1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/aer.h> 6 #include <linux/bitmap.h> 7 #include <linux/debugfs.h> 8 #include <linux/dma-mapping.h> 9 #include <linux/idr.h> 10 #include <linux/io.h> 11 #include <linux/irqreturn.h> 12 #include <linux/log2.h> 13 #include <linux/seq_file.h> 14 #include <linux/slab.h> 15 #include <linux/uacce.h> 16 #include <linux/uaccess.h> 17 #include <uapi/misc/uacce/hisi_qm.h> 18 #include "qm.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 #define QM_IRQ_NUM_V1 1 26 #define QM_IRQ_NUM_PF_V2 4 27 #define QM_IRQ_NUM_VF_V2 2 28 29 #define QM_EQ_EVENT_IRQ_VECTOR 0 30 #define QM_AEQ_EVENT_IRQ_VECTOR 1 31 #define QM_ABNORMAL_EVENT_IRQ_VECTOR 3 32 33 /* mailbox */ 34 #define QM_MB_CMD_SQC 0x0 35 #define QM_MB_CMD_CQC 0x1 36 #define QM_MB_CMD_EQC 0x2 37 #define QM_MB_CMD_AEQC 0x3 38 #define QM_MB_CMD_SQC_BT 0x4 39 #define QM_MB_CMD_CQC_BT 0x5 40 #define QM_MB_CMD_SQC_VFT_V2 0x6 41 #define QM_MB_CMD_STOP_QP 0x8 42 43 #define QM_MB_CMD_SEND_BASE 0x300 44 #define QM_MB_EVENT_SHIFT 8 45 #define QM_MB_BUSY_SHIFT 13 46 #define QM_MB_OP_SHIFT 14 47 #define QM_MB_CMD_DATA_ADDR_L 0x304 48 #define QM_MB_CMD_DATA_ADDR_H 0x308 49 50 /* sqc shift */ 51 #define QM_SQ_HOP_NUM_SHIFT 0 52 #define QM_SQ_PAGE_SIZE_SHIFT 4 53 #define QM_SQ_BUF_SIZE_SHIFT 8 54 #define QM_SQ_SQE_SIZE_SHIFT 12 55 #define QM_SQ_PRIORITY_SHIFT 0 56 #define QM_SQ_ORDERS_SHIFT 4 57 #define QM_SQ_TYPE_SHIFT 8 58 #define QM_QC_PASID_ENABLE 0x1 59 #define QM_QC_PASID_ENABLE_SHIFT 7 60 61 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 62 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) 63 64 /* cqc shift */ 65 #define QM_CQ_HOP_NUM_SHIFT 0 66 #define QM_CQ_PAGE_SIZE_SHIFT 4 67 #define QM_CQ_BUF_SIZE_SHIFT 8 68 #define QM_CQ_CQE_SIZE_SHIFT 12 69 #define QM_CQ_PHASE_SHIFT 0 70 #define QM_CQ_FLAG_SHIFT 1 71 72 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 73 #define QM_QC_CQE_SIZE 4 74 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) 75 76 /* eqc shift */ 77 #define QM_EQE_AEQE_SIZE (2UL << 12) 78 #define QM_EQC_PHASE_SHIFT 16 79 80 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 81 #define QM_EQE_CQN_MASK GENMASK(15, 0) 82 83 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 84 #define QM_AEQE_TYPE_SHIFT 17 85 86 #define QM_DOORBELL_CMD_SQ 0 87 #define QM_DOORBELL_CMD_CQ 1 88 #define QM_DOORBELL_CMD_EQ 2 89 #define QM_DOORBELL_CMD_AEQ 3 90 91 #define QM_DOORBELL_BASE_V1 0x340 92 #define QM_DB_CMD_SHIFT_V1 16 93 #define QM_DB_INDEX_SHIFT_V1 32 94 #define QM_DB_PRIORITY_SHIFT_V1 48 95 #define QM_DOORBELL_SQ_CQ_BASE_V2 0x1000 96 #define QM_DOORBELL_EQ_AEQ_BASE_V2 0x2000 97 #define QM_QUE_ISO_CFG_V 0x0030 98 #define QM_QUE_ISO_EN 0x100154 99 #define QM_CAPBILITY 0x100158 100 #define QM_QP_NUN_MASK GENMASK(10, 0) 101 #define QM_QP_DB_INTERVAL 0x10000 102 #define QM_QP_MAX_NUM_SHIFT 11 103 #define QM_DB_CMD_SHIFT_V2 12 104 #define QM_DB_RAND_SHIFT_V2 16 105 #define QM_DB_INDEX_SHIFT_V2 32 106 #define QM_DB_PRIORITY_SHIFT_V2 48 107 108 #define QM_MEM_START_INIT 0x100040 109 #define QM_MEM_INIT_DONE 0x100044 110 #define QM_VFT_CFG_RDY 0x10006c 111 #define QM_VFT_CFG_OP_WR 0x100058 112 #define QM_VFT_CFG_TYPE 0x10005c 113 #define QM_SQC_VFT 0x0 114 #define QM_CQC_VFT 0x1 115 #define QM_VFT_CFG 0x100060 116 #define QM_VFT_CFG_OP_ENABLE 0x100054 117 118 #define QM_VFT_CFG_DATA_L 0x100064 119 #define QM_VFT_CFG_DATA_H 0x100068 120 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 121 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 122 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 123 #define QM_SQC_VFT_START_SQN_SHIFT 28 124 #define QM_SQC_VFT_VALID (1ULL << 44) 125 #define QM_SQC_VFT_SQN_SHIFT 45 126 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 127 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 128 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 129 #define QM_CQC_VFT_VALID (1ULL << 28) 130 131 #define QM_SQC_VFT_BASE_SHIFT_V2 28 132 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 133 #define QM_SQC_VFT_NUM_SHIFT_V2 45 134 #define QM_SQC_VFT_NUM_MASK_v2 GENMASK(9, 0) 135 136 #define QM_DFX_CNT_CLR_CE 0x100118 137 138 #define QM_ABNORMAL_INT_SOURCE 0x100000 139 #define QM_ABNORMAL_INT_SOURCE_CLR GENMASK(14, 0) 140 #define QM_ABNORMAL_INT_MASK 0x100004 141 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 142 #define QM_ABNORMAL_INT_STATUS 0x100008 143 #define QM_ABNORMAL_INT_SET 0x10000c 144 #define QM_ABNORMAL_INF00 0x100010 145 #define QM_FIFO_OVERFLOW_TYPE 0xc0 146 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 147 #define QM_FIFO_OVERFLOW_VF 0x3f 148 #define QM_ABNORMAL_INF01 0x100014 149 #define QM_DB_TIMEOUT_TYPE 0xc0 150 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 151 #define QM_DB_TIMEOUT_VF 0x3f 152 #define QM_RAS_CE_ENABLE 0x1000ec 153 #define QM_RAS_FE_ENABLE 0x1000f0 154 #define QM_RAS_NFE_ENABLE 0x1000f4 155 #define QM_RAS_CE_THRESHOLD 0x1000f8 156 #define QM_RAS_CE_TIMES_PER_IRQ 1 157 #define QM_RAS_MSI_INT_SEL 0x1040f4 158 159 #define QM_RESET_WAIT_TIMEOUT 400 160 #define QM_PEH_VENDOR_ID 0x1000d8 161 #define ACC_VENDOR_ID_VALUE 0x5a5a 162 #define QM_PEH_DFX_INFO0 0x1000fc 163 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 164 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 165 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 166 #define ACC_MASTER_TRANS_RETURN_RW 3 167 #define ACC_MASTER_TRANS_RETURN 0x300150 168 #define ACC_MASTER_GLOBAL_CTRL 0x300000 169 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 170 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 171 #define ACC_AM_ROB_ECC_INT_STS 0x300104 172 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 173 174 #define QM_DFX_MB_CNT_VF 0x104010 175 #define QM_DFX_DB_CNT_VF 0x104020 176 #define QM_DFX_SQE_CNT_VF_SQN 0x104030 177 #define QM_DFX_CQE_CNT_VF_CQN 0x104040 178 #define QM_DFX_QN_SHIFT 16 179 #define CURRENT_FUN_MASK GENMASK(5, 0) 180 #define CURRENT_Q_MASK GENMASK(31, 16) 181 182 #define POLL_PERIOD 10 183 #define POLL_TIMEOUT 1000 184 #define WAIT_PERIOD_US_MAX 200 185 #define WAIT_PERIOD_US_MIN 100 186 #define MAX_WAIT_COUNTS 1000 187 #define QM_CACHE_WB_START 0x204 188 #define QM_CACHE_WB_DONE 0x208 189 190 #define PCI_BAR_2 2 191 #define PCI_BAR_4 4 192 #define QM_SQE_DATA_ALIGN_MASK GENMASK(6, 0) 193 #define QMC_ALIGN(sz) ALIGN(sz, 32) 194 195 #define QM_DBG_READ_LEN 256 196 #define QM_DBG_WRITE_LEN 1024 197 #define QM_DBG_TMP_BUF_LEN 22 198 #define QM_PCI_COMMAND_INVALID ~0 199 200 #define WAIT_PERIOD 20 201 #define REMOVE_WAIT_DELAY 10 202 #define QM_SQE_ADDR_MASK GENMASK(7, 0) 203 #define QM_EQ_DEPTH (1024 * 2) 204 205 #define QM_DRIVER_REMOVING 0 206 #define QM_RST_SCHED 1 207 #define QM_RESETTING 2 208 209 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 210 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 211 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 212 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 213 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 214 215 #define QM_MK_CQC_DW3_V2(cqe_sz) \ 216 ((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 217 218 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 219 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 220 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 221 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 222 223 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 224 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 225 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 226 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 227 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 228 229 #define QM_MK_SQC_DW3_V2(sqe_sz) \ 230 ((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 231 232 #define INIT_QC_COMMON(qc, base, pasid) do { \ 233 (qc)->head = 0; \ 234 (qc)->tail = 0; \ 235 (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ 236 (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ 237 (qc)->dw3 = 0; \ 238 (qc)->w8 = 0; \ 239 (qc)->rsvd0 = 0; \ 240 (qc)->pasid = cpu_to_le16(pasid); \ 241 (qc)->w11 = 0; \ 242 (qc)->rsvd1 = 0; \ 243 } while (0) 244 245 enum vft_type { 246 SQC_VFT = 0, 247 CQC_VFT, 248 }; 249 250 enum acc_err_result { 251 ACC_ERR_NONE, 252 ACC_ERR_NEED_RESET, 253 ACC_ERR_RECOVERED, 254 }; 255 256 struct qm_cqe { 257 __le32 rsvd0; 258 __le16 cmd_id; 259 __le16 rsvd1; 260 __le16 sq_head; 261 __le16 sq_num; 262 __le16 rsvd2; 263 __le16 w7; 264 }; 265 266 struct qm_eqe { 267 __le32 dw0; 268 }; 269 270 struct qm_aeqe { 271 __le32 dw0; 272 }; 273 274 struct qm_sqc { 275 __le16 head; 276 __le16 tail; 277 __le32 base_l; 278 __le32 base_h; 279 __le32 dw3; 280 __le16 w8; 281 __le16 rsvd0; 282 __le16 pasid; 283 __le16 w11; 284 __le16 cq_num; 285 __le16 w13; 286 __le32 rsvd1; 287 }; 288 289 struct qm_cqc { 290 __le16 head; 291 __le16 tail; 292 __le32 base_l; 293 __le32 base_h; 294 __le32 dw3; 295 __le16 w8; 296 __le16 rsvd0; 297 __le16 pasid; 298 __le16 w11; 299 __le32 dw6; 300 __le32 rsvd1; 301 }; 302 303 struct qm_eqc { 304 __le16 head; 305 __le16 tail; 306 __le32 base_l; 307 __le32 base_h; 308 __le32 dw3; 309 __le32 rsvd[2]; 310 __le32 dw6; 311 }; 312 313 struct qm_aeqc { 314 __le16 head; 315 __le16 tail; 316 __le32 base_l; 317 __le32 base_h; 318 __le32 dw3; 319 __le32 rsvd[2]; 320 __le32 dw6; 321 }; 322 323 struct qm_mailbox { 324 __le16 w0; 325 __le16 queue_num; 326 __le32 base_l; 327 __le32 base_h; 328 __le32 rsvd; 329 }; 330 331 struct qm_doorbell { 332 __le16 queue_num; 333 __le16 cmd; 334 __le16 index; 335 __le16 priority; 336 }; 337 338 struct hisi_qm_resource { 339 struct hisi_qm *qm; 340 int distance; 341 struct list_head list; 342 }; 343 344 struct hisi_qm_hw_ops { 345 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 346 void (*qm_db)(struct hisi_qm *qm, u16 qn, 347 u8 cmd, u16 index, u8 priority); 348 u32 (*get_irq_num)(struct hisi_qm *qm); 349 int (*debug_init)(struct hisi_qm *qm); 350 void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe); 351 void (*hw_error_uninit)(struct hisi_qm *qm); 352 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 353 int (*stop_qp)(struct hisi_qp *qp); 354 }; 355 356 struct qm_dfx_item { 357 const char *name; 358 u32 offset; 359 }; 360 361 static struct qm_dfx_item qm_dfx_files[] = { 362 {"err_irq", offsetof(struct qm_dfx, err_irq_cnt)}, 363 {"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)}, 364 {"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)}, 365 {"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)}, 366 {"mb_err", offsetof(struct qm_dfx, mb_err_cnt)}, 367 }; 368 369 static const char * const qm_debug_file_name[] = { 370 [CURRENT_QM] = "current_qm", 371 [CURRENT_Q] = "current_q", 372 [CLEAR_ENABLE] = "clear_enable", 373 }; 374 375 struct hisi_qm_hw_error { 376 u32 int_msk; 377 const char *msg; 378 }; 379 380 static const struct hisi_qm_hw_error qm_hw_error[] = { 381 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 382 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 383 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 384 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 385 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 386 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 387 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 388 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 389 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 390 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 391 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 392 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 393 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 394 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 395 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 396 { /* sentinel */ } 397 }; 398 399 static const char * const qm_db_timeout[] = { 400 "sq", "cq", "eq", "aeq", 401 }; 402 403 static const char * const qm_fifo_overflow[] = { 404 "cq", "eq", "aeq", 405 }; 406 407 static const char * const qm_s[] = { 408 "init", "start", "close", "stop", 409 }; 410 411 static const char * const qp_s[] = { 412 "none", "init", "start", "stop", "close", 413 }; 414 415 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 416 { 417 enum qm_state curr = atomic_read(&qm->status.flags); 418 bool avail = false; 419 420 switch (curr) { 421 case QM_INIT: 422 if (new == QM_START || new == QM_CLOSE) 423 avail = true; 424 break; 425 case QM_START: 426 if (new == QM_STOP) 427 avail = true; 428 break; 429 case QM_STOP: 430 if (new == QM_CLOSE || new == QM_START) 431 avail = true; 432 break; 433 default: 434 break; 435 } 436 437 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 438 qm_s[curr], qm_s[new]); 439 440 if (!avail) 441 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 442 qm_s[curr], qm_s[new]); 443 444 return avail; 445 } 446 447 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 448 enum qp_state new) 449 { 450 enum qm_state qm_curr = atomic_read(&qm->status.flags); 451 enum qp_state qp_curr = 0; 452 bool avail = false; 453 454 if (qp) 455 qp_curr = atomic_read(&qp->qp_status.flags); 456 457 switch (new) { 458 case QP_INIT: 459 if (qm_curr == QM_START || qm_curr == QM_INIT) 460 avail = true; 461 break; 462 case QP_START: 463 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 464 (qm_curr == QM_START && qp_curr == QP_STOP)) 465 avail = true; 466 break; 467 case QP_STOP: 468 if ((qm_curr == QM_START && qp_curr == QP_START) || 469 (qp_curr == QP_INIT)) 470 avail = true; 471 break; 472 case QP_CLOSE: 473 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 474 (qm_curr == QM_START && qp_curr == QP_STOP) || 475 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 476 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 477 avail = true; 478 break; 479 default: 480 break; 481 } 482 483 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 484 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 485 486 if (!avail) 487 dev_warn(&qm->pdev->dev, 488 "Can not change qp state from %s to %s in QM %s\n", 489 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 490 491 return avail; 492 } 493 494 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 495 static int qm_wait_mb_ready(struct hisi_qm *qm) 496 { 497 u32 val; 498 499 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 500 val, !((val >> QM_MB_BUSY_SHIFT) & 501 0x1), POLL_PERIOD, POLL_TIMEOUT); 502 } 503 504 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 505 static void qm_mb_write(struct hisi_qm *qm, const void *src) 506 { 507 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 508 unsigned long tmp0 = 0, tmp1 = 0; 509 510 if (!IS_ENABLED(CONFIG_ARM64)) { 511 memcpy_toio(fun_base, src, 16); 512 wmb(); 513 return; 514 } 515 516 asm volatile("ldp %0, %1, %3\n" 517 "stp %0, %1, %2\n" 518 "dsb sy\n" 519 : "=&r" (tmp0), 520 "=&r" (tmp1), 521 "+Q" (*((char __iomem *)fun_base)) 522 : "Q" (*((char *)src)) 523 : "memory"); 524 } 525 526 static int qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 527 bool op) 528 { 529 struct qm_mailbox mailbox; 530 int ret = 0; 531 532 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 533 queue, cmd, (unsigned long long)dma_addr); 534 535 mailbox.w0 = cpu_to_le16(cmd | 536 (op ? 