xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision 2791f47d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/debugfs.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/idr.h>
10 #include <linux/io.h>
11 #include <linux/irqreturn.h>
12 #include <linux/log2.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include "qm.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 #define QM_IRQ_NUM_V1			1
26 #define QM_IRQ_NUM_PF_V2		4
27 #define QM_IRQ_NUM_VF_V2		2
28 
29 #define QM_EQ_EVENT_IRQ_VECTOR		0
30 #define QM_AEQ_EVENT_IRQ_VECTOR		1
31 #define QM_ABNORMAL_EVENT_IRQ_VECTOR	3
32 
33 /* mailbox */
34 #define QM_MB_CMD_SQC			0x0
35 #define QM_MB_CMD_CQC			0x1
36 #define QM_MB_CMD_EQC			0x2
37 #define QM_MB_CMD_AEQC			0x3
38 #define QM_MB_CMD_SQC_BT		0x4
39 #define QM_MB_CMD_CQC_BT		0x5
40 #define QM_MB_CMD_SQC_VFT_V2		0x6
41 
42 #define QM_MB_CMD_SEND_BASE		0x300
43 #define QM_MB_EVENT_SHIFT		8
44 #define QM_MB_BUSY_SHIFT		13
45 #define QM_MB_OP_SHIFT			14
46 #define QM_MB_CMD_DATA_ADDR_L		0x304
47 #define QM_MB_CMD_DATA_ADDR_H		0x308
48 
49 /* sqc shift */
50 #define QM_SQ_HOP_NUM_SHIFT		0
51 #define QM_SQ_PAGE_SIZE_SHIFT		4
52 #define QM_SQ_BUF_SIZE_SHIFT		8
53 #define QM_SQ_SQE_SIZE_SHIFT		12
54 #define QM_SQ_PRIORITY_SHIFT		0
55 #define QM_SQ_ORDERS_SHIFT		4
56 #define QM_SQ_TYPE_SHIFT		8
57 
58 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
59 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
60 
61 /* cqc shift */
62 #define QM_CQ_HOP_NUM_SHIFT		0
63 #define QM_CQ_PAGE_SIZE_SHIFT		4
64 #define QM_CQ_BUF_SIZE_SHIFT		8
65 #define QM_CQ_CQE_SIZE_SHIFT		12
66 #define QM_CQ_PHASE_SHIFT		0
67 #define QM_CQ_FLAG_SHIFT		1
68 
69 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
70 #define QM_QC_CQE_SIZE			4
71 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
72 
73 /* eqc shift */
74 #define QM_EQE_AEQE_SIZE		(2UL << 12)
75 #define QM_EQC_PHASE_SHIFT		16
76 
77 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
78 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
79 
80 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
81 #define QM_AEQE_TYPE_SHIFT		17
82 
83 #define QM_DOORBELL_CMD_SQ		0
84 #define QM_DOORBELL_CMD_CQ		1
85 #define QM_DOORBELL_CMD_EQ		2
86 #define QM_DOORBELL_CMD_AEQ		3
87 
88 #define QM_DOORBELL_BASE_V1		0x340
89 #define QM_DB_CMD_SHIFT_V1		16
90 #define QM_DB_INDEX_SHIFT_V1		32
91 #define QM_DB_PRIORITY_SHIFT_V1		48
92 #define QM_DOORBELL_SQ_CQ_BASE_V2	0x1000
93 #define QM_DOORBELL_EQ_AEQ_BASE_V2	0x2000
94 #define QM_DB_CMD_SHIFT_V2		12
95 #define QM_DB_RAND_SHIFT_V2		16
96 #define QM_DB_INDEX_SHIFT_V2		32
97 #define QM_DB_PRIORITY_SHIFT_V2		48
98 
99 #define QM_MEM_START_INIT		0x100040
100 #define QM_MEM_INIT_DONE		0x100044
101 #define QM_VFT_CFG_RDY			0x10006c
102 #define QM_VFT_CFG_OP_WR		0x100058
103 #define QM_VFT_CFG_TYPE			0x10005c
104 #define QM_SQC_VFT			0x0
105 #define QM_CQC_VFT			0x1
106 #define QM_VFT_CFG			0x100060
107 #define QM_VFT_CFG_OP_ENABLE		0x100054
108 
109 #define QM_VFT_CFG_DATA_L		0x100064
110 #define QM_VFT_CFG_DATA_H		0x100068
111 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
112 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
113 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
114 #define QM_SQC_VFT_START_SQN_SHIFT	28
115 #define QM_SQC_VFT_VALID		(1ULL << 44)
116 #define QM_SQC_VFT_SQN_SHIFT		45
117 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
118 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
119 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
120 #define QM_CQC_VFT_VALID		(1ULL << 28)
121 
122 #define QM_SQC_VFT_BASE_SHIFT_V2	28
123 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(5, 0)
124 #define QM_SQC_VFT_NUM_SHIFT_V2		45
125 #define QM_SQC_VFT_NUM_MASK_v2		GENMASK(9, 0)
126 
127 #define QM_DFX_CNT_CLR_CE		0x100118
128 
129 #define QM_ABNORMAL_INT_SOURCE		0x100000
130 #define QM_ABNORMAL_INT_SOURCE_CLR	GENMASK(12, 0)
131 #define QM_ABNORMAL_INT_MASK		0x100004
132 #define QM_ABNORMAL_INT_MASK_VALUE	0x1fff
133 #define QM_ABNORMAL_INT_STATUS		0x100008
134 #define QM_ABNORMAL_INT_SET		0x10000c
135 #define QM_ABNORMAL_INF00		0x100010
136 #define QM_FIFO_OVERFLOW_TYPE		0xc0
137 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
138 #define QM_FIFO_OVERFLOW_VF		0x3f
139 #define QM_ABNORMAL_INF01		0x100014
140 #define QM_DB_TIMEOUT_TYPE		0xc0
141 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
142 #define QM_DB_TIMEOUT_VF		0x3f
143 #define QM_RAS_CE_ENABLE		0x1000ec
144 #define QM_RAS_FE_ENABLE		0x1000f0
145 #define QM_RAS_NFE_ENABLE		0x1000f4
146 #define QM_RAS_CE_THRESHOLD		0x1000f8
147 #define QM_RAS_CE_TIMES_PER_IRQ		1
148 #define QM_RAS_MSI_INT_SEL		0x1040f4
149 
150 #define QM_DEV_RESET_FLAG		0
151 #define QM_RESET_WAIT_TIMEOUT		400
152 #define QM_PEH_VENDOR_ID		0x1000d8
153 #define ACC_VENDOR_ID_VALUE		0x5a5a
154 #define QM_PEH_DFX_INFO0		0x1000fc
155 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
156 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
157 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
158 #define ACC_MASTER_TRANS_RETURN_RW	3
159 #define ACC_MASTER_TRANS_RETURN		0x300150
160 #define ACC_MASTER_GLOBAL_CTRL		0x300000
161 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
162 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
163 #define ACC_AM_ROB_ECC_INT_STS		0x300104
164 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
165 
166 #define POLL_PERIOD			10
167 #define POLL_TIMEOUT			1000
168 #define WAIT_PERIOD_US_MAX		200
169 #define WAIT_PERIOD_US_MIN		100
170 #define MAX_WAIT_COUNTS			1000
171 #define QM_CACHE_WB_START		0x204
172 #define QM_CACHE_WB_DONE		0x208
173 
174 #define PCI_BAR_2			2
175 #define QM_SQE_DATA_ALIGN_MASK		GENMASK(6, 0)
176 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
177 
178 #define QM_DBG_READ_LEN		256
179 #define QM_DBG_WRITE_LEN		1024
180 #define QM_DBG_TMP_BUF_LEN		22
181 #define QM_PCI_COMMAND_INVALID		~0
182 
183 #define WAIT_PERIOD			20
184 #define REMOVE_WAIT_DELAY		10
185 #define QM_SQE_ADDR_MASK		GENMASK(7, 0)
186 #define QM_EQ_DEPTH			(1024 * 2)
187 
188 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
189 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT)	| \
190 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT)	| \
191 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT)	| \
192 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
193 
194 #define QM_MK_CQC_DW3_V2(cqe_sz) \
195 	((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
196 
197 #define QM_MK_SQC_W13(priority, orders, alg_type) \
198 	(((priority) << QM_SQ_PRIORITY_SHIFT)	| \
199 	((orders) << QM_SQ_ORDERS_SHIFT)	| \
200 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
201 
202 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
203 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT)	| \
204 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT)	| \
205 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT)	| \
206 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
207 
208 #define QM_MK_SQC_DW3_V2(sqe_sz) \
209 	((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
210 
211 #define INIT_QC_COMMON(qc, base, pasid) do {			\
212 	(qc)->head = 0;						\
213 	(qc)->tail = 0;						\
214 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
215 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
216 	(qc)->dw3 = 0;						\
217 	(qc)->w8 = 0;						\
218 	(qc)->rsvd0 = 0;					\
219 	(qc)->pasid = cpu_to_le16(pasid);			\
220 	(qc)->w11 = 0;						\
221 	(qc)->rsvd1 = 0;					\
222 } while (0)
223 
224 enum vft_type {
225 	SQC_VFT = 0,
226 	CQC_VFT,
227 };
228 
229 enum acc_err_result {
230 	ACC_ERR_NONE,
231 	ACC_ERR_NEED_RESET,
232 	ACC_ERR_RECOVERED,
233 };
234 
235 struct qm_cqe {
236 	__le32 rsvd0;
237 	__le16 cmd_id;
238 	__le16 rsvd1;
239 	__le16 sq_head;
240 	__le16 sq_num;
241 	__le16 rsvd2;
242 	__le16 w7;
243 };
244 
245 struct qm_eqe {
246 	__le32 dw0;
247 };
248 
249 struct qm_aeqe {
250 	__le32 dw0;
251 };
252 
253 struct qm_sqc {
254 	__le16 head;
255 	__le16 tail;
256 	__le32 base_l;
257 	__le32 base_h;
258 	__le32 dw3;
259 	__le16 w8;
260 	__le16 rsvd0;
261 	__le16 pasid;
262 	__le16 w11;
263 	__le16 cq_num;
264 	__le16 w13;
265 	__le32 rsvd1;
266 };
267 
268 struct qm_cqc {
269 	__le16 head;
270 	__le16 tail;
271 	__le32 base_l;
272 	__le32 base_h;
273 	__le32 dw3;
274 	__le16 w8;
275 	__le16 rsvd0;
276 	__le16 pasid;
277 	__le16 w11;
278 	__le32 dw6;
279 	__le32 rsvd1;
280 };
281 
282 struct qm_eqc {
283 	__le16 head;
284 	__le16 tail;
285 	__le32 base_l;
286 	__le32 base_h;
287 	__le32 dw3;
288 	__le32 rsvd[2];
289 	__le32 dw6;
290 };
291 
292 struct qm_aeqc {
293 	__le16 head;
294 	__le16 tail;
295 	__le32 base_l;
296 	__le32 base_h;
297 	__le32 dw3;
298 	__le32 rsvd[2];
299 	__le32 dw6;
300 };
301 
302 struct qm_mailbox {
303 	__le16 w0;
304 	__le16 queue_num;
305 	__le32 base_l;
306 	__le32 base_h;
307 	__le32 rsvd;
308 };
309 
310 struct qm_doorbell {
311 	__le16 queue_num;
312 	__le16 cmd;
313 	__le16 index;
314 	__le16 priority;
315 };
316 
317 struct hisi_qm_resource {
318 	struct hisi_qm *qm;
319 	int distance;
320 	struct list_head list;
321 };
322 
323 struct hisi_qm_hw_ops {
324 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
325 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
326 		      u8 cmd, u16 index, u8 priority);
327 	u32 (*get_irq_num)(struct hisi_qm *qm);
328 	int (*debug_init)(struct hisi_qm *qm);
329 	void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe);
330 	void (*hw_error_uninit)(struct hisi_qm *qm);
331 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
332 };
333 
334 struct qm_dfx_item {
335 	const char *name;
336 	u32 offset;
337 };
338 
339 static struct qm_dfx_item qm_dfx_files[] = {
340 	{"err_irq", offsetof(struct qm_dfx, err_irq_cnt)},
341 	{"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)},
342 	{"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)},
343 	{"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)},
344 	{"mb_err", offsetof(struct qm_dfx, mb_err_cnt)},
345 };
346 
347 static const char * const qm_debug_file_name[] = {
348 	[CURRENT_Q]    = "current_q",
349 	[CLEAR_ENABLE] = "clear_enable",
350 };
351 
352 struct hisi_qm_hw_error {
353 	u32 int_msk;
354 	const char *msg;
355 };
356 
357 static const struct hisi_qm_hw_error qm_hw_error[] = {
358 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
359 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
360 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
361 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
362 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
363 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
364 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
365 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
366 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
367 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
368 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
369 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
370 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
371 	{ /* sentinel */ }
372 };
373 
374 static const char * const qm_db_timeout[] = {
375 	"sq", "cq", "eq", "aeq",
376 };
377 
378 static const char * const qm_fifo_overflow[] = {
379 	"cq", "eq", "aeq",
380 };
381 
382 static const char * const qm_s[] = {
383 	"init", "start", "close", "stop",
384 };
385 
386 static const char * const qp_s[] = {
387 	"none", "init", "start", "stop", "close",
388 };
389 
390 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
391 {
392 	enum qm_state curr = atomic_read(&qm->status.flags);
393 	bool avail = false;
394 
395 	switch (curr) {
396 	case QM_INIT:
397 		if (new == QM_START || new == QM_CLOSE)
398 			avail = true;
399 		break;
400 	case QM_START:
401 		if (new == QM_STOP)
402 			avail = true;
403 		break;
404 	case QM_STOP:
405 		if (new == QM_CLOSE || new == QM_START)
406 			avail = true;
407 		break;
408 	default:
409 		break;
410 	}
411 
412 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
413 		qm_s[curr], qm_s[new]);
414 
415 	if (!avail)
416 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
417 			 qm_s[curr], qm_s[new]);
418 
419 	return avail;
420 }
421 
422 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
423 			      enum qp_state new)
424 {
425 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
426 	enum qp_state qp_curr = 0;
427 	bool avail = false;
428 
429 	if (qp)
430 		qp_curr = atomic_read(&qp->qp_status.flags);
431 
432 	switch (new) {
433 	case QP_INIT:
434 		if (qm_curr == QM_START || qm_curr == QM_INIT)
435 			avail = true;
436 		break;
437 	case QP_START:
438 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
439 		    (qm_curr == QM_START && qp_curr == QP_STOP))
440 			avail = true;
441 		break;
442 	case QP_STOP:
443 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
444 		    (qp_curr == QP_INIT))
445 			avail = true;
446 		break;
447 	case QP_CLOSE:
448 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
449 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
450 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
451 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
452 			avail = true;
453 		break;
454 	default:
455 		break;
456 	}
457 
458 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
459 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
460 
461 	if (!avail)
462 		dev_warn(&qm->pdev->dev,
463 			 "Can not change qp state from %s to %s in QM %s\n",
464 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
465 
466 	return avail;
467 }
468 
469 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
470 static int qm_wait_mb_ready(struct hisi_qm *qm)
471 {
472 	u32 val;
473 
474 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
475 					  val, !((val >> QM_MB_BUSY_SHIFT) &
476 					  0x1), 10, 1000);
477 }
478 
479 /* 128 bit should be written to hardware at one time to trigger a mailbox */
480 static void qm_mb_write(struct hisi_qm *qm, const void *src)
