xref: /openbmc/linux/drivers/crypto/hisilicon/qm.c (revision 22646c52e42bba8f6addba51963b78bcf017da60)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/bitmap.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/idr.h>
8 #include <linux/io.h>
9 #include <linux/irqreturn.h>
10 #include <linux/log2.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/uacce.h>
15 #include <linux/uaccess.h>
16 #include <uapi/misc/uacce/hisi_qm.h>
17 #include <linux/hisi_acc_qm.h>
18 #include "qm_common.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 
26 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
27 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_SHIFT		16
29 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
30 
31 /* mailbox */
32 #define QM_MB_PING_ALL_VFS		0xffff
33 #define QM_MB_CMD_DATA_SHIFT		32
34 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
35 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
36 
37 /* sqc shift */
38 #define QM_SQ_HOP_NUM_SHIFT		0
39 #define QM_SQ_PAGE_SIZE_SHIFT		4
40 #define QM_SQ_BUF_SIZE_SHIFT		8
41 #define QM_SQ_SQE_SIZE_SHIFT		12
42 #define QM_SQ_PRIORITY_SHIFT		0
43 #define QM_SQ_ORDERS_SHIFT		4
44 #define QM_SQ_TYPE_SHIFT		8
45 #define QM_QC_PASID_ENABLE		0x1
46 #define QM_QC_PASID_ENABLE_SHIFT	7
47 
48 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
49 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
50 
51 /* cqc shift */
52 #define QM_CQ_HOP_NUM_SHIFT		0
53 #define QM_CQ_PAGE_SIZE_SHIFT		4
54 #define QM_CQ_BUF_SIZE_SHIFT		8
55 #define QM_CQ_CQE_SIZE_SHIFT		12
56 #define QM_CQ_PHASE_SHIFT		0
57 #define QM_CQ_FLAG_SHIFT		1
58 
59 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
60 #define QM_QC_CQE_SIZE			4
61 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
62 
63 /* eqc shift */
64 #define QM_EQE_AEQE_SIZE		(2UL << 12)
65 #define QM_EQC_PHASE_SHIFT		16
66 
67 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
68 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
69 
70 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
71 #define QM_AEQE_TYPE_SHIFT		17
72 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
73 #define QM_CQ_OVERFLOW			0
74 #define QM_EQ_OVERFLOW			1
75 #define QM_CQE_ERROR			2
76 
77 #define QM_XQ_DEPTH_SHIFT		16
78 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
79 
80 #define QM_DOORBELL_CMD_SQ		0
81 #define QM_DOORBELL_CMD_CQ		1
82 #define QM_DOORBELL_CMD_EQ		2
83 #define QM_DOORBELL_CMD_AEQ		3
84 
85 #define QM_DOORBELL_BASE_V1		0x340
86 #define QM_DB_CMD_SHIFT_V1		16
87 #define QM_DB_INDEX_SHIFT_V1		32
88 #define QM_DB_PRIORITY_SHIFT_V1		48
89 #define QM_PAGE_SIZE			0x0034
90 #define QM_QP_DB_INTERVAL		0x10000
91 #define QM_DB_TIMEOUT_CFG		0x100074
92 #define QM_DB_TIMEOUT_SET		0x1fffff
93 
94 #define QM_MEM_START_INIT		0x100040
95 #define QM_MEM_INIT_DONE		0x100044
96 #define QM_VFT_CFG_RDY			0x10006c
97 #define QM_VFT_CFG_OP_WR		0x100058
98 #define QM_VFT_CFG_TYPE			0x10005c
99 #define QM_VFT_CFG			0x100060
100 #define QM_VFT_CFG_OP_ENABLE		0x100054
101 #define QM_PM_CTRL			0x100148
102 #define QM_IDLE_DISABLE			BIT(9)
103 
104 #define QM_VFT_CFG_DATA_L		0x100064
105 #define QM_VFT_CFG_DATA_H		0x100068
106 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
107 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
108 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
109 #define QM_SQC_VFT_START_SQN_SHIFT	28
110 #define QM_SQC_VFT_VALID		(1ULL << 44)
111 #define QM_SQC_VFT_SQN_SHIFT		45
112 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
113 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
114 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
115 #define QM_CQC_VFT_VALID		(1ULL << 28)
116 
117 #define QM_SQC_VFT_BASE_SHIFT_V2	28
118 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
119 #define QM_SQC_VFT_NUM_SHIFT_V2		45
120 #define QM_SQC_VFT_NUM_MASK_V2		GENMASK(9, 0)
121 
122 #define QM_ABNORMAL_INT_SOURCE		0x100000
123 #define QM_ABNORMAL_INT_MASK		0x100004
124 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
125 #define QM_ABNORMAL_INT_STATUS		0x100008
126 #define QM_ABNORMAL_INT_SET		0x10000c
127 #define QM_ABNORMAL_INF00		0x100010
128 #define QM_FIFO_OVERFLOW_TYPE		0xc0
129 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
130 #define QM_FIFO_OVERFLOW_VF		0x3f
131 #define QM_ABNORMAL_INF01		0x100014
132 #define QM_DB_TIMEOUT_TYPE		0xc0
133 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
134 #define QM_DB_TIMEOUT_VF		0x3f
135 #define QM_RAS_CE_ENABLE		0x1000ec
136 #define QM_RAS_FE_ENABLE		0x1000f0
137 #define QM_RAS_NFE_ENABLE		0x1000f4
138 #define QM_RAS_CE_THRESHOLD		0x1000f8
139 #define QM_RAS_CE_TIMES_PER_IRQ		1
140 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
141 #define QM_ECC_MBIT			BIT(2)
142 #define QM_DB_TIMEOUT			BIT(10)
143 #define QM_OF_FIFO_OF			BIT(11)
144 
145 #define QM_RESET_WAIT_TIMEOUT		400
146 #define QM_PEH_VENDOR_ID		0x1000d8
147 #define ACC_VENDOR_ID_VALUE		0x5a5a
148 #define QM_PEH_DFX_INFO0		0x1000fc
149 #define QM_PEH_DFX_INFO1		0x100100
150 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
151 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
152 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
153 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
154 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
155 #define ACC_MASTER_TRANS_RETURN_RW	3
156 #define ACC_MASTER_TRANS_RETURN		0x300150
157 #define ACC_MASTER_GLOBAL_CTRL		0x300000
158 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
159 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
160 #define ACC_AM_ROB_ECC_INT_STS		0x300104
161 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
162 #define QM_MSI_CAP_ENABLE		BIT(16)
163 
164 /* interfunction communication */
165 #define QM_IFC_READY_STATUS		0x100128
166 #define QM_IFC_INT_SET_P		0x100130
167 #define QM_IFC_INT_CFG			0x100134
168 #define QM_IFC_INT_SOURCE_P		0x100138
169 #define QM_IFC_INT_SOURCE_V		0x0020
170 #define QM_IFC_INT_MASK			0x0024
171 #define QM_IFC_INT_STATUS		0x0028
172 #define QM_IFC_INT_SET_V		0x002C
173 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
174 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
175 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
176 #define QM_IFC_INT_DISABLE		BIT(0)
177 #define QM_IFC_INT_STATUS_MASK		BIT(0)
178 #define QM_IFC_INT_SET_MASK		BIT(0)
179 #define QM_WAIT_DST_ACK			10
180 #define QM_MAX_PF_WAIT_COUNT		10
181 #define QM_MAX_VF_WAIT_COUNT		40
182 #define QM_VF_RESET_WAIT_US            20000
183 #define QM_VF_RESET_WAIT_CNT           3000
184 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
185 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
186 
187 #define POLL_PERIOD			10
188 #define POLL_TIMEOUT			1000
189 #define WAIT_PERIOD_US_MAX		200
190 #define WAIT_PERIOD_US_MIN		100
191 #define MAX_WAIT_COUNTS			1000
192 #define QM_CACHE_WB_START		0x204
193 #define QM_CACHE_WB_DONE		0x208
194 #define QM_FUNC_CAPS_REG		0x3100
195 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
196 
197 #define PCI_BAR_2			2
198 #define PCI_BAR_4			4
199 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
200 
201 #define QM_DBG_READ_LEN		256
202 #define QM_PCI_COMMAND_INVALID		~0
203 #define QM_RESET_STOP_TX_OFFSET		1
204 #define QM_RESET_STOP_RX_OFFSET		2
205 
206 #define WAIT_PERIOD			20
207 #define REMOVE_WAIT_DELAY		10
208 
209 #define QM_QOS_PARAM_NUM		2
210 #define QM_QOS_MAX_VAL			1000
211 #define QM_QOS_RATE			100
212 #define QM_QOS_EXPAND_RATE		1000
213 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
214 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
215 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
216 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
217 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
218 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
219 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
220 #define QM_SHAPER_CBS_B			1
221 #define QM_SHAPER_VFT_OFFSET		6
222 #define QM_QOS_MIN_ERROR_RATE		5
223 #define QM_SHAPER_MIN_CBS_S		8
224 #define QM_QOS_TICK			0x300U
225 #define QM_QOS_DIVISOR_CLK		0x1f40U
226 #define QM_QOS_MAX_CIR_B		200
227 #define QM_QOS_MIN_CIR_B		100
228 #define QM_QOS_MAX_CIR_U		6
229 #define QM_AUTOSUSPEND_DELAY		3000
230 
231 #define QM_DEV_ALG_MAX_LEN		256
232 
233 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
234 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
235 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
236 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
237 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
238 
239 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
240 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
241 
242 #define QM_MK_SQC_W13(priority, orders, alg_type) \
243 	(((priority) << QM_SQ_PRIORITY_SHIFT) | \
244 	((orders) << QM_SQ_ORDERS_SHIFT) | \
245 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
246 
247 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
248 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
249 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
250 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
251 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
252 
253 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
254 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
255 
256 #define INIT_QC_COMMON(qc, base, pasid) do {			\
257 	(qc)->head = 0;						\
258 	(qc)->tail = 0;						\
259 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
260 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
261 	(qc)->dw3 = 0;						\
262 	(qc)->w8 = 0;						\
263 	(qc)->rsvd0 = 0;					\
264 	(qc)->pasid = cpu_to_le16(pasid);			\
265 	(qc)->w11 = 0;						\
266 	(qc)->rsvd1 = 0;					\
267 } while (0)
268 
269 enum vft_type {
270 	SQC_VFT = 0,
271 	CQC_VFT,
272 	SHAPER_VFT,
273 };
274 
275 enum acc_err_result {
276 	ACC_ERR_NONE,
277 	ACC_ERR_NEED_RESET,
278 	ACC_ERR_RECOVERED,
279 };
280 
281 enum qm_alg_type {
282 	ALG_TYPE_0,
283 	ALG_TYPE_1,
284 };
285 
286 enum qm_mb_cmd {
287 	QM_PF_FLR_PREPARE = 0x01,
288 	QM_PF_SRST_PREPARE,
289 	QM_PF_RESET_DONE,
290 	QM_VF_PREPARE_DONE,
291 	QM_VF_PREPARE_FAIL,
292 	QM_VF_START_DONE,
293 	QM_VF_START_FAIL,
294 	QM_PF_SET_QOS,
295 	QM_VF_GET_QOS,
296 };
297 
298 enum qm_basic_type {
299 	QM_TOTAL_QP_NUM_CAP = 0x0,
300 	QM_FUNC_MAX_QP_CAP,
301 	QM_XEQ_DEPTH_CAP,
302 	QM_QP_DEPTH_CAP,
303 	QM_EQ_IRQ_TYPE_CAP,
304 	QM_AEQ_IRQ_TYPE_CAP,
305 	QM_ABN_IRQ_TYPE_CAP,
306 	QM_PF2VF_IRQ_TYPE_CAP,
307 	QM_PF_IRQ_NUM_CAP,
308 	QM_VF_IRQ_NUM_CAP,
309 };
310 
311 enum qm_pre_store_cap_idx {
312 	QM_EQ_IRQ_TYPE_CAP_IDX = 0x0,
313 	QM_AEQ_IRQ_TYPE_CAP_IDX,
314 	QM_ABN_IRQ_TYPE_CAP_IDX,
315 	QM_PF2VF_IRQ_TYPE_CAP_IDX,
316 };
317 
318 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
319 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
320 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
321 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
322 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
323 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
324 };
325 
326 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
327 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
328 };
329 
330 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
331 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
332 };
333 
334 static const struct hisi_qm_cap_info qm_basic_info[] = {
335 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
336 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
337 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(31, 0), 0x800,     0x4000800, 0x4000800},
338 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
339 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
340 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
341 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
342 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
343 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
344 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
345 };
346 
347 static const u32 qm_pre_store_caps[] = {
348 	QM_EQ_IRQ_TYPE_CAP,
349 	QM_AEQ_IRQ_TYPE_CAP,
350 	QM_ABN_IRQ_TYPE_CAP,
351 	QM_PF2VF_IRQ_TYPE_CAP,
352 };
353 
354 struct qm_mailbox {
355 	__le16 w0;
356 	__le16 queue_num;
357 	__le32 base_l;
358 	__le32 base_h;
359 	__le32 rsvd;
360 };
361 
362 struct qm_doorbell {
363 	__le16 queue_num;
364 	__le16 cmd;
365 	__le16 index;
366 	__le16 priority;
367 };
368 
369 struct hisi_qm_resource {
370 	struct hisi_qm *qm;
371 	int distance;
372 	struct list_head list;
373 };
374 
375 /**
376  * struct qm_hw_err - Structure describing the device errors
377  * @list: hardware error list
378  * @timestamp: timestamp when the error occurred
379  */
380 struct qm_hw_err {
381 	struct list_head list;
382 	unsigned long long timestamp;
383 };
384 
385 struct hisi_qm_hw_ops {
386 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
387 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
388 		      u8 cmd, u16 index, u8 priority);
389 	int (*debug_init)(struct hisi_qm *qm);
390 	void (*hw_error_init)(struct hisi_qm *qm);
391 	void (*hw_error_uninit)(struct hisi_qm *qm);
392 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
393 	int (*set_msi)(struct hisi_qm *qm, bool set);
394 };
395 
396 struct hisi_qm_hw_error {
397 	u32 int_msk;
398 	const char *msg;
399 };
400 
401 static const struct hisi_qm_hw_error qm_hw_error[] = {
402 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
403 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
404 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
405 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
406 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
407 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
408 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
409 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
410 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
411 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
412 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
413 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
414 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
415 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
416 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
417 	{ /* sentinel */ }
418 };
419 
420 static const char * const qm_db_timeout[] = {
421 	"sq", "cq", "eq", "aeq",
422 };
423 
424 static const char * const qm_fifo_overflow[] = {
425 	"cq", "eq", "aeq",
426 };
427 
428 static const char * const qp_s[] = {
429 	"none", "init", "start", "stop", "close",
430 };
431 
432 struct qm_typical_qos_table {
433 	u32 start;
434 	u32 end;
435 	u32 val;
436 };
437 
438 /* the qos step is 100 */
439 static struct qm_typical_qos_table shaper_cir_s[] = {
440 	{100, 100, 4},
441 	{200, 200, 3},
442 	{300, 500, 2},
443 	{600, 1000, 1},
444 	{1100, 100000, 0},
445 };
446 
447 static struct qm_typical_qos_table shaper_cbs_s[] = {
448 	{100, 200, 9},
449 	{300, 500, 11},
450 	{600, 1000, 12},
451 	{1100, 10000, 16},
452 	{10100, 25000, 17},
453 	{25100, 50000, 18},
454 	{50100, 100000, 19}
455 };
456 
457 static void qm_irqs_unregister(struct hisi_qm *qm);
458 
459 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
460 {
461 	enum qm_state curr = atomic_read(&qm->status.flags);
462 	bool avail = false;
463 
464 	switch (curr) {
465 	case QM_INIT:
466 		if (new == QM_START || new == QM_CLOSE)
467 			avail = true;
468 		break;
469 	case QM_START:
470 		if (new == QM_STOP)
471 			avail = true;
472 		break;
473 	case QM_STOP:
474 		if (new == QM_CLOSE || new == QM_START)
475 			avail = true;
476 		break;
477 	default:
478 		break;
479 	}
480 
481 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
482 		qm_s[curr], qm_s[new]);
483 
484 	if (!avail)
485 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
486 			 qm_s[curr], qm_s[new]);
487 
488 	return avail;
489 }
490 
491 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
492 			      enum qp_state new)
493 {
494 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
495 	enum qp_state qp_curr = 0;
496 	bool avail = false;
497 
498 	if (qp)
499 		qp_curr = atomic_read(&qp->qp_status.flags);
500 
501 	switch (new) {
502 	case QP_INIT:
503 		if (qm_curr == QM_START || qm_curr == QM_INIT)
504 			avail = true;
505 		break;
506 	case QP_START:
507 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
508 		    (qm_curr == QM_START && qp_curr == QP_STOP))
509 			avail = true;
510 		break;
511 	case QP_STOP:
512 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
513 		    (qp_curr == QP_INIT))
514 			avail = true;
515 		break;
516 	case QP_CLOSE:
517 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
518 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
519 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
520 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
521 			avail = true;
522 		break;
523 	default:
524 		break;
525 	}
526 
527 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
528 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
529 
530 	if (!avail)
531 		dev_warn(&qm->pdev->dev,
532 			 "Can not change qp state from %s to %s in QM %s\n",
533 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
534 
535 	return avail;
536 }
537 
538 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
539 {
540 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
541 }
542 
543 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
544 {
545 	return qm->err_ini->get_dev_hw_err_status(qm);
546 }
547 
548 /* Check if the error causes the master ooo block */
549 static bool qm_check_dev_error(struct hisi_qm *qm)
550 {
551 	u32 val, dev_val;
552 
553 	if (qm->fun_type == QM_HW_VF)
554 		return false;
555 
556 	val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
557 	dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
558 
559 	return val || dev_val;
560 }
561 
562 static int qm_wait_reset_finish(struct hisi_qm *qm)
563 {
564 	int delay = 0;
565 
566 	/* All reset requests need to be queued for processing */
567 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
568 		msleep(++delay);
569 		if (delay > QM_RESET_WAIT_TIMEOUT)
570 			return -EBUSY;
571 	}
572 
573 	return 0;
574 }
575 
576 static int qm_reset_prepare_ready(struct hisi_qm *qm)
577 {
578 	struct pci_dev *pdev = qm->pdev;
579 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
580 
581 	/*
582 	 * PF and VF on host doesnot support resetting at the
583 	 * same time on Kunpeng920.