0x1 << QM_MB_OP_SHIFT : 0) | 537 (0x1 << QM_MB_BUSY_SHIFT)); 538 mailbox.queue_num = cpu_to_le16(queue); 539 mailbox.base_l = cpu_to_le32(lower_32_bits(dma_addr)); 540 mailbox.base_h = cpu_to_le32(upper_32_bits(dma_addr)); 541 mailbox.rsvd = 0; 542 543 mutex_lock(&qm->mailbox_lock); 544 545 if (unlikely(qm_wait_mb_ready(qm))) { 546 ret = -EBUSY; 547 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 548 goto busy_unlock; 549 } 550 551 qm_mb_write(qm, &mailbox); 552 553 if (unlikely(qm_wait_mb_ready(qm))) { 554 ret = -EBUSY; 555 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 556 goto busy_unlock; 557 } 558 559 busy_unlock: 560 mutex_unlock(&qm->mailbox_lock); 561 562 if (ret) 563 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 564 return ret; 565 } 566 567 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 568 { 569 u64 doorbell; 570 571 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 572 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 573 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 574 575 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 576 } 577 578 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 579 { 580 void __iomem *io_base = qm->io_base; 581 u16 randata = 0; 582 u64 doorbell; 583 584 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 585 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 586 QM_DOORBELL_SQ_CQ_BASE_V2; 587 else 588 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 589 590 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 591 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 592 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 593 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 594 595 writeq(doorbell, io_base); 596 } 597 598 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 599 { 600 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 601 qn, cmd, index); 602 603 qm->ops->qm_db(qm, qn, cmd, index, priority); 604 } 605 606 static int qm_dev_mem_reset(struct hisi_qm *qm) 607 { 608 u32 val; 609 610 writel(0x1, qm->io_base + QM_MEM_START_INIT); 611 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 612 val & BIT(0), POLL_PERIOD, 613 POLL_TIMEOUT); 614 } 615 616 static u32 qm_get_irq_num_v1(struct hisi_qm *qm) 617 { 618 return QM_IRQ_NUM_V1; 619 } 620 621 static u32 qm_get_irq_num_v2(struct hisi_qm *qm) 622 { 623 if (qm->fun_type == QM_HW_PF) 624 return QM_IRQ_NUM_PF_V2; 625 else 626 return QM_IRQ_NUM_VF_V2; 627 } 628 629 static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe) 630 { 631 u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 632 633 return &qm->qp_array[cqn]; 634 } 635 636 static void qm_cq_head_update(struct hisi_qp *qp) 637 { 638 if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) { 639 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 640 qp->qp_status.cq_head = 0; 641 } else { 642 qp->qp_status.cq_head++; 643 } 644 } 645 646 static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm) 647 { 648 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 649 return; 650 651 if (qp->event_cb) { 652 qp->event_cb(qp); 653 return; 654 } 655 656 if (qp->req_cb) { 657 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 658 659 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 660 dma_rmb(); 661 qp->req_cb(qp, qp->sqe + qm->sqe_size * 662 le16_to_cpu(cqe->sq_head)); 663 qm_cq_head_update(qp); 664 cqe = qp->cqe + qp->qp_status.cq_head; 665 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 666 qp->qp_status.cq_head, 0); 667 atomic_dec(&qp->qp_status.used); 668 } 669 670 /* set c_flag */ 671 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 672 qp->qp_status.cq_head, 1); 673 } 674 } 675 676 static void qm_work_process(struct work_struct *work) 677 { 678 struct hisi_qm *qm = container_of(work, struct hisi_qm, work); 679 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 680 struct hisi_qp *qp; 681 int eqe_num = 0; 682 683 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 684 eqe_num++; 685 qp = qm_to_hisi_qp(qm, eqe); 686 qm_poll_qp(qp, qm); 687 688 if (qm->status.eq_head == QM_EQ_DEPTH - 1) { 689 qm->status.eqc_phase = !qm->status.eqc_phase; 690 eqe = qm->eqe; 691 qm->status.eq_head = 0; 692 } else { 693 eqe++; 694 qm->status.eq_head++; 695 } 696 697 if (eqe_num == QM_EQ_DEPTH / 2 - 1) { 698 eqe_num = 0; 699 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 700 } 701 } 702 703 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 704 } 705 706 static irqreturn_t do_qm_irq(int irq, void *data) 707 { 708 struct hisi_qm *qm = (struct hisi_qm *)data; 709 710 /* the workqueue created by device driver of QM */ 711 if (qm->wq) 712 queue_work(qm->wq, &qm->work); 713 else 714 schedule_work(&qm->work); 715 716 return IRQ_HANDLED; 717 } 718 719 static irqreturn_t qm_irq(int irq, void *data) 720 { 721 struct hisi_qm *qm = data; 722 723 if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE)) 724 return do_qm_irq(irq, data); 725 726 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 727 dev_err(&qm->pdev->dev, "invalid int source\n"); 728 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 729 730 return IRQ_NONE; 731 } 732 733 static irqreturn_t qm_aeq_irq(int irq, void *data) 734 { 735 struct hisi_qm *qm = data; 736 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 737 u32 type; 738 739 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 740 if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE)) 741 return IRQ_NONE; 742 743 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 744 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; 745 if (type < ARRAY_SIZE(qm_fifo_overflow)) 746 dev_err(&qm->pdev->dev, "%s overflow\n", 747 qm_fifo_overflow[type]); 748 else 749 dev_err(&qm->pdev->dev, "unknown error type %u\n", 750 type); 751 752 if (qm->status.aeq_head == QM_Q_DEPTH - 1) { 753 qm->status.aeqc_phase = !qm->status.aeqc_phase; 754 aeqe = qm->aeqe; 755 qm->status.aeq_head = 0; 756 } else { 757 aeqe++; 758 qm->status.aeq_head++; 759 } 760 761 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 762 } 763 764 return IRQ_HANDLED; 765 } 766 767 static void qm_irq_unregister(struct hisi_qm *qm) 768 { 769 struct pci_dev *pdev = qm->pdev; 770 771 free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm); 772 773 if (qm->ver == QM_HW_V1) 774 return; 775 776 free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm); 777 778 if (qm->fun_type == QM_HW_PF) 779 free_irq(pci_irq_vector(pdev, 780 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm); 781 } 782 783 static void qm_init_qp_status(struct hisi_qp *qp) 784 { 785 struct hisi_qp_status *qp_status = &qp->qp_status; 786 787 qp_status->sq_tail = 0; 788 qp_status->cq_head = 0; 789 qp_status->cqc_phase = true; 790 atomic_set(&qp_status->used, 0); 791 } 792 793 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 794 u32 number) 795 { 796 u64 tmp = 0; 797 798 if (number > 0) { 799 switch (type) { 800 case SQC_VFT: 801 if (qm->ver == QM_HW_V1) { 802 tmp = QM_SQC_VFT_BUF_SIZE | 803 QM_SQC_VFT_SQC_SIZE | 804 QM_SQC_VFT_INDEX_NUMBER | 805 QM_SQC_VFT_VALID | 806 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 807 } else { 808 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 809 QM_SQC_VFT_VALID | 810 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 811 } 812 break; 813 case CQC_VFT: 814 if (qm->ver == QM_HW_V1) { 815 tmp = QM_CQC_VFT_BUF_SIZE | 816 QM_CQC_VFT_SQC_SIZE | 817 QM_CQC_VFT_INDEX_NUMBER | 818 QM_CQC_VFT_VALID; 819 } else { 820 tmp = QM_CQC_VFT_VALID; 821 } 822 break; 823 } 824 } 825 826 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 827 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 828 } 829 830 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 831 u32 fun_num, u32 base, u32 number) 832 { 833 unsigned int val; 834 int ret; 835 836 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 837 val & BIT(0), POLL_PERIOD, 838 POLL_TIMEOUT); 839 if (ret) 840 return ret; 841 842 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 843 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 844 writel(fun_num, qm->io_base + QM_VFT_CFG); 845 846 qm_vft_data_cfg(qm, type, base, number); 847 848 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 849 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 850 851 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 852 val & BIT(0), POLL_PERIOD, 853 POLL_TIMEOUT); 854 } 855 856 /* The config should be conducted after qm_dev_mem_reset() */ 857 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 858 u32 number) 859 { 860 int ret, i; 861 862 for (i = SQC_VFT; i <= CQC_VFT; i++) { 863 ret = qm_set_vft_common(qm, i, fun_num, base, number); 864 if (ret) 865 return ret; 866 } 867 868 return 0; 869 } 870 871 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 872 { 873 u64 sqc_vft; 874 int ret; 875 876 ret = qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 877 if (ret) 878 return ret; 879 880 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 881 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 882 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 883 *number = (QM_SQC_VFT_NUM_MASK_v2 & 884 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 885 886 return 0; 887 } 888 889 static int qm_get_vf_qp_num(struct hisi_qm *qm, u32 fun_num) 890 { 891 u32 remain_q_num, vfq_num; 892 u32 num_vfs = qm->vfs_num; 893 894 vfq_num = (qm->ctrl_qp_num - qm->qp_num) / num_vfs; 895 if (vfq_num >= qm->max_qp_num) 896 return qm->max_qp_num; 897 898 remain_q_num = (qm->ctrl_qp_num - qm->qp_num) % num_vfs; 899 if (vfq_num + remain_q_num <= qm->max_qp_num) 900 return fun_num == num_vfs ? vfq_num + remain_q_num : vfq_num; 901 902 /* 903 * if vfq_num + remain_q_num > max_qp_num, the last VFs, 904 * each with one more queue. 905 */ 906 return fun_num + remain_q_num > num_vfs ? vfq_num + 1 : vfq_num; 907 } 908 909 static struct hisi_qm *file_to_qm(struct debugfs_file *file) 910 { 911 struct qm_debug *debug = file->debug; 912 913 return container_of(debug, struct hisi_qm, debug); 914 } 915 916 static u32 current_q_read(struct debugfs_file *file) 917 { 918 struct hisi_qm *qm = file_to_qm(file); 919 920 return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT; 921 } 922 923 static int current_q_write(struct debugfs_file *file, u32 val) 924 { 925 struct hisi_qm *qm = file_to_qm(file); 926 u32 tmp; 927 928 if (val >= qm->debug.curr_qm_qp_num) 929 return -EINVAL; 930 931 tmp = val << QM_DFX_QN_SHIFT | 932 (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK); 933 writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 934 935 tmp = val << QM_DFX_QN_SHIFT | 936 (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK); 937 writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 938 939 return 0; 940 } 941 942 static u32 clear_enable_read(struct debugfs_file *file) 943 { 944 struct hisi_qm *qm = file_to_qm(file); 945 946 return readl(qm->io_base + QM_DFX_CNT_CLR_CE); 947 } 948 949 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */ 950 static int clear_enable_write(struct debugfs_file *file, u32 rd_clr_ctrl) 951 { 952 struct hisi_qm *qm = file_to_qm(file); 953 954 if (rd_clr_ctrl > 1) 955 return -EINVAL; 956 957 writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE); 958 959 return 0; 960 } 961 962 static u32 current_qm_read(struct debugfs_file *file) 963 { 964 struct hisi_qm *qm = file_to_qm(file); 965 966 return readl(qm->io_base + QM_DFX_MB_CNT_VF); 967 } 968 969 static int current_qm_write(struct debugfs_file *file, u32 val) 970 { 971 struct hisi_qm *qm = file_to_qm(file); 972 u32 tmp; 973 974 if (val > qm->vfs_num) 975 return -EINVAL; 976 977 /* According PF or VF Dev ID to calculation curr_qm_qp_num and store */ 978 if (!val) 979 qm->debug.curr_qm_qp_num = qm->qp_num; 980 else 981 qm->debug.curr_qm_qp_num = qm_get_vf_qp_num(qm, val); 982 983 writel(val, qm->io_base + QM_DFX_MB_CNT_VF); 984 writel(val, qm->io_base + QM_DFX_DB_CNT_VF); 985 986 tmp = val | 987 (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_Q_MASK); 988 writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 989 990 tmp = val | 991 (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_Q_MASK); 992 writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 993 994 return 0; 995 } 996 997 static ssize_t qm_debug_read(struct file *filp, char __user *buf, 998 size_t count, loff_t *pos) 999 { 1000 struct debugfs_file *file = filp->private_data; 1001 enum qm_debug_file index = file->index; 1002 char tbuf[QM_DBG_TMP_BUF_LEN]; 1003 u32 val; 1004 int ret; 1005 1006 mutex_lock(&file->lock); 1007 switch (index) { 1008 case CURRENT_QM: 1009 val = current_qm_read(file); 1010 break; 1011 case CURRENT_Q: 1012 val = current_q_read(file); 1013 break; 1014 case CLEAR_ENABLE: 1015 val = clear_enable_read(file); 1016 break; 1017 default: 1018 mutex_unlock(&file->lock); 1019 return -EINVAL; 1020 } 1021 mutex_unlock(&file->lock); 1022 1023 ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val); 1024 return simple_read_from_buffer(buf, count, pos, tbuf, ret); 1025 } 1026 1027 static ssize_t qm_debug_write(struct file *filp, const char __user *buf, 1028 size_t count, loff_t *pos) 1029 { 1030 struct debugfs_file *file = filp->private_data; 1031 enum qm_debug_file index = file->index; 1032 unsigned long val; 1033 char tbuf[QM_DBG_TMP_BUF_LEN]; 1034 int len, ret; 1035 1036 if (*pos != 0) 1037 return 0; 1038 1039 if (count >= QM_DBG_TMP_BUF_LEN) 1040 return -ENOSPC; 1041 1042 len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf, 1043 count); 1044 if (len < 0) 1045 return len; 1046 1047 tbuf[len] = '\0'; 1048 if (kstrtoul(tbuf, 0, &val)) 1049 return -EFAULT; 1050 1051 mutex_lock(&file->lock); 1052 switch (index) { 1053 case CURRENT_QM: 1054 ret = current_qm_write(file, val); 1055 break; 1056 case CURRENT_Q: 1057 ret = current_q_write(file, val); 1058 break; 1059 case CLEAR_ENABLE: 1060 ret = clear_enable_write(file, val); 1061 break; 1062 default: 1063 ret = -EINVAL; 1064 } 1065 mutex_unlock(&file->lock); 1066 1067 if (ret) 1068 return ret; 1069 1070 return count; 1071 } 1072 1073 static const struct file_operations qm_debug_fops = { 1074 .owner = THIS_MODULE, 1075 .open = simple_open, 1076 .read = qm_debug_read, 1077 .write = qm_debug_write, 1078 }; 1079 1080 struct qm_dfx_registers { 1081 char *reg_name; 1082 u64 reg_offset; 1083 }; 1084 1085 #define CNT_CYC_REGS_NUM 10 1086 static struct qm_dfx_registers qm_dfx_regs[] = { 1087 /* XXX_CNT are reading clear register */ 1088 {"QM_ECC_1BIT_CNT ", 0x104000ull}, 1089 {"QM_ECC_MBIT_CNT ", 0x104008ull}, 1090 {"QM_DFX_MB_CNT ", 0x104018ull}, 1091 {"QM_DFX_DB_CNT ", 0x104028ull}, 1092 {"QM_DFX_SQE_CNT ", 0x104038ull}, 1093 {"QM_DFX_CQE_CNT ", 0x104048ull}, 1094 {"QM_DFX_SEND_SQE_TO_ACC_CNT ", 0x104050ull}, 1095 {"QM_DFX_WB_SQE_FROM_ACC_CNT ", 0x104058ull}, 1096 {"QM_DFX_ACC_FINISH_CNT ", 0x104060ull}, 1097 {"QM_DFX_CQE_ERR_CNT ", 0x1040b4ull}, 1098 {"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull}, 1099 {"QM_ECC_1BIT_INF ", 0x104004ull}, 1100 {"QM_ECC_MBIT_INF ", 0x10400cull}, 1101 {"QM_DFX_ACC_RDY_VLD0 ", 0x1040a0ull}, 1102 {"QM_DFX_ACC_RDY_VLD1 ", 0x1040a4ull}, 1103 {"QM_DFX_AXI_RDY_VLD ", 0x1040a8ull}, 1104 {"QM_DFX_FF_ST0 ", 0x1040c8ull}, 1105 {"QM_DFX_FF_ST1 ", 0x1040ccull}, 1106 {"QM_DFX_FF_ST2 ", 0x1040d0ull}, 1107 {"QM_DFX_FF_ST3 ", 0x1040d4ull}, 1108 {"QM_DFX_FF_ST4 ", 0x1040d8ull}, 1109 {"QM_DFX_FF_ST5 ", 0x1040dcull}, 1110 {"QM_DFX_FF_ST6 ", 0x1040e0ull}, 1111 {"QM_IN_IDLE_ST ", 0x1040e4ull}, 1112 { NULL, 0} 1113 }; 1114 1115 static struct qm_dfx_registers qm_vf_dfx_regs[] = { 1116 {"QM_DFX_FUNS_ACTIVE_ST ", 0x200ull}, 1117 { NULL, 0} 1118 }; 1119 1120 static int qm_regs_show(struct seq_file *s, void *unused) 1121 { 1122 struct hisi_qm *qm = s->private; 1123 struct qm_dfx_registers *regs; 1124 u32 val; 1125 1126 if (qm->fun_type == QM_HW_PF) 1127 regs = qm_dfx_regs; 1128 else 1129 regs = qm_vf_dfx_regs; 1130 1131 while (regs->reg_name) { 1132 val = readl(qm->io_base + regs->reg_offset); 1133 seq_printf(s, "%s= 0x%08x\n", regs->reg_name, val); 1134 regs++; 1135 } 1136 1137 return 0; 1138 } 1139 1140 DEFINE_SHOW_ATTRIBUTE(qm_regs); 1141 1142 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer, 1143 size_t count, loff_t *pos) 1144 { 1145 char buf[QM_DBG_READ_LEN]; 1146 int len; 1147 1148 len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", 1149 "Please echo help to cmd to get help information"); 1150 1151 return simple_read_from_buffer(buffer, count, pos, buf, len); 1152 } 1153 1154 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, 1155 dma_addr_t *dma_addr) 1156 { 1157 struct device *dev = &qm->pdev->dev; 1158 void *ctx_addr; 1159 1160 ctx_addr = kzalloc(ctx_size, GFP_KERNEL); 1161 if (!ctx_addr) 1162 return ERR_PTR(-ENOMEM); 1163 1164 *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); 1165 if (dma_mapping_error(dev, *dma_addr)) { 1166 dev_err(dev, "DMA mapping error!