481 {
482 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
483 	unsigned long tmp0 = 0, tmp1 = 0;
484 
485 	if (!IS_ENABLED(CONFIG_ARM64)) {
486 		memcpy_toio(fun_base, src, 16);
487 		wmb();
488 		return;
489 	}
490 
491 	asm volatile("ldp %0, %1, %3\n"
492 		     "stp %0, %1, %2\n"
493 		     "dsb sy\n"
494 		     : "=&r" (tmp0),
495 		       "=&r" (tmp1),
496 		       "+Q" (*((char __iomem *)fun_base))
497 		     : "Q" (*((char *)src))
498 		     : "memory");
499 }
500 
501 static int qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
502 		 bool op)
503 {
504 	struct qm_mailbox mailbox;
505 	int ret = 0;
506 
507 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
508 		queue, cmd, (unsigned long long)dma_addr);
509 
510 	mailbox.w0 = cpu_to_le16(cmd |
511 		     (op ? 0x1 << QM_MB_OP_SHIFT : 0) |
512 		     (0x1 << QM_MB_BUSY_SHIFT));
513 	mailbox.queue_num = cpu_to_le16(queue);
514 	mailbox.base_l = cpu_to_le32(lower_32_bits(dma_addr));
515 	mailbox.base_h = cpu_to_le32(upper_32_bits(dma_addr));
516 	mailbox.rsvd = 0;
517 
518 	mutex_lock(&qm->mailbox_lock);
519 
520 	if (unlikely(qm_wait_mb_ready(qm))) {
521 		ret = -EBUSY;
522 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
523 		goto busy_unlock;
524 	}
525 
526 	qm_mb_write(qm, &mailbox);
527 
528 	if (unlikely(qm_wait_mb_ready(qm))) {
529 		ret = -EBUSY;
530 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
531 		goto busy_unlock;
532 	}
533 
534 busy_unlock:
535 	mutex_unlock(&qm->mailbox_lock);
536 
537 	if (ret)
538 		atomic64_inc(&qm->debug.dfx.mb_err_cnt);
539 	return ret;
540 }
541 
542 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
543 {
544 	u64 doorbell;
545 
546 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
547 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
548 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
549 
550 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
551 }
552 
553 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
554 {
555 	u64 doorbell;
556 	u64 dbase;
557 	u16 randata = 0;
558 
559 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
560 		dbase = QM_DOORBELL_SQ_CQ_BASE_V2;
561 	else
562 		dbase = QM_DOORBELL_EQ_AEQ_BASE_V2;
563 
564 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
565 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
566 		   ((u64)index << QM_DB_INDEX_SHIFT_V2)	 |
567 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
568 
569 	writeq(doorbell, qm->io_base + dbase);
570 }
571 
572 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
573 {
574 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
575 		qn, cmd, index);
576 
577 	qm->ops->qm_db(qm, qn, cmd, index, priority);
578 }
579 
580 static int qm_dev_mem_reset(struct hisi_qm *qm)
581 {
582 	u32 val;
583 
584 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
585 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
586 					  val & BIT(0), 10, 1000);
587 }
588 
589 static u32 qm_get_irq_num_v1(struct hisi_qm *qm)
590 {
591 	return QM_IRQ_NUM_V1;
592 }
593 
594 static u32 qm_get_irq_num_v2(struct hisi_qm *qm)
595 {
596 	if (qm->fun_type == QM_HW_PF)
597 		return QM_IRQ_NUM_PF_V2;
598 	else
599 		return QM_IRQ_NUM_VF_V2;
600 }
601 
602 static struct hisi_qp *qm_to_hisi_qp(struct hisi_qm *qm, struct qm_eqe *eqe)
603 {
604 	u16 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
605 
606 	return &qm->qp_array[cqn];
607 }
608 
609 static void qm_cq_head_update(struct hisi_qp *qp)
610 {
611 	if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) {
612 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
613 		qp->qp_status.cq_head = 0;
614 	} else {
615 		qp->qp_status.cq_head++;
616 	}
617 }
618 
619 static void qm_poll_qp(struct hisi_qp *qp, struct hisi_qm *qm)
620 {
621 	if (qp->event_cb) {
622 		qp->event_cb(qp);
623 		return;
624 	}
625 
626 	if (qp->req_cb) {
627 		struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
628 
629 		while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
630 			dma_rmb();
631 			qp->req_cb(qp, qp->sqe + qm->sqe_size *
632 				   le16_to_cpu(cqe->sq_head));
633 			qm_cq_head_update(qp);
634 			cqe = qp->cqe + qp->qp_status.cq_head;
635 			qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
636 			      qp->qp_status.cq_head, 0);
637 			atomic_dec(&qp->qp_status.used);
638 		}
639 
640 		/* set c_flag */
641 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
642 		      qp->qp_status.cq_head, 1);
643 	}
644 }
645 
646 static void qm_work_process(struct work_struct *work)
647 {
648 	struct hisi_qm *qm = container_of(work, struct hisi_qm, work);
649 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
650 	struct hisi_qp *qp;
651 	int eqe_num = 0;
652 
653 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
654 		eqe_num++;
655 		qp = qm_to_hisi_qp(qm, eqe);
656 		qm_poll_qp(qp, qm);
657 
658 		if (qm->status.eq_head == QM_EQ_DEPTH - 1) {
659 			qm->status.eqc_phase = !qm->status.eqc_phase;
660 			eqe = qm->eqe;
661 			qm->status.eq_head = 0;
662 		} else {
663 			eqe++;
664 			qm->status.eq_head++;
665 		}
666 
667 		if (eqe_num == QM_EQ_DEPTH / 2 - 1) {
668 			eqe_num = 0;
669 			qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
670 		}
671 	}
672 
673 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
674 }
675 
676 static irqreturn_t do_qm_irq(int irq, void *data)
677 {
678 	struct hisi_qm *qm = (struct hisi_qm *)data;
679 
680 	/* the workqueue created by device driver of QM */
681 	if (qm->wq)
682 		queue_work(qm->wq, &qm->work);
683 	else
684 		schedule_work(&qm->work);
685 
686 	return IRQ_HANDLED;
687 }
688 
689 static irqreturn_t qm_irq(int irq, void *data)
690 {
691 	struct hisi_qm *qm = data;
692 
693 	if (readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
694 		return do_qm_irq(irq, data);
695 
696 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
697 	dev_err(&qm->pdev->dev, "invalid int source\n");
698 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
699 
700 	return IRQ_NONE;
701 }
702 
703 static irqreturn_t qm_aeq_irq(int irq, void *data)
704 {
705 	struct hisi_qm *qm = data;
706 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
707 	u32 type;
708 
709 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
710 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
711 		return IRQ_NONE;
712 
713 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
714 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
715 		if (type < ARRAY_SIZE(qm_fifo_overflow))
716 			dev_err(&qm->pdev->dev, "%s overflow\n",
717 				qm_fifo_overflow[type]);
718 		else
719 			dev_err(&qm->pdev->dev, "unknown error type %d\n",
720 				type);
721 
722 		if (qm->status.aeq_head == QM_Q_DEPTH - 1) {
723 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
724 			aeqe = qm->aeqe;
725 			qm->status.aeq_head = 0;
726 		} else {
727 			aeqe++;
728 			qm->status.aeq_head++;
729 		}
730 
731 		qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
732 	}
733 
734 	return IRQ_HANDLED;
735 }
736 
737 static void qm_irq_unregister(struct hisi_qm *qm)
738 {
739 	struct pci_dev *pdev = qm->pdev;
740 
741 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
742 
743 	if (qm->ver == QM_HW_V1)
744 		return;
745 
746 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
747 
748 	if (qm->fun_type == QM_HW_PF)
749 		free_irq(pci_irq_vector(pdev,
750 			 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
751 }
752 
753 static void qm_init_qp_status(struct hisi_qp *qp)
754 {
755 	struct hisi_qp_status *qp_status = &qp->qp_status;
756 
757 	qp_status->sq_tail = 0;
758 	qp_status->cq_head = 0;
759 	qp_status->cqc_phase = true;
760 	atomic_set(&qp_status->used, 0);
761 }
762 
763 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
764 			    u32 number)
765 {
766 	u64 tmp = 0;
767 
768 	if (number > 0) {
769 		switch (type) {
770 		case SQC_VFT:
771 			if (qm->ver == QM_HW_V1) {
772 				tmp = QM_SQC_VFT_BUF_SIZE	|
773 				      QM_SQC_VFT_SQC_SIZE	|
774 				      QM_SQC_VFT_INDEX_NUMBER	|
775 				      QM_SQC_VFT_VALID		|
776 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
777 			} else {
778 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
779 				      QM_SQC_VFT_VALID |
780 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
781 			}
782 			break;
783 		case CQC_VFT:
784 			if (qm->ver == QM_HW_V1) {
785 				tmp = QM_CQC_VFT_BUF_SIZE	|
786 				      QM_CQC_VFT_SQC_SIZE	|
787 				      QM_CQC_VFT_INDEX_NUMBER	|
788 				      QM_CQC_VFT_VALID;
789 			} else {
790 				tmp = QM_CQC_VFT_VALID;
791 			}
792 			break;
793 		}
794 	}
795 
796 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
797 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
798 }
799 
800 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
801 			     u32 fun_num, u32 base, u32 number)
802 {
803 	unsigned int val;
804 	int ret;
805 
806 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
807 					 val & BIT(0), 10, 1000);
808 	if (ret)
809 		return ret;
810 
811 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
812 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
813 	writel(fun_num, qm->io_base + QM_VFT_CFG);
814 
815 	qm_vft_data_cfg(qm, type, base, number);
816 
817 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
818 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
819 
820 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
821 					  val & BIT(0), 10, 1000);
822 }
823 
824 /* The config should be conducted after qm_dev_mem_reset() */
825 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
826 			      u32 number)
827 {
828 	int ret, i;
829 
830 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
831 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
832 		if (ret)
833 			return ret;
834 	}
835 
836 	return 0;
837 }
838 
839 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
840 {
841 	u64 sqc_vft;
842 	int ret;
843 
844 	ret = qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
845 	if (ret)
846 		return ret;
847 
848 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
849 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
850 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
851 	*number = (QM_SQC_VFT_NUM_MASK_v2 &
852 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
853 
854 	return 0;
855 }
856 
857 static struct hisi_qm *file_to_qm(struct debugfs_file *file)
858 {
859 	struct qm_debug *debug = file->debug;
860 
861 	return container_of(debug, struct hisi_qm, debug);
862 }
863 
864 static u32 current_q_read(struct debugfs_file *file)
865 {
866 	struct hisi_qm *qm = file_to_qm(file);
867 
868 	return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT;
869 }
870 
871 static int current_q_write(struct debugfs_file *file, u32 val)
872 {
873 	struct hisi_qm *qm = file_to_qm(file);
874 	u32 tmp;
875 
876 	if (val >= qm->debug.curr_qm_qp_num)
877 		return -EINVAL;
878 
879 	tmp = val << QM_DFX_QN_SHIFT |
880 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK);
881 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
882 
883 	tmp = val << QM_DFX_QN_SHIFT |
884 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK);
885 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
886 
887 	return 0;
888 }
889 
890 static u32 clear_enable_read(struct debugfs_file *file)
891 {
892 	struct hisi_qm *qm = file_to_qm(file);
893 
894 	return readl(qm->io_base + QM_DFX_CNT_CLR_CE);
895 }
896 
897 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */
898 static int clear_enable_write(struct debugfs_file *file, u32 rd_clr_ctrl)
899 {
900 	struct hisi_qm *qm = file_to_qm(file);
901 
902 	if (rd_clr_ctrl > 1)
903 		return -EINVAL;
904 
905 	writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE);
906 
907 	return 0;
908 }
909 
910 static ssize_t qm_debug_read(struct file *filp, char __user *buf,
911 			     size_t count, loff_t *pos)
912 {
913 	struct debugfs_file *file = filp->private_data;
914 	enum qm_debug_file index = file->index;
915 	char tbuf[QM_DBG_TMP_BUF_LEN];
916 	u32 val;
917 	int ret;
918 
919 	mutex_lock(&file->lock);
920 	switch (index) {
921 	case CURRENT_Q:
922 		val = current_q_read(file);
923 		break;
924 	case CLEAR_ENABLE:
925 		val = clear_enable_read(file);
926 		break;
927 	default:
928 		mutex_unlock(&file->lock);
929 		return -EINVAL;
930 	}
931 	mutex_unlock(&file->lock);
932 	ret = sprintf(tbuf, "%u\n", val);
933 	return simple_read_from_buffer(buf, count, pos, tbuf, ret);
934 }
935 
936 static ssize_t qm_debug_write(struct file *filp, const char __user *buf,
937 			      size_t count, loff_t *pos)
938 {
939 	struct debugfs_file *file = filp->private_data;
940 	enum qm_debug_file index = file->index;
941 	unsigned long val;
942 	char tbuf[QM_DBG_TMP_BUF_LEN];
943 	int len, ret;
944 
945 	if (*pos != 0)
946 		return 0;
947 
948 	if (count >= QM_DBG_TMP_BUF_LEN)
949 		return -ENOSPC;
950 
951 	len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf,
952 				     count);
953 	if (len < 0)
954 		return len;
955 
956 	tbuf[len] = '\0';
957 	if (kstrtoul(tbuf, 0, &val))
958 		return -EFAULT;
959 
960 	mutex_lock(&file->lock);
961 	switch (index) {
962 	case CURRENT_Q:
963 		ret = current_q_write(file, val);
964 		if (ret)
965 			goto err_input;
966 		break;
967 	case CLEAR_ENABLE:
968 		ret = clear_enable_write(file, val);
969 		if (ret)
970 			goto err_input;
971 		break;
972 	default:
973 		ret = -EINVAL;
974 		goto err_input;
975 	}
976 	mutex_unlock(&file->lock);
977 
978 	return count;
979 
980 err_input:
981 	mutex_unlock(&file->lock);
982 	return ret;
983 }
984 
985 static const struct file_operations qm_debug_fops = {
986 	.owner = THIS_MODULE,
987 	.open = simple_open,
988 	.read = qm_debug_read,
989 	.write = qm_debug_write,
990 };
991 
992 struct qm_dfx_registers {
993 	char  *reg_name;
994 	u64   reg_offset;
995 };
996 
997 #define CNT_CYC_REGS_NUM		10
998 static struct qm_dfx_registers qm_dfx_regs[] = {
999 	/* XXX_CNT are reading clear register */
1000 	{"QM_ECC_1BIT_CNT               ",  0x104000ull},