584 	 */
585 	if (qm->ver < QM_HW_V3)
586 		return qm_wait_reset_finish(pf_qm);
587 
588 	return qm_wait_reset_finish(qm);
589 }
590 
591 static void qm_reset_bit_clear(struct hisi_qm *qm)
592 {
593 	struct pci_dev *pdev = qm->pdev;
594 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
595 
596 	if (qm->ver < QM_HW_V3)
597 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
598 
599 	clear_bit(QM_RESETTING, &qm->misc_ctl);
600 }
601 
602 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
603 			   u64 base, u16 queue, bool op)
604 {
605 	mailbox->w0 = cpu_to_le16((cmd) |
606 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
607 		(0x1 << QM_MB_BUSY_SHIFT));
608 	mailbox->queue_num = cpu_to_le16(queue);
609 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
610 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
611 	mailbox->rsvd = 0;
612 }
613 
614 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
615 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
616 {
617 	u32 val;
618 
619 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
620 					  val, !((val >> QM_MB_BUSY_SHIFT) &
621 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
622 }
623 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
624 
625 /* 128 bit should be written to hardware at one time to trigger a mailbox */
626 static void qm_mb_write(struct hisi_qm *qm, const void *src)
627 {
628 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
629 
630 #if IS_ENABLED(CONFIG_ARM64)
631 	unsigned long tmp0 = 0, tmp1 = 0;
632 #endif
633 
634 	if (!IS_ENABLED(CONFIG_ARM64)) {
635 		memcpy_toio(fun_base, src, 16);
636 		dma_wmb();
637 		return;
638 	}
639 
640 #if IS_ENABLED(CONFIG_ARM64)
641 	asm volatile("ldp %0, %1, %3\n"
642 		     "stp %0, %1, %2\n"
643 		     "dmb oshst\n"
644 		     : "=&r" (tmp0),
645 		       "=&r" (tmp1),
646 		       "+Q" (*((char __iomem *)fun_base))
647 		     : "Q" (*((char *)src))
648 		     : "memory");
649 #endif
650 }
651 
652 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
653 {
654 	int ret;
655 	u32 val;
656 
657 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
658 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
659 		ret = -EBUSY;
660 		goto mb_busy;
661 	}
662 
663 	qm_mb_write(qm, mailbox);
664 
665 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
666 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
667 		ret = -ETIMEDOUT;
668 		goto mb_busy;
669 	}
670 
671 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
672 	if (val & QM_MB_STATUS_MASK) {
673 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
674 		ret = -EIO;
675 		goto mb_busy;
676 	}
677 
678 	return 0;
679 
680 mb_busy:
681 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
682 	return ret;
683 }
684 
685 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
686 	       bool op)
687 {
688 	struct qm_mailbox mailbox;
689 	int ret;
690 
691 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
692 		queue, cmd, (unsigned long long)dma_addr);
693 
694 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
695 
696 	mutex_lock(&qm->mailbox_lock);
697 	ret = qm_mb_nolock(qm, &mailbox);
698 	mutex_unlock(&qm->mailbox_lock);
699 
700 	return ret;
701 }
702 EXPORT_SYMBOL_GPL(hisi_qm_mb);
703 
704 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
705 {
706 	u64 doorbell;
707 
708 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
709 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
710 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
711 
712 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
713 }
714 
715 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
716 {
717 	void __iomem *io_base = qm->io_base;
718 	u16 randata = 0;
719 	u64 doorbell;
720 
721 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
722 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
723 			  QM_DOORBELL_SQ_CQ_BASE_V2;
724 	else
725 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
726 
727 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
728 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
729 		   ((u64)index << QM_DB_INDEX_SHIFT_V2) |
730 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
731 
732 	writeq(doorbell, io_base);
733 }
734 
735 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
736 {
737 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
738 		qn, cmd, index);
739 
740 	qm->ops->qm_db(qm, qn, cmd, index, priority);
741 }
742 
743 static void qm_disable_clock_gate(struct hisi_qm *qm)
744 {
745 	u32 val;
746 
747 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
748 	if (qm->ver < QM_HW_V3)
749 		return;
750 
751 	val = readl(qm->io_base + QM_PM_CTRL);
752 	val |= QM_IDLE_DISABLE;
753 	writel(val, qm->io_base +  QM_PM_CTRL);
754 }
755 
756 static int qm_dev_mem_reset(struct hisi_qm *qm)
757 {
758 	u32 val;
759 
760 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
761 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
762 					  val & BIT(0), POLL_PERIOD,
763 					  POLL_TIMEOUT);
764 }
765 
766 /**
767  * hisi_qm_get_hw_info() - Get device information.
768  * @qm: The qm which want to get information.
769  * @info_table: Array for storing device information.
770  * @index: Index in info_table.
771  * @is_read: Whether read from reg, 0: not support read from reg.
772  *
773  * This function returns device information the caller needs.
774  */
775 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
776 			const struct hisi_qm_cap_info *info_table,
777 			u32 index, bool is_read)
778 {
779 	u32 val;
780 
781 	switch (qm->ver) {
782 	case QM_HW_V1:
783 		return info_table[index].v1_val;
784 	case QM_HW_V2:
785 		return info_table[index].v2_val;
786 	default:
787 		if (!is_read)
788 			return info_table[index].v3_val;
789 
790 		val = readl(qm->io_base + info_table[index].offset);
791 		return (val >> info_table[index].shift) & info_table[index].mask;
792 	}
793 }
794 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
795 
796 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
797 			     u16 *high_bits, enum qm_basic_type type)
798 {
799 	u32 depth;
800 
801 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
802 	*low_bits = depth & QM_XQ_DEPTH_MASK;
803 	*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
804 }
805 
806 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs,
807 		     u32 dev_algs_size)
808 {
809 	struct device *dev = &qm->pdev->dev;
810 	char *algs, *ptr;
811 	int i;
812 
813 	if (!qm->uacce)
814 		return 0;
815 
816 	if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) {
817 		dev_err(dev, "algs size %u is equal or larger than %d.\n",
818 			dev_algs_size, QM_DEV_ALG_MAX_LEN);
819 		return -EINVAL;
820 	}
821 
822 	algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN * sizeof(char), GFP_KERNEL);
823 	if (!algs)
824 		return -ENOMEM;
825 
826 	for (i = 0; i < dev_algs_size; i++)
827 		if (alg_msk & dev_algs[i].alg_msk)
828 			strcat(algs, dev_algs[i].alg);
829 
830 	ptr = strrchr(algs, '\n');
831 	if (ptr) {
832 		*ptr = '\0';
833 		qm->uacce->algs = algs;
834 	}
835 
836 	return 0;
837 }
838 EXPORT_SYMBOL_GPL(hisi_qm_set_algs);
839 
840 static u32 qm_get_irq_num(struct hisi_qm *qm)
841 {
842 	if (qm->fun_type == QM_HW_PF)
843 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
844 
845 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
846 }
847 
848 static int qm_pm_get_sync(struct hisi_qm *qm)
849 {
850 	struct device *dev = &qm->pdev->dev;
851 	int ret;
852 
853 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
854 		return 0;
855 
856 	ret = pm_runtime_resume_and_get(dev);
857 	if (ret < 0) {
858 		dev_err(dev, "failed to get_sync(%d).\n", ret);
859 		return ret;
860 	}
861 
862 	return 0;
863 }
864 
865 static void qm_pm_put_sync(struct hisi_qm *qm)
866 {
867 	struct device *dev = &qm->pdev->dev;
868 
869 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
870 		return;
871 
872 	pm_runtime_mark_last_busy(dev);
873 	pm_runtime_put_autosuspend(dev);
874 }
875 
876 static void qm_cq_head_update(struct hisi_qp *qp)
877 {
878 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
879 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
880 		qp->qp_status.cq_head = 0;
881 	} else {
882 		qp->qp_status.cq_head++;
883 	}
884 }
885 
886 static void qm_poll_req_cb(struct hisi_qp *qp)
887 {
888 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
889 	struct hisi_qm *qm = qp->qm;
890 
891 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
892 		dma_rmb();
893 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
894 			   le16_to_cpu(cqe->sq_head));
895 		qm_cq_head_update(qp);
896 		cqe = qp->cqe + qp->qp_status.cq_head;
897 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
898 		      qp->qp_status.cq_head, 0);
899 		atomic_dec(&qp->qp_status.used);
900 
901 		cond_resched();
902 	}
903 
904 	/* set c_flag */
905 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
906 }
907 
908 static void qm_work_process(struct work_struct *work)
909 {
910 	struct hisi_qm_poll_data *poll_data =
911 		container_of(work, struct hisi_qm_poll_data, work);
912 	struct hisi_qm *qm = poll_data->qm;
913 	u16 eqe_num = poll_data->eqe_num;
914 	struct hisi_qp *qp;
915 	int i;
916 
917 	for (i = eqe_num - 1; i >= 0; i--) {
918 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
919 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
920 			continue;
921 
922 		if (qp->event_cb) {
923 			qp->event_cb(qp);
924 			continue;
925 		}
926 
927 		if (likely(qp->req_cb))
928 			qm_poll_req_cb(qp);
929 	}
930 }
931 
932 static void qm_get_complete_eqe_num(struct hisi_qm *qm)
933 {
934 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
935 	struct hisi_qm_poll_data *poll_data = NULL;
936 	u16 eq_depth = qm->eq_depth;
937 	u16 cqn, eqe_num = 0;
938 
939 	if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) {
940 		atomic64_inc(&qm->debug.dfx.err_irq_cnt);
941 		qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
942 		return;
943 	}
944 
945 	cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
946 	if (unlikely(cqn >= qm->qp_num))
947 		return;
948 	poll_data = &qm->poll_data[cqn];
949 
950 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
951 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
952 		poll_data->qp_finish_id[eqe_num] = cqn;
953 		eqe_num++;
954 
955 		if (qm->status.eq_head == eq_depth - 1) {
956 			qm->status.eqc_phase = !qm->status.eqc_phase;
957 			eqe = qm->eqe;
958 			qm->status.eq_head = 0;
959 		} else {
960 			eqe++;
961 			qm->status.eq_head++;
962 		}
963 
964 		if (eqe_num == (eq_depth >> 1) - 1)
965 			break;
966 	}
967 
968 	poll_data->eqe_num = eqe_num;
969 	queue_work(qm->wq, &poll_data->work);
970 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
971 }
972 
973 static irqreturn_t qm_eq_irq(int irq, void *data)
974 {
975 	struct hisi_qm *qm = data;
976 
977 	/* Get qp id of completed tasks and re-enable the interrupt */
978 	qm_get_complete_eqe_num(qm);
979 
980 	return IRQ_HANDLED;
981 }
982 
983 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
984 {
985 	struct hisi_qm *qm = data;
986 	u32 val;
987 
988 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
989 	val &= QM_IFC_INT_STATUS_MASK;
990 	if (!val)
991 		return IRQ_NONE;
992 
993 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) {
994 		dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n");
995 		return IRQ_HANDLED;
996 	}
997 
998 	schedule_work(&qm->cmd_process);
999 
1000 	return IRQ_HANDLED;
1001 }
1002 
1003 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
1004 {
1005 	u32 *addr;
1006 
1007 	if (qp->is_in_kernel)
1008 		return;
1009 
1010 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
1011 	*addr = 1;
1012 
1013 	/* make sure setup is completed */
1014 	smp_wmb();
1015 }
1016 
1017 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
1018 {
1019 	struct hisi_qp *qp = &qm->qp_array[qp_id];
1020 
1021 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
1022 	hisi_qm_stop_qp(qp);
1023 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
1024 }
1025 
1026 static void qm_reset_function(struct hisi_qm *qm)
1027 {
1028 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
1029 	struct device *dev = &qm->pdev->dev;
1030 	int ret;
1031 
1032 	if (qm_check_dev_error(pf_qm))
1033 		return;
1034 
1035 	ret = qm_reset_prepare_ready(qm);
1036 	if (ret) {
1037 		dev_err(dev, "reset function not ready\n");
1038 		return;
1039 	}
1040 
1041 	ret = hisi_qm_stop(qm, QM_DOWN);
1042 	if (ret) {
1043 		dev_err(dev, "failed to stop qm when reset function\n");
1044 		goto clear_bit;
1045 	}
1046 
1047 	ret = hisi_qm_start(qm);
1048 	if (ret)
1049 		dev_err(dev, "failed to start qm when reset function\n");
1050 
1051 clear_bit:
1052 	qm_reset_bit_clear(qm);
1053 }
1054 
1055 static irqreturn_t qm_aeq_thread(int irq, void *data)
1056 {
1057 	struct hisi_qm *qm = data;
1058 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1059 	u16 aeq_depth = qm->aeq_depth;
1060 	u32 type, qp_id;
1061 
1062 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1063 
1064 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1065 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
1066 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1067 
1068 		switch (type) {
1069 		case QM_EQ_OVERFLOW:
1070 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1071 			qm_reset_function(qm);
1072 			return IRQ_HANDLED;
1073 		case QM_CQ_OVERFLOW:
1074 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1075 				qp_id);
1076 			fallthrough;
1077 		case QM_CQE_ERROR:
1078 			qm_disable_qp(qm, qp_id);
1079 			break;
1080 		default:
1081 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1082 				type);
1083 			break;
1084 		}
1085 
1086 		if (qm->status.aeq_head == aeq_depth - 1) {
1087 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1088 			aeqe = qm->aeqe;
1089 			qm->status.aeq_head = 0;
1090 		} else {
1091 			aeqe++;
1092 			qm->status.aeq_head++;
1093 		}
1094 	}
1095 
1096 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1097 
1098 	return IRQ_HANDLED;
1099 }
1100 
1101 static void qm_init_qp_status(struct hisi_qp *qp)
1102 {
1103 	struct hisi_qp_status *qp_status = &qp->qp_status;
1104 
1105 	qp_status->sq_tail = 0;
1106 	qp_status->cq_head = 0;
1107 	qp_status->cqc_phase = true;
1108 	atomic_set(&qp_status->used, 0);
1109 }
1110 
1111 static void qm_init_prefetch(struct hisi_qm *qm)
1112 {
1113 	struct device *dev = &qm->pdev->dev;
1114 	u32 page_type = 0x0;
1115 
1116 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1117 		return;
1118 
1119 	switch (PAGE_SIZE) {
1120 	case SZ_4K:
1121 		page_type = 0x0;
1122 		break;
1123 	case SZ_16K:
1124 		page_type = 0x1;
1125 		break;
1126 	case SZ_64K:
1127 		page_type = 0x2;
1128 		break;
1129 	default:
1130 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1131 			PAGE_SIZE);
1132 	}
1133 
1134 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1135 }
1136 
1137 /*
1138  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1139  * is the expected qos calculated.
1140  * the formula:
1141  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1142  *
1143  *		IR_b * (2 ^ IR_u) * 8000
1144  * IR(Mbps) = -------------------------
1145  *		  Tick * (2 ^ IR_s)
1146  */
1147 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1148 {
1149 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1150 					(QM_QOS_TICK * (1 << cir_s));
1151 }
1152 
1153 static u32 acc_shaper_calc_cbs_s(u32 ir)
1154 {
1155 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1156 	int i;
1157 
1158 	for (i = 0; i < table_size; i++) {
1159 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1160 			return shaper_cbs_s[i].val;
1161 	}
1162 
1163 	return QM_SHAPER_MIN_CBS_S;
1164 }
1165 
1166 static u32 acc_shaper_calc_cir_s(u32 ir)
1167 {
1168 	int table_size = ARRAY_SIZE(shaper_cir_s);
1169 	int i;
1170 
1171 	for (i = 0; i < table_size; i++) {
1172 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1173 			return shaper_cir_s[i].val;
1174 	}
1175 
1176 	return 0;
1177 }
1178 
1179 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1180 {
1181 	u32 cir_b, cir_u, cir_s, ir_calc;
1182 	u32 error_rate;
1183 
1184 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1185 	cir_s = acc_shaper_calc_cir_s(ir);
1186 
1187 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1188 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1189 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1190 
1191 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1192 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1193 				factor->cir_b = cir_b;
1194 				factor->cir_u = cir_u;
1195 				factor->cir_s = cir_s;
1196 				return 0;
1197 			}
1198 		}
1199 	}
1200 
1201 	return -EINVAL;
1202 }
1203 
1204 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1205 			    u32 number, struct qm_shaper_factor *factor)
1206 {
1207 	u64 tmp = 0;
1208 
1209 	if (number > 0) {
1210 		switch (type) {
1211 		case SQC_VFT:
1212 			if (qm->ver == QM_HW_V1) {
1213 				tmp = QM_SQC_VFT_BUF_SIZE	|
1214 				      QM_SQC_VFT_SQC_SIZE	|
1215 				      QM_SQC_VFT_INDEX_NUMBER	|
1216 				      QM_SQC_VFT_VALID		|
1217 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1218 			} else {
1219 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1220 				      QM_SQC_VFT_VALID |
1221 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1222 			}
1223 			break;
1224 		case CQC_VFT:
1225 			if (qm->ver == QM_HW_V1) {
1226 				tmp = QM_CQC_VFT_BUF_SIZE	|
1227 				      QM_CQC_VFT_SQC_SIZE	|
1228 				      QM_CQC_VFT_INDEX_NUMBER	|
1229 				      QM_CQC_VFT_VALID;
1230 			} else {
1231 				tmp = QM_CQC_VFT_VALID;
1232 			}
1233 			break;
1234 		case SHAPER_VFT:
1235 			if (factor) {
1236 				tmp = factor->cir_b |
1237 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1238 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1239 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1240 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1241 			}
1242 			break;
1243 		}
1244 	}
1245 
1246 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1247 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1248 }
1249 
1250 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1251 			     u32 fun_num, u32 base, u32 number)
1252 {
1253 	struct qm_shaper_factor *factor = NULL;
1254 	unsigned int val;
1255 	int ret;
1256 
1257 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1258 		factor = &qm->factor[fun_num];
1259 
1260 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1261 					 val & BIT(0), POLL_PERIOD,
1262 					 POLL_TIMEOUT);
1263 	if (ret)
1264 		return ret;
1265 
1266 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1267 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1268 	if (type == SHAPER_VFT)
1269 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1270 
1271 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1272 
1273 	qm_vft_data_cfg(qm, type, base, number, factor);
1274 
1275 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1276 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1277 
1278 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1279 					  val & BIT(0), POLL_PERIOD,
1280 					  POLL_TIMEOUT);
1281 }
1282 
1283 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1284 {
1285 	u32 qos = qm->factor[fun_num].func_qos;
1286 	int ret, i;
1287 
1288 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1289 	if (ret) {
1290 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1291 		return ret;
1292 	}
1293 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1294 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1295 		/* The base number of queue reuse for different alg type */
1296 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1297 		if (ret)
1298 			return ret;
1299 	}
1300 
1301 	return 0;
1302 }
1303 
1304 /* The config should be conducted after qm_dev_mem_reset() */
1305 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1306 			      u32 number)
1307 {
1308 	int ret, i;
1309 
1310 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1311 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1312 		if (ret)
1313 			return ret;
1314 	}
1315 
1316 	/* init default shaper qos val */
1317 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1318 		ret = qm_shaper_init_vft(qm, fun_num);
1319 		if (ret)
1320 			goto back_sqc_cqc;
1321 	}
1322 
1323 	return 0;
1324 back_sqc_cqc:
1325 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1326 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1327 
1328 	return ret;
1329 }
1330 
1331 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1332 {
1333 	u64 sqc_vft;
1334 	int ret;
1335 
1336 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1337 	if (ret)
1338 		return ret;
1339 
1340 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1341 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1342 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1343 	*number = (QM_SQC_VFT_NUM_MASK_V2 &
1344 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1345 
1346 	return 0;
1347 }
1348 
1349 void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1350 			  dma_addr_t *dma_addr)
1351 {
1352 	struct device *dev = &qm->pdev->dev;
1353 	void *ctx_addr;
1354 
1355 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1356 	if (!ctx_addr)
1357 		return ERR_PTR(-ENOMEM);
1358 
1359 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1360 	if (dma_mapping_error(dev, *dma_addr)) {
1361 		dev_err(dev, "DMA mapping error!\n");
1362 		kfree(ctx_addr);
1363 		return ERR_PTR(-ENOMEM);
1364 	}
1365 
1366 	return ctx_addr;
1367 }
1368 
1369 void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1370 			const void *ctx_addr, dma_addr_t *dma_addr)