\n"); 1167 kfree(ctx_addr); 1168 return ERR_PTR(-ENOMEM); 1169 } 1170 1171 return ctx_addr; 1172 } 1173 1174 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, 1175 const void *ctx_addr, dma_addr_t *dma_addr) 1176 { 1177 struct device *dev = &qm->pdev->dev; 1178 1179 dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); 1180 kfree(ctx_addr); 1181 } 1182 1183 static int dump_show(struct hisi_qm *qm, void *info, 1184 unsigned int info_size, char *info_name) 1185 { 1186 struct device *dev = &qm->pdev->dev; 1187 u8 *info_buf, *info_curr = info; 1188 u32 i; 1189 #define BYTE_PER_DW 4 1190 1191 info_buf = kzalloc(info_size, GFP_KERNEL); 1192 if (!info_buf) 1193 return -ENOMEM; 1194 1195 for (i = 0; i < info_size; i++, info_curr++) { 1196 if (i % BYTE_PER_DW == 0) 1197 info_buf[i + 3UL] = *info_curr; 1198 else if (i % BYTE_PER_DW == 1) 1199 info_buf[i + 1UL] = *info_curr; 1200 else if (i % BYTE_PER_DW == 2) 1201 info_buf[i - 1] = *info_curr; 1202 else if (i % BYTE_PER_DW == 3) 1203 info_buf[i - 3] = *info_curr; 1204 } 1205 1206 dev_info(dev, "%s DUMP\n", info_name); 1207 for (i = 0; i < info_size; i += BYTE_PER_DW) { 1208 pr_info("DW%u: %02X%02X %02X%02X\n", i / BYTE_PER_DW, 1209 info_buf[i], info_buf[i + 1UL], 1210 info_buf[i + 2UL], info_buf[i + 3UL]); 1211 } 1212 1213 kfree(info_buf); 1214 1215 return 0; 1216 } 1217 1218 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1219 { 1220 return qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); 1221 } 1222 1223 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1224 { 1225 return qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); 1226 } 1227 1228 static int qm_sqc_dump(struct hisi_qm *qm, const char *s) 1229 { 1230 struct device *dev = &qm->pdev->dev; 1231 struct qm_sqc *sqc, *sqc_curr; 1232 dma_addr_t sqc_dma; 1233 u32 qp_id; 1234 int ret; 1235 1236 if (!s) 1237 return -EINVAL; 1238 1239 ret = kstrtou32(s, 0, &qp_id); 1240 if (ret || qp_id >= qm->qp_num) { 1241 dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1); 1242 return -EINVAL; 1243 } 1244 1245 sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma); 1246 if (IS_ERR(sqc)) 1247 return PTR_ERR(sqc); 1248 1249 ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id); 1250 if (ret) { 1251 down_read(&qm->qps_lock); 1252 if (qm->sqc) { 1253 sqc_curr = qm->sqc + qp_id; 1254 1255 ret = dump_show(qm, sqc_curr, sizeof(*sqc), 1256 "SOFT SQC"); 1257 if (ret) 1258 dev_info(dev, "Show soft sqc failed!\n"); 1259 } 1260 up_read(&qm->qps_lock); 1261 1262 goto err_free_ctx; 1263 } 1264 1265 ret = dump_show(qm, sqc, sizeof(*sqc), "SQC"); 1266 if (ret) 1267 dev_info(dev, "Show hw sqc failed!\n"); 1268 1269 err_free_ctx: 1270 qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma); 1271 return ret; 1272 } 1273 1274 static int qm_cqc_dump(struct hisi_qm *qm, const char *s) 1275 { 1276 struct device *dev = &qm->pdev->dev; 1277 struct qm_cqc *cqc, *cqc_curr; 1278 dma_addr_t cqc_dma; 1279 u32 qp_id; 1280 int ret; 1281 1282 if (!s) 1283 return -EINVAL; 1284 1285 ret = kstrtou32(s, 0, &qp_id); 1286 if (ret || qp_id >= qm->qp_num) { 1287 dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1); 1288 return -EINVAL; 1289 } 1290 1291 cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma); 1292 if (IS_ERR(cqc)) 1293 return PTR_ERR(cqc); 1294 1295 ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id); 1296 if (ret) { 1297 down_read(&qm->qps_lock); 1298 if (qm->cqc) { 1299 cqc_curr = qm->cqc + qp_id; 1300 1301 ret = dump_show(qm, cqc_curr, sizeof(*cqc), 1302 "SOFT CQC"); 1303 if (ret) 1304 dev_info(dev, "Show soft cqc failed!\n"); 1305 } 1306 up_read(&qm->qps_lock); 1307 1308 goto err_free_ctx; 1309 } 1310 1311 ret = dump_show(qm, cqc, sizeof(*cqc), "CQC"); 1312 if (ret) 1313 dev_info(dev, "Show hw cqc failed!\n"); 1314 1315 err_free_ctx: 1316 qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma); 1317 return ret; 1318 } 1319 1320 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size, 1321 int cmd, char *name) 1322 { 1323 struct device *dev = &qm->pdev->dev; 1324 dma_addr_t xeqc_dma; 1325 void *xeqc; 1326 int ret; 1327 1328 if (strsep(&s, " ")) { 1329 dev_err(dev, "Please do not input extra characters!\n"); 1330 return -EINVAL; 1331 } 1332 1333 xeqc = qm_ctx_alloc(qm, size, &xeqc_dma); 1334 if (IS_ERR(xeqc)) 1335 return PTR_ERR(xeqc); 1336 1337 ret = qm_mb(qm, cmd, xeqc_dma, 0, 1); 1338 if (ret) 1339 goto err_free_ctx; 1340 1341 ret = dump_show(qm, xeqc, size, name); 1342 if (ret) 1343 dev_info(dev, "Show hw %s failed!\n", name); 1344 1345 err_free_ctx: 1346 qm_ctx_free(qm, size, xeqc, &xeqc_dma); 1347 return ret; 1348 } 1349 1350 static int q_dump_param_parse(struct hisi_qm *qm, char *s, 1351 u32 *e_id, u32 *q_id) 1352 { 1353 struct device *dev = &qm->pdev->dev; 1354 unsigned int qp_num = qm->qp_num; 1355 char *presult; 1356 int ret; 1357 1358 presult = strsep(&s, " "); 1359 if (!presult) { 1360 dev_err(dev, "Please input qp number!\n"); 1361 return -EINVAL; 1362 } 1363 1364 ret = kstrtou32(presult, 0, q_id); 1365 if (ret || *q_id >= qp_num) { 1366 dev_err(dev, "Please input qp num (0-%u)", qp_num - 1); 1367 return -EINVAL; 1368 } 1369 1370 presult = strsep(&s, " "); 1371 if (!presult) { 1372 dev_err(dev, "Please input sqe number!\n"); 1373 return -EINVAL; 1374 } 1375 1376 ret = kstrtou32(presult, 0, e_id); 1377 if (ret || *e_id >= QM_Q_DEPTH) { 1378 dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1); 1379 return -EINVAL; 1380 } 1381 1382 if (strsep(&s, " ")) { 1383 dev_err(dev, "Please do not input extra characters!\n"); 1384 return -EINVAL; 1385 } 1386 1387 return 0; 1388 } 1389 1390 static int qm_sq_dump(struct hisi_qm *qm, char *s) 1391 { 1392 struct device *dev = &qm->pdev->dev; 1393 void *sqe, *sqe_curr; 1394 struct hisi_qp *qp; 1395 u32 qp_id, sqe_id; 1396 int ret; 1397 1398 ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id); 1399 if (ret) 1400 return ret; 1401 1402 sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL); 1403 if (!sqe) 1404 return -ENOMEM; 1405 1406 qp = &qm->qp_array[qp_id]; 1407 memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH); 1408 sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size); 1409 memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK, 1410 qm->debug.sqe_mask_len); 1411 1412 ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE"); 1413 if (ret) 1414 dev_info(dev, "Show sqe failed!\n"); 1415 1416 kfree(sqe); 1417 1418 return ret; 1419 } 1420 1421 static int qm_cq_dump(struct hisi_qm *qm, char *s) 1422 { 1423 struct device *dev = &qm->pdev->dev; 1424 struct qm_cqe *cqe_curr; 1425 struct hisi_qp *qp; 1426 u32 qp_id, cqe_id; 1427 int ret; 1428 1429 ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id); 1430 if (ret) 1431 return ret; 1432 1433 qp = &qm->qp_array[qp_id]; 1434 cqe_curr = qp->cqe + cqe_id; 1435 ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE"); 1436 if (ret) 1437 dev_info(dev, "Show cqe failed!\n"); 1438 1439 return ret; 1440 } 1441 1442 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s, 1443 size_t size, char *name) 1444 { 1445 struct device *dev = &qm->pdev->dev; 1446 void *xeqe; 1447 u32 xeqe_id; 1448 int ret; 1449 1450 if (!s) 1451 return -EINVAL; 1452 1453 ret = kstrtou32(s, 0, &xeqe_id); 1454 if (ret) 1455 return -EINVAL; 1456 1457 if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) { 1458 dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1); 1459 return -EINVAL; 1460 } else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) { 1461 dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1); 1462 return -EINVAL; 1463 } 1464 1465 down_read(&qm->qps_lock); 1466 1467 if (qm->eqe && !strcmp(name, "EQE")) { 1468 xeqe = qm->eqe + xeqe_id; 1469 } else if (qm->aeqe && !strcmp(name, "AEQE")) { 1470 xeqe = qm->aeqe + xeqe_id; 1471 } else { 1472 ret = -EINVAL; 1473 goto err_unlock; 1474 } 1475 1476 ret = dump_show(qm, xeqe, size, name); 1477 if (ret) 1478 dev_info(dev, "Show %s failed!\n", name); 1479 1480 err_unlock: 1481 up_read(&qm->qps_lock); 1482 return ret; 1483 } 1484 1485 static int qm_dbg_help(struct hisi_qm *qm, char *s) 1486 { 1487 struct device *dev = &qm->pdev->dev; 1488 1489 if (strsep(&s, " ")) { 1490 dev_err(dev, "Please do not input extra characters!\n"); 1491 return -EINVAL; 1492 } 1493 1494 dev_info(dev, "available commands:\n"); 1495 dev_info(dev, "sqc <num>\n"); 1496 dev_info(dev, "cqc <num>\n"); 1497 dev_info(dev, "eqc\n"); 1498 dev_info(dev, "aeqc\n"); 1499 dev_info(dev, "sq <num> <e>\n"); 1500 dev_info(dev, "cq <num> <e>\n"); 1501 dev_info(dev, "eq <e>\n"); 1502 dev_info(dev, "aeq <e>\n"); 1503 1504 return 0; 1505 } 1506 1507 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf) 1508 { 1509 struct device *dev = &qm->pdev->dev; 1510 char *presult, *s, *s_tmp; 1511 int ret; 1512 1513 s = kstrdup(cmd_buf, GFP_KERNEL); 1514 if (!s) 1515 return -ENOMEM; 1516 1517 s_tmp = s; 1518 presult = strsep(&s, " "); 1519 if (!presult) { 1520 ret = -EINVAL; 1521 goto err_buffer_free; 1522 } 1523 1524 if (!strcmp(presult, "sqc")) 1525 ret = qm_sqc_dump(qm, s); 1526 else if (!strcmp(presult, "cqc")) 1527 ret = qm_cqc_dump(qm, s); 1528 else if (!strcmp(presult, "eqc")) 1529 ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc), 1530 QM_MB_CMD_EQC, "EQC"); 1531 else if (!strcmp(presult, "aeqc")) 1532 ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc), 1533 QM_MB_CMD_AEQC, "AEQC"); 1534 else if (!strcmp(presult, "sq")) 1535 ret = qm_sq_dump(qm, s); 1536 else if (!strcmp(presult, "cq")) 1537 ret = qm_cq_dump(qm, s); 1538 else if (!strcmp(presult, "eq")) 1539 ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE"); 1540 else if (!strcmp(presult, "aeq")) 1541 ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE"); 1542 else if (!strcmp(presult, "help")) 1543 ret = qm_dbg_help(qm, s); 1544 else 1545 ret = -EINVAL; 1546 1547 if (ret) 1548 dev_info(dev, "Please echo help\n"); 1549 1550 err_buffer_free: 1551 kfree(s_tmp); 1552 1553 return ret; 1554 } 1555 1556 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer, 1557 size_t count, loff_t *pos) 1558 { 1559 struct hisi_qm *qm = filp->private_data; 1560 char *cmd_buf, *cmd_buf_tmp; 1561 int ret; 1562 1563 if (*pos) 1564 return 0; 1565 1566 /* Judge if the instance is being reset. */ 1567 if (unlikely(atomic_read(&qm->status.flags) == QM_STOP)) 1568 return 0; 1569 1570 if (count > QM_DBG_WRITE_LEN) 1571 return -ENOSPC; 1572 1573 cmd_buf = kzalloc(count + 1, GFP_KERNEL); 1574 if (!cmd_buf) 1575 return -ENOMEM; 1576 1577 if (copy_from_user(cmd_buf, buffer, count)) { 1578 kfree(cmd_buf); 1579 return -EFAULT; 1580 } 1581 1582 cmd_buf[count] = '\0'; 1583 1584 cmd_buf_tmp = strchr(cmd_buf, '\n'); 1585 if (cmd_buf_tmp) { 1586 *cmd_buf_tmp = '\0'; 1587 count = cmd_buf_tmp - cmd_buf + 1; 1588 } 1589 1590 ret = qm_cmd_write_dump(qm, cmd_buf); 1591 if (ret) { 1592 kfree(cmd_buf); 1593 return ret; 1594 } 1595 1596 kfree(cmd_buf); 1597 1598 return count; 1599 } 1600 1601 static const struct file_operations qm_cmd_fops = { 1602 .owner = THIS_MODULE, 1603 .open = simple_open, 1604 .read = qm_cmd_read, 1605 .write = qm_cmd_write, 1606 }; 1607 1608 static void qm_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir, 1609 enum qm_debug_file index) 1610 { 1611 struct debugfs_file *file = qm->debug.files + index; 1612 1613 debugfs_create_file(qm_debug_file_name[index], 0600, dir, file, 1614 &qm_debug_fops); 1615 1616 file->index = index; 1617 mutex_init(&file->lock); 1618 file->debug = &qm->debug; 1619 } 1620 1621 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 1622 { 1623 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1624 } 1625 1626 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe) 1627 { 1628 u32 irq_enable = ce | nfe | fe; 1629 u32 irq_unmask = ~irq_enable; 1630 1631 qm->error_mask = ce | nfe | fe; 1632 1633 /* clear QM hw residual error source */ 1634 writel(QM_ABNORMAL_INT_SOURCE_CLR, 1635 qm->io_base + QM_ABNORMAL_INT_SOURCE); 1636 1637 /* configure error type */ 1638 writel(ce, qm->io_base + QM_RAS_CE_ENABLE); 1639 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1640 writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1641 writel(fe, qm->io_base + QM_RAS_FE_ENABLE); 1642 1643 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1644 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1645 } 1646 1647 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1648 { 1649 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1650 } 1651 1652 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1653 { 1654 const struct hisi_qm_hw_error *err; 1655 struct device *dev = &qm->pdev->dev; 1656 u32 reg_val, type, vf_num; 1657 int i; 1658 1659 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1660 err = &qm_hw_error[i]; 1661 if (!