1001 	{"QM_ECC_MBIT_CNT               ",  0x104008ull},
1002 	{"QM_DFX_MB_CNT                 ",  0x104018ull},
1003 	{"QM_DFX_DB_CNT                 ",  0x104028ull},
1004 	{"QM_DFX_SQE_CNT                ",  0x104038ull},
1005 	{"QM_DFX_CQE_CNT                ",  0x104048ull},
1006 	{"QM_DFX_SEND_SQE_TO_ACC_CNT    ",  0x104050ull},
1007 	{"QM_DFX_WB_SQE_FROM_ACC_CNT    ",  0x104058ull},
1008 	{"QM_DFX_ACC_FINISH_CNT         ",  0x104060ull},
1009 	{"QM_DFX_CQE_ERR_CNT            ",  0x1040b4ull},
1010 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1011 	{"QM_ECC_1BIT_INF               ",  0x104004ull},
1012 	{"QM_ECC_MBIT_INF               ",  0x10400cull},
1013 	{"QM_DFX_ACC_RDY_VLD0           ",  0x1040a0ull},
1014 	{"QM_DFX_ACC_RDY_VLD1           ",  0x1040a4ull},
1015 	{"QM_DFX_AXI_RDY_VLD            ",  0x1040a8ull},
1016 	{"QM_DFX_FF_ST0                 ",  0x1040c8ull},
1017 	{"QM_DFX_FF_ST1                 ",  0x1040ccull},
1018 	{"QM_DFX_FF_ST2                 ",  0x1040d0ull},
1019 	{"QM_DFX_FF_ST3                 ",  0x1040d4ull},
1020 	{"QM_DFX_FF_ST4                 ",  0x1040d8ull},
1021 	{"QM_DFX_FF_ST5                 ",  0x1040dcull},
1022 	{"QM_DFX_FF_ST6                 ",  0x1040e0ull},
1023 	{"QM_IN_IDLE_ST                 ",  0x1040e4ull},
1024 	{ NULL, 0}
1025 };
1026 
1027 static struct qm_dfx_registers qm_vf_dfx_regs[] = {
1028 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1029 	{ NULL, 0}
1030 };
1031 
1032 static int qm_regs_show(struct seq_file *s, void *unused)
1033 {
1034 	struct hisi_qm *qm = s->private;
1035 	struct qm_dfx_registers *regs;
1036 	u32 val;
1037 
1038 	if (qm->fun_type == QM_HW_PF)
1039 		regs = qm_dfx_regs;
1040 	else
1041 		regs = qm_vf_dfx_regs;
1042 
1043 	while (regs->reg_name) {
1044 		val = readl(qm->io_base + regs->reg_offset);
1045 		seq_printf(s, "%s= 0x%08x\n", regs->reg_name, val);
1046 		regs++;
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 DEFINE_SHOW_ATTRIBUTE(qm_regs);
1053 
1054 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer,
1055 			   size_t count, loff_t *pos)
1056 {
1057 	char buf[QM_DBG_READ_LEN];
1058 	int len;
1059 
1060 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n",
1061 			"Please echo help to cmd to get help information");
1062 
1063 	return simple_read_from_buffer(buffer, count, pos, buf, len);
1064 }
1065 
1066 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1067 			  dma_addr_t *dma_addr)
1068 {
1069 	struct device *dev = &qm->pdev->dev;
1070 	void *ctx_addr;
1071 
1072 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1073 	if (!ctx_addr)
1074 		return ERR_PTR(-ENOMEM);
1075 
1076 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1077 	if (dma_mapping_error(dev, *dma_addr)) {
1078 		dev_err(dev, "DMA mapping error!\n");
1079 		kfree(ctx_addr);
1080 		return ERR_PTR(-ENOMEM);
1081 	}
1082 
1083 	return ctx_addr;
1084 }
1085 
1086 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1087 			const void *ctx_addr, dma_addr_t *dma_addr)
1088 {
1089 	struct device *dev = &qm->pdev->dev;
1090 
1091 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1092 	kfree(ctx_addr);
1093 }
1094 
1095 static int dump_show(struct hisi_qm *qm, void *info,
1096 		     unsigned int info_size, char *info_name)
1097 {
1098 	struct device *dev = &qm->pdev->dev;
1099 	u8 *info_buf, *info_curr = info;
1100 	u32 i;
1101 #define BYTE_PER_DW	4
1102 
1103 	info_buf = kzalloc(info_size, GFP_KERNEL);
1104 	if (!info_buf)
1105 		return -ENOMEM;
1106 
1107 	for (i = 0; i < info_size; i++, info_curr++) {
1108 		if (i % BYTE_PER_DW == 0)
1109 			info_buf[i + 3UL] = *info_curr;
1110 		else if (i % BYTE_PER_DW == 1)
1111 			info_buf[i + 1UL] = *info_curr;
1112 		else if (i % BYTE_PER_DW == 2)
1113 			info_buf[i - 1] = *info_curr;
1114 		else if (i % BYTE_PER_DW == 3)
1115 			info_buf[i - 3] = *info_curr;
1116 	}
1117 
1118 	dev_info(dev, "%s DUMP\n", info_name);
1119 	for (i = 0; i < info_size; i += BYTE_PER_DW) {
1120 		pr_info("DW%d: %02X%02X %02X%02X\n", i / BYTE_PER_DW,
1121 			info_buf[i], info_buf[i + 1UL],
1122 			info_buf[i + 2UL], info_buf[i + 3UL]);
1123 	}
1124 
1125 	kfree(info_buf);
1126 
1127 	return 0;
1128 }
1129 
1130 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1131 {
1132 	return qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1133 }
1134 
1135 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1136 {
1137 	return qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1138 }
1139 
1140 static int qm_sqc_dump(struct hisi_qm *qm, const char *s)
1141 {
1142 	struct device *dev = &qm->pdev->dev;
1143 	struct qm_sqc *sqc, *sqc_curr;
1144 	dma_addr_t sqc_dma;
1145 	u32 qp_id;
1146 	int ret;
1147 
1148 	if (!s)
1149 		return -EINVAL;
1150 
1151 	ret = kstrtou32(s, 0, &qp_id);
1152 	if (ret || qp_id >= qm->qp_num) {
1153 		dev_err(dev, "Please input qp num (0-%d)", qm->qp_num - 1);
1154 		return -EINVAL;
1155 	}
1156 
1157 	sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma);
1158 	if (IS_ERR(sqc))
1159 		return PTR_ERR(sqc);
1160 
1161 	ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id);
1162 	if (ret) {
1163 		down_read(&qm->qps_lock);
1164 		if (qm->sqc) {
1165 			sqc_curr = qm->sqc + qp_id;
1166 
1167 			ret = dump_show(qm, sqc_curr, sizeof(*sqc),
1168 					"SOFT SQC");
1169 			if (ret)
1170 				dev_info(dev, "Show soft sqc failed!\n");
1171 		}
1172 		up_read(&qm->qps_lock);
1173 
1174 		goto err_free_ctx;
1175 	}
1176 
1177 	ret = dump_show(qm, sqc, sizeof(*sqc), "SQC");
1178 	if (ret)
1179 		dev_info(dev, "Show hw sqc failed!\n");
1180 
1181 err_free_ctx:
1182 	qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma);
1183 	return ret;
1184 }
1185 
1186 static int qm_cqc_dump(struct hisi_qm *qm, const char *s)
1187 {
1188 	struct device *dev = &qm->pdev->dev;
1189 	struct qm_cqc *cqc, *cqc_curr;
1190 	dma_addr_t cqc_dma;
1191 	u32 qp_id;
1192 	int ret;
1193 
1194 	if (!s)
1195 		return -EINVAL;
1196 
1197 	ret = kstrtou32(s, 0, &qp_id);
1198 	if (ret || qp_id >= qm->qp_num) {
1199 		dev_err(dev, "Please input qp num (0-%d)", qm->qp_num - 1);
1200 		return -EINVAL;
1201 	}
1202 
1203 	cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma);
1204 	if (IS_ERR(cqc))
1205 		return PTR_ERR(cqc);
1206 
1207 	ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id);
1208 	if (ret) {
1209 		down_read(&qm->qps_lock);
1210 		if (qm->cqc) {
1211 			cqc_curr = qm->cqc + qp_id;
1212 
1213 			ret = dump_show(qm, cqc_curr, sizeof(*cqc),
1214 					"SOFT CQC");
1215 			if (ret)
1216 				dev_info(dev, "Show soft cqc failed!\n");
1217 		}
1218 		up_read(&qm->qps_lock);
1219 
1220 		goto err_free_ctx;
1221 	}
1222 
1223 	ret = dump_show(qm, cqc, sizeof(*cqc), "CQC");
1224 	if (ret)
1225 		dev_info(dev, "Show hw cqc failed!\n");
1226 
1227 err_free_ctx:
1228 	qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma);
1229 	return ret;
1230 }
1231 
1232 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size,
1233 			    int cmd, char *name)
1234 {
1235 	struct device *dev = &qm->pdev->dev;
1236 	dma_addr_t xeqc_dma;
1237 	void *xeqc;
1238 	int ret;
1239 
1240 	if (strsep(&s, " ")) {
1241 		dev_err(dev, "Please do not input extra characters!\n");
1242 		return -EINVAL;
1243 	}
1244 
1245 	xeqc = qm_ctx_alloc(qm, size, &xeqc_dma);
1246 	if (IS_ERR(xeqc))
1247 		return PTR_ERR(xeqc);
1248 
1249 	ret = qm_mb(qm, cmd, xeqc_dma, 0, 1);
1250 	if (ret)
1251 		goto err_free_ctx;
1252 
1253 	ret = dump_show(qm, xeqc, size, name);
1254 	if (ret)
1255 		dev_info(dev, "Show hw %s failed!\n", name);
1256 
1257 err_free_ctx:
1258 	qm_ctx_free(qm, size, xeqc, &xeqc_dma);
1259 	return ret;
1260 }
1261 
1262 static int q_dump_param_parse(struct hisi_qm *qm, char *s,
1263 			      u32 *e_id, u32 *q_id)
1264 {
1265 	struct device *dev = &qm->pdev->dev;
1266 	unsigned int qp_num = qm->qp_num;
1267 	char *presult;
1268 	int ret;
1269 
1270 	presult = strsep(&s, " ");
1271 	if (!presult) {
1272 		dev_err(dev, "Please input qp number!\n");
1273 		return -EINVAL;
1274 	}
1275 
1276 	ret = kstrtou32(presult, 0, q_id);
1277 	if (ret || *q_id >= qp_num) {
1278 		dev_err(dev, "Please input qp num (0-%d)", qp_num - 1);
1279 		return -EINVAL;
1280 	}
1281 
1282 	presult = strsep(&s, " ");
1283 	if (!presult) {
1284 		dev_err(dev, "Please input sqe number!\n");
1285 		return -EINVAL;
1286 	}
1287 
1288 	ret = kstrtou32(presult, 0, e_id);
1289 	if (ret || *e_id >= QM_Q_DEPTH) {
1290 		dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1);
1291 		return -EINVAL;
1292 	}
1293 
1294 	if (strsep(&s, " ")) {
1295 		dev_err(dev, "Please do not input extra characters!\n");
1296 		return -EINVAL;
1297 	}
1298 
1299 	return 0;
1300 }
1301 
1302 static int qm_sq_dump(struct hisi_qm *qm, char *s)
1303 {
1304 	struct device *dev = &qm->pdev->dev;
1305 	void *sqe, *sqe_curr;
1306 	struct hisi_qp *qp;
1307 	u32 qp_id, sqe_id;
1308 	int ret;
1309 
1310 	ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id);
1311 	if (ret)
1312 		return ret;
1313 
1314 	sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL);
1315 	if (!sqe)
1316 		return -ENOMEM;
1317 
1318 	qp = &qm->qp_array[qp_id];
1319 	memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH);
1320 	sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size);
1321 	memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK,
1322 	       qm->debug.sqe_mask_len);
1323 
1324 	ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE");
1325 	if (ret)
1326 		dev_info(dev, "Show sqe failed!\n");
1327 
1328 	kfree(sqe);
1329 
1330 	return ret;
1331 }
1332 
1333 static int qm_cq_dump(struct hisi_qm *qm, char *s)
1334 {
1335 	struct device *dev = &qm->pdev->dev;
1336 	struct qm_cqe *cqe_curr;
1337 	struct hisi_qp *qp;
1338 	u32 qp_id, cqe_id;
1339 	int ret;
1340 
1341 	ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id);
1342 	if (ret)
1343 		return ret;
1344 
1345 	qp = &qm->qp_array[qp_id];
1346 	cqe_curr = qp->cqe + cqe_id;
1347 	ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE");
1348 	if (ret)
1349 		dev_info(dev, "Show cqe failed!\n");
1350 
1351 	return ret;
1352 }
1353 
1354 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s,
1355 			  size_t size, char *name)
1356 {
1357 	struct device *dev = &qm->pdev->dev;
1358 	void *xeqe;
1359 	u32 xeqe_id;
1360 	int ret;
1361 
1362 	if (!s)
1363 		return -EINVAL;
1364 
1365 	ret = kstrtou32(s, 0, &xeqe_id);
1366 	if (ret)
1367 		return -EINVAL;
1368 
1369 	if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) {
1370 		dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1);
1371 		return -EINVAL;
1372 	} else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) {
1373 		dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1);
1374 		return -EINVAL;
1375 	}
1376 
1377 	down_read(&qm->qps_lock);
1378 
1379 	if (qm->eqe && !strcmp(name, "EQE")) {
1380 		xeqe = qm->eqe + xeqe_id;
1381 	} else if (qm->aeqe && !strcmp(name, "AEQE")) {
1382 		xeqe = qm->aeqe + xeqe_id;
1383 	} else {
1384 		ret = -EINVAL;
1385 		goto err_unlock;
1386 	}
1387 
1388 	ret = dump_show(qm, xeqe, size, name);
1389 	if (ret)
1390 		dev_info(dev, "Show %s failed!\n", name);
1391 
1392 err_unlock:
1393 	up_read(&qm->qps_lock);
1394 	return ret;
1395 }
1396 
1397 static int qm_dbg_help(struct hisi_qm *qm, char *s)
1398 {
1399 	struct device *dev = &qm->pdev->dev;
1400 
1401 	if (strsep(&s, " ")) {
1402 		dev_err(dev, "Please do not input extra characters!\n");
1403 		return -EINVAL;
1404 	}
1405 
1406 	dev_info(dev, "available commands:\n");
1407 	dev_info(dev, "sqc <num>\n");
1408 	dev_info(dev, "cqc <num>\n");
1409 	dev_info(dev, "eqc\n");
1410 	dev_info(dev, "aeqc\n");
1411 	dev_info(dev, "sq <num> <e>\n");
1412 	dev_info(dev, "cq <num> <e>\n");
1413 	dev_info(dev, "eq <e>\n");
1414 	dev_info(dev, "aeq <e>\n");
1415 
1416 	return 0;
1417 }
1418 
1419 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf)
1420 {
1421 	struct device *dev = &qm->pdev->dev;
1422 	char *presult, *s, *s_tmp;
1423 	int ret;
1424 
1425 	s = kstrdup(cmd_buf, GFP_KERNEL);
1426 	if (!s)
1427 		return -ENOMEM;
1428 
1429 	s_tmp = s;
1430 	presult = strsep(&s, " ");
1431 	if (!presult) {
1432 		ret = -EINVAL;
1433 		goto err_buffer_free;
1434 	}
1435 
1436 	if (!strcmp(presult, "sqc"))
1437 		ret = qm_sqc_dump(qm, s);
1438 	else if (!strcmp(presult, "cqc"))
1439 		ret = qm_cqc_dump(qm, s);
1440 	else if (!strcmp(presult, "eqc"))
1441 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc),
1442 				       QM_MB_CMD_EQC, "EQC");
1443 	else if (!strcmp(presult, "aeqc"))
1444 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc),
1445 				       QM_MB_CMD_AEQC, "AEQC");
1446 	else if (!strcmp(presult, "sq"))
1447 		ret = qm_sq_dump(qm, s);
1448 	else if (!strcmp(presult, "cq"))
1449 		ret = qm_cq_dump(qm, s);
1450 	else if (!strcmp(presult, "eq"))
1451 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE");
1452 	else if (!strcmp(presult, "aeq"))
1453 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE");
1454 	else if (!strcmp(presult, "help"))
1455 		ret = qm_dbg_help(qm, s);
1456 	else
1457 		ret = -EINVAL;
1458 
1459 	if (ret)
1460 		dev_info(dev, "Please echo help\n");
1461 
1462 err_buffer_free:
1463 	kfree(s_tmp);
1464 
1465 	return ret;
1466 }
1467 
1468 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer,
1469 			    size_t count, loff_t *pos)
1470 {
1471 	struct hisi_qm *qm = filp->private_data;
1472 	char *cmd_buf, *cmd_buf_tmp;
1473 	int ret;
1474 
1475 	if (*pos)
1476 		return 0;
1477 
1478 	/* Judge if the instance is being reset. */
1479 	if (unlikely(atomic_read(&qm->status.flags) == QM_STOP))
1480 		return 0;
1481 
1482 	if (count > QM_DBG_WRITE_LEN)
1483 		return -ENOSPC;
1484 
1485 	cmd_buf = kzalloc(count + 1, GFP_KERNEL);
1486 	if (!cmd_buf)
1487 		return -ENOMEM;
1488 
1489 	if (copy_from_user(cmd_buf, buffer, count)) {
1490 		kfree(cmd_buf);
1491 		return -EFAULT;
1492 	}
1493 
1494 	cmd_buf[count] = '\0';
1495 
1496 	cmd_buf_tmp = strchr(cmd_buf, '\n');
1497 	if (cmd_buf_tmp) {