1371 {
1372 	struct device *dev = &qm->pdev->dev;
1373 
1374 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1375 	kfree(ctx_addr);
1376 }
1377 
1378 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1379 {
1380 	return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1381 }
1382 
1383 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1384 {
1385 	return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1386 }
1387 
1388 static void qm_hw_error_init_v1(struct hisi_qm *qm)
1389 {
1390 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1391 }
1392 
1393 static void qm_hw_error_cfg(struct hisi_qm *qm)
1394 {
1395 	struct hisi_qm_err_info *err_info = &qm->err_info;
1396 
1397 	qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
1398 	/* clear QM hw residual error source */
1399 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1400 
1401 	/* configure error type */
1402 	writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
1403 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1404 	writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1405 	writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
1406 }
1407 
1408 static void qm_hw_error_init_v2(struct hisi_qm *qm)
1409 {
1410 	u32 irq_unmask;
1411 
1412 	qm_hw_error_cfg(qm);
1413 
1414 	irq_unmask = ~qm->error_mask;
1415 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1416 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1417 }
1418 
1419 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1420 {
1421 	u32 irq_mask = qm->error_mask;
1422 
1423 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1424 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1425 }
1426 
1427 static void qm_hw_error_init_v3(struct hisi_qm *qm)
1428 {
1429 	u32 irq_unmask;
1430 
1431 	qm_hw_error_cfg(qm);
1432 
1433 	/* enable close master ooo when hardware error happened */
1434 	writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1435 
1436 	irq_unmask = ~qm->error_mask;
1437 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1438 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1439 }
1440 
1441 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1442 {
1443 	u32 irq_mask = qm->error_mask;
1444 
1445 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1446 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1447 
1448 	/* disable close master ooo when hardware error happened */
1449 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1450 }
1451 
1452 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1453 {
1454 	const struct hisi_qm_hw_error *err;
1455 	struct device *dev = &qm->pdev->dev;
1456 	u32 reg_val, type, vf_num;
1457 	int i;
1458 
1459 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1460 		err = &qm_hw_error[i];
1461 		if (!(err->int_msk & error_status))
1462 			continue;
1463 
1464 		dev_err(dev, "%s [error status=0x%x] found\n",
1465 			err->msg, err->int_msk);
1466 
1467 		if (err->int_msk & QM_DB_TIMEOUT) {
1468 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1469 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1470 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1471 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1472 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
1473 				qm_db_timeout[type], vf_num);
1474 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1475 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1476 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1477 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1478 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1479 
1480 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1481 				dev_err(dev, "qm %s fifo overflow in function %u\n",
1482 					qm_fifo_overflow[type], vf_num);
1483 			else
1484 				dev_err(dev, "unknown error type\n");
1485 		}
1486 	}
1487 }
1488 
1489 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1490 {
1491 	u32 error_status, tmp;
1492 
1493 	/* read err sts */
1494 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1495 	error_status = qm->error_mask & tmp;
1496 
1497 	if (error_status) {
1498 		if (error_status & QM_ECC_MBIT)
1499 			qm->err_status.is_qm_ecc_mbit = true;
1500 
1501 		qm_log_hw_error(qm, error_status);
1502 		if (error_status & qm->err_info.qm_reset_mask)
1503 			return ACC_ERR_NEED_RESET;
1504 
1505 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1506 		writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1507 	}
1508 
1509 	return ACC_ERR_RECOVERED;
1510 }
1511 
1512 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1513 {
1514 	struct qm_mailbox mailbox;
1515 	int ret;
1516 
1517 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1518 	mutex_lock(&qm->mailbox_lock);
1519 	ret = qm_mb_nolock(qm, &mailbox);
1520 	if (ret)
1521 		goto err_unlock;
1522 
1523 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1524 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1525 
1526 err_unlock:
1527 	mutex_unlock(&qm->mailbox_lock);
1528 	return ret;
1529 }
1530 
1531 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1532 {
1533 	u32 val;
1534 
1535 	if (qm->fun_type == QM_HW_PF)
1536 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1537 
1538 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1539 	val |= QM_IFC_INT_SOURCE_MASK;
1540 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1541 }
1542 
1543 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1544 {
1545 	struct device *dev = &qm->pdev->dev;
1546 	u32 cmd;
1547 	u64 msg;
1548 	int ret;
1549 
1550 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
1551 	if (ret) {
1552 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
1553 		return;
1554 	}
1555 
1556 	cmd = msg & QM_MB_CMD_DATA_MASK;
1557 	switch (cmd) {
1558 	case QM_VF_PREPARE_FAIL:
1559 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1560 		break;
1561 	case QM_VF_START_FAIL:
1562 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1563 		break;
1564 	case QM_VF_PREPARE_DONE:
1565 	case QM_VF_START_DONE:
1566 		break;
1567 	default:
1568 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
1569 		break;
1570 	}
1571 }
1572 
1573 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1574 {
1575 	struct device *dev = &qm->pdev->dev;
1576 	u32 vfs_num = qm->vfs_num;
1577 	int cnt = 0;
1578 	int ret = 0;
1579 	u64 val;
1580 	u32 i;
1581 
1582 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1583 		return 0;
1584 
1585 	while (true) {
1586 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1587 		/* All VFs send command to PF, break */
1588 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1589 			break;
1590 
1591 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1592 			ret = -EBUSY;
1593 			break;
1594 		}
1595 
1596 		msleep(QM_WAIT_DST_ACK);
1597 	}
1598 
1599 	/* PF check VFs msg */
1600 	for (i = 1; i <= vfs_num; i++) {
1601 		if (val & BIT(i))
1602 			qm_handle_vf_msg(qm, i);
1603 		else
1604 			dev_err(dev, "VF(%u) not ping PF!\n", i);
1605 	}
1606 
1607 	/* PF clear interrupt to ack VFs */
1608 	qm_clear_cmd_interrupt(qm, val);
1609 
1610 	return ret;
1611 }
1612 
1613 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1614 {
1615 	u32 val;
1616 
1617 	val = readl(qm->io_base + QM_IFC_INT_CFG);
1618 	val &= ~QM_IFC_SEND_ALL_VFS;
1619 	val |= fun_num;
1620 	writel(val, qm->io_base + QM_IFC_INT_CFG);
1621 
1622 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
1623 	val |= QM_IFC_INT_SET_MASK;
1624 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
1625 }
1626 
1627 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1628 {
1629 	u32 val;
1630 
1631 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
1632 	val |= QM_IFC_INT_SET_MASK;
1633 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
1634 }
1635 
1636 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
1637 {
1638 	struct device *dev = &qm->pdev->dev;
1639 	struct qm_mailbox mailbox;
1640 	int cnt = 0;
1641 	u64 val;
1642 	int ret;
1643 
1644 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
1645 	mutex_lock(&qm->mailbox_lock);
1646 	ret = qm_mb_nolock(qm, &mailbox);
1647 	if (ret) {
1648 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1649 		goto err_unlock;
1650 	}
1651 
1652 	qm_trigger_vf_interrupt(qm, fun_num);
1653 	while (true) {
1654 		msleep(QM_WAIT_DST_ACK);
1655 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1656 		/* if VF respond, PF notifies VF successfully. */
1657 		if (!(val & BIT(fun_num)))
1658 			goto err_unlock;
1659 
1660 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1661 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1662 			ret = -ETIMEDOUT;
1663 			break;
1664 		}
1665 	}
1666 
1667 err_unlock:
1668 	mutex_unlock(&qm->mailbox_lock);
1669 	return ret;
1670 }
1671 
1672 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
1673 {
1674 	struct device *dev = &qm->pdev->dev;
1675 	u32 vfs_num = qm->vfs_num;
1676 	struct qm_mailbox mailbox;
1677 	u64 val = 0;
1678 	int cnt = 0;
1679 	int ret;
1680 	u32 i;
1681 
1682 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
1683 	mutex_lock(&qm->mailbox_lock);
1684 	/* PF sends command to all VFs by mailbox */
1685 	ret = qm_mb_nolock(qm, &mailbox);
1686 	if (ret) {
1687 		dev_err(dev, "failed to send command to VFs!\n");
1688 		mutex_unlock(&qm->mailbox_lock);
1689 		return ret;
1690 	}
1691 
1692 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1693 	while (true) {
1694 		msleep(QM_WAIT_DST_ACK);
1695 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1696 		/* If all VFs acked, PF notifies VFs successfully. */
1697 		if (!(val & GENMASK(vfs_num, 1))) {
1698 			mutex_unlock(&qm->mailbox_lock);
1699 			return 0;
1700 		}
1701 
1702 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
1703 			break;
1704 	}
1705 
1706 	mutex_unlock(&qm->mailbox_lock);
1707 
1708 	/* Check which vf respond timeout. */
1709 	for (i = 1; i <= vfs_num; i++) {
1710 		if (val & BIT(i))
1711 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
1712 	}
1713 
1714 	return -ETIMEDOUT;
1715 }
1716 
1717 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
1718 {
1719 	struct qm_mailbox mailbox;
1720 	int cnt = 0;
1721 	u32 val;
1722 	int ret;
1723 
1724 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
1725 	mutex_lock(&qm->mailbox_lock);
1726 	ret = qm_mb_nolock(qm, &mailbox);
1727 	if (ret) {
1728 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
1729 		goto unlock;
1730 	}
1731 
1732 	qm_trigger_pf_interrupt(qm);
1733 	/* Waiting for PF response */
1734 	while (true) {
1735 		msleep(QM_WAIT_DST_ACK);
1736 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
1737 		if (!(val & QM_IFC_INT_STATUS_MASK))
1738 			break;
1739 
1740 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1741 			ret = -ETIMEDOUT;
1742 			break;
1743 		}
1744 	}
1745 
1746 unlock:
1747 	mutex_unlock(&qm->mailbox_lock);
1748 	return ret;
1749 }
1750 
1751 static int qm_stop_qp(struct hisi_qp *qp)
1752 {
1753 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1754 }
1755 
1756 static int qm_set_msi(struct hisi_qm *qm, bool set)
1757 {
1758 	struct pci_dev *pdev = qm->pdev;
1759 
1760 	if (set) {
1761 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1762 				       0);
1763 	} else {
1764 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1765 				       ACC_PEH_MSI_DISABLE);
1766 		if (qm->err_status.is_qm_ecc_mbit ||
1767 		    qm->err_status.is_dev_ecc_mbit)
1768 			return 0;
1769 
1770 		mdelay(1);
1771 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1772 			return -EFAULT;
1773 	}
1774 
1775 	return 0;
1776 }
1777 
1778 static void qm_wait_msi_finish(struct hisi_qm *qm)
1779 {
1780 	struct pci_dev *pdev = qm->pdev;
1781 	u32 cmd = ~0;
1782 	int cnt = 0;
1783 	u32 val;
1784 	int ret;
1785 
1786 	while (true) {
1787 		pci_read_config_dword(pdev, pdev->msi_cap +
1788 				      PCI_MSI_PENDING_64, &cmd);
1789 		if (!cmd)
1790 			break;
1791 
1792 		if (++cnt > MAX_WAIT_COUNTS) {
1793 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
1794 			break;
1795 		}
1796 
1797 		udelay(1);
1798 	}
1799 
1800 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1801 					 val, !(val & QM_PEH_DFX_MASK),
1802 					 POLL_PERIOD, POLL_TIMEOUT);
1803 	if (ret)
1804 		pci_warn(pdev, "failed to empty PEH MSI!\n");
1805 
1806 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1807 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
1808 					 POLL_PERIOD, POLL_TIMEOUT);
1809 	if (ret)
1810 		pci_warn(pdev, "failed to finish MSI operation!\n");
1811 }
1812 
1813 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1814 {
1815 	struct pci_dev *pdev = qm->pdev;
1816 	int ret = -ETIMEDOUT;
1817 	u32 cmd, i;
1818 
1819 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1820 	if (set)
1821 		cmd |= QM_MSI_CAP_ENABLE;
1822 	else
1823 		cmd &= ~QM_MSI_CAP_ENABLE;
1824 
1825 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1826 	if (set) {
1827 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1828 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1829 			if (cmd & QM_MSI_CAP_ENABLE)
1830 				return 0;
1831 
1832 			udelay(1);
1833 		}
1834 	} else {
1835 		udelay(WAIT_PERIOD_US_MIN);
1836 		qm_wait_msi_finish(qm);
1837 		ret = 0;
1838 	}
1839 
1840 	return ret;
1841 }
1842 
1843 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1844 	.qm_db = qm_db_v1,
1845 	.hw_error_init = qm_hw_error_init_v1,
1846 	.set_msi = qm_set_msi,
1847 };
1848 
1849 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1850 	.get_vft = qm_get_vft_v2,
1851 	.qm_db = qm_db_v2,
1852 	.hw_error_init = qm_hw_error_init_v2,
1853 	.hw_error_uninit = qm_hw_error_uninit_v2,
1854 	.hw_error_handle = qm_hw_error_handle_v2,
1855 	.set_msi = qm_set_msi,
1856 };
1857 
1858 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1859 	.get_vft = qm_get_vft_v2,
1860 	.qm_db = qm_db_v2,
1861 	.hw_error_init = qm_hw_error_init_v3,
1862 	.hw_error_uninit = qm_hw_error_uninit_v3,
1863 	.hw_error_handle = qm_hw_error_handle_v2,
1864 	.set_msi = qm_set_msi_v3,
1865 };
1866 
1867 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1868 {
1869 	struct hisi_qp_status *qp_status = &qp->qp_status;
1870 	u16 sq_tail = qp_status->sq_tail;
1871 
1872 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1873 		return NULL;
1874 
1875 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1876 }
1877 
1878 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1879 {
1880 	u64 *addr;
1881 
1882 	/* Use last 64 bits of DUS to reset status. */
1883 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
1884 	*addr = 0;
1885 }
1886 
1887 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1888 {
1889 	struct device *dev = &qm->pdev->dev;
1890 	struct hisi_qp *qp;
1891 	int qp_id;
1892 
1893 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
1894 		return ERR_PTR(-EPERM);
1895 
1896 	if (qm->qp_in_used == qm->qp_num) {
1897 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1898 				     qm->qp_num);
1899 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1900 		return ERR_PTR(-EBUSY);
1901 	}
1902 
1903 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1904 	if (qp_id < 0) {
1905 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1906 				    qm->qp_num);
1907 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1908 		return ERR_PTR(-EBUSY);
1909 	}
1910 
1911 	qp = &qm->qp_array[qp_id];
1912 	hisi_qm_unset_hw_reset(qp);
1913 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
1914 
1915 	qp->event_cb = NULL;
1916 	qp->req_cb = NULL;
1917 	qp->qp_id = qp_id;
1918 	qp->alg_type = alg_type;
1919 	qp->is_in_kernel = true;
1920 	qm->qp_in_used++;
1921 	atomic_set(&qp->qp_status.flags, QP_INIT);
1922 
1923 	return qp;
1924 }
1925 
1926 /**
1927  * hisi_qm_create_qp() - Create a queue pair from qm.
1928  * @qm: The qm we create a qp from.
1929  * @alg_type: Accelerator specific algorithm type in sqc.
1930  *
1931  * Return created qp, negative error code if failed.
1932  */
1933 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1934 {
1935 	struct hisi_qp *qp;
1936 	int ret;
1937 
1938 	ret = qm_pm_get_sync(qm);
1939 	if (ret)
1940 		return ERR_PTR(ret);
1941 
1942 	down_write(&qm->qps_lock);
1943 	qp = qm_create_qp_nolock(qm, alg_type);
1944 	up_write(&qm->qps_lock);
1945 
1946 	if (IS_ERR(qp))
1947 		qm_pm_put_sync(qm);
1948 
1949 	return qp;
1950 }
1951 
1952 /**
1953  * hisi_qm_release_qp() - Release a qp back to its qm.
1954  * @qp: The qp we want to release.
1955  *
1956  * This function releases the resource of a qp.
1957  */
1958 static void hisi_qm_release_qp(struct hisi_qp *qp)
1959 {
1960 	struct hisi_qm *qm = qp->qm;
1961 
1962 	down_write(&qm->qps_lock);
1963 
1964 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
1965 		up_write(&qm->qps_lock);
1966 		return;
1967 	}
1968 
1969 	qm->qp_in_used--;
1970 	idr_remove(&qm->qp_idr, qp->qp_id);
1971 
1972 	up_write(&qm->qps_lock);
1973 
1974 	qm_pm_put_sync(qm);
1975 }
1976 
1977 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1978 {
1979 	struct hisi_qm *qm = qp->qm;
1980 	struct device *dev = &qm->pdev->dev;
1981 	enum qm_hw_ver ver = qm->ver;
1982 	struct qm_sqc *sqc;
1983 	dma_addr_t sqc_dma;
1984 	int ret;
1985 
1986 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
1987 	if (!sqc)
1988 		return -ENOMEM;
1989 
1990 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
1991 	if (ver == QM_HW_V1) {
1992 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1993 		sqc->w8 = cpu_to_le16(qp->sq_depth - 1);
1994 	} else {
1995 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
1996 		sqc->w8 = 0; /* rand_qc */
1997 	}
1998 	sqc->cq_num = cpu_to_le16(qp_id);
1999 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
2000 
2001 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2002 		sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
2003 				       QM_QC_PASID_ENABLE_SHIFT);
2004 
2005 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
2006 				 DMA_TO_DEVICE);
2007 	if (dma_mapping_error(dev, sqc_dma)) {
2008 		kfree(sqc);
2009 		return -ENOMEM;
2010 	}
2011 
2012 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
2013 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
2014 	kfree(sqc);
2015 
2016 	return ret;
2017 }
2018 
2019 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2020 {
2021 	struct hisi_qm *qm = qp->qm;
2022 	struct device *dev = &qm->pdev->dev;
2023 	enum qm_hw_ver ver = qm->ver;
2024 	struct qm_cqc *cqc;
2025 	dma_addr_t cqc_dma;
2026 	int ret;
2027 
2028 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
2029 	if (!cqc)
2030 		return -ENOMEM;
2031 
2032 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
2033 	if (ver == QM_HW_V1) {
2034 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
2035 							QM_QC_CQE_SIZE));
2036 		cqc->w8 = cpu_to_le16(qp->cq_depth - 1);
2037 	} else {
2038 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
2039 		cqc->w8 = 0; /* rand_qc */
2040 	}
2041 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2042 
2043 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2044 		cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2045 
2046 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
2047 				 DMA_TO_DEVICE);
2048 	if (dma_mapping_error(dev, cqc_dma)) {
2049 		kfree(cqc);
2050 		return -ENOMEM;
2051 	}
2052 
2053 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
2054 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
2055 	kfree(cqc);
2056 
2057 	return ret;
2058 }
2059 
2060 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2061 {
2062 	int ret;
2063 
2064 	qm_init_qp_status(qp);
2065 
2066 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2067 	if (ret)
2068 		return ret;
2069 
2070 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
2071 }
2072 
2073 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2074 {
2075 	struct hisi_qm *qm = qp->qm;
2076 	struct device *dev = &qm->pdev->dev;
2077 	int qp_id = qp->qp_id;
2078 	u32 pasid = arg;
2079 	int ret;
2080 
2081 	if (!qm_qp_avail_state(qm, qp, QP_START))
2082 		return -EPERM;
2083 
2084 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2085 	if (ret)
2086 		return ret;
2087 
2088 	atomic_set(&qp->qp_status.flags, QP_START);
2089 	dev_dbg(dev, "queue %d started\n", qp_id);
2090 
2091 	return 0;
2092 }
2093 
2094 /**
2095  * hisi_qm_start_qp() - Start a qp into running.
2096  * @qp: The qp we want to start to run.
2097  * @arg: Accelerator specific argument.
2098  *
2099  * After this function, qp can receive request from user. Return 0 if
2100  * successful, negative error code if failed.
2101  */
2102 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2103 {
2104 	struct hisi_qm *qm = qp->qm;
2105 	int ret;
2106 
2107 	down_write(&qm->qps_lock);
2108 	ret = qm_start_qp_nolock(qp, arg);
2109 	up_write(&qm->qps_lock);
2110 
2111 	return ret;
2112 }
2113 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2114 
2115 /**
2116  * qp_stop_fail_cb() - call request cb.
2117  * @qp: stopped failed qp.
2118  *
2119  * Callback function should be called whether task completed or not.
2120  */
2121 static void qp_stop_fail_cb(struct hisi_qp *qp)
2122 {
2123 	int qp_used = atomic_read(&qp->qp_status.used);
2124 	u16 cur_tail = qp->qp_status.sq_tail;
2125 	u16 sq_depth = qp->sq_depth;
2126 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2127 	struct hisi_qm *qm = qp->qm;
2128 	u16 pos;
2129 	int i;
2130 
2131 	for (i = 0; i < qp_used; i++) {
2132 		pos = (i + cur_head) % sq_depth;
2133 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2134 		atomic_dec(&qp->qp_status.used);
2135 	}
2136 }
2137 
2138 /**
2139  * qm_drain_qp() - Drain a qp.
2140  * @qp: The qp we want to drain.
2141  *
2142  * Determine whether the queue is cleared by judging the tail pointers of
2143  * sq and cq.
