
1377 	if (ret || *e_id >= QM_Q_DEPTH) {
1378 		dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1);
1379 		return -EINVAL;
1380 	}
1381 
1382 	if (strsep(&s, " ")) {
1383 		dev_err(dev, "Please do not input extra characters!\n");
1384 		return -EINVAL;
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 static int qm_sq_dump(struct hisi_qm *qm, char *s)
1391 {
1392 	struct device *dev = &qm->pdev->dev;
1393 	void *sqe, *sqe_curr;
1394 	struct hisi_qp *qp;
1395 	u32 qp_id, sqe_id;
1396 	int ret;
1397 
1398 	ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id);
1399 	if (ret)
1400 		return ret;
1401 
1402 	sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL);
1403 	if (!sqe)
1404 		return -ENOMEM;
1405 
1406 	qp = &qm->qp_array[qp_id];
1407 	memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH);
1408 	sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size);
1409 	memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK,
1410 	       qm->debug.sqe_mask_len);
1411 
1412 	ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE");
1413 	if (ret)
1414 		dev_info(dev, "Show sqe failed!\n");
1415 
1416 	kfree(sqe);
1417 
1418 	return ret;
1419 }
1420 
1421 static int qm_cq_dump(struct hisi_qm *qm, char *s)
1422 {
1423 	struct device *dev = &qm->pdev->dev;
1424 	struct qm_cqe *cqe_curr;
1425 	struct hisi_qp *qp;
1426 	u32 qp_id, cqe_id;
1427 	int ret;
1428 
1429 	ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id);
1430 	if (ret)
1431 		return ret;
1432 
1433 	qp = &qm->qp_array[qp_id];
1434 	cqe_curr = qp->cqe + cqe_id;
1435 	ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE");
1436 	if (ret)
1437 		dev_info(dev, "Show cqe failed!\n");
1438 
1439 	return ret;
1440 }
1441 
1442 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s,
1443 			  size_t size, char *name)
1444 {
1445 	struct device *dev = &qm->pdev->dev;
1446 	void *xeqe;
1447 	u32 xeqe_id;
1448 	int ret;
1449 
1450 	if (!s)
1451 		return -EINVAL;
1452 
1453 	ret = kstrtou32(s, 0, &xeqe_id);
1454 	if (ret)
1455 		return -EINVAL;
1456 
1457 	if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) {
1458 		dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1);
1459 		return -EINVAL;
1460 	} else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) {
1461 		dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1);
1462 		return -EINVAL;
1463 	}
1464 
1465 	down_read(&qm->qps_lock);
1466 
1467 	if (qm->eqe && !strcmp(name, "EQE")) {
1468 		xeqe = qm->eqe + xeqe_id;
1469 	} else if (qm->aeqe && !strcmp(name, "AEQE")) {
1470 		xeqe = qm->aeqe + xeqe_id;
1471 	} else {
1472 		ret = -EINVAL;
1473 		goto err_unlock;
1474 	}
1475 
1476 	ret = dump_show(qm, xeqe, size, name);
1477 	if (ret)
1478 		dev_info(dev, "Show %s failed!\n", name);
1479 
1480 err_unlock:
1481 	up_read(&qm->qps_lock);
1482 	return ret;
1483 }
1484 
1485 static int qm_dbg_help(struct hisi_qm *qm, char *s)
1486 {
1487 	struct device *dev = &qm->pdev->dev;
1488 
1489 	if (strsep(&s, " ")) {
1490 		dev_err(dev, "Please do not input extra characters!\n");
1491 		return -EINVAL;
1492 	}
1493 
1494 	dev_info(dev, "available commands:\n");
1495 	dev_info(dev, "sqc <num>\n");
1496 	dev_info(dev, "cqc <num>\n");
1497 	dev_info(dev, "eqc\n");
1498 	dev_info(dev, "aeqc\n");
1499 	dev_info(dev, "sq <num> <e>\n");
1500 	dev_info(dev, "cq <num> <e>\n");
1501 	dev_info(dev, "eq <e>\n");
1502 	dev_info(dev, "aeq <e>\n");
1503 
1504 	return 0;
1505 }
1506 
1507 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf)
1508 {
1509 	struct device *dev = &qm->pdev->dev;
1510 	char *presult, *s, *s_tmp;
1511 	int ret;
1512 
1513 	s = kstrdup(cmd_buf, GFP_KERNEL);
1514 	if (!s)
1515 		return -ENOMEM;
1516 
1517 	s_tmp = s;
1518 	presult = strsep(&s, " ");
1519 	if (!presult) {
1520 		ret = -EINVAL;
1521 		goto err_buffer_free;
1522 	}
1523 
1524 	if (!strcmp(presult, "sqc"))
1525 		ret = qm_sqc_dump(qm, s);
1526 	else if (!strcmp(presult, "cqc"))
1527 		ret = qm_cqc_dump(qm, s);
1528 	else if (!strcmp(presult, "eqc"))
1529 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc),
1530 				       QM_MB_CMD_EQC, "EQC");
1531 	else if (!strcmp(presult, "aeqc"))
1532 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc),
1533 				       QM_MB_CMD_AEQC, "AEQC");
1534 	else if (!strcmp(presult, "sq"))
1535 		ret = qm_sq_dump(qm, s);
1536 	else if (!strcmp(presult, "cq"))
1537 		ret = qm_cq_dump(qm, s);
1538 	else if (!strcmp(presult, "eq"))
1539 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE");
1540 	else if (!strcmp(presult, "aeq"))
1541 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE");
1542 	else if (!strcmp(presult, "help"))
1543 		ret = qm_dbg_help(qm, s);
1544 	else
1545 		ret = -EINVAL;
1546 
1547 	if (ret)
1548 		dev_info(dev, "Please echo help\n");
1549 
1550 err_buffer_free:
1551 	kfree(s_tmp);
1552 
1553 	return ret;
1554 }
1555 
1556 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer,
1557 			    size_t count, loff_t *pos)
1558 {
1559 	struct hisi_qm *qm = filp->private_data;
1560 	char *cmd_buf, *cmd_buf_tmp;
1561 	int ret;
1562 
1563 	if (*pos)
1564 		return 0;
1565 
1566 	/* Judge if the instance is being reset. */
1567 	if (unlikely(atomic_read(&qm->status.flags) == QM_STOP))
1568 		return 0;
1569 
1570 	if (count > QM_DBG_WRITE_LEN)
1571 		return -ENOSPC;
1572 
1573 	cmd_buf = kzalloc(count + 1, GFP_KERNEL);
1574 	if (!cmd_buf)
1575 		return -ENOMEM;
1576 
1577 	if (copy_from_user(cmd_buf, buffer, count)) {
1578 		kfree(cmd_buf);
1579 		return -EFAULT;
1580 	}
1581 
1582 	cmd_buf[count] = '\0';
1583 
1584 	cmd_buf_tmp = strchr(cmd_buf, '\n');
1585 	if (cmd_buf_tmp) {
1586 		*cmd_buf_tmp = '\0';
1587 		count = cmd_buf_tmp - cmd_buf + 1;
1588 	}
1589 
1590 	ret = qm_cmd_write_dump(qm, cmd_buf);
1591 	if (ret) {
1592 		kfree(cmd_buf);
1593 		return ret;
1594 	}
1595 
1596 	kfree(cmd_buf);
1597 
1598 	return count;
1599 }
1600 
1601 static const struct file_operations qm_cmd_fops = {
1602 	.owner = THIS_MODULE,
1603 	.open = simple_open,
1604 	.read = qm_cmd_read,
1605 	.write = qm_cmd_write,
1606 };
1607 
1608 static void qm_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir,
1609 				   enum qm_debug_file index)
1610 {
1611 	struct debugfs_file *file = qm->debug.files + index;
1612 
1613 	debugfs_create_file(qm_debug_file_name[index], 0600, dir, file,
1614 			    &qm_debug_fops);
1615 
1616 	file->index = index;
1617 	mutex_init(&file->lock);
1618 	file->debug = &qm->debug;
1619 }
1620 
1621 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1622 {
1623 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1624 }
1625 
1626 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1627 {
1628 	u32 irq_enable = ce | nfe | fe;
1629 	u32 irq_unmask = ~irq_enable;
1630 
1631 	qm->error_mask = ce | nfe | fe;
1632 
1633 	/* clear QM hw residual error source */
1634 	writel(QM_ABNORMAL_INT_SOURCE_CLR,
1635 	       qm->io_base + QM_ABNORMAL_INT_SOURCE);
1636 
1637 	/* configure error type */
1638 	writel(ce, qm->io_base + QM_RAS_CE_ENABLE);
1639 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1640 	writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1641 	writel(fe, qm->io_base + QM_RAS_FE_ENABLE);
1642 
1643 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1644 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1645 }
1646 
1647 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1648 {
1649 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1650 }
1651 
1652 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1653 {
1654 	const struct hisi_qm_hw_error *err;
1655 	struct device *dev = &qm->pdev->dev;
1656 	u32 reg_val, type, vf_num;
1657 	int i;
1658 
1659 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1660 		err = &qm_hw_error[i];
1661 		if (!(err->int_msk & error_status))
1662 			continue;
1663 
1664 		dev_err(dev, "%s [error status=0x%x] found\n",
1665 			err->msg, err->int_msk);
1666 
1667 		if (err->int_msk & QM_DB_TIMEOUT) {
1668 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1669 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1670 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1671 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1672 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
1673 				qm_db_timeout[type], vf_num);
1674 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1675 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1676 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1677 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1678 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1679 
1680 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1681 				dev_err(dev, "qm %s fifo overflow in function %u\n",
1682 					qm_fifo_overflow[type], vf_num);
1683 			else
1684 				dev_err(dev, "unknown error type\n");
1685 		}
1686 	}
1687 }
1688 
1689 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1690 {
1691 	u32 error_status, tmp, val;
1692 
1693 	/* read err sts */
1694 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1695 	error_status = qm->error_mask & tmp;
1696 
1697 	if (error_status) {
1698 		if (error_status & QM_ECC_MBIT)
1699 			qm->err_status.is_qm_ecc_mbit = true;
1700 
1701 		qm_log_hw_error(qm, error_status);
1702 		val = error_status | QM_DB_RANDOM_INVALID | QM_BASE_CE;
1703 		/* ce error does not need to be reset */
1704 		if (val == (QM_DB_RANDOM_INVALID | QM_BASE_CE)) {
1705 			writel(error_status, qm->io_base +
1706 			       QM_ABNORMAL_INT_SOURCE);
1707 			writel(qm->err_info.nfe,
1708 			       qm->io_base + QM_RAS_NFE_ENABLE);
1709 			return ACC_ERR_RECOVERED;
1710 		}
1711 
1712 		return ACC_ERR_NEED_RESET;
1713 	}
1714 
1715 	return ACC_ERR_RECOVERED;
1716 }
1717 
1718 static int qm_stop_qp(struct hisi_qp *qp)
1719 {
1720 	return qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1721 }
1722 
1723 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1724 	.qm_db = qm_db_v1,
1725 	.get_irq_num = qm_get_irq_num_v1,
1726 	.hw_error_init = qm_hw_error_init_v1,
1727 };
1728 
1729 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1730 	.get_vft = qm_get_vft_v2,
1731 	.qm_db = qm_db_v2,
1732 	.get_irq_num = qm_get_irq_num_v2,
1733 	.hw_error_init = qm_hw_error_init_v2,
1734 	.hw_error_uninit = qm_hw_error_uninit_v2,
1735 	.hw_error_handle = qm_hw_error_handle_v2,
1736 };
1737 
1738 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1739 	.get_vft = qm_get_vft_v2,
1740 	.qm_db = qm_db_v2,
1741 	.get_irq_num = qm_get_irq_num_v2,
1742 	.hw_error_init = qm_hw_error_init_v2,
1743 	.hw_error_uninit = qm_hw_error_uninit_v2,
1744 	.hw_error_handle = qm_hw_error_handle_v2,
1745 	.stop_qp = qm_stop_qp,
1746 };
1747 
1748 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1749 {
1750 	struct hisi_qp_status *qp_status = &qp->qp_status;
1751 	u16 sq_tail = qp_status->sq_tail;
1752 
1753 	if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1))
1754 		return NULL;
1755 
1756 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1757 }
1758 
1759 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1760 {
1761 	struct device *dev = &qm->pdev->dev;
1762 	struct hisi_qp *qp;
1763 	int qp_id;
1764 
1765 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
1766 		return ERR_PTR(-EPERM);
1767 
1768 	if (qm->qp_in_used == qm->qp_num) {
1769 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1770 				     qm->qp_num);
1771 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1772 		return ERR_PTR(-EBUSY);
1773 	}
1774 
1775 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1776 	if (qp_id < 0) {
1777 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1778 				    qm->qp_num);
1779 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1780 		return ERR_PTR(-EBUSY);
1781 	}
1782 
1783 	qp = &qm->qp_array[qp_id];
1784 
1785 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH);
1786 
1787 	qp->event_cb = NULL;
1788 	qp->req_cb = NULL;
1789 	qp->qp_id = qp_id;
1790 	qp->alg_type = alg_type;
1791 	qp->is_in_kernel = true;
1792 	qm->qp_in_used++;
1793 	atomic_set(&qp->qp_status.flags, QP_INIT);
1794 
1795 	return qp;
1796 }
1797 
1798 /**
1799  * hisi_qm_create_qp() - Create a queue pair from qm.