1498 		*cmd_buf_tmp = '\0';
1499 		count = cmd_buf_tmp - cmd_buf + 1;
1500 	}
1501 
1502 	ret = qm_cmd_write_dump(qm, cmd_buf);
1503 	if (ret) {
1504 		kfree(cmd_buf);
1505 		return ret;
1506 	}
1507 
1508 	kfree(cmd_buf);
1509 
1510 	return count;
1511 }
1512 
1513 static const struct file_operations qm_cmd_fops = {
1514 	.owner = THIS_MODULE,
1515 	.open = simple_open,
1516 	.read = qm_cmd_read,
1517 	.write = qm_cmd_write,
1518 };
1519 
1520 static int qm_create_debugfs_file(struct hisi_qm *qm, enum qm_debug_file index)
1521 {
1522 	struct dentry *qm_d = qm->debug.qm_d;
1523 	struct debugfs_file *file = qm->debug.files + index;
1524 
1525 	debugfs_create_file(qm_debug_file_name[index], 0600, qm_d, file,
1526 			    &qm_debug_fops);
1527 
1528 	file->index = index;
1529 	mutex_init(&file->lock);
1530 	file->debug = &qm->debug;
1531 
1532 	return 0;
1533 }
1534 
1535 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1536 {
1537 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1538 }
1539 
1540 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
1541 {
1542 	u32 irq_enable = ce | nfe | fe;
1543 	u32 irq_unmask = ~irq_enable;
1544 
1545 	qm->error_mask = ce | nfe | fe;
1546 
1547 	/* clear QM hw residual error source */
1548 	writel(QM_ABNORMAL_INT_SOURCE_CLR,
1549 	       qm->io_base + QM_ABNORMAL_INT_SOURCE);
1550 
1551 	/* configure error type */
1552 	writel(ce, qm->io_base + QM_RAS_CE_ENABLE);
1553 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1554 	writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1555 	writel(fe, qm->io_base + QM_RAS_FE_ENABLE);
1556 
1557 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1558 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1559 }
1560 
1561 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1562 {
1563 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1564 }
1565 
1566 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1567 {
1568 	const struct hisi_qm_hw_error *err;
1569 	struct device *dev = &qm->pdev->dev;
1570 	u32 reg_val, type, vf_num;
1571 	int i;
1572 
1573 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1574 		err = &qm_hw_error[i];
1575 		if (!(err->int_msk & error_status))
1576 			continue;
1577 
1578 		dev_err(dev, "%s [error status=0x%x] found\n",
1579 			err->msg, err->int_msk);
1580 
1581 		if (err->int_msk & QM_DB_TIMEOUT) {
1582 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1583 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1584 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1585 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1586 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
1587 				qm_db_timeout[type], vf_num);
1588 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1589 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1590 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1591 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1592 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1593 
1594 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1595 				dev_err(dev, "qm %s fifo overflow in function %u\n",
1596 					qm_fifo_overflow[type], vf_num);
1597 			else
1598 				dev_err(dev, "unknown error type\n");
1599 		}
1600 	}
1601 }
1602 
1603 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1604 {
1605 	u32 error_status, tmp;
1606 
1607 	/* read err sts */
1608 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1609 	error_status = qm->error_mask & tmp;
1610 
1611 	if (error_status) {
1612 		if (error_status & QM_ECC_MBIT)
1613 			qm->err_status.is_qm_ecc_mbit = true;
1614 
1615 		qm_log_hw_error(qm, error_status);
1616 		if (error_status == QM_DB_RANDOM_INVALID) {
1617 			writel(error_status, qm->io_base +
1618 			       QM_ABNORMAL_INT_SOURCE);
1619 			return ACC_ERR_RECOVERED;
1620 		}
1621 
1622 		return ACC_ERR_NEED_RESET;
1623 	}
1624 
1625 	return ACC_ERR_RECOVERED;
1626 }
1627 
1628 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1629 	.qm_db = qm_db_v1,
1630 	.get_irq_num = qm_get_irq_num_v1,
1631 	.hw_error_init = qm_hw_error_init_v1,
1632 };
1633 
1634 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1635 	.get_vft = qm_get_vft_v2,
1636 	.qm_db = qm_db_v2,
1637 	.get_irq_num = qm_get_irq_num_v2,
1638 	.hw_error_init = qm_hw_error_init_v2,
1639 	.hw_error_uninit = qm_hw_error_uninit_v2,
1640 	.hw_error_handle = qm_hw_error_handle_v2,
1641 };
1642 
1643 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1644 {
1645 	struct hisi_qp_status *qp_status = &qp->qp_status;
1646 	u16 sq_tail = qp_status->sq_tail;
1647 
1648 	if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1))
1649 		return NULL;
1650 
1651 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1652 }
1653 
1654 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1655 {
1656 	struct device *dev = &qm->pdev->dev;
1657 	struct hisi_qp *qp;
1658 	int qp_id;
1659 
1660 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
1661 		return ERR_PTR(-EPERM);
1662 
1663 	if (qm->qp_in_used == qm->qp_num) {
1664 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1665 				     qm->qp_num);
1666 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1667 		return ERR_PTR(-EBUSY);
1668 	}
1669 
1670 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1671 	if (qp_id < 0) {
1672 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1673 				    qm->qp_num);
1674 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1675 		return ERR_PTR(-EBUSY);
1676 	}
1677 
1678 	qp = &qm->qp_array[qp_id];
1679 
1680 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH);
1681 
1682 	qp->event_cb = NULL;
1683 	qp->req_cb = NULL;
1684 	qp->qp_id = qp_id;
1685 	qp->alg_type = alg_type;
1686 	qm->qp_in_used++;
1687 	atomic_set(&qp->qp_status.flags, QP_INIT);
1688 
1689 	return qp;
1690 }
1691 
1692 /**
1693  * hisi_qm_create_qp() - Create a queue pair from qm.
1694  * @qm: The qm we create a qp from.
1695  * @alg_type: Accelerator specific algorithm type in sqc.
1696  *
1697  * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating
1698  * qp memory fails.
1699  */
1700 struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1701 {
1702 	struct hisi_qp *qp;
1703 
1704 	down_write(&qm->qps_lock);
1705 	qp = qm_create_qp_nolock(qm, alg_type);
1706 	up_write(&qm->qps_lock);
1707 
1708 	return qp;
1709 }
1710 EXPORT_SYMBOL_GPL(hisi_qm_create_qp);
1711 
1712 /**
1713  * hisi_qm_release_qp() - Release a qp back to its qm.
1714  * @qp: The qp we want to release.
1715  *
1716  * This function releases the resource of a qp.
1717  */
1718 void hisi_qm_release_qp(struct hisi_qp *qp)
1719 {
1720 	struct hisi_qm *qm = qp->qm;
1721 
1722 	down_write(&qm->qps_lock);
1723 
1724 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
1725 		up_write(&qm->qps_lock);
1726 		return;
1727 	}
1728 
1729 	qm->qp_in_used--;
1730 	idr_remove(&qm->qp_idr, qp->qp_id);
1731 
1732 	up_write(&qm->qps_lock);
1733 }
1734 EXPORT_SYMBOL_GPL(hisi_qm_release_qp);
1735 
1736 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1737 {
1738 	struct hisi_qm *qm = qp->qm;
1739 	struct device *dev = &qm->pdev->dev;
1740 	enum qm_hw_ver ver = qm->ver;
1741 	struct qm_sqc *sqc;
1742 	struct qm_cqc *cqc;
1743 	dma_addr_t sqc_dma;
1744 	dma_addr_t cqc_dma;
1745 	int ret;
1746 
1747 	qm_init_qp_status(qp);
1748 
1749 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
1750 	if (!sqc)
1751 		return -ENOMEM;
1752 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
1753 				 DMA_TO_DEVICE);
1754 	if (dma_mapping_error(dev, sqc_dma)) {
1755 		kfree(sqc);
1756 		return -ENOMEM;
1757 	}
1758 
1759 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
1760 	if (ver == QM_HW_V1) {
1761 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1762 		sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
1763 	} else {
1764 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size));
1765 		sqc->w8 = 0; /* rand_qc */
1766 	}
1767 	sqc->cq_num = cpu_to_le16(qp_id);
1768 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1769 
1770 	ret = qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
1771 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
1772 	kfree(sqc);
1773 	if (ret)
1774 		return ret;
1775 
1776 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
1777 	if (!cqc)
1778 		return -ENOMEM;
1779 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
1780 				 DMA_TO_DEVICE);
1781 	if (dma_mapping_error(dev, cqc_dma)) {
1782 		kfree(cqc);
1783 		return -ENOMEM;
1784 	}
1785 
1786 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
1787 	if (ver == QM_HW_V1) {
1788 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 4));
1789 		cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
1790 	} else {
1791 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(4));
1792 		cqc->w8 = 0;
1793 	}
1794 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
1795 
1796 	ret = qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
1797 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
1798 	kfree(cqc);
1799 
1800 	return ret;
1801 }
1802 
1803 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
1804 {
1805 	struct hisi_qm *qm = qp->qm;
1806 	struct device *dev = &qm->pdev->dev;
1807 	int qp_id = qp->qp_id;
1808 	u32 pasid = arg;
1809 	int ret;
1810 
1811 	if (!qm_qp_avail_state(qm, qp, QP_START))
1812 		return -EPERM;
1813 
1814 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
1815 	if (ret)
1816 		return ret;
1817 
1818 	atomic_set(&qp->qp_status.flags, QP_START);
1819 	dev_dbg(dev, "queue %d started\n", qp_id);
1820 
1821 	return 0;
1822 }
1823 
1824 /**
1825  * hisi_qm_start_qp() - Start a qp into running.
1826  * @qp: The qp we want to start to run.
1827  * @arg: Accelerator specific argument.
1828  *
1829  * After this function, qp can receive request from user. Return 0 if
1830  * successful, Return -EBUSY if failed.
1831  */
1832 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
1833 {
1834 	struct hisi_qm *qm = qp->qm;
1835 	int ret;
1836 
1837 	down_write(&qm->qps_lock);
1838 	ret = qm_start_qp_nolock(qp, arg);
1839 	up_write(&qm->qps_lock);
1840 
1841 	return ret;
1842 }
1843 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
1844 
1845 /**
1846  * Determine whether the queue is cleared by judging the tail pointers of
1847  * sq and cq.
1848  */
1849 static int qm_drain_qp(struct hisi_qp *qp)
1850 {
1851 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
1852 	struct hisi_qm *qm = qp->qm;
1853 	struct device *dev = &qm->pdev->dev;
1854 	struct qm_sqc *sqc;
1855 	struct qm_cqc *cqc;
1856 	dma_addr_t dma_addr;
1857 	int ret = 0, i = 0;
1858 	void *addr;
1859 
1860 	/*
1861 	 * No need to judge if ECC multi-bit error occurs because the
1862 	 * master OOO will be blocked.
1863 	 */
1864 	if (qm->err_status.is_qm_ecc_mbit || qm->err_status.is_dev_ecc_mbit)
1865 		return 0;
1866 
1867 	addr = qm_ctx_alloc(qm, size, &dma_addr);
1868 	if (IS_ERR(addr)) {
1869 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
1870 		return -ENOMEM;
1871 	}
1872 
1873 	while (++i) {
1874 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
1875 		if (ret) {
1876 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
1877 			break;
1878 		}
1879 		sqc = addr;
1880 
1881 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
1882 				      qp->qp_id);
1883 		if (ret) {
1884 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
1885 			break;
1886 		}
1887 		cqc = addr + sizeof(struct qm_sqc);
1888 
1889 		if ((sqc->tail == cqc->tail) &&
1890 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
1891 			break;
1892 
1893 		if (i == MAX_WAIT_COUNTS) {
1894 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
1895 			ret = -EBUSY;
1896 			break;
1897 		}
1898 
1899 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
1900 	}
1901 
1902 	qm_ctx_free(qm, size, addr, &dma_addr);
1903 
1904 	return ret;
1905 }
1906 
1907 static int qm_stop_qp_nolock(struct hisi_qp *qp)
1908 {
1909 	struct device *dev = &qp->qm->pdev->dev;
1910 	int ret;
1911 
1912 	/*
1913 	 * It is allowed to stop and release qp when reset, If the qp is
1914 	 * stopped when reset but still want to be released then, the
1915 	 * is_resetting flag should be set negative so that this qp will not
1916 	 * be restarted after reset.
1917 	 */
1918 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
1919 		qp->is_resetting = false;
1920 		return 0;
1921 	}
1922 
1923 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
1924 		return -EPERM;
1925 
1926 	atomic_set(&qp->qp_status.flags, QP_STOP);
1927 
1928 	ret = qm_drain_qp(qp);
1929 	if (ret)
1930 		dev_err(dev, "Failed to drain out data for stopping!\n");
1931 
1932 	if (qp->qm->wq)
1933 		flush_workqueue(qp->qm->wq);
1934 	else
1935 		flush_work(&qp->qm->work);
1936 
1937 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
1938 
1939 	return 0;
1940 }
1941 
1942 /**
1943  * hisi_qm_stop_qp() - Stop a qp in qm.
1944  * @qp: The qp we want to stop.
1945  *
1946  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
1947  */
1948 int hisi_qm_stop_qp(struct hisi_qp *qp)
1949 {
1950 	int ret;
1951 
1952 	down_write(&qp->qm->qps_lock);
1953 	ret = qm_stop_qp_nolock(qp);
1954 	up_write(&qp->qm->qps_lock);
1955 
1956 	return ret;
1957 }
1958 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
1959 
1960 /**
1961  * hisi_qp_send() - Queue up a task in the hardware queue.
1962  * @qp: The qp in which to put the message.
1963  * @msg: The message.
1964  *
1965  * This function will return -EBUSY if qp is currently full, and -EAGAIN
1966  * if qp related qm is resetting.
1967  *
1968  * Note: This function may run with qm_irq_thread and ACC reset at same time.
1969  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
1970  *       reset may happen, we have no lock here considering performance. This
1971  *       causes current qm_db sending fail or can not receive sended sqe. QM
1972  *       sync/async receive function should handle the error sqe. ACC reset
1973  *       done function should clear used sqe to 0.