2144  */
2145 static int qm_drain_qp(struct hisi_qp *qp)
2146 {
2147 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
2148 	struct hisi_qm *qm = qp->qm;
2149 	struct device *dev = &qm->pdev->dev;
2150 	struct qm_sqc *sqc;
2151 	struct qm_cqc *cqc;
2152 	dma_addr_t dma_addr;
2153 	int ret = 0, i = 0;
2154 	void *addr;
2155 
2156 	/* No need to judge if master OOO is blocked. */
2157 	if (qm_check_dev_error(qm))
2158 		return 0;
2159 
2160 	/* Kunpeng930 supports drain qp by device */
2161 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2162 		ret = qm_stop_qp(qp);
2163 		if (ret)
2164 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
2165 		return ret;
2166 	}
2167 
2168 	addr = hisi_qm_ctx_alloc(qm, size, &dma_addr);
2169 	if (IS_ERR(addr)) {
2170 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
2171 		return -ENOMEM;
2172 	}
2173 
2174 	while (++i) {
2175 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
2176 		if (ret) {
2177 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2178 			break;
2179 		}
2180 		sqc = addr;
2181 
2182 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
2183 				      qp->qp_id);
2184 		if (ret) {
2185 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2186 			break;
2187 		}
2188 		cqc = addr + sizeof(struct qm_sqc);
2189 
2190 		if ((sqc->tail == cqc->tail) &&
2191 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2192 			break;
2193 
2194 		if (i == MAX_WAIT_COUNTS) {
2195 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
2196 			ret = -EBUSY;
2197 			break;
2198 		}
2199 
2200 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2201 	}
2202 
2203 	hisi_qm_ctx_free(qm, size, addr, &dma_addr);
2204 
2205 	return ret;
2206 }
2207 
2208 static int qm_stop_qp_nolock(struct hisi_qp *qp)
2209 {
2210 	struct device *dev = &qp->qm->pdev->dev;
2211 	int ret;
2212 
2213 	/*
2214 	 * It is allowed to stop and release qp when reset, If the qp is
2215 	 * stopped when reset but still want to be released then, the
2216 	 * is_resetting flag should be set negative so that this qp will not
2217 	 * be restarted after reset.
2218 	 */
2219 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
2220 		qp->is_resetting = false;
2221 		return 0;
2222 	}
2223 
2224 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
2225 		return -EPERM;
2226 
2227 	atomic_set(&qp->qp_status.flags, QP_STOP);
2228 
2229 	ret = qm_drain_qp(qp);
2230 	if (ret)
2231 		dev_err(dev, "Failed to drain out data for stopping!\n");
2232 
2233 
2234 	flush_workqueue(qp->qm->wq);
2235 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2236 		qp_stop_fail_cb(qp);
2237 
2238 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2239 
2240 	return 0;
2241 }
2242 
2243 /**
2244  * hisi_qm_stop_qp() - Stop a qp in qm.
2245  * @qp: The qp we want to stop.
2246  *
2247  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
2248  */
2249 int hisi_qm_stop_qp(struct hisi_qp *qp)
2250 {
2251 	int ret;
2252 
2253 	down_write(&qp->qm->qps_lock);
2254 	ret = qm_stop_qp_nolock(qp);
2255 	up_write(&qp->qm->qps_lock);
2256 
2257 	return ret;
2258 }
2259 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2260 
2261 /**
2262  * hisi_qp_send() - Queue up a task in the hardware queue.
2263  * @qp: The qp in which to put the message.
2264  * @msg: The message.
2265  *
2266  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2267  * if qp related qm is resetting.
2268  *
2269  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2270  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2271  *       reset may happen, we have no lock here considering performance. This
2272  *       causes current qm_db sending fail or can not receive sended sqe. QM
2273  *       sync/async receive function should handle the error sqe. ACC reset
2274  *       done function should clear used sqe to 0.
2275  */
2276 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2277 {
2278 	struct hisi_qp_status *qp_status = &qp->qp_status;
2279 	u16 sq_tail = qp_status->sq_tail;
2280 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2281 	void *sqe = qm_get_avail_sqe(qp);
2282 
2283 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2284 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2285 		     qp->is_resetting)) {
2286 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2287 		return -EAGAIN;
2288 	}
2289 
2290 	if (!sqe)
2291 		return -EBUSY;
2292 
2293 	memcpy(sqe, msg, qp->qm->sqe_size);
2294 
2295 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2296 	atomic_inc(&qp->qp_status.used);
2297 	qp_status->sq_tail = sq_tail_next;
2298 
2299 	return 0;
2300 }
2301 EXPORT_SYMBOL_GPL(hisi_qp_send);
2302 
2303 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2304 {
2305 	unsigned int val;
2306 
2307 	if (qm->ver == QM_HW_V1)
2308 		return;
2309 
2310 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2311 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2312 				       val, val & BIT(0), POLL_PERIOD,
2313 				       POLL_TIMEOUT))
2314 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2315 }
2316 
2317 static void qm_qp_event_notifier(struct hisi_qp *qp)
2318 {
2319 	wake_up_interruptible(&qp->uacce_q->wait);
2320 }
2321 
2322  /* This function returns free number of qp in qm. */
2323 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2324 {
2325 	struct hisi_qm *qm = uacce->priv;
2326 	int ret;
2327 
2328 	down_read(&qm->qps_lock);
2329 	ret = qm->qp_num - qm->qp_in_used;
2330 	up_read(&qm->qps_lock);
2331 
2332 	return ret;
2333 }
2334 
2335 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2336 {
2337 	int i;
2338 
2339 	for (i = 0; i < qm->qp_num; i++)
2340 		qm_set_qp_disable(&qm->qp_array[i], offset);
2341 }
2342 
2343 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2344 				   unsigned long arg,
2345 				   struct uacce_queue *q)
2346 {
2347 	struct hisi_qm *qm = uacce->priv;
2348 	struct hisi_qp *qp;
2349 	u8 alg_type = 0;
2350 
2351 	qp = hisi_qm_create_qp(qm, alg_type);
2352 	if (IS_ERR(qp))
2353 		return PTR_ERR(qp);
2354 
2355 	q->priv = qp;
2356 	q->uacce = uacce;
2357 	qp->uacce_q = q;
2358 	qp->event_cb = qm_qp_event_notifier;
2359 	qp->pasid = arg;
2360 	qp->is_in_kernel = false;
2361 
2362 	return 0;
2363 }
2364 
2365 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2366 {
2367 	struct hisi_qp *qp = q->priv;
2368 
2369 	hisi_qm_release_qp(qp);
2370 }
2371 
2372 /* map sq/cq/doorbell to user space */
2373 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2374 			      struct vm_area_struct *vma,
2375 			      struct uacce_qfile_region *qfr)
2376 {
2377 	struct hisi_qp *qp = q->priv;
2378 	struct hisi_qm *qm = qp->qm;
2379 	resource_size_t phys_base = qm->db_phys_base +
2380 				    qp->qp_id * qm->db_interval;
2381 	size_t sz = vma->vm_end - vma->vm_start;
2382 	struct pci_dev *pdev = qm->pdev;
2383 	struct device *dev = &pdev->dev;
2384 	unsigned long vm_pgoff;
2385 	int ret;
2386 
2387 	switch (qfr->type) {
2388 	case UACCE_QFRT_MMIO:
2389 		if (qm->ver == QM_HW_V1) {
2390 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2391 				return -EINVAL;
2392 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2393 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2394 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2395 				return -EINVAL;
2396 		} else {
2397 			if (sz > qm->db_interval)
2398 				return -EINVAL;
2399 		}
2400 
2401 		vm_flags_set(vma, VM_IO);
2402 
2403 		return remap_pfn_range(vma, vma->vm_start,
2404 				       phys_base >> PAGE_SHIFT,
2405 				       sz, pgprot_noncached(vma->vm_page_prot));
2406 	case UACCE_QFRT_DUS:
2407 		if (sz != qp->qdma.size)
2408 			return -EINVAL;
2409 
2410 		/*
2411 		 * dma_mmap_coherent() requires vm_pgoff as 0
2412 		 * restore vm_pfoff to initial value for mmap()
2413 		 */
2414 		vm_pgoff = vma->vm_pgoff;
2415 		vma->vm_pgoff = 0;
2416 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2417 					qp->qdma.dma, sz);
2418 		vma->vm_pgoff = vm_pgoff;
2419 		return ret;
2420 
2421 	default:
2422 		return -EINVAL;
2423 	}
2424 }
2425 
2426 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2427 {
2428 	struct hisi_qp *qp = q->priv;
2429 
2430 	return hisi_qm_start_qp(qp, qp->pasid);
2431 }
2432 
2433 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2434 {
2435 	hisi_qm_stop_qp(q->priv);
2436 }
2437 
2438 static int hisi_qm_is_q_updated(struct uacce_queue *q)
2439 {
2440 	struct hisi_qp *qp = q->priv;
2441 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2442 	int updated = 0;
2443 
2444 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2445 		/* make sure to read data from memory */
2446 		dma_rmb();
2447 		qm_cq_head_update(qp);
2448 		cqe = qp->cqe + qp->qp_status.cq_head;
2449 		updated = 1;
2450 	}
2451 
2452 	return updated;
2453 }
2454 
2455 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2456 {
2457 	struct hisi_qm *qm = q->uacce->priv;
2458 	struct hisi_qp *qp = q->priv;
2459 
2460 	down_write(&qm->qps_lock);
2461 	qp->alg_type = type;
2462 	up_write(&qm->qps_lock);
2463 }
2464 
2465 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2466 				unsigned long arg)
2467 {
2468 	struct hisi_qp *qp = q->priv;
2469 	struct hisi_qp_info qp_info;
2470 	struct hisi_qp_ctx qp_ctx;
2471 
2472 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2473 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2474 				   sizeof(struct hisi_qp_ctx)))
2475 			return -EFAULT;
2476 
2477 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2478 			return -EINVAL;
2479 
2480 		qm_set_sqctype(q, qp_ctx.qc_type);
2481 		qp_ctx.id = qp->qp_id;
2482 
2483 		if (copy_to_user((void __user *)arg, &qp_ctx,
2484 				 sizeof(struct hisi_qp_ctx)))
2485 			return -EFAULT;
2486 
2487 		return 0;
2488 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2489 		if (copy_from_user(&qp_info, (void __user *)arg,
2490 				   sizeof(struct hisi_qp_info)))
2491 			return -EFAULT;
2492 
2493 		qp_info.sqe_size = qp->qm->sqe_size;
2494 		qp_info.sq_depth = qp->sq_depth;
2495 		qp_info.cq_depth = qp->cq_depth;
2496 
2497 		if (copy_to_user((void __user *)arg, &qp_info,
2498 				  sizeof(struct hisi_qp_info)))
2499 			return -EFAULT;
2500 
2501 		return 0;
2502 	}
2503 
2504 	return -EINVAL;
2505 }
2506 
2507 /**
2508  * qm_hw_err_isolate() - Try to set the isolation status of the uacce device
2509  * according to user's configuration of error threshold.
2510  * @qm: the uacce device
2511  */
2512 static int qm_hw_err_isolate(struct hisi_qm *qm)
2513 {
2514 	struct qm_hw_err *err, *tmp, *hw_err;
2515 	struct qm_err_isolate *isolate;
2516 	u32 count = 0;
2517 
2518 	isolate = &qm->isolate_data;
2519 
2520 #define SECONDS_PER_HOUR	3600
2521 
2522 	/* All the hw errs are processed by PF driver */
2523 	if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
2524 		return 0;
2525 
2526 	hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
2527 	if (!hw_err)
2528 		return -ENOMEM;
2529 
2530 	/*
2531 	 * Time-stamp every slot AER error. Then check the AER error log when the
2532 	 * next device AER error occurred. if the device slot AER error count exceeds
2533 	 * the setting error threshold in one hour, the isolated state will be set
2534 	 * to true. And the AER error logs that exceed one hour will be cleared.
2535 	 */
2536 	mutex_lock(&isolate->isolate_lock);
2537 	hw_err->timestamp = jiffies;
2538 	list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
2539 		if ((hw_err->timestamp - err->timestamp) / HZ >
2540 		    SECONDS_PER_HOUR) {
2541 			list_del(&err->list);
2542 			kfree(err);
2543 		} else {
2544 			count++;
2545 		}
2546 	}
2547 	list_add(&hw_err->list, &isolate->qm_hw_errs);
2548 	mutex_unlock(&isolate->isolate_lock);
2549 
2550 	if (count >= isolate->err_threshold)
2551 		isolate->is_isolate = true;
2552 
2553 	return 0;
2554 }
2555 
2556 static void qm_hw_err_destroy(struct hisi_qm *qm)
2557 {
2558 	struct qm_hw_err *err, *tmp;
2559 
2560 	mutex_lock(&qm->isolate_data.isolate_lock);
2561 	list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
2562 		list_del(&err->list);
2563 		kfree(err);
2564 	}
2565 	mutex_unlock(&qm->isolate_data.isolate_lock);
2566 }
2567 
2568 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
2569 {
2570 	struct hisi_qm *qm = uacce->priv;
2571 	struct hisi_qm *pf_qm;
2572 
2573 	if (uacce->is_vf)
2574 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2575 	else
2576 		pf_qm = qm;
2577 
2578 	return pf_qm->isolate_data.is_isolate ?
2579 			UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
2580 }
2581 
2582 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
2583 {
2584 	struct hisi_qm *qm = uacce->priv;
2585 
2586 	/* Must be set by PF */
2587 	if (uacce->is_vf)
2588 		return -EPERM;
2589 
2590 	if (qm->isolate_data.is_isolate)
2591 		return -EPERM;
2592 
2593 	qm->isolate_data.err_threshold = num;
2594 
2595 	/* After the policy is updated, need to reset the hardware err list */
2596 	qm_hw_err_destroy(qm);
2597 
2598 	return 0;
2599 }
2600 
2601 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
2602 {
2603 	struct hisi_qm *qm = uacce->priv;
2604 	struct hisi_qm *pf_qm;
2605 
2606 	if (uacce->is_vf) {
2607 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2608 		return pf_qm->isolate_data.err_threshold;
2609 	}
2610 
2611 	return qm->isolate_data.err_threshold;
2612 }
2613 
2614 static const struct uacce_ops uacce_qm_ops = {
2615 	.get_available_instances = hisi_qm_get_available_instances,
2616 	.get_queue = hisi_qm_uacce_get_queue,
2617 	.put_queue = hisi_qm_uacce_put_queue,
2618 	.start_queue = hisi_qm_uacce_start_queue,
2619 	.stop_queue = hisi_qm_uacce_stop_queue,
2620 	.mmap = hisi_qm_uacce_mmap,
2621 	.ioctl = hisi_qm_uacce_ioctl,
2622 	.is_q_updated = hisi_qm_is_q_updated,
2623 	.get_isolate_state = hisi_qm_get_isolate_state,
2624 	.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
2625 	.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
2626 };
2627 
2628 static void qm_remove_uacce(struct hisi_qm *qm)
2629 {
2630 	struct uacce_device *uacce = qm->uacce;
2631 
2632 	if (qm->use_sva) {
2633 		qm_hw_err_destroy(qm);
2634 		uacce_remove(uacce);
2635 		qm->uacce = NULL;
2636 	}
2637 }
2638 
2639 static int qm_alloc_uacce(struct hisi_qm *qm)
2640 {
2641 	struct pci_dev *pdev = qm->pdev;
2642 	struct uacce_device *uacce;
2643 	unsigned long mmio_page_nr;
2644 	unsigned long dus_page_nr;
2645 	u16 sq_depth, cq_depth;
2646 	struct uacce_interface interface = {
2647 		.flags = UACCE_DEV_SVA,
2648 		.ops = &uacce_qm_ops,
2649 	};
2650 	int ret;
2651 
2652 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2653 		      sizeof(interface.name));
2654 	if (ret < 0)
2655 		return -ENAMETOOLONG;
2656 
2657 	uacce = uacce_alloc(&pdev->dev, &interface);
2658 	if (IS_ERR(uacce))
2659 		return PTR_ERR(uacce);
2660 
2661 	if (uacce->flags & UACCE_DEV_SVA) {
2662 		qm->use_sva = true;
2663 	} else {
2664 		/* only consider sva case */
2665 		qm_remove_uacce(qm);
2666 		return -EINVAL;
2667 	}
2668 
2669 	uacce->is_vf = pdev->is_virtfn;
2670 	uacce->priv = qm;
2671 
2672 	if (qm->ver == QM_HW_V1)
2673 		uacce->api_ver = HISI_QM_API_VER_BASE;
2674 	else if (qm->ver == QM_HW_V2)
2675 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2676 	else
2677 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2678 
2679 	if (qm->ver == QM_HW_V1)
2680 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2681 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2682 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2683 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2684 	else
2685 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2686 
2687 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2688 
2689 	/* Add one more page for device or qp status */
2690 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2691 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
2692 					 PAGE_SHIFT;
2693 
2694 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2695 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2696 
2697 	qm->uacce = uacce;
2698 	INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
2699 	mutex_init(&qm->isolate_data.isolate_lock);
2700 
2701 	return 0;
2702 }
2703 
2704 /**
2705  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2706  * there is user on the QM, return failure without doing anything.
2707  * @qm: The qm needed to be fronzen.
2708  *
2709  * This function frozes QM, then we can do SRIOV disabling.
2710  */
2711 static int qm_frozen(struct hisi_qm *qm)
2712 {
2713 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2714 		return 0;
2715 
2716 	down_write(&qm->qps_lock);
2717 
2718 	if (!qm->qp_in_used) {
2719 		qm->qp_in_used = qm->qp_num;
2720 		up_write(&qm->qps_lock);
2721 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2722 		return 0;
2723 	}
2724 
2725 	up_write(&qm->qps_lock);
2726 
2727 	return -EBUSY;
2728 }
2729 
2730 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2731 			     struct hisi_qm_list *qm_list)
2732 {
2733 	struct hisi_qm *qm, *vf_qm;
2734 	struct pci_dev *dev;
2735 	int ret = 0;
2736 
2737 	if (!qm_list || !pdev)
2738 		return -EINVAL;
2739 
2740 	/* Try to frozen all the VFs as disable SRIOV */
2741 	mutex_lock(&qm_list->lock);
2742 	list_for_each_entry(qm, &qm_list->list, list) {
2743 		dev = qm->pdev;
2744 		if (dev == pdev)
2745 			continue;
2746 		if (pci_physfn(dev) == pdev) {
2747 			vf_qm = pci_get_drvdata(dev);
2748 			ret = qm_frozen(vf_qm);
2749 			if (ret)
2750 				goto frozen_fail;
2751 		}
2752 	}
2753 
2754 frozen_fail:
2755 	mutex_unlock(&qm_list->lock);
2756 
2757 	return ret;
2758 }
2759 
2760 /**
2761  * hisi_qm_wait_task_finish() - Wait until the task is finished
2762  * when removing the driver.
2763  * @qm: The qm needed to wait for the task to finish.
2764  * @qm_list: The list of all available devices.