1800  * @qm: The qm we create a qp from.
1801  * @alg_type: Accelerator specific algorithm type in sqc.
1802  *
1803  * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating
1804  * qp memory fails.
1805  */
1806 struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1807 {
1808 	struct hisi_qp *qp;
1809 
1810 	down_write(&qm->qps_lock);
1811 	qp = qm_create_qp_nolock(qm, alg_type);
1812 	up_write(&qm->qps_lock);
1813 
1814 	return qp;
1815 }
1816 EXPORT_SYMBOL_GPL(hisi_qm_create_qp);
1817 
1818 /**
1819  * hisi_qm_release_qp() - Release a qp back to its qm.
1820  * @qp: The qp we want to release.
1821  *
1822  * This function releases the resource of a qp.
1823  */
1824 void hisi_qm_release_qp(struct hisi_qp *qp)
1825 {
1826 	struct hisi_qm *qm = qp->qm;
1827 
1828 	down_write(&qm->qps_lock);
1829 
1830 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
1831 		up_write(&qm->qps_lock);
1832 		return;
1833 	}
1834 
1835 	qm->qp_in_used--;
1836 	idr_remove(&qm->qp_idr, qp->qp_id);
1837 
1838 	up_write(&qm->qps_lock);
1839 }
1840 EXPORT_SYMBOL_GPL(hisi_qm_release_qp);
1841 
1842 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1843 {
1844 	struct hisi_qm *qm = qp->qm;
1845 	struct device *dev = &qm->pdev->dev;
1846 	enum qm_hw_ver ver = qm->ver;
1847 	struct qm_sqc *sqc;
1848 	dma_addr_t sqc_dma;
1849 	int ret;
1850 
1851 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
1852 	if (!sqc)
1853 		return -ENOMEM;
1854 
1855 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
1856 	if (ver == QM_HW_V1) {
1857 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1858 		sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
1859 	} else {
1860 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size));
1861 		sqc->w8 = 0; /* rand_qc */
1862 	}
1863 	sqc->cq_num = cpu_to_le16(qp_id);
1864 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1865 
1866 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1867 		sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
1868 				       QM_QC_PASID_ENABLE_SHIFT);
1869 
1870 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
1871 				 DMA_TO_DEVICE);
1872 	if (dma_mapping_error(dev, sqc_dma)) {
1873 		kfree(sqc);
1874 		return -ENOMEM;
1875 	}
1876 
1877 	ret = qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
1878 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
1879 	kfree(sqc);
1880 
1881 	return ret;
1882 }
1883 
1884 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1885 {
1886 	struct hisi_qm *qm = qp->qm;
1887 	struct device *dev = &qm->pdev->dev;
1888 	enum qm_hw_ver ver = qm->ver;
1889 	struct qm_cqc *cqc;
1890 	dma_addr_t cqc_dma;
1891 	int ret;
1892 
1893 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
1894 	if (!cqc)
1895 		return -ENOMEM;
1896 
1897 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
1898 	if (ver == QM_HW_V1) {
1899 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
1900 							QM_QC_CQE_SIZE));
1901 		cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
1902 	} else {
1903 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE));
1904 		cqc->w8 = 0; /* rand_qc */
1905 	}
1906 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
1907 
1908 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1909 		cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
1910 
1911 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
1912 				 DMA_TO_DEVICE);
1913 	if (dma_mapping_error(dev, cqc_dma)) {
1914 		kfree(cqc);
1915 		return -ENOMEM;
1916 	}
1917 
1918 	ret = qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
1919 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
1920 	kfree(cqc);
1921 
1922 	return ret;
1923 }
1924 
1925 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1926 {
1927 	int ret;
1928 
1929 	qm_init_qp_status(qp);
1930 
1931 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
1932 	if (ret)
1933 		return ret;
1934 
1935 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
1936 }
1937 
1938 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
1939 {
1940 	struct hisi_qm *qm = qp->qm;
1941 	struct device *dev = &qm->pdev->dev;
1942 	int qp_id = qp->qp_id;
1943 	u32 pasid = arg;
1944 	int ret;
1945 
1946 	if (!qm_qp_avail_state(qm, qp, QP_START))
1947 		return -EPERM;
1948 
1949 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
1950 	if (ret)
1951 		return ret;
1952 
1953 	atomic_set(&qp->qp_status.flags, QP_START);
1954 	dev_dbg(dev, "queue %d started\n", qp_id);
1955 
1956 	return 0;
1957 }
1958 
1959 /**
1960  * hisi_qm_start_qp() - Start a qp into running.
1961  * @qp: The qp we want to start to run.
1962  * @arg: Accelerator specific argument.
1963  *
1964  * After this function, qp can receive request from user. Return 0 if
1965  * successful, Return -EBUSY if failed.
1966  */
1967 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
1968 {
1969 	struct hisi_qm *qm = qp->qm;
1970 	int ret;
1971 
1972 	down_write(&qm->qps_lock);
1973 	ret = qm_start_qp_nolock(qp, arg);
1974 	up_write(&qm->qps_lock);
1975 
1976 	return ret;
1977 }
1978 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
1979 
1980 /**
1981  * qp_stop_fail_cb() - call request cb.
1982  * @qp: stopped failed qp.
1983  *
1984  * Callback function should be called whether task completed or not.
1985  */
1986 static void qp_stop_fail_cb(struct hisi_qp *qp)
1987 {
1988 	int qp_used = atomic_read(&qp->qp_status.used);
1989 	u16 cur_tail = qp->qp_status.sq_tail;
1990 	u16 cur_head = (cur_tail + QM_Q_DEPTH - qp_used) % QM_Q_DEPTH;
1991 	struct hisi_qm *qm = qp->qm;
1992 	u16 pos;
1993 	int i;
1994 
1995 	for (i = 0; i < qp_used; i++) {
1996 		pos = (i + cur_head) % QM_Q_DEPTH;
1997 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
1998 		atomic_dec(&qp->qp_status.used);
1999 	}
2000 }
2001 
2002 /**
2003  * qm_drain_qp() - Drain a qp.
2004  * @qp: The qp we want to drain.
2005  *
2006  * Determine whether the queue is cleared by judging the tail pointers of
2007  * sq and cq.
2008  */
2009 static int qm_drain_qp(struct hisi_qp *qp)
2010 {
2011 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
2012 	struct hisi_qm *qm = qp->qm;
2013 	struct device *dev = &qm->pdev->dev;
2014 	struct qm_sqc *sqc;
2015 	struct qm_cqc *cqc;
2016 	dma_addr_t dma_addr;
2017 	int ret = 0, i = 0;
2018 	void *addr;
2019 
2020 	/*
2021 	 * No need to judge if ECC multi-bit error occurs because the
2022 	 * master OOO will be blocked.
2023 	 */
2024 	if (qm->err_status.is_qm_ecc_mbit || qm->err_status.is_dev_ecc_mbit)
2025 		return 0;
2026 
2027 	/* Kunpeng930 supports drain qp by device */
2028 	if (qm->ops->stop_qp) {
2029 		ret = qm->ops->stop_qp(qp);
2030 		if (ret)
2031 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
2032 		return ret;
2033 	}
2034 
2035 	addr = qm_ctx_alloc(qm, size, &dma_addr);
2036 	if (IS_ERR(addr)) {
2037 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
2038 		return -ENOMEM;
2039 	}
2040 
2041 	while (++i) {
2042 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
2043 		if (ret) {
2044 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2045 			break;
2046 		}
2047 		sqc = addr;
2048 
2049 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
2050 				      qp->qp_id);
2051 		if (ret) {
2052 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2053 			break;
2054 		}
2055 		cqc = addr + sizeof(struct qm_sqc);
2056 
2057 		if ((sqc->tail == cqc->tail) &&
2058 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2059 			break;
2060 
2061 		if (i == MAX_WAIT_COUNTS) {
2062 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
2063 			ret = -EBUSY;
2064 			break;
2065 		}
2066 
2067 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2068 	}
2069 
2070 	qm_ctx_free(qm, size, addr, &dma_addr);
2071 
2072 	return ret;
2073 }
2074 
2075 static int qm_stop_qp_nolock(struct hisi_qp *qp)
2076 {
2077 	struct device *dev = &qp->qm->pdev->dev;
2078 	int ret;
2079 
2080 	/*
2081 	 * It is allowed to stop and release qp when reset, If the qp is
2082 	 * stopped when reset but still want to be released then, the
2083 	 * is_resetting flag should be set negative so that this qp will not
2084 	 * be restarted after reset.
2085 	 */
2086 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
2087 		qp->is_resetting = false;
2088 		return 0;
2089 	}
2090 
2091 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
2092 		return -EPERM;
2093 
2094 	atomic_set(&qp->qp_status.flags, QP_STOP);
2095 
2096 	ret = qm_drain_qp(qp);
2097 	if (ret)
2098 		dev_err(dev, "Failed to drain out data for stopping!\n");
2099 
2100 	if (qp->qm->wq)
2101 		flush_workqueue(qp->qm->wq);
2102 	else
2103 		flush_work(&qp->qm->work);
2104 
2105 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2106 		qp_stop_fail_cb(qp);
2107 
2108 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2109 
2110 	return 0;
2111 }
2112 
2113 /**
2114  * hisi_qm_stop_qp() - Stop a qp in qm.
2115  * @qp: The qp we want to stop.
2116  *
2117  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
2118  */
2119 int hisi_qm_stop_qp(struct hisi_qp *qp)
2120 {
2121 	int ret;
2122 
2123 	down_write(&qp->qm->qps_lock);
2124 	ret = qm_stop_qp_nolock(qp);
2125 	up_write(&qp->qm->qps_lock);
2126 
2127 	return ret;
2128 }
2129 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2130 
2131 /**
2132  * hisi_qp_send() - Queue up a task in the hardware queue.
2133  * @qp: The qp in which to put the message.
2134  * @msg: The message.
2135  *
2136  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2137  * if qp related qm is resetting.
2138  *
2139  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2140  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2141  *       reset may happen, we have no lock here considering performance. This
2142  *       causes current qm_db sending fail or can not receive sended sqe. QM
2143  *       sync/async receive function should handle the error sqe. ACC reset
2144  *       done function should clear used sqe to 0.