1974  */
1975 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
1976 {
1977 	struct hisi_qp_status *qp_status = &qp->qp_status;
1978 	u16 sq_tail = qp_status->sq_tail;
1979 	u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH;
1980 	void *sqe = qm_get_avail_sqe(qp);
1981 
1982 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
1983 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
1984 		     qp->is_resetting)) {
1985 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
1986 		return -EAGAIN;
1987 	}
1988 
1989 	if (!sqe)
1990 		return -EBUSY;
1991 
1992 	memcpy(sqe, msg, qp->qm->sqe_size);
1993 
1994 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
1995 	atomic_inc(&qp->qp_status.used);
1996 	qp_status->sq_tail = sq_tail_next;
1997 
1998 	return 0;
1999 }
2000 EXPORT_SYMBOL_GPL(hisi_qp_send);
2001 
2002 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2003 {
2004 	unsigned int val;
2005 
2006 	if (qm->ver == QM_HW_V1)
2007 		return;
2008 
2009 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2010 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2011 					    val, val & BIT(0), 10, 1000))
2012 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2013 }
2014 
2015 static void qm_qp_event_notifier(struct hisi_qp *qp)
2016 {
2017 	wake_up_interruptible(&qp->uacce_q->wait);
2018 }
2019 
2020 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2021 {
2022 	return hisi_qm_get_free_qp_num(uacce->priv);
2023 }
2024 
2025 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2026 				   unsigned long arg,
2027 				   struct uacce_queue *q)
2028 {
2029 	struct hisi_qm *qm = uacce->priv;
2030 	struct hisi_qp *qp;
2031 	u8 alg_type = 0;
2032 
2033 	qp = hisi_qm_create_qp(qm, alg_type);
2034 	if (IS_ERR(qp))
2035 		return PTR_ERR(qp);
2036 
2037 	q->priv = qp;
2038 	q->uacce = uacce;
2039 	qp->uacce_q = q;
2040 	qp->event_cb = qm_qp_event_notifier;
2041 	qp->pasid = arg;
2042 
2043 	return 0;
2044 }
2045 
2046 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2047 {
2048 	struct hisi_qp *qp = q->priv;
2049 
2050 	hisi_qm_cache_wb(qp->qm);
2051 	hisi_qm_release_qp(qp);
2052 }
2053 
2054 /* map sq/cq/doorbell to user space */
2055 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2056 			      struct vm_area_struct *vma,
2057 			      struct uacce_qfile_region *qfr)
2058 {
2059 	struct hisi_qp *qp = q->priv;
2060 	struct hisi_qm *qm = qp->qm;
2061 	size_t sz = vma->vm_end - vma->vm_start;
2062 	struct pci_dev *pdev = qm->pdev;
2063 	struct device *dev = &pdev->dev;
2064 	unsigned long vm_pgoff;
2065 	int ret;
2066 
2067 	switch (qfr->type) {
2068 	case UACCE_QFRT_MMIO:
2069 		if (qm->ver == QM_HW_V1) {
2070 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2071 				return -EINVAL;
2072 		} else {
2073 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2074 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2075 				return -EINVAL;
2076 		}
2077 
2078 		vma->vm_flags |= VM_IO;
2079 
2080 		return remap_pfn_range(vma, vma->vm_start,
2081 				       qm->phys_base >> PAGE_SHIFT,
2082 				       sz, pgprot_noncached(vma->vm_page_prot));
2083 	case UACCE_QFRT_DUS:
2084 		if (sz != qp->qdma.size)
2085 			return -EINVAL;
2086 
2087 		/*
2088 		 * dma_mmap_coherent() requires vm_pgoff as 0
2089 		 * restore vm_pfoff to initial value for mmap()
2090 		 */
2091 		vm_pgoff = vma->vm_pgoff;
2092 		vma->vm_pgoff = 0;
2093 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2094 					qp->qdma.dma, sz);
2095 		vma->vm_pgoff = vm_pgoff;
2096 		return ret;
2097 
2098 	default:
2099 		return -EINVAL;
2100 	}
2101 }
2102 
2103 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2104 {
2105 	struct hisi_qp *qp = q->priv;
2106 
2107 	return hisi_qm_start_qp(qp, qp->pasid);
2108 }
2109 
2110 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2111 {
2112 	hisi_qm_stop_qp(q->priv);
2113 }
2114 
2115 static int qm_set_sqctype(struct uacce_queue *q, u16 type)
2116 {
2117 	struct hisi_qm *qm = q->uacce->priv;
2118 	struct hisi_qp *qp = q->priv;
2119 
2120 	down_write(&qm->qps_lock);
2121 	qp->alg_type = type;
2122 	up_write(&qm->qps_lock);
2123 
2124 	return 0;
2125 }
2126 
2127 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2128 				unsigned long arg)
2129 {
2130 	struct hisi_qp *qp = q->priv;
2131 	struct hisi_qp_ctx qp_ctx;
2132 
2133 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2134 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2135 				   sizeof(struct hisi_qp_ctx)))
2136 			return -EFAULT;
2137 
2138 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2139 			return -EINVAL;
2140 
2141 		qm_set_sqctype(q, qp_ctx.qc_type);
2142 		qp_ctx.id = qp->qp_id;
2143 
2144 		if (copy_to_user((void __user *)arg, &qp_ctx,
2145 				 sizeof(struct hisi_qp_ctx)))
2146 			return -EFAULT;
2147 	} else {
2148 		return -EINVAL;
2149 	}
2150 
2151 	return 0;
2152 }
2153 
2154 static const struct uacce_ops uacce_qm_ops = {
2155 	.get_available_instances = hisi_qm_get_available_instances,
2156 	.get_queue = hisi_qm_uacce_get_queue,
2157 	.put_queue = hisi_qm_uacce_put_queue,
2158 	.start_queue = hisi_qm_uacce_start_queue,
2159 	.stop_queue = hisi_qm_uacce_stop_queue,
2160 	.mmap = hisi_qm_uacce_mmap,
2161 	.ioctl = hisi_qm_uacce_ioctl,
2162 };
2163 
2164 static int qm_alloc_uacce(struct hisi_qm *qm)
2165 {
2166 	struct pci_dev *pdev = qm->pdev;
2167 	struct uacce_device *uacce;
2168 	unsigned long mmio_page_nr;
2169 	unsigned long dus_page_nr;
2170 	struct uacce_interface interface = {
2171 		.flags = UACCE_DEV_SVA,
2172 		.ops = &uacce_qm_ops,
2173 	};
2174 	int ret;
2175 
2176 	ret = strscpy(interface.name, pdev->driver->name,
2177 		      sizeof(interface.name));
2178 	if (ret < 0)
2179 		return -ENAMETOOLONG;
2180 
2181 	uacce = uacce_alloc(&pdev->dev, &interface);
2182 	if (IS_ERR(uacce))
2183 		return PTR_ERR(uacce);
2184 
2185 	if (uacce->flags & UACCE_DEV_SVA) {
2186 		qm->use_sva = true;
2187 	} else {
2188 		/* only consider sva case */
2189 		uacce_remove(uacce);
2190 		qm->uacce = NULL;
2191 		return -EINVAL;
2192 	}
2193 
2194 	uacce->is_vf = pdev->is_virtfn;
2195 	uacce->priv = qm;
2196 	uacce->algs = qm->algs;
2197 
2198 	if (qm->ver == QM_HW_V1) {
2199 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2200 		uacce->api_ver = HISI_QM_API_VER_BASE;
2201 	} else {
2202 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2203 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2204 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2205 	}
2206 
2207 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH +
2208 		       sizeof(struct qm_cqe) * QM_Q_DEPTH) >> PAGE_SHIFT;
2209 
2210 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2211 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2212 
2213 	qm->uacce = uacce;
2214 
2215 	return 0;
2216 }
2217 
2218 /**
2219  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2220  * there is user on the QM, return failure without doing anything.
2221  * @qm: The qm needed to be fronzen.
2222  *
2223  * This function frozes QM, then we can do SRIOV disabling.
2224  */
2225 static int qm_frozen(struct hisi_qm *qm)
2226 {
2227 	down_write(&qm->qps_lock);
2228 
2229 	if (qm->is_frozen) {
2230 		up_write(&qm->qps_lock);
2231 		return 0;
2232 	}
2233 
2234 	if (!qm->qp_in_used) {
2235 		qm->qp_in_used = qm->qp_num;
2236 		qm->is_frozen = true;
2237 		up_write(&qm->qps_lock);
2238 		return 0;
2239 	}
2240 
2241 	up_write(&qm->qps_lock);
2242 
2243 	return -EBUSY;
2244 }
2245 
2246 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2247 			     struct hisi_qm_list *qm_list)
2248 {
2249 	struct hisi_qm *qm, *vf_qm;
2250 	struct pci_dev *dev;
2251 	int ret = 0;
2252 
2253 	if (!qm_list || !pdev)
2254 		return -EINVAL;
2255 
2256 	/* Try to frozen all the VFs as disable SRIOV */
2257 	mutex_lock(&qm_list->lock);
2258 	list_for_each_entry(qm, &qm_list->list, list) {
2259 		dev = qm->pdev;
2260 		if (dev == pdev)
2261 			continue;
2262 		if (pci_physfn(dev) == pdev) {
2263 			vf_qm = pci_get_drvdata(dev);
2264 			ret = qm_frozen(vf_qm);
2265 			if (ret)
2266 				goto frozen_fail;
2267 		}
2268 	}
2269 
2270 frozen_fail:
2271 	mutex_unlock(&qm_list->lock);
2272 
2273 	return ret;
2274 }
2275 
2276 /**
2277  * hisi_qm_wait_task_finish() - Wait until the task is finished
2278  * when removing the driver.
2279  * @qm: The qm needed to wait for the task to finish.
2280  * @qm_list: The list of all available devices.
2281  */
2282 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2283 {
2284 	while (qm_frozen(qm) ||
2285 	       ((qm->fun_type == QM_HW_PF) &&
2286 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2287 		msleep(WAIT_PERIOD);
2288 	}
2289 
2290 	udelay(REMOVE_WAIT_DELAY);
2291 }
2292 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2293 
2294 /**
2295  * hisi_qm_get_free_qp_num() - Get free number of qp in qm.
2296  * @qm: The qm which want to get free qp.
2297  *
2298  * This function return free number of qp in qm.
2299  */
2300 int hisi_qm_get_free_qp_num(struct hisi_qm *qm)
2301 {
2302 	int ret;
2303 
2304 	down_read(&qm->qps_lock);
2305 	ret = qm->qp_num - qm->qp_in_used;
2306 	up_read(&qm->qps_lock);
2307 
2308 	return ret;
2309 }
2310 EXPORT_SYMBOL_GPL(hisi_qm_get_free_qp_num);
2311 
2312 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2313 {
2314 	struct device *dev = &qm->pdev->dev;
2315 	struct qm_dma *qdma;
2316 	int i;
2317 
2318 	for (i = num - 1; i >= 0; i--) {
2319 		qdma = &qm->qp_array[i].qdma;
2320 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2321 	}
2322 
2323 	kfree(qm->qp_array);
2324 }
2325 
2326 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id)
2327 {
2328 	struct device *dev = &qm->pdev->dev;
2329 	size_t off = qm->sqe_size * QM_Q_DEPTH;
2330 	struct hisi_qp *qp;
2331 
2332 	qp = &qm->qp_array[id];
2333 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2334 					 GFP_KERNEL);
2335 	if (!qp->qdma.va)
2336 		return -ENOMEM;
2337 
2338 	qp->sqe = qp->qdma.va;
2339 	qp->sqe_dma = qp->qdma.dma;
2340 	qp->cqe = qp->qdma.va + off;
2341 	qp->cqe_dma = qp->qdma.dma + off;
2342 	qp->qdma.size = dma_size;
2343 	qp->qm = qm;
2344 	qp->qp_id = id;
2345 
2346 	return 0;
2347 }
2348 
2349 static int hisi_qm_memory_init(struct hisi_qm *qm)
2350 {
2351 	struct device *dev = &qm->pdev->dev;
2352 	size_t qp_dma_size, off = 0;
2353 	int i, ret = 0;
2354 
2355 #define QM_INIT_BUF(qm, type, num) do { \
2356 	(qm)->type = ((qm)->qdma.va + (off)); \
2357 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
2358 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
2359 } while (0)
2360 
2361 	idr_init(&qm->qp_idr);
2362 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) +
2363 			QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) +
2364 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
2365 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
2366 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
2367 					 GFP_ATOMIC);
2368 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
2369 	if (!qm->qdma.va)
2370 		return -ENOMEM;
2371 
2372 	QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH);
2373 	QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH);
2374 	QM_INIT_BUF(qm, sqc, qm->qp_num);
2375 	QM_INIT_BUF(qm, cqc, qm->qp_num);
2376 
2377 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
2378 	if (!qm->qp_array) {
2379 		ret = -ENOMEM;
2380 		goto err_alloc_qp_array;
2381 	}
2382 
2383 	/* one more page for device or qp statuses */
2384 	qp_dma_size = qm->sqe_size * QM_Q_DEPTH +
2385 		      sizeof(struct qm_cqe) * QM_Q_DEPTH;
2386 	qp_dma_size = PAGE_ALIGN(qp_dma_size);
2387 	for (i = 0; i < qm->qp_num; i++) {
2388 		ret = hisi_qp_memory_init(qm, qp_dma_size, i);
2389 		if (ret)
2390 			goto err_init_qp_mem;
2391 
2392 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
2393 	}
2394 
2395 	return ret;
2396 
2397 err_init_qp_mem:
2398 	hisi_qp_memory_uninit(qm, i);
2399 err_alloc_qp_array:
2400 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
2401 
2402 	return ret;
2403 }
2404 
2405 static void hisi_qm_pre_init(struct hisi_qm *qm)
2406 {
2407 	struct pci_dev *pdev = qm->pdev;
2408 
2409 	if (qm->ver == QM_HW_V1)
2410 		qm->ops = &qm_hw_ops_v1;
2411 	else
2412 		qm->ops = &qm_hw_ops_v2;
2413 
2414 	pci_set_drvdata(pdev, qm);
2415 	mutex_init(&qm->mailbox_lock);
2416 	init_rwsem(&qm->qps_lock);
2417 	qm->qp_in_used = 0;
2418 	qm->is_frozen = false;
2419 }
2420 
2421 /**
2422  * hisi_qm_uninit() - Uninitialize qm.
2423  * @qm: The qm needed uninit.
2424  *
2425  * This function uninits qm related device resources.
2426  */
2427 void hisi_qm_uninit(struct hisi_qm *qm)
2428 {
2429 	struct pci_dev *pdev = qm->pdev;
2430 	struct device *dev = &pdev->dev;
2431 
2432 	down_write(&qm->qps_lock);
2433 
2434 	if (!qm_avail_state(qm, QM_CLOSE)) {
2435 		up_write(&qm->qps_lock);
2436 		return;
2437 	}
2438 
2439 	uacce_remove(qm->uacce);
2440 	qm->uacce = NULL;
2441 
2442 	hisi_qp_memory_uninit(qm, qm->qp_num);
2443 	idr_destroy(&qm->qp_idr);
2444 
2445 	if (qm->qdma.va) {
2446 		hisi_qm_cache_wb(qm);
2447 		dma_free_coherent(dev, qm->qdma.size,
2448 				  qm->qdma.va, qm->qdma.dma);
2449 		memset(&qm->qdma, 0, sizeof(qm->qdma));
2450 	}
2451 
2452 	qm_irq_unregister(qm);
2453 	pci_free_irq_vectors(pdev);
2454 	iounmap(qm->io_base);
2455 	pci_release_mem_regions(pdev);
2456 	pci_disable_device(pdev);
2457 
2458 	up_write(&qm->qps_lock);
2459 }
2460 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2461 
2462 /**
2463  * hisi_qm_get_vft() - Get vft from a qm.
2464  * @qm: The qm we want to get its vft.
2465  * @base: The base number of queue in vft.
2466  * @number: The number of queues in vft.
2467  *
2468  * We can allocate multiple queues to a qm by configuring virtual function
2469  * table. We get related configures by this function. Normally, we call this
2470  * function in VF driver to get the queue information.
2471  *
2472  * qm hw v1 does not support this interface.
2473  */
2474 int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2475 {
2476 	if (!base || !number)
2477 		return -EINVAL;
2478 
2479 	if (!qm->ops->get_vft) {
2480 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2481 		return -EINVAL;
2482 	}
2483 
2484 	return qm->ops->get_vft(qm, base, number);
2485 }
2486 EXPORT_SYMBOL_GPL(hisi_qm_get_vft);
2487 
2488 /**
2489  * This function is alway called in PF driver, it is used to assign queues
2490  * among PF and VFs.