(err->int_msk & error_status)) 1662 continue; 1663 1664 dev_err(dev, "%s [error status=0x%x] found\n", 1665 err->msg, err->int_msk); 1666 1667 if (err->int_msk & QM_DB_TIMEOUT) { 1668 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1669 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1670 QM_DB_TIMEOUT_TYPE_SHIFT; 1671 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1672 dev_err(dev, "qm %s doorbell timeout in function %u\n", 1673 qm_db_timeout[type], vf_num); 1674 } else if (err->int_msk & QM_OF_FIFO_OF) { 1675 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1676 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1677 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1678 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1679 1680 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1681 dev_err(dev, "qm %s fifo overflow in function %u\n", 1682 qm_fifo_overflow[type], vf_num); 1683 else 1684 dev_err(dev, "unknown error type\n"); 1685 } 1686 } 1687 } 1688 1689 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1690 { 1691 u32 error_status, tmp, val; 1692 1693 /* read err sts */ 1694 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 1695 error_status = qm->error_mask & tmp; 1696 1697 if (error_status) { 1698 if (error_status & QM_ECC_MBIT) 1699 qm->err_status.is_qm_ecc_mbit = true; 1700 1701 qm_log_hw_error(qm, error_status); 1702 val = error_status | QM_DB_RANDOM_INVALID | QM_BASE_CE; 1703 /* ce error does not need to be reset */ 1704 if (val == (QM_DB_RANDOM_INVALID | QM_BASE_CE)) { 1705 writel(error_status, qm->io_base + 1706 QM_ABNORMAL_INT_SOURCE); 1707 writel(qm->err_info.nfe, 1708 qm->io_base + QM_RAS_NFE_ENABLE); 1709 return ACC_ERR_RECOVERED; 1710 } 1711 1712 return ACC_ERR_NEED_RESET; 1713 } 1714 1715 return ACC_ERR_RECOVERED; 1716 } 1717 1718 static int qm_stop_qp(struct hisi_qp *qp) 1719 { 1720 return qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1721 } 1722 1723 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1724 .qm_db = qm_db_v1, 1725 .get_irq_num = qm_get_irq_num_v1, 1726 .hw_error_init = qm_hw_error_init_v1, 1727 }; 1728 1729 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1730 .get_vft = qm_get_vft_v2, 1731 .qm_db = qm_db_v2, 1732 .get_irq_num = qm_get_irq_num_v2, 1733 .hw_error_init = qm_hw_error_init_v2, 1734 .hw_error_uninit = qm_hw_error_uninit_v2, 1735 .hw_error_handle = qm_hw_error_handle_v2, 1736 }; 1737 1738 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1739 .get_vft = qm_get_vft_v2, 1740 .qm_db = qm_db_v2, 1741 .get_irq_num = qm_get_irq_num_v2, 1742 .hw_error_init = qm_hw_error_init_v2, 1743 .hw_error_uninit = qm_hw_error_uninit_v2, 1744 .hw_error_handle = qm_hw_error_handle_v2, 1745 .stop_qp = qm_stop_qp, 1746 }; 1747 1748 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1749 { 1750 struct hisi_qp_status *qp_status = &qp->qp_status; 1751 u16 sq_tail = qp_status->sq_tail; 1752 1753 if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1)) 1754 return NULL; 1755 1756 return qp->sqe + sq_tail * qp->qm->sqe_size; 1757 } 1758 1759 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1760 { 1761 struct device *dev = &qm->pdev->dev; 1762 struct hisi_qp *qp; 1763 int qp_id; 1764 1765 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 1766 return ERR_PTR(-EPERM); 1767 1768 if (qm->qp_in_used == qm->qp_num) { 1769 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1770 qm->qp_num); 1771 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1772 return ERR_PTR(-EBUSY); 1773 } 1774 1775 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 1776 if (qp_id < 0) { 1777 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1778 qm->qp_num); 1779 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1780 return ERR_PTR(-EBUSY); 1781 } 1782 1783 qp = &qm->qp_array[qp_id]; 1784 1785 memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH); 1786 1787 qp->event_cb = NULL; 1788 qp->req_cb = NULL; 1789 qp->qp_id = qp_id; 1790 qp->alg_type = alg_type; 1791 qp->is_in_kernel = true; 1792 qm->qp_in_used++; 1793 atomic_set(&qp->qp_status.flags, QP_INIT); 1794 1795 return qp; 1796 } 1797 1798 /** 1799 * hisi_qm_create_qp() - Create a queue pair from qm. 1800 * @qm: The qm we create a qp from. 1801 * @alg_type: Accelerator specific algorithm type in sqc. 1802 * 1803 * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating 1804 * qp memory fails. 1805 */ 1806 struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 1807 { 1808 struct hisi_qp *qp; 1809 1810 down_write(&qm->qps_lock); 1811 qp = qm_create_qp_nolock(qm, alg_type); 1812 up_write(&qm->qps_lock); 1813 1814 return qp; 1815 } 1816 EXPORT_SYMBOL_GPL(hisi_qm_create_qp); 1817 1818 /** 1819 * hisi_qm_release_qp() - Release a qp back to its qm. 1820 * @qp: The qp we want to release. 1821 * 1822 * This function releases the resource of a qp. 1823 */ 1824 void hisi_qm_release_qp(struct hisi_qp *qp) 1825 { 1826 struct hisi_qm *qm = qp->qm; 1827 1828 down_write(&qm->qps_lock); 1829 1830 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 1831 up_write(&qm->qps_lock); 1832 return; 1833 } 1834 1835 qm->qp_in_used--; 1836 idr_remove(&qm->qp_idr, qp->qp_id); 1837 1838 up_write(&qm->qps_lock); 1839 } 1840 EXPORT_SYMBOL_GPL(hisi_qm_release_qp); 1841 1842 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1843 { 1844 struct hisi_qm *qm = qp->qm; 1845 struct device *dev = &qm->pdev->dev; 1846 enum qm_hw_ver ver = qm->ver; 1847 struct qm_sqc *sqc; 1848 dma_addr_t sqc_dma; 1849 int ret; 1850 1851 sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); 1852 if (!sqc) 1853 return -ENOMEM; 1854 1855 INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); 1856 if (ver == QM_HW_V1) { 1857 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 1858 sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1); 1859 } else { 1860 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size)); 1861 sqc->w8 = 0; /* rand_qc */ 1862 } 1863 sqc->cq_num = cpu_to_le16(qp_id); 1864 sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 1865 1866 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1867 sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 1868 QM_QC_PASID_ENABLE_SHIFT); 1869 1870 sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), 1871 DMA_TO_DEVICE); 1872 if (dma_mapping_error(dev, sqc_dma)) { 1873 kfree(sqc); 1874 return -ENOMEM; 1875 } 1876 1877 ret = qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); 1878 dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); 1879 kfree(sqc); 1880 1881 return ret; 1882 } 1883 1884 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1885 { 1886 struct hisi_qm *qm = qp->qm; 1887 struct device *dev = &qm->pdev->dev; 1888 enum qm_hw_ver ver = qm->ver; 1889 struct qm_cqc *cqc; 1890 dma_addr_t cqc_dma; 1891 int ret; 1892 1893 cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); 1894 if (!cqc) 1895 return -ENOMEM; 1896 1897 INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); 1898 if (ver == QM_HW_V1) { 1899 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 1900 QM_QC_CQE_SIZE)); 1901 cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1); 1902 } else { 1903 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE)); 1904 cqc->w8 = 0; /* rand_qc */ 1905 } 1906 cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 1907 1908 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1909 cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 1910 1911 cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), 1912 DMA_TO_DEVICE); 1913 if (dma_mapping_error(dev, cqc_dma)) { 1914 kfree(cqc); 1915 return -ENOMEM; 1916 } 1917 1918 ret = qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); 1919 dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); 1920 kfree(cqc); 1921 1922 return ret; 1923 } 1924 1925 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1926 { 1927 int ret; 1928 1929 qm_init_qp_status(qp); 1930 1931 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 1932 if (ret) 1933 return ret; 1934 1935 return qm_cq_ctx_cfg(qp, qp_id, pasid); 1936 } 1937 1938 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 1939 { 1940 struct hisi_qm *qm = qp->qm; 1941 struct device *dev = &qm->pdev->dev; 1942 int qp_id = qp->qp_id; 1943 u32 pasid = arg; 1944 int ret; 1945 1946 if (!qm_qp_avail_state(qm, qp, QP_START)) 1947 return -EPERM; 1948 1949 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 1950 if (ret) 1951 return ret; 1952 1953 atomic_set(&qp->qp_status.flags, QP_START); 1954 dev_dbg(dev, "queue %d started\n", qp_id); 1955 1956 return 0; 1957 } 1958 1959 /** 1960 * hisi_qm_start_qp() - Start a qp into running. 1961 * @qp: The qp we want to start to run. 1962 * @arg: Accelerator specific argument. 1963 * 1964 * After this function, qp can receive request from user. Return 0 if 1965 * successful, Return -EBUSY if failed. 1966 */ 1967 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 1968 { 1969 struct hisi_qm *qm = qp->qm; 1970 int ret; 1971 1972 down_write(&qm->qps_lock); 1973 ret = qm_start_qp_nolock(qp, arg); 1974 up_write(&qm->qps_lock); 1975 1976 return ret; 1977 } 1978 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 1979 1980 /** 1981 * qp_stop_fail_cb() - call request cb. 1982 * @qp: stopped failed qp. 1983 * 1984 * Callback function should be called whether task completed or not. 1985 */ 1986 static void qp_stop_fail_cb(struct hisi_qp *qp) 1987 { 1988 int qp_used = atomic_read(&qp->qp_status.used); 1989 u16 cur_tail = qp->qp_status.sq_tail; 1990 u16 cur_head = (cur_tail + QM_Q_DEPTH - qp_used) % QM_Q_DEPTH; 1991 struct hisi_qm *qm = qp->qm; 1992 u16 pos; 1993 int i; 1994 1995 for (i = 0; i < qp_used; i++) { 1996 pos = (i + cur_head) % QM_Q_DEPTH; 1997 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 1998 atomic_dec(&qp->qp_status.used); 1999 } 2000 } 2001 2002 /** 2003 * qm_drain_qp() - Drain a qp. 2004 * @qp: The qp we want to drain. 2005 * 2006 * Determine whether the queue is cleared by judging the tail pointers of 2007 * sq and cq. 2008 */ 2009 static int qm_drain_qp(struct hisi_qp *qp) 2010 { 2011 size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); 2012 struct hisi_qm *qm = qp->qm; 2013 struct device *dev = &qm->pdev->dev; 2014 struct qm_sqc *sqc; 2015 struct qm_cqc *cqc; 2016 dma_addr_t dma_addr; 2017 int ret = 0, i = 0; 2018 void *addr; 2019 2020 /* 2021 * No need to judge if ECC multi-bit error occurs because the 2022 * master OOO will be blocked. 2023 */ 2024 if (qm->err_status.is_qm_ecc_mbit || qm->err_status.is_dev_ecc_mbit) 2025 return 0; 2026 2027 /* Kunpeng930 supports drain qp by device */ 2028 if (qm->ops->stop_qp) { 2029 ret = qm->ops->stop_qp(qp); 2030 if (ret) 2031 dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); 2032 return ret; 2033 } 2034 2035 addr = qm_ctx_alloc(qm, size, &dma_addr); 2036 if (IS_ERR(addr)) { 2037 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); 2038 return -ENOMEM; 2039 } 2040 2041 while (++i) { 2042 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); 2043 if (ret) { 2044 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2045 break; 2046 } 2047 sqc = addr; 2048 2049 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), 2050 qp->qp_id); 2051 if (ret) { 2052 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2053 break; 2054 } 2055 cqc = addr + sizeof(struct qm_sqc); 2056 2057 if ((sqc->tail == cqc->tail) && 2058 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2059 break; 2060 2061 if (i == MAX_WAIT_COUNTS) { 2062 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 2063 ret = -EBUSY; 2064 break; 2065 } 2066 2067 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2068 } 2069 2070 qm_ctx_free(qm, size, addr, &dma_addr); 2071 2072 return ret; 2073 } 2074 2075 static int qm_stop_qp_nolock(struct hisi_qp *qp) 2076 { 2077 struct device *dev = &qp->qm->pdev->dev; 2078 int ret; 2079 2080 /* 2081 * It is allowed to stop and release qp when reset, If the qp is 2082 * stopped when reset but still want to be released then, the 2083 * is_resetting flag should be set negative so that this qp will not 2084 * be restarted after reset. 2085 */ 2086 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 2087 qp->is_resetting = false; 2088 return 0; 2089 } 2090 2091 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 2092 return -EPERM; 2093 2094 atomic_set(&qp->qp_status.flags, QP_STOP); 2095 2096 ret = qm_drain_qp(qp); 2097 if (ret) 2098 dev_err(dev, "Failed to drain out data for stopping!\n"); 2099 2100 if (qp->qm->wq) 2101 flush_workqueue(qp->qm->wq); 2102 else 2103 flush_work(&qp->qm->work); 2104 2105 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2106 qp_stop_fail_cb(qp); 2107 2108 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2109 2110 return 0; 2111 } 2112 2113 /** 2114 * hisi_qm_stop_qp() - Stop a qp in qm. 2115 * @qp: The qp we want to stop. 2116 * 2117 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 2118 */ 2119 int hisi_qm_stop_qp(struct hisi_qp *qp) 2120 { 2121 int ret; 2122 2123 down_write(&qp->qm->qps_lock); 2124 ret = qm_stop_qp_nolock(qp); 2125 up_write(&qp->qm->qps_lock); 2126 2127 return ret; 2128 } 2129 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2130 2131 /** 2132 * hisi_qp_send() - Queue up a task in the hardware queue. 2133 * @qp: The qp in which to put the message. 2134 * @msg: The message. 2135 * 2136 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2137 * if qp related qm is resetting. 2138 * 2139 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2140 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2141 * reset may happen, we have no lock here considering performance. This 2142 * causes current qm_db sending fail or can not receive sended sqe. QM 2143 * sync/async receive function should handle the error sqe. ACC reset 2144 * done function should clear used sqe to 0. 