2145  */
2146 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2147 {
2148 	struct hisi_qp_status *qp_status = &qp->qp_status;
2149 	u16 sq_tail = qp_status->sq_tail;
2150 	u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH;
2151 	void *sqe = qm_get_avail_sqe(qp);
2152 
2153 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2154 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2155 		     qp->is_resetting)) {
2156 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2157 		return -EAGAIN;
2158 	}
2159 
2160 	if (!sqe)
2161 		return -EBUSY;
2162 
2163 	memcpy(sqe, msg, qp->qm->sqe_size);
2164 
2165 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2166 	atomic_inc(&qp->qp_status.used);
2167 	qp_status->sq_tail = sq_tail_next;
2168 
2169 	return 0;
2170 }
2171 EXPORT_SYMBOL_GPL(hisi_qp_send);
2172 
2173 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2174 {
2175 	unsigned int val;
2176 
2177 	if (qm->ver == QM_HW_V1)
2178 		return;
2179 
2180 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2181 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2182 				       val, val & BIT(0), POLL_PERIOD,
2183 				       POLL_TIMEOUT))
2184 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2185 }
2186 
2187 static void qm_qp_event_notifier(struct hisi_qp *qp)
2188 {
2189 	wake_up_interruptible(&qp->uacce_q->wait);
2190 }
2191 
2192 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2193 {
2194 	return hisi_qm_get_free_qp_num(uacce->priv);
2195 }
2196 
2197 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2198 				   unsigned long arg,
2199 				   struct uacce_queue *q)
2200 {
2201 	struct hisi_qm *qm = uacce->priv;
2202 	struct hisi_qp *qp;
2203 	u8 alg_type = 0;
2204 
2205 	qp = hisi_qm_create_qp(qm, alg_type);
2206 	if (IS_ERR(qp))
2207 		return PTR_ERR(qp);
2208 
2209 	q->priv = qp;
2210 	q->uacce = uacce;
2211 	qp->uacce_q = q;
2212 	qp->event_cb = qm_qp_event_notifier;
2213 	qp->pasid = arg;
2214 	qp->is_in_kernel = false;
2215 
2216 	return 0;
2217 }
2218 
2219 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2220 {
2221 	struct hisi_qp *qp = q->priv;
2222 
2223 	hisi_qm_cache_wb(qp->qm);
2224 	hisi_qm_release_qp(qp);
2225 }
2226 
2227 /* map sq/cq/doorbell to user space */
2228 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2229 			      struct vm_area_struct *vma,
2230 			      struct uacce_qfile_region *qfr)
2231 {
2232 	struct hisi_qp *qp = q->priv;
2233 	struct hisi_qm *qm = qp->qm;
2234 	resource_size_t phys_base = qm->db_phys_base +
2235 				    qp->qp_id * qm->db_interval;
2236 	size_t sz = vma->vm_end - vma->vm_start;
2237 	struct pci_dev *pdev = qm->pdev;
2238 	struct device *dev = &pdev->dev;
2239 	unsigned long vm_pgoff;
2240 	int ret;
2241 
2242 	switch (qfr->type) {
2243 	case UACCE_QFRT_MMIO:
2244 		if (qm->ver == QM_HW_V1) {
2245 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2246 				return -EINVAL;
2247 		} else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) {
2248 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2249 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2250 				return -EINVAL;
2251 		} else {
2252 			if (sz > qm->db_interval)
2253 				return -EINVAL;
2254 		}
2255 
2256 		vma->vm_flags |= VM_IO;
2257 
2258 		return remap_pfn_range(vma, vma->vm_start,
2259 				       phys_base >> PAGE_SHIFT,
2260 				       sz, pgprot_noncached(vma->vm_page_prot));
2261 	case UACCE_QFRT_DUS:
2262 		if (sz != qp->qdma.size)
2263 			return -EINVAL;
2264 
2265 		/*
2266 		 * dma_mmap_coherent() requires vm_pgoff as 0
2267 		 * restore vm_pfoff to initial value for mmap()
2268 		 */
2269 		vm_pgoff = vma->vm_pgoff;
2270 		vma->vm_pgoff = 0;
2271 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2272 					qp->qdma.dma, sz);
2273 		vma->vm_pgoff = vm_pgoff;
2274 		return ret;
2275 
2276 	default:
2277 		return -EINVAL;
2278 	}
2279 }
2280 
2281 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2282 {
2283 	struct hisi_qp *qp = q->priv;
2284 
2285 	return hisi_qm_start_qp(qp, qp->pasid);
2286 }
2287 
2288 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2289 {
2290 	hisi_qm_stop_qp(q->priv);
2291 }
2292 
2293 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2294 {
2295 	struct hisi_qm *qm = q->uacce->priv;
2296 	struct hisi_qp *qp = q->priv;
2297 
2298 	down_write(&qm->qps_lock);
2299 	qp->alg_type = type;
2300 	up_write(&qm->qps_lock);
2301 }
2302 
2303 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2304 				unsigned long arg)
2305 {
2306 	struct hisi_qp *qp = q->priv;
2307 	struct hisi_qp_ctx qp_ctx;
2308 
2309 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2310 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2311 				   sizeof(struct hisi_qp_ctx)))
2312 			return -EFAULT;
2313 
2314 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2315 			return -EINVAL;
2316 
2317 		qm_set_sqctype(q, qp_ctx.qc_type);
2318 		qp_ctx.id = qp->qp_id;
2319 
2320 		if (copy_to_user((void __user *)arg, &qp_ctx,
2321 				 sizeof(struct hisi_qp_ctx)))
2322 			return -EFAULT;
2323 	} else {
2324 		return -EINVAL;
2325 	}
2326 
2327 	return 0;
2328 }
2329 
2330 static const struct uacce_ops uacce_qm_ops = {
2331 	.get_available_instances = hisi_qm_get_available_instances,
2332 	.get_queue = hisi_qm_uacce_get_queue,
2333 	.put_queue = hisi_qm_uacce_put_queue,
2334 	.start_queue = hisi_qm_uacce_start_queue,
2335 	.stop_queue = hisi_qm_uacce_stop_queue,
2336 	.mmap = hisi_qm_uacce_mmap,
2337 	.ioctl = hisi_qm_uacce_ioctl,
2338 };
2339 
2340 static int qm_alloc_uacce(struct hisi_qm *qm)
2341 {
2342 	struct pci_dev *pdev = qm->pdev;
2343 	struct uacce_device *uacce;
2344 	unsigned long mmio_page_nr;
2345 	unsigned long dus_page_nr;
2346 	struct uacce_interface interface = {
2347 		.flags = UACCE_DEV_SVA,
2348 		.ops = &uacce_qm_ops,
2349 	};
2350 	int ret;
2351 
2352 	ret = strscpy(interface.name, pdev->driver->name,
2353 		      sizeof(interface.name));
2354 	if (ret < 0)
2355 		return -ENAMETOOLONG;
2356 
2357 	uacce = uacce_alloc(&pdev->dev, &interface);
2358 	if (IS_ERR(uacce))
2359 		return PTR_ERR(uacce);
2360 
2361 	if (uacce->flags & UACCE_DEV_SVA && qm->mode == UACCE_MODE_SVA) {
2362 		qm->use_sva = true;
2363 	} else {
2364 		/* only consider sva case */
2365 		uacce_remove(uacce);
2366 		qm->uacce = NULL;
2367 		return -EINVAL;
2368 	}
2369 
2370 	uacce->is_vf = pdev->is_virtfn;
2371 	uacce->priv = qm;
2372 	uacce->algs = qm->algs;
2373 
2374 	if (qm->ver == QM_HW_V1)
2375 		uacce->api_ver = HISI_QM_API_VER_BASE;
2376 	else if (qm->ver == QM_HW_V2)
2377 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2378 	else
2379 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2380 
2381 	if (qm->ver == QM_HW_V1)
2382 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2383 	else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation)
2384 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2385 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2386 	else
2387 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2388 
2389 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH +
2390 		       sizeof(struct qm_cqe) * QM_Q_DEPTH) >> PAGE_SHIFT;
2391 
2392 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2393 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2394 
2395 	qm->uacce = uacce;
2396 
2397 	return 0;
2398 }
2399 
2400 /**
2401  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2402  * there is user on the QM, return failure without doing anything.
2403  * @qm: The qm needed to be fronzen.
2404  *
2405  * This function frozes QM, then we can do SRIOV disabling.
2406  */
2407 static int qm_frozen(struct hisi_qm *qm)
2408 {
2409 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2410 		return 0;
2411 
2412 	down_write(&qm->qps_lock);
2413 
2414 	if (!qm->qp_in_used) {
2415 		qm->qp_in_used = qm->qp_num;
2416 		up_write(&qm->qps_lock);
2417 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2418 		return 0;
2419 	}
2420 
2421 	up_write(&qm->qps_lock);
2422 
2423 	return -EBUSY;
2424 }
2425 
2426 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2427 			     struct hisi_qm_list *qm_list)
2428 {
2429 	struct hisi_qm *qm, *vf_qm;
2430 	struct pci_dev *dev;
2431 	int ret = 0;
2432 
2433 	if (!qm_list || !pdev)
2434 		return -EINVAL;
2435 
2436 	/* Try to frozen all the VFs as disable SRIOV */
2437 	mutex_lock(&qm_list->lock);
2438 	list_for_each_entry(qm, &qm_list->list, list) {
2439 		dev = qm->pdev;
2440 		if (dev == pdev)
2441 			continue;
2442 		if (pci_physfn(dev) == pdev) {
2443 			vf_qm = pci_get_drvdata(dev);
2444 			ret = qm_frozen(vf_qm);
2445 			if (ret)
2446 				goto frozen_fail;
2447 		}
2448 	}
2449 
2450 frozen_fail:
2451 	mutex_unlock(&qm_list->lock);
2452 
2453 	return ret;
2454 }
2455 
2456 /**
2457  * hisi_qm_wait_task_finish() - Wait until the task is finished
2458  * when removing the driver.
2459  * @qm: The qm needed to wait for the task to finish.
2460  * @qm_list: The list of all available devices.
2461  */
2462 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2463 {
2464 	while (qm_frozen(qm) ||
2465 	       ((qm->fun_type == QM_HW_PF) &&
2466 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2467 		msleep(WAIT_PERIOD);
2468 	}
2469 
2470 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2471 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2472 		msleep(WAIT_PERIOD);
2473 
2474 	udelay(REMOVE_WAIT_DELAY);
2475 }
2476 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2477 
2478 /**
2479  * hisi_qm_get_free_qp_num() - Get free number of qp in qm.
2480  * @qm: The qm which want to get free qp.
2481  *
2482  * This function return free number of qp in qm.