2491  *
2492  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2493  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2494  * (VF function number 0x2)
2495  */
2496 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2497 		    u32 number)
2498 {
2499 	u32 max_q_num = qm->ctrl_qp_num;
2500 
2501 	if (base >= max_q_num || number > max_q_num ||
2502 	    (base + number) > max_q_num)
2503 		return -EINVAL;
2504 
2505 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2506 }
2507 
2508 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2509 {
2510 	struct hisi_qm_status *status = &qm->status;
2511 
2512 	status->eq_head = 0;
2513 	status->aeq_head = 0;
2514 	status->eqc_phase = true;
2515 	status->aeqc_phase = true;
2516 }
2517 
2518 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
2519 {
2520 	struct device *dev = &qm->pdev->dev;
2521 	struct qm_eqc *eqc;
2522 	struct qm_aeqc *aeqc;
2523 	dma_addr_t eqc_dma;
2524 	dma_addr_t aeqc_dma;
2525 	int ret;
2526 
2527 	qm_init_eq_aeq_status(qm);
2528 
2529 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
2530 	if (!eqc)
2531 		return -ENOMEM;
2532 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
2533 				 DMA_TO_DEVICE);
2534 	if (dma_mapping_error(dev, eqc_dma)) {
2535 		kfree(eqc);
2536 		return -ENOMEM;
2537 	}
2538 
2539 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
2540 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
2541 	if (qm->ver == QM_HW_V1)
2542 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
2543 	eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
2544 	ret = qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
2545 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
2546 	kfree(eqc);
2547 	if (ret)
2548 		return ret;
2549 
2550 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
2551 	if (!aeqc)
2552 		return -ENOMEM;
2553 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
2554 				  DMA_TO_DEVICE);
2555 	if (dma_mapping_error(dev, aeqc_dma)) {
2556 		kfree(aeqc);
2557 		return -ENOMEM;
2558 	}
2559 
2560 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
2561 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
2562 	aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
2563 
2564 	ret = qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
2565 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
2566 	kfree(aeqc);
2567 
2568 	return ret;
2569 }
2570 
2571 static int __hisi_qm_start(struct hisi_qm *qm)
2572 {
2573 	int ret;
2574 
2575 	WARN_ON(!qm->qdma.dma);
2576 
2577 	if (qm->fun_type == QM_HW_PF) {
2578 		ret = qm_dev_mem_reset(qm);
2579 		if (ret)
2580 			return ret;
2581 
2582 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
2583 		if (ret)
2584 			return ret;
2585 	}
2586 
2587 	ret = qm_eq_ctx_cfg(qm);
2588 	if (ret)
2589 		return ret;
2590 
2591 	ret = qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
2592 	if (ret)
2593 		return ret;
2594 
2595 	ret = qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
2596 	if (ret)
2597 		return ret;
2598 
2599 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
2600 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
2601 
2602 	return 0;
2603 }
2604 
2605 /**
2606  * hisi_qm_start() - start qm
2607  * @qm: The qm to be started.
2608  *
2609  * This function starts a qm, then we can allocate qp from this qm.
2610  */
2611 int hisi_qm_start(struct hisi_qm *qm)
2612 {
2613 	struct device *dev = &qm->pdev->dev;
2614 	int ret = 0;
2615 
2616 	down_write(&qm->qps_lock);
2617 
2618 	if (!qm_avail_state(qm, QM_START)) {
2619 		up_write(&qm->qps_lock);
2620 		return -EPERM;
2621 	}
2622 
2623 	dev_dbg(dev, "qm start with %d queue pairs\n", qm->qp_num);
2624 
2625 	if (!qm->qp_num) {
2626 		dev_err(dev, "qp_num should not be 0\n");
2627 		ret = -EINVAL;
2628 		goto err_unlock;
2629 	}
2630 
2631 	ret = __hisi_qm_start(qm);
2632 	if (!ret)
2633 		atomic_set(&qm->status.flags, QM_START);
2634 
2635 err_unlock:
2636 	up_write(&qm->qps_lock);
2637 	return ret;
2638 }
2639 EXPORT_SYMBOL_GPL(hisi_qm_start);
2640 
2641 static int qm_restart(struct hisi_qm *qm)
2642 {
2643 	struct device *dev = &qm->pdev->dev;
2644 	struct hisi_qp *qp;
2645 	int ret, i;
2646 
2647 	ret = hisi_qm_start(qm);
2648 	if (ret < 0)
2649 		return ret;
2650 
2651 	down_write(&qm->qps_lock);
2652 	for (i = 0; i < qm->qp_num; i++) {
2653 		qp = &qm->qp_array[i];
2654 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
2655 		    qp->is_resetting == true) {
2656 			ret = qm_start_qp_nolock(qp, 0);
2657 			if (ret < 0) {
2658 				dev_err(dev, "Failed to start qp%d!\n", i);
2659 
2660 				up_write(&qm->qps_lock);
2661 				return ret;
2662 			}
2663 			qp->is_resetting = false;
2664 		}
2665 	}
2666 	up_write(&qm->qps_lock);
2667 
2668 	return 0;
2669 }
2670 
2671 /* Stop started qps in reset flow */
2672 static int qm_stop_started_qp(struct hisi_qm *qm)
2673 {
2674 	struct device *dev = &qm->pdev->dev;
2675 	struct hisi_qp *qp;
2676 	int i, ret;
2677 
2678 	for (i = 0; i < qm->qp_num; i++) {
2679 		qp = &qm->qp_array[i];
2680 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
2681 			qp->is_resetting = true;
2682 			ret = qm_stop_qp_nolock(qp);
2683 			if (ret < 0) {
2684 				dev_err(dev, "Failed to stop qp%d!\n", i);
2685 				return ret;
2686 			}
2687 		}
2688 	}
2689 
2690 	return 0;
2691 }
2692 
2693 /**
2694  * This function clears all queues memory in a qm. Reset of accelerator can
2695  * use this to clear queues.
2696  */
2697 static void qm_clear_queues(struct hisi_qm *qm)
2698 {
2699 	struct hisi_qp *qp;
2700 	int i;
2701 
2702 	for (i = 0; i < qm->qp_num; i++) {
2703 		qp = &qm->qp_array[i];
2704 		if (qp->is_resetting)
2705 			memset(qp->qdma.va, 0, qp->qdma.size);
2706 	}
2707 
2708 	memset(qm->qdma.va, 0, qm->qdma.size);
2709 }
2710 
2711 /**
2712  * hisi_qm_stop() - Stop a qm.
2713  * @qm: The qm which will be stopped.
2714  * @r: The reason to stop qm.
2715  *
2716  * This function stops qm and its qps, then qm can not accept request.
2717  * Related resources are not released at this state, we can use hisi_qm_start
2718  * to let qm start again.
2719  */
2720 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
2721 {
2722 	struct device *dev = &qm->pdev->dev;
2723 	int ret = 0;
2724 
2725 	down_write(&qm->qps_lock);
2726 
2727 	qm->status.stop_reason = r;
2728 	if (!qm_avail_state(qm, QM_STOP)) {
2729 		ret = -EPERM;
2730 		goto err_unlock;
2731 	}
2732 
2733 	if (qm->status.stop_reason == QM_SOFT_RESET ||
2734 	    qm->status.stop_reason == QM_FLR) {
2735 		ret = qm_stop_started_qp(qm);
2736 		if (ret < 0) {
2737 			dev_err(dev, "Failed to stop started qp!\n");
2738 			goto err_unlock;
2739 		}
2740 	}
2741 
2742 	/* Mask eq and aeq irq */
2743 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
2744 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
2745 
2746 	if (qm->fun_type == QM_HW_PF) {
2747 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
2748 		if (ret < 0) {
2749 			dev_err(dev, "Failed to set vft!\n");
2750 			ret = -EBUSY;
2751 			goto err_unlock;
2752 		}
2753 	}
2754 
2755 	qm_clear_queues(qm);
2756 	atomic_set(&qm->status.flags, QM_STOP);
2757 
2758 err_unlock:
2759 	up_write(&qm->qps_lock);
2760 	return ret;
2761 }
2762 EXPORT_SYMBOL_GPL(hisi_qm_stop);
2763 
2764 static ssize_t qm_status_read(struct file *filp, char __user *buffer,
2765 			      size_t count, loff_t *pos)
2766 {
2767 	struct hisi_qm *qm = filp->private_data;
2768 	char buf[QM_DBG_READ_LEN];
2769 	int val, len;
2770 
2771 	val = atomic_read(&qm->status.flags);
2772 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]);
2773 
2774 	return simple_read_from_buffer(buffer, count, pos, buf, len);
2775 }
2776 
2777 static const struct file_operations qm_status_fops = {
2778 	.owner = THIS_MODULE,
2779 	.open = simple_open,
2780 	.read = qm_status_read,
2781 };
2782 
2783 static int qm_debugfs_atomic64_set(void *data, u64 val)
2784 {
2785 	if (val)
2786 		return -EINVAL;
2787 
2788 	atomic64_set((atomic64_t *)data, 0);
2789 
2790 	return 0;
2791 }
2792 
2793 static int qm_debugfs_atomic64_get(void *data, u64 *val)
2794 {
2795 	*val = atomic64_read((atomic64_t *)data);
2796 
2797 	return 0;
2798 }
2799 
2800 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get,
2801 			 qm_debugfs_atomic64_set, "%llu\n");
2802 
2803 /**
2804  * hisi_qm_debug_init() - Initialize qm related debugfs files.
2805  * @qm: The qm for which we want to add debugfs files.
2806  *
2807  * Create qm related debugfs files.
2808  */
2809 int hisi_qm_debug_init(struct hisi_qm *qm)
2810 {
2811 	struct qm_dfx *dfx = &qm->debug.dfx;
2812 	struct dentry *qm_d;
2813 	void *data;
2814 	int i, ret;
2815 
2816 	qm_d = debugfs_create_dir("qm", qm->debug.debug_root);
2817 	qm->debug.qm_d = qm_d;
2818 
2819 	/* only show this in PF */
2820 	if (qm->fun_type == QM_HW_PF)
2821 		for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++)
2822 			if (qm_create_debugfs_file(qm, i)) {
2823 				ret = -ENOENT;
2824 				goto failed_to_create;
2825 			}
2826 
2827 	debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops);
2828 
2829 	debugfs_create_file("cmd", 0444, qm->debug.qm_d, qm, &qm_cmd_fops);
2830 
2831 	debugfs_create_file("status", 0444, qm->debug.qm_d, qm,
2832 			&qm_status_fops);
2833 	for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) {
2834 		data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset);
2835 		debugfs_create_file(qm_dfx_files[i].name,
2836 			0644,
2837 			qm_d,
2838 			data,
2839 			&qm_atomic64_ops);
2840 	}
2841 
2842 	return 0;
2843 
2844 failed_to_create:
2845 	debugfs_remove_recursive(qm_d);
2846 	return ret;
2847 }
2848 EXPORT_SYMBOL_GPL(hisi_qm_debug_init);
2849 
2850 /**
2851  * hisi_qm_debug_regs_clear() - clear qm debug related registers.
2852  * @qm: The qm for which we want to clear its debug registers.
2853  */
2854 void hisi_qm_debug_regs_clear(struct hisi_qm *qm)
2855 {
2856 	struct qm_dfx_registers *regs;
2857 	int i;
2858 
2859 	/* clear current_q */
2860 	writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
2861 	writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
2862 
2863 	/*
2864 	 * these registers are reading and clearing, so clear them after
2865 	 * reading them.
2866 	 */
2867 	writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE);
2868 
2869 	regs = qm_dfx_regs;
2870 	for (i = 0; i < CNT_CYC_REGS_NUM; i++) {
2871 		readl(qm->io_base + regs->reg_offset);
2872 		regs++;
2873 	}
2874 
2875 	writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE);
2876 }
2877 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear);
2878 
2879 static void qm_hw_error_init(struct hisi_qm *qm)
2880 {
2881 	const struct hisi_qm_err_info *err_info = &qm->err_ini->err_info;
2882 
2883 	if (!qm->ops->hw_error_init) {
2884 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
2885 		return;
2886 	}
2887 
2888 	qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe);
2889 }
2890 
2891 static void qm_hw_error_uninit(struct hisi_qm *qm)
2892 {
2893 	if (!qm->ops->hw_error_uninit) {
2894 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
2895 		return;
2896 	}
2897 
2898 	qm->ops->hw_error_uninit(qm);
2899 }
2900 
2901 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
2902 {
2903 	if (!qm->ops->hw_error_handle) {
2904 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
2905 		return ACC_ERR_NONE;
2906 	}
2907 
2908 	return qm->ops->hw_error_handle(qm);
2909 }
2910 
2911 /**
2912  * hisi_qm_dev_err_init() - Initialize device error configuration.
2913  * @qm: The qm for which we want to do error initialization.
2914  *
2915  * Initialize QM and device error related configuration.
2916  */
2917 void hisi_qm_dev_err_init(struct hisi_qm *qm)
2918 {
2919 	if (qm->fun_type == QM_HW_VF)
2920 		return;
2921 
2922 	qm_hw_error_init(qm);
2923 
2924 	if (!qm->err_ini->hw_err_enable) {
2925 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
2926 		return;
2927 	}
2928 	qm->err_ini->hw_err_enable(qm);
2929 }
2930 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
2931 
2932 /**
2933  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
2934  * @qm: The qm for which we want to do error uninitialization.
2935  *
2936  * Uninitialize QM and device error related configuration.
2937  */
2938 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
2939 {
2940 	if (qm->fun_type == QM_HW_VF)
2941 		return;
2942 
2943 	qm_hw_error_uninit(qm);
2944 
2945 	if (!qm->err_ini->hw_err_disable) {
2946 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
2947 		return;
2948 	}
2949 	qm->err_ini->hw_err_disable(qm);
2950 }
2951 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
2952 
2953 /**
2954  * hisi_qm_free_qps() - free multiple queue pairs.
2955  * @qps: The queue pairs need to be freed.
2956  * @qp_num: The num of queue pairs.
2957  */
2958 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
2959 {
2960 	int i;
2961 
2962 	if (!qps || qp_num <= 0)
2963 		return;
2964 
2965 	for (i = qp_num - 1; i >= 0; i--)
2966 		hisi_qm_release_qp(qps[i]);
2967 }
2968 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
2969 
2970 static void free_list(struct list_head *head)
2971 {
2972 	struct hisi_qm_resource *res, *tmp;
2973 
2974 	list_for_each_entry_safe(res, tmp, head, list) {
2975 		list_del(&res->list);
2976 		kfree(res);
2977 	}
2978 }
2979 
2980 static int hisi_qm_sort_devices(int node, struct list_head *head,
2981 				struct hisi_qm_list *qm_list)
2982 {
2983 	struct hisi_qm_resource *res, *tmp;
2984 	struct hisi_qm *qm;
2985 	struct list_head *n;
2986 	struct device *dev;
2987 	int dev_node = 0;
2988 
2989 	list_for_each_entry(qm, &qm_list->list, list) {
2990 		dev = &qm->pdev->dev;
2991 
2992 		if (IS_ENABLED(CONFIG_NUMA)) {
2993 			dev_node = dev_to_node(dev);
2994 			if (dev_node < 0)
2995 				dev_node = 0;
2996 		}
2997 
2998 		res = kzalloc(sizeof(*res), GFP_KERNEL);
2999 		if (!res)
3000 			return -ENOMEM;
3001 
3002 		res->qm = qm;
3003 		res->distance = node_distance(dev_node, node);
3004 		n = head;
3005 		list_for_each_entry(tmp, head, list) {
3006 			if (res->distance < tmp->distance) {
3007 				n = &tmp->list;
3008 				break;
3009 			}
3010 		}
3011 		list_add_tail(&res->list, n);
3012 	}
3013 
3014 	return 0;
3015 }
3016 
3017 /**
3018  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3019  * @qm_list: The list of all available devices.
3020  * @qp_num: The number of queue pairs need created.
3021  * @alg_type: The algorithm type.
3022  * @node: The numa node.
3023  * @qps: The queue pairs need created.
3024  *
3025  * This function will sort all available device according to numa distance.
3026  * Then try to create all queue pairs from one device, if all devices do
3027  * not meet the requirements will return error.