2765  */
2766 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2767 {
2768 	while (qm_frozen(qm) ||
2769 	       ((qm->fun_type == QM_HW_PF) &&
2770 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2771 		msleep(WAIT_PERIOD);
2772 	}
2773 
2774 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2775 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2776 		msleep(WAIT_PERIOD);
2777 
2778 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2779 		flush_work(&qm->cmd_process);
2780 
2781 	udelay(REMOVE_WAIT_DELAY);
2782 }
2783 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2784 
2785 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2786 {
2787 	struct device *dev = &qm->pdev->dev;
2788 	struct qm_dma *qdma;
2789 	int i;
2790 
2791 	for (i = num - 1; i >= 0; i--) {
2792 		qdma = &qm->qp_array[i].qdma;
2793 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2794 		kfree(qm->poll_data[i].qp_finish_id);
2795 	}
2796 
2797 	kfree(qm->poll_data);
2798 	kfree(qm->qp_array);
2799 }
2800 
2801 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2802 			       u16 sq_depth, u16 cq_depth)
2803 {
2804 	struct device *dev = &qm->pdev->dev;
2805 	size_t off = qm->sqe_size * sq_depth;
2806 	struct hisi_qp *qp;
2807 	int ret = -ENOMEM;
2808 
2809 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2810 						 GFP_KERNEL);
2811 	if (!qm->poll_data[id].qp_finish_id)
2812 		return -ENOMEM;
2813 
2814 	qp = &qm->qp_array[id];
2815 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2816 					 GFP_KERNEL);
2817 	if (!qp->qdma.va)
2818 		goto err_free_qp_finish_id;
2819 
2820 	qp->sqe = qp->qdma.va;
2821 	qp->sqe_dma = qp->qdma.dma;
2822 	qp->cqe = qp->qdma.va + off;
2823 	qp->cqe_dma = qp->qdma.dma + off;
2824 	qp->qdma.size = dma_size;
2825 	qp->sq_depth = sq_depth;
2826 	qp->cq_depth = cq_depth;
2827 	qp->qm = qm;
2828 	qp->qp_id = id;
2829 
2830 	return 0;
2831 
2832 err_free_qp_finish_id:
2833 	kfree(qm->poll_data[id].qp_finish_id);
2834 	return ret;
2835 }
2836 
2837 static void hisi_qm_pre_init(struct hisi_qm *qm)
2838 {
2839 	struct pci_dev *pdev = qm->pdev;
2840 
2841 	if (qm->ver == QM_HW_V1)
2842 		qm->ops = &qm_hw_ops_v1;
2843 	else if (qm->ver == QM_HW_V2)
2844 		qm->ops = &qm_hw_ops_v2;
2845 	else
2846 		qm->ops = &qm_hw_ops_v3;
2847 
2848 	pci_set_drvdata(pdev, qm);
2849 	mutex_init(&qm->mailbox_lock);
2850 	init_rwsem(&qm->qps_lock);
2851 	qm->qp_in_used = 0;
2852 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2853 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2854 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2855 	}
2856 }
2857 
2858 static void qm_cmd_uninit(struct hisi_qm *qm)
2859 {
2860 	u32 val;
2861 
2862 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2863 		return;
2864 
2865 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2866 	val |= QM_IFC_INT_DISABLE;
2867 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2868 }
2869 
2870 static void qm_cmd_init(struct hisi_qm *qm)
2871 {
2872 	u32 val;
2873 
2874 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2875 		return;
2876 
2877 	/* Clear communication interrupt source */
2878 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
2879 
2880 	/* Enable pf to vf communication reg. */
2881 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2882 	val &= ~QM_IFC_INT_DISABLE;
2883 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2884 }
2885 
2886 static void qm_put_pci_res(struct hisi_qm *qm)
2887 {
2888 	struct pci_dev *pdev = qm->pdev;
2889 
2890 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2891 		iounmap(qm->db_io_base);
2892 
2893 	iounmap(qm->io_base);
2894 	pci_release_mem_regions(pdev);
2895 }
2896 
2897 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
2898 {
2899 	struct pci_dev *pdev = qm->pdev;
2900 
2901 	pci_free_irq_vectors(pdev);
2902 	qm_put_pci_res(qm);
2903 	pci_disable_device(pdev);
2904 }
2905 
2906 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
2907 {
2908 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
2909 		writel(state, qm->io_base + QM_VF_STATE);
2910 }
2911 
2912 static void hisi_qm_unint_work(struct hisi_qm *qm)
2913 {
2914 	destroy_workqueue(qm->wq);
2915 }
2916 
2917 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
2918 {
2919 	struct device *dev = &qm->pdev->dev;
2920 
2921 	hisi_qp_memory_uninit(qm, qm->qp_num);
2922 	if (qm->qdma.va) {
2923 		hisi_qm_cache_wb(qm);
2924 		dma_free_coherent(dev, qm->qdma.size,
2925 				  qm->qdma.va, qm->qdma.dma);
2926 	}
2927 
2928 	idr_destroy(&qm->qp_idr);
2929 
2930 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
2931 		kfree(qm->factor);
2932 }
2933 
2934 /**
2935  * hisi_qm_uninit() - Uninitialize qm.
2936  * @qm: The qm needed uninit.
2937  *
2938  * This function uninits qm related device resources.
2939  */
2940 void hisi_qm_uninit(struct hisi_qm *qm)
2941 {
2942 	qm_cmd_uninit(qm);
2943 	hisi_qm_unint_work(qm);
2944 	down_write(&qm->qps_lock);
2945 
2946 	if (!qm_avail_state(qm, QM_CLOSE)) {
2947 		up_write(&qm->qps_lock);
2948 		return;
2949 	}
2950 
2951 	hisi_qm_memory_uninit(qm);
2952 	hisi_qm_set_state(qm, QM_NOT_READY);
2953 	up_write(&qm->qps_lock);
2954 
2955 	qm_remove_uacce(qm);
2956 	qm_irqs_unregister(qm);
2957 	hisi_qm_pci_uninit(qm);
2958 }
2959 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2960 
2961 /**
2962  * hisi_qm_get_vft() - Get vft from a qm.
2963  * @qm: The qm we want to get its vft.
2964  * @base: The base number of queue in vft.
2965  * @number: The number of queues in vft.
2966  *
2967  * We can allocate multiple queues to a qm by configuring virtual function
2968  * table. We get related configures by this function. Normally, we call this
2969  * function in VF driver to get the queue information.
2970  *
2971  * qm hw v1 does not support this interface.
2972  */
2973 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2974 {
2975 	if (!base || !number)
2976 		return -EINVAL;
2977 
2978 	if (!qm->ops->get_vft) {
2979 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2980 		return -EINVAL;
2981 	}
2982 
2983 	return qm->ops->get_vft(qm, base, number);
2984 }
2985 
2986 /**
2987  * hisi_qm_set_vft() - Set vft to a qm.
2988  * @qm: The qm we want to set its vft.
2989  * @fun_num: The function number.
2990  * @base: The base number of queue in vft.
2991  * @number: The number of queues in vft.
2992  *
2993  * This function is alway called in PF driver, it is used to assign queues
2994  * among PF and VFs.
2995  *
2996  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2997  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2998  * (VF function number 0x2)
2999  */
3000 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
3001 		    u32 number)
3002 {
3003 	u32 max_q_num = qm->ctrl_qp_num;
3004 
3005 	if (base >= max_q_num || number > max_q_num ||
3006 	    (base + number) > max_q_num)
3007 		return -EINVAL;
3008 
3009 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
3010 }
3011 
3012 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
3013 {
3014 	struct hisi_qm_status *status = &qm->status;
3015 
3016 	status->eq_head = 0;
3017 	status->aeq_head = 0;
3018 	status->eqc_phase = true;
3019 	status->aeqc_phase = true;
3020 }
3021 
3022 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
3023 {
3024 	/* Clear eq/aeq interrupt source */
3025 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
3026 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
3027 
3028 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
3029 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
3030 }
3031 
3032 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
3033 {
3034 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
3035 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3036 }
3037 
3038 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3039 {
3040 	struct device *dev = &qm->pdev->dev;
3041 	struct qm_eqc *eqc;
3042 	dma_addr_t eqc_dma;
3043 	int ret;
3044 
3045 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
3046 	if (!eqc)
3047 		return -ENOMEM;
3048 
3049 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3050 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3051 	if (qm->ver == QM_HW_V1)
3052 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3053 	eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3054 
3055 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
3056 				 DMA_TO_DEVICE);
3057 	if (dma_mapping_error(dev, eqc_dma)) {
3058 		kfree(eqc);
3059 		return -ENOMEM;
3060 	}
3061 
3062 	ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
3063 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
3064 	kfree(eqc);
3065 
3066 	return ret;
3067 }
3068 
3069 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3070 {
3071 	struct device *dev = &qm->pdev->dev;
3072 	struct qm_aeqc *aeqc;
3073 	dma_addr_t aeqc_dma;
3074 	int ret;
3075 
3076 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
3077 	if (!aeqc)
3078 		return -ENOMEM;
3079 
3080 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3081 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3082 	aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3083 
3084 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
3085 				  DMA_TO_DEVICE);
3086 	if (dma_mapping_error(dev, aeqc_dma)) {
3087 		kfree(aeqc);
3088 		return -ENOMEM;
3089 	}
3090 
3091 	ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
3092 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
3093 	kfree(aeqc);
3094 
3095 	return ret;
3096 }
3097 
3098 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3099 {
3100 	struct device *dev = &qm->pdev->dev;
3101 	int ret;
3102 
3103 	qm_init_eq_aeq_status(qm);
3104 
3105 	ret = qm_eq_ctx_cfg(qm);
3106 	if (ret) {
3107 		dev_err(dev, "Set eqc failed!\n");
3108 		return ret;
3109 	}
3110 
3111 	return qm_aeq_ctx_cfg(qm);
3112 }
3113 
3114 static int __hisi_qm_start(struct hisi_qm *qm)
3115 {
3116 	int ret;
3117 
3118 	WARN_ON(!qm->qdma.va);
3119 
3120 	if (qm->fun_type == QM_HW_PF) {
3121 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3122 		if (ret)
3123 			return ret;
3124 	}
3125 
3126 	ret = qm_eq_aeq_ctx_cfg(qm);
3127 	if (ret)
3128 		return ret;
3129 
3130 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3131 	if (ret)
3132 		return ret;
3133 
3134 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3135 	if (ret)
3136 		return ret;
3137 
3138 	qm_init_prefetch(qm);
3139 	qm_enable_eq_aeq_interrupts(qm);
3140 
3141 	return 0;
3142 }
3143 
3144 /**
3145  * hisi_qm_start() - start qm
3146  * @qm: The qm to be started.
3147  *
3148  * This function starts a qm, then we can allocate qp from this qm.
3149  */
3150 int hisi_qm_start(struct hisi_qm *qm)
3151 {
3152 	struct device *dev = &qm->pdev->dev;
3153 	int ret = 0;
3154 
3155 	down_write(&qm->qps_lock);
3156 
3157 	if (!qm_avail_state(qm, QM_START)) {
3158 		up_write(&qm->qps_lock);
3159 		return -EPERM;
3160 	}
3161 
3162 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3163 
3164 	if (!qm->qp_num) {
3165 		dev_err(dev, "qp_num should not be 0\n");
3166 		ret = -EINVAL;
3167 		goto err_unlock;
3168 	}
3169 
3170 	ret = __hisi_qm_start(qm);
3171 	if (!ret)
3172 		atomic_set(&qm->status.flags, QM_START);
3173 
3174 	hisi_qm_set_state(qm, QM_READY);
3175 err_unlock:
3176 	up_write(&qm->qps_lock);
3177 	return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(hisi_qm_start);
3180 
3181 static int qm_restart(struct hisi_qm *qm)
3182 {
3183 	struct device *dev = &qm->pdev->dev;
3184 	struct hisi_qp *qp;
3185 	int ret, i;
3186 
3187 	ret = hisi_qm_start(qm);
3188 	if (ret < 0)
3189 		return ret;
3190 
3191 	down_write(&qm->qps_lock);
3192 	for (i = 0; i < qm->qp_num; i++) {
3193 		qp = &qm->qp_array[i];
3194 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3195 		    qp->is_resetting == true) {
3196 			ret = qm_start_qp_nolock(qp, 0);
3197 			if (ret < 0) {
3198 				dev_err(dev, "Failed to start qp%d!\n", i);
3199 
3200 				up_write(&qm->qps_lock);
3201 				return ret;
3202 			}
3203 			qp->is_resetting = false;
3204 		}
3205 	}
3206 	up_write(&qm->qps_lock);
3207 
3208 	return 0;
3209 }
3210 
3211 /* Stop started qps in reset flow */
3212 static int qm_stop_started_qp(struct hisi_qm *qm)
3213 {
3214 	struct device *dev = &qm->pdev->dev;
3215 	struct hisi_qp *qp;
3216 	int i, ret;
3217 
3218 	for (i = 0; i < qm->qp_num; i++) {
3219 		qp = &qm->qp_array[i];
3220 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
3221 			qp->is_resetting = true;
3222 			ret = qm_stop_qp_nolock(qp);
3223 			if (ret < 0) {
3224 				dev_err(dev, "Failed to stop qp%d!\n", i);
3225 				return ret;
3226 			}
3227 		}
3228 	}
3229 
3230 	return 0;
3231 }
3232 
3233 /**
3234  * qm_clear_queues() - Clear all queues memory in a qm.
3235  * @qm: The qm in which the queues will be cleared.
3236  *
3237  * This function clears all queues memory in a qm. Reset of accelerator can
3238  * use this to clear queues.
3239  */
3240 static void qm_clear_queues(struct hisi_qm *qm)
3241 {
3242 	struct hisi_qp *qp;
3243 	int i;
3244 
3245 	for (i = 0; i < qm->qp_num; i++) {
3246 		qp = &qm->qp_array[i];
3247 		if (qp->is_in_kernel && qp->is_resetting)
3248 			memset(qp->qdma.va, 0, qp->qdma.size);
3249 	}
3250 
3251 	memset(qm->qdma.va, 0, qm->qdma.size);
3252 }
3253 
3254 /**
3255  * hisi_qm_stop() - Stop a qm.
3256  * @qm: The qm which will be stopped.
3257  * @r: The reason to stop qm.
3258  *
3259  * This function stops qm and its qps, then qm can not accept request.
3260  * Related resources are not released at this state, we can use hisi_qm_start
3261  * to let qm start again.
3262  */
3263 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3264 {
3265 	struct device *dev = &qm->pdev->dev;
3266 	int ret = 0;
3267 
3268 	down_write(&qm->qps_lock);
3269 
3270 	qm->status.stop_reason = r;
3271 	if (!qm_avail_state(qm, QM_STOP)) {
3272 		ret = -EPERM;
3273 		goto err_unlock;
3274 	}
3275 
3276 	if (qm->status.stop_reason == QM_SOFT_RESET ||
3277 	    qm->status.stop_reason == QM_DOWN) {
3278 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3279 		ret = qm_stop_started_qp(qm);
3280 		if (ret < 0) {
3281 			dev_err(dev, "Failed to stop started qp!\n");
3282 			goto err_unlock;
3283 		}
3284 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3285 	}
3286 
3287 	qm_disable_eq_aeq_interrupts(qm);
3288 	if (qm->fun_type == QM_HW_PF) {
3289 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3290 		if (ret < 0) {
3291 			dev_err(dev, "Failed to set vft!\n");
3292 			ret = -EBUSY;
3293 			goto err_unlock;
3294 		}
3295 	}
3296 
3297 	qm_clear_queues(qm);
3298 	atomic_set(&qm->status.flags, QM_STOP);
3299 
3300 err_unlock:
3301 	up_write(&qm->qps_lock);
3302 	return ret;
3303 }
3304 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3305 
3306 static void qm_hw_error_init(struct hisi_qm *qm)
3307 {
3308 	if (!qm->ops->hw_error_init) {
3309 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3310 		return;
3311 	}
3312 
3313 	qm->ops->hw_error_init(qm);
3314 }
3315 
3316 static void qm_hw_error_uninit(struct hisi_qm *qm)
3317 {
3318 	if (!qm->ops->hw_error_uninit) {
3319 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3320 		return;
3321 	}
3322 
3323 	qm->ops->hw_error_uninit(qm);
3324 }
3325 
3326 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3327 {
3328 	if (!qm->ops->hw_error_handle) {
3329 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3330 		return ACC_ERR_NONE;
3331 	}
3332 
3333 	return qm->ops->hw_error_handle(qm);
3334 }
3335 
3336 /**
3337  * hisi_qm_dev_err_init() - Initialize device error configuration.
3338  * @qm: The qm for which we want to do error initialization.
3339  *
3340  * Initialize QM and device error related configuration.
3341  */
3342 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3343 {
3344 	if (qm->fun_type == QM_HW_VF)
3345 		return;
3346 
3347 	qm_hw_error_init(qm);
3348 
3349 	if (!qm->err_ini->hw_err_enable) {
3350 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3351 		return;
3352 	}
3353 	qm->err_ini->hw_err_enable(qm);
3354 }
3355 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3356 
3357 /**
3358  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3359  * @qm: The qm for which we want to do error uninitialization.
3360  *
3361  * Uninitialize QM and device error related configuration.
3362  */
3363 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3364 {
3365 	if (qm->fun_type == QM_HW_VF)
3366 		return;
3367 
3368 	qm_hw_error_uninit(qm);
3369 
3370 	if (!qm->err_ini->hw_err_disable) {
3371 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3372 		return;
3373 	}
3374 	qm->err_ini->hw_err_disable(qm);
3375 }
3376 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3377 
3378 /**
3379  * hisi_qm_free_qps() - free multiple queue pairs.
3380  * @qps: The queue pairs need to be freed.
3381  * @qp_num: The num of queue pairs.
3382  */
3383 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3384 {
3385 	int i;
3386 
3387 	if (!qps || qp_num <= 0)
3388 		return;
3389 
3390 	for (i = qp_num - 1; i >= 0; i--)
3391 		hisi_qm_release_qp(qps[i]);
3392 }
3393 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3394 
3395 static void free_list(struct list_head *head)
3396 {
3397 	struct hisi_qm_resource *res, *tmp;
3398 
3399 	list_for_each_entry_safe(res, tmp, head, list) {
3400 		list_del(&res->list);
3401 		kfree(res);
3402 	}
3403 }
3404 
3405 static int hisi_qm_sort_devices(int node, struct list_head *head,
3406 				struct hisi_qm_list *qm_list)
3407 {
3408 	struct hisi_qm_resource *res, *tmp;
3409 	struct hisi_qm *qm;
3410 	struct list_head *n;
3411 	struct device *dev;
3412 	int dev_node;
3413 
3414 	list_for_each_entry(qm, &qm_list->list, list) {
3415 		dev = &qm->pdev->dev;
3416 
3417 		dev_node = dev_to_node(dev);
3418 		if (dev_node < 0)
3419 			dev_node = 0;
3420 
3421 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3422 		if (!res)
3423 			return -ENOMEM;
3424 
3425 		res->qm = qm;
3426 		res->distance = node_distance(dev_node, node);
3427 		n = head;
3428 		list_for_each_entry(tmp, head, list) {
3429 			if (res->distance < tmp->distance) {
3430 				n = &tmp->list;
3431 				break;
3432 			}
3433 		}
3434 		list_add_tail(&res->list, n);
3435 	}
3436 
3437 	return 0;
3438 }
3439 
3440 /**
3441  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3442  * @qm_list: The list of all available devices.
3443  * @qp_num: The number of queue pairs need created.
3444  * @alg_type: The algorithm type.
3445  * @node: The numa node.
3446  * @qps: The queue pairs need created.
3447  *
3448  * This function will sort all available device according to numa distance.
3449  * Then try to create all queue pairs from one device, if all devices do
3450  * not meet the requirements will return error.
3451  */
3452 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3453 			   u8 alg_type, int node, struct hisi_qp **qps)
3454 {
3455 	struct hisi_qm_resource *tmp;
3456 	int ret = -ENODEV;
3457 	LIST_HEAD(head);
3458 	int i;
3459 
3460 	if (!qps || !qm_list || qp_num <= 0)
3461 		return -EINVAL;
3462 
3463 	mutex_lock(&qm_list->lock);
3464 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3465 		mutex_unlock(&qm_list->lock);
3466 		goto err;
3467 	}
3468 
3469 	list_for_each_entry(tmp, &head, list) {
3470 		for (i = 0; i < qp_num; i++) {
3471 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3472 			if (IS_ERR(qps[i])) {
3473 				hisi_qm_free_qps(qps, i);
3474 				break;
3475 			}
3476 		}
3477 
3478 		if (i == qp_num) {
3479 			ret = 0;
3480 			break;
3481 		}
3482 	}
3483 
3484 	mutex_unlock(&qm_list->lock);
3485 	if (ret)
3486 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3487 			node, alg_type, qp_num);
3488 
3489 err:
3490 	free_list(&head);
3491 	return ret;
3492 }
3493 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3494 
3495 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3496 {
3497 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3498 	u32 max_qp_num = qm->max_qp_num;
3499 	u32 q_base = qm->qp_num;
3500 	int ret;
3501 
3502 	if (!num_vfs)
3503 		return -EINVAL;
3504 
3505 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3506 
3507 	/* If vfs_q_num is less than num_vfs, return error. */
3508 	if (vfs_q_num < num_vfs)
3509 		return -EINVAL;
3510 
3511 	q_num = vfs_q_num / num_vfs;
3512 	remain_q_num = vfs_q_num % num_vfs;
3513 
3514 	for (i = num_vfs; i > 0; i--) {
3515 		/*
3516 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3517 		 * remaining queues equally.