2145 */ 2146 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2147 { 2148 struct hisi_qp_status *qp_status = &qp->qp_status; 2149 u16 sq_tail = qp_status->sq_tail; 2150 u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH; 2151 void *sqe = qm_get_avail_sqe(qp); 2152 2153 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2154 atomic_read(&qp->qm->status.flags) == QM_STOP || 2155 qp->is_resetting)) { 2156 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2157 return -EAGAIN; 2158 } 2159 2160 if (!sqe) 2161 return -EBUSY; 2162 2163 memcpy(sqe, msg, qp->qm->sqe_size); 2164 2165 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2166 atomic_inc(&qp->qp_status.used); 2167 qp_status->sq_tail = sq_tail_next; 2168 2169 return 0; 2170 } 2171 EXPORT_SYMBOL_GPL(hisi_qp_send); 2172 2173 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2174 { 2175 unsigned int val; 2176 2177 if (qm->ver == QM_HW_V1) 2178 return; 2179 2180 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2181 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2182 val, val & BIT(0), POLL_PERIOD, 2183 POLL_TIMEOUT)) 2184 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2185 } 2186 2187 static void qm_qp_event_notifier(struct hisi_qp *qp) 2188 { 2189 wake_up_interruptible(&qp->uacce_q->wait); 2190 } 2191 2192 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2193 { 2194 return hisi_qm_get_free_qp_num(uacce->priv); 2195 } 2196 2197 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2198 unsigned long arg, 2199 struct uacce_queue *q) 2200 { 2201 struct hisi_qm *qm = uacce->priv; 2202 struct hisi_qp *qp; 2203 u8 alg_type = 0; 2204 2205 qp = hisi_qm_create_qp(qm, alg_type); 2206 if (IS_ERR(qp)) 2207 return PTR_ERR(qp); 2208 2209 q->priv = qp; 2210 q->uacce = uacce; 2211 qp->uacce_q = q; 2212 qp->event_cb = qm_qp_event_notifier; 2213 qp->pasid = arg; 2214 qp->is_in_kernel = false; 2215 2216 return 0; 2217 } 2218 2219 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2220 { 2221 struct hisi_qp *qp = q->priv; 2222 2223 hisi_qm_cache_wb(qp->qm); 2224 hisi_qm_release_qp(qp); 2225 } 2226 2227 /* map sq/cq/doorbell to user space */ 2228 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2229 struct vm_area_struct *vma, 2230 struct uacce_qfile_region *qfr) 2231 { 2232 struct hisi_qp *qp = q->priv; 2233 struct hisi_qm *qm = qp->qm; 2234 resource_size_t phys_base = qm->db_phys_base + 2235 qp->qp_id * qm->db_interval; 2236 size_t sz = vma->vm_end - vma->vm_start; 2237 struct pci_dev *pdev = qm->pdev; 2238 struct device *dev = &pdev->dev; 2239 unsigned long vm_pgoff; 2240 int ret; 2241 2242 switch (qfr->type) { 2243 case UACCE_QFRT_MMIO: 2244 if (qm->ver == QM_HW_V1) { 2245 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2246 return -EINVAL; 2247 } else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) { 2248 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2249 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2250 return -EINVAL; 2251 } else { 2252 if (sz > qm->db_interval) 2253 return -EINVAL; 2254 } 2255 2256 vma->vm_flags |= VM_IO; 2257 2258 return remap_pfn_range(vma, vma->vm_start, 2259 phys_base >> PAGE_SHIFT, 2260 sz, pgprot_noncached(vma->vm_page_prot)); 2261 case UACCE_QFRT_DUS: 2262 if (sz != qp->qdma.size) 2263 return -EINVAL; 2264 2265 /* 2266 * dma_mmap_coherent() requires vm_pgoff as 0 2267 * restore vm_pfoff to initial value for mmap() 2268 */ 2269 vm_pgoff = vma->vm_pgoff; 2270 vma->vm_pgoff = 0; 2271 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2272 qp->qdma.dma, sz); 2273 vma->vm_pgoff = vm_pgoff; 2274 return ret; 2275 2276 default: 2277 return -EINVAL; 2278 } 2279 } 2280 2281 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2282 { 2283 struct hisi_qp *qp = q->priv; 2284 2285 return hisi_qm_start_qp(qp, qp->pasid); 2286 } 2287 2288 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2289 { 2290 hisi_qm_stop_qp(q->priv); 2291 } 2292 2293 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2294 { 2295 struct hisi_qm *qm = q->uacce->priv; 2296 struct hisi_qp *qp = q->priv; 2297 2298 down_write(&qm->qps_lock); 2299 qp->alg_type = type; 2300 up_write(&qm->qps_lock); 2301 } 2302 2303 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2304 unsigned long arg) 2305 { 2306 struct hisi_qp *qp = q->priv; 2307 struct hisi_qp_ctx qp_ctx; 2308 2309 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2310 if (copy_from_user(&qp_ctx, (void __user *)arg, 2311 sizeof(struct hisi_qp_ctx))) 2312 return -EFAULT; 2313 2314 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 2315 return -EINVAL; 2316 2317 qm_set_sqctype(q, qp_ctx.qc_type); 2318 qp_ctx.id = qp->qp_id; 2319 2320 if (copy_to_user((void __user *)arg, &qp_ctx, 2321 sizeof(struct hisi_qp_ctx))) 2322 return -EFAULT; 2323 } else { 2324 return -EINVAL; 2325 } 2326 2327 return 0; 2328 } 2329 2330 static const struct uacce_ops uacce_qm_ops = { 2331 .get_available_instances = hisi_qm_get_available_instances, 2332 .get_queue = hisi_qm_uacce_get_queue, 2333 .put_queue = hisi_qm_uacce_put_queue, 2334 .start_queue = hisi_qm_uacce_start_queue, 2335 .stop_queue = hisi_qm_uacce_stop_queue, 2336 .mmap = hisi_qm_uacce_mmap, 2337 .ioctl = hisi_qm_uacce_ioctl, 2338 }; 2339 2340 static int qm_alloc_uacce(struct hisi_qm *qm) 2341 { 2342 struct pci_dev *pdev = qm->pdev; 2343 struct uacce_device *uacce; 2344 unsigned long mmio_page_nr; 2345 unsigned long dus_page_nr; 2346 struct uacce_interface interface = { 2347 .flags = UACCE_DEV_SVA, 2348 .ops = &uacce_qm_ops, 2349 }; 2350 int ret; 2351 2352 ret = strscpy(interface.name, pdev->driver->name, 2353 sizeof(interface.name)); 2354 if (ret < 0) 2355 return -ENAMETOOLONG; 2356 2357 uacce = uacce_alloc(&pdev->dev, &interface); 2358 if (IS_ERR(uacce)) 2359 return PTR_ERR(uacce); 2360 2361 if (uacce->flags & UACCE_DEV_SVA && qm->mode == UACCE_MODE_SVA) { 2362 qm->use_sva = true; 2363 } else { 2364 /* only consider sva case */ 2365 uacce_remove(uacce); 2366 qm->uacce = NULL; 2367 return -EINVAL; 2368 } 2369 2370 uacce->is_vf = pdev->is_virtfn; 2371 uacce->priv = qm; 2372 uacce->algs = qm->algs; 2373 2374 if (qm->ver == QM_HW_V1) 2375 uacce->api_ver = HISI_QM_API_VER_BASE; 2376 else if (qm->ver == QM_HW_V2) 2377 uacce->api_ver = HISI_QM_API_VER2_BASE; 2378 else 2379 uacce->api_ver = HISI_QM_API_VER3_BASE; 2380 2381 if (qm->ver == QM_HW_V1) 2382 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2383 else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) 2384 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2385 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2386 else 2387 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2388 2389 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH + 2390 sizeof(struct qm_cqe) * QM_Q_DEPTH) >> PAGE_SHIFT; 2391 2392 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2393 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2394 2395 qm->uacce = uacce; 2396 2397 return 0; 2398 } 2399 2400 /** 2401 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2402 * there is user on the QM, return failure without doing anything. 2403 * @qm: The qm needed to be fronzen. 2404 * 2405 * This function frozes QM, then we can do SRIOV disabling. 2406 */ 2407 static int qm_frozen(struct hisi_qm *qm) 2408 { 2409 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2410 return 0; 2411 2412 down_write(&qm->qps_lock); 2413 2414 if (!qm->qp_in_used) { 2415 qm->qp_in_used = qm->qp_num; 2416 up_write(&qm->qps_lock); 2417 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2418 return 0; 2419 } 2420 2421 up_write(&qm->qps_lock); 2422 2423 return -EBUSY; 2424 } 2425 2426 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2427 struct hisi_qm_list *qm_list) 2428 { 2429 struct hisi_qm *qm, *vf_qm; 2430 struct pci_dev *dev; 2431 int ret = 0; 2432 2433 if (!qm_list || !pdev) 2434 return -EINVAL; 2435 2436 /* Try to frozen all the VFs as disable SRIOV */ 2437 mutex_lock(&qm_list->lock); 2438 list_for_each_entry(qm, &qm_list->list, list) { 2439 dev = qm->pdev; 2440 if (dev == pdev) 2441 continue; 2442 if (pci_physfn(dev) == pdev) { 2443 vf_qm = pci_get_drvdata(dev); 2444 ret = qm_frozen(vf_qm); 2445 if (ret) 2446 goto frozen_fail; 2447 } 2448 } 2449 2450 frozen_fail: 2451 mutex_unlock(&qm_list->lock); 2452 2453 return ret; 2454 } 2455 2456 /** 2457 * hisi_qm_wait_task_finish() - Wait until the task is finished 2458 * when removing the driver. 2459 * @qm: The qm needed to wait for the task to finish. 2460 * @qm_list: The list of all available devices. 2461 */ 2462 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2463 { 2464 while (qm_frozen(qm) || 2465 ((qm->fun_type == QM_HW_PF) && 2466 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2467 msleep(WAIT_PERIOD); 2468 } 2469 2470 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2471 test_bit(QM_RESETTING, &qm->misc_ctl)) 2472 msleep(WAIT_PERIOD); 2473 2474 udelay(REMOVE_WAIT_DELAY); 2475 } 2476 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2477 2478 /** 2479 * hisi_qm_get_free_qp_num() - Get free number of qp in qm. 2480 * @qm: The qm which want to get free qp. 2481 * 2482 * This function return free number of qp in qm. 2483 */ 2484 int hisi_qm_get_free_qp_num(struct hisi_qm *qm) 2485 { 2486 int ret; 2487 2488 down_read(&qm->qps_lock); 2489 ret = qm->qp_num - qm->qp_in_used; 2490 up_read(&qm->qps_lock); 2491 2492 return ret; 2493 } 2494 EXPORT_SYMBOL_GPL(hisi_qm_get_free_qp_num); 2495 2496 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2497 { 2498 struct device *dev = &qm->pdev->dev; 2499 struct qm_dma *qdma; 2500 int i; 2501 2502 for (i = num - 1; i >= 0; i--) { 2503 qdma = &qm->qp_array[i].qdma; 2504 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2505 } 2506 2507 kfree(qm->qp_array); 2508 } 2509 2510 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id) 2511 { 2512 struct device *dev = &qm->pdev->dev; 2513 size_t off = qm->sqe_size * QM_Q_DEPTH; 2514 struct hisi_qp *qp; 2515 2516 qp = &qm->qp_array[id]; 2517 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2518 GFP_KERNEL); 2519 if (!qp->qdma.va) 2520 return -ENOMEM; 2521 2522 qp->sqe = qp->qdma.va; 2523 qp->sqe_dma = qp->qdma.dma; 2524 qp->cqe = qp->qdma.va + off; 2525 qp->cqe_dma = qp->qdma.dma + off; 2526 qp->qdma.size = dma_size; 2527 qp->qm = qm; 2528 qp->qp_id = id; 2529 2530 return 0; 2531 } 2532 2533 static int hisi_qm_memory_init(struct hisi_qm *qm) 2534 { 2535 struct device *dev = &qm->pdev->dev; 2536 size_t qp_dma_size, off = 0; 2537 int i, ret = 0; 2538 2539 #define QM_INIT_BUF(qm, type, num) do { \ 2540 (qm)->type = ((qm)->qdma.va + (off)); \ 2541 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 2542 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 2543 } while (0) 2544 2545 idr_init(&qm->qp_idr); 2546 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) + 2547 QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) + 2548 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 2549 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 2550 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 2551 GFP_ATOMIC); 2552 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 2553 if (!qm->qdma.va) 2554 return -ENOMEM; 2555 2556 QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH); 2557 QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH); 2558 QM_INIT_BUF(qm, sqc, qm->qp_num); 2559 QM_INIT_BUF(qm, cqc, qm->qp_num); 2560 2561 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 2562 if (!qm->qp_array) { 2563 ret = -ENOMEM; 2564 goto err_alloc_qp_array; 2565 } 2566 2567 /* one more page for device or qp statuses */ 2568 qp_dma_size = qm->sqe_size * QM_Q_DEPTH + 2569 sizeof(struct qm_cqe) * QM_Q_DEPTH; 2570 qp_dma_size = PAGE_ALIGN(qp_dma_size); 2571 for (i = 0; i < qm->qp_num; i++) { 2572 ret = hisi_qp_memory_init(qm, qp_dma_size, i); 2573 if (ret) 2574 goto err_init_qp_mem; 2575 2576 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 2577 } 2578 2579 return ret; 2580 2581 err_init_qp_mem: 2582 hisi_qp_memory_uninit(qm, i); 2583 err_alloc_qp_array: 2584 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 2585 2586 return ret; 2587 } 2588 2589 static void hisi_qm_pre_init(struct hisi_qm *qm) 2590 { 2591 struct pci_dev *pdev = qm->pdev; 2592 2593 if (qm->ver == QM_HW_V1) 2594 qm->ops = &qm_hw_ops_v1; 2595 else if (qm->ver == QM_HW_V2) 2596 qm->ops = &qm_hw_ops_v2; 2597 else 2598 qm->ops = &qm_hw_ops_v3; 2599 2600 pci_set_drvdata(pdev, qm); 2601 mutex_init(&qm->mailbox_lock); 2602 init_rwsem(&qm->qps_lock); 2603 qm->qp_in_used = 0; 2604 qm->misc_ctl = false; 2605 } 2606 2607 static void qm_put_pci_res(struct hisi_qm *qm) 2608 { 2609 struct pci_dev *pdev = qm->pdev; 2610 2611 if (qm->use_db_isolation) 2612 iounmap(qm->db_io_base); 2613 2614 iounmap(qm->io_base); 2615 pci_release_mem_regions(pdev); 2616 } 2617 2618 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 2619 { 2620 struct pci_dev *pdev = qm->pdev; 2621 2622 pci_free_irq_vectors(pdev); 2623 qm_put_pci_res(qm); 2624 pci_disable_device(pdev); 2625 } 2626 2627 /** 2628 * hisi_qm_uninit() - Uninitialize qm. 2629 * @qm: The qm needed uninit. 2630 * 2631 * This function uninits qm related device resources. 2632 */ 2633 void hisi_qm_uninit(struct hisi_qm *qm) 2634 { 2635 struct pci_dev *pdev = qm->pdev; 2636 struct device *dev = &pdev->dev; 2637 2638 down_write(&qm->qps_lock); 2639 2640 if (!qm_avail_state(qm, QM_CLOSE)) { 2641 up_write(&qm->qps_lock); 2642 return; 2643 } 2644 2645 hisi_qp_memory_uninit(qm, qm->qp_num); 2646 idr_destroy(&qm->qp_idr); 2647 2648 if (qm->qdma.va) { 2649 hisi_qm_cache_wb(qm); 2650 dma_free_coherent(dev, qm->qdma.size, 2651 qm->qdma.va, qm->qdma.dma); 2652 } 2653 2654 qm_irq_unregister(qm); 2655 hisi_qm_pci_uninit(qm); 2656 uacce_remove(qm->uacce); 2657 qm->uacce = NULL; 2658 2659 up_write(&qm->qps_lock); 2660 } 2661 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 2662 2663 /** 2664 * hisi_qm_get_vft() - Get vft from a qm. 2665 * @qm: The qm we want to get its vft. 2666 * @base: The base number of queue in vft. 2667 * @number: The number of queues in vft. 2668 * 2669 * We can allocate multiple queues to a qm by configuring virtual function 2670 * table. We get related configures by this function. Normally, we call this 2671 * function in VF driver to get the queue information. 2672 * 2673 * qm hw v1 does not support this interface. 2674 */ 2675 int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 2676 { 2677 if (!base || !number) 2678 return -EINVAL; 2679 2680 if (!qm->ops->get_vft) { 2681 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 2682 return -EINVAL; 2683 } 2684 2685 return qm->ops->get_vft(qm, base, number); 2686 } 2687 EXPORT_SYMBOL_GPL(hisi_qm_get_vft); 2688 2689 /** 2690 * hisi_qm_set_vft() - Set vft to a qm. 2691 * @qm: The qm we want to set its vft. 2692 * @fun_num: The function number. 