3028  */
3029 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3030 			   u8 alg_type, int node, struct hisi_qp **qps)
3031 {
3032 	struct hisi_qm_resource *tmp;
3033 	int ret = -ENODEV;
3034 	LIST_HEAD(head);
3035 	int i;
3036 
3037 	if (!qps || !qm_list || qp_num <= 0)
3038 		return -EINVAL;
3039 
3040 	mutex_lock(&qm_list->lock);
3041 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3042 		mutex_unlock(&qm_list->lock);
3043 		goto err;
3044 	}
3045 
3046 	list_for_each_entry(tmp, &head, list) {
3047 		for (i = 0; i < qp_num; i++) {
3048 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3049 			if (IS_ERR(qps[i])) {
3050 				hisi_qm_free_qps(qps, i);
3051 				break;
3052 			}
3053 		}
3054 
3055 		if (i == qp_num) {
3056 			ret = 0;
3057 			break;
3058 		}
3059 	}
3060 
3061 	mutex_unlock(&qm_list->lock);
3062 	if (ret)
3063 		pr_info("Failed to create qps, node[%d], alg[%d], qp[%d]!\n",
3064 			node, alg_type, qp_num);
3065 
3066 err:
3067 	free_list(&head);
3068 	return ret;
3069 }
3070 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3071 
3072 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3073 {
3074 	u32 remain_q_num, q_num, i, j;
3075 	u32 q_base = qm->qp_num;
3076 	int ret;
3077 
3078 	if (!num_vfs)
3079 		return -EINVAL;
3080 
3081 	remain_q_num = qm->ctrl_qp_num - qm->qp_num;
3082 
3083 	/* If remain queues not enough, return error. */
3084 	if (qm->ctrl_qp_num < qm->qp_num || remain_q_num < num_vfs)
3085 		return -EINVAL;
3086 
3087 	q_num = remain_q_num / num_vfs;
3088 	for (i = 1; i <= num_vfs; i++) {
3089 		if (i == num_vfs)
3090 			q_num += remain_q_num % num_vfs;
3091 		ret = hisi_qm_set_vft(qm, i, q_base, q_num);
3092 		if (ret) {
3093 			for (j = i; j > 0; j--)
3094 				hisi_qm_set_vft(qm, j, 0, 0);
3095 			return ret;
3096 		}
3097 		q_base += q_num;
3098 	}
3099 
3100 	return 0;
3101 }
3102 
3103 static int qm_clear_vft_config(struct hisi_qm *qm)
3104 {
3105 	int ret;
3106 	u32 i;
3107 
3108 	for (i = 1; i <= qm->vfs_num; i++) {
3109 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3110 		if (ret)
3111 			return ret;
3112 	}
3113 	qm->vfs_num = 0;
3114 
3115 	return 0;
3116 }
3117 
3118 /**
3119  * hisi_qm_sriov_enable() - enable virtual functions
3120  * @pdev: the PCIe device
3121  * @max_vfs: the number of virtual functions to enable
3122  *
3123  * Returns the number of enabled VFs. If there are VFs enabled already or
3124  * max_vfs is more than the total number of device can be enabled, returns
3125  * failure.
3126  */
3127 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3128 {
3129 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3130 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3131 
3132 	total_vfs = pci_sriov_get_totalvfs(pdev);
3133 	pre_existing_vfs = pci_num_vf(pdev);
3134 	if (pre_existing_vfs) {
3135 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3136 			pre_existing_vfs);
3137 		return 0;
3138 	}
3139 
3140 	num_vfs = min_t(int, max_vfs, total_vfs);
3141 	ret = qm_vf_q_assign(qm, num_vfs);
3142 	if (ret) {
3143 		pci_err(pdev, "Can't assign queues for VF!\n");
3144 		return ret;
3145 	}
3146 
3147 	qm->vfs_num = num_vfs;
3148 
3149 	ret = pci_enable_sriov(pdev, num_vfs);
3150 	if (ret) {
3151 		pci_err(pdev, "Can't enable VF!\n");
3152 		qm_clear_vft_config(qm);
3153 		return ret;
3154 	}
3155 
3156 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3157 
3158 	return num_vfs;
3159 }
3160 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3161 
3162 /**
3163  * hisi_qm_sriov_disable - disable virtual functions
3164  * @pdev: the PCI device.
3165  * @is_frozen: true when all the VFs are frozen.
3166  *
3167  * Return failure if there are VFs assigned already or VF is in used.
3168  */
3169 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3170 {
3171 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3172 
3173 	if (pci_vfs_assigned(pdev)) {
3174 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3175 		return -EPERM;
3176 	}
3177 
3178 	/* While VF is in used, SRIOV cannot be disabled. */
3179 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3180 		pci_err(pdev, "Task is using its VF!\n");
3181 		return -EBUSY;
3182 	}
3183 
3184 	pci_disable_sriov(pdev);
3185 	return qm_clear_vft_config(qm);
3186 }
3187 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3188 
3189 /**
3190  * hisi_qm_sriov_configure - configure the number of VFs
3191  * @pdev: The PCI device
3192  * @num_vfs: The number of VFs need enabled
3193  *
3194  * Enable SR-IOV according to num_vfs, 0 means disable.
3195  */
3196 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3197 {
3198 	if (num_vfs == 0)
3199 		return hisi_qm_sriov_disable(pdev, 0);
3200 	else
3201 		return hisi_qm_sriov_enable(pdev, num_vfs);
3202 }
3203 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3204 
3205 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3206 {
3207 	u32 err_sts;
3208 
3209 	if (!qm->err_ini->get_dev_hw_err_status) {
3210 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3211 		return ACC_ERR_NONE;
3212 	}
3213 
3214 	/* get device hardware error status */
3215 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3216 	if (err_sts) {
3217 		if (err_sts & qm->err_ini->err_info.ecc_2bits_mask)
3218 			qm->err_status.is_dev_ecc_mbit = true;
3219 
3220 		if (!qm->err_ini->log_dev_hw_err) {
3221 			dev_err(&qm->pdev->dev, "Device doesn't support log hw error!\n");
3222 			return ACC_ERR_NEED_RESET;
3223 		}
3224 
3225 		qm->err_ini->log_dev_hw_err(qm, err_sts);
3226 		return ACC_ERR_NEED_RESET;
3227 	}
3228 
3229 	return ACC_ERR_RECOVERED;
3230 }
3231 
3232 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3233 {
3234 	enum acc_err_result qm_ret, dev_ret;
3235 
3236 	/* log qm error */
3237 	qm_ret = qm_hw_error_handle(qm);
3238 
3239 	/* log device error */
3240 	dev_ret = qm_dev_err_handle(qm);
3241 
3242 	return (qm_ret == ACC_ERR_NEED_RESET ||
3243 		dev_ret == ACC_ERR_NEED_RESET) ?
3244 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3245 }
3246 
3247 /**
3248  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3249  * @pdev: The PCI device which need report error.
3250  * @state: The connectivity between CPU and device.
3251  *
3252  * We register this function into PCIe AER handlers, It will report device or
3253  * qm hardware error status when error occur.
3254  */
3255 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3256 					  pci_channel_state_t state)
3257 {
3258 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3259 	enum acc_err_result ret;
3260 
3261 	if (pdev->is_virtfn)
3262 		return PCI_ERS_RESULT_NONE;
3263 
3264 	pci_info(pdev, "PCI error detected, state(=%d)!!\n", state);
3265 	if (state == pci_channel_io_perm_failure)
3266 		return PCI_ERS_RESULT_DISCONNECT;
3267 
3268 	ret = qm_process_dev_error(qm);
3269 	if (ret == ACC_ERR_NEED_RESET)
3270 		return PCI_ERS_RESULT_NEED_RESET;
3271 
3272 	return PCI_ERS_RESULT_RECOVERED;
3273 }
3274 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3275 
3276 static int qm_get_hw_error_status(struct hisi_qm *qm)
3277 {
3278 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
3279 }
3280 
3281 static int qm_check_req_recv(struct hisi_qm *qm)
3282 {
3283 	struct pci_dev *pdev = qm->pdev;
3284 	int ret;
3285 	u32 val;
3286 
3287 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
3288 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3289 					 (val == ACC_VENDOR_ID_VALUE),
3290 					 POLL_PERIOD, POLL_TIMEOUT);
3291 	if (ret) {
3292 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
3293 		return ret;
3294 	}
3295 
3296 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
3297 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3298 					 (val == PCI_VENDOR_ID_HUAWEI),
3299 					 POLL_PERIOD, POLL_TIMEOUT);
3300 	if (ret)
3301 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
3302 
3303 	return ret;
3304 }
3305 
3306 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
3307 {
3308 	struct pci_dev *pdev = qm->pdev;
3309 	u16 cmd;
3310 	int i;
3311 
3312 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3313 	if (set)
3314 		cmd |= PCI_COMMAND_MEMORY;
3315 	else
3316 		cmd &= ~PCI_COMMAND_MEMORY;
3317 
3318 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
3319 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3320 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3321 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
3322 			return 0;
3323 
3324 		udelay(1);
3325 	}
3326 
3327 	return -ETIMEDOUT;
3328 }
3329 
3330 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
3331 {
3332 	struct pci_dev *pdev = qm->pdev;
3333 	u16 sriov_ctrl;
3334 	int pos;
3335 	int i;
3336 
3337 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3338 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3339 	if (set)
3340 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
3341 	else
3342 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
3343 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
3344 
3345 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3346 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3347 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
3348 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
3349 			return 0;
3350 
3351 		udelay(1);
3352 	}
3353 
3354 	return -ETIMEDOUT;
3355 }
3356 
3357 static int qm_set_msi(struct hisi_qm *qm, bool set)
3358 {
3359 	struct pci_dev *pdev = qm->pdev;
3360 
3361 	if (set) {
3362 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
3363 				       0);
3364 	} else {
3365 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
3366 				       ACC_PEH_MSI_DISABLE);
3367 		if (qm->err_status.is_qm_ecc_mbit ||
3368 		    qm->err_status.is_dev_ecc_mbit)
3369 			return 0;
3370 
3371 		mdelay(1);
3372 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
3373 			return -EFAULT;
3374 	}
3375 
3376 	return 0;
3377 }
3378 
3379 static int qm_vf_reset_prepare(struct hisi_qm *qm,
3380 			       enum qm_stop_reason stop_reason)
3381 {
3382 	struct hisi_qm_list *qm_list = qm->qm_list;
3383 	struct pci_dev *pdev = qm->pdev;
3384 	struct pci_dev *virtfn;
3385 	struct hisi_qm *vf_qm;
3386 	int ret = 0;
3387 
3388 	mutex_lock(&qm_list->lock);
3389 	list_for_each_entry(vf_qm, &qm_list->list, list) {
3390 		virtfn = vf_qm->pdev;
3391 		if (virtfn == pdev)
3392 			continue;
3393 
3394 		if (pci_physfn(virtfn) == pdev) {
3395 			/* save VFs PCIE BAR configuration */
3396 			pci_save_state(virtfn);
3397 
3398 			ret = hisi_qm_stop(vf_qm, stop_reason);
3399 			if (ret)
3400 				goto stop_fail;
3401 		}
3402 	}
3403 
3404 stop_fail:
3405 	mutex_unlock(&qm_list->lock);
3406 	return ret;
3407 }
3408 
3409 static int qm_reset_prepare_ready(struct hisi_qm *qm)
3410 {
3411 	struct pci_dev *pdev = qm->pdev;
3412 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3413 	int delay = 0;
3414 
3415 	/* All reset requests need to be queued for processing */
3416 	while (test_and_set_bit(QM_DEV_RESET_FLAG, &pf_qm->reset_flag)) {
3417 		msleep(++delay);
3418 		if (delay > QM_RESET_WAIT_TIMEOUT)
3419 			return -EBUSY;
3420 	}
3421 
3422 	return 0;
3423 }
3424 
3425 static int qm_controller_reset_prepare(struct hisi_qm *qm)
3426 {
3427 	struct pci_dev *pdev = qm->pdev;
3428 	int ret;
3429 
3430 	ret = qm_reset_prepare_ready(qm);
3431 	if (ret) {
3432 		pci_err(pdev, "Controller reset not ready!\n");
3433 		return ret;
3434 	}
3435 
3436 	if (qm->vfs_num) {
3437 		ret = qm_vf_reset_prepare(qm, QM_SOFT_RESET);
3438 		if (ret) {
3439 			pci_err(pdev, "Fails to stop VFs!\n");
3440 			return ret;
3441 		}
3442 	}
3443 
3444 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
3445 	if (ret) {
3446 		pci_err(pdev, "Fails to stop QM!\n");
3447 		return ret;
3448 	}
3449 
3450 	return 0;
3451 }
3452 
3453 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
3454 {
3455 	u32 nfe_enb = 0;
3456 
3457 	if (!qm->err_status.is_dev_ecc_mbit &&
3458 	    qm->err_status.is_qm_ecc_mbit &&
3459 	    qm->err_ini->close_axi_master_ooo) {
3460 
3461 		qm->err_ini->close_axi_master_ooo(qm);
3462 
3463 	} else if (qm->err_status.is_dev_ecc_mbit &&
3464 		   !qm->err_status.is_qm_ecc_mbit &&
3465 		   !qm->err_ini->close_axi_master_ooo) {
3466 
3467 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
3468 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
3469 		       qm->io_base + QM_RAS_NFE_ENABLE);
3470 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
3471 	}
3472 }
3473 
3474 static int qm_soft_reset(struct hisi_qm *qm)
3475 {
3476 	struct pci_dev *pdev = qm->pdev;
3477 	int ret;
3478 	u32 val;
3479 
3480 	/* Ensure all doorbells and mailboxes received by QM */
3481 	ret = qm_check_req_recv(qm);
3482 	if (ret)
3483 		return ret;
3484 
3485 	if (qm->vfs_num) {
3486 		ret = qm_set_vf_mse(qm, false);
3487 		if (ret) {
3488 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
3489 			return ret;
3490 		}
3491 	}
3492 
3493 	ret = qm_set_msi(qm, false);
3494 	if (ret) {
3495 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
3496 		return ret;
3497 	}
3498 
3499 	qm_dev_ecc_mbit_handle(qm);
3500 
3501 	/* OOO register set and check */
3502 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
3503 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
3504 
3505 	/* If bus lock, reset chip */
3506 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
3507 					 val,
3508 					 (val == ACC_MASTER_TRANS_RETURN_RW),
3509 					 POLL_PERIOD, POLL_TIMEOUT);
3510 	if (ret) {
3511 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
3512 		return ret;
3513 	}
3514 
3515 	ret = qm_set_pf_mse(qm, false);
3516 	if (ret) {
3517 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
3518 		return ret;
3519 	}
3520 
3521 	/* The reset related sub-control registers are not in PCI BAR */
3522 	if (ACPI_HANDLE(&pdev->dev)) {
3523 		unsigned long long value = 0;
3524 		acpi_status s;
3525 
3526 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
3527 					  qm->err_ini->err_info.acpi_rst,
3528 					  NULL, &value);
3529 		if (ACPI_FAILURE(s)) {
3530 			pci_err(pdev, "NO controller reset method!\n");
3531 			return -EIO;
3532 		}
3533 
3534 		if (value) {
3535 			pci_err(pdev, "Reset step %llu failed!\n", value);
3536 			return -EIO;
3537 		}
3538 	} else {
3539 		pci_err(pdev, "No reset method!\n");
3540 		return -EINVAL;
3541 	}
3542 
3543 	return 0;
3544 }
3545 
3546 static int qm_vf_reset_done(struct hisi_qm *qm)
3547 {
3548 	struct hisi_qm_list *qm_list = qm->qm_list;
3549 	struct pci_dev *pdev = qm->pdev;
3550 	struct pci_dev *virtfn;
3551 	struct hisi_qm *vf_qm;
3552 	int ret = 0;
3553 
3554 	mutex_lock(&qm_list->lock);
3555 	list_for_each_entry(vf_qm, &qm_list->list, list) {
3556 		virtfn = vf_qm->pdev;
3557 		if (virtfn == pdev)
3558 			continue;
3559 
3560 		if (pci_physfn(virtfn) == pdev) {
3561 			/* enable VFs PCIE BAR configuration */
3562 			pci_restore_state(virtfn);
3563 
3564 			ret = qm_restart(vf_qm);
3565 			if (ret)
3566 				goto restart_fail;
3567 		}
3568 	}
3569 
3570 restart_fail:
3571 	mutex_unlock(&qm_list->lock);
3572 	return ret;
3573 }
3574 
3575 static int qm_get_dev_err_status(struct hisi_qm *qm)
3576 {
3577 	return qm->err_ini->get_dev_hw_err_status(qm);
3578 }
3579 
3580 static int qm_dev_hw_init(struct hisi_qm *qm)
3581 {
3582 	return qm->err_ini->hw_init(qm);
3583 }
3584 
3585 static void qm_restart_prepare(struct hisi_qm *qm)
3586 {
3587 	u32 value;
3588 
3589 	if (!qm->err_status.is_qm_ecc_mbit &&
3590 	    !qm->err_status.is_dev_ecc_mbit)
3591 		return;
3592 
3593 	/* temporarily close the OOO port used for PEH to write out MSI */
3594 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3595 	writel(value & ~qm->err_ini->err_info.msi_wr_port,
3596 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3597 
3598 	/* clear dev ecc 2bit error source if having */
3599 	value = qm_get_dev_err_status(qm) &
3600 		qm->err_ini->err_info.ecc_2bits_mask;
3601 	if (value && qm->err_ini->clear_dev_hw_err_status)
3602 		qm->err_ini->clear_dev_hw_err_status(qm, value);
3603 
3604 	/* clear QM ecc mbit error source */
3605 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
3606 
3607 	/* clear AM Reorder Buffer ecc mbit source */
3608 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
3609 
3610 	if (qm->err_ini->open_axi_master_ooo)
3611 		qm->err_ini->open_axi_master_ooo(qm);
3612 }
3613 
3614 static void qm_restart_done(struct hisi_qm *qm)
3615 {
3616 	u32 value;
3617 
3618 	if (!qm->err_status.is_qm_ecc_mbit &&
3619 	    !qm->err_status.is_dev_ecc_mbit)
3620 		return;
3621 
3622 	/* open the OOO port for PEH to write out MSI */
3623 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3624 	value |= qm->err_ini->err_info.msi_wr_port;
3625 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
3626 
3627 	qm->err_status.is_qm_ecc_mbit = false;
3628 	qm->err_status.is_dev_ecc_mbit = false;
3629 }
3630 
3631 static int qm_controller_reset_done(struct hisi_qm *qm)
3632 {
3633 	struct pci_dev *pdev = qm->pdev;
3634 	int ret;
3635 
3636 	ret = qm_set_msi(qm, true);
3637 	if (ret) {
3638 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
3639 		return ret;
3640 	}
3641 
3642 	ret = qm_set_pf_mse(qm, true);
3643 	if (ret) {
3644 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
3645 		return ret;
3646 	}
3647 
3648 	if (qm->vfs_num) {
3649 		ret = qm_set_vf_mse(qm, true);
3650 		if (ret) {
3651 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
3652 			return ret;
3653 		}
3654 	}
3655 
3656 	ret = qm_dev_hw_init(qm);
3657 	if (ret) {
3658 		pci_err(pdev, "Failed to init device\n");
3659 		return ret;
3660 	}
3661 
3662 	qm_restart_prepare(qm);
3663 
3664 	ret = qm_restart(qm);
3665 	if (ret) {
3666 		pci_err(pdev, "Failed to start QM!\n");
3667 		return ret;
3668 	}
3669 
3670 	if (qm->vfs_num) {
3671 		ret = qm_vf_q_assign(qm, qm->vfs_num);
3672 		if (ret) {
3673 			pci_err(pdev, "Failed to assign queue!\n");
3674 			return ret;
3675 		}
3676 	}
3677 
3678 	ret = qm_vf_reset_done(qm);
3679 	if (ret) {
3680 		pci_err(pdev, "Failed to start VFs!\n");
3681 		return -EPERM;
3682 	}
3683 
3684 	hisi_qm_dev_err_init(qm);
3685 	qm_restart_done(qm);
3686 
3687 	clear_bit(QM_DEV_RESET_FLAG, &qm->reset_flag);
3688 
3689 	return 0;
3690 }
3691 
3692 static int qm_controller_reset(struct hisi_qm *qm)
3693 {
3694 	struct pci_dev *pdev = qm->pdev;
3695 	int ret;
3696 
3697 	pci_info(pdev, "Controller resetting...\n");
3698 
3699 	ret = qm_controller_reset_prepare(qm);
3700 	if (ret)
3701 		return ret;
3702 
3703 	ret = qm_soft_reset(qm);
3704 	if (ret) {
3705 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
3706 		return ret;
3707 	}
3708 
3709 	ret = qm_controller_reset_done(qm);
3710 	if (ret)
3711 		return ret;
3712 
3713 	pci_info(pdev, "Controller reset complete\n");
3714 
3715 	return 0;
3716 }
3717 
3718 /**
3719  * hisi_qm_dev_slot_reset() - slot reset
3720  * @pdev: the PCIe device
3721  *
3722  * This function offers QM relate PCIe device reset interface. Drivers which
3723  * use QM can use this function as slot_reset in its struct pci_error_handlers.