3518 		 */
3519 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3520 			act_q_num = q_num + remain_q_num;
3521 			remain_q_num = 0;
3522 		} else if (remain_q_num > 0) {
3523 			act_q_num = q_num + 1;
3524 			remain_q_num--;
3525 		} else {
3526 			act_q_num = q_num;
3527 		}
3528 
3529 		act_q_num = min(act_q_num, max_qp_num);
3530 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3531 		if (ret) {
3532 			for (j = num_vfs; j > i; j--)
3533 				hisi_qm_set_vft(qm, j, 0, 0);
3534 			return ret;
3535 		}
3536 		q_base += act_q_num;
3537 	}
3538 
3539 	return 0;
3540 }
3541 
3542 static int qm_clear_vft_config(struct hisi_qm *qm)
3543 {
3544 	int ret;
3545 	u32 i;
3546 
3547 	for (i = 1; i <= qm->vfs_num; i++) {
3548 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3549 		if (ret)
3550 			return ret;
3551 	}
3552 	qm->vfs_num = 0;
3553 
3554 	return 0;
3555 }
3556 
3557 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3558 {
3559 	struct device *dev = &qm->pdev->dev;
3560 	u32 ir = qos * QM_QOS_RATE;
3561 	int ret, total_vfs, i;
3562 
3563 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3564 	if (fun_index > total_vfs)
3565 		return -EINVAL;
3566 
3567 	qm->factor[fun_index].func_qos = qos;
3568 
3569 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3570 	if (ret) {
3571 		dev_err(dev, "failed to calculate shaper parameter!\n");
3572 		return -EINVAL;
3573 	}
3574 
3575 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3576 		/* The base number of queue reuse for different alg type */
3577 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3578 		if (ret) {
3579 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3580 			return -EINVAL;
3581 		}
3582 	}
3583 
3584 	return 0;
3585 }
3586 
3587 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3588 {
3589 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
3590 	u64 shaper_vft, ir_calc, ir;
3591 	unsigned int val;
3592 	u32 error_rate;
3593 	int ret;
3594 
3595 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3596 					 val & BIT(0), POLL_PERIOD,
3597 					 POLL_TIMEOUT);
3598 	if (ret)
3599 		return 0;
3600 
3601 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3602 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3603 	writel(fun_index, qm->io_base + QM_VFT_CFG);
3604 
3605 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3606 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3607 
3608 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3609 					 val & BIT(0), POLL_PERIOD,
3610 					 POLL_TIMEOUT);
3611 	if (ret)
3612 		return 0;
3613 
3614 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3615 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3616 
3617 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3618 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3619 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3620 
3621 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3622 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3623 
3624 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3625 
3626 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3627 
3628 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3629 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3630 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3631 		return 0;
3632 	}
3633 
3634 	return ir;
3635 }
3636 
3637 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3638 {
3639 	struct device *dev = &qm->pdev->dev;
3640 	u64 mb_cmd;
3641 	u32 qos;
3642 	int ret;
3643 
3644 	qos = qm_get_shaper_vft_qos(qm, fun_num);
3645 	if (!qos) {
3646 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3647 		return;
3648 	}
3649 
3650 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
3651 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
3652 	if (ret)
3653 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
3654 }
3655 
3656 static int qm_vf_read_qos(struct hisi_qm *qm)
3657 {
3658 	int cnt = 0;
3659 	int ret = -EINVAL;
3660 
3661 	/* reset mailbox qos val */
3662 	qm->mb_qos = 0;
3663 
3664 	/* vf ping pf to get function qos */
3665 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3666 	if (ret) {
3667 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3668 		return ret;
3669 	}
3670 
3671 	while (true) {
3672 		msleep(QM_WAIT_DST_ACK);
3673 		if (qm->mb_qos)
3674 			break;
3675 
3676 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3677 			pci_err(qm->pdev, "PF ping VF timeout!\n");
3678 			return  -ETIMEDOUT;
3679 		}
3680 	}
3681 
3682 	return ret;
3683 }
3684 
3685 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3686 			       size_t count, loff_t *pos)
3687 {
3688 	struct hisi_qm *qm = filp->private_data;
3689 	char tbuf[QM_DBG_READ_LEN];
3690 	u32 qos_val, ir;
3691 	int ret;
3692 
3693 	ret = hisi_qm_get_dfx_access(qm);
3694 	if (ret)
3695 		return ret;
3696 
3697 	/* Mailbox and reset cannot be operated at the same time */
3698 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3699 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3700 		ret = -EAGAIN;
3701 		goto err_put_dfx_access;
3702 	}
3703 
3704 	if (qm->fun_type == QM_HW_PF) {
3705 		ir = qm_get_shaper_vft_qos(qm, 0);
3706 	} else {
3707 		ret = qm_vf_read_qos(qm);
3708 		if (ret)
3709 			goto err_get_status;
3710 		ir = qm->mb_qos;
3711 	}
3712 
3713 	qos_val = ir / QM_QOS_RATE;
3714 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3715 
3716 	ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
3717 
3718 err_get_status:
3719 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3720 err_put_dfx_access:
3721 	hisi_qm_put_dfx_access(qm);
3722 	return ret;
3723 }
3724 
3725 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3726 			       unsigned long *val,
3727 			       unsigned int *fun_index)
3728 {
3729 	const struct bus_type *bus_type = qm->pdev->dev.bus;
3730 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3731 	char val_buf[QM_DBG_READ_LEN] = {0};
3732 	struct pci_dev *pdev;
3733 	struct device *dev;
3734 	int ret;
3735 
3736 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3737 	if (ret != QM_QOS_PARAM_NUM)
3738 		return -EINVAL;
3739 
3740 	ret = kstrtoul(val_buf, 10, val);
3741 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3742 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3743 		return -EINVAL;
3744 	}
3745 
3746 	dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3747 	if (!dev) {
3748 		pci_err(qm->pdev, "input pci bdf number is error!\n");
3749 		return -ENODEV;
3750 	}
3751 
3752 	pdev = container_of(dev, struct pci_dev, dev);
3753 
3754 	*fun_index = pdev->devfn;
3755 
3756 	return 0;
3757 }
3758 
3759 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3760 			       size_t count, loff_t *pos)
3761 {
3762 	struct hisi_qm *qm = filp->private_data;
3763 	char tbuf[QM_DBG_READ_LEN];
3764 	unsigned int fun_index;
3765 	unsigned long val;
3766 	int len, ret;
3767 
3768 	if (*pos != 0)
3769 		return 0;
3770 
3771 	if (count >= QM_DBG_READ_LEN)
3772 		return -ENOSPC;
3773 
3774 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3775 	if (len < 0)
3776 		return len;
3777 
3778 	tbuf[len] = '\0';
3779 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3780 	if (ret)
3781 		return ret;
3782 
3783 	/* Mailbox and reset cannot be operated at the same time */
3784 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3785 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3786 		return -EAGAIN;
3787 	}
3788 
3789 	ret = qm_pm_get_sync(qm);
3790 	if (ret) {
3791 		ret = -EINVAL;
3792 		goto err_get_status;
3793 	}
3794 
3795 	ret = qm_func_shaper_enable(qm, fun_index, val);
3796 	if (ret) {
3797 		pci_err(qm->pdev, "failed to enable function shaper!\n");
3798 		ret = -EINVAL;
3799 		goto err_put_sync;
3800 	}
3801 
3802 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3803 		 fun_index, val);
3804 	ret = count;
3805 
3806 err_put_sync:
3807 	qm_pm_put_sync(qm);
3808 err_get_status:
3809 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3810 	return ret;
3811 }
3812 
3813 static const struct file_operations qm_algqos_fops = {
3814 	.owner = THIS_MODULE,
3815 	.open = simple_open,
3816 	.read = qm_algqos_read,
3817 	.write = qm_algqos_write,
3818 };
3819 
3820 /**
3821  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3822  * @qm: The qm for which we want to add debugfs files.
3823  *
3824  * Create function qos debugfs files, VF ping PF to get function qos.
3825  */
3826 void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3827 {
3828 	if (qm->fun_type == QM_HW_PF)
3829 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3830 				    qm, &qm_algqos_fops);
3831 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3832 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3833 				    qm, &qm_algqos_fops);
3834 }
3835 
3836 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3837 {
3838 	int i;
3839 
3840 	for (i = 1; i <= total_func; i++)
3841 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3842 }
3843 
3844 /**
3845  * hisi_qm_sriov_enable() - enable virtual functions
3846  * @pdev: the PCIe device
3847  * @max_vfs: the number of virtual functions to enable
3848  *
3849  * Returns the number of enabled VFs. If there are VFs enabled already or
3850  * max_vfs is more than the total number of device can be enabled, returns
3851  * failure.
3852  */
3853 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3854 {
3855 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3856 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3857 
3858 	ret = qm_pm_get_sync(qm);
3859 	if (ret)
3860 		return ret;
3861 
3862 	total_vfs = pci_sriov_get_totalvfs(pdev);
3863 	pre_existing_vfs = pci_num_vf(pdev);
3864 	if (pre_existing_vfs) {
3865 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3866 			pre_existing_vfs);
3867 		goto err_put_sync;
3868 	}
3869 
3870 	if (max_vfs > total_vfs) {
3871 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
3872 		ret = -ERANGE;
3873 		goto err_put_sync;
3874 	}
3875 
3876 	num_vfs = max_vfs;
3877 
3878 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3879 		hisi_qm_init_vf_qos(qm, num_vfs);
3880 
3881 	ret = qm_vf_q_assign(qm, num_vfs);
3882 	if (ret) {
3883 		pci_err(pdev, "Can't assign queues for VF!\n");
3884 		goto err_put_sync;
3885 	}
3886 
3887 	qm->vfs_num = num_vfs;
3888 
3889 	ret = pci_enable_sriov(pdev, num_vfs);
3890 	if (ret) {
3891 		pci_err(pdev, "Can't enable VF!\n");
3892 		qm_clear_vft_config(qm);
3893 		goto err_put_sync;
3894 	}
3895 
3896 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3897 
3898 	return num_vfs;
3899 
3900 err_put_sync:
3901 	qm_pm_put_sync(qm);
3902 	return ret;
3903 }
3904 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3905 
3906 /**
3907  * hisi_qm_sriov_disable - disable virtual functions
3908  * @pdev: the PCI device.
3909  * @is_frozen: true when all the VFs are frozen.
3910  *
3911  * Return failure if there are VFs assigned already or VF is in used.
3912  */
3913 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3914 {
3915 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3916 	int ret;
3917 
3918 	if (pci_vfs_assigned(pdev)) {
3919 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3920 		return -EPERM;
3921 	}
3922 
3923 	/* While VF is in used, SRIOV cannot be disabled. */
3924 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3925 		pci_err(pdev, "Task is using its VF!\n");
3926 		return -EBUSY;
3927 	}
3928 
3929 	pci_disable_sriov(pdev);
3930 
3931 	ret = qm_clear_vft_config(qm);
3932 	if (ret)
3933 		return ret;
3934 
3935 	qm_pm_put_sync(qm);
3936 
3937 	return 0;
3938 }
3939 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3940 
3941 /**
3942  * hisi_qm_sriov_configure - configure the number of VFs
3943  * @pdev: The PCI device
3944  * @num_vfs: The number of VFs need enabled
3945  *
3946  * Enable SR-IOV according to num_vfs, 0 means disable.
3947  */
3948 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3949 {
3950 	if (num_vfs == 0)
3951 		return hisi_qm_sriov_disable(pdev, false);
3952 	else
3953 		return hisi_qm_sriov_enable(pdev, num_vfs);
3954 }
3955 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3956 
3957 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3958 {
3959 	u32 err_sts;
3960 
3961 	if (!qm->err_ini->get_dev_hw_err_status) {
3962 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3963 		return ACC_ERR_NONE;
3964 	}
3965 
3966 	/* get device hardware error status */
3967 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3968 	if (err_sts) {
3969 		if (err_sts & qm->err_info.ecc_2bits_mask)
3970 			qm->err_status.is_dev_ecc_mbit = true;
3971 
3972 		if (qm->err_ini->log_dev_hw_err)
3973 			qm->err_ini->log_dev_hw_err(qm, err_sts);
3974 
3975 		if (err_sts & qm->err_info.dev_reset_mask)
3976 			return ACC_ERR_NEED_RESET;
3977 
3978 		if (qm->err_ini->clear_dev_hw_err_status)
3979 			qm->err_ini->clear_dev_hw_err_status(qm, err_sts);
3980 	}
3981 
3982 	return ACC_ERR_RECOVERED;
3983 }
3984 
3985 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3986 {
3987 	enum acc_err_result qm_ret, dev_ret;
3988 
3989 	/* log qm error */
3990 	qm_ret = qm_hw_error_handle(qm);
3991 
3992 	/* log device error */
3993 	dev_ret = qm_dev_err_handle(qm);
3994 
3995 	return (qm_ret == ACC_ERR_NEED_RESET ||
3996 		dev_ret == ACC_ERR_NEED_RESET) ?
3997 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3998 }
3999 
4000 /**
4001  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
4002  * @pdev: The PCI device which need report error.
4003  * @state: The connectivity between CPU and device.
4004  *
4005  * We register this function into PCIe AER handlers, It will report device or
4006  * qm hardware error status when error occur.
4007  */
4008 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
4009 					  pci_channel_state_t state)
4010 {
4011 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4012 	enum acc_err_result ret;
4013 
4014 	if (pdev->is_virtfn)
4015 		return PCI_ERS_RESULT_NONE;
4016 
4017 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
4018 	if (state == pci_channel_io_perm_failure)
4019 		return PCI_ERS_RESULT_DISCONNECT;
4020 
4021 	ret = qm_process_dev_error(qm);
4022 	if (ret == ACC_ERR_NEED_RESET)
4023 		return PCI_ERS_RESULT_NEED_RESET;
4024 
4025 	return PCI_ERS_RESULT_RECOVERED;
4026 }
4027 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
4028 
4029 static int qm_check_req_recv(struct hisi_qm *qm)
4030 {
4031 	struct pci_dev *pdev = qm->pdev;
4032 	int ret;
4033 	u32 val;
4034 
4035 	if (qm->ver >= QM_HW_V3)
4036 		return 0;
4037 
4038 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
4039 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4040 					 (val == ACC_VENDOR_ID_VALUE),
4041 					 POLL_PERIOD, POLL_TIMEOUT);
4042 	if (ret) {
4043 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
4044 		return ret;
4045 	}
4046 
4047 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
4048 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4049 					 (val == PCI_VENDOR_ID_HUAWEI),
4050 					 POLL_PERIOD, POLL_TIMEOUT);
4051 	if (ret)
4052 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
4053 
4054 	return ret;
4055 }
4056 
4057 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
4058 {
4059 	struct pci_dev *pdev = qm->pdev;
4060 	u16 cmd;
4061 	int i;
4062 
4063 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4064 	if (set)
4065 		cmd |= PCI_COMMAND_MEMORY;
4066 	else
4067 		cmd &= ~PCI_COMMAND_MEMORY;
4068 
4069 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
4070 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4071 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4072 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
4073 			return 0;
4074 
4075 		udelay(1);
4076 	}
4077 
4078 	return -ETIMEDOUT;
4079 }
4080 
4081 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
4082 {
4083 	struct pci_dev *pdev = qm->pdev;
4084 	u16 sriov_ctrl;
4085 	int pos;
4086 	int i;
4087 
4088 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4089 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4090 	if (set)
4091 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
4092 	else
4093 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
4094 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
4095 
4096 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4097 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4098 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
4099 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
4100 			return 0;
4101 
4102 		udelay(1);
4103 	}
4104 
4105 	return -ETIMEDOUT;
4106 }
4107 
4108 static int qm_vf_reset_prepare(struct hisi_qm *qm,
4109 			       enum qm_stop_reason stop_reason)
4110 {
4111 	struct hisi_qm_list *qm_list = qm->qm_list;
4112 	struct pci_dev *pdev = qm->pdev;
4113 	struct pci_dev *virtfn;
4114 	struct hisi_qm *vf_qm;
4115 	int ret = 0;
4116 
4117 	mutex_lock(&qm_list->lock);
4118 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4119 		virtfn = vf_qm->pdev;
4120 		if (virtfn == pdev)
4121 			continue;
4122 
4123 		if (pci_physfn(virtfn) == pdev) {
4124 			/* save VFs PCIE BAR configuration */
4125 			pci_save_state(virtfn);
4126 
4127 			ret = hisi_qm_stop(vf_qm, stop_reason);
4128 			if (ret)
4129 				goto stop_fail;
4130 		}
4131 	}
4132 
4133 stop_fail:
4134 	mutex_unlock(&qm_list->lock);
4135 	return ret;
4136 }
4137 
4138 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
4139 			   enum qm_stop_reason stop_reason)
4140 {
4141 	struct pci_dev *pdev = qm->pdev;
4142 	int ret;
4143 
4144 	if (!qm->vfs_num)
4145 		return 0;
4146 
4147 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
4148 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4149 		ret = qm_ping_all_vfs(qm, cmd);
4150 		if (ret)
4151 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
4152 	} else {
4153 		ret = qm_vf_reset_prepare(qm, stop_reason);
4154 		if (ret)
4155 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4156 	}
4157 
4158 	return ret;
4159 }
4160 
4161 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4162 {
4163 	struct pci_dev *pdev = qm->pdev;
4164 	int ret;
4165 
4166 	ret = qm_reset_prepare_ready(qm);
4167 	if (ret) {
4168 		pci_err(pdev, "Controller reset not ready!\n");
4169 		return ret;
4170 	}
4171 
4172 	/* PF obtains the information of VF by querying the register. */
4173 	qm_cmd_uninit(qm);
4174 
4175 	/* Whether VFs stop successfully, soft reset will continue. */
4176 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4177 	if (ret)
4178 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4179 
4180 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4181 	if (ret) {
4182 		pci_err(pdev, "Fails to stop QM!\n");
4183 		qm_reset_bit_clear(qm);
4184 		return ret;
4185 	}
4186 
4187 	if (qm->use_sva) {
4188 		ret = qm_hw_err_isolate(qm);
4189 		if (ret)
4190 			pci_err(pdev, "failed to isolate hw err!\n");
4191 	}
4192 
4193 	ret = qm_wait_vf_prepare_finish(qm);
4194 	if (ret)
4195 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4196 
4197 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4198 
4199 	return 0;
4200 }
4201 
4202 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4203 {
4204 	u32 nfe_enb = 0;
4205 
4206 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4207 	if (qm->ver >= QM_HW_V3)
4208 		return;
4209 
4210 	if (!qm->err_status.is_dev_ecc_mbit &&
4211 	    qm->err_status.is_qm_ecc_mbit &&
4212 	    qm->err_ini->close_axi_master_ooo) {
4213 		qm->err_ini->close_axi_master_ooo(qm);
4214 	} else if (qm->err_status.is_dev_ecc_mbit &&