2693 * @base: The base number of queue in vft. 2694 * @number: The number of queues in vft. 2695 * 2696 * This function is alway called in PF driver, it is used to assign queues 2697 * among PF and VFs. 2698 * 2699 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 2700 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 2701 * (VF function number 0x2) 2702 */ 2703 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 2704 u32 number) 2705 { 2706 u32 max_q_num = qm->ctrl_qp_num; 2707 2708 if (base >= max_q_num || number > max_q_num || 2709 (base + number) > max_q_num) 2710 return -EINVAL; 2711 2712 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 2713 } 2714 2715 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 2716 { 2717 struct hisi_qm_status *status = &qm->status; 2718 2719 status->eq_head = 0; 2720 status->aeq_head = 0; 2721 status->eqc_phase = true; 2722 status->aeqc_phase = true; 2723 } 2724 2725 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 2726 { 2727 struct device *dev = &qm->pdev->dev; 2728 struct qm_eqc *eqc; 2729 dma_addr_t eqc_dma; 2730 int ret; 2731 2732 eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); 2733 if (!eqc) 2734 return -ENOMEM; 2735 2736 eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 2737 eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 2738 if (qm->ver == QM_HW_V1) 2739 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 2740 eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT)); 2741 2742 eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), 2743 DMA_TO_DEVICE); 2744 if (dma_mapping_error(dev, eqc_dma)) { 2745 kfree(eqc); 2746 return -ENOMEM; 2747 } 2748 2749 ret = qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); 2750 dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); 2751 kfree(eqc); 2752 2753 return ret; 2754 } 2755 2756 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 2757 { 2758 struct device *dev = &qm->pdev->dev; 2759 struct qm_aeqc *aeqc; 2760 dma_addr_t aeqc_dma; 2761 int ret; 2762 2763 aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); 2764 if (!aeqc) 2765 return -ENOMEM; 2766 2767 aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 2768 aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 2769 aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT)); 2770 2771 aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), 2772 DMA_TO_DEVICE); 2773 if (dma_mapping_error(dev, aeqc_dma)) { 2774 kfree(aeqc); 2775 return -ENOMEM; 2776 } 2777 2778 ret = qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); 2779 dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); 2780 kfree(aeqc); 2781 2782 return ret; 2783 } 2784 2785 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 2786 { 2787 struct device *dev = &qm->pdev->dev; 2788 int ret; 2789 2790 qm_init_eq_aeq_status(qm); 2791 2792 ret = qm_eq_ctx_cfg(qm); 2793 if (ret) { 2794 dev_err(dev, "Set eqc failed!\n"); 2795 return ret; 2796 } 2797 2798 return qm_aeq_ctx_cfg(qm); 2799 } 2800 2801 static int __hisi_qm_start(struct hisi_qm *qm) 2802 { 2803 int ret; 2804 2805 WARN_ON(!qm->qdma.va); 2806 2807 if (qm->fun_type == QM_HW_PF) { 2808 ret = qm_dev_mem_reset(qm); 2809 if (ret) 2810 return ret; 2811 2812 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 2813 if (ret) 2814 return ret; 2815 } 2816 2817 ret = qm_eq_aeq_ctx_cfg(qm); 2818 if (ret) 2819 return ret; 2820 2821 ret = qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 2822 if (ret) 2823 return ret; 2824 2825 ret = qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 2826 if (ret) 2827 return ret; 2828 2829 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 2830 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 2831 2832 return 0; 2833 } 2834 2835 /** 2836 * hisi_qm_start() - start qm 2837 * @qm: The qm to be started. 2838 * 2839 * This function starts a qm, then we can allocate qp from this qm. 2840 */ 2841 int hisi_qm_start(struct hisi_qm *qm) 2842 { 2843 struct device *dev = &qm->pdev->dev; 2844 int ret = 0; 2845 2846 down_write(&qm->qps_lock); 2847 2848 if (!qm_avail_state(qm, QM_START)) { 2849 up_write(&qm->qps_lock); 2850 return -EPERM; 2851 } 2852 2853 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 2854 2855 if (!qm->qp_num) { 2856 dev_err(dev, "qp_num should not be 0\n"); 2857 ret = -EINVAL; 2858 goto err_unlock; 2859 } 2860 2861 ret = __hisi_qm_start(qm); 2862 if (!ret) 2863 atomic_set(&qm->status.flags, QM_START); 2864 2865 err_unlock: 2866 up_write(&qm->qps_lock); 2867 return ret; 2868 } 2869 EXPORT_SYMBOL_GPL(hisi_qm_start); 2870 2871 static int qm_restart(struct hisi_qm *qm) 2872 { 2873 struct device *dev = &qm->pdev->dev; 2874 struct hisi_qp *qp; 2875 int ret, i; 2876 2877 ret = hisi_qm_start(qm); 2878 if (ret < 0) 2879 return ret; 2880 2881 down_write(&qm->qps_lock); 2882 for (i = 0; i < qm->qp_num; i++) { 2883 qp = &qm->qp_array[i]; 2884 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 2885 qp->is_resetting == true) { 2886 ret = qm_start_qp_nolock(qp, 0); 2887 if (ret < 0) { 2888 dev_err(dev, "Failed to start qp%d!\n", i); 2889 2890 up_write(&qm->qps_lock); 2891 return ret; 2892 } 2893 qp->is_resetting = false; 2894 } 2895 } 2896 up_write(&qm->qps_lock); 2897 2898 return 0; 2899 } 2900 2901 /* Stop started qps in reset flow */ 2902 static int qm_stop_started_qp(struct hisi_qm *qm) 2903 { 2904 struct device *dev = &qm->pdev->dev; 2905 struct hisi_qp *qp; 2906 int i, ret; 2907 2908 for (i = 0; i < qm->qp_num; i++) { 2909 qp = &qm->qp_array[i]; 2910 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 2911 qp->is_resetting = true; 2912 ret = qm_stop_qp_nolock(qp); 2913 if (ret < 0) { 2914 dev_err(dev, "Failed to stop qp%d!\n", i); 2915 return ret; 2916 } 2917 } 2918 } 2919 2920 return 0; 2921 } 2922 2923 2924 /** 2925 * qm_clear_queues() - Clear all queues memory in a qm. 2926 * @qm: The qm in which the queues will be cleared. 2927 * 2928 * This function clears all queues memory in a qm. Reset of accelerator can 2929 * use this to clear queues. 2930 */ 2931 static void qm_clear_queues(struct hisi_qm *qm) 2932 { 2933 struct hisi_qp *qp; 2934 int i; 2935 2936 for (i = 0; i < qm->qp_num; i++) { 2937 qp = &qm->qp_array[i]; 2938 if (qp->is_resetting) 2939 memset(qp->qdma.va, 0, qp->qdma.size); 2940 } 2941 2942 memset(qm->qdma.va, 0, qm->qdma.size); 2943 } 2944 2945 /** 2946 * hisi_qm_stop() - Stop a qm. 2947 * @qm: The qm which will be stopped. 2948 * @r: The reason to stop qm. 2949 * 2950 * This function stops qm and its qps, then qm can not accept request. 2951 * Related resources are not released at this state, we can use hisi_qm_start 2952 * to let qm start again. 2953 */ 2954 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 2955 { 2956 struct device *dev = &qm->pdev->dev; 2957 int ret = 0; 2958 2959 down_write(&qm->qps_lock); 2960 2961 qm->status.stop_reason = r; 2962 if (!qm_avail_state(qm, QM_STOP)) { 2963 ret = -EPERM; 2964 goto err_unlock; 2965 } 2966 2967 if (qm->status.stop_reason == QM_SOFT_RESET || 2968 qm->status.stop_reason == QM_FLR) { 2969 ret = qm_stop_started_qp(qm); 2970 if (ret < 0) { 2971 dev_err(dev, "Failed to stop started qp!\n"); 2972 goto err_unlock; 2973 } 2974 } 2975 2976 /* Mask eq and aeq irq */ 2977 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 2978 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 2979 2980 if (qm->fun_type == QM_HW_PF) { 2981 ret = hisi_qm_set_vft(qm, 0, 0, 0); 2982 if (ret < 0) { 2983 dev_err(dev, "Failed to set vft!\n"); 2984 ret = -EBUSY; 2985 goto err_unlock; 2986 } 2987 } 2988 2989 qm_clear_queues(qm); 2990 atomic_set(&qm->status.flags, QM_STOP); 2991 2992 err_unlock: 2993 up_write(&qm->qps_lock); 2994 return ret; 2995 } 2996 EXPORT_SYMBOL_GPL(hisi_qm_stop); 2997 2998 static ssize_t qm_status_read(struct file *filp, char __user *buffer, 2999 size_t count, loff_t *pos) 3000 { 3001 struct hisi_qm *qm = filp->private_data; 3002 char buf[QM_DBG_READ_LEN]; 3003 int val, len; 3004 3005 val = atomic_read(&qm->status.flags); 3006 len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]); 3007 3008 return simple_read_from_buffer(buffer, count, pos, buf, len); 3009 } 3010 3011 static const struct file_operations qm_status_fops = { 3012 .owner = THIS_MODULE, 3013 .open = simple_open, 3014 .read = qm_status_read, 3015 }; 3016 3017 static int qm_debugfs_atomic64_set(void *data, u64 val) 3018 { 3019 if (val) 3020 return -EINVAL; 3021 3022 atomic64_set((atomic64_t *)data, 0); 3023 3024 return 0; 3025 } 3026 3027 static int qm_debugfs_atomic64_get(void *data, u64 *val) 3028 { 3029 *val = atomic64_read((atomic64_t *)data); 3030 3031 return 0; 3032 } 3033 3034 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get, 3035 qm_debugfs_atomic64_set, "%llu\n"); 3036 3037 /** 3038 * hisi_qm_debug_init() - Initialize qm related debugfs files. 3039 * @qm: The qm for which we want to add debugfs files. 3040 * 3041 * Create qm related debugfs files. 3042 */ 3043 void hisi_qm_debug_init(struct hisi_qm *qm) 3044 { 3045 struct qm_dfx *dfx = &qm->debug.dfx; 3046 struct dentry *qm_d; 3047 void *data; 3048 int i; 3049 3050 qm_d = debugfs_create_dir("qm", qm->debug.debug_root); 3051 qm->debug.qm_d = qm_d; 3052 3053 /* only show this in PF */ 3054 if (qm->fun_type == QM_HW_PF) { 3055 qm_create_debugfs_file(qm, qm->debug.debug_root, CURRENT_QM); 3056 for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++) 3057 qm_create_debugfs_file(qm, qm_d, i); 3058 } 3059 3060 debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops); 3061 3062 debugfs_create_file("cmd", 0444, qm->debug.qm_d, qm, &qm_cmd_fops); 3063 3064 debugfs_create_file("status", 0444, qm->debug.qm_d, qm, 3065 &qm_status_fops); 3066 for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) { 3067 data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset); 3068 debugfs_create_file(qm_dfx_files[i].name, 3069 0644, 3070 qm_d, 3071 data, 3072 &qm_atomic64_ops); 3073 } 3074 } 3075 EXPORT_SYMBOL_GPL(hisi_qm_debug_init); 3076 3077 /** 3078 * hisi_qm_debug_regs_clear() - clear qm debug related registers. 3079 * @qm: The qm for which we want to clear its debug registers. 3080 */ 3081 void hisi_qm_debug_regs_clear(struct hisi_qm *qm) 3082 { 3083 struct qm_dfx_registers *regs; 3084 int i; 3085 3086 /* clear current_qm */ 3087 writel(0x0, qm->io_base + QM_DFX_MB_CNT_VF); 3088 writel(0x0, qm->io_base + QM_DFX_DB_CNT_VF); 3089 3090 /* clear current_q */ 3091 writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN); 3092 writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN); 3093 3094 /* 3095 * these registers are reading and clearing, so clear them after 3096 * reading them. 3097 */ 3098 writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE); 3099 3100 regs = qm_dfx_regs; 3101 for (i = 0; i < CNT_CYC_REGS_NUM; i++) { 3102 readl(qm->io_base + regs->reg_offset); 3103 regs++; 3104 } 3105 3106 writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE); 3107 } 3108 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear); 3109 3110 static void qm_hw_error_init(struct hisi_qm *qm) 3111 { 3112 struct hisi_qm_err_info *err_info = &qm->err_info; 3113 3114 if (!qm->ops->hw_error_init) { 3115 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3116 return; 3117 } 3118 3119 qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe); 3120 } 3121 3122 static void qm_hw_error_uninit(struct hisi_qm *qm) 3123 { 3124 if (!qm->ops->hw_error_uninit) { 3125 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3126 return; 3127 } 3128 3129 qm->ops->hw_error_uninit(qm); 3130 } 3131 3132 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3133 { 3134 if (!qm->ops->hw_error_handle) { 3135 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3136 return ACC_ERR_NONE; 3137 } 3138 3139 return qm->ops->hw_error_handle(qm); 3140 } 3141 3142 /** 3143 * hisi_qm_dev_err_init() - Initialize device error configuration. 3144 * @qm: The qm for which we want to do error initialization. 3145 * 3146 * Initialize QM and device error related configuration. 3147 */ 3148 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3149 { 3150 if (qm->fun_type == QM_HW_VF) 3151 return; 3152 3153 qm_hw_error_init(qm); 3154 3155 if (!qm->err_ini->hw_err_enable) { 3156 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3157 return; 3158 } 3159 qm->err_ini->hw_err_enable(qm); 3160 } 3161 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3162 3163 /** 3164 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3165 * @qm: The qm for which we want to do error uninitialization. 3166 * 3167 * Uninitialize QM and device error related configuration. 3168 */ 3169 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3170 { 3171 if (qm->fun_type == QM_HW_VF) 3172 return; 3173 3174 qm_hw_error_uninit(qm); 3175 3176 if (!qm->err_ini->hw_err_disable) { 3177 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3178 return; 3179 } 3180 qm->err_ini->hw_err_disable(qm); 3181 } 3182 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3183 3184 /** 3185 * hisi_qm_free_qps() - free multiple queue pairs. 3186 * @qps: The queue pairs need to be freed. 3187 * @qp_num: The num of queue pairs. 3188 */ 3189 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3190 { 3191 int i; 3192 3193 if (!qps || qp_num <= 0) 3194 return; 3195 3196 for (i = qp_num - 1; i >= 0; i--) 3197 hisi_qm_release_qp(qps[i]); 3198 } 3199 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3200 3201 static void free_list(struct list_head *head) 3202 { 3203 struct hisi_qm_resource *res, *tmp; 3204 3205 list_for_each_entry_safe(res, tmp, head, list) { 3206 list_del(&res->list); 3207 kfree(res); 3208 } 3209 } 3210 3211 static int hisi_qm_sort_devices(int node, struct list_head *head, 3212 struct hisi_qm_list *qm_list) 3213 { 3214 struct hisi_qm_resource *res, *tmp; 3215 struct hisi_qm *qm; 3216 struct list_head *n; 3217 struct device *dev; 3218 int dev_node = 0; 3219 3220 list_for_each_entry(qm, &qm_list->list, list) { 3221 dev = &qm->pdev->dev; 3222 3223 if (IS_ENABLED(CONFIG_NUMA)) { 3224 dev_node = dev_to_node(dev); 3225 if (dev_node < 0) 3226 dev_node = 0; 3227 } 3228 3229 res = kzalloc(sizeof(*res), GFP_KERNEL); 3230 if (!res) 3231 return -ENOMEM; 3232 3233 res->qm = qm; 3234 res->distance = node_distance(dev_node, node); 3235 n = head; 3236 list_for_each_entry(tmp, head, list) { 3237 if (res->distance < tmp->distance) { 3238 n = &tmp->list; 3239 break; 3240 } 3241 } 3242 list_add_tail(&res->list, n); 3243 } 3244 3245 return 0; 3246 } 3247 3248 /** 3249 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3250 * @qm_list: The list of all available devices. 3251 * @qp_num: The number of queue pairs need created. 3252 * @alg_type: The algorithm type. 3253 * @node: The numa node. 3254 * @qps: The queue pairs need created. 3255 * 3256 * This function will sort all available device according to numa distance. 3257 * Then try to create all queue pairs from one device, if all devices do 3258 * not meet the requirements will return error. 3259 */ 3260 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3261 u8 alg_type, int node, struct hisi_qp **qps) 3262 { 3263 struct hisi_qm_resource *tmp; 3264 int ret = -ENODEV; 3265 LIST_HEAD(head); 3266 int i; 3267 3268 if (!qps || !qm_list || qp_num <= 0) 3269 return -EINVAL; 3270 3271 mutex_lock(&qm_list->lock); 3272 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3273 mutex_unlock(&qm_list->lock); 3274 goto err; 3275 } 3276 3277 list_for_each_entry(tmp, &head, list) { 3278 for (i = 0; i < qp_num; i++) { 3279 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3280 if (IS_ERR(qps[i])) { 3281 hisi_qm_free_qps(qps, i); 3282 break; 3283 } 3284 } 3285 3286 if (i == qp_num) { 3287 ret = 0; 3288 break; 3289 } 3290 } 3291 3292 mutex_unlock(&qm_list->lock); 3293 if (ret) 3294 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3295 node, alg_type, qp_num); 3296 3297 err: 3298 free_list(&head); 3299 return ret; 3300 } 3301 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3302 3303 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3304 { 3305 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3306 u32 max_qp_num = qm->max_qp_num; 3307 u32 q_base = qm->qp_num; 3308 int ret; 3309 3310 if (!num_vfs) 3311 return -EINVAL; 3312 3313 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3314 3315 /* If vfs_q_num is less than num_vfs, return error. */ 3316 if (vfs_q_num < num_vfs) 3317 return -EINVAL; 3318 3319 q_num = vfs_q_num / num_vfs; 3320 remain_q_num = vfs_q_num % num_vfs; 3321 3322 for (i = num_vfs; i > 0; i--) { 3323 /* 3324 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3325 * remaining queues equally. 