2483  */
2484 int hisi_qm_get_free_qp_num(struct hisi_qm *qm)
2485 {
2486 	int ret;
2487 
2488 	down_read(&qm->qps_lock);
2489 	ret = qm->qp_num - qm->qp_in_used;
2490 	up_read(&qm->qps_lock);
2491 
2492 	return ret;
2493 }
2494 EXPORT_SYMBOL_GPL(hisi_qm_get_free_qp_num);
2495 
2496 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2497 {
2498 	struct device *dev = &qm->pdev->dev;
2499 	struct qm_dma *qdma;
2500 	int i;
2501 
2502 	for (i = num - 1; i >= 0; i--) {
2503 		qdma = &qm->qp_array[i].qdma;
2504 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2505 	}
2506 
2507 	kfree(qm->qp_array);
2508 }
2509 
2510 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id)
2511 {
2512 	struct device *dev = &qm->pdev->dev;
2513 	size_t off = qm->sqe_size * QM_Q_DEPTH;
2514 	struct hisi_qp *qp;
2515 
2516 	qp = &qm->qp_array[id];
2517 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2518 					 GFP_KERNEL);
2519 	if (!qp->qdma.va)
2520 		return -ENOMEM;
2521 
2522 	qp->sqe = qp->qdma.va;
2523 	qp->sqe_dma = qp->qdma.dma;
2524 	qp->cqe = qp->qdma.va + off;
2525 	qp->cqe_dma = qp->qdma.dma + off;
2526 	qp->qdma.size = dma_size;
2527 	qp->qm = qm;
2528 	qp->qp_id = id;
2529 
2530 	return 0;
2531 }
2532 
2533 static int hisi_qm_memory_init(struct hisi_qm *qm)
2534 {
2535 	struct device *dev = &qm->pdev->dev;
2536 	size_t qp_dma_size, off = 0;
2537 	int i, ret = 0;
2538 
2539 #define QM_INIT_BUF(qm, type, num) do { \
2540 	(qm)->type = ((qm)->qdma.va + (off)); \
2541 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
2542 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
2543 } while (0)
2544 
2545 	idr_init(&qm->qp_idr);
2546 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) +
2547 			QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) +
2548 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
2549 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
2550 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
2551 					 GFP_ATOMIC);
2552 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
2553 	if (!qm->qdma.va)
2554 		return -ENOMEM;
2555 
2556 	QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH);
2557 	QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH);
2558 	QM_INIT_BUF(qm, sqc, qm->qp_num);
2559 	QM_INIT_BUF(qm, cqc, qm->qp_num);
2560 
2561 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
2562 	if (!qm->qp_array) {
2563 		ret = -ENOMEM;
2564 		goto err_alloc_qp_array;
2565 	}
2566 
2567 	/* one more page for device or qp statuses */
2568 	qp_dma_size = qm->sqe_size * QM_Q_DEPTH +
2569 		      sizeof(struct qm_cqe) * QM_Q_DEPTH;
2570 	qp_dma_size = PAGE_ALIGN(qp_dma_size);
2571 	for (i = 0; i < qm->qp_num; i++) {
2572 		ret = hisi_qp_memory_init(qm, qp_dma_size, i);
2573 		if (ret)
2574 			goto err_init_qp_mem;
2575 
2576 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
2577 	}
2578 
2579 	return ret;
2580 
2581 err_init_qp_mem:
2582 	hisi_qp_memory_uninit(qm, i);
2583 err_alloc_qp_array:
2584 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
2585 
2586 	return ret;
2587 }
2588 
2589 static void hisi_qm_pre_init(struct hisi_qm *qm)
2590 {
2591 	struct pci_dev *pdev = qm->pdev;
2592 
2593 	if (qm->ver == QM_HW_V1)
2594 		qm->ops = &qm_hw_ops_v1;
2595 	else if (qm->ver == QM_HW_V2)
2596 		qm->ops = &qm_hw_ops_v2;
2597 	else
2598 		qm->ops = &qm_hw_ops_v3;
2599 
2600 	pci_set_drvdata(pdev, qm);
2601 	mutex_init(&qm->mailbox_lock);
2602 	init_rwsem(&qm->qps_lock);
2603 	qm->qp_in_used = 0;
2604 	qm->misc_ctl = false;
2605 }
2606 
2607 static void qm_put_pci_res(struct hisi_qm *qm)
2608 {
2609 	struct pci_dev *pdev = qm->pdev;
2610 
2611 	if (qm->use_db_isolation)
2612 		iounmap(qm->db_io_base);
2613 
2614 	iounmap(qm->io_base);
2615 	pci_release_mem_regions(pdev);
2616 }
2617 
2618 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
2619 {
2620 	struct pci_dev *pdev = qm->pdev;
2621 
2622 	pci_free_irq_vectors(pdev);
2623 	qm_put_pci_res(qm);
2624 	pci_disable_device(pdev);
2625 }
2626 
2627 /**
2628  * hisi_qm_uninit() - Uninitialize qm.
2629  * @qm: The qm needed uninit.
2630  *
2631  * This function uninits qm related device resources.
2632  */
2633 void hisi_qm_uninit(struct hisi_qm *qm)
2634 {
2635 	struct pci_dev *pdev = qm->pdev;
2636 	struct device *dev = &pdev->dev;
2637 
2638 	down_write(&qm->qps_lock);
2639 
2640 	if (!qm_avail_state(qm, QM_CLOSE)) {
2641 		up_write(&qm->qps_lock);
2642 		return;
2643 	}
2644 
2645 	hisi_qp_memory_uninit(qm, qm->qp_num);
2646 	idr_destroy(&qm->qp_idr);
2647 
2648 	if (qm->qdma.va) {
2649 		hisi_qm_cache_wb(qm);
2650 		dma_free_coherent(dev, qm->qdma.size,
2651 				  qm->qdma.va, qm->qdma.dma);
2652 	}
2653 
2654 	qm_irq_unregister(qm);
2655 	hisi_qm_pci_uninit(qm);
2656 	uacce_remove(qm->uacce);
2657 	qm->uacce = NULL;
2658 
2659 	up_write(&qm->qps_lock);
2660 }
2661 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2662 
2663 /**
2664  * hisi_qm_get_vft() - Get vft from a qm.
2665  * @qm: The qm we want to get its vft.
2666  * @base: The base number of queue in vft.
2667  * @number: The number of queues in vft.
2668  *
2669  * We can allocate multiple queues to a qm by configuring virtual function
2670  * table. We get related configures by this function. Normally, we call this
2671  * function in VF driver to get the queue information.
2672  *
2673  * qm hw v1 does not support this interface.
2674  */
2675 int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2676 {
2677 	if (!base || !number)
2678 		return -EINVAL;
2679 
2680 	if (!qm->ops->get_vft) {
2681 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2682 		return -EINVAL;
2683 	}
2684 
2685 	return qm->ops->get_vft(qm, base, number);
2686 }
2687 EXPORT_SYMBOL_GPL(hisi_qm_get_vft);
2688 
2689 /**
2690  * hisi_qm_set_vft() - Set vft to a qm.
2691  * @qm: The qm we want to set its vft.
2692  * @fun_num: The function number.
2693  * @base: The base number of queue in vft.
2694  * @number: The number of queues in vft.
2695  *
2696  * This function is alway called in PF driver, it is used to assign queues
2697  * among PF and VFs.
2698  *
2699  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2700  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2701  * (VF function number 0x2)
2702  */
2703 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2704 		    u32 number)
2705 {
2706 	u32 max_q_num = qm->ctrl_qp_num;
2707 
2708 	if (base >= max_q_num || number > max_q_num ||
2709 	    (base + number) > max_q_num)
2710 		return -EINVAL;
2711 
2712 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2713 }
2714 
2715 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2716 {
2717 	struct hisi_qm_status *status = &qm->status;
2718 
2719 	status->eq_head = 0;
2720 	status->aeq_head = 0;
2721 	status->eqc_phase = true;
2722 	status->aeqc_phase = true;
2723 }
2724 
2725 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
2726 {
2727 	struct device *dev = &qm->pdev->dev;
2728 	struct qm_eqc *eqc;
2729 	dma_addr_t eqc_dma;
2730 	int ret;
2731 
2732 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
2733 	if (!eqc)
2734 		return -ENOMEM;
2735 
2736 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
2737 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
2738 	if (qm->ver == QM_HW_V1)
2739 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
2740 	eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
2741 
2742 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
2743 				 DMA_TO_DEVICE);
2744 	if (dma_mapping_error(dev, eqc_dma)) {
2745 		kfree(eqc);
2746 		return -ENOMEM;
2747 	}
2748 
2749 	ret = qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
2750 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
2751 	kfree(eqc);
2752 
2753 	return ret;
2754 }
2755 
2756 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
2757 {
2758 	struct device *dev = &qm->pdev->dev;
2759 	struct qm_aeqc *aeqc;
2760 	dma_addr_t aeqc_dma;
2761 	int ret;
2762 
2763 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
2764 	if (!aeqc)
2765 		return -ENOMEM;
2766 
2767 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
2768 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
2769 	aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
2770 
2771 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
2772 				  DMA_TO_DEVICE);
2773 	if (dma_mapping_error(dev, aeqc_dma)) {
2774 		kfree(aeqc);
2775 		return -ENOMEM;
2776 	}
2777 
2778 	ret = qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
2779 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
2780 	kfree(aeqc);
2781 
2782 	return ret;
2783 }
2784 
2785 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
2786 {
2787 	struct device *dev = &qm->pdev->dev;
2788 	int ret;
2789 
2790 	qm_init_eq_aeq_status(qm);
2791 
2792 	ret = qm_eq_ctx_cfg(qm);
2793 	if (ret) {
2794 		dev_err(dev, "Set eqc failed!\n");
2795 		return ret;
2796 	}
2797 
2798 	return qm_aeq_ctx_cfg(qm);
2799 }
2800 
2801 static int __hisi_qm_start(struct hisi_qm *qm)
2802 {
2803 	int ret;
2804 
2805 	WARN_ON(!qm->qdma.va);
2806 
2807 	if (qm->fun_type == QM_HW_PF) {
2808 		ret = qm_dev_mem_reset(qm);
2809 		if (ret)
2810 			return ret;
2811 
2812 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
2813 		if (ret)
2814 			return ret;
2815 	}
2816 
2817 	ret = qm_eq_aeq_ctx_cfg(qm);
2818 	if (ret)
2819 		return ret;
2820 
2821 	ret = qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
2822 	if (ret)
2823 		return ret;
2824 
2825 	ret = qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
2826 	if (ret)
2827 		return ret;
2828 
2829 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
2830 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
2831 
2832 	return 0;
2833 }
2834 
2835 /**
2836  * hisi_qm_start() - start qm
2837  * @qm: The qm to be started.
2838  *
2839  * This function starts a qm, then we can allocate qp from this qm.
2840  */
2841 int hisi_qm_start(struct hisi_qm *qm)
2842 {
2843 	struct device *dev = &qm->pdev->dev;
2844 	int ret = 0;
2845 
2846 	down_write(&qm->qps_lock);
2847 
2848 	if (!qm_avail_state(qm, QM_START)) {
2849 		up_write(&qm->qps_lock);
2850 		return -EPERM;
2851 	}
2852 
2853 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
2854 
2855 	if (!qm->qp_num) {
2856 		dev_err(dev, "qp_num should not be 0\n");
2857 		ret = -EINVAL;
2858 		goto err_unlock;
2859 	}
2860 
2861 	ret = __hisi_qm_start(qm);
2862 	if (!ret)
2863 		atomic_set(&qm->status.flags, QM_START);
2864 
2865 err_unlock:
2866 	up_write(&qm->qps_lock);
2867 	return ret;
2868 }
2869 EXPORT_SYMBOL_GPL(hisi_qm_start);
2870 
2871 static int qm_restart(struct hisi_qm *qm)
2872 {
2873 	struct device *dev = &qm->pdev->dev;
2874 	struct hisi_qp *qp;
2875 	int ret, i;
2876 
2877 	ret = hisi_qm_start(qm);
2878 	if (ret < 0)
2879 		return ret;
2880 
2881 	down_write(&qm->qps_lock);
2882 	for (i = 0; i < qm->qp_num; i++) {
2883 		qp = &qm->qp_array[i];
2884 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
2885 		    qp->is_resetting == true) {
2886 			ret = qm_start_qp_nolock(qp, 0);
2887 			if (ret < 0) {
2888 				dev_err(dev, "Failed to start qp%d!\n", i);
2889 
2890 				up_write(&qm->qps_lock);
2891 				return ret;
2892 			}
2893 			qp->is_resetting = false;
2894 		}
2895 	}
2896 	up_write(&qm->qps_lock);
2897 
2898 	return 0;
2899 }
2900 
2901 /* Stop started qps in reset flow */
2902 static int qm_stop_started_qp(struct hisi_qm *qm)
2903 {
2904 	struct device *dev = &qm->pdev->dev;
2905 	struct hisi_qp *qp;
2906 	int i, ret;
2907 
2908 	for (i = 0; i < qm->qp_num; i++) {
2909 		qp = &qm->qp_array[i];
2910 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
2911 			qp->is_resetting = true;
2912 			ret = qm_stop_qp_nolock(qp);
2913 			if (ret < 0) {
2914 				dev_err(dev, "Failed to stop qp%d!\n", i);
2915 				return ret;
2916 			}
2917 		}
2918 	}
2919 
2920 	return 0;
2921 }
2922 
2923 
2924 /**
2925  * qm_clear_queues() - Clear all queues memory in a qm.