4215 		   !qm->err_status.is_qm_ecc_mbit &&
4216 		   !qm->err_ini->close_axi_master_ooo) {
4217 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4218 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4219 		       qm->io_base + QM_RAS_NFE_ENABLE);
4220 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4221 	}
4222 }
4223 
4224 static int qm_soft_reset(struct hisi_qm *qm)
4225 {
4226 	struct pci_dev *pdev = qm->pdev;
4227 	int ret;
4228 	u32 val;
4229 
4230 	/* Ensure all doorbells and mailboxes received by QM */
4231 	ret = qm_check_req_recv(qm);
4232 	if (ret)
4233 		return ret;
4234 
4235 	if (qm->vfs_num) {
4236 		ret = qm_set_vf_mse(qm, false);
4237 		if (ret) {
4238 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4239 			return ret;
4240 		}
4241 	}
4242 
4243 	ret = qm->ops->set_msi(qm, false);
4244 	if (ret) {
4245 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4246 		return ret;
4247 	}
4248 
4249 	qm_dev_ecc_mbit_handle(qm);
4250 
4251 	/* OOO register set and check */
4252 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
4253 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4254 
4255 	/* If bus lock, reset chip */
4256 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4257 					 val,
4258 					 (val == ACC_MASTER_TRANS_RETURN_RW),
4259 					 POLL_PERIOD, POLL_TIMEOUT);
4260 	if (ret) {
4261 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
4262 		return ret;
4263 	}
4264 
4265 	if (qm->err_ini->close_sva_prefetch)
4266 		qm->err_ini->close_sva_prefetch(qm);
4267 
4268 	ret = qm_set_pf_mse(qm, false);
4269 	if (ret) {
4270 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4271 		return ret;
4272 	}
4273 
4274 	/* The reset related sub-control registers are not in PCI BAR */
4275 	if (ACPI_HANDLE(&pdev->dev)) {
4276 		unsigned long long value = 0;
4277 		acpi_status s;
4278 
4279 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4280 					  qm->err_info.acpi_rst,
4281 					  NULL, &value);
4282 		if (ACPI_FAILURE(s)) {
4283 			pci_err(pdev, "NO controller reset method!\n");
4284 			return -EIO;
4285 		}
4286 
4287 		if (value) {
4288 			pci_err(pdev, "Reset step %llu failed!\n", value);
4289 			return -EIO;
4290 		}
4291 	} else {
4292 		pci_err(pdev, "No reset method!\n");
4293 		return -EINVAL;
4294 	}
4295 
4296 	return 0;
4297 }
4298 
4299 static int qm_vf_reset_done(struct hisi_qm *qm)
4300 {
4301 	struct hisi_qm_list *qm_list = qm->qm_list;
4302 	struct pci_dev *pdev = qm->pdev;
4303 	struct pci_dev *virtfn;
4304 	struct hisi_qm *vf_qm;
4305 	int ret = 0;
4306 
4307 	mutex_lock(&qm_list->lock);
4308 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4309 		virtfn = vf_qm->pdev;
4310 		if (virtfn == pdev)
4311 			continue;
4312 
4313 		if (pci_physfn(virtfn) == pdev) {
4314 			/* enable VFs PCIE BAR configuration */
4315 			pci_restore_state(virtfn);
4316 
4317 			ret = qm_restart(vf_qm);
4318 			if (ret)
4319 				goto restart_fail;
4320 		}
4321 	}
4322 
4323 restart_fail:
4324 	mutex_unlock(&qm_list->lock);
4325 	return ret;
4326 }
4327 
4328 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
4329 {
4330 	struct pci_dev *pdev = qm->pdev;
4331 	int ret;
4332 
4333 	if (!qm->vfs_num)
4334 		return 0;
4335 
4336 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4337 	if (ret) {
4338 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4339 		return ret;
4340 	}
4341 
4342 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4343 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4344 		ret = qm_ping_all_vfs(qm, cmd);
4345 		if (ret)
4346 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4347 	} else {
4348 		ret = qm_vf_reset_done(qm);
4349 		if (ret)
4350 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4351 	}
4352 
4353 	return ret;
4354 }
4355 
4356 static int qm_dev_hw_init(struct hisi_qm *qm)
4357 {
4358 	return qm->err_ini->hw_init(qm);
4359 }
4360 
4361 static void qm_restart_prepare(struct hisi_qm *qm)
4362 {
4363 	u32 value;
4364 
4365 	if (qm->err_ini->open_sva_prefetch)
4366 		qm->err_ini->open_sva_prefetch(qm);
4367 
4368 	if (qm->ver >= QM_HW_V3)
4369 		return;
4370 
4371 	if (!qm->err_status.is_qm_ecc_mbit &&
4372 	    !qm->err_status.is_dev_ecc_mbit)
4373 		return;
4374 
4375 	/* temporarily close the OOO port used for PEH to write out MSI */
4376 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4377 	writel(value & ~qm->err_info.msi_wr_port,
4378 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4379 
4380 	/* clear dev ecc 2bit error source if having */
4381 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4382 	if (value && qm->err_ini->clear_dev_hw_err_status)
4383 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4384 
4385 	/* clear QM ecc mbit error source */
4386 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4387 
4388 	/* clear AM Reorder Buffer ecc mbit source */
4389 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4390 }
4391 
4392 static void qm_restart_done(struct hisi_qm *qm)
4393 {
4394 	u32 value;
4395 
4396 	if (qm->ver >= QM_HW_V3)
4397 		goto clear_flags;
4398 
4399 	if (!qm->err_status.is_qm_ecc_mbit &&
4400 	    !qm->err_status.is_dev_ecc_mbit)
4401 		return;
4402 
4403 	/* open the OOO port for PEH to write out MSI */
4404 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4405 	value |= qm->err_info.msi_wr_port;
4406 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4407 
4408 clear_flags:
4409 	qm->err_status.is_qm_ecc_mbit = false;
4410 	qm->err_status.is_dev_ecc_mbit = false;
4411 }
4412 
4413 static int qm_controller_reset_done(struct hisi_qm *qm)
4414 {
4415 	struct pci_dev *pdev = qm->pdev;
4416 	int ret;
4417 
4418 	ret = qm->ops->set_msi(qm, true);
4419 	if (ret) {
4420 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4421 		return ret;
4422 	}
4423 
4424 	ret = qm_set_pf_mse(qm, true);
4425 	if (ret) {
4426 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4427 		return ret;
4428 	}
4429 
4430 	if (qm->vfs_num) {
4431 		ret = qm_set_vf_mse(qm, true);
4432 		if (ret) {
4433 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
4434 			return ret;
4435 		}
4436 	}
4437 
4438 	ret = qm_dev_hw_init(qm);
4439 	if (ret) {
4440 		pci_err(pdev, "Failed to init device\n");
4441 		return ret;
4442 	}
4443 
4444 	qm_restart_prepare(qm);
4445 	hisi_qm_dev_err_init(qm);
4446 	if (qm->err_ini->open_axi_master_ooo)
4447 		qm->err_ini->open_axi_master_ooo(qm);
4448 
4449 	ret = qm_dev_mem_reset(qm);
4450 	if (ret) {
4451 		pci_err(pdev, "failed to reset device memory\n");
4452 		return ret;
4453 	}
4454 
4455 	ret = qm_restart(qm);
4456 	if (ret) {
4457 		pci_err(pdev, "Failed to start QM!\n");
4458 		return ret;
4459 	}
4460 
4461 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4462 	if (ret)
4463 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4464 
4465 	ret = qm_wait_vf_prepare_finish(qm);
4466 	if (ret)
4467 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
4468 
4469 	qm_cmd_init(qm);
4470 	qm_restart_done(qm);
4471 
4472 	qm_reset_bit_clear(qm);
4473 
4474 	return 0;
4475 }
4476 
4477 static int qm_controller_reset(struct hisi_qm *qm)
4478 {
4479 	struct pci_dev *pdev = qm->pdev;
4480 	int ret;
4481 
4482 	pci_info(pdev, "Controller resetting...\n");
4483 
4484 	ret = qm_controller_reset_prepare(qm);
4485 	if (ret) {
4486 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4487 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4488 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4489 		return ret;
4490 	}
4491 
4492 	hisi_qm_show_last_dfx_regs(qm);
4493 	if (qm->err_ini->show_last_dfx_regs)
4494 		qm->err_ini->show_last_dfx_regs(qm);
4495 
4496 	ret = qm_soft_reset(qm);
4497 	if (ret)
4498 		goto err_reset;
4499 
4500 	ret = qm_controller_reset_done(qm);
4501 	if (ret)
4502 		goto err_reset;
4503 
4504 	pci_info(pdev, "Controller reset complete\n");
4505 
4506 	return 0;
4507 
4508 err_reset:
4509 	pci_err(pdev, "Controller reset failed (%d)\n", ret);
4510 	qm_reset_bit_clear(qm);
4511 
4512 	/* if resetting fails, isolate the device */
4513 	if (qm->use_sva)
4514 		qm->isolate_data.is_isolate = true;
4515 	return ret;
4516 }
4517 
4518 /**
4519  * hisi_qm_dev_slot_reset() - slot reset
4520  * @pdev: the PCIe device
4521  *
4522  * This function offers QM relate PCIe device reset interface. Drivers which
4523  * use QM can use this function as slot_reset in its struct pci_error_handlers.
4524  */
4525 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4526 {
4527 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4528 	int ret;
4529 
4530 	if (pdev->is_virtfn)
4531 		return PCI_ERS_RESULT_RECOVERED;
4532 
4533 	/* reset pcie device controller */
4534 	ret = qm_controller_reset(qm);
4535 	if (ret) {
4536 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4537 		return PCI_ERS_RESULT_DISCONNECT;
4538 	}
4539 
4540 	return PCI_ERS_RESULT_RECOVERED;
4541 }
4542 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4543 
4544 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4545 {
4546 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4547 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4548 	u32 delay = 0;
4549 	int ret;
4550 
4551 	hisi_qm_dev_err_uninit(pf_qm);
4552 
4553 	/*
4554 	 * Check whether there is an ECC mbit error, If it occurs, need to
4555 	 * wait for soft reset to fix it.
4556 	 */
4557 	while (qm_check_dev_error(pf_qm)) {
4558 		msleep(++delay);
4559 		if (delay > QM_RESET_WAIT_TIMEOUT)
4560 			return;
4561 	}
4562 
4563 	ret = qm_reset_prepare_ready(qm);
4564 	if (ret) {
4565 		pci_err(pdev, "FLR not ready!\n");
4566 		return;
4567 	}
4568 
4569 	/* PF obtains the information of VF by querying the register. */
4570 	if (qm->fun_type == QM_HW_PF)
4571 		qm_cmd_uninit(qm);
4572 
4573 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN);
4574 	if (ret)
4575 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4576 
4577 	ret = hisi_qm_stop(qm, QM_DOWN);
4578 	if (ret) {
4579 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4580 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4581 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4582 		return;
4583 	}
4584 
4585 	ret = qm_wait_vf_prepare_finish(qm);
4586 	if (ret)
4587 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
4588 
4589 	pci_info(pdev, "FLR resetting...\n");
4590 }
4591 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4592 
4593 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4594 {
4595 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4596 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4597 	u32 id;
4598 
4599 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4600 	if (id == QM_PCI_COMMAND_INVALID) {
4601 		pci_err(pdev, "Device can not be used!\n");
4602 		return false;
4603 	}
4604 
4605 	return true;
4606 }
4607 
4608 void hisi_qm_reset_done(struct pci_dev *pdev)
4609 {
4610 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4611 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4612 	int ret;
4613 
4614 	if (qm->fun_type == QM_HW_PF) {
4615 		ret = qm_dev_hw_init(qm);
4616 		if (ret) {
4617 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4618 			goto flr_done;
4619 		}
4620 	}
4621 
4622 	hisi_qm_dev_err_init(pf_qm);
4623 
4624 	ret = qm_restart(qm);
4625 	if (ret) {
4626 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4627 		goto flr_done;
4628 	}
4629 
4630 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4631 	if (ret)
4632 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4633 
4634 	ret = qm_wait_vf_prepare_finish(qm);
4635 	if (ret)
4636 		pci_err(pdev, "failed to start by vfs in FLR!\n");
4637 
4638 flr_done:
4639 	if (qm->fun_type == QM_HW_PF)
4640 		qm_cmd_init(qm);
4641 
4642 	if (qm_flr_reset_complete(pdev))
4643 		pci_info(pdev, "FLR reset complete\n");
4644 
4645 	qm_reset_bit_clear(qm);
4646 }
4647 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4648 
4649 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4650 {
4651 	struct hisi_qm *qm = data;
4652 	enum acc_err_result ret;
4653 
4654 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4655 	ret = qm_process_dev_error(qm);
4656 	if (ret == ACC_ERR_NEED_RESET &&
4657 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4658 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4659 		schedule_work(&qm->rst_work);
4660 
4661 	return IRQ_HANDLED;
4662 }
4663 
4664 /**
4665  * hisi_qm_dev_shutdown() - Shutdown device.
4666  * @pdev: The device will be shutdown.
4667  *
4668  * This function will stop qm when OS shutdown or rebooting.
4669  */
4670 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4671 {
4672 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4673 	int ret;
4674 
4675 	ret = hisi_qm_stop(qm, QM_DOWN);
4676 	if (ret)
4677 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4678 
4679 	hisi_qm_cache_wb(qm);
4680 }
4681 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4682 
4683 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4684 {
4685 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4686 	int ret;
4687 
4688 	ret = qm_pm_get_sync(qm);
4689 	if (ret) {
4690 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4691 		return;
4692 	}
4693 
4694 	/* reset pcie device controller */
4695 	ret = qm_controller_reset(qm);
4696 	if (ret)
4697 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4698 
4699 	qm_pm_put_sync(qm);
4700 }
4701 
4702 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4703 				   enum qm_stop_reason stop_reason)
4704 {
4705 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
4706 	struct pci_dev *pdev = qm->pdev;
4707 	int ret;
4708 
4709 	ret = qm_reset_prepare_ready(qm);
4710 	if (ret) {
4711 		dev_err(&pdev->dev, "reset prepare not ready!\n");
4712 		atomic_set(&qm->status.flags, QM_STOP);
4713 		cmd = QM_VF_PREPARE_FAIL;
4714 		goto err_prepare;
4715 	}
4716 
4717 	ret = hisi_qm_stop(qm, stop_reason);
4718 	if (ret) {
4719 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4720 		atomic_set(&qm->status.flags, QM_STOP);
4721 		cmd = QM_VF_PREPARE_FAIL;
4722 		goto err_prepare;
4723 	} else {
4724 		goto out;
4725 	}
4726 
4727 err_prepare:
4728 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4729 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4730 out:
4731 	pci_save_state(pdev);
4732 	ret = qm_ping_pf(qm, cmd);
4733 	if (ret)
4734 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4735 }
4736 
4737 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4738 {
4739 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
4740 	struct pci_dev *pdev = qm->pdev;
4741 	int ret;
4742 
4743 	pci_restore_state(pdev);
4744 	ret = hisi_qm_start(qm);
4745 	if (ret) {
4746 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4747 		cmd = QM_VF_START_FAIL;
4748 	}
4749 
4750 	qm_cmd_init(qm);
4751 	ret = qm_ping_pf(qm, cmd);
4752 	if (ret)
4753 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4754 
4755 	qm_reset_bit_clear(qm);
4756 }
4757 
4758 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4759 {
4760 	struct device *dev = &qm->pdev->dev;
4761 	u32 val, cmd;
4762 	u64 msg;
4763 	int ret;
4764 
4765 	/* Wait for reset to finish */
4766 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4767 					 val == BIT(0), QM_VF_RESET_WAIT_US,
4768 					 QM_VF_RESET_WAIT_TIMEOUT_US);
4769 	/* hardware completion status should be available by this time */
4770 	if (ret) {
4771 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4772 		return -ETIMEDOUT;
4773 	}
4774 
4775 	/*
4776 	 * Whether message is got successfully,
4777 	 * VF needs to ack PF by clearing the interrupt.
4778 	 */
4779 	ret = qm_get_mb_cmd(qm, &msg, 0);
4780 	qm_clear_cmd_interrupt(qm, 0);
4781 	if (ret) {
4782 		dev_err(dev, "failed to get msg from PF in reset done!\n");
4783 		return ret;
4784 	}
4785 
4786 	cmd = msg & QM_MB_CMD_DATA_MASK;
4787 	if (cmd != QM_PF_RESET_DONE) {
4788 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
4789 		ret = -EINVAL;
4790 	}
4791 
4792 	return ret;
4793 }
4794 
4795 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4796 				   enum qm_stop_reason stop_reason)
4797 {
4798 	struct device *dev = &qm->pdev->dev;
4799 	int ret;
4800 
4801 	dev_info(dev, "device reset start...\n");
4802 
4803 	/* The message is obtained by querying the register during resetting */
4804 	qm_cmd_uninit(qm);
4805 	qm_pf_reset_vf_prepare(qm, stop_reason);
4806 
4807 	ret = qm_wait_pf_reset_finish(qm);
4808 	if (ret)
4809 		goto err_get_status;
4810 
4811 	qm_pf_reset_vf_done(qm);
4812 
4813 	dev_info(dev, "device reset done.\n");
4814 
4815 	return;
4816 
4817 err_get_status:
4818 	qm_cmd_init(qm);
4819 	qm_reset_bit_clear(qm);
4820 }
4821 
4822 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
4823 {
4824 	struct device *dev = &qm->pdev->dev;
4825 	u64 msg;
4826 	u32 cmd;
4827 	int ret;
4828 
4829 	/*
4830 	 * Get the msg from source by sending mailbox. Whether message is got
4831 	 * successfully, destination needs to ack source by clearing the interrupt.
4832 	 */
4833 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
4834 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
4835 	if (ret) {
4836 		dev_err(dev, "failed to get msg from source!\n");
4837 		return;
4838 	}
4839 
4840 	cmd = msg & QM_MB_CMD_DATA_MASK;
4841 	switch (cmd) {
4842 	case QM_PF_FLR_PREPARE:
4843 		qm_pf_reset_vf_process(qm, QM_DOWN);
4844 		break;
4845 	case QM_PF_SRST_PREPARE:
4846 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
4847 		break;
4848 	case QM_VF_GET_QOS:
4849 		qm_vf_get_qos(qm, fun_num);
4850 		break;
4851 	case QM_PF_SET_QOS:
4852 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
4853 		break;
4854 	default:
4855 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
4856 		break;
4857 	}
4858 }
4859 
4860 static void qm_cmd_process(struct work_struct *cmd_process)
4861 {
4862 	struct hisi_qm *qm = container_of(cmd_process,
4863 					struct hisi_qm, cmd_process);
4864 	u32 vfs_num = qm->vfs_num;
4865 	u64 val;
4866 	u32 i;
4867 
4868 	if (qm->fun_type == QM_HW_PF) {
4869 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
4870 		if (!val)
4871 			return;
4872 
4873 		for (i = 1; i <= vfs_num; i++) {
4874 			if (val & BIT(i))
4875 				qm_handle_cmd_msg(qm, i);
4876 		}
4877 
4878 		return;
4879 	}
4880 
4881 	qm_handle_cmd_msg(qm, 0);
4882 }
4883 
4884 /**
4885  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
4886  * @qm: The qm needs add.
4887  * @qm_list: The qm list.
4888  *
4889  * This function adds qm to qm list, and will register algorithm to
4890  * crypto when the qm list is empty.
4891  */
4892 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4893 {
4894 	struct device *dev = &qm->pdev->dev;
4895 	int flag = 0;
4896 	int ret = 0;
4897 
4898 	mutex_lock(&qm_list->lock);
4899 	if (list_empty(&qm_list->list))
4900 		flag = 1;
4901 	list_add_tail(&qm->list, &qm_list->list);
4902 	mutex_unlock(&qm_list->lock);
4903 
4904 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
4905 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
4906 		return 0;
4907 	}
4908 
4909 	if (flag) {
4910 		ret = qm_list->register_to_crypto(qm);
4911 		if (ret) {
4912 			mutex_lock(&qm_list->lock);
4913 			list_del(&qm->list);
4914 			mutex_unlock(&qm_list->lock);
4915 		}
4916 	}
4917 
4918 	return ret;
4919 }
4920 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4921 
4922 /**
4923  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
4924  * qm list.
4925  * @qm: The qm needs delete.
4926  * @qm_list: The qm list.
4927  *
4928  * This function deletes qm from qm list, and will unregister algorithm
4929  * from crypto when the qm list is empty.