3326 */ 3327 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3328 act_q_num = q_num + remain_q_num; 3329 remain_q_num = 0; 3330 } else if (remain_q_num > 0) { 3331 act_q_num = q_num + 1; 3332 remain_q_num--; 3333 } else { 3334 act_q_num = q_num; 3335 } 3336 3337 act_q_num = min_t(int, act_q_num, max_qp_num); 3338 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3339 if (ret) { 3340 for (j = num_vfs; j > i; j--) 3341 hisi_qm_set_vft(qm, j, 0, 0); 3342 return ret; 3343 } 3344 q_base += act_q_num; 3345 } 3346 3347 return 0; 3348 } 3349 3350 static int qm_clear_vft_config(struct hisi_qm *qm) 3351 { 3352 int ret; 3353 u32 i; 3354 3355 for (i = 1; i <= qm->vfs_num; i++) { 3356 ret = hisi_qm_set_vft(qm, i, 0, 0); 3357 if (ret) 3358 return ret; 3359 } 3360 qm->vfs_num = 0; 3361 3362 return 0; 3363 } 3364 3365 /** 3366 * hisi_qm_sriov_enable() - enable virtual functions 3367 * @pdev: the PCIe device 3368 * @max_vfs: the number of virtual functions to enable 3369 * 3370 * Returns the number of enabled VFs. If there are VFs enabled already or 3371 * max_vfs is more than the total number of device can be enabled, returns 3372 * failure. 3373 */ 3374 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3375 { 3376 struct hisi_qm *qm = pci_get_drvdata(pdev); 3377 int pre_existing_vfs, num_vfs, total_vfs, ret; 3378 3379 total_vfs = pci_sriov_get_totalvfs(pdev); 3380 pre_existing_vfs = pci_num_vf(pdev); 3381 if (pre_existing_vfs) { 3382 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3383 pre_existing_vfs); 3384 return 0; 3385 } 3386 3387 num_vfs = min_t(int, max_vfs, total_vfs); 3388 ret = qm_vf_q_assign(qm, num_vfs); 3389 if (ret) { 3390 pci_err(pdev, "Can't assign queues for VF!\n"); 3391 return ret; 3392 } 3393 3394 qm->vfs_num = num_vfs; 3395 3396 ret = pci_enable_sriov(pdev, num_vfs); 3397 if (ret) { 3398 pci_err(pdev, "Can't enable VF!\n"); 3399 qm_clear_vft_config(qm); 3400 return ret; 3401 } 3402 3403 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3404 3405 return num_vfs; 3406 } 3407 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3408 3409 /** 3410 * hisi_qm_sriov_disable - disable virtual functions 3411 * @pdev: the PCI device. 3412 * @is_frozen: true when all the VFs are frozen. 3413 * 3414 * Return failure if there are VFs assigned already or VF is in used. 3415 */ 3416 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3417 { 3418 struct hisi_qm *qm = pci_get_drvdata(pdev); 3419 3420 if (pci_vfs_assigned(pdev)) { 3421 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3422 return -EPERM; 3423 } 3424 3425 /* While VF is in used, SRIOV cannot be disabled. */ 3426 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 3427 pci_err(pdev, "Task is using its VF!\n"); 3428 return -EBUSY; 3429 } 3430 3431 pci_disable_sriov(pdev); 3432 return qm_clear_vft_config(qm); 3433 } 3434 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 3435 3436 /** 3437 * hisi_qm_sriov_configure - configure the number of VFs 3438 * @pdev: The PCI device 3439 * @num_vfs: The number of VFs need enabled 3440 * 3441 * Enable SR-IOV according to num_vfs, 0 means disable. 3442 */ 3443 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 3444 { 3445 if (num_vfs == 0) 3446 return hisi_qm_sriov_disable(pdev, false); 3447 else 3448 return hisi_qm_sriov_enable(pdev, num_vfs); 3449 } 3450 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 3451 3452 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 3453 { 3454 u32 err_sts; 3455 3456 if (!qm->err_ini->get_dev_hw_err_status) { 3457 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 3458 return ACC_ERR_NONE; 3459 } 3460 3461 /* get device hardware error status */ 3462 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 3463 if (err_sts) { 3464 if (err_sts & qm->err_info.ecc_2bits_mask) 3465 qm->err_status.is_dev_ecc_mbit = true; 3466 3467 if (qm->err_ini->log_dev_hw_err) 3468 qm->err_ini->log_dev_hw_err(qm, err_sts); 3469 3470 /* ce error does not need to be reset */ 3471 if ((err_sts | qm->err_info.dev_ce_mask) == 3472 qm->err_info.dev_ce_mask) { 3473 if (qm->err_ini->clear_dev_hw_err_status) 3474 qm->err_ini->clear_dev_hw_err_status(qm, 3475 err_sts); 3476 3477 return ACC_ERR_RECOVERED; 3478 } 3479 3480 return ACC_ERR_NEED_RESET; 3481 } 3482 3483 return ACC_ERR_RECOVERED; 3484 } 3485 3486 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 3487 { 3488 enum acc_err_result qm_ret, dev_ret; 3489 3490 /* log qm error */ 3491 qm_ret = qm_hw_error_handle(qm); 3492 3493 /* log device error */ 3494 dev_ret = qm_dev_err_handle(qm); 3495 3496 return (qm_ret == ACC_ERR_NEED_RESET || 3497 dev_ret == ACC_ERR_NEED_RESET) ? 3498 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 3499 } 3500 3501 /** 3502 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 3503 * @pdev: The PCI device which need report error. 3504 * @state: The connectivity between CPU and device. 3505 * 3506 * We register this function into PCIe AER handlers, It will report device or 3507 * qm hardware error status when error occur. 3508 */ 3509 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 3510 pci_channel_state_t state) 3511 { 3512 struct hisi_qm *qm = pci_get_drvdata(pdev); 3513 enum acc_err_result ret; 3514 3515 if (pdev->is_virtfn) 3516 return PCI_ERS_RESULT_NONE; 3517 3518 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 3519 if (state == pci_channel_io_perm_failure) 3520 return PCI_ERS_RESULT_DISCONNECT; 3521 3522 ret = qm_process_dev_error(qm); 3523 if (ret == ACC_ERR_NEED_RESET) 3524 return PCI_ERS_RESULT_NEED_RESET; 3525 3526 return PCI_ERS_RESULT_RECOVERED; 3527 } 3528 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 3529 3530 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 3531 { 3532 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 3533 } 3534 3535 static int qm_check_req_recv(struct hisi_qm *qm) 3536 { 3537 struct pci_dev *pdev = qm->pdev; 3538 int ret; 3539 u32 val; 3540 3541 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 3542 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 3543 (val == ACC_VENDOR_ID_VALUE), 3544 POLL_PERIOD, POLL_TIMEOUT); 3545 if (ret) { 3546 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 3547 return ret; 3548 } 3549 3550 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 3551 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 3552 (val == PCI_VENDOR_ID_HUAWEI), 3553 POLL_PERIOD, POLL_TIMEOUT); 3554 if (ret) 3555 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 3556 3557 return ret; 3558 } 3559 3560 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 3561 { 3562 struct pci_dev *pdev = qm->pdev; 3563 u16 cmd; 3564 int i; 3565 3566 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 3567 if (set) 3568 cmd |= PCI_COMMAND_MEMORY; 3569 else 3570 cmd &= ~PCI_COMMAND_MEMORY; 3571 3572 pci_write_config_word(pdev, PCI_COMMAND, cmd); 3573 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 3574 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 3575 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 3576 return 0; 3577 3578 udelay(1); 3579 } 3580 3581 return -ETIMEDOUT; 3582 } 3583 3584 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 3585 { 3586 struct pci_dev *pdev = qm->pdev; 3587 u16 sriov_ctrl; 3588 int pos; 3589 int i; 3590 3591 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 3592 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 3593 if (set) 3594 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 3595 else 3596 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 3597 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 3598 3599 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 3600 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 3601 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 3602 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 3603 return 0; 3604 3605 udelay(1); 3606 } 3607 3608 return -ETIMEDOUT; 3609 } 3610 3611 static int qm_set_msi(struct hisi_qm *qm, bool set) 3612 { 3613 struct pci_dev *pdev = qm->pdev; 3614 3615 if (set) { 3616 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 3617 0); 3618 } else { 3619 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 3620 ACC_PEH_MSI_DISABLE); 3621 if (qm->err_status.is_qm_ecc_mbit || 3622 qm->err_status.is_dev_ecc_mbit) 3623 return 0; 3624 3625 mdelay(1); 3626 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 3627 return -EFAULT; 3628 } 3629 3630 return 0; 3631 } 3632 3633 static int qm_vf_reset_prepare(struct hisi_qm *qm, 3634 enum qm_stop_reason stop_reason) 3635 { 3636 struct hisi_qm_list *qm_list = qm->qm_list; 3637 struct pci_dev *pdev = qm->pdev; 3638 struct pci_dev *virtfn; 3639 struct hisi_qm *vf_qm; 3640 int ret = 0; 3641 3642 mutex_lock(&qm_list->lock); 3643 list_for_each_entry(vf_qm, &qm_list->list, list) { 3644 virtfn = vf_qm->pdev; 3645 if (virtfn == pdev) 3646 continue; 3647 3648 if (pci_physfn(virtfn) == pdev) { 3649 /* save VFs PCIE BAR configuration */ 3650 pci_save_state(virtfn); 3651 3652 ret = hisi_qm_stop(vf_qm, stop_reason); 3653 if (ret) 3654 goto stop_fail; 3655 } 3656 } 3657 3658 stop_fail: 3659 mutex_unlock(&qm_list->lock); 3660 return ret; 3661 } 3662 3663 static int qm_reset_prepare_ready(struct hisi_qm *qm) 3664 { 3665 struct pci_dev *pdev = qm->pdev; 3666 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 3667 int delay = 0; 3668 3669 /* All reset requests need to be queued for processing */ 3670 while (test_and_set_bit(QM_RESETTING, &pf_qm->misc_ctl)) { 3671 msleep(++delay); 3672 if (delay > QM_RESET_WAIT_TIMEOUT) 3673 return -EBUSY; 3674 } 3675 3676 return 0; 3677 } 3678 3679 static int qm_controller_reset_prepare(struct hisi_qm *qm) 3680 { 3681 struct pci_dev *pdev = qm->pdev; 3682 int ret; 3683 3684 ret = qm_reset_prepare_ready(qm); 3685 if (ret) { 3686 pci_err(pdev, "Controller reset not ready!\n"); 3687 return ret; 3688 } 3689 3690 if (qm->vfs_num) { 3691 ret = qm_vf_reset_prepare(qm, QM_SOFT_RESET); 3692 if (ret) { 3693 pci_err(pdev, "Fails to stop VFs!\n"); 3694 clear_bit(QM_RESETTING, &qm->misc_ctl); 3695 return ret; 3696 } 3697 } 3698 3699 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 3700 if (ret) { 3701 pci_err(pdev, "Fails to stop QM!\n"); 3702 clear_bit(QM_RESETTING, &qm->misc_ctl); 3703 return ret; 3704 } 3705 3706 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 3707 3708 return 0; 3709 } 3710 3711 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 3712 { 3713 u32 nfe_enb = 0; 3714 3715 if (!qm->err_status.is_dev_ecc_mbit && 3716 qm->err_status.is_qm_ecc_mbit && 3717 qm->err_ini->close_axi_master_ooo) { 3718 3719 qm->err_ini->close_axi_master_ooo(qm); 3720 3721 } else if (qm->err_status.is_dev_ecc_mbit && 3722 !qm->err_status.is_qm_ecc_mbit && 3723 !qm->err_ini->close_axi_master_ooo) { 3724 3725 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 3726 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 3727 qm->io_base + QM_RAS_NFE_ENABLE); 3728 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 3729 } 3730 } 3731 3732 static int qm_soft_reset(struct hisi_qm *qm) 3733 { 3734 struct pci_dev *pdev = qm->pdev; 3735 int ret; 3736 u32 val; 3737 3738 /* Ensure all doorbells and mailboxes received by QM */ 3739 ret = qm_check_req_recv(qm); 3740 if (ret) 3741 return ret; 3742 3743 if (qm->vfs_num) { 3744 ret = qm_set_vf_mse(qm, false); 3745 if (ret) { 3746 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 3747 return ret; 3748 } 3749 } 3750 3751 ret = qm_set_msi(qm, false); 3752 if (ret) { 3753 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 3754 return ret; 3755 } 3756 3757 qm_dev_ecc_mbit_handle(qm); 3758 3759 /* OOO register set and check */ 3760 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 3761 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 3762 3763 /* If bus lock, reset chip */ 3764 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 3765 val, 3766 (val == ACC_MASTER_TRANS_RETURN_RW), 3767 POLL_PERIOD, POLL_TIMEOUT); 3768 if (ret) { 3769 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 3770 return ret; 3771 } 3772 3773 ret = qm_set_pf_mse(qm, false); 3774 if (ret) { 3775 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 3776 return ret; 3777 } 3778 3779 /* The reset related sub-control registers are not in PCI BAR */ 3780 if (ACPI_HANDLE(&pdev->dev)) { 3781 unsigned long long value = 0; 3782 acpi_status s; 3783 3784 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 3785 qm->err_info.acpi_rst, 3786 NULL, &value); 3787 if (ACPI_FAILURE(s)) { 3788 pci_err(pdev, "NO controller reset method!\n"); 3789 return -EIO; 3790 } 3791 3792 if (value) { 3793 pci_err(pdev, "Reset step %llu failed!\n", value); 3794 return -EIO; 3795 } 3796 } else { 3797 pci_err(pdev, "No reset method!\n"); 3798 return -EINVAL; 3799 } 3800 3801 return 0; 3802 } 3803 3804 static int qm_vf_reset_done(struct hisi_qm *qm) 3805 { 3806 struct hisi_qm_list *qm_list = qm->qm_list; 3807 struct pci_dev *pdev = qm->pdev; 3808 struct pci_dev *virtfn; 3809 struct hisi_qm *vf_qm; 3810 int ret = 0; 3811 3812 mutex_lock(&qm_list->lock); 3813 list_for_each_entry(vf_qm, &qm_list->list, list) { 3814 virtfn = vf_qm->pdev; 3815 if (virtfn == pdev) 3816 continue; 3817 3818 if (pci_physfn(virtfn) == pdev) { 3819 /* enable VFs PCIE BAR configuration */ 3820 pci_restore_state(virtfn); 3821 3822 ret = qm_restart(vf_qm); 3823 if (ret) 3824 goto restart_fail; 3825 } 3826 } 3827 3828 restart_fail: 3829 mutex_unlock(&qm_list->lock); 3830 return ret; 3831 } 3832 3833 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 3834 { 3835 return qm->err_ini->get_dev_hw_err_status(qm); 3836 } 3837 3838 static int qm_dev_hw_init(struct hisi_qm *qm) 3839 { 3840 return qm->err_ini->hw_init(qm); 3841 } 3842 3843 static void qm_restart_prepare(struct hisi_qm *qm) 3844 { 3845 u32 value; 3846 3847 if (!qm->err_status.is_qm_ecc_mbit && 3848 !qm->err_status.is_dev_ecc_mbit) 3849 return; 3850 3851 /* temporarily close the OOO port used for PEH to write out MSI */ 3852 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 3853 writel(value & ~qm->err_info.msi_wr_port, 3854 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 3855 3856 /* clear dev ecc 2bit error source if having */ 3857 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 3858 if (value && qm->err_ini->clear_dev_hw_err_status) 3859 qm->err_ini->clear_dev_hw_err_status(qm, value); 3860 3861 /* clear QM ecc mbit error source */ 3862 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 3863 3864 /* clear AM Reorder Buffer ecc mbit source */ 3865 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 3866 3867 if (qm->err_ini->open_axi_master_ooo) 3868 qm->err_ini->open_axi_master_ooo(qm); 3869 } 3870 3871 static void qm_restart_done(struct hisi_qm *qm) 3872 { 3873 u32 value; 3874 3875 if (!qm->err_status.is_qm_ecc_mbit && 3876 !qm->err_status.is_dev_ecc_mbit) 3877 return; 3878 3879 /* open the OOO port for PEH to write out MSI */ 3880 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 3881 value |= qm->err_info.msi_wr_port; 3882 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 3883 3884 qm->err_status.is_qm_ecc_mbit = false; 3885 qm->err_status.is_dev_ecc_mbit = false; 3886 } 3887 3888 static int qm_controller_reset_done(struct hisi_qm *qm) 3889 { 3890 struct pci_dev *pdev = qm->pdev; 3891 int ret; 3892 3893 ret = qm_set_msi(qm, true); 3894 if (ret) { 3895 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 3896 return ret; 3897 } 3898 3899 ret = qm_set_pf_mse(qm, true); 3900 if (ret) { 3901 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 3902 return ret; 3903 } 3904 3905 if (qm->vfs_num) { 3906 ret = qm_set_vf_mse(qm, true); 3907 if (ret) { 3908 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 3909 return ret; 3910 } 3911 } 3912 3913 ret = qm_dev_hw_init(qm); 3914 if (ret) { 3915 pci_err(pdev, "Failed to init device\n"); 3916 return ret; 3917 } 3918 3919 qm_restart_prepare(qm); 3920 3921 ret = qm_restart(qm); 3922 if (ret) { 3923 pci_err(pdev, "Failed to start QM!