2926  * @qm: The qm in which the queues will be cleared.
2927  *
2928  * This function clears all queues memory in a qm. Reset of accelerator can
2929  * use this to clear queues.
2930  */
2931 static void qm_clear_queues(struct hisi_qm *qm)
2932 {
2933 	struct hisi_qp *qp;
2934 	int i;
2935 
2936 	for (i = 0; i < qm->qp_num; i++) {
2937 		qp = &qm->qp_array[i];
2938 		if (qp->is_resetting)
2939 			memset(qp->qdma.va, 0, qp->qdma.size);
2940 	}
2941 
2942 	memset(qm->qdma.va, 0, qm->qdma.size);
2943 }
2944 
2945 /**
2946  * hisi_qm_stop() - Stop a qm.
2947  * @qm: The qm which will be stopped.
2948  * @r: The reason to stop qm.
2949  *
2950  * This function stops qm and its qps, then qm can not accept request.
2951  * Related resources are not released at this state, we can use hisi_qm_start
2952  * to let qm start again.
2953  */
2954 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
2955 {
2956 	struct device *dev = &qm->pdev->dev;
2957 	int ret = 0;
2958 
2959 	down_write(&qm->qps_lock);
2960 
2961 	qm->status.stop_reason = r;
2962 	if (!qm_avail_state(qm, QM_STOP)) {
2963 		ret = -EPERM;
2964 		goto err_unlock;
2965 	}
2966 
2967 	if (qm->status.stop_reason == QM_SOFT_RESET ||
2968 	    qm->status.stop_reason == QM_FLR) {
2969 		ret = qm_stop_started_qp(qm);
2970 		if (ret < 0) {
2971 			dev_err(dev, "Failed to stop started qp!\n");
2972 			goto err_unlock;
2973 		}
2974 	}
2975 
2976 	/* Mask eq and aeq irq */
2977 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
2978 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
2979 
2980 	if (qm->fun_type == QM_HW_PF) {
2981 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
2982 		if (ret < 0) {
2983 			dev_err(dev, "Failed to set vft!\n");
2984 			ret = -EBUSY;
2985 			goto err_unlock;
2986 		}
2987 	}
2988 
2989 	qm_clear_queues(qm);
2990 	atomic_set(&qm->status.flags, QM_STOP);
2991 
2992 err_unlock:
2993 	up_write(&qm->qps_lock);
2994 	return ret;
2995 }
2996 EXPORT_SYMBOL_GPL(hisi_qm_stop);
2997 
2998 static ssize_t qm_status_read(struct file *filp, char __user *buffer,
2999 			      size_t count, loff_t *pos)
3000 {
3001 	struct hisi_qm *qm = filp->private_data;
3002 	char buf[QM_DBG_READ_LEN];
3003 	int val, len;
3004 
3005 	val = atomic_read(&qm->status.flags);
3006 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]);
3007 
3008 	return simple_read_from_buffer(buffer, count, pos, buf, len);
3009 }
3010 
3011 static const struct file_operations qm_status_fops = {
3012 	.owner = THIS_MODULE,
3013 	.open = simple_open,
3014 	.read = qm_status_read,
3015 };
3016 
3017 static int qm_debugfs_atomic64_set(void *data, u64 val)
3018 {
3019 	if (val)
3020 		return -EINVAL;
3021 
3022 	atomic64_set((atomic64_t *)data, 0);
3023 
3024 	return 0;
3025 }
3026 
3027 static int qm_debugfs_atomic64_get(void *data, u64 *val)
3028 {
3029 	*val = atomic64_read((atomic64_t *)data);
3030 
3031 	return 0;
3032 }
3033 
3034 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get,
3035 			 qm_debugfs_atomic64_set, "%llu\n");
3036 
3037 /**
3038  * hisi_qm_debug_init() - Initialize qm related debugfs files.
3039  * @qm: The qm for which we want to add debugfs files.
3040  *
3041  * Create qm related debugfs files.
3042  */
3043 void hisi_qm_debug_init(struct hisi_qm *qm)
3044 {
3045 	struct qm_dfx *dfx = &qm->debug.dfx;
3046 	struct dentry *qm_d;
3047 	void *data;
3048 	int i;
3049 
3050 	qm_d = debugfs_create_dir("qm", qm->debug.debug_root);
3051 	qm->debug.qm_d = qm_d;
3052 
3053 	/* only show this in PF */
3054 	if (qm->fun_type == QM_HW_PF) {
3055 		qm_create_debugfs_file(qm, qm->debug.debug_root, CURRENT_QM);
3056 		for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++)
3057 			qm_create_debugfs_file(qm, qm_d, i);
3058 	}
3059 
3060 	debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops);
3061 
3062 	debugfs_create_file("cmd", 0444, qm->debug.qm_d, qm, &qm_cmd_fops);
3063 
3064 	debugfs_create_file("status", 0444, qm->debug.qm_d, qm,
3065 			&qm_status_fops);
3066 	for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) {
3067 		data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset);
3068 		debugfs_create_file(qm_dfx_files[i].name,
3069 			0644,
3070 			qm_d,
3071 			data,
3072 			&qm_atomic64_ops);
3073 	}
3074 }
3075 EXPORT_SYMBOL_GPL(hisi_qm_debug_init);
3076 
3077 /**
3078  * hisi_qm_debug_regs_clear() - clear qm debug related registers.
3079  * @qm: The qm for which we want to clear its debug registers.
3080  */
3081 void hisi_qm_debug_regs_clear(struct hisi_qm *qm)
3082 {
3083 	struct qm_dfx_registers *regs;
3084 	int i;
3085 
3086 	/* clear current_qm */
3087 	writel(0x0, qm->io_base + QM_DFX_MB_CNT_VF);
3088 	writel(0x0, qm->io_base + QM_DFX_DB_CNT_VF);
3089 
3090 	/* clear current_q */
3091 	writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
3092 	writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
3093 
3094 	/*
3095 	 * these registers are reading and clearing, so clear them after
3096 	 * reading them.
3097 	 */
3098 	writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE);
3099 
3100 	regs = qm_dfx_regs;
3101 	for (i = 0; i < CNT_CYC_REGS_NUM; i++) {
3102 		readl(qm->io_base + regs->reg_offset);
3103 		regs++;
3104 	}
3105 
3106 	writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE);
3107 }
3108 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear);
3109 
3110 static void qm_hw_error_init(struct hisi_qm *qm)
3111 {
3112 	struct hisi_qm_err_info *err_info = &qm->err_info;
3113 
3114 	if (!qm->ops->hw_error_init) {
3115 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3116 		return;
3117 	}
3118 
3119 	qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe);
3120 }
3121 
3122 static void qm_hw_error_uninit(struct hisi_qm *qm)
3123 {
3124 	if (!qm->ops->hw_error_uninit) {
3125 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3126 		return;
3127 	}
3128 
3129 	qm->ops->hw_error_uninit(qm);
3130 }
3131 
3132 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3133 {
3134 	if (!qm->ops->hw_error_handle) {
3135 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3136 		return ACC_ERR_NONE;
3137 	}
3138 
3139 	return qm->ops->hw_error_handle(qm);
3140 }
3141 
3142 /**
3143  * hisi_qm_dev_err_init() - Initialize device error configuration.
3144  * @qm: The qm for which we want to do error initialization.
3145  *
3146  * Initialize QM and device error related configuration.
3147  */
3148 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3149 {
3150 	if (qm->fun_type == QM_HW_VF)
3151 		return;
3152 
3153 	qm_hw_error_init(qm);
3154 
3155 	if (!qm->err_ini->hw_err_enable) {
3156 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3157 		return;
3158 	}
3159 	qm->err_ini->hw_err_enable(qm);
3160 }
3161 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3162 
3163 /**
3164  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3165  * @qm: The qm for which we want to do error uninitialization.
3166  *
3167  * Uninitialize QM and device error related configuration.
3168  */
3169 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3170 {
3171 	if (qm->fun_type == QM_HW_VF)
3172 		return;
3173 
3174 	qm_hw_error_uninit(qm);
3175 
3176 	if (!qm->err_ini->hw_err_disable) {
3177 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3178 		return;
3179 	}
3180 	qm->err_ini->hw_err_disable(qm);
3181 }
3182 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3183 
3184 /**
3185  * hisi_qm_free_qps() - free multiple queue pairs.
3186  * @qps: The queue pairs need to be freed.
3187  * @qp_num: The num of queue pairs.
3188  */
3189 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3190 {
3191 	int i;
3192 
3193 	if (!qps || qp_num <= 0)
3194 		return;
3195 
3196 	for (i = qp_num - 1; i >= 0; i--)
3197 		hisi_qm_release_qp(qps[i]);
3198 }
3199 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3200 
3201 static void free_list(struct list_head *head)
3202 {
3203 	struct hisi_qm_resource *res, *tmp;
3204 
3205 	list_for_each_entry_safe(res, tmp, head, list) {
3206 		list_del(&res->list);
3207 		kfree(res);
3208 	}
3209 }
3210 
3211 static int hisi_qm_sort_devices(int node, struct list_head *head,
3212 				struct hisi_qm_list *qm_list)
3213 {
3214 	struct hisi_qm_resource *res, *tmp;
3215 	struct hisi_qm *qm;
3216 	struct list_head *n;
3217 	struct device *dev;
3218 	int dev_node = 0;
3219 
3220 	list_for_each_entry(qm, &qm_list->list, list) {
3221 		dev = &qm->pdev->dev;
3222 
3223 		if (IS_ENABLED(CONFIG_NUMA)) {
3224 			dev_node = dev_to_node(dev);
3225 			if (dev_node < 0)
3226 				dev_node = 0;
3227 		}
3228 
3229 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3230 		if (!res)
3231 			return -ENOMEM;
3232 
3233 		res->qm = qm;
3234 		res->distance = node_distance(dev_node, node);
3235 		n = head;
3236 		list_for_each_entry(tmp, head, list) {
3237 			if (res->distance < tmp->distance) {
3238 				n = &tmp->list;
3239 				break;
3240 			}
3241 		}
3242 		list_add_tail(&res->list, n);
3243 	}
3244 
3245 	return 0;
3246 }
3247 
3248 /**
3249  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3250  * @qm_list: The list of all available devices.
3251  * @qp_num: The number of queue pairs need created.
3252  * @alg_type: The algorithm type.
3253  * @node: The numa node.
3254  * @qps: The queue pairs need created.
3255  *
3256  * This function will sort all available device according to numa distance.
3257  * Then try to create all queue pairs from one device, if all devices do
3258  * not meet the requirements will return error.