4930  */
4931 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4932 {
4933 	mutex_lock(&qm_list->lock);
4934 	list_del(&qm->list);
4935 	mutex_unlock(&qm_list->lock);
4936 
4937 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4938 		return;
4939 
4940 	if (list_empty(&qm_list->list))
4941 		qm_list->unregister_from_crypto(qm);
4942 }
4943 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
4944 
4945 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
4946 {
4947 	struct pci_dev *pdev = qm->pdev;
4948 	u32 irq_vector, val;
4949 
4950 	if (qm->fun_type == QM_HW_VF)
4951 		return;
4952 
4953 	val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val;
4954 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4955 		return;
4956 
4957 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4958 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4959 }
4960 
4961 static int qm_register_abnormal_irq(struct hisi_qm *qm)
4962 {
4963 	struct pci_dev *pdev = qm->pdev;
4964 	u32 irq_vector, val;
4965 	int ret;
4966 
4967 	if (qm->fun_type == QM_HW_VF)
4968 		return 0;
4969 
4970 	val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val;
4971 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4972 		return 0;
4973 
4974 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4975 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
4976 	if (ret)
4977 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
4978 
4979 	return ret;
4980 }
4981 
4982 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
4983 {
4984 	struct pci_dev *pdev = qm->pdev;
4985 	u32 irq_vector, val;
4986 
4987 	val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val;
4988 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4989 		return;
4990 
4991 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4992 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4993 }
4994 
4995 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
4996 {
4997 	struct pci_dev *pdev = qm->pdev;
4998 	u32 irq_vector, val;
4999 	int ret;
5000 
5001 	val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val;
5002 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5003 		return 0;
5004 
5005 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5006 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
5007 	if (ret)
5008 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
5009 
5010 	return ret;
5011 }
5012 
5013 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
5014 {
5015 	struct pci_dev *pdev = qm->pdev;
5016 	u32 irq_vector, val;
5017 
5018 	val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val;
5019 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5020 		return;
5021 
5022 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5023 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5024 }
5025 
5026 static int qm_register_aeq_irq(struct hisi_qm *qm)
5027 {
5028 	struct pci_dev *pdev = qm->pdev;
5029 	u32 irq_vector, val;
5030 	int ret;
5031 
5032 	val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val;
5033 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5034 		return 0;
5035 
5036 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5037 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL,
5038 						   qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm);
5039 	if (ret)
5040 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5041 
5042 	return ret;
5043 }
5044 
5045 static void qm_unregister_eq_irq(struct hisi_qm *qm)
5046 {
5047 	struct pci_dev *pdev = qm->pdev;
5048 	u32 irq_vector, val;
5049 
5050 	val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val;
5051 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5052 		return;
5053 
5054 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5055 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5056 }
5057 
5058 static int qm_register_eq_irq(struct hisi_qm *qm)
5059 {
5060 	struct pci_dev *pdev = qm->pdev;
5061 	u32 irq_vector, val;
5062 	int ret;
5063 
5064 	val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val;
5065 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5066 		return 0;
5067 
5068 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5069 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
5070 	if (ret)
5071 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5072 
5073 	return ret;
5074 }
5075 
5076 static void qm_irqs_unregister(struct hisi_qm *qm)
5077 {
5078 	qm_unregister_mb_cmd_irq(qm);
5079 	qm_unregister_abnormal_irq(qm);
5080 	qm_unregister_aeq_irq(qm);
5081 	qm_unregister_eq_irq(qm);
5082 }
5083 
5084 static int qm_irqs_register(struct hisi_qm *qm)
5085 {
5086 	int ret;
5087 
5088 	ret = qm_register_eq_irq(qm);
5089 	if (ret)
5090 		return ret;
5091 
5092 	ret = qm_register_aeq_irq(qm);
5093 	if (ret)
5094 		goto free_eq_irq;
5095 
5096 	ret = qm_register_abnormal_irq(qm);
5097 	if (ret)
5098 		goto free_aeq_irq;
5099 
5100 	ret = qm_register_mb_cmd_irq(qm);
5101 	if (ret)
5102 		goto free_abnormal_irq;
5103 
5104 	return 0;
5105 
5106 free_abnormal_irq:
5107 	qm_unregister_abnormal_irq(qm);
5108 free_aeq_irq:
5109 	qm_unregister_aeq_irq(qm);
5110 free_eq_irq:
5111 	qm_unregister_eq_irq(qm);
5112 	return ret;
5113 }
5114 
5115 static int qm_get_qp_num(struct hisi_qm *qm)
5116 {
5117 	struct device *dev = &qm->pdev->dev;
5118 	bool is_db_isolation;
5119 
5120 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
5121 	if (qm->fun_type == QM_HW_VF) {
5122 		if (qm->ver != QM_HW_V1)
5123 			/* v2 starts to support get vft by mailbox */
5124 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
5125 
5126 		return 0;
5127 	}
5128 
5129 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5130 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
5131 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
5132 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
5133 
5134 	if (qm->qp_num <= qm->max_qp_num)
5135 		return 0;
5136 
5137 	if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) {
5138 		/* Check whether the set qp number is valid */
5139 		dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n",
5140 			qm->qp_num, qm->max_qp_num);
5141 		return -EINVAL;
5142 	}
5143 
5144 	dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n",
5145 		 qm->qp_num, qm->max_qp_num);
5146 	qm->qp_num = qm->max_qp_num;
5147 	qm->debug.curr_qm_qp_num = qm->qp_num;
5148 
5149 	return 0;
5150 }
5151 
5152 static int qm_pre_store_irq_type_caps(struct hisi_qm *qm)
5153 {
5154 	struct hisi_qm_cap_record *qm_cap;
5155 	struct pci_dev *pdev = qm->pdev;
5156 	size_t i, size;
5157 
5158 	size = ARRAY_SIZE(qm_pre_store_caps);
5159 	qm_cap = devm_kzalloc(&pdev->dev, sizeof(*qm_cap) * size, GFP_KERNEL);
5160 	if (!qm_cap)
5161 		return -ENOMEM;
5162 
5163 	for (i = 0; i < size; i++) {
5164 		qm_cap[i].type = qm_pre_store_caps[i];
5165 		qm_cap[i].cap_val = hisi_qm_get_hw_info(qm, qm_basic_info,
5166 							qm_pre_store_caps[i], qm->cap_ver);
5167 	}
5168 
5169 	qm->cap_tables.qm_cap_table = qm_cap;
5170 
5171 	return 0;
5172 }
5173 
5174 static int qm_get_hw_caps(struct hisi_qm *qm)
5175 {
5176 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
5177 						  qm_cap_info_pf : qm_cap_info_vf;
5178 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
5179 				   ARRAY_SIZE(qm_cap_info_vf);
5180 	u32 val, i;
5181 
5182 	/* Doorbell isolate register is a independent register. */
5183 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
5184 	if (val)
5185 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5186 
5187 	if (qm->ver >= QM_HW_V3) {
5188 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
5189 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
5190 	}
5191 
5192 	/* Get PF/VF common capbility */
5193 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
5194 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
5195 		if (val)
5196 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
5197 	}
5198 
5199 	/* Get PF/VF different capbility */
5200 	for (i = 0; i < size; i++) {
5201 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
5202 		if (val)
5203 			set_bit(cap_info[i].type, &qm->caps);
5204 	}
5205 
5206 	/* Fetch and save the value of irq type related capability registers */
5207 	return qm_pre_store_irq_type_caps(qm);
5208 }
5209 
5210 static int qm_get_pci_res(struct hisi_qm *qm)
5211 {
5212 	struct pci_dev *pdev = qm->pdev;
5213 	struct device *dev = &pdev->dev;
5214 	int ret;
5215 
5216 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5217 	if (ret < 0) {
5218 		dev_err(dev, "Failed to request mem regions!\n");
5219 		return ret;
5220 	}
5221 
5222 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5223 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5224 	if (!qm->io_base) {
5225 		ret = -EIO;
5226 		goto err_request_mem_regions;
5227 	}
5228 
5229 	ret = qm_get_hw_caps(qm);
5230 	if (ret)
5231 		goto err_ioremap;
5232 
5233 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5234 		qm->db_interval = QM_QP_DB_INTERVAL;
5235 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5236 		qm->db_io_base = ioremap(qm->db_phys_base,
5237 					 pci_resource_len(pdev, PCI_BAR_4));
5238 		if (!qm->db_io_base) {
5239 			ret = -EIO;
5240 			goto err_ioremap;
5241 		}
5242 	} else {
5243 		qm->db_phys_base = qm->phys_base;
5244 		qm->db_io_base = qm->io_base;
5245 		qm->db_interval = 0;
5246 	}
5247 
5248 	ret = qm_get_qp_num(qm);
5249 	if (ret)
5250 		goto err_db_ioremap;
5251 
5252 	return 0;
5253 
5254 err_db_ioremap:
5255 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5256 		iounmap(qm->db_io_base);
5257 err_ioremap:
5258 	iounmap(qm->io_base);
5259 err_request_mem_regions:
5260 	pci_release_mem_regions(pdev);
5261 	return ret;
5262 }
5263 
5264 static int hisi_qm_pci_init(struct hisi_qm *qm)
5265 {
5266 	struct pci_dev *pdev = qm->pdev;
5267 	struct device *dev = &pdev->dev;
5268 	unsigned int num_vec;
5269 	int ret;
5270 
5271 	ret = pci_enable_device_mem(pdev);
5272 	if (ret < 0) {
5273 		dev_err(dev, "Failed to enable device mem!\n");
5274 		return ret;
5275 	}
5276 
5277 	ret = qm_get_pci_res(qm);
5278 	if (ret)
5279 		goto err_disable_pcidev;
5280 
5281 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5282 	if (ret < 0)
5283 		goto err_get_pci_res;
5284 	pci_set_master(pdev);
5285 
5286 	num_vec = qm_get_irq_num(qm);
5287 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5288 	if (ret < 0) {
5289 		dev_err(dev, "Failed to enable MSI vectors!\n");
5290 		goto err_get_pci_res;
5291 	}
5292 
5293 	return 0;
5294 
5295 err_get_pci_res:
5296 	qm_put_pci_res(qm);
5297 err_disable_pcidev:
5298 	pci_disable_device(pdev);
5299 	return ret;
5300 }
5301 
5302 static int hisi_qm_init_work(struct hisi_qm *qm)
5303 {
5304 	int i;
5305 
5306 	for (i = 0; i < qm->qp_num; i++)
5307 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5308 
5309 	if (qm->fun_type == QM_HW_PF)
5310 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5311 
5312 	if (qm->ver > QM_HW_V2)
5313 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5314 
5315 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5316 				 WQ_UNBOUND, num_online_cpus(),
5317 				 pci_name(qm->pdev));
5318 	if (!qm->wq) {
5319 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
5320 		return -ENOMEM;
5321 	}
5322 
5323 	return 0;
5324 }
5325 
5326 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5327 {
5328 	struct device *dev = &qm->pdev->dev;
5329 	u16 sq_depth, cq_depth;
5330 	size_t qp_dma_size;
5331 	int i, ret;
5332 
5333 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5334 	if (!qm->qp_array)
5335 		return -ENOMEM;
5336 
5337 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5338 	if (!qm->poll_data) {
5339 		kfree(qm->qp_array);
5340 		return -ENOMEM;
5341 	}
5342 
5343 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5344 
5345 	/* one more page for device or qp statuses */
5346 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5347 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5348 	for (i = 0; i < qm->qp_num; i++) {
5349 		qm->poll_data[i].qm = qm;
5350 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5351 		if (ret)
5352 			goto err_init_qp_mem;
5353 
5354 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5355 	}
5356 
5357 	return 0;
5358 err_init_qp_mem:
5359 	hisi_qp_memory_uninit(qm, i);
5360 
5361 	return ret;
5362 }
5363 
5364 static int hisi_qm_memory_init(struct hisi_qm *qm)
5365 {
5366 	struct device *dev = &qm->pdev->dev;
5367 	int ret, total_func;
5368 	size_t off = 0;
5369 
5370 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5371 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5372 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5373 		if (!qm->factor)
5374 			return -ENOMEM;
5375 
5376 		/* Only the PF value needs to be initialized */
5377 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5378 	}
5379 
5380 #define QM_INIT_BUF(qm, type, num) do { \
5381 	(qm)->type = ((qm)->qdma.va + (off)); \
5382 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5383 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5384 } while (0)
5385 
5386 	idr_init(&qm->qp_idr);
5387 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5388 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5389 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5390 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5391 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5392 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5393 					 GFP_ATOMIC);
5394 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5395 	if (!qm->qdma.va) {
5396 		ret = -ENOMEM;
5397 		goto err_destroy_idr;
5398 	}
5399 
5400 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
5401 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5402 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5403 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5404 
5405 	ret = hisi_qp_alloc_memory(qm);
5406 	if (ret)
5407 		goto err_alloc_qp_array;
5408 
5409 	return 0;
5410 
5411 err_alloc_qp_array:
5412 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5413 err_destroy_idr:
5414 	idr_destroy(&qm->qp_idr);
5415 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5416 		kfree(qm->factor);
5417 
5418 	return ret;
5419 }
5420 
5421 /**
5422  * hisi_qm_init() - Initialize configures about qm.
5423  * @qm: The qm needing init.
5424  *
5425  * This function init qm, then we can call hisi_qm_start to put qm into work.
5426  */
5427 int hisi_qm_init(struct hisi_qm *qm)
5428 {
5429 	struct pci_dev *pdev = qm->pdev;
5430 	struct device *dev = &pdev->dev;
5431 	int ret;
5432 
5433 	hisi_qm_pre_init(qm);
5434 
5435 	ret = hisi_qm_pci_init(qm);
5436 	if (ret)
5437 		return ret;
5438 
5439 	ret = qm_irqs_register(qm);
5440 	if (ret)
5441 		goto err_pci_init;
5442 
5443 	if (qm->fun_type == QM_HW_PF) {
5444 		/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5445 		writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5446 		qm_disable_clock_gate(qm);
5447 		ret = qm_dev_mem_reset(qm);
5448 		if (ret) {
5449 			dev_err(dev, "failed to reset device memory\n");
5450 			goto err_irq_register;
5451 		}
5452 	}
5453 
5454 	if (qm->mode == UACCE_MODE_SVA) {
5455 		ret = qm_alloc_uacce(qm);
5456 		if (ret < 0)
5457 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5458 	}
5459 
5460 	ret = hisi_qm_memory_init(qm);
5461 	if (ret)
5462 		goto err_alloc_uacce;
5463 
5464 	ret = hisi_qm_init_work(qm);
5465 	if (ret)
5466 		goto err_free_qm_memory;
5467 
5468 	qm_cmd_init(qm);
5469 	atomic_set(&qm->status.flags, QM_INIT);
5470 
5471 	return 0;
5472 
5473 err_free_qm_memory:
5474 	hisi_qm_memory_uninit(qm);
5475 err_alloc_uacce:
5476 	qm_remove_uacce(qm);
5477 err_irq_register:
5478 	qm_irqs_unregister(qm);
5479 err_pci_init:
5480 	hisi_qm_pci_uninit(qm);
5481 	return ret;
5482 }
5483 EXPORT_SYMBOL_GPL(hisi_qm_init);
5484 
5485 /**
5486  * hisi_qm_get_dfx_access() - Try to get dfx access.
5487  * @qm: pointer to accelerator device.
5488  *
5489  * Try to get dfx access, then user can get message.
5490  *
5491  * If device is in suspended, return failure, otherwise
5492  * bump up the runtime PM usage counter.
5493  */
5494 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5495 {
5496 	struct device *dev = &qm->pdev->dev;
5497 
5498 	if (pm_runtime_suspended(dev)) {
5499 		dev_info(dev, "can not read/write - device in suspended.\n");
5500 		return -EAGAIN;
5501 	}
5502 
5503 	return qm_pm_get_sync(qm);
5504 }
5505 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5506 
5507 /**
5508  * hisi_qm_put_dfx_access() - Put dfx access.
5509  * @qm: pointer to accelerator device.
5510  *
5511  * Put dfx access, drop runtime PM usage counter.
5512  */
5513 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5514 {
5515 	qm_pm_put_sync(qm);
5516 }
5517 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5518 
5519 /**
5520  * hisi_qm_pm_init() - Initialize qm runtime PM.
5521  * @qm: pointer to accelerator device.
5522  *
5523  * Function that initialize qm runtime PM.
5524  */
5525 void hisi_qm_pm_init(struct hisi_qm *qm)
5526 {
5527 	struct device *dev = &qm->pdev->dev;
5528 
5529 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5530 		return;
5531 
5532 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5533 	pm_runtime_use_autosuspend(dev);
5534 	pm_runtime_put_noidle(dev);
5535 }
5536 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5537 
5538 /**
5539  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5540  * @qm: pointer to accelerator device.
5541  *
5542  * Function that uninitialize qm runtime PM.
5543  */
5544 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5545 {
5546 	struct device *dev = &qm->pdev->dev;
5547 
5548 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5549 		return;
5550 
5551 	pm_runtime_get_noresume(dev);
5552 	pm_runtime_dont_use_autosuspend(dev);
5553 }
5554 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5555 
5556 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5557 {
5558 	struct pci_dev *pdev = qm->pdev;
5559 	int ret;
5560 	u32 val;
5561 
5562 	ret = qm->ops->set_msi(qm, false);
5563 	if (ret) {
5564 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5565 		return ret;
5566 	}
5567 
5568 	/* shutdown OOO register */
5569 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
5570 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5571 
5572 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
5573 					 val,
5574 					 (val == ACC_MASTER_TRANS_RETURN_RW),
5575 					 POLL_PERIOD, POLL_TIMEOUT);
5576 	if (ret) {
5577 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
5578 		return ret;
5579 	}
5580 
5581 	ret = qm_set_pf_mse(qm, false);
5582 	if (ret)
5583 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5584 
5585 	return ret;
5586 }
5587 
5588 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5589 {
5590 	struct pci_dev *pdev = qm->pdev;
5591 	int ret;
5592 
5593 	ret = qm_set_pf_mse(qm, true);
5594 	if (ret) {
5595 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5596 		return ret;
5597 	}
5598 
5599 	ret = qm->ops->set_msi(qm, true);
5600 	if (ret) {
5601 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5602 		return ret;
5603 	}
5604 
5605 	ret = qm_dev_hw_init(qm);
5606 	if (ret) {
5607 		pci_err(pdev, "failed to init device after resuming\n");
5608 		return ret;
5609 	}
5610 
5611 	qm_cmd_init(qm);
5612 	hisi_qm_dev_err_init(qm);
5613 	/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5614 	writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5615 	qm_disable_clock_gate(qm);
5616 	ret = qm_dev_mem_reset(qm);
5617 	if (ret)
5618 		pci_err(pdev, "failed to reset device memory\n");
5619 
5620 	return ret;
5621 }
5622 
5623 /**
5624  * hisi_qm_suspend() - Runtime suspend of given device.
5625  * @dev: device to suspend.
5626  *
5627  * Function that suspend the device.
5628  */
5629 int hisi_qm_suspend(struct device *dev)
5630 {
5631 	struct pci_dev *pdev = to_pci_dev(dev);
5632 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5633 	int ret;
5634 
5635 	pci_info(pdev, "entering suspended state\n");
5636 
5637 	ret = hisi_qm_stop(qm, QM_NORMAL);
5638 	if (ret) {
5639 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
5640 		return ret;
5641 	}
5642 
5643 	ret = qm_prepare_for_suspend(qm);
5644 	if (ret)
5645 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5646 
5647 	return ret;
5648 }
5649 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5650 
5651 /**
5652  * hisi_qm_resume() - Runtime resume of given device.
5653  * @dev: device to resume.
5654  *
5655  * Function that resume the device.
5656  */
5657 int hisi_qm_resume(struct device *dev)
5658 {
5659 	struct pci_dev *pdev = to_pci_dev(dev);
5660 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5661 	int ret;
5662 
5663 	pci_info(pdev, "resuming from suspend state\n");
5664 
5665 	ret = qm_rebuild_for_resume(qm);
5666 	if (ret) {
5667 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5668 		return ret;
5669 	}
5670 
5671 	ret = hisi_qm_start(qm);
5672 	if (ret) {
5673 		if (qm_check_dev_error(qm)) {
5674 			pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5675 			return 0;
5676 		}
5677 
5678 		pci_err(pdev, "failed to start qm(%d)!\n", ret);
5679 	}
5680 
5681 	return ret;
5682 }
5683 EXPORT_SYMBOL_GPL(hisi_qm_resume);
5684 
5685 MODULE_LICENSE("GPL v2");
5686 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5687 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5688