3724  */
3725 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
3726 {
3727 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3728 	int ret;
3729 
3730 	if (pdev->is_virtfn)
3731 		return PCI_ERS_RESULT_RECOVERED;
3732 
3733 	pci_aer_clear_nonfatal_status(pdev);
3734 
3735 	/* reset pcie device controller */
3736 	ret = qm_controller_reset(qm);
3737 	if (ret) {
3738 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
3739 		return PCI_ERS_RESULT_DISCONNECT;
3740 	}
3741 
3742 	return PCI_ERS_RESULT_RECOVERED;
3743 }
3744 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
3745 
3746 /* check the interrupt is ecc-mbit error or not */
3747 static int qm_check_dev_error(struct hisi_qm *qm)
3748 {
3749 	int ret;
3750 
3751 	if (qm->fun_type == QM_HW_VF)
3752 		return 0;
3753 
3754 	ret = qm_get_hw_error_status(qm) & QM_ECC_MBIT;
3755 	if (ret)
3756 		return ret;
3757 
3758 	return (qm_get_dev_err_status(qm) &
3759 		qm->err_ini->err_info.ecc_2bits_mask);
3760 }
3761 
3762 void hisi_qm_reset_prepare(struct pci_dev *pdev)
3763 {
3764 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3765 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3766 	u32 delay = 0;
3767 	int ret;
3768 
3769 	hisi_qm_dev_err_uninit(pf_qm);
3770 
3771 	/*
3772 	 * Check whether there is an ECC mbit error, If it occurs, need to
3773 	 * wait for soft reset to fix it.
3774 	 */
3775 	while (qm_check_dev_error(pf_qm)) {
3776 		msleep(++delay);
3777 		if (delay > QM_RESET_WAIT_TIMEOUT)
3778 			return;
3779 	}
3780 
3781 	ret = qm_reset_prepare_ready(qm);
3782 	if (ret) {
3783 		pci_err(pdev, "FLR not ready!\n");
3784 		return;
3785 	}
3786 
3787 	if (qm->vfs_num) {
3788 		ret = qm_vf_reset_prepare(qm, QM_FLR);
3789 		if (ret) {
3790 			pci_err(pdev, "Failed to prepare reset, ret = %d.\n",
3791 				ret);
3792 			return;
3793 		}
3794 	}
3795 
3796 	ret = hisi_qm_stop(qm, QM_FLR);
3797 	if (ret) {
3798 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
3799 		return;
3800 	}
3801 
3802 	pci_info(pdev, "FLR resetting...\n");
3803 }
3804 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
3805 
3806 static bool qm_flr_reset_complete(struct pci_dev *pdev)
3807 {
3808 	struct pci_dev *pf_pdev = pci_physfn(pdev);
3809 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
3810 	u32 id;
3811 
3812 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
3813 	if (id == QM_PCI_COMMAND_INVALID) {
3814 		pci_err(pdev, "Device can not be used!\n");
3815 		return false;
3816 	}
3817 
3818 	clear_bit(QM_DEV_RESET_FLAG, &qm->reset_flag);
3819 
3820 	return true;
3821 }
3822 
3823 void hisi_qm_reset_done(struct pci_dev *pdev)
3824 {
3825 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
3826 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3827 	int ret;
3828 
3829 	hisi_qm_dev_err_init(pf_qm);
3830 
3831 	ret = qm_restart(qm);
3832 	if (ret) {
3833 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
3834 		goto flr_done;
3835 	}
3836 
3837 	if (qm->fun_type == QM_HW_PF) {
3838 		ret = qm_dev_hw_init(qm);
3839 		if (ret) {
3840 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
3841 			goto flr_done;
3842 		}
3843 
3844 		if (!qm->vfs_num)
3845 			goto flr_done;
3846 
3847 		ret = qm_vf_q_assign(qm, qm->vfs_num);
3848 		if (ret) {
3849 			pci_err(pdev, "Failed to assign VFs, ret = %d.\n", ret);
3850 			goto flr_done;
3851 		}
3852 
3853 		ret = qm_vf_reset_done(qm);
3854 		if (ret) {
3855 			pci_err(pdev, "Failed to start VFs, ret = %d.\n", ret);
3856 			goto flr_done;
3857 		}
3858 	}
3859 
3860 flr_done:
3861 	if (qm_flr_reset_complete(pdev))
3862 		pci_info(pdev, "FLR reset complete\n");
3863 }
3864 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
3865 
3866 static irqreturn_t qm_abnormal_irq(int irq, void *data)
3867 {
3868 	struct hisi_qm *qm = data;
3869 	enum acc_err_result ret;
3870 
3871 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
3872 	ret = qm_process_dev_error(qm);
3873 	if (ret == ACC_ERR_NEED_RESET)
3874 		schedule_work(&qm->rst_work);
3875 
3876 	return IRQ_HANDLED;
3877 }
3878 
3879 static int qm_irq_register(struct hisi_qm *qm)
3880 {
3881 	struct pci_dev *pdev = qm->pdev;
3882 	int ret;
3883 
3884 	ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR),
3885 			  qm_irq, IRQF_SHARED, qm->dev_name, qm);
3886 	if (ret)
3887 		return ret;
3888 
3889 	if (qm->ver != QM_HW_V1) {
3890 		ret = request_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR),
3891 				  qm_aeq_irq, IRQF_SHARED, qm->dev_name, qm);
3892 		if (ret)
3893 			goto err_aeq_irq;
3894 
3895 		if (qm->fun_type == QM_HW_PF) {
3896 			ret = request_irq(pci_irq_vector(pdev,
3897 					  QM_ABNORMAL_EVENT_IRQ_VECTOR),
3898 					  qm_abnormal_irq, IRQF_SHARED,
3899 					  qm->dev_name, qm);
3900 			if (ret)
3901 				goto err_abonormal_irq;
3902 		}
3903 	}
3904 
3905 	return 0;
3906 
3907 err_abonormal_irq:
3908 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
3909 err_aeq_irq:
3910 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
3911 	return ret;
3912 }
3913 
3914 /**
3915  * hisi_qm_dev_shutdown() - Shutdown device.
3916  * @pdev: The device will be shutdown.
3917  *
3918  * This function will stop qm when OS shutdown or rebooting.
3919  */
3920 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
3921 {
3922 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3923 	int ret;
3924 
3925 	ret = hisi_qm_stop(qm, QM_NORMAL);
3926 	if (ret)
3927 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
3928 }
3929 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
3930 
3931 static void hisi_qm_controller_reset(struct work_struct *rst_work)
3932 {
3933 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
3934 	int ret;
3935 
3936 	/* reset pcie device controller */
3937 	ret = qm_controller_reset(qm);
3938 	if (ret)
3939 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
3940 
3941 }
3942 
3943 /**
3944  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
3945  * @qm: The qm needs add.
3946  * @qm_list: The qm list.
3947  *
3948  * This function adds qm to qm list, and will register algorithm to
3949  * crypto when the qm list is empty.
3950  */
3951 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
3952 {
3953 	int flag = 0;
3954 	int ret = 0;
3955 
3956 	mutex_lock(&qm_list->lock);
3957 	if (list_empty(&qm_list->list))
3958 		flag = 1;
3959 	list_add_tail(&qm->list, &qm_list->list);
3960 	mutex_unlock(&qm_list->lock);
3961 
3962 	if (flag) {
3963 		ret = qm_list->register_to_crypto();
3964 		if (ret) {
3965 			mutex_lock(&qm_list->lock);
3966 			list_del(&qm->list);
3967 			mutex_unlock(&qm_list->lock);
3968 		}
3969 	}
3970 
3971 	return ret;
3972 }
3973 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
3974 
3975 /**
3976  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
3977  * qm list.
3978  * @qm: The qm needs delete.
3979  * @qm_list: The qm list.
3980  *
3981  * This function deletes qm from qm list, and will unregister algorithm
3982  * from crypto when the qm list is empty.
3983  */
3984 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
3985 {
3986 	mutex_lock(&qm_list->lock);
3987 	list_del(&qm->list);
3988 	mutex_unlock(&qm_list->lock);
3989 
3990 	if (list_empty(&qm_list->list))
3991 		qm_list->unregister_from_crypto();
3992 }
3993 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
3994 
3995 /**
3996  * hisi_qm_init() - Initialize configures about qm.
3997  * @qm: The qm needing init.
3998  *
3999  * This function init qm, then we can call hisi_qm_start to put qm into work.
4000  */
4001 int hisi_qm_init(struct hisi_qm *qm)
4002 {
4003 	struct pci_dev *pdev = qm->pdev;
4004 	struct device *dev = &pdev->dev;
4005 	unsigned int num_vec;
4006 	int ret;
4007 
4008 	hisi_qm_pre_init(qm);
4009 
4010 	ret = qm_alloc_uacce(qm);
4011 	if (ret < 0)
4012 		dev_warn(&pdev->dev, "fail to alloc uacce (%d)\n", ret);
4013 
4014 	ret = pci_enable_device_mem(pdev);
4015 	if (ret < 0) {
4016 		dev_err(&pdev->dev, "Failed to enable device mem!\n");
4017 		goto err_remove_uacce;
4018 	}
4019 
4020 	ret = pci_request_mem_regions(pdev, qm->dev_name);
4021 	if (ret < 0) {
4022 		dev_err(&pdev->dev, "Failed to request mem regions!\n");
4023 		goto err_disable_pcidev;
4024 	}
4025 
4026 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
4027 	qm->phys_size = pci_resource_len(qm->pdev, PCI_BAR_2);
4028 	qm->io_base = ioremap(qm->phys_base, qm->phys_size);
4029 	if (!qm->io_base) {
4030 		ret = -EIO;
4031 		goto err_release_mem_regions;
4032 	}
4033 
4034 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4035 	if (ret < 0)
4036 		goto err_iounmap;
4037 	pci_set_master(pdev);
4038 
4039 	if (!qm->ops->get_irq_num) {
4040 		ret = -EOPNOTSUPP;
4041 		goto err_iounmap;
4042 	}
4043 	num_vec = qm->ops->get_irq_num(qm);
4044 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
4045 	if (ret < 0) {
4046 		dev_err(dev, "Failed to enable MSI vectors!\n");
4047 		goto err_iounmap;
4048 	}
4049 
4050 	ret = qm_irq_register(qm);
4051 	if (ret)
4052 		goto err_free_irq_vectors;
4053 
4054 	if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) {
4055 		/* v2 starts to support get vft by mailbox */
4056 		ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
4057 		if (ret)
4058 			goto err_irq_unregister;
4059 	}
4060 
4061 	ret = hisi_qm_memory_init(qm);
4062 	if (ret)
4063 		goto err_irq_unregister;
4064 
4065 	INIT_WORK(&qm->work, qm_work_process);
4066 	if (qm->fun_type == QM_HW_PF)
4067 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
4068 
4069 	atomic_set(&qm->status.flags, QM_INIT);
4070 
4071 	return 0;
4072 
4073 err_irq_unregister:
4074 	qm_irq_unregister(qm);
4075 err_free_irq_vectors:
4076 	pci_free_irq_vectors(pdev);
4077 err_iounmap:
4078 	iounmap(qm->io_base);
4079 err_release_mem_regions:
4080 	pci_release_mem_regions(pdev);
4081 err_disable_pcidev:
4082 	pci_disable_device(pdev);
4083 err_remove_uacce:
4084 	uacce_remove(qm->uacce);
4085 	qm->uacce = NULL;
4086 	return ret;
4087 }
4088 EXPORT_SYMBOL_GPL(hisi_qm_init);
4089 
4090 
4091 MODULE_LICENSE("GPL v2");
4092 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
4093 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
4094