3259  */
3260 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3261 			   u8 alg_type, int node, struct hisi_qp **qps)
3262 {
3263 	struct hisi_qm_resource *tmp;
3264 	int ret = -ENODEV;
3265 	LIST_HEAD(head);
3266 	int i;
3267 
3268 	if (!qps || !qm_list || qp_num <= 0)
3269 		return -EINVAL;
3270 
3271 	mutex_lock(&qm_list->lock);
3272 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3273 		mutex_unlock(&qm_list->lock);
3274 		goto err;
3275 	}
3276 
3277 	list_for_each_entry(tmp, &head, list) {
3278 		for (i = 0; i < qp_num; i++) {
3279 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3280 			if (IS_ERR(qps[i])) {
3281 				hisi_qm_free_qps(qps, i);
3282 				break;
3283 			}
3284 		}
3285 
3286 		if (i == qp_num) {
3287 			ret = 0;
3288 			break;
3289 		}
3290 	}
3291 
3292 	mutex_unlock(&qm_list->lock);
3293 	if (ret)
3294 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3295 			node, alg_type, qp_num);
3296 
3297 err:
3298 	free_list(&head);
3299 	return ret;
3300 }
3301 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3302 
3303 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3304 {
3305 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3306 	u32 max_qp_num = qm->max_qp_num;
3307 	u32 q_base = qm->qp_num;
3308 	int ret;
3309 
3310 	if (!num_vfs)
3311 		return -EINVAL;
3312 
3313 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3314 
3315 	/* If vfs_q_num is less than num_vfs, return error. */
3316 	if (vfs_q_num < num_vfs)
3317 		return -EINVAL;
3318 
3319 	q_num = vfs_q_num / num_vfs;
3320 	remain_q_num = vfs_q_num % num_vfs;
3321 
3322 	for (i = num_vfs; i > 0; i--) {
3323 		/*
3324 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3325 		 * remaining queues equally.
3326 		 */
3327 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3328 			act_q_num = q_num + remain_q_num;
3329 			remain_q_num = 0;
3330 		} else if (remain_q_num > 0) {
3331 			act_q_num = q_num + 1;
3332 			remain_q_num--;
3333 		} else {
3334 			act_q_num = q_num;
3335 		}
3336 
3337 		act_q_num = min_t(int, act_q_num, max_qp_num);
3338 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3339 		if (ret) {
3340 			for (j = num_vfs; j > i; j--)
3341 				hisi_qm_set_vft(qm, j, 0, 0);
3342 			return ret;
3343 		}
3344 		q_base += act_q_num;
3345 	}
3346 
3347 	return 0;
3348 }
3349 
3350 static int qm_clear_vft_config(struct hisi_qm *qm)
3351 {
3352 	int ret;
3353 	u32 i;
3354 
3355 	for (i = 1; i <= qm->vfs_num; i++) {
3356 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3357 		if (ret)
3358 			return ret;
3359 	}
3360 	qm->vfs_num = 0;
3361 
3362 	return 0;
3363 }
3364 
3365 /**
3366  * hisi_qm_sriov_enable() - enable virtual functions
3367  * @pdev: the PCIe device
3368  * @max_vfs: the number of virtual functions to enable
3369  *
3370  * Returns the number of enabled VFs. If there are VFs enabled already or
3371  * max_vfs is more than the total number of device can be enabled, returns
3372  * failure.
3373  */
3374 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3375 {
3376 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3377 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3378 
3379 	total_vfs = pci_sriov_get_totalvfs(pdev);
3380 	pre_existing_vfs = pci_num_vf(pdev);
3381 	if (pre_existing_vfs) {
3382 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3383 			pre_existing_vfs);
3384 		return 0;
3385 	}
3386 
3387 	num_vfs = min_t(int, max_vfs, total_vfs);
3388 	ret = qm_vf_q_assign(qm, num_vfs);
3389 	if (ret) {
3390 		pci_err(pdev, "Can't assign queues for VF!\n");
3391 		return ret;
3392 	}
3393 
3394 	qm->vfs_num = num_vfs;
3395 
3396 	ret = pci_enable_sriov(pdev, num_vfs);
3397 	if (ret) {
3398 		pci_err(pdev, "Can't enable VF!\n");
3399 		qm_clear_vft_config(qm);
3400 		return ret;
3401 	}
3402 
3403 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3404 
3405 	return num_vfs;
3406 }
3407 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3408 
3409 /**
3410  * hisi_qm_sriov_disable - disable virtual functions
3411  * @pdev: the PCI device.
3412  * @is_frozen: true when all the VFs are frozen.
3413  *
3414  * Return failure if there are VFs assigned already or VF is in used.
3415  */
3416 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3417 {
3418 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3419 
3420 	if (pci_vfs_assigned(pdev)) {
3421 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3422 		return -EPERM;
3423 	}
3424 
3425 	/* While VF is in used, SRIOV cannot be disabled. */
3426 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3427 		pci_err(pdev, "Task is using its VF!\n");
3428 		return -EBUSY;
3429 	}
3430 
3431 	pci_disable_sriov(pdev);
3432 	return qm_clear_vft_config(qm);
3433 }
3434 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3435 
3436 /**
3437  * hisi_qm_sriov_configure - configure the number of VFs
3438  * @pdev: The PCI device
3439  * @num_vfs: The number of VFs need enabled
3440  *
3441  * Enable SR-IOV according to num_vfs, 0 means disable.
3442  */
3443 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3444 {
3445 	if (num_vfs == 0)
3446 		return hisi_qm_sriov_disable(pdev, false);
3447 	else
3448 		return hisi_qm_sriov_enable(pdev, num_vfs);
3449 }
3450 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3451 
3452 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3453 {
3454 	u32 err_sts;
3455 
3456 	if (!qm->err_ini->get_dev_hw_err_status) {
3457 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3458 		return ACC_ERR_NONE;
3459 	}
3460 
3461 	/* get device hardware error status */
3462 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3463 	if (err_sts) {
3464 		if (err_sts & qm->err_info.ecc_2bits_mask)
3465 			qm->err_status.is_dev_ecc_mbit = true;
3466 
3467 		if (qm->err_ini->log_dev_hw_err)
3468 			qm->err_ini->log_dev_hw_err(qm, err_sts);
3469 
3470 		/* ce error does not need to be reset */
3471 		if ((err_sts | qm->err_info.dev_ce_mask) ==
3472 		     qm->err_info.dev_ce_mask) {
3473 			if (qm->err_ini->clear_dev_hw_err_status)
3474 				qm->err_ini->clear_dev_hw_err_status(qm,
3475 								err_sts);
3476 
3477 			return ACC_ERR_RECOVERED;
3478 		}
3479 
3480 		return ACC_ERR_NEED_RESET;
3481 	}
3482 
3483 	return ACC_ERR_RECOVERED;
3484 }
3485 
3486 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3487 {
3488 	enum acc_err_result qm_ret, dev_ret;
3489 
3490 	/* log qm error */
3491 	qm_ret = qm_hw_error_handle(qm);
3492 
3493 	/* log device error */
3494 	dev_ret = qm_dev_err_handle(qm);
3495 
3496 	return (qm_ret == ACC_ERR_NEED_RESET ||
3497 		dev_ret == ACC_ERR_NEED_RESET) ?
3498 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3499 }
3500 
3501 /**
3502  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3503  * @pdev: The PCI device which need report error.
3504  * @state: The connectivity between CPU and device.
3505  *
3506  * We register this function into PCIe AER handlers, It will report device or
3507  * qm hardware error status when error occur.
3508  */
3509 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3510 					  pci_channel_state_t state)
3511 {
3512 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3513 	enum acc_err_result ret;
3514 
3515 	if (pdev->is_virtfn)
3516 		return PCI_ERS_RESULT_NONE;
3517 
3518 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
3519 	if (state == pci_channel_io_perm_failure)
3520 		return PCI_ERS_RESULT_DISCONNECT;
3521 
3522 	ret = qm_process_dev_error(qm);
3523 	if (ret == ACC_ERR_NEED_RESET)
3524 		return PCI_ERS_RESULT_NEED_RESET;
3525 
3526 	return PCI_ERS_RESULT_RECOVERED;
3527 }
3528 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3529 
3530 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
3531 {
3532 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
3533 }
3534 
3535 static int qm_check_req_recv(struct hisi_qm *qm)
3536 {
3537 	struct pci_dev *pdev = qm->pdev;
3538 	int ret;
3539 	u32 val;
3540 
3541 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
3542 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3543 					 (val == ACC_VENDOR_ID_VALUE),
3544 					 POLL_PERIOD, POLL_TIMEOUT);
3545 	if (ret) {
3546 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
3547 		return ret;
3548 	}
3549 
3550 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
3551 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3552 					 (val == PCI_VENDOR_ID_HUAWEI),
3553 					 POLL_PERIOD, POLL_TIMEOUT);
3554 	if (ret)
3555 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
3556 
3557 	return ret;
3558 }
3559 
3560 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
3561 {
3562 	struct pci_dev *pdev = qm->pdev;
3563 	u16 cmd;
3564 	int i;
3565 
3566 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3567 	if (set)
3568 		cmd |= PCI_COMMAND_MEMORY;
3569 	else
3570 		cmd &= ~PCI_COMMAND_MEMORY;
3571 
3572 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
3573 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3574 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3575 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
3576 			return 0;
3577 
3578 		udelay(1);
3579 	}
3580 
3581 	return -ETIMEDOUT;
3582 }
3583 
3584 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
3585 {
3586 	struct pci_dev *pdev = qm->pdev;
3587 	u16 sriov_ctrl;
3588 	int pos;
3589 	int i;
3590 
3591 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3592 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3593 	if (set)
3594 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
3595 	else
3596 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
3597 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
3598 
3599 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3600 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3601 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
3602 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
3603 			return 0;
3604 
3605 		udelay(1);
3606 	}
3607 
3608 	return -ETIMEDOUT;
3609 }
3610 
3611 static int qm_set_msi(struct hisi_qm *qm, bool set)
3612 {
3613 	struct pci_dev *pdev = qm->pdev;
3614 
3615 	if (set) {
3616 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
3617 				       0);
3618 	} else {
3619 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
3620 				       ACC_PEH_MSI_DISABLE);
3621 		if (qm->err_status.is_qm_ecc_mbit ||
3622 		    qm->err_status.is_dev_ecc_mbit)
3623 			return 0;
3624 
3625 		mdelay(1);
3626 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
3627 			return -EFAULT;
3628 	}
3629 
3630 	return 0;
3631 }
3632 
3633 static int qm_vf_reset_prepare(struct hisi_qm *qm,
3634 			       enum qm_stop_reason stop_reason)
3635 {