\n"); 3924 return ret; 3925 } 3926 3927 if (qm->vfs_num) { 3928 ret = qm_vf_q_assign(qm, qm->vfs_num); 3929 if (ret) { 3930 pci_err(pdev, "Failed to assign queue!\n"); 3931 return ret; 3932 } 3933 } 3934 3935 ret = qm_vf_reset_done(qm); 3936 if (ret) { 3937 pci_err(pdev, "Failed to start VFs!\n"); 3938 return -EPERM; 3939 } 3940 3941 hisi_qm_dev_err_init(qm); 3942 qm_restart_done(qm); 3943 3944 clear_bit(QM_RESETTING, &qm->misc_ctl); 3945 3946 return 0; 3947 } 3948 3949 static int qm_controller_reset(struct hisi_qm *qm) 3950 { 3951 struct pci_dev *pdev = qm->pdev; 3952 int ret; 3953 3954 pci_info(pdev, "Controller resetting...\n"); 3955 3956 ret = qm_controller_reset_prepare(qm); 3957 if (ret) { 3958 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 3959 return ret; 3960 } 3961 3962 ret = qm_soft_reset(qm); 3963 if (ret) { 3964 pci_err(pdev, "Controller reset failed (%d)\n", ret); 3965 clear_bit(QM_RESETTING, &qm->misc_ctl); 3966 return ret; 3967 } 3968 3969 ret = qm_controller_reset_done(qm); 3970 if (ret) { 3971 clear_bit(QM_RESETTING, &qm->misc_ctl); 3972 return ret; 3973 } 3974 3975 pci_info(pdev, "Controller reset complete\n"); 3976 3977 return 0; 3978 } 3979 3980 /** 3981 * hisi_qm_dev_slot_reset() - slot reset 3982 * @pdev: the PCIe device 3983 * 3984 * This function offers QM relate PCIe device reset interface. Drivers which 3985 * use QM can use this function as slot_reset in its struct pci_error_handlers. 3986 */ 3987 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 3988 { 3989 struct hisi_qm *qm = pci_get_drvdata(pdev); 3990 int ret; 3991 3992 if (pdev->is_virtfn) 3993 return PCI_ERS_RESULT_RECOVERED; 3994 3995 pci_aer_clear_nonfatal_status(pdev); 3996 3997 /* reset pcie device controller */ 3998 ret = qm_controller_reset(qm); 3999 if (ret) { 4000 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4001 return PCI_ERS_RESULT_DISCONNECT; 4002 } 4003 4004 return PCI_ERS_RESULT_RECOVERED; 4005 } 4006 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4007 4008 /* check the interrupt is ecc-mbit error or not */ 4009 static int qm_check_dev_error(struct hisi_qm *qm) 4010 { 4011 int ret; 4012 4013 if (qm->fun_type == QM_HW_VF) 4014 return 0; 4015 4016 ret = qm_get_hw_error_status(qm) & QM_ECC_MBIT; 4017 if (ret) 4018 return ret; 4019 4020 return (qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask); 4021 } 4022 4023 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4024 { 4025 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4026 struct hisi_qm *qm = pci_get_drvdata(pdev); 4027 u32 delay = 0; 4028 int ret; 4029 4030 hisi_qm_dev_err_uninit(pf_qm); 4031 4032 /* 4033 * Check whether there is an ECC mbit error, If it occurs, need to 4034 * wait for soft reset to fix it. 4035 */ 4036 while (qm_check_dev_error(pf_qm)) { 4037 msleep(++delay); 4038 if (delay > QM_RESET_WAIT_TIMEOUT) 4039 return; 4040 } 4041 4042 ret = qm_reset_prepare_ready(qm); 4043 if (ret) { 4044 pci_err(pdev, "FLR not ready!\n"); 4045 return; 4046 } 4047 4048 if (qm->vfs_num) { 4049 ret = qm_vf_reset_prepare(qm, QM_FLR); 4050 if (ret) { 4051 pci_err(pdev, "Failed to prepare reset, ret = %d.\n", 4052 ret); 4053 return; 4054 } 4055 } 4056 4057 ret = hisi_qm_stop(qm, QM_FLR); 4058 if (ret) { 4059 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4060 return; 4061 } 4062 4063 pci_info(pdev, "FLR resetting...\n"); 4064 } 4065 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4066 4067 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4068 { 4069 struct pci_dev *pf_pdev = pci_physfn(pdev); 4070 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4071 u32 id; 4072 4073 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4074 if (id == QM_PCI_COMMAND_INVALID) { 4075 pci_err(pdev, "Device can not be used!\n"); 4076 return false; 4077 } 4078 4079 return true; 4080 } 4081 4082 void hisi_qm_reset_done(struct pci_dev *pdev) 4083 { 4084 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4085 struct hisi_qm *qm = pci_get_drvdata(pdev); 4086 int ret; 4087 4088 hisi_qm_dev_err_init(pf_qm); 4089 4090 ret = qm_restart(qm); 4091 if (ret) { 4092 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4093 goto flr_done; 4094 } 4095 4096 if (qm->fun_type == QM_HW_PF) { 4097 ret = qm_dev_hw_init(qm); 4098 if (ret) { 4099 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4100 goto flr_done; 4101 } 4102 4103 if (!qm->vfs_num) 4104 goto flr_done; 4105 4106 ret = qm_vf_q_assign(qm, qm->vfs_num); 4107 if (ret) { 4108 pci_err(pdev, "Failed to assign VFs, ret = %d.\n", ret); 4109 goto flr_done; 4110 } 4111 4112 ret = qm_vf_reset_done(qm); 4113 if (ret) { 4114 pci_err(pdev, "Failed to start VFs, ret = %d.\n", ret); 4115 goto flr_done; 4116 } 4117 } 4118 4119 flr_done: 4120 if (qm_flr_reset_complete(pdev)) 4121 pci_info(pdev, "FLR reset complete\n"); 4122 4123 clear_bit(QM_RESETTING, &qm->misc_ctl); 4124 } 4125 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4126 4127 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4128 { 4129 struct hisi_qm *qm = data; 4130 enum acc_err_result ret; 4131 4132 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4133 ret = qm_process_dev_error(qm); 4134 if (ret == ACC_ERR_NEED_RESET && 4135 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4136 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4137 schedule_work(&qm->rst_work); 4138 4139 return IRQ_HANDLED; 4140 } 4141 4142 static int qm_irq_register(struct hisi_qm *qm) 4143 { 4144 struct pci_dev *pdev = qm->pdev; 4145 int ret; 4146 4147 ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), 4148 qm_irq, 0, qm->dev_name, qm); 4149 if (ret) 4150 return ret; 4151 4152 if (qm->ver != QM_HW_V1) { 4153 ret = request_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), 4154 qm_aeq_irq, 0, qm->dev_name, qm); 4155 if (ret) 4156 goto err_aeq_irq; 4157 4158 if (qm->fun_type == QM_HW_PF) { 4159 ret = request_irq(pci_irq_vector(pdev, 4160 QM_ABNORMAL_EVENT_IRQ_VECTOR), 4161 qm_abnormal_irq, 0, qm->dev_name, qm); 4162 if (ret) 4163 goto err_abonormal_irq; 4164 } 4165 } 4166 4167 return 0; 4168 4169 err_abonormal_irq: 4170 free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm); 4171 err_aeq_irq: 4172 free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm); 4173 return ret; 4174 } 4175 4176 /** 4177 * hisi_qm_dev_shutdown() - Shutdown device. 4178 * @pdev: The device will be shutdown. 4179 * 4180 * This function will stop qm when OS shutdown or rebooting. 4181 */ 4182 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4183 { 4184 struct hisi_qm *qm = pci_get_drvdata(pdev); 4185 int ret; 4186 4187 ret = hisi_qm_stop(qm, QM_NORMAL); 4188 if (ret) 4189 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4190 } 4191 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4192 4193 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4194 { 4195 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4196 int ret; 4197 4198 /* reset pcie device controller */ 4199 ret = qm_controller_reset(qm); 4200 if (ret) 4201 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4202 4203 } 4204 4205 /** 4206 * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. 4207 * @qm: The qm needs add. 4208 * @qm_list: The qm list. 4209 * 4210 * This function adds qm to qm list, and will register algorithm to 4211 * crypto when the qm list is empty. 4212 */ 4213 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4214 { 4215 int flag = 0; 4216 int ret = 0; 4217 /* HW V2 not support both use uacce sva mode and hardware crypto algs */ 4218 if (qm->ver <= QM_HW_V2 && qm->use_sva) 4219 return 0; 4220 4221 mutex_lock(&qm_list->lock); 4222 if (list_empty(&qm_list->list)) 4223 flag = 1; 4224 list_add_tail(&qm->list, &qm_list->list); 4225 mutex_unlock(&qm_list->lock); 4226 4227 if (flag) { 4228 ret = qm_list->register_to_crypto(qm); 4229 if (ret) { 4230 mutex_lock(&qm_list->lock); 4231 list_del(&qm->list); 4232 mutex_unlock(&qm_list->lock); 4233 } 4234 } 4235 4236 return ret; 4237 } 4238 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4239 4240 /** 4241 * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from 4242 * qm list. 4243 * @qm: The qm needs delete. 4244 * @qm_list: The qm list. 4245 * 4246 * This function deletes qm from qm list, and will unregister algorithm 4247 * from crypto when the qm list is empty. 4248 */ 4249 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4250 { 4251 if (qm->ver <= QM_HW_V2 && qm->use_sva) 4252 return; 4253 4254 mutex_lock(&qm_list->lock); 4255 list_del(&qm->list); 4256 mutex_unlock(&qm_list->lock); 4257 4258 if (list_empty(&qm_list->list)) 4259 qm_list->unregister_from_crypto(qm); 4260 } 4261 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 4262 4263 static int qm_get_qp_num(struct hisi_qm *qm) 4264 { 4265 if (qm->ver == QM_HW_V1) 4266 qm->ctrl_qp_num = QM_QNUM_V1; 4267 else if (qm->ver == QM_HW_V2) 4268 qm->ctrl_qp_num = QM_QNUM_V2; 4269 else 4270 qm->ctrl_qp_num = readl(qm->io_base + QM_CAPBILITY) & 4271 QM_QP_NUN_MASK; 4272 4273 if (qm->use_db_isolation) 4274 qm->max_qp_num = (readl(qm->io_base + QM_CAPBILITY) >> 4275 QM_QP_MAX_NUM_SHIFT) & QM_QP_NUN_MASK; 4276 else 4277 qm->max_qp_num = qm->ctrl_qp_num; 4278 4279 /* check if qp number is valid */ 4280 if (qm->qp_num > qm->max_qp_num) { 4281 dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n", 4282 qm->qp_num, qm->max_qp_num); 4283 return -EINVAL; 4284 } 4285 4286 return 0; 4287 } 4288 4289 static int qm_get_pci_res(struct hisi_qm *qm) 4290 { 4291 struct pci_dev *pdev = qm->pdev; 4292 struct device *dev = &pdev->dev; 4293 int ret; 4294 4295 ret = pci_request_mem_regions(pdev, qm->dev_name); 4296 if (ret < 0) { 4297 dev_err(dev, "Failed to request mem regions!\n"); 4298 return ret; 4299 } 4300 4301 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 4302 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 4303 if (!qm->io_base) { 4304 ret = -EIO; 4305 goto err_request_mem_regions; 4306 } 4307 4308 if (qm->ver > QM_HW_V2) { 4309 if (qm->fun_type == QM_HW_PF) 4310 qm->use_db_isolation = readl(qm->io_base + 4311 QM_QUE_ISO_EN) & BIT(0); 4312 else 4313 qm->use_db_isolation = readl(qm->io_base + 4314 QM_QUE_ISO_CFG_V) & BIT(0); 4315 } 4316 4317 if (qm->use_db_isolation) { 4318 qm->db_interval = QM_QP_DB_INTERVAL; 4319 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 4320 qm->db_io_base = ioremap(qm->db_phys_base, 4321 pci_resource_len(pdev, PCI_BAR_4)); 4322 if (!qm->db_io_base) { 4323 ret = -EIO; 4324 goto err_ioremap; 4325 } 4326 } else { 4327 qm->db_phys_base = qm->phys_base; 4328 qm->db_io_base = qm->io_base; 4329 qm->db_interval = 0; 4330 } 4331 4332 if (qm->fun_type == QM_HW_PF) { 4333 ret = qm_get_qp_num(qm); 4334 if (ret) 4335 goto err_db_ioremap; 4336 } 4337 4338 return 0; 4339 4340 err_db_ioremap: 4341 if (qm->use_db_isolation) 4342 iounmap(qm->db_io_base); 4343 err_ioremap: 4344 iounmap(qm->io_base); 4345 err_request_mem_regions: 4346 pci_release_mem_regions(pdev); 4347 return ret; 4348 } 4349 4350 static int hisi_qm_pci_init(struct hisi_qm *qm) 4351 { 4352 struct pci_dev *pdev = qm->pdev; 4353 struct device *dev = &pdev->dev; 4354 unsigned int num_vec; 4355 int ret; 4356 4357 ret = pci_enable_device_mem(pdev); 4358 if (ret < 0) { 4359 dev_err(dev, "Failed to enable device mem!\n"); 4360 return ret; 4361 } 4362 4363 ret = qm_get_pci_res(qm); 4364 if (ret) 4365 goto err_disable_pcidev; 4366 4367 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4368 if (ret < 0) 4369 goto err_get_pci_res; 4370 pci_set_master(pdev); 4371 4372 if (!qm->ops->get_irq_num) { 4373 ret = -EOPNOTSUPP; 4374 goto err_get_pci_res; 4375 } 4376 num_vec = qm->ops->get_irq_num(qm); 4377 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 4378 if (ret < 0) { 4379 dev_err(dev, "Failed to enable MSI vectors!\n"); 4380 goto err_get_pci_res; 4381 } 4382 4383 return 0; 4384 4385 err_get_pci_res: 4386 qm_put_pci_res(qm); 4387 err_disable_pcidev: 4388 pci_disable_device(pdev); 4389 return ret; 4390 } 4391 4392 /** 4393 * hisi_qm_init() - Initialize configures about qm. 4394 * @qm: The qm needing init. 4395 * 4396 * This function init qm, then we can call hisi_qm_start to put qm into work. 4397 */ 4398 int hisi_qm_init(struct hisi_qm *qm) 4399 { 4400 struct pci_dev *pdev = qm->pdev; 4401 struct device *dev = &pdev->dev; 4402 int ret; 4403 4404 hisi_qm_pre_init(qm); 4405 4406 ret = hisi_qm_pci_init(qm); 4407 if (ret) 4408 return ret; 4409 4410 ret = qm_irq_register(qm); 4411 if (ret) 4412 goto err_pci_init; 4413 4414 if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) { 4415 /* v2 starts to support get vft by mailbox */ 4416 ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 4417 if (ret) 4418 goto err_irq_register; 4419 } 4420 4421 ret = qm_alloc_uacce(qm); 4422 if (ret < 0) 4423 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 4424 4425 ret = hisi_qm_memory_init(qm); 4426 if (ret) 4427 goto err_alloc_uacce; 4428 4429 INIT_WORK(&qm->work, qm_work_process); 4430 if (qm->fun_type == QM_HW_PF) 4431 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 4432 4433 atomic_set(&qm->status.flags, QM_INIT); 4434 4435 return 0; 4436 4437 err_alloc_uacce: 4438 uacce_remove(qm->uacce); 4439 qm->uacce = NULL; 4440 err_irq_register: 4441 qm_irq_unregister(qm); 4442 err_pci_init: 4443 hisi_qm_pci_uninit(qm); 4444 return ret; 4445 } 4446 EXPORT_SYMBOL_GPL(hisi_qm_init); 4447 4448 MODULE_LICENSE("GPL v2"); 4449 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 4450 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 4451