3636 	struct hisi_qm_list *qm_list = qm->qm_list;
3637 	struct pci_dev *pdev = qm->pdev;
3638 	struct pci_dev *virtfn;
3639 	struct hisi_qm *vf_qm;
3640 	int ret = 0;
3641 
3642 	mutex_lock(&qm_list->lock);
3643 	list_for_each_entry(vf_qm, &qm_list->list, list) {
3644 		virtfn = vf_qm->pdev;
3645 		if (virtfn == pdev)
3646 			continue;
3647 
3648 		if (pci_physfn(virtfn) == pdev) {
3649 			/* save VFs PCIE BAR configuration */
3650 			pci_save_state(virtfn);
3651 
3652 			ret = hisi_qm_stop(vf_qm, stop_reason);
3653 			if (ret)
3654 				goto stop_fail;
3655 		}
3656 	}
3657 
3658 stop_fail:
3659 	mutex_unlock(&qm_list->lock);
3660 	return ret;
3661 }
3662 
3663 static int qm_reset_prepare_ready(struct hisi_qm *qm)
3664 {
3665 	struct pci_dev *pdev = qm->pdev;
3666 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3667 	int delay = 0;
3668 
3669 	/* All reset requests need to be queued for processing */
3670 	while (test_and_set_bit(QM_RESETTING, &pf_qm->misc_ctl)) {
3671 		msleep(++delay);
3672 		if (delay > QM_RESET_WAIT_TIMEOUT)
3673 			return -EBUSY;
3674 	}
3675 
3676 	return 0;
3677 }
3678 
3679 static int qm_controller_reset_prepare(struct hisi_qm *qm)
3680 {
3681 	struct pci_dev *pdev = qm->pdev;
3682 	int ret;
3683 
3684 	ret = qm_reset_prepare_ready(qm);
3685 	if (ret) {
3686 		pci_err(pdev, "Controller reset not ready!\n");
3687 		return ret;
3688 	}
3689 
3690 	if (qm->vfs_num) {
3691 		ret = qm_vf_reset_prepare(qm, QM_SOFT_RESET);
3692 		if (ret) {
3693 			pci_err(pdev, "Fails to stop VFs!\n");
3694 			clear_bit(QM_RESETTING, &qm->misc_ctl);
3695 			return ret;
3696 		}
3697 	}
3698 
3699 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
3700 	if (ret) {
3701 		pci_err(pdev, "Fails to stop QM!\n");
3702 		clear_bit(QM_RESETTING, &qm->misc_ctl);
3703 		return ret;
3704 	}
3705 
3706 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
3707 
3708 	return 0;
3709 }
3710 
3711 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
3712 {
3713 	u32 nfe_enb = 0;
3714 
3715 	if (!qm->err_status.is_dev_ecc_mbit &&
3716 	    qm->err_status.is_qm_ecc_mbit &&
3717 	    qm->err_ini->close_axi_master_ooo) {
3718 
3719 		qm->err_ini->close_axi_master_ooo(qm);
3720 
3721 	} else if (qm->err_status.is_dev_ecc_mbit &&
3722 		   !qm->err_status.is_qm_ecc_mbit &&
3723 		   !qm->err_ini->close_axi_master_ooo) {
3724 
3725 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
3726 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
3727 		       qm->io_base + QM_RAS_NFE_ENABLE);
3728 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
3729 	}
3730 }
3731 
3732 static int qm_soft_reset(struct hisi_qm *qm)
3733 {
3734 	struct pci_dev *pdev = qm->pdev;
3735 	int ret;
3736 	u32 val;
3737 
3738 	/* Ensure all doorbells and mailboxes received by QM */
3739 	ret = qm_check_req_recv(qm);
3740 	if (ret)
3741 		return ret;
3742 
3743 	if (qm->vfs_num) {
3744 		ret = qm_set_vf_mse(qm, false);
3745 		if (ret) {
3746 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
3747 			return ret;
3748 		}
3749 	}
3750 
3751 	ret = qm_set_msi(qm, false);
3752 	if (ret) {
3753 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
3754 		return ret;
3755 	}
3756 
3757 	qm_dev_ecc_mbit_handle(qm);
3758 
3759 	/* OOO register set and check */
3760 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
3761 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
3762 
3763 	/* If bus lock, reset chip */
3764 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
3765 					 val,
3766 					 (val == ACC_MASTER_TRANS_RETURN_RW),
3767 					 POLL_PERIOD, POLL_TIMEOUT);
3768 	if (ret) {
3769 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
3770 		return ret;
3771 	}
3772 
3773 	ret = qm_set_pf_mse(qm, false);
3774 	if (ret) {
3775 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
3776 		return ret;
3777 	}
3778 
3779 	/* The reset related sub-control registers are not in PCI BAR */
3780 	if (ACPI_HANDLE(&pdev->dev)) {
3781 		unsigned long long value = 0;
3782 		acpi_status s;
3783 
3784 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
3785 					  qm->err_info.acpi_rst,
3786 					  NULL, &value);
3787 		if (ACPI_FAILURE(s)) {
3788 			pci_err(pdev, "NO controller reset method!\n");
3789 			return -EIO;
3790 		}
3791 
3792 		if (value) {
3793 			pci_err(pdev, "Reset step %llu failed!\n", value);
3794 			return -EIO;
3795 		}
3796 	} else {
3797 		pci_err(pdev, "No reset method!\n");
3798 		return -EINVAL;
3799 	}
3800 
3801 	return 0;
3802 }
3803 
3804 static int qm_vf_reset_done(struct hisi_qm *qm)
3805 {
3806 	struct hisi_qm_list *qm_list = qm->qm_list;
3807 	struct pci_dev *pdev = qm->pdev;
3808 	struct pci_dev *virtfn;
3809 	struct hisi_qm *vf_qm;
3810 	int ret = 0;
3811 
3812 	mutex_lock(&qm_list->lock);
3813 	list_for_each_entry(vf_qm, &qm_list->list, list) {
3814 		virtfn = vf_qm->pdev;
3815 		if (virtfn == pdev)
3816 			continue;
3817 
3818 		if (pci_physfn(virtfn) == pdev) {
3819 			/* enable VFs PCIE BAR configuration */
3820 			pci_restore_state(virtfn);
3821 
3822 			ret = qm_restart(vf_qm);
3823 			if (ret)
3824 				goto restart_fail;
3825 		}
3826 	}
3827 
3828 restart_fail:
3829 	mutex_unlock(&qm_list->lock);
3830 	return ret;
3831 }
3832 
3833 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
3834 {
3835 	return qm->err_ini->get_dev_hw_err_status(qm);
3836 }
3837 
3838 static int qm_dev_hw_init(struct hisi_qm *qm)
3839 {
3840 	return qm->err_ini->hw_init(qm);
3841 }
3842 
3843 static void qm_restart_prepare(struct hisi_qm *qm)
3844 {
3845 	u32 value;
3846 
3847 	if (!qm->err_status.is_qm_ecc_mbit &&
3848 	    !qm->err_status.is_dev_ecc_mbit)
3849 		return;
3850 
3851 	/* temporarily close the OOO port used for PEH to write out MSI */
3852 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3853 	writel(value & ~qm->err_info.msi_wr_port,
3854 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3855 
3856 	/* clear dev ecc 2bit error source if having */
3857 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
3858 	if (value && qm->err_ini->clear_dev_hw_err_status)
3859 		qm->err_ini->clear_dev_hw_err_status(qm, value);
3860 
3861 	/* clear QM ecc mbit error source */
3862 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
3863 
3864 	/* clear AM Reorder Buffer ecc mbit source */
3865 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
3866 
3867 	if (qm->err_ini->open_axi_master_ooo)
3868 		qm->err_ini->open_axi_master_ooo(qm);
3869 }
3870 
3871 static void qm_restart_done(struct hisi_qm *qm)
3872 {
3873 	u32 value;
3874 
3875 	if (!qm->err_status.is_qm_ecc_mbit &&
3876 	    !qm->err_status.is_dev_ecc_mbit)
3877 		return;
3878 
3879 	/* open the OOO port for PEH to write out MSI */
3880 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3881 	value |= qm->err_info.msi_wr_port;
3882 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3883 
3884 	qm->err_status.is_qm_ecc_mbit = false;
3885 	qm->err_status.is_dev_ecc_mbit = false;
3886 }
3887 
3888 static int qm_controller_reset_done(struct hisi_qm *qm)
3889 {
3890 	struct pci_dev *pdev = qm->pdev;
3891 	int ret;
3892 
3893 	ret = qm_set_msi(qm, true);
3894 	if (ret) {
3895 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
3896 		return ret;
3897 	}
3898 
3899 	ret = qm_set_pf_mse(qm, true);
3900 	if (ret) {
3901 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
3902 		return ret;
3903 	}
3904 
3905 	if (qm->vfs_num) {
3906 		ret = qm_set_vf_mse(qm, true);
3907 		if (ret) {
3908 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
3909 			return ret;
3910 		}
3911 	}
3912 
3913 	ret = qm_dev_hw_init(qm);
3914 	if (ret) {
3915 		pci_err(pdev, "Failed to init device\n");
3916 		return ret;
3917 	}
3918 
3919 	qm_restart_prepare(qm);
3920 
3921 	ret = qm_restart(qm);
3922 	if (ret) {
3923 		pci_err(pdev, "Failed to start QM!\n");
3924 		return ret;
3925 	}
3926 
3927 	if (qm->vfs_num) {
3928 		ret = qm_vf_q_assign(qm, qm->vfs_num);
3929 		if (ret) {
3930 			pci_err(pdev, "Failed to assign queue!\n");
3931 			return ret;
3932 		}
3933 	}
3934 
3935 	ret = qm_vf_reset_done(qm);
3936 	if (ret) {
3937 		pci_err(pdev, "Failed to start VFs!\n");
3938 		return -EPERM;
3939 	}
3940 
3941 	hisi_qm_dev_err_init(qm);
3942 	qm_restart_done(qm);
3943 
3944 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3945 
3946 	return 0;
3947 }
3948 
3949 static int qm_controller_reset(struct hisi_qm *qm)
3950 {
3951 	struct pci_dev *pdev = qm->pdev;
3952 	int ret;
3953 
3954 	pci_info(pdev, "Controller resetting...\n");
3955 
3956 	ret = qm_controller_reset_prepare(qm);
3957 	if (ret) {
3958 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
3959 		return ret;
3960 	}
3961 
3962 	ret = qm_soft_reset(qm);
3963 	if (ret) {
3964 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
3965 		clear_bit(QM_RESETTING, &qm->misc_ctl);
3966 		return ret;
3967 	}
3968 
3969 	ret = qm_controller_reset_done(qm);
3970 	if (ret) {
3971 		clear_bit(QM_RESETTING, &qm->misc_ctl);
3972 		return ret;
3973 	}
3974 
3975 	pci_info(pdev, "Controller reset complete\n");
3976 
3977 	return 0;
3978 }
3979 
3980 /**
3981  * hisi_qm_dev_slot_reset() - slot reset
3982  * @pdev: the PCIe device
3983  *
3984  * This function offers QM relate PCIe device reset interface. Drivers which
3985  * use QM can use this function as slot_reset in its struct pci_error_handlers.
3986  */
3987 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
3988 {
3989 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3990 	int ret;
3991 
3992 	if (pdev->is_virtfn)
3993 		return PCI_ERS_RESULT_RECOVERED;
3994 
3995 	pci_aer_clear_nonfatal_status(pdev);
3996 
3997 	/* reset pcie device controller */
3998 	ret = qm_controller_reset(qm);
3999 	if (ret) {
4000 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4001 		return PCI_ERS_RESULT_DISCONNECT;
4002 	}
4003 
4004 	return PCI_ERS_RESULT_RECOVERED;
4005 }
4006 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4007 
4008 /* check the interrupt is ecc-mbit error or not */
4009 static int qm_check_dev_error(struct hisi_qm *qm)
4010 {
4011 	int ret;
4012 
4013 	if (qm->fun_type == QM_HW_VF)
4014 		return 0;
4015 
4016 	ret = qm_get_hw_error_status(qm) & QM_ECC_MBIT;
4017 	if (ret)
4018 		return ret;
4019 
4020 	return (qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask);
4021 }
4022 
4023 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4024 {
4025 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4026 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4027 	u32 delay = 0;
4028 	int ret;
4029 
4030 	hisi_qm_dev_err_uninit(pf_qm);
4031 
4032 	/*
4033 	 * Check whether there is an ECC mbit error, If it occurs, need to
4034 	 * wait for soft reset to fix it.
4035 	 */
4036 	while (qm_check_dev_error(pf_qm)) {
4037 		msleep(++delay);
4038 		if (delay > QM_RESET_WAIT_TIMEOUT)
4039 			return;
4040 	}
4041 
4042 	ret = qm_reset_prepare_ready(qm);
4043 	if (ret) {
4044 		pci_err(pdev, "FLR not ready!\n");
4045 		return;
4046 	}
4047 
4048 	if (qm->vfs_num) {
4049 		ret = qm_vf_reset_prepare(qm, QM_FLR);
4050 		if (ret) {
4051 			pci_err(pdev, "Failed to prepare reset, ret = %d.\n",
4052 				ret);
4053 			return;
4054 		}
4055 	}
4056 
4057 	ret = hisi_qm_stop(qm, QM_FLR);
4058 	if (ret) {
4059 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4060 		return;
4061 	}
4062 
4063 	pci_info(pdev, "FLR resetting...\n");
4064 }
4065 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4066 
4067 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4068 {
4069 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4070 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4071 	u32 id;
4072 
4073 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4074 	if (id == QM_PCI_COMMAND_INVALID) {
4075 		pci_err(pdev, "Device can not be used!\n");
4076 		return false;
4077 	}
4078 
4079 	return true;
4080 }
4081 
4082 void hisi_qm_reset_done(struct pci_dev *pdev)
4083 {
4084 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4085 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4086 	int ret;
4087 
4088 	hisi_qm_dev_err_init(pf_qm);
4089 
4090 	ret = qm_restart(qm);
4091 	if (ret) {
4092 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4093 		goto flr_done;
4094 	}
4095 
4096 	if (qm->fun_type == QM_HW_PF) {
4097 		ret = qm_dev_hw_init(qm);
4098 		if (ret) {
4099 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4100 			goto flr_done;
4101 		}
4102 
4103 		if (!qm->vfs_num)
4104 			goto flr_done;
4105 
4106 		ret = qm_vf_q_assign(qm, qm->vfs_num);
4107 		if (ret) {
4108 			pci_err(pdev, "Failed to assign VFs, ret = %d.\n", ret);
4109 			goto flr_done;
4110 		}
4111 
4112 		ret = qm_vf_reset_done(qm);
4113 		if (ret) {
4114 			pci_err(pdev, "Failed to start VFs, ret = %d.\n", ret);
4115 			goto flr_done;
4116 		}
4117 	}
4118 
4119 flr_done:
4120 	if (qm_flr_reset_complete(pdev))
4121 		pci_info(pdev, "FLR reset complete\n");
4122 
4123 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4124 }
4125 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4126 
4127 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4128 {
4129 	struct hisi_qm *qm = data;
4130 	enum acc_err_result ret;
4131 
4132 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4133 	ret = qm_process_dev_error(qm);
4134 	if (ret == ACC_ERR_NEED_RESET &&
4135 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4136 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4137 		schedule_work(&qm->rst_work);
4138 
4139 	return IRQ_HANDLED;
4140 }
4141 
4142 static int qm_irq_register(struct hisi_qm *qm)
4143 {
4144 	struct pci_dev *pdev = qm->pdev;
4145 	int ret;
4146 
4147 	ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR),
4148 			  qm_irq, 0, qm->dev_name, qm);
4149 	if (ret)
4150 		return ret;
4151 
4152 	if (qm->ver != QM_HW_V1) {
4153 		ret = request_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR),
4154 				  qm_aeq_irq, 0, qm->dev_name, qm);
4155 		if (ret)
4156 			goto err_aeq_irq;
4157 
4158 		if (qm->fun_type == QM_HW_PF) {
4159 			ret = request_irq(pci_irq_vector(pdev,
4160 					  QM_ABNORMAL_EVENT_IRQ_VECTOR),
4161 					  qm_abnormal_irq, 0, qm->dev_name, qm);
4162 			if (ret)
4163 				goto err_abonormal_irq;
4164 		}
4165 	}
4166 
4167 	return 0;
4168 
4169 err_abonormal_irq:
4170 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
4171 err_aeq_irq:
4172 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
4173 	return ret;
4174 }
4175 
4176 /**
4177  * hisi_qm_dev_shutdown() - Shutdown device.
4178  * @pdev: The device will be shutdown.
4179  *
4180  * This function will stop qm when OS shutdown or rebooting.
4181  */
4182 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4183 {
4184 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4185 	int ret;
4186 
4187 	ret = hisi_qm_stop(qm, QM_NORMAL);
4188 	if (ret)
4189 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4190 }
4191 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4192 
4193 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4194 {
4195 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4196 	int ret;
4197 
4198 	/* reset pcie device controller */
4199 	ret = qm_controller_reset(qm);
4200 	if (ret)
4201 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4202 
4203 }
4204 
4205 /**
4206  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
4207  * @qm: The qm needs add.
4208  * @qm_list: The qm list.
4209  *
4210  * This function adds qm to qm list, and will register algorithm to
4211  * crypto when the qm list is empty.
4212  */
4213 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4214 {
4215 	int flag = 0;
4216 	int ret = 0;
4217 	/* HW V2 not support both use uacce sva mode and hardware crypto algs */
4218 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4219 		return 0;
4220 
4221 	mutex_lock(&qm_list->lock);
4222 	if (list_empty(&qm_list->list))
4223 		flag = 1;
4224 	list_add_tail(&qm->list, &qm_list->list);
4225 	mutex_unlock(&qm_list->lock);
4226 
4227 	if (flag) {
4228 		ret = qm_list->register_to_crypto(qm);
4229 		if (ret) {
4230 			mutex_lock(&qm_list->lock);
4231 			list_del(&qm->list);
4232 			mutex_unlock(&qm_list->lock);
4233 		}
4234 	}
4235 
4236 	return ret;
4237 }
4238 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4239 
4240 /**
4241  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
4242  * qm list.
4243  * @qm: The qm needs delete.
4244  * @qm_list: The qm list.
4245  *
4246  * This function deletes qm from qm list, and will unregister algorithm
4247  * from crypto when the qm list is empty.
4248  */
4249 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4250 {
4251 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4252 		return;
4253 
4254 	mutex_lock(&qm_list->lock);
4255 	list_del(&qm->list);
4256 	mutex_unlock(&qm_list->lock);
4257 
4258 	if (list_empty(&qm_list->list))
4259 		qm_list->unregister_from_crypto(qm);
4260 }
4261 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
4262 
4263 static int qm_get_qp_num(struct hisi_qm *qm)
4264 {
4265 	if (qm->ver == QM_HW_V1)
4266 		qm->ctrl_qp_num = QM_QNUM_V1;
4267 	else if (qm->ver == QM_HW_V2)
4268 		qm->ctrl_qp_num = QM_QNUM_V2;
4269 	else
4270 		qm->ctrl_qp_num = readl(qm->io_base + QM_CAPBILITY) &
4271 					QM_QP_NUN_MASK;
4272 
4273 	if (qm->use_db_isolation)
4274 		qm->max_qp_num = (readl(qm->io_base + QM_CAPBILITY) >>
4275 				  QM_QP_MAX_NUM_SHIFT) & QM_QP_NUN_MASK;
4276 	else
4277 		qm->max_qp_num = qm->ctrl_qp_num;
4278 
4279 	/* check if qp number is valid */
4280 	if (qm->qp_num > qm->max_qp_num) {
4281 		dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n",
4282 			qm->qp_num, qm->max_qp_num);
4283 		return -EINVAL;
4284 	}
4285 
4286 	return 0;
4287 }
4288 
4289 static int qm_get_pci_res(struct hisi_qm *qm)
4290 {
4291 	struct pci_dev *pdev = qm->pdev;
4292 	struct device *dev = &pdev->dev;
4293 	int ret;
4294 
4295 	ret = pci_request_mem_regions(pdev, qm->dev_name);
4296 	if (ret < 0) {
4297 		dev_err(dev, "Failed to request mem regions!\n");
4298 		return ret;
4299 	}
4300 
4301 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
4302 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
4303 	if (!qm->io_base) {
4304 		ret = -EIO;
4305 		goto err_request_mem_regions;
4306 	}
4307 
4308 	if (qm->ver > QM_HW_V2) {
4309 		if (qm->fun_type == QM_HW_PF)
4310 			qm->use_db_isolation = readl(qm->io_base +
4311 						     QM_QUE_ISO_EN) & BIT(0);
4312 		else
4313 			qm->use_db_isolation = readl(qm->io_base +
4314 						     QM_QUE_ISO_CFG_V) & BIT(0);
4315 	}
4316 
4317 	if (qm->use_db_isolation) {
4318 		qm->db_interval = QM_QP_DB_INTERVAL;
4319 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
4320 		qm->db_io_base = ioremap(qm->db_phys_base,
4321 					 pci_resource_len(pdev, PCI_BAR_4));
4322 		if (!qm->db_io_base) {
4323 			ret = -EIO;
4324 			goto err_ioremap;
4325 		}
4326 	} else {
4327 		qm->db_phys_base = qm->phys_base;
4328 		qm->db_io_base = qm->io_base;
4329 		qm->db_interval = 0;
4330 	}
4331 
4332 	if (qm->fun_type == QM_HW_PF) {
4333 		ret = qm_get_qp_num(qm);
4334 		if (ret)
4335 			goto err_db_ioremap;
4336 	}
4337 
4338 	return 0;
4339 
4340 err_db_ioremap:
4341 	if (qm->use_db_isolation)
4342 		iounmap(qm->db_io_base);
4343 err_ioremap:
4344 	iounmap(qm->io_base);
4345 err_request_mem_regions:
4346 	pci_release_mem_regions(pdev);
4347 	return ret;
4348 }
4349 
4350 static int hisi_qm_pci_init(struct hisi_qm *qm)
4351 {
4352 	struct pci_dev *pdev = qm->pdev;
4353 	struct device *dev = &pdev->dev;
4354 	unsigned int num_vec;
4355 	int ret;
4356 
4357 	ret = pci_enable_device_mem(pdev);
4358 	if (ret < 0) {
4359 		dev_err(dev, "Failed to enable device mem!\n");
4360 		return ret;
4361 	}
4362 
4363 	ret = qm_get_pci_res(qm);
4364 	if (ret)
4365 		goto err_disable_pcidev;
4366 
4367 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4368 	if (ret < 0)
4369 		goto err_get_pci_res;
4370 	pci_set_master(pdev);
4371 
4372 	if (!qm->ops->get_irq_num) {
4373 		ret = -EOPNOTSUPP;
4374 		goto err_get_pci_res;
4375 	}
4376 	num_vec = qm->ops->get_irq_num(qm);
4377 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
4378 	if (ret < 0) {
4379 		dev_err(dev, "Failed to enable MSI vectors!\n");
4380 		goto err_get_pci_res;
4381 	}
4382 
4383 	return 0;
4384 
4385 err_get_pci_res:
4386 	qm_put_pci_res(qm);
4387 err_disable_pcidev:
4388 	pci_disable_device(pdev);
4389 	return ret;
4390 }
4391 
4392 /**
4393  * hisi_qm_init() - Initialize configures about qm.
4394  * @qm: The qm needing init.
4395  *
4396  * This function init qm, then we can call hisi_qm_start to put qm into work.
4397  */
4398 int hisi_qm_init(struct hisi_qm *qm)
4399 {
4400 	struct pci_dev *pdev = qm->pdev;
4401 	struct device *dev = &pdev->dev;
4402 	int ret;
4403 
4404 	hisi_qm_pre_init(qm);
4405 
4406 	ret = hisi_qm_pci_init(qm);
4407 	if (ret)
4408 		return ret;
4409 
4410 	ret = qm_irq_register(qm);
4411 	if (ret)
4412 		goto err_pci_init;
4413 
4414 	if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) {
4415 		/* v2 starts to support get vft by mailbox */
4416 		ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
4417 		if (ret)
4418 			goto err_irq_register;
4419 	}
4420 
4421 	ret = qm_alloc_uacce(qm);
4422 	if (ret < 0)
4423 		dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
4424 
4425 	ret = hisi_qm_memory_init(qm);
4426 	if (ret)
4427 		goto err_alloc_uacce;
4428 
4429 	INIT_WORK(&qm->work, qm_work_process);
4430 	if (qm->fun_type == QM_HW_PF)
4431 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
4432 
4433 	atomic_set(&qm->status.flags, QM_INIT);
4434 
4435 	return 0;
4436 
4437 err_alloc_uacce:
4438 	uacce_remove(qm->uacce);
4439 	qm->uacce = NULL;
4440 err_irq_register:
4441 	qm_irq_unregister(qm);
4442 err_pci_init:
4443 	hisi_qm_pci_uninit(qm);
4444 	return ret;
4445 }
4446 EXPORT_SYMBOL_GPL(hisi_qm_init);
4447 
4448 MODULE_LICENSE("GPL v2");
4449 